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ABSTRACT: At low mean stresses, porous geomaterials fail by shear localization, and at higher mean
stresses, they undergo strain-hardening behavior. Cap plasticity models attempt to model this behavior using a
pressure-dependent shear yield and/or shear limit-state envelope with a hardening or hardening/softening el-
liptical end cap to define pore collapse. While these traditional models describe compactive yield and ultimate
shear failure, difficulties arise when the behavior involves a transition from compactive to dilatant deforma-
tion that occurs before the shear failure or limit-state shear stress is reached. In this work. a continuous sur-
face cap plasticity model is used to predict compactive and dilatant pre-failure deformation. During loading
the stress point can pass freely through the critical state point separating compactive from dilatant deforma-
tion. The predicted volumetric strain goes from compactive to dilatant without the use of a non-associated

- flow rule. The new model is stable in that Drucker’s stability postulates are satisfied.

1 INTRODUCTION

Massively parallel solution algorithms together
with newly introduced teraflops supercomputers
provide the geoscientist with unprecedented capa-
bilities to simulate the large-scale mechanical be-
havior of complex geosystems. Along with advances
in software and hardware, accurate representations
of the nonlinear stress-strain behavior of rock and
soil play a critical role in the ability of simulations to
predict the natural behavior of geosystems.

Two classes of behavior may be identified on the
basis of rock porosity for the range of mean stresses
encountered in several geosystems of current engi-
neering interest (e.g. oil and gas reservoirs, nuclear
waste repositories, buried targets, and depleted res-
ervoirs for possible use for subsurface sequestration
of greenhouse gases). Low porosity rocks exhibit
shear localization. High porosity rocks exhibit more
varied deformation behavior, including both shear
localization and compaction, depending on the mean
stress. Cap plasticity models (e.g. DiMaggio & San-
dler 1971) attempt to model this behavior using a
pressure-dependent shear yield and/or shear limit-
state envelope with a hardening or harden-
ing/softening elliptical end cap to define pore col-
lapse.

While the traditional cap plasticity models de-
scribe compactive yield and ultimate shear failure,
difficulties arise when the rock behavior involves a

transition from compactive to dilatant deformation
that occurs well before the shear failure or limit-state
shear stress is reached. Laboratory rock mechanics
tests on porous sandstones and carbonates reveal
precisely this behavior. In this paper we describe a
continuous surface cap plasticity model that is used
to predict both compactive and dilatant pre-failure
deformation. During loading the stress point can
pass freely through the critical state point separating
compactive from dilatant deformation so that the
predicted volumetric strain goes from compactive to
dilatant without the use of a non-associated flow
rule. The new model is stable in that Drucker’s sta-
bility postulates are satisfied.

2 ROCK MECHANICAL BEHAVIOR

The deformation and failure behavior of rocks in-
volves a complex interplay of multiple inelastic pro-
cesses that operate at the grain scale. Shear localiza-
tion results from the ~growth, interaction and
coalescence of microcracks, and inelastic pore col-
lapse is an important yield mechanism in porous
sedimentary rocks. Mechanisms for inelastic crack
propagation include sliding along pre-existing
cracks, elastic mismatch at grain boundaries, point
loading, and stress concentrations at pores and twin
terminations. Inelastic pore collapse can be accom-
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. modated by grain rotation, brittle microcracking, and
plastic flow (crystalline plasticity and twinning).

Depending on the particular load path that is fol-
lowed, low-porosity rocks deform elastically under
deviatoric compressive loading until a critical stress
is reached that is associated with the onset of dila-
tant microcrack growth (Brace et al. 1966). Loading
under a uniaxial strain path thus traces a yield sur-
face that is associated with the onset of dilatancy.
For loading under a conventional triaxial compres-
sion stress path that crosses the dilatancy yield sur-
face, failure is associated ultimately with the attain-
ment of a peak stress and work-softening
deformation. Tensile or extensile microcrack growth
dominates the micromechanical processes that result
in macroscopically dilatant volumetric strains. Sen-
seny, Fossum, & Pfeifle (1983) presented constitu-
tive models for this general class of behavior in
which non-associated flow rules predict accurately
pre-failure dilatant strains.

