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Abstract

Sandia’s Archimedes 3.0@ Automated Assembly Analysis System has been applied
successfully to several large industrial and weapon assemblies. These have rnduded Smd.ia
assemblies such as portions of the B61 bomb, and assemblies from external customers such as

ummius Engine Inc., Raytheon (formerly Hughes) Missile Systems and Sikorsky Aircraft.c
While ArcMnedes 3.0@ represents the state-of%he-artl in automated assembly planning
software, applications of the software made prior to the technological advancements presented
here showed several limitations of @e syste~ and identified the need for extensive
modifications to support practical analysis of assemblies with several hundred to a few thousand
parts. It was believed that there was substantial potential for enhancing Archimedes 3.0@to
routinely handle much Iarger models ardor to handle more modestly sized assemblies more
efficiently. Such a mature assembly analysis capab~ w needed to support routine

. application to industrial assemblies that overstressed the qste~ such as Ml nuclear weapon
assemblies or fidl-scale aerospace or mihtary vehicles.

] Priorto thetechnologicaladvancementspresentedIraq Archimedesrepresentedthe state-of-tkxwt in assemblypkmrdng
soihwre. Today,twoyearslater,Archimedesis still at the forefrontof teelmologyin automatedassemblyplanning sofhvare
systems.
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This document serves as the technical report required by SandiaNational Laboratories

Laboratory Directed Research and Development (LDRD) Program for the project entitled

“Analysis of Very Large Assemblies”. The LDRD Program fiuancialIy supported the entire

project and this document summarks the technical achievements made throughout the project’s

two-year history. The work conducted under the purview of the LDRD focused on increasing the

automatic ardysis capabilities for large assemblies. Sandia’s Automated Assembly halysis

System Archimedes 3.0@,was used as the foundation for integrating algorithms to automatically

analyze assembly and disassembly plans for large assemblies. The results produced under the

purview of this LDRD, together with the results produced under the purview of three other

LDRDs, (a three-year (FY97 and FY99) LDKDs project entitled “Automatic Pkmning of Life
I

Cycle Assembly Processes [1]” and two two-year (FY98-N99) LDRD project entitled !

“Ergonomics in Life Cycle Assembly processes [2]” and “Feature Reduction of Geometric Solid I

Models for Analysis Tools [3]”) constitute the fatures used to upgrade Archimedes 3.O%o
I
I

Archimedes 4.0. Archimedes 3.0@wascopyrighted in 1998. The copyright for Archimedes 4.0 is II

inprogress.
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1

Introduction

I

‘1

Sandia’s Archimedes 3.0e Automated Assembly Analysis System has been applied
successfully to several large industrial and weapon assemblies. These have rncluded Sandia
assemblies such as portions of the B61 bomb, and assemblies from external customers such as

ununins Engine Inc., Raytheon (formerly Hughes) Missile Systems and Sikorsky Aircmft.c
While Archimedes 3.0@ represents the state-of-the-art? in automated assembly planning
software, applications of the software made prior to the technological advancements presented
here showed severaI limitations of the system and identified the need fir extensive
modifications to support practical analysis of assemblies with several hundred to a few thousand
parts. It was believed that there was substantial potential for enhancing the Archimedes 3.0@to
routinely handle much larger models and/or to handle more modestly sized assemblies more
efficiently. Such a mature assembly analysii capab~ was needed to support routine

2Priorto thetechnologkdadvancementspresentedhere,Archimedesrepresentedthestate-of-the-artinassemblyplrmning
software.Today,twoyews kiter,Archimedesis stillattheforefrontof technologyinautomatedassemblyplanningsoftware
systems.
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application to industrial assemblies that overstressed the system such as Ml nuclear weapon
assemblies or fidl-scale aerospace and military vehicles.

The emphasis of past Archimedes’ projects has been on the development of a practi~ but
theoretically sound and novel assembly analysis software system. Thus, efforts, which could have
been pursued in the interest of efficiency usually, took second place to implementing basic
theoretical capabiMes and addressing usability issues. However, we believed that there was
substantial potential for enhancing Archimedes 3.0@to routineIy handle much larger models,
perhaps up to a few thousand parts. The difficulties and corresponding opportunities fell in four
categories: contact analysis, memo~ utilizatio~ planning time and geometric simplification.

Section 2 discusses contact analysis deficiencies in the Archimedes 3.0@System and methods
that were developed to overcome then In the Archimedes 3.0@System analysis of contact
geome~ between nearby parts must be petiormed before actual assembly planning can begin.
The existing approach may be overly thorough for practical situations, but methods were needed
to provide a more optimal balance between theoretical thoroughness and practical efficiency. We
believed that the main problem was that the CAD models input m Archimedes 3.0@were analyzed
as a whole, rather than as having any spatial segmentation. The non-directional blocking graph
theory, which is at the heart of the Archimedes’ algorithms, limits how much flexib~ we have in
this area. A fidl analysii is beyond this report’s scope, but we were cofident that it wouid be
practical to limit the fhll assembly analysis to a relatively small number of common contact
orientations, and apply the Wl local contact tiormation only in local contexts as needed. We
believed major execution efficiency gains were possible through such work with only minimal
impact on the robustness of the assembly planniug process. Also, the execution time of the
contact analysis itse~ while not as important as the method of handJing contact data during
planning, would be made more efficient through more attention to spatial segmentation.

Section 3 focuses on memory utilization deficiencies of the Archimedes 3.0@System and
presents methods developed to overcome them. Simply loading large models was problematic.
The importance of good memory utilization m allowiug the Archimedes 3.0@System to load and
process large models was emphasized by previous and planned efforts m this area, The
“Automatic Planning of LEe Qcle Assembly Processes” provided a capab~ [1,2,3] in
Archimedes 3.0@to load only one copy of similar parts (such as i%steners), thus eliminating one of
the memory inefficiencies.

Sections 4 and 5 focus on opthizing pkuming algorithms developed and integrated into the
Archimedes 3.0@System. Model loading and contact analysis are usually performed relatively
intlequently, whereas the majority of the computer time is in repeated searching for vali~ or
improve& assembly plans. This search process is comple~ but a number of possible shortcuts or
efficiency improvements were identified. Section 4 focuses on the automatic planning for
manufacturing generative processes. Generative process planning descriis the methods process
engineers use to modi.&manufacturing(or process) plans after a design is complete. A completed
design may be the result from the introduction of a new product based on an old CAD desi~ an
assembly or subassembly upgrade based on CAD, or modified product CAD designs used for a
Eunily of similar products. This section descriis methods that allow users to automatically
combrne assemliy plans resulting from independent applications of the Archimedes 3.0@System
to individual subassemblies of a larger assembly to form a complete assembly plan for the entire
assembly. It fixrther describes the implementation of constraint rules enabling a user to

10
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automatically “reconciIe” existing constraints applied to au older version of an assembly to anew
version of an assembly, which might have a di&erent number (or ordering) of parts.

