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Abstract

. The microrheology of dry sda.p foams subjected to large, quasistatic; sim-
ple shearing deformations is analyzed. Two different monodisperse foams with
tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan
(A15) and ]\E"riauf-Laves (C15). The elastic-plastic résponsé is evalua.ted by
calculating foam structures that minimize total surface a.fea at each value of
strain. _’i‘he minimal surfaces are computed with rthe Surface Evolver pro-
gram developed by Brakke. The foam geometry and macroscopic stress are
piecewise continuous functions of strain. The stress scales as T/V/? where
T is sufface tension and V is cell volume. Each dis;:onti_nuity corresponds
to large ‘changes in foam geometry and topology that rAesto-r:ev equilibrium to
‘unstable configurations that- violate Plateau’s laws. The instabilities occur
when the length of an edge on a pdlyhedrai foam cell vanishes. The iength
can tend to zero smoothly or abruptly with strain. The abrupt case occurs
when a small increase in strain changes the energy profile in the .‘neighbor-'

hood of a foam structure from a local minimum to 2 saddle poi t,whlch ca.n
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lead to symmetry-brea.king bifﬁrca.tions. In general, the new foam topology
associated with each stable solution branch results from a cascade of local
topology changes called T1 transitions. Each T1 cascade produées_ different
cell neighbors, reduces surface energy, and provides an irreversible, ﬁhﬁ-level
mechanism for plastic yield behavior. Stress-stra.in curves and averaée stresses
are evaluated-by examining foam ori;enté.tiqns that admit strain-periodic be-
havior. For some orientations, the deformation cycle includes Kélyin célls
"instead of the original TCP structure; but the foam does not:remain perfectly
' -ordered. Bifurcations during subsequent T1 cascades lead to disorder and can

even cause strain localization.
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I. INTRODUCTION

~ The natura_l sta.fting point for developing microrheological models of foam flow in three
dimensions involves quasis#atic deformation of a dry Kelvin foam (Reinelt .&' Kraynik 1993,
1996; Kraynik & Reinelt 1996). This paralleis developments in two dimensions that can
be traced to'pioneering work on liquid honeycombs by Princen (1983). Film-level viscous
flow that causes strain—fate depéndence is absent under static conditions where minimizing
_surfaée energy is the-doﬁlina;nt physical mechanism. The film-level geometry is simplest
in the h_yﬁothetical dry hm1t because the foam structure is composgd entirely of minimal
surfaces tﬁat deﬁﬁe the faqeé of polyhedrai cells. Plateau borders, which form along cell
edges in wet foams, are absent in dry foams where they degenerate to the intersection of
three surfaces as the liquid volume fraction goes to zero. The dry foam based on the Kelvin
cell (see Fig. 1) is the only known sfructure composed of identical polyhedra that is known
to satisfy Plateau’s laws in 3D (just like the hexagonal cell in 2D). The most .eleméntary
models that provide a baseline for further develoﬁments only include one polyhedron in
the representative volume of foam, which is commonly referred to as thé unit cell. Even

under arbitrary homogeneous deformation the Kelvin foam only has seven unique faces

~when constrained by perfect order. Unless otherwise stated, a Kelvin foam will refer to the
elementary model based on one polyhedron in the unit cell.

This analysis extends previous investigations of foam flow -in '3]5 by considering more
complicated cell arrangements that include several polyhedra in the unit cell. Multiple
polyhedra lift many of the inherent constraints of perfect order. We consider two structures
compoée_d of several ‘different equal-volume cells: Weaire-Phelan and Friauf-Laves, which are
also kno_wh as A15 and 015, respectively. Both belong to a class of two dozén or so struc-
tures known as tetrahedrally close-packed (TCP) to crystallographefs and Frank-Kasper to
metallurgists and material scientists (Rivier 1994). The rheological reéponse ‘includes sev-
eral features expected of all dry foams. The stress-strain curves éxe pi_eceWiée cdni:inuoqé,

which corresponds to elastic-plastic behavior. Each branch of the curve represents :large-, S
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deformation elastic response of a foam with fixed topology, i.e., the behavior is reversible
and cell neighbors do not change. Each branch terminates when the foa,ni structure violates

. topological constraints on edge and face connectivity that are contained in Plateau’s laws.