The deformation behavior of high porosity rocks
is more varied and depends on the mean stress and
load path. At low mean stresses, porou$ rocks can
fail by shear localization and exhibit work-softening
behavior; the microscale deformation includes dila-
tant microcracking and also may include grain rota-
tion. At higher mean stresses, porous rocks undergo
strain-hardening behavior associated with macro-
scopically compactive volumetric strain. Inelastic
compaction of the pore space, accommodated by
breakage and/or slippage of grain contacts and brit-
tle microcracking, dominates the microscale proc-
esses. Depending on the load path that is followed,
the material may fail ultimately by shear localiza-
tion. Cap plasticity models capture this range in be-
havior.

2.1 Traditional cap plasticity model

The constitutive equations referred to as cap plastic-
ity models have been in existence for at least 40
years (Drucker et al. 1957). Traditionally, these
models comprise two independent continuously dif-
ferentiable yield functions. The inner envelope of
the two surfaces corresponding to the two smooth
yield functions generates the yield surface that de-
fines the boundary of the elastic region. Corners ap-
pear at the intersections of the two yield surfaces. In
the case of flow, some workers accept that the plas-
tic strain increment is not specified uniquely but is
only required to lie between the normals to the yield
surface at adjacent points on the yield surface. Other
workers attempt to eliminate this indeterminacy by
introducing a third yield function that serves to con-
nect the first two yield surfaces continuously. In the
case of hardening behavior, the plastic strain incre-
ment comprises the sum of the plastic strain incre-
ments determined independently from each of the
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Figure 1. Shear yield surfaces and hardening cap surfaces of
the traditional cap plasticity model.

yield functions. The inner envelope of the surfaces
must be convex requiring that each individual sur-
face be convex.

The following describes a traditional cap plastic-
ity model (Sandler & Rubin 1979) that is repre-
sentative of two-surface models. The model is for-
mulated in terms of two invariants, I;, the first in-
variant of the Cauchy stress, and J>, the second in-
variant of the deviator stress. In terms of principal
stresses these invariants are given by

l,=0,+0,+0, (D

J, Z%{(Gl _03)2 +(o, _02)-2 +(o, "0'3)-}
where o0, 20, 20, and compression is taken as
negative. If the strength in extension is less than that
in compression, as is sometimes observed for rock
and other brittle materials such as concrete, a three-
invariant model is generally required.

The model can be used to represent elastic be-
havior, shear failure, and cap plasticity. The model
is a classical rate-independent, associative plasticity
model in which the yield surface comprises a shear
yield surface and a cap that hardens (Fig. 1). The
shear yield surface is often fixed (as is shown in Fig.
1), but this is not a model restriction. When this sur-
face is fixed it is usually fitted to shear-failure data
and called a shear-failure surface. Elastic behavior
occurs when the stress point is within the composite
shear-failure and yield-cap surfaces.

When the stress point lies on the shear-failure en-
velope, shear failure occurs according to the shear-
failure function,

F, =\JJ, —~A+Cexp(BI,) 3)

where A; B, and C are shear-failure parameters.
During shear failure, the plastic strain comprises a
shear component and a dilatant component.

When the stress point lies on the cap and pushes
it outward, plastic strain comprises an irreversible
decease in volume called compaction, and a shear
component for non-hydrostatic compressive stress




. states. The cap motion is related to the plastic de-
crease in volume through a hardening rule. The
shape of the cap is described as an elliptical surface
defined by

V7 = el -1y - (1, - L7 @

in which

K if k<0
L(K)_{o if K20 ©)
X = L-R[A-Cexp(BL)] (6)

The cap position parameters L and X locate the cur-
rent cap surface. The material parameter, R, defines
the ratio of principal ellipse radii of the cap surface.
The hardening parameter, x, is defined through a
functional of X(x) and volumetric plastic strain, €/,
caused only by cap action,

7 =Wlexp{D, (X - X, )-D,(X - X, )2}- | @

in which W, Dy, and D> are material parameters, Xy
is the initial cap position, and £fis a history-
dependent functional of €,” given by

£? =min(£?.0) ®

The hydrostatic-pressure/volumetric-strain relation-
ship (Eq. 7), can capture a wide range of compaction
behavior including one or two inflection points (Fig.
2). .