Section 5 discusses automatic planning for partial disassembly (work conducted jointly with
the “Automatic Planning of Ltie Cycle Assembly Processes” LDRD) and several algorithmic
solutions to increase the efficiency of the Archimedes 3.0@planning capabilities. The section
covers the inclusion of a newly implemented constraint, REQSUCCESS_PART(s), into the
Archimedes 3.0@System to accommodate service-oriented assembly processes. The instantiation
of a REC)_SUCCESS_PART(s) constraint allows a user to spec~ a part or collection of parts
that must be removed from an assembled product. This forces the planner to halt when none of
the desired parts (as specitied in the constraint) are left h the assembly. The section further
descriis a computer algorithm (and its implementation), which optimizes the search strategy for
the REQSUCCESS_PART(s) constraint. This search strategy uses a hill-climbing technique of
the standard A* search to repeatedly probe the subassembly tree, looking for better (less costly)
disassembly sequences. An additional algoa referred to as the shortening algorithm, is also
descrii~ The purpose of the shortening algorithm is to “shorten” the initial sequence by
eliminating unnecessary removal of parts not speci.iiedin the REQSUCCESS_PART(s)
constraint set.

Section 6 descriis geometric simplification algorithms implemented specifically for the
Archimedes 3.0@planner aud synergistic geometric simpl&ation algorithms developed under the
“Feature Reduction of Geometric Solid Models for Analysis Tools” LDRD. F*, Section 7
concludes the report a summary of the technological advancements, some experimental results
and conclusions and suggests areas of fiture research.

‘
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2

I

Contact Analysis Improvements

In the Archimedes 3.0@Automated &sembly Analysis System analysis of contact geometry
between nearby parts must be performed before actual assembly planning can begin. The current
approach may be overly thorough for practical situations, but methods were needed to provide a
more optimzdbalance between theoretical thoroughness and practical efficiency. We believed that
the main problem was that the CAD models input in the Archimedes 3.0@System were analyzed
as a whole, rather than as having any spatial segmentation. The non-directional blocking graph
theory, which is at the heart of the Archimedes’ algorithms, hits how much flexibility we have in
this area. A fidl analysis is beyond this report’s scope, but we were confident that it would be
practical to Iirnitthe iidl assembly analysis to a relatively small number of common contact
orientations, and apply the fidl local contact tiorrnation onJy m local contexts as needed. We
believed major execution efficiency gains were possible through such work with only minimal
impact on the robustness of the assembly planning process. Also, the execution time of the
contact analysis itse~ while not as important as the method of handling contact data during
planning, would be made more efficient through more attention to spatial segmentation.

13
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2.1 Initial Contact Analysis

We determined that the majority of the time the code expended during contact analysis was
not in an initial pass over the assembly prior to running the planner a single time, but rather was in
the repeated computation of a fidl assembly analysis. A fidl-assembly contact analysis had to be
pefionned every time a single mating OVERRIDE or one of a small subset of the assembly
CONSTRAINTS was invoked. For example, a particular 369-part assembly with 197500 fmets
took late in FY97, approximately three minutes for a fidl contact analysis. Addition of a single
MATE OVERRIDE would necessitate a fhll re-cmnputation of the contact analysis, with only a
small part of the computation peflormed in the original analysis being reused At that time,
redoing the contact analysis took roughly 2 1/4 minutes. We restructured the contact analysis so
that only parts involved m new or revised OVERRIDES or CONSTRAINTS would be subjected
to further analysis. After restructuring, addition of a single OVIRRIDE or CONSTRAINT,
involving for example, two of the 369 parts, took only about 3 seconds, and almost 98°/0
improvement for that assembly. For a more complicated assembly, or one with more parts, the
savings would be even greater. This a very significant from the user’s perspective, because users
of the Archimedes 3.0@System often react to problems in the produced assembly plan like
modern programmers; they &one or two problems, then rerun the planner. So, reducing the
contact analysis time on second and subsequent runs reduces the amount of user time required
very dramatically.

2.2 Contact Analysis CachelPreservation

We have also added the abilily to cache contact analysis on disk enabling the user to carry
contact Mormation across revocations of the Archimedes 3.0@Automated Assembly Analysis
System. A more carefhl assessment of the effects of OVERRIDES and certain CONSTRAINTS
on existing contact analysis was made. As a result a more selective contact update scheme was
implemented. Once the initial contact analysis for an assembly has been achieva the improved
scheme reduces the time required to update the contact analysis after adding a single OVERRIDE
or selected CONSTRAINT from the fi.dlamount required by the initial analysis (as much as
several hours, for assemblies with a few hundred parts) down to a few seconds to a few minutes,
depending on the complexity and numbers of the individual parts involved in the introduction of
OVERRIDES. Since the abii to save and retrieve the contact ir&ormationhas also been added,
this means that the ~ all parts against all other parts contact analysis need only be performed
once for any given assembly.

14



3

Memory Utilization

Improvements

Simply loading large models into the Archimedes 3.0@System was problematic. The
importance of good memory utilization in allowing the System to load and process large models
was emphasized by previous and planned efforts in this area. The “Automatic Planning of Ltie
Cycle Assembly Processes” provided a capability [1,2,3] in the Archimedes 3.0@System to load
only one copy of similar parts (such as fasteners), thus eliminating one of the memory
inefficiencies. To improve memory utilization within the syste~ two areas were focused on. The
first was reducing multiple instantiation of the same part to a single representation with in
memory while the second focused on the graphical output data structures.

3.11 SingIe-Part-Multiple-instantiation

A Single-Part-Multiple-Instantiation (SPMI) feature was developed and integrated into the
Archimedes 3.0@System- A toggle in the File menu was added that the user to determine
whether or not to invoke the SPMI feature at load-time. SPMI allows the Archimedes 3.0e
System to put multiple instances of a given part into an assembly without representing each

15



instance separately, with the entire storage overhead that that entails. The toggle control is
necessary, because SPMI is achieved by storing only one copy of each part’s ACIS and facetted
datz with each in its own coordinate fiarne. In order to analyze and display multiple instances of
a part, its ACIS and i%icetteddate must be transformed into the assembly’s common coordinate
frame. This can be costly for complex parts, and is therefore primarily for use in cases where
representing each instance of each part separately makes the process use too much memory, or
where using SPMI markedly reduces page swapping.

By restructuring some of the graphical output code, we were able to achieve a 93% reduction
in the required storage for each part in an assembly (from about 2 Megabytes/pan down to about
140 Kilobytes/part) for the electronic subassembly array shown in Figure 3.1. In terms of
assembly size limitations, this raises the bar from a previous Iimit of about 600-8000 parts for
assemblies running on a 32-bit SGI, to a level in excess of 10,000 parts. Effectively, required
memory has ceased to be a limitation on the size of assemblies.

- .-.+.. .+,...... ,

Figure 3.1. Electronic array subassembly.
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Automatic Planning for

Manufacturing Generative Processes

Generative process planning descriis the methods process engineers use to modi&
manufacturing (or process) plans after a design is complete. A completed design maybe the
result from the introduction of a new product based on an old desi~ assembly upgrade, or
modified product designs used for a fhmily of similar products.’ Typically, an engineer designs an
assembly and process plans are created capturing the manufacturing processes, inchding the
assembly sequence, the methods used to put the piece parts together, the cost of the piece parts,
Iabor costs, etc. When new products originate as a result of an upgrade, the geometry of parts
may change, and./or additional components and subassemblies axe added to or are omitted from
the original design. As a resul~ process engineers are forced to create a “new” set of process
plans. Ofien times, this is a tedious and time-consuming taslG even if only a single component is
involved in the upgrade. The task is tier complicated by the 12ictthat the process engineer is
forced to manually generate these plans for each product upgrade. Asembly planners, including
Archimedes 3.0@,cannot automatically handle the upgrade modifications. To generate new
assembly plans for the product upgrade, engineers have to manually re-spec~ the manubcturing
plan selection criteria and re-run the planners. To remedy this probleu special-purpose routines
have been added to the Archimedes 3.0G planning algorithms and constraint framework.

