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Abstract: In this work, a method is proposed for
modifying the standard master-slave stiffness matrix so
that linear consistency across the interface of the master
and slave meshes is achieved. The existence of such a
local stiffness modification is implied by the work of
[Dohrmann, et al, to appear]. The present work aims at
achieving the same linear consistency through a different
method of stiffness modification that is based on simply
ensuring zero residual force at the interior interface nodes
for all non-zero-stress linear displacement fields and zero
residual force at all interfaee nodes for all rigid-body linear
displacement fields. These zero residuals ensure that the
local stiffness modification results in an interface that
passes the patch test. Numerical examples herein
demonstrate that the maximum stress error at the interface
goes to zero with the proposed method while it does not for
the standard master-slave method.

1. Introduction

The standard master-slave method of tying two
incompatible meshes together generally results in a
stiffness matrix that does not satisfy linear consistency
across the interface of the master and slave meshes. The
work of [Dohrmann, et al] presents a method for modifying
the uniform strain part of the stiffness matrices of the slave
interface elements so that linear consistency across the
interface is achieved. The tying method of [Dohrmann, et
al] is based upon the uniform strain approach of [Flanagan
and Belytschko, 1981] which has also been used to develop
an element-level transition element [Dohrmann and Key,

1999]. Their method involves assigning and calculating
gap volumes for each such slave element and taking partial
derivatives of each such gap volume with respeet to the
unconstrained (independent) nodal degrees of freedom to
achieve a modification to the uniform strain part of the
strain displacement matrix of the element. This approach
is simple in concept and appealing in concept. However,
the work of the present paper aims at achieving the linear
consistency through a more algebraic approach to
modifying the stiffness matrix; this proposed approach
avoids explicit accounting of gap volumes. The problem
statement is given in Section 2. The proposed solution
method is described in Seetion 3. Numerical examples are
given in Section 4 to demonstrate convergence to zero of
the maximum stress error at the interface for the proposed
approach and non convergence for the standard master-
slave approach. Finally concluding remarks are given in
Section 5.

2. Problem Statement

We are given two dissimilar finite element meshes
that we want to connect together in such a way that linear
consistency across their interface is achieved. Figure 1
below illustrates such a problem in two dimensions
involving two meshes of standard isoparametric 4-noded
Quad4 elements. The “o” symbols denote nodes of the
master Quad4s and the “x” symbols denote nodes of the
‘slave Quad4s.
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Figure 1. Illustration of a Mesh Tying Problem in Two
Dimensions

In general, the elements within either the master
or slave meshes do not have to be all of the same type, i.e.,
they do not have to be all Quad4sj It is only assumed that
the master and slave meshes are individually valid, i.e.,
they individually pass the patch test [Zienkiewicz and
Taylor, 1989].

3. Method

The first steps of the proposed approach are
identical to the standard master-slave method and can be
briefly summarized as follows. We move each slave
interface node to the closest master edge on the interface.
The nodal degrees of freedom of this slave node are then
“constrained” so that the node stays on the chosen point of
the master element’s edge (or face in three dimensions).
So, a linear multi-point constraint ,results which expresses
the slave interface node’s degrees of freedom in terms of
the degrees of freedom of the master nodes on that master
element’s edge.

If we partition the degrees of freedom, denoted Q ,

into unconstrained and constrained degrees of freedom as:

-()
4

‘= qs
(3.1)

where the ~ are the unconstrained ones and the q, the

constrained slave interface nodal degrees of freedom, and if
we let the constraints be denoted by

q,= Cij (3.2)

then,
+=A~ (3.3)

where

(3.4)

Letting ~ denote the stiffness matrix associated
with ~ , i.e., the strain energy of the combined master and

slave meshes is given by ~ijTK~, then combining this with

(3.3) results in the stiffness matrix of the standard master-
slave methotk

Km.AT~ (3.5)

That is, the strain energy is now ;~TATk4;.

Unfortunately, this stiffness matrix Km does not yield

linear consistency across the interface of the master and
slave meshes.

The method of [Dohrmann, et al] assigns to each
slave interface element a gap volume (or gap area in two
dimensions) and calculates partial derivatives of the gap
volume with respect to the unconstrained nodal degrees of
freedom that define this . gap volume to obtain
modifications to that element’s uniform strain-
displacement matrix, which in turn determines the
modifications to the stiffness matrix contributions of this
slave interface element. We propose instead to simply
identify stiffness matrix elements (nodal interaction pairs)
that might be affected by such a stiffness modification.
Proceeding in this way through all the slave interface
elements we accumulate a list of nodal interaction pairs
and thereby a set P of (ij), j 2 i, pairs of Km entries that

might need modifying to achieve linear consistency. By
definition, the nodal forces (at the interface) must be zero
for all rigid-body linear displacement fields (of which there
are 3 independent ones in two dimensions and 6 in three
dimensions). Letting v, denote such a rigid body

displacement vector, we have:

jd.4(1) j@iI)

k=(l,2,...,6) (3.6)
where S is the union of the set of master nodal degrees of
freedom on the interface and the set of degrees of freedom
of unconstrained slave nodes belonging to slave interface
elements, M(Z) is the set of degrees of freedom for which
(Km)r,M,,, # O, and Q(I) is the set of degrees of freedom for

which (1,Q(I)) is in P or the “symmetric part” of P.

Also, for each independent non-zero-strain linear
displacement field (of which there are 3 in two dimensions
and 6, in three dimensions), the nodal forces at each
internal interface node must be zero. Letting w~ denote

such a dimlacement vector, we have:

j=M(I) jea~) “’
k=(l,2,...,6) (3.7)

where Sin is the same as S except that it contains no

degrees of freedom of nodes on the boundary of the
combined master/slave domain.