The cap surface is required to intersect the shear-
failure surface at the point of horizontal tangency to
the cap ellipse. Thus, the shear-failure surface repre-
sents the critical-state line separating dilatant from
compactive inelastic volumetric deformation.

The model as discussed has a number of short-
comings. It has already been mentioned that there is
an indeterminacy of flow direction at the intersec-
tion of the shear-failure surface and the cap-
hardening surface. From a numerical standpoint, it is
often found that an excessive amount of solution
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Figure 2. Compaction behavior with one (black) and two
(gray) inflection points.

time is spent iterating to find the intersection of the
shear-failure surface with the cap-hardening surface.
From a physical viewpoint, the requirement that the
cap-hardening surface intersect the shear-failure sur-
face at the point of horizontal tangency to the cap
ellipse prevents pre-failure dilatant deformation,
contradicting experimental observations. Also, it
was noted earlier that a three-invariant model is of-
ten required for rocks and similar brittle materials.

3 CONTINUOUS SURFACE CAP PLASTICITY
MODEL

To circumvent the shortcomings of the model de-
scribed in the previous section, a variation of a tech-
nique described by Schwer & Murray (1994) is used
to smooth the intersection of the failure and cap-
hardening surfaces using a Pelessone function (Pe-
lessone 1989). The resulting continuous, single-
surface yield function incorporates shear kinematic
hardening, cap isotropic hardening, Lode angle de-
pendence of yield, and is sufficiently general to pre-
dict pre-failure dilatant deformation.

The single-surface continuous yield function is
given by

S0, T ka,) =T (W, -2 )-(F, - NY F.(9)

where x is the cap-hardening parameter defined by
Eq. 5; oy is the back-stress tensor; T is a function of
the Lode-angle given by

I‘z%{[l+sin(3,3)]+\—;j—[l—sin(3ﬂ)]} (10)

where ¥ is the ratio of the yield stress in triaxial
extension to the yield stress in triaxial compression;
B is the Lode angle given by

| - 27 J, /4 /4
=—asinf ———— | ——< f<—; 11
s 3 ( 2(312)3’2J A 6 (v

J is the third invariant (determinant) of the deviator
stress and, J;, is the scalar back stress measure
given by

a aij
‘]2 =a,.j Si]-——z—- . (12)

F; is the shear-failure function defined by Eq. 3; N is’
a constant defining the size of the initial shear yield
surface; and F, is the non-dimensional Pelessone
function given by

(11 _L)ﬂll_l‘!_(ll "L)}

2(X -1y

F(l,,x)=1+ (13)
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Figure 3. Non-dimensional function for the cap component of
the single-surface cap model.

F, is depicted graphically in Figure 3. For values of
I, greater than L, i.e. to the left of L in Figure 3, the
function F_ is unity. L is a material parameter and X
is determined from Eqg. 6.

The shapes of subsequent yield surfaces, defined
by Eq. 9, are illustrated in Figure 4. As the yield sur-
face hardens it traces out the locus of the shear-
failure surface that is depicted in Figure 1. For a
given value of [, the peak of each hardeped surface,
which represents the critical state, is well below the
corresponding point on the shear-failure locus. It is
this feature that permits modeling the transition from
compactive to dilatant deformation that occurs be-
fore the material fails in shear.

3.1 Constitutive Equations

If the elastic strain is always much less than unity,
the strain-rate measure can be decomposed into the
sum of an elastic component and an inelastic com-
ponent as

g, =€, +€] | (14)
The evaluation of the plastic strain rates follows
classical plasticity theory. In the absence of evidence
to the contrary, it is assumed that the yield function,
f. given by Eq. 9, plays the role of a plastic potential
function such that the plastic strain rates can be de-
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Figure 4. Nested series of continuous single-surface yield sur-
faces.

termined from

. of '
= 15
80’U (15)

where ¥ is the consistency parameter. In this case,
the flow rule is said to be associative.