17
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Section 4.1 provides an overview of the motivational fhctors for implementing automatic
generative process planning techniques. Section 4.2 places the Archimedes 3.0@System in the
context of generative process planning. Section 4.3 discusses the geometric issues associated
with top-level assembly planning, and the special-purpose routines that were implemented within
the Archimedes 3.0@framework to solve those problems. Section 4.4 continues this discussion
but at the subassembly-leveL Methods are presented for saving, restoring, and propagating the
subassembly analyses for top-level assembly analysis. Section 4.5 describes the implementation of
constraint rules enabling a user to automatically “reconcile” existing constraints applied to an
older version of an assembly to anew version of an assembly. Finally, Section 5.6 concludes the
Section and presents fiture research topics in this area.

4.1 Background and Motivation

The Archimedes 3.0* System has been applied to hundreds of assemblies, ranging from
automotive and aircraft to such things as designing assembly sequences for several weapon safety
devices and for the B61. The B61, with improved non-nuclear components, has replaced the B53
in the U.S. stockpile. The scope of the modifications to the B61 requires exhaustive testing to
certify the modified bomb’s safety, fimctionality, and reliab@. In an early experiment,
Archimedes 3.0@was applied to the B61 center-case for the B61 Ak 339 Retrofit Program It
was estimated that 2.5-3 person months were required to manually create training documentation
for the retrofit operations using a commercial animation package.

In an effort to reduce the time, Archimedes 3.0@was applied to the B61 center-case assembly.
Utiortunately, the experiment showed that there were many assembly planning issues associated
with CAD revisions that went beyond the disassembly issues discussed in the previous section.
For instance, the fist step required to apply Archimedes 3.0@was to translate the
Pro/ENGINEER@ data to the ACIS format. Initially, the entire center-case assembly, containing
547-parts and represented by over 600K fhcets, was selected for the Archimedes 3.0@application
however, due to translation the problems a 303-part subassembly (345K fiicets) was exercised
during the experiment. Effectively, the original design was modified by removing parts.

Archimedes 3.0@was first applied to the original (larger) solid model to identi& any
inconsistencies in the CAD modeL This allowed for the detection of critical design flaws to be
caught early m the re-mamdlicturing phase and a reduction in scheduling and costs. Ne%
Archimedes 3.0@was used to test the feasibility of disassembly, checking for geometric
accesslMity for removal of parts. Since Archimedes 3.O@plans only for straight-line motions, and
this assembly contained a number of flexible parts, such as cables, that could not use straight-line
assembly motions, the part-mating operations involving those parts were overrode. This was a
long and tedious manual process. When it was decided to exercise the smaller assembly, these
same tedious steps had to be repeate& almost identically to the first application since Archimedes
3.0@cannot reconcile the differences (part coun~ geometry, constraints and overrides) between
the two assemblies automatically.

18



This same problem was inherent in the application of Archimedes 3.0@to the nose assembly
(shown in Figure 5.1) at the Federal M.anficturing & Technologies Facility at Allied Signal in
IQUMaSCity. In this case a new modification and proposed design of the B61 nose assembly
incorporated new radar hardware and sophisticated structure elements to withstand high-shock
environments. During hardware evaluation stages at Allied Signz&the system was used to
determine re-manufacturabtity of the B61 nose assembly. Pro/ENGINEER@ parts were
transferred to the Archimedes 3.0@System for validation assembly plans were evaluated, and
assembly instructions and options were evaluated with process engineers. The nose assembly
contains 88 parts described by 17.5Mb of ACIS@ data (translated from Pro/ENGINEER@) and
approximately 110,000 facets.

Unlike the center-case assembly, the nose assembly went through several revisions before
being finalized however just like the center-case assembly applicatio~ for each revision the
assembly planning steps had to be repeated (often duplicated). To complicate matters fhrther,
Archimedes 3.0@had to be applied to each subassembly even if they were identical.

Figure 4.1. The B61 nose assembly.
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4.2 Generative Process Planning Issues

In the previous section four fimdamental problems were identified during the application of
Archimedes 3.0@to the B61.

1. Automatic pkmning with subassemblies: When assemblies are built by
combining subassemblies, it is sometimes more practical to analyze the assembly
at the subassembly level. That is, analyze each subassembly independently and
then combine the analyses at the top-level (the assembly level). Archimedes
3.0@plans for assembly at the top-level of the assembly and does not allow the
propagation of iniiormation resulting from independent applications at the
subassembly-level to the top-level.

2. Multiple identical subassemblies: If an assembly contains exact copies of the
same subassembly and that subassembly requires any instantiation of constraints
and overrides, the Archimedes 3.O@user must instantiate them in each
subassembly (duplicating hislher efforts on each of the identical subassemblies).
This is because Archimedes 3.0@plans for assembly at the top-level of the
assembly.

3. Assembly upgrade via re-desigm An assembly may be modified by removing
part(s), by changing the shape of the part(s), by adfig parts(s), or by my

combination of the three. Relating to the first two problems is the inability of
the Archimedes 3.0@System to automatically reconcile not only these
modifications between design revisions, but also any constraints and overrides
applied to the assembly for each generation.

4. Gaining access to selected parts for servicing. This is the often associated with
partial disassembly. Partial duassembly does not always proceed tiom or result
in the removal of all of the parts in an assembly. For instance, afield upgrade
may only require partial disassembly of a system to replace specified
subassemblies. Archimedes 3.0@does not plan for partial disassembly.

The problems identified above are not restricted to Archimedes 3.0@. They represent a
fundamental class of problems inherent in all assembly planners and have plagued the
manufacturing community for years. It is only recently, with the advancements in computer
technology, that these problems have been brought to the forefront. With the exception of
problem 4, the remainder of this section is devoted to solving these problems. The underlying
principles, as they relate to automatic assembly planning, are discussed, and solutions to each are
provided. The solutions have been implemented as extensions to the Archimedes 3.0@. Solutions
to problem 4 are provided in the next section.

3 Thisissueis addressedinmoredetailinthenextchapter.Archimedes3.0@wasappliedto theB61tail-sectionfor
parachuteinspectionandservicing.
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4.3 Re-design

.

There are two fimdamental issues associated with assembly design modification geometry and
tiction. For purposes of assembly planning only the geometric will be discussed. There are
three geometry-related design modification principles for any given assembly. An assembly may
be modified by removing part(s), by changing the shape of the part(s), by adding parts(s), or by
any combmtion of the three.

In gene@ part removal is primarily motivated by a company’s need to reduce the time it takes
to put the product together. Obviously, the greater the number of parts, the higher the assembly
costs. From an assembly standpoint, it is the simplest form of modification to deal with.
Changing the geomet& of a part is often the result of assembly fiwility and shop floor
contingencies. For instance, some shapes are better suited for robotic assembly as opposed to
manual assembly. The most diflicuk issue to address when planning assembly processes
automatically for a product is the case where new parts are added to an existing assembly design.