St:a;bility is restored by a cascade of local topology changes that result in a stable foam _

structure with different cell neighbors. The jumps in stress and structure are not reversible.

In a perfectly ordered foam, each branch of the stress-strain curve involves Kelvin cells

and the types of topology changes are severely restricted. In contrast, topology changes in
TCP foams produce a broad range of cell types. The following analysis focuses on these and

other microrheolbgical mechanisms and phenomena that arise in simple multi-cell systems.

II. EVOLUTION OF FOAM STRUCTURE WITH SHEAR

The structure of a dry foam under static conditions satisfies Plateau’s laws and consists of

a continuous network of films with uniform surface tension T' and constant mean curvature.

In general, the mean curvature varies between films because the cells have different internal
pressure. The films are stabilized against rupfure by the presence of surfactants, e.g., the
soap in a soap froth. The volume fraction of continuous liquid phase is zero in the dry limit.
Plateau-border chaqnels that form along cell edges in x-vet foams are absent. The shape of

each film satisfies the Young-Laplace equation
Ap=2T(V-n) 7 (1)

where Ap is the pressure difference between adjacent bubbles, n is a local unit vector normal
to the dividing film, and the term in parentheses is the sum of the principal curvatures. The

. i, v ,
factor of two accounts for both film interfaces. To balance forces and minimize energy, three

films intersect along cell edges at equal dihedral angles of 120° and four edges meet at each

vertex at equal tetrahedral angles of cos™ (—1/3) = 109.47°. These equilibrium conditions

are called Plateau’s laws; they were deduced from experimental observation (Platéau 1873)

and eventually shown to be a mathematical conseciuence of minimizing surface area (Taylor

1976).
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The assumption that the volume 6f individual cells remains constant during simple shéar—
ing flow requires justification thé,t is unnecessary for a Kelvin foam. In general, the pressure
_of each cell depends on the size, shape, and topology of it and its neighbors. The resulting
pressure differences Ap drive gas diffusion between cells, whi.ch causes well-known coarsening
phenomena. We negleciv:‘ this diffusion, which can be slow compared to the foam deformation
 Tate. 'Independent of gas diﬁ'usion, the cell pressures change with their geometry as the foam
deforms. This occurs even when the total volume of foém is constant under éimple shear.
We neglect variations in cell volume due to these deformation-induced pressure fluctuations.

This “incompressibilitj” assumption is valid for foams with large bubbles where the surface
‘energy density is smalllcompared to the average cell pressure. |
The representative volume of a spatially periodic system is defined by a parallelepiped
formed by three lattice vectors, L;. The undeformed Weaire;Phelan (WP) foam shown
in Fig. 1 has the smalles"c known surface area of any structure with equal-volume cells -
(Weaire & Phelan 1994). It contains eight distinct bubbles with two different topologies.
Six tetrakaidecahedra with two hexagonal and twelve pentagénal faces are arranged in mu-
tually perpendicular columns that ére aligned with a simple cubic lat'.tice. Single peﬁtagonal
| dodecahedra fit inAbetweenv these columns. For orientation 1 of the WP foam, we align the

~ cubic lattice with the coordinate axes

L; = 2V'3 (1,0,0)
L, =2V (0,1,0)

L; =2V (0,0,1) . | 2)

Here, the z-axis po‘.ints to the right, the y-axis points up, and the z-axis points out of the
page. | | |

The undeformed Friauf-Laves (FL) foam also shown in Fig. 1 contains six dis£inct bubbles
with two different topologies. There are four pentagonal dodecahedra and two 16-hedra with -
four hexagonal and twelve pentagonal faces. The Friauf-Laves foam _has face-centered cubic

(FCC) structure. For orientation 1, we choose

.5




L, = vV2(3V)*? (1,0,0)
L, = V2(3V)*? (1/2,1/2/3,~V3/6) |
L; = v2(3V)Y® (1/2,0,—v3/2) . - (3)