The stress rate is determined from Hooke’s Law
with elastic strain rates derived from Eq. 14, i.e.

dij = Cqu(éu —ék,;)

where the fourth-order elastic coefficient matrix is
given in terms of the shear modulus, G, and Pois-

son’s ratio, v, by
265, )

Prager’s consistency condition requires subsequent
loading surfaces to pass through the loading point,
Le.

f(o-ij’q)zo

where g are state variables governed by evolution
equations of the form,

g= 7h(.,,61)

in which the hq are hardening functions. During
loading, the consistency condition, Eq. 18, gives

f LI
aqq 0

(16)

Ciu 26[5 0, - (17)

(18)

(19)
f= (20

The consistency parameter, ¥, can then be deter-
mined as

Y e
y = 99; 21)
3o, Mdc, aq

There are two state variables, the cap hardening pa-
rameter, X, and the shear hardening parameters, oj;.
Thus, the last term in the denominator of Eq. 21 be-
comes

o , o, O
—h =—h_+—nh 22
dq ° ox * da; (22)
where the cap hardening function, A, is given by
o
BI
f 23
= e’ X X 23)
3X ox

If the shear hardening functions, o, are governed by
linear evolution equations,




. a, =c"G%, (24)
a - . -

where ¢ is a material parameter and G” is a scalar

function, then the shear hardening functions, hy , are

given by

apal Of O
=G —95.
he, = ¢ (80’ ) ]

The scalar function, G°, designed to limit the growth
of the back stresses, o, as the failure surface is ap-
proached, is given by

1
sy, -a)
G =1~

N

The function G*= 1 when o;= 0, and G* — 0 as the
stress state approaches the failure surface.

Three features are of note: (1) all subsequent
loading surfaces and the initial yield .surface are
convex, (2) Eq. 15 implies that the plastic strain in-
crement vector is normal to the loading surface, and
(3) the plastic strain rate is linear in the stress rate.
These conditions are consistent with Drucker’s hy-
pothesis for a work-hardening material, namely that
useful net energy over and above the elastic energy
cannot be extracted from the material, and the mate-
rial is said to be stable. Thus, the development of the
‘model to this point assumes that the material is sta-
ble. The model, therefore, may not be appropriate if
the real body deforms in a non-unique manner, or
can assume unstable equilibrium configurations,
which may be the case for some geomaterials. If this
is the case, then the model should be modified to ac-
commodate the real behavior. One modification
could be to use a non-associative flow rule and to
establish the implications in terms of shear and bulk
localization phenomena.

(25)

(26)

3.2 Numerical Integration

To solve an elasto-plastic boundary value problem,
it is necessary to evaluate the plastic strain incre-
ments numerically. This requires the calculation of
the incremental consistency parameter, Ay. In incre-
mental form Eq. 20 becomes,

F Z_ Ao, + L ny @7
o0, oq

i

Ay=

If equilibrium exists at the beginning of a time step,
t,, then the stresses G, are known and f; = 0. In the
simple forward scheme that will be described, all in-
cremental quantities are approximated by the condi-
tions at the beginning of the time step. The approxi-
mate incremental consistency condition is then given

by

A =fou~f,=flo,| +80,.q,+0q)-f,

‘{ (28)
Ao, +—{ Ag=0

The approximate incremental plastic strains are
given by

of

29
. (29)

Ae,.j.’ = Ay

i

n

The approximate incremental forms of the state
variables, k and o, are given by

Aq=Ax| +Aa| ~Ayh ] +Ayhy| (30)

The stress increments are determtned from

| 2
Ao, =C,lae, —Ael)= C,.JU(ASH - Ayaaii }(31)
u n

The approximate incremental consistency parameter
can be determined as

% CuAEy
Ay = o (32)
AP A e s
80',)l M3c,|, | oK, da;| Wl

The plasticity algorithm now proceeds as follows:
(1) From input total strain increments, a trial stress
state is calculated as though the input total strain in-
crement were completely elastic. The yield function
is then used to determine if the trial stress state is
outside the yield surface. If it is, the original stress
state at the beginning of the increment is used to ap-
proximate the incremental consistency parameter
from Eq. 32. (2) The approximate incremental plas-
tic strains are then determined from Eq. 29. (3) The
incremental stress increments are then determined
from Eq. 31 and the updated stresses determined
from

O|,., =0y, +A0; (33)

(4) The approximate incremental state variables are
determined from Eq. 30 and the updated state vari-
ables determined from

qn+] = qn + Aq ) (34)

When the plasticity algorithm is used in a finite
element code, the possibility exists that the magni-
tude of the total strain increment passed to the mate-
rial subroutine could be excessive. When this is the
case, a workable solution is to wuse sub-
incrementation of the input strain increment.