Figure 4.2 shows an example assembly4having gone through 3 design reviions. InitMly, the
assembly was comprised from 24 pieces a base plate, two side plates, atop E@ and 20 various
f%tener piece parts (nuts, bolts, and washers). In an effort to reduce costs by reducing time spent
assembling the product (i.e., reduce part count), severaI re-designs were made. In the i.lrst
revision (RI), the ihstening processes were addressed. As a result the fhsteners were replaced
with self-locking screws and inserted fiomthe top. Hence, the results from the first rev&on
reduced the part count to 8. In the second revision @2), the baseplate and two side plates were
re-designed into a srngle unit. Wfi this modificatio~ two new parts were incorporated. These
are the clamp-like fhsteners to hold the top rail in place. In the final revkion @3), the-base is re-
designed with tabs to hold the top@ and the clamp-like fhsteners are removed. Thus, the
product has been reduced to 2 components.

In this simple example, all three re-design principles were implemented. This is true for almost
all product upgrades. The first revision was a result of removing parts and adding new ones. In
the second revisio~ part geometry changed and new parts were added. In the third revkio~ part
geometry changed and parts were eliminated. The fundamental problem relating these re-design
principles to automatic assembly planning is the inab~ of the planners to automatically
recognize the changes between generations.

To address the first, the removal ofparts, a geometric override was added to the Archimedes
3.0@overridearchitecture that removes all associations of that part with others (e.g., part contacts,
overrides, and constraints) and effectively hides the part ~om the user’s view. In Archimedes
3.0@,routines to save and restore assembly plans, assembly constraints, and geometric overrides
are implemented at the top-level assembly. This alIows a user to analyze an assembly at the top-
level &d save all of the &alysis tiormation. When the system is appfied to the same assembly at I

,
a later time or to di&erent generations of that assembly, the tiormation may be invoked by I

,
restoring the files. ,

,

I

4‘I’hisassemblywas borrowedfrom ~oothroydj G., “Assemblyautomationand productdesign”,MarcelDekker,New YorlG
1991,p. 14.] for illustrativepurposesonly. Hypotheticalprocessesare used to illustrate the principlesof re-designas they
relate to automaticassemblypkmins
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Figure 4.2. Example of the effkcts of re-design.

When the user loads m the assembly, the constraints and override files are automatically
loaded. The assembly is represented by data bit-vector. The length of vector corresponds to the
number of parts in the assembly. In all constraints and overrides, a “O”in a particular bit mems
one thing about apart and a ‘T’means something else, depending the type of constraint or
override that is implemented. In this case, a “O”in the bit-vector notifies the system that that
particular part is no longer m the assembly. While the part is still present in the assembly tree (i.e.,
the length of the bit-vectors for all constraints and overrides is constant), for all intense purposes
it has been removed.

To address the secon~ changing component geometry, the kchimedes 3.0@contactanalysis
routines automatically check contacts between parts. Ifthe re-design changes the contacts
between the parts, the user is automatically tiormed and is given the opportunity to address the
issue. The same holds true for constraints and overrides. Ifa previously defined constraint or
override is now in conflic~ the user is automatically tiormed and is given an opportunity to
address the issue(s).

The third issue, the addition of parts, is the most diflicult issue. Because kchimedes 3.0@
plans for assemblies at the top-level and the length of data bit-vector representing the number of
parts at the top-level is fixe~ the Archimedes 3.0@System can not plan for assemblies upgrades at
the top-level when the part count increases. This is a major research area on its ow and
attention to solving this problem should be given to fiture work in this area
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4.4 Planning with Subassemblies

Thissection deals with the generative process planning problems, 1 and 2, discussed m
Section 4.2.

1.

2.

Analyzing each subassembly independently and then combtig the analyses at
the top-level (the assembly level).

Multiple identicaI subassemblies: If an assembly contains exact copies of the
same ‘mbassembIy and that subassembly requires any instantiation of constraints
and overrides, the Archimedes 3.0@user must instantiate them in each
subassembly (duplicating hidher etiorts on each of the identical subassemblies).

It is pointed out in the previous section that Archimedes 3.0@pIans for assembly at the top-
level of the assembly and does not allow the propagation of tiormation resulting from
independent applications at the subassembly-level to the top-leveL The ht step to solving these
problems was to incorporate save and restore routines for the constraints and overrides resulting
from the application of Archimedes 3.0@to the subassemblies, which would automatically load
when Archimedes 3.0@was applied at the top level of the assembly. The underlying problem
with this approach is how to resolve conflicts between the constraints and overrides when they are
propagated to the top. Section 4.5 addresses the cdlict resolution issues. Here, the
methodologies for automatically propagating the tiormation generated at the subassembly-level
to the top-level are presented.

4.4.1 Antonurtic Propagation

FiIe-restoration subroutines were incorporated into Archimedes 3.0@to automatically load and
propagate the constraints and overrides from the subassembly files to the top-level assembly.
When Archimedes 3.0@is applied at the subassembly-leve~ constraints and overrides are stored
under the defkdt name of the subassenibly (e.g., subassembly-name.constraints and subassembly-
name.overrides). When loading an assembly (the base assembly or top-level assembly), the
subassembly constraints are automatically loaded using the subassembly-name.constmints defiult
tile. For the constraint restoration subroutine that restores two subassembly sets, bits in the data
vector are set as follows for: (Visl%le-0 and group - 1). For the constraint restoration subroutine
that restores three subassembly sets, bti in the data vector are set as follows fo~ (visible -1,
secondgroup -O, and group - O). For each subassembly file restoratio~ the number-of-parts bit
for the fi.dlassembIy set is equal to the number of parts in the subassembly. The restoration
algorithm changes the subassembly’sportion of the assembly data vector to be that read from the
subassembly file. Any parts in the vector not belon@ug to the subassembly are set to O. The
algorithm changes the number-of-parts bit to equal the number of btis set m the data vector.

When loading an assembly, the subassembly overrides are also automatically loaded using the
subassembly-name.overrides dehdt ille. The subassembly overrides are loaded with a new
override class feature, called IsTopLeve~ set O(or@se)j to indicate that they were loaded horn
the subassembly’s ovemides file, not from the base assembly’s overrides file. The assembly
overrides are created with IsTopLevel set to 1 (true). Only top-level overrides are saved for an
assembly. Conflicting overrides made at the base assembly level are intended to take precedence
over overrides made locally to the subassenibly.
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4.4.2 Denwnstrti”onof PropagatimEffects

To help illustrate the propagation of design modifications imposed at the subassembly-level
for later use in planning at the top-leve~ conceptual designs of two assemblies are provided
below.

J w

S3and T3

S3CA

T3CB

S3# T3

Szand TI
S2CA

T2CB
S2= T2

S1d TJ

S1CA

T1CB

S,= T]

-.

AssemblyA AssemblyB

Figure4.3.Demonstrationof propagationeffectsfor planningwith subassemblies.Explodeddiagrams
for AssemblyA and AssemblyB.
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Figure 4.4 shows exploded diagram of two very similar assemblies, A and B. The only
difllerencebetween the two is the shape of the shaft in each. Assemblies A and B are made from
three subassemblies and 6 fiisteners. Viewing the diagram from the bottom up, the first three
parts make up the first set of subassemblies, SI and T], Si cA, Tl cB, S1= TJ. The next three
parts inake up the second set of subassemblies, S2and Tz, Sz cA, TzcB, Sz = Tz. All the
remaining parts (with the exception of the fhsteners) make up the third set of wb=sembfies, &
and TJ,Sj cA, TJcB, SJ # TJ.