These vectors coincide with the edges of a regular tetrahedron.
We consider homogeneous simple shear in the zy-plane. This is accomplished by applying

a deformation gradient F to the lattice vectors, where

140
F=|010 - @
Joo1

and 4 is the shear strain. We can think of y as dimensionless time, when the shear rate  is
constant. The capillary number Ca expresses the relative importance of viscous to surface

tension forces and is defined as

_mvee o
Ca = T . | (5)

where p is the liquid viscosity. In the quasistatic fégime under consideration, Ca is zero.
The foam is deformed by increasing the shear strain in small increments Ay. At each
value of 7, the strgct;ﬁre with minimal surface area is computed. The shear strain is increased
until a solution that satisfies Plateau’s laws cannot be found. This point of instability,
an elastic limit, is always associated with a shrinking edge on a shrinking face; but, the
| edge length dbes not necessarily go smoothly to zero with st'rainf Stability is restored by
topological transitions (T1s) that result in zi foam with differént geometry and lower surface -
area. ‘ ‘
Foam structures with minimal area were calculated with the Surface Evolver program’
developéd by Brakke ‘(1992). The Surface Evolver converges to a minimal surface by simu-

lating the process of evolution by mean curvature. Each n-sided face is subdivided into n

triangular facets with a common vertex in the interior of the face. The shape of each facet is




approximated by a quadratic function. To verify thatbthis level of refinement was adequate
for our purposes, further refinements were also performed. |

To simplify calculations, foam orientations are chosen so that‘the lattice is strain-periodic.
The orientations represented by (2) and (3) give the smallest stfain period for each lattice
under simple shear. Othbr cases involve lattice rotation before deformation. The foam
orientétioﬁs that are analyzed here do exhibit strain-periodic behavior; however, the period
- of the lattice and _the foam can be different. In general, strain-periodic lat.tice‘ response does
not gﬁarantee strain-periodic evolution of foam structure. Thg pa.rtiéular orientations that
we exarnine not ‘only minimize the réngb of stfain that needs to cbnsidered, but they also
maximize the distance between identical “image” cells on tbe lattice. This reduces some
artifacts of spatially periodic models, subh as larée distortions that occur when images are

very close.

III. MACROSCOPIC STRESS

The effective, macroscopic stress tensor o for the foam is calculated by averaging the
" local, position-dependent stress over the unit cell. The stress for a dry foam with equal-

volume cells under static conditions is obtained from

2ka+ Z//(I nn) da G

where py is the pressure inside the k* bubble, V is the volume of each of the N bubbles,

I is the identity tensor, and da is the differential area element of the i** film. There are

twice as many interfaces as films F since each film has two sides. The shear stress o, can
- [ .

be evaluated from the local stress using (6) or it can be evaluated from the surface energy

using
TdS T d 2% :
= wa waz® O

where S is the total surface area of N bubbles and S; refers to the it* interface. Our

calculations using the two methods give consistent results. In allvp_:al'c'ulation's -we set the -




" cell volume V equal to one, which is equivalent to scaling length by V*/3. Stress and energy
density are scaled by T/V/3. |

For spatially periodic 'foams, viscometric functions are evaluated by a_veraging the in- -
' sfantaneous stress over time. When the foam structure and stress are strain-periodic,

1 +1F

T=— d : ' 8
YF Iy LT _ ()

where o is the instantaneous stress given in (6), & is the time-averaged stress, and ’.)’p is the
strain.peric;d of the foam. The time-averaged shear stress can also be evaluated from oy

| in (7).

IV. TOPOLOGICAL TRANSITIONS
A. Basic T1 transitions

As a dry foam deforms, the length of edges and the area of faces can increase or decrease.
When a length goes to zero, more than four edges meet at fhe new, combined vertex. This
violates Pl:dteau’s laws and provokes topological transitions; v}hich have been called ‘rear-
Vrangemen_ts in polyhéaﬁc foam’ by Schwarz (1964). Weaire & Fortes (1994) have discussed
T1 transitions in 2D and 3D.

There are two §vays for an edge to vanish and they both occur frequently. First, the
length can go smoothly to zero with strain. To calculate the critical strain, we compute the
length of the shortest edgé at three values of strain near the critical strain and extrapolate.
The other way for an edge to vanish starts out'similar td the first with length decreasing .
smoothl);. ‘Then, 'é\"rith a very small increase in strain, the edge suddenly vanishes. This
abrupt onset of transition will be examined in tﬁe next section.