4 APPLICATION

As discussed above, a key feature of the new model
-1s the ability to model the transition from compac-
tive to dilatant deformation that is known to occur in
porous rocks well before the attainment of a peak
stress. Fossum & Fredrich (2000) discuss laboratory
data for two reservoir formations at the Lost Hills oil
field (California) that exhibit this behavior. Baud et
al. (2000) described recently laboratory rock me-
chanics tests performed on Solnhofen limestone that
show a similar behavior.

The advantages of the continuous single-surface
cap plasticity model are illustrated by comparing the
predicted behavior for the traditional versus new
model as applied to several data sets for a single
rock. The data are from conventional triaxial com-
pression tests, and the material is a sand unit (D) of
the Upper Etchegoin Formation (late Pliocene to
early Miocene). The material is a very high porosity
unconsolidated diatomaceous sand with a bulk den-
sity of ~1.75 g/cc. This formation is one of the two
reservoir formations at the Lost Hills ofl field lo-
cated in the San Joaquin basin of central California.

4.1 Experimental procedures

Conventional triaxial compression experiments were
conducted on samples prepared from vertical cores
(42 inch diameter) recovered from the Lost Hills
field. The cylindrical test specimens were prepared
parallel to the core, with diameter to length dimen-
sion of 1X2 inches. Specimens were jacketed to pre-
vent the confining fluid from penetrating the speci-
mens and tested in a servo-controlled triaxial system
with the pore pressure system drained to atmos-
phere. Confining pressure was measured with a con-
ventional strain gauge transducer, and measurements
of force on an internal load cell were used to calcu-
late axial stress. Axial and radial strains were meas-
ured using cantilever-type gauges, and corrected for
elastic distortion of the end-caps and jacketing mate-
rial. Radial deformations were measured at two per-
pendicular directions along the sample mid-point,
and averaged for calculation of radial strain. Load-
unload cycles were performed during at least two
tests to enable determination of elastic moduli.

4.2 Traditional cap plasticity model

Fossum & Fredrich (1998) present the determination
of constitutive parameters for the traditional model
for several sedimentary cycles of the Belridge Di-
atomite member of the Monterey Formation at the
South Belridge diatomite field. Fossum & Fredrich
(2000) describe the derivation of model parameters
for the reservoir formations, including two sands of
the Etchegoin Formation and three type diatomites
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Figure 5. Measured and predicted volumetric strains as a
function of axial stress in an unconfined compression test for
the traditional cap plasticity model.

of the Belridge Diatomite member, at the Lost Hills
field.

For the purposes of comparison, the conventional
cap plasticity model is applied here to a single data
set from a test conducted at atmospheric pressure.

‘Figure 5 shows the predicted versus observed vol-

ume strains during loading. The traditional cap plas-
ticity model cannot predict the transition from com-
pactive to dilatant deformation that occurs before the
peak stress is reached. The traditional model there-
fore overestimates the compactive volume strain at
failure.

4.3 Continuous, single-surface cap plasticity‘model

The continuous, single-surface cap model is now
applied to the suite of triaxial compression data.
After the elastic moduli were estimated, the shear-
failure parameters, A, B, and C (Eq. 3), were deter-
mined using nonlinear regression model fitting and
the shear-failure database. The constant N defining
the size of the initial shear yield surface was set to
zero to permit direct comparison with the conven-
tional cap model that has a fixed shear-failure sur-
face. Following evaluation of elastic and shear-
failure parameters, the remaining parameters were
estimated through nonlinear regression involving di-
rect simulation of the triaxial tests (Fig. 6).

In the unconfined compression test and the triaxial
compression tests conducted at confining pressures
of 100 and 300 psi, the volumetric strain shows
compaction for a part of the test but then switches to
dilatant deformation before the peak stress is at-
tained. The triaxial compression test conducted at
1000 psi was terminated before the load path inter-
sected the shear failure surface and prior to the pos-
sible onset of dilatancy.