It is important to note that each equation in (3.6)
and (3.7) contains only a small number (0(1) in size) of
unknown AK~ values. Hence the Jacobian matrix of these

constraints with respect to these unknowns is very sparse,
having O(N1) nonzeros where Nl is the number of nodes

in S. The number of constraints in (3.6)/(3.7) is essentially
12N{ for two-dimensional problems and 36N, for three-

dimensional problems. Sparsity patterns of this Jacobian
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will be illustrated on example two dimensional problems in
the next section. In general the unknown AK~ values that

satisfy (3.6) and (3.7) are not unique, but by merely the
construction of the method of [Dohrmann, et al], this set of
sparse linear equations is guaranteed to have associated
AK~ entries that solve (3.6) and (3.7), i.e., a solution to

the linear system of equations exists.
Although there are other heuristics for making the

choice for AK~ unique, we chose to find the AK~ solution

whose sum of the squares is smallest. Letting p denote the
vector of unknown AK~ values and J the Jacobian of

(3.6)/(3.7), (each entry in J being simply composed of
components of the v~ or w~ vectors), with respect top, and

g the value of (3.6)/(3.7) at p = O, we then must solve the

following sparse linear system: ~

[; tyf)=(-!’..) (3.8)

where A is a vector of unknown Lagrange multipliers, one
for each constraint. Again, by the method of [Dohrmann,
et al], Jp = –g is guaranteed to have a solution. We note

that the proposed stiffness modification approach results,
in general, in modification of the higher order stiffness
part [Bergan and Nygard, 1984], as well as the uniform
strain part, of the slave interface elements’ stiffness
matrices.

4. Numerical Examples

In this section, we will demonstrate that the
stiffness matrix resulting from the method of the previous
section yields convergence to zero of the maximum stress
error on the interface, while the standard master-slave
method does not. The reason, again, is that the latter does
not satisfy linear consistency across the interface, i.e., dces
not satisfy the patch test, while the former does.

Consider the problem illustrated in Figure 1 of
Section 2. We made three mesh refinements of the mesh
in Figure 1 in which each Quad4 was split into 4 Quad4s,
while applying both the standard master-slave method and
the proposed method, and we looked at the
convergence/non-convergence of the maximum centroidal
stress error (over all the master interface elements). The
particular boundary-value-problem used is as follows. We
chose a plane stress elasticity problem with a Young’s
modulus of E =2.07x1011 and a Poisson’s ratio of v= 0.3.
The boundary conditions imposed were as follows.

(4.1)u=(a,~/ 2)x+( –a, )x(y–h2)

v = (a*h* / 2)y+(–a2 /2)(y–h2)2 +(CX, /2)x2

(4.2)

where u and v are the x and y displacements, respectively,
and where

(xl= l/E (4.3)

az =–vIE (4.4)

and h2 = 2 is the vertical size of the rectangular domain”.

Displacements (4. 1)/(4.2) were applied on the boundary,
and the associated Dirichlet problem solved. The exact
stress solution for this problem is given by

crx=hz /2-y (4.5)

ay=o (4.6)

Tv=o (4.7)

Let n denote the number of master elements on an edge of
the master mesh. Results for the maximum master
interface element centroidal stress error versus n are given
in Figure 2 below.
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Figure ~. M5axir&m ~entr~idal~tres~ err~r in ~he ~aster
interface elements versus number of master elements on an
edge of the master domain; x -- standard master-slave; 0--

proposed method

Also, Table 1 and Table 2 below give tabled values for
Figure 2.

Table 1. Maximum Stress Error Versus n, Standard
Master-Slave

n Max Stress Error
0.0226

:0 0.0274

40 0:0314

Table 2. Maximum Stress Error Versus n, Proposed
Method

From Figure 2, we see that for the standard master-slave
method the maximum stress error is not converging to
zero. However, for the proposed approach, it is converging
to zero. From Tables 1 and 2 we see that at n = 40, we
have a factor of 20 reduction in the maximum stress error
for the proposed approach when compared with the
standard master-slave method.
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From a computational point of view, the largest
cost of the proposed method is in solving the sparse linear
system (3.8). The sparsity of J for n =40 is illustrated in
Figure 3 below:
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Figure 3. Illustration of the Sparsity of J, for n =40

5. Conclusion
In this paper we presented a method for

connecting two finite element meshes together in such a
way that linear consistency across the interface of the two
meshes is attained, i.e., such that the resulting stiffness
matrix passes the patch test. The method starts with the
stiffness matrix of the standard master-slave method.
Then, it identifies a list of nodal interaction pairs across
the interface that define what parts of the stiffness matrix
might need to be modified to achieve linear consistency.
Finally, constraints are written expressing zero residual
forces at nodes on the interface (and unconstrained slave
nodes belonging to slave interface elements) for
independent imposed linear displacement fields. These
constraints are linear in the unknown stiffness element
changes. The Jacobian matrix for this set of linear
constraints on these unknowns is very sparse and hence
sparse-matrix solvers are used. The solution for the
unknown stiffness element changes is not unique in
general; herein, we chose to find the one whose sum of the
squares is smallest. Although the existence of a stiffness
modification that achieves linear consistency was implied
by the method of [Dohrmann, et al], the method proposed
herein does not involve any explicit gap volume
assignment or accounting. Instead the method is more of
an algebraic approach to obtaining the stiffness
modifications that result in linear consistency across the
interface. Numerical examples demonstrated that the
proposed approach yields convergence to zero of the
maximum stress error at the interface while the standard
master-slave method does not.
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