The loss of edges triggers three basic T1 transitions that depend on the foam geometry.
These transitions are completely specified as long as it is clear which 'edgé vanishes first.
Our discussion of topological transitions will focus on the foam ge(;mefry in the viciﬁity of

an edge, as shown in Fig. 2. We refer to the three bubbles thatform a 'particﬁlg.r_ edge as -




“edge” bubbles. These bubbles are separated by three faces thaf; share that edge. Each
vertex of the edge involves another bubble. We. refer to these as “end” bubbles. Six faces
separate end bubbles from edge bubbles.

- The first basic T1 transition involves end bubbles moving toward each other. When the
- intervening edge vanishes, the end bubbles touch at a combined vertex where six edges how
meet (see Fig. 2). The unstable vertex splits into three vertices that deﬁne a new triangular
face; thls face is shared by new neighbors-the ongmal end bubbles. The three faces that
separated edge bubbles have lost an edge and the six faces that sepa'rated end bubbles from
-edge bubblee have gained an edge. The euheome of this edge-to—triahgle (ET) transition 1s '
well defined.

Triangular faces are rare in stable foems that a;re-reasonably monodisberse. Usually
an edge-to-triangle transition is followed by at least one and possibly many rhore transi-
tions before a stable foarh'stucture is achieved.- We refer to this sequence as a cascade of
transitions..

The second basic T1 transition, triangle—te-edge (TE), is the reverse of an edge-to-triangle
transition (see Fig. 2). A trianguiar face that separates two bubbles shrinks toward a point.
When the face vanishes, its vertices converge to form an unstable six-way vertex, which
splits to form two new four-way vertices and a new edge.

The third basic T1 transition, quadrilateral-to-quadrilateral (QQ), occurs when opposite
edges of a quadrilateral face vanish at the same time. The face degenerates to form an edge -
as shown in Fig. 3. Both vertices of the new edge have a valence of five and the edge .connects
four faces that separate four bubbles. Two of these bubblee Were.heighbors that shared the
shrinking,f'ace; the 'ij:ther two bubbles were not neighbors before.i_:he face collapsed. Stability
is restored when the original neighbors separate by drewing a new quadrilateral face from
their common edge. The new neighbors share the new face. Viewed in cross section, this
topological transition resembles the fundamental T1 in two dimensions'(see Fig. -3)

In a Kelvin foam, every edge borders one quadrilateral face and two hexagonal faces

Furthermore, opposite edges of every face always have the sa.me lengt» onsequently, the




QQ transition is the most co‘mmo,n ina Keiﬁn foam and has been referred to as the standard
transition in that case (Reinelt & Kraynik 1996). |

In foams with less symmetry, opposite edges of a quadrilateral often shrink but do not
w}anish simultaneously. In this situation, an ET transition is followed immediately by a TE
transition; this sequencé produces the same result as a QQ transition. The ET transition
eliminates one edge' from the quadrilateral face leaving a triangular fag_:e that; continues to
shrink. The vanishing edge also prociuces a second triangular ’face.v‘_ The TE transition
eliminate the shrinking triaﬁgle and adds an edée to the other triangle, which creates the
new quadrilateral face. - | -

Sometimes all four edges of a éuadrilateral shrink simultaneously. In this case the quadri-
latéral tends toward a point ingtead of a line segment. Here, it can be difficult to determine
with certainty which of the four edges vanishes first. For certain deformations of a Kelvin
foam, all four edges on a. quadrilateral are identical so the face shrinks precisely toward a .
point. We have called this situation a point tfansition. There are two possible outcomes that
are equivalent to choosing which set of opposite edges on thé quadrilateral vanished first. In
a Kelvin foam, the resulting strﬁctures are mirror images. In TCP foams, a point transition
can result in two, vei& different structures. If the two smallest edges are opposite edges, we

assume that they disappear first. If they are adjacent, we examine both alternatives.