Suppose that Assembi’yB is modified at the top-level by changing the shape of a part in Tzas
shown in Figure 4.4. Then the change only tiects B. However, ifthe B is modi.tied at the
subassembly-level (at TJ thenA is no longer feasl%le.

Figure 4.4. Design modification for Subassembly T2.

On the other han~ suppose that AssembZyA is modified by lengthening the shaft and by

cutting a rectangdar hole in the plate to slide it into (see Figure 4.5). l%e~ in this case, the

change does not affect Assembly Bat any level of planning.

1

I

I

i

Figure 4.5. Design modification for Subassembly Si.

I
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4.5 Conflict Resolution between Generative Plans

Rules were incorporated m Archimedes 3.0@to resolve conflicts between top-level and
subassembly-level constraints and overrides (when restoring, adding, editing, or activating) at the
top-level of the assembly. This section describes the implementation of the constraint and
override rules enabling the Archimedes 3.0@System to automatically “reconcile” existii
constmints applied to an older version of an assembly to a new version of an assembly.

4.5.1 Gmstraints

Based on the various constraint and intended purposes, four difEerentmethodologies were
developed for the implementing the rules. A list of all constraints implemented in Archimedes 3.0@
is provided in [1,3]. Table 4.1 lists constraint types that have been added to the Archimedes 3.0@
for life cycle assembly processes. In defining the methodologies, the term current constraint
refers to the constraint that is beii addec$ edit~ or activated.”The term exi~”ng constraint
refers to the constraint that is in conflict with the current constraint.

The methodologies include:

1. Methods that suspend the existing constraint on conflict give top-level
constraints precedence over subassembly constraints during restoratio~ and
new additions or edit changes precedence over existing. The former happens
because top-level constraints are restored last. (See Table 4.2.)

2. Methods that suspend the current constraint on conflict give subassembly-level
constraints precedence over top-level constraints during restoratio~ and
existing constraints take precedence over new additions or edit changes. The
former happens because top-level constraints are restored last. In these cases
it is assumed that the designer of the subassembly “knows” best. (See Table
4.3).

3. Methods that union constraints are shown m Table 4.4. Only one constraint
of that type to be active.

4. Methods that do no conflict resolutio~ implement the current constraint
addition or change regardless of any existiug constraints. These constraints are
listed in Table 4.5.
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Table 4.1. AdMlonal constraints not provided in [3]. Those marked with a - are additional
constraints required for I&ecycle asse&bly process planning.

Constraint Name Purpose Scope

MIN_sIMuL_ inimizetheuse of simultaneousliaisoncreation. In strategicM
LIAISONS somecontexts,actionsare awkwardwhenhigher

numbersof liaisonsare beingestablishedby the
action

MIN_REORIENT- Minimizethe numberof assemblyorientationsin the strategic
plan.

REQSUCCESS_PART- Allowsthe user to spec~ a part or collectionof parts strategic
that must be removedftom an assembledproduct.
This is especiallyusefil for servicing repair, and
Upgrade operations.

REO_SUBSEQUENCE_ Allowsthe user to spec@ the order in whicha strategic

PARTS- subsequenceof parts is assembled. This useiid for
controllingthe planningalgorithmsin circumstances
wherea specificorderingis alreadyknownin
advance.

REQRECONFIGURE-
Mlowsthe user to speci@reconfiguration of the strategic
assemblyso that parts can be movedto and fromtheir
final configurations.

1

I
I
I

I
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Table 4.2. List of constraints and rules that give top-level constraints precedence over sub-
assembly constraints. Those marked with * are constraints not available in Archimedes 3.0@.

Constraint Name

R@_ORDER_LIAISON

REQORDER_PART

REQPATHS_AXL4L

REQSTACK

REQSUBSEQ

REQTOOL

REQSUBSEQUENCE.
PARTS*

Rules

For two REQORDER_LIAISON constraints,if currentgroup
intersectswith existingsecondgroup,and the current secondgroup
intersectionswith existinggroup, then suspendthe existingconstraint.

For two REQORDER_PART constraints,if the currentgroup
intersectswith the existingsecondgroup, and the current second
group intersectswith existinggroup,then suspendthe existing
constraint.

If two REQPATHS_AXIAL constraintsintersectand their required
paths are not equal, then suspendthe existingconstraint.

If two REQSTACK constraintsintersectand their required
trajectoriesare not equa~ suspendthe existingconstraint.

If two REQSUBSEQ constraintsare the sametype (assemblyor
disassembly)and their groups intersec~then suspendthe existing
constraint.

If two REQTOOL constraintsprimaryparts are the same, suspend
the existingconstraint.

If two REQSUBSEQUENCE_PARTS groups intersec~then
suspendthe existingconstraint.

Table 4.3. List of constraints and rules that give subassembly-level constraints precedence
over top-level constraints. Those marked with * are constraints not available in
Archimedes 3.0@.

Constraint Name Ruks

REQSUBASSY If two REQSUBASSY constraintsintersect but neither is a subset
of the other, then suspendthe currentconstraint. If the current
REQSUBASSY intersectswithan existing
REQSU13ASSY_WHOLE,but neitheris a subset of the other,then
suspendthe current constraint.

REQSUBASSY_ If two REQSUBASSY_WHOLE constraintsintersec~but neitheris
WHOLE a subset of the other,then suspendthe current constraint. If current

REQSUBASSY_WHOLE intersectswith an existing
REQSUBASSY, but neither is a subset of the other,then suspend
the current constraint.
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Table 4.4. List of constraints and rules that union top-leveI and subassembly constraints.
Those marked with * are constraints not available in Archimedes 3.0@.

ConstraintName RuIes

REQORDER_FIRST If the currentREQORDER_FIRST intersectswithan existing
REQ_ORDER_FIRST,suspendthe existingconstraint. Union
currentconstraintwithany existingREQORDER_FIRST
constraintsand deletethe existingconstraints.

REQORDER_LAST If the currentREQORDER_LAST constraintintersectswith an
existingREQORDER_FIRST constraint suspendthe existing
constraint. Unionthe current constraintwith any existing
REQ ORDER LAST constraintsand deletethe existingconstraints.

REQSUCCESS_ Unioncurrent cons~aintwith any existingREQSUCCESS_PART

PART*
constraintsand deletethe existingconstraints.

Table 4.5. List of constraints that give top-level precedence and have no conflicts.
marked with * are constraints not m Archimedes 3.0@.

Those

ConstraintName RuIes I

REQ LINEAR PARTS None. I

PRH STATE None.

PRH SUBASSY None. I

REQ CLUSTER None.

REQ FASTENER None.

REQLINEAR_ None.
CLUSTER

REQ PART SPECIAL None.

REQ STAT None.

MIN_sIM.uL_ None.
LIAISONS*

NUN REORIENT* None.

I
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4.5.2 Overrikks

Rules for resolving conflicts between subassembly overrides and top-level overrides are much
simpler than the constraints. When applying the system to the assembly at the top-leve~ overrides
for the subassemblies (parsing the subassembly tree bottom-fir% deleting similar overrides at it
goes) are automatically loaded. The system then loads the overrides for top-level assembly
(deleting similar overrides, in this case any non-top-leveI overrides of same type for the same
part), if any exist. On restoring all top-level overrides from a file, the system removes all top-level
overrides and then loads in new top-level overrides (deleting similar overrides).