Noteworthy is that the continuous, single-surface
cap model predicts the transition from compactive
deformation to dilatant deformation at the pre-failure
stage over a significant range of confining pressures
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Figure 6. Measured and predicted volumetric strains as a
function of axial stress for a series of triaxial compression
tests for the new. continuous single-surface cap plasticity
model.

without resorting to the use of a non-associative
flow rule. The solution is thus stable and unique.

5 DISCUSSION

An important feature of the deformation behavior of
the reservoir formation considered here is that the
stress states under which the deformations are elastic
are extremely limited. The initial cap is intersected
almost immediately under hydrostatic compression,
conventional triaxial compression, or uniaxial strain
load paths. This is evident by comparing the slope of
the load-unload cycles to the initial slope of the tri-
axial compression load path.

Figure 7 depicts the load path followed during the
unconfined compression test using the traditional
model. During loading, the stress point lies on the
compaction yield surface until the peak stress is
reached. Unless a non-associative flow rule is used,
the model is incapable of predicting the dilatant
volumetric strains that occur before the specimen
reaches peak stress (Fig. 5). With the continuous,
single-surface model (Fig. 7), the stress point can
pass freely through the critical state point separating
compactive from dilatant deformation during load-
ing. The predicted volumetric strain (Fig. 6) goes
from compactive to dilatant volumetric strain with-
out the use of a non-associated flow rule.

To benchmark the performance of the new model,
a large-scale three-dimensional numerical simulation
was performed for direct comparison with a previ-
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Figure 7. Load path and sequence of cap yield surfaces during
the unconfined compression test for the conventional cap
model (top) and new continous single-surface cap plasticity
model (bottom).



. ous simulation described by Fredrich et al. (1998)
that used the traditional model. The computational
time using the newly implemented model was % that
required by the traditional model.

Generally the model is capable of fitting data
better than is shown here. The specific data consid-
ered here are complicated by the presence of mate-
rial anisotropy. During the hydrostatic portion of the
conventional triaxial compression tests, in which the
three principal stresses are equal, significant anisot-
ropy is revealed by the divergence of the radial and
axial strains. Thus, the material model cannot track
the axial stress versus volumetric strain as accurately
as for an isotropic material. In general, the resulting
difficulties in parameter estimation can be alleviated
partially by use of uniaxial strain data in the fitting
procedure as described by Fossum & Fredrich
(2000). Under the uniaxial strain load path, the ra-
dial strain is maintained constant (equal to zero) so
that the volumetric strain data is easier to fit as only
one principal strain is involved. While this approach
reduces the time required to iterate to an optimal pa-
rameter fit, it obviously does not eliminate the
problem. Materials exhibiting significant anisotropy
are better suited to a model that allows for at least
transverse anisotropy. Anisotropic elastic-plastic cap
models are under development currently, but they
are highly complex, and challenging to implement
numerically. At the current time only the isotropic
model is implemented in our numerical analysis
codes.

6 CONCLUSION

With the emerging capability to simulate the large-
scale mechanical behavior of complex geosystems
by virtue of recent advances in software and hard-
ware, it is critical that commensurate advances are
also made in material modeling capabilities for
geomaterials. The continuous, single-surface cap
plasticity model represents one such advance in our
ability to predict accurately the behavior of complex
geosystems. While fundamental material modeling
assumptions can be based on the microscale physics,
we have chosen instead to make assumptions about
the relation between stress and strain that are physi-
cally motivated but at the phenomenological level.
This approach permits, from a computational stand-
point, tractable yet accurate predictions to be made
on very large spatial scales.

Two key applications for this work are reservoir-
scale modeling of formation compaction caused by
pore pressure drawdown during oil or gas produc-
tion (e.g. Fredrich et al. 1998) and field-scale mod-
eling of the behavior of earth penetrators. For appli-
cations involving coupled processes, such as fluid
flow and deformation, this work is especially sig-

nificant since the ability to predict both compactive
and dilatant deformation has strong impact on the
evolution of fluid flow properties with inelastic de-
formation.
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