B. Symmetry-breaking bifurcations

TCP foams have less symmetry than Kelvin foams but they still have a lot. The pen-
tagonal dodecahe’dl:a in Weaire-Phelan and Friauf-Laves foams are centrosymmetric, i.e.,
points opposite the center correspond. This symmetry is preserved under homogeneous de-
formation as long as the topology does not change. The other polyhedra in these foams are
not centrosymmetric. Nonetheless, for each edge and pentagonal facé bn one of these cells

there is a corresponding feature with the same dimensions on a neighboring cell of the same

type.




Consider two correspbnding edges of equal length f.hat shrink with strain as the minimal
foam structure evolves. Usually, a small increase in strain slightly shifts the locél minimum
and the new structure is very close to the previous structure. If this continues, the edges
will vanish smoothly with strain. Alternatively, a small increase in strain could change the
neighborhood of the solﬁtion from a local minimum to a saddle point. If this occurs, the new
stable structure will not be close to tﬁe previous'one. In fact, every time that this occurred
in our TCP simulations, at least one edge disappeared leading to a T1 trénsition' and a new
foam structure. This is the _r;iechanism by which an edge vanishes abruptly.

In some céses, the saddie.point Asimply accelerates a transition that would occur if edges
vanished smoothly. In other cases, there is a bifurcation that breaks symmetry. Figure 4
illustrates how a bifurcation occurs. Each curve represehts a particular value of strain with
strain increasing in increments of 0.01 fl;om the bottom to the top of the figure. The energy
is plotted against the lenéfh of one of two small edges. In other words, at eagh point along
the curve, the length of one edge is specified and the foam stfucture with minimal energy
is determined su'bject_ to this constraint. The other edge is ffée to have different length; the
two small edge lengths are determined by a horizontal line tﬁat intersects the energy curve.
We note that the disfénce between curves has been reduced substantially to fit them on the
same plot. Variations in energy along a single curve are O(10™*) while variations in energy
between curves are O(1072).

The minimum energy on the lowest curve corrésponds to an equilibrium foam structure
(no constraints); Here, the two small edges have equal length. A small increase in strain
shifts the local m‘iniinum' -and the néw foam strﬁcture is close to the original one but the
lengths h_a:ve decre:;.s;ed. Eventually, the solution with equal edge lengths is no longer a local
minimum; one edge will now vanish as the other groWé. We note that the curves shown in
Fig. 4 only represent one class of foam structures and that the local maxima are actually
saddle points when all possibilities are considered. Either one of the two sma.ll edges can

vanish depending on the direction that one leaves the saddle point. Thls leads to blfurcatlon

In this particular example it is not poss1b1e for both small edges to vamsh s1multaneously o
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If we constrain both small edges to have equal length, then the energy is larger than the
saddle point. This is not always the case. .Sdmetimes, the appearance of a saddle point, where
there used to be a local minimum, does lead to both small edges vanishing simultaneously.
In this case, a symmetry breaking bifurcation does not occur.

- Note that just after the local mininium changes to a saddle point, the steepest descént
direction away from the saddle .point is not very steep. .Consequently, it takes many iteratibns
of the Surface Evolver to confirm that the difference betv;reen the small lengths is substantial
and increasing monotonically.
| It is more difficult to diagnose bifurcétibri‘s ﬁhén they occur in the middle of a T1 céscade. -
?[‘he first transition can result in an unstable structure with many,v:‘mi;shing edges. When it

-is not clear whether two equivalent edges vanish simultaneously and preserve symmetry or
only one vanishes, we examine both. possibilities. When only one edge disappears first, we
examine the other edge to. see if it continues to shrink or begins to grow in -size. If the other
edge grows éfter the first edge vanishes, this is a good sign that there is a symmetry breaking
bifurcation. If it continues to shrink and vanishes, one gets tl_;e'same foam structure as when
both edges disappear simultaneously.

A second test is té follow the two possibilities through to the end of a cascade. If the
energy of the symmetric struéture is much higher than the less symmetric structure and the
shape of the bubbles and ﬁlmé are highly distorted then we conclude that the less symmetric
structure is preferred. If the energies of two paths are comparable, we assume that both
paths are possible and follow each separately.

Some orientations of T CP foams (orientation 1 of the Weaire-Phelan foam and orientation

2 of the Fr.iauf-Lavés‘: foam) possess mirror symmetry across the shear plane. This symmetry

is preserved under simple shear in the cases that we examined.