Conclusions and Future Work

To the author’s knowledge no automatic assembly planner has ever compensated for
automatic planning for generative processes. The methodologies presented and implemented in
this section are mtural progressions towards fidly automating generative process planning.

The system has been tested on numerous assemblies and has shown significant increases in
efficiencies m planning for assembly upgrades. However, it is ddlicult to obtain precise measures
of efficiency since there many variables tiecting the process (e.g., the user of the system the size
of the assembly, the number of initial constraints and overrides to produce a f=ile process pm
etc.).

Future work needs to be directed towards the development of algorithms to fidly automate the
propagation of the assembly constraints and overrides when parts are added to an assembly.
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5

Optimizing Search Algorithms

As in initial assembly, the product design and known process constraints are rnputs to creating
such plans. But for Mecycle assembly planning, the goal of the process is ofien dii3erent.
Exqmples are replacement of particular subassemblies, or least-cost dismmtlement and disposal.
Furthermore, the disassembly and assembly processes used to meet these goals have important
differences from initial manufacturing. In planning for and optimizing Mecycle disassembly
sequences, there are substantial technical issues that require fhmkunental rethinking of the
procedural repre~ntation mentioned above. That which is addressed in this section is partial
assembly (or disassembly). In a partial disassembly process, assembly and disassembly does not
always proceed from or result in individual parts. For instance, a service-oriented task may
require only partially disassembly of a componen~ and then subassemblies are placed in it.

In the sections that follow, automatic pkmuing for partiai disassembly is discussed. Section
5.1 covers the iuclusion of a newly implemented constraint, REQSUCCESS_PART(s), rnto the
Archimedes 3.0@System to accommodate for service-oriented assembly processes. The
instantiation of a REQ_SUCCESS_PAR.T(s) constraint allows a user to speci& a part or
collection of parts that must be removed from an assembled product. This forces the planner to
stop when none of the desired parts (as specitkd m the constraint) are left in the assembly.
Section 5.2 tbrther describes a computer algorithm and its implementation that optimizes the

I

I

I

I

31



-.. —__ .. . ..... . . .. .. . . . _____ . . .

search strategy for the REQSUCCESS_PART(s) constraint. This search strategy uses a hi.U-
ctibiug technique of the standard A* search to repeatedly probe the subassembly tree, looking
for better (less costly) disassembly sequences. An additional algoti referred to as the
shortening algorithm, is also described. The purpose of the shortening algorithm is to shorten the
initial sequence by eliminating unnecessary removal of parts not specified m the
REQSUCCESS_PART(s) constraint set. F-, Section 5.3 concludes the section with an
example application.

5.1 REQ_SUCCESS_PART(s)

As a first approach to service-oriented part remo~ the Archimedes 3.0@disassembly planner
was employed essentially as-is, by spec@ing a constmin~ which is referred to as
REQ_SUCCESS_PAl?T(s), which essentially cuts the planner off when none of the desired parts
are left in a subassembly. In gene@ this does not produce very satisfactory disassembly plans, as
the iirst disassembly sequence produced by the planner typically contains large numbers of
unnecessary operations, which have nothing to do with getting at the desired parts.

As a next step, a more general search-optimization strategy was incorporated into Archimedes
3.0@. This strategy uses a hill-clirnb~ variety of the standard A* search to repeatedly probe the
subassembly tree, looking for better (less costly) disassembly sequences. Running with a
REQ_SUCCESS_PART constrain and the optimizer emble& causes Archimedes 3.0@to
iteratively run the disassembly planner, with an aim toward finding an “optimal” disassembly
sequence. The debilitating drawback to this approach is that the size of the subassembly tree
makes it impossible to find optimal solutions m reasonable time, for assemblies with more than
about 20 parts. The nature of the optimization scheme is such that the algorithm will run until the
cost of the best disassembly sequence found so fiwis equal to the lower bound on the cost of the
best disassembly sequence possible. The problem is that ifthe base assembly admits a few
hundred possible disassembly steps, the execution time required to find the best possible
disassembly sequence is prohiitilve. This demonstrates that even the best possible sequence is at
least two operations deep and requires the exploration of tens of thousands of disassembly
sequences. Finding a “best” disassembly sequence can also take a prohibitively longtime. ‘%est
means that a person can analyze an assembly sequence and say with certainty that a particular
sequence is clearly the best possl%le.Archimedes 3.0@may still be unable, using the general-
purpose optimizer, to find that sequence, let alone say that no other sequence is better.

5.2 Shortening Algorithm

One of the reasons that the general-purpose optimizer does not provide adequate support for
service-oriented part removal is that it is not capable of eliminating, m an efficient manner, what
humans would think of as “obviously unnecessary” part removals from the disassembly sequence.
For example, consider the partial disassembly sequence shown in Figure 5.1; the task is to
remove the part labeled B born the assembly for service or replacement. It is obvious that the
correct disassembly sequence is to remove the screws labeled F and G from the assembly and then
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to remove the cover plate, D. Because &chimedes 3.0@has no way of knowing, a prioti that
removing screws Hand I will not help in gaining access to part B, it might return the sequence
shown in the figure; removal of parts I, ~ F, G, D, and then B. In this case the number of parts
is small enough that the optimizer would quickly discover the sequence {F, G, D, B}, and also
quickly discover that no cheaper sequence would achieve the remowd of part B. But ifthe
assembly had, say, 40 or 50 pints, kchimedes 3.0@might run for au arbitrarily long time before
discovering the sequence {F, G, D, B}, and would run even longer before proving to its own
satisfaction that a cheaper sequence did not exist.

In order to improve Archimedes 3.0@,ability to find sequences that do not contain “obviously
unnecessary” part removals, a specific module that operates on existing plans to improve their
efficiency was implemented. The planner invokes two steps when a REQSUCCESS_PART
constraint is declared. First, the standard disassembly planner is used to provide an initial
sequence P that enables the removal of the desired part (in this case, B).

Secon& a subroutine (hereafter referred to as the “shortening algorithm”) is invoked which
attempts to shorten P by eliminating removaI operations from it. This is accomplished by
attempting to indefinitely defer specific removal operations. For the disassembly sequence shown
in Figure 1, {1,m F, G, D, B}, the planner attempts to determine ~ instead of removing part I
first, part H could be the first part removed. Since this is possible, the planner goes on to
consider the sequence {~ I, F, G, D, B]. This sequence has all of the same operations, and the
same cosG but has deferred the removal of part I for one operation. The planner then tries to
defer I’s removal by another step: {m F, I, G, D, B}. It is successfi& so it goes onto try {U F,
G, I, D, B), {~ F, G, D, I, B}, and finally {ELF, G, D, B, 1). For this ilnal disassembly
sequence, the planner realizes that it doesn%need to remove part I, having already removed part
B, and so it returns the plau {w F, G, D, B}, which is cheaper by the cost of removing part I.