V. RESULTS FOR WEAIRE-PHELAN FOAM

Two strain-periodic orientations are examined for each foam. In é.ll cases, simple shear
is apphed accordlng to the deformation gradient in (4). Orlentatlon 1 of the Wealre-Phelan
foam (WPl) corresponds to the lattice vectors in (2) The columns of 14-hedra are ahgned
with the coordinate axes, e.g., the z-column bubbles are aligned with the g-axis. Six of the
eight bubble centers lie in two; horizontal layers (zz—planeé); i.e. the é-'colﬁmn bubbles (Z; |
and Z,)-and one dodecahedron (D) lie in the “ldwer’ layer and the z-column bubbles (X;
~ and X,) and the other dodecahedron (D,) lie in the ‘upper’ layer. Qﬁe y-column bubble (Y;
or Y2) is centered half Waj in between the. altérnating layefs.

Under simple shear fhe.lattice for WP1 has a strain period of unity. Figure 5 shows
the deformed foam at y = 0.65 just .Before the first topological transition (see Fig. 1 for the
initial structure). The first two T1 cascades are initiated by single or multiple edges vanishing
smoothly. Both cascades can be divided into two steps, (see Table I). To simplify the table,
we have listéd quadrilateral-to-quadrilateral (QQ) fransitions whenéver possible, even if the
opposite edges are not exacﬁly the same length. As discussed above, thesé transitions can be
split in.to an edge—;co;_triangle.(ET) transition followed by a tﬁangle—to-edge (TE) transition.

The layered structure persists up until the third and final cascade, even though the topol-
ogy of individual polyhedra changes. The final cascade begins with a symmetry-breaking
bifurcation that causes y-column bubbles to ‘combine’ with the layer immediately above or
below. This cascade results in a foam with Weaire-Phelan topology (see Table I).

We did not anticipate that the strain period of the lattice 7z and the strain period of

foam v would co'ir'x‘cidé. If the bubble centers moved with the mean flow, i.e., their motion
was aﬂiné, it would take a strain of four for every bubble, e.g. Xj, to 6ccupy the original
position of aﬁ image. Thisis a conéequence of bubble centers being located on four, différént,
equally spaced y-levels. The foam has 7 = 1 because the bubbles d:o"not move affinely,

but change relative positions and even change type over a cycle. The bifurcation determines

which bubbles are ‘shuffled’ at the end of a cycle (see Table I); there ___z‘i're two possibilities




* depending on whether the y-column bubbles mo;\re up or down.

Figures 6 and 7 contain. 1;he shear stress and normal stress differences for WP’1. The latter
are defined according to the standard convention for ﬁscqmetric functions: N, = 07 — cryy‘
aﬁd Ny = 0y — 0. N_ofe that the foam never returns to an undeformed Weaire-Phelan
structure with isotropic stress. This is because the last transition occurs at a shear strain
greater than v= 1 .

The next shortest strain period for a cubic lattice is 7, = v2. T hlS onentatlon (WP2)

is equ1valent to flow along a dlagonal of a face of a cube it is obtamed by rotatmg WP1

45° about the y-axis. Rotatmg in dlfferent directions results in structures that are mirror

images but these have the same shear stress 0y and normal stress differences. The sign of the

other shear stress components does depend on rotation direction. The first T1 cascade begins
' with two edges vanishing smvothly. This is followed by two quadrilateral facgs shrinking to a
point. As discussed in the-:previous section, each point transition has two possible outcomes.
For Kelvin foams, the resulting structures are mirror images with respect to the zy-plane and
have the same shear stress oy Here, there are four possible"éombinations for the double-
point transition of WP2. Two of these break symmetry and differ depending on whether
y-column bubbles moVé up or down. We will refer to them as WP2a since they have the same
Ogy (see Fig. 8). The second Tl cé_scade begins when two edges vanish smoothly. The third
cascade is provoked by an abrupt saddle-point transition. »T he fourth cascade begins with a
symmetry-breaking bifurcation where one of two quadrilaterals abruptly shrinks to a point.
'This bifurcation also determines whether y-column bubbles move up or down. The final T1
cascade restores Weaire-Phelan structure. Like WP1, the stress isl nbi;-isotropic, the strain
period of,:che lattiéé and foam are the same, and bubbles are shuffled. Two bifurc_aﬁbns per

cycle lead to four different shufflings in WP2a.




A. Case WP2b: Weaire-Phelan to Kelvin

The oﬁher possibilities for the double-point transition do not break.symmetry about the
zy-plane; we refer to them as WP2b. The response eventually becomes.peri.odic,'as indicated
by the stress-strain curve in Fig. 9. Tﬁis case exhibits several phenomena that have not been
observed previously. The cycles do not involve any Weaire-Phelan structure, even thoﬁgh it
was the initial topology of the foém. At some point the foam becomes perfectly ordered: a
T1 cascade at vy = 2.69 produces eight identical polyhedra, which must be Kelvin cells (see
Fig. 9). - - | o

Elemeﬁtary models baSed on the Kelvin cell only include one pquhedron. in the ﬁnit

~cell. This elimiﬁates fhe bossibility of any other stable structure but Kelvin—the foam
cannot escape perfect order. The presence of multiple polyhedra in the unit cell provides |
additional degrees of freedom. This permits bifﬁrcations that break symmetry and lead to
more compléx structure. Figure 9 also shows the outcome of the next cascade at v =321

_in which Kelvin cells are transform;:d into differgﬁt i)olyhedra. This bifurcation is caused by
a local energy minimum changing to a saddle point.

Four more T1 cascades fest.:ore perfect order néar ¥ = 3.80. The resulting Kelvin cells
become highly aist_orted and the_stress grows very large, as shown in Fig. 9. This occurs
because hexagonal faces separate cells that are being pulled apart. This situation is similar

to the triple transition discussed by Reinelt & Kraynik (1996).

The foam now consists of Kelvin cells equally distributed between horizontal layers. The

- next cascade near v = 5.30 involves identical QQ transitions on each cell triggered by edges

vanishing smoothljf.;.‘Since there are no bifurcations, the response could be-captured by a

single—celi model, but the following cascade at -y = 5.54 is very different. A bifurcation leads

to QQ transitions in alternate layers of cells. The resulting' intermediate structure is neither

stable nor perféctly ordered. _Additional T1 transitions at the same leyel restore perfect
order. Even though the initial and final structures consist of Kélvi_n cells, this‘ response _

could not be captured by a single-cell model because the foam undérépgs_’strain' lbc_ali_Za{?ion.




All cell-neighbor switching occurs at alternate levels béigween layers; the cell topology at the
other levels is undisturbed. Consequently, foam layers that are two cells thick glide past one
another. Thfs completes the first cycle. Unlike WP1 and WP2a, the foam period is twice

the lattice périod, 7r = 271 = 2v/2, and the cycle does not involve Weaire-Phelan structure.

VI. RESULTS FOR FRIAUF-LAVES FOAM

\

Orientation 1 of the Friauf-Laves foam (FLl) corresponds to the FCC lattice in (3).
This lattice has equilateral triangles covering the zz-plane. The triangle sides specified by
L; are aligned with the ﬂovsf aléng the.:r,-a.xis. The lattice response is strain periodic with
T = \/?%, the smallest possible value for an FCC 'l‘attice. This orientation is similar to
case WP2b: the cycles do not involve Friauf-Laves structure, but they do involve Kelvin
cells and the foam does not remain perfectly ordered.

The third T1 cascade for FL1 includés_ bifurcations caused by point transitions that result
in two different periodic solutions (see Figs. 10 and'll). One case FL1a follows two slightly
different paths to the same periodic solution with yr = 37y./2 as shown in Fig. 10. In the
othef case FL1b, the pefiod of the foam and the lattice are equal (see Fig. 11). |

Rotation of -FL.l about the y-axis by £30° generates two different structures with the
same lattice, which have y» = 7, = 3/v/2. FL2a obtained by rotating +30° and FI2b -
obtained by rotating —30° are not mirror images of each other. The stress-strain behavior
of FL2a and FL2b are related by a phase shift equal to one third of the lattice period, as
shown in Fig. 12. The first of four T1 cascades for FL2a begins at y = 0.93 when four edges
vanish smoothly. Th‘js cascade produces a deformed foam with Friauf-Laves fopology, which
becomes FL2b if the strain is reduced to ¥ = 7;/3 = 1/v/2. Foam response with different
phase angles has been observed for Kelvin foams (Reinelt & Kraynik 1996) and honeycombs