Ifthe planner is not successful in deferring the removal of the first part indefinitely, it goes on
to try again with the second part, then the third part, and so o~ until it reaches the end of the
plan. Ifit never succeeds, then it simply returns the original plain ~ on the other han~ it does
succeed in deferring the removal of any particular part indefinitely then it stops. The planner then
recomputes the “best plan”, and repeats, until it fails to inde~ely defer the cost of any part
removal. In this example, after specifically generating the removal operations needed to provide
the disassembly sequence {~ F, G, D, B}, the planner then goes on to try to defer the removal of
part M generating, in order, the sequences {F, ~ G, D, B}, {F, G, ELD, B}, {F, G, D, H B},
and finally {F, G, D, B, H}, which is truncated to {F, G, D, B], which is, in this case, the optimal
solution.

,
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Figure 5.1. Example of an assembly from which a specific part is to
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❑B

be removed.

It must be stressed that this additional algorithm does not guarantee convergence of the
optimized search for a cheapest disassembly sequence. This is true for two reasons. First, this
algorithm does not provide any idormation about minimum possible costs. In this case, if there
were 40 or 50 parts in the assembly, the algorithm would do nothing toward proving that there
was not a cheaper sequence. If cost and length of the disassembly sequence are considered to be
identical for the purposes of illustcatio~ then this algorithm would do nothing toward showing
that there does not exist a length 3 disassembly sequence terminating iu the removal of part B
from the assembly in Figure 5.1.
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Figure 5.2. Example of assembly where the shortening algorithm is not guaranteed to find an

optimally short disassembly sequence.

The second reason that the results of this algorithm are not guaranteed is that the effects of
this algorithm are only visited upon plans found by the existing disassembly planner. Suppose for
example in Figure 5.2, that part B was held within its cavity in part & not only by the plate D, but
also by a plate J, which came into the bottom of B’s cavity (rather than the bottom of the cavity
being a solid part of A), but was held in place only by a single screw, K Then the optimal removal
sequence would be {~ J, B]. Until the planner found a sequence containing {~ J, B} as a
subsequence, the shortening algorithm would not be able to produce {~ J, B} as an alternative.

However, in spite of these limitations, in practice the shortening algorithm does provide an
effective way to find a lowest-cost servicing disassembly plan. The user can speci& the set of
parts for the service operatio~ enable the optimizer, start the planner, and let it run until the cost
of the best plan so fm stays the same for several iterations. At that point the plan w with high
probability, be the one desired. If not, the user can either rerun the planner for a longer duratio~
or add constraints to help the planner find the minimum cost service plan.

5.3 Experiments

The Archimedes 3.0@planner, extended with the constraint system has been applied to a
number of actual assemblies from sources in government and industry. To date, the newly
integrated shortening algorithm has only been implemented in test case scenarios.

The B61, with improved non-nuclear components, has replaced the B53 in the U.S. stockpile.
The scope of the modifications to the B61 requires exhaustive testing to certi& the modified
bomb’s safety, fimctionalhy, and reliability.

With the shortening algorit~ it is possible to generate fewest-removed-parts-disassembly
plans for easy access to parts that require servicing or replacement on a regular basis, such as the
parachute shown in the B61 tail-section in Figure 5.3. As part of routine maintenance, the
parachute is regularly removed from the tail-section with a flared cone, which changed the
appearance of the weapon somewhat in the rear, where the fms existed before to allow the bomb
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to spin in a certain way. In Figure 5.3, the picture on the left depicts the tail-section subassembly
in its assembled configuration. On the right is a picture showing the tail-section with the
pmachute partially removed after the shortening was applied.

Figure 5.3. The tail-section subassembly of the B61 Bomb.

The tail-section subassembly contains 258 parts described by 17.5Mb of ACIS@ data (translated

from Pro/ENGINEER@) and slightly over a million facets. Archimedes 3.0@was first applied to

the solid model to ident~ any inconsistencies in the CAD model. This allowed for the detection
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of cfilcal design flaws to be caught early in the re-manufacturing phase (servicing) and a

reduction in scheduling and costs. Ne~ Archimedes 3.0° was used to test the feasibii of

disassembly, checking for geometric accessibii for removal of parts. Since Archimedes 3.0@

plans only for straight-line motions, and this assembly contained a number of tlexilie parts, such

as cables, that could not use straight-liue assembly motions, the part-mating operations involving

those parts were overrode. After loading and fhceting all the parts, Archimedes 3.0@took

approximately three minutes to fid all contacts and produce a disassembly plan.
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6

Geometric Simplification

A wide variety of solid modeling packages is currently available which makes it easy for a

designer to create sop~lcated components and systems in a relatively short time. These

packages shorten the initii design process and make modifications relatively simple. The down

side to these packages is that they encourage designs with high geometric complexity. This added

complexity, while often necessary for fimction or for manufacture, tends to greatly complicate the

analyses that the designer might need to perform on those designs. This includes such analyses as

assembly planning.

While the design for simplicity paradigm traditionally formulated and encoded at Sandia

facilitates eliminating those design features which are not strictly necessary for mamdkcture or

ii.mctio~ this paradigm made only small progress towards removing irrelevant geometry for a

particular analysis engine, and none at all for existing designs.
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6.1 Facetted Data

The fmt approach towards geometric simplification addressed fiicetted data. Since the size of

the fiicetted representation of an assembly can get quite large for large, complicated assemblies,

the capab~ for an Archimedes 3.0@user to re-specfi the fitcetting parameters used on the

loaded assembly was added. This has the effect of speeding up the contact and collision analysis

to a small exten~ but more importantly, improves the rendering speed for plan playback at the

cost of somewhat cruder anirnatioq and possiily requiring extra mating OVERRIDES for certain

tight-tolerance insertions.

New a simple, fhce-to-hce converter was written that converts STL fiwetted data to the

ACIS solid model format. Algorithms were written and implemented in Archimedes 3.0@that

extended this fhcii to sew together geometrically identical but topologically separate edges of

adjacent fices and merge i%ceswhich share the same plane. The ability to export the resulting

connected components to file, one component per tie, was added. This provided the user limited

ability to separate STL-format assemblies into their individual parts.

In addition to the above, algorithms were developed and implemented to provide functionality

that takes a facetted pm and fits cylindrical patches to its &ices,as appropriate. This i%cilitythen

replaces each set of fitted facets with the cylindrical patch. The cylinder fitting operation works

for sets of fkces that approximate a fhll cylinder with ends which are planar cuts or partial

cylinders (e.g., half-rounds) with ends that are right-planar cuts. Next, means to adjust the

perimeter of the cylindrical patch were provided to better approximate the perimeter of the set of

fitted ties.

6.2 Feature Reduction in CAD Models

Work conducted under the “Feature Reduction of Geometric Solid Models for Analysis

TooIs” [4] was partial& combmed with the efforts pursued under this LDRD to simplify

geometric complexities of very large assemblies for efficient assembly analysis.

A suite of geometric simplification heuristics was developed which enable a designer to

quickly produce a simplified design which eliminates those features of the original design which

are not pertinent to a given analysis [4]. Secondary efforts focused on mmaging the complexity

of solid models which have been completely or pmtialIy converted to a fhceted (polygo~ planar

fhces only) representation. The simplest fmture addressed was a simple hole. A simple hole

meaning a hole whose cross section is a circle or ellipse. The hole could be a “blind hole”, that is

a hole that is a dead en& such as a crew hole or it could be a hole that goes alI the way through

some mate~ a “through hole”, that one might pass a rod or pin through Bye xamining the
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objects that contained these holes, it was clear that a simple hole in an object generated a large

number of polygons. Indee& punching a hole through an object can generate around 30 polygons

in each single polygon the hole pierces and the walls of the hole can be comprised of about 50.