(Kraynik & Hansen 1986).




| VIL TIME-AVERAGED SHEAR STRESS |

The time-averaged stresses.evaluated from (8) are presented in T'able 1I. Equations (6)
and (7) give cénsistent results for the shear stress component o,,. The avéfage shear stress
was 0.119, 0.204, and 0.617 for three different orientations of a Kelvin foam (Reinélt &
Kraynik 1996). The highest value includes a triple transifion, which causes large étress. The
TCP results that do not involve Kelvin cells show less variation in average shear stress than

those that do.

VIII. CONCLUSIONS

The ﬁlicrprheology of Weaire-Phelan and Friauf-Laves foams exhibits all of the features

expected of dry foams in qﬁésistatic shearing flow. This includes piece&ise—continuous stress-
‘strain functions whose branches correspond to nonlinear elastic behavior, branches termi-

nating when the foam structure violates Pla.teau’s-léws, and irreversible cascades of local
topology transitions that reduce energy and resto.re stability.‘

Unﬁke the Kelvin foam, which can be modeled as one polyhedron in a unit cell, TCP
foams require multi;ﬁle polyhedra and consequently are far less constrained. Individual
polyhedra change type as T1 cascades produce foams fhat coﬁtain a much greater variety
of polyhedra and faceé than existed originally. This occurs because individual faces, which
begin as pentagons or hexagons, can gain or lose one or two edges. The first cascade alone
can result in polygc;ns raqging from triangles to octagons and they can be assembled to form
many different po};{rhe’dra. |

Single:cell simﬁ?ations constrain each polyhedron ‘to go with the (mean) flow.” Multiple
cells eliminate this constraint and enable individual cells to move ‘off latﬁce’ and this, for
example, enables shuffling. Without shuffling, the foam-response period would be several
times the lattice period. With shuffling, they can be equal. .

Eventually, all of the foams reorder because their response is strain-periodic. In some




cases the foams return to their original topology. In other cases they become Kelvin cells; but
subsequent T1 cascades can result in disordcr. This was observed in ali cycles that include
Kelvin cells. A Tl cascade begins with a cell edge going to zero length as strain increases.
The :process by which edges vanish in Keivin foams and in TCP foams can be smooth and
_ continuous, or abrupt and discontinuous. When multiple cells are involved, abrupt onset is
ofte:o connected with symmetry-breaking bifurcations. The resulting structures have lower
stress and less energy than their more symmetric counterparts. These‘ bifurcatioos provide
a mechanism for Kelvin cells to disorder. They can also cause strain localization; e.g., in
WP2b, a T1 cascade results in layers, two Kelvin cells thick, slidinév'p.aSt one another.

The lmagnit'ude of stress-strain ﬂuctuat;ions is just as large in the TCP foams as in Kelvin
foams. Despite their complexity, the TCP foams arc still small systems. The most elemen-
tary T1 transitions involve five cells and a particular cell can be altered several times during
a T1 cascade. Consequen;ﬁly, the disturbance to the foam structure and the corresponding
jumps in stress and energy avrc large. While it is very common to get. negative shear stress
during flow of a Kelvin foam, the shear stress was always posit'ive when the response did not
include Kelvin cells. This trend is favorable since negative shear stress is not anticipated
during steady flow of iarge random foams. Results from 2D simulations suggest that it will
probably require random foams vﬁth hundreds of cells to significantly reduce stress fluctu-
ations (Weaire & Fu, 1988; Herdtle, 1991; Weaire & Fortes, 1994). Gopal & Durian (1995)
have used a multiple-light scatteriog technique called diffusing-wave spectroscopy (DWS) to
study nonlinear bubble dynamics during foam flow. They observed localized stick-slip like
rearrangement of bubbles that undoubtedly refers to T1 cascades The simulation of large

random foams will prov1de connections with DWS experiments.
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FIGURES