These numbers are controllable through parameter settings in the fhcetter but these numbers are

not atypical.

As an example of the difference it can make, the Archimedes 3.0@System was applied to an

assembly comprised of some printed circuit boards housed by aluminum fizune (see Figure 3.1).

Applying the remove hole simplifier to one of the circuit boards cut the polygon count of the

circuit board to one sixtie~ from 24,000 to 400, without changing the geometry necessary for

Archimedes 3.0@to do its work. The contact analysis portion of the Archimedes 3.0G run

dropped from 4 hours to 6 minutes. Obviously, not all cases will be this well suited to hole

remov~ but it was a real case. In another case, applying the hole removal simplifier to afire set

housing, the polygon count dropped 30%.

I

I

I
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Summary

Significant progress in reducing the four main resources (memory utilization contact analysis
computation time, planning time and geometric simplification) identified in the original proposal
as barriers to application of the Archimedes 3.0@System to Very Large Asemblies was made.
The approach taken was to start with the Archimedes 3.0@System and (1) Refine algorithms and
data-structures to make the planner capable of handling thousands of parts using realistic amounts
of time and memory. (2) Provide more flexiile means of interacting with subassemblies and also
with assemblies which change over time (generative design). (3) Improve the robustness of the
code and algorithms to rncrease the breadth of scope, as well as the size, of assemblies which
Archimedes 3.0@can handle. And (4), incorporate the ab~ to reduce the geometric complexity
of assembly elements for improving planning and playback time for very large assemblies. A
summary of the experimental results is presented below.

Mer restructur& data structures for improved contact analysis capabilities, the addition of a
single OVERRIDE o; CONSTIUINT, involtig for example, two of 369 parts, contact analysis

!

took only about 3 seconds, and almost 98% improvement for that assembly. For a more
I

complicated assembly, or one with more parts, the savings would be even greater. This a very
I
I

significant from the user’s perspective, because users of Archimedes 3.0@often react to problems
I

in the produced assembly plan like modem programmers they fix one or two problems, then
I
,

rerun the planner. So, reducing the contact analysis time on second and subsequent runs reduces
the amount of user time required very dramatically. 1
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Once the initial contact analysis for an assembly has been achiev~ the improved scheme
reduces the time required to update the contact analysis after adding a srngle OVERRIDE or
selected CONSTRAINT born the fhll amount required by the initial analysis (as much as several
hours, for assemblies with a few hundred parts) down to a few seconds to a few minutes,
dependiug on the complexity and numbers of the individual parts rnvolved in the introduction of
OVERRIDES. Since the ability to save and retrieve the contact Mormation has also been addd
this means that the ft@ all parts against all other parts contact analysis need only be pefiormed
once for any given assembly.

By restructuring some of the graphical output code, we were able to achieve a 93’%reduction
in the required storage for each part in an assembly (from about 2 Megabytes/part down to about
140 Kilobytes/part) for the electronic subassembly array shown in Figure 3.1. In terms of
assembly size limitations, this raises the bar from a previous limit of about 600-8000 parts for
assemblies running on a 32-bit SGI, to a level in excess of 10,000 parts. Effectively, required
memory has ceased to be a limitation on the size of assemblies.

Capabdities enabling the user to more quickly and easily interact with large assemblies, in
terms of providing mating and manficturing OVERRIDES, and assembly CONSTRAINTS were
added. The user can now rnteract with an assembly at the subassembly leve~ establishing
appropriate CONSTRAINTS and OVERRIDES, and have those CONSTRAINTS and
OVERRIDES show up at the fidl assembly leveL To the author’s knowledge no automatic
assembly planner has ever compensated for automatic planning for generative processes. The
methodologies presented and implemented in this Section 4 are natural progressions towards fully
automating generative process planniug. The system has been tested on numerous assemblies and
has shown signhicant increases in efficiencies in planning for assembly upgrades. However, it is
difficult to obtain precise measures of efficiency since there many variables a.i%ciingthe process
(e:g., the user of the system the size of the assembly, the number of initial CONSTRAINTS and
OVEIUUDES to produce a fmible process pm etc.). Future work needs to be directed
towards the development of algorithms to fidly automate the propagation of the assembly
CONSTW41NTS and OVERRIDES when parts are added to an assembly.

A realistic assessment of the time taken by the planner on various types of planning tasks
indicated that the pIanner was, realistically, more than adequately fast for the basic assembly and
disassembly planning processes. Specifically, at the current time, for a particular assembly of
approximately 350 parts, we can find a single assembly strategy in just over two minutes. Since
the growth in planning time is approximately quadratic, and assembly of 2,000 parts would be
expected to take roughly 36 times as long, or slightly in excess of an hour, not counting conta.ct-
analysis (which only needs to be petiormed once). Where we found a major shortfidl was m the
process of optimizing assembly and disassembly strategies. While the basic planner just takes
apart an assembly once, and then stops, when we begin optimking, we fid ourselves calling the
planner many, many times, looking for a “best” assemblyklisassembly plan. Each call to the
planner finds a single path (sequence) through the disassembly tree for an assembly, and assigns a
cost to that path. The difficulties are that the state space for this search is extremely large, and
that the general purpose search heuristics are not effective enough at restricting the search for the
search engine to locate an optimal strategy for assemblies of even as few as 25 parts. We have
implemented special purpose search strategies that, for specific types of disassembly tasks, use a
simulated-annealing-like process to locally optimize disassembly plans provided by the general-
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purpose planner. This enables Archimedes 3.0@to find optimal disassembly plans in a few
minutes inmost cases, though it is still beyond the capabfity of Archimedes 3.00 to prove,
generally, that no better sequences are possible. We can run this planner on assemblies that are
much larger than the 20-25 part limit that was the previous limit, and brings this kind of planning
into the realm ofpossibtity for assemblies of hundreds of parts.

As an example geometric simplification (hole simplification) can make, the Archimedes 3.0
System was applied to an assembly comprised of some printed circuit boards housed by aluminum
frame (see Figure 3.1). Applying the remove hole simplifier to one of the circuit boards cut the
polygon count of the circuit board to one sixtieth from 24,000 to 400, without changing the
geometry necessary for Archimedes 3.0Gto do its work. The contact analysis portion of the
Archimedes 3.0° run dropped from 4 hours to 6 minutes. Obviously, not all cases will be this
well suited to hole removal but it was a real case. In another case, applying the hole removal
simplMer to afire set housing, the polygon count dropped 30°/0.

Early in 1999, the Archimedes team set yet another record. Seen to the
right, is a target array assembly used as a missile interceptor. This d
assemblv contains 1750 tXU@140 m of prom datk 1~ ~ of .A”--””’-

Developed under the purview of this LDRD, the Archimedes

c

4
analysis surpasses the previously set record three fold.

s*
Time required to load and perform contact analysis is ‘ ~
10 minutes. The time to plan an initial sequence is
8 minutes while subsequent planning takes on the order of “’-’-.“

d

ACIS dat% and 1,800,060 facets. Using the technologies

I

,

I

1 to 2 minutes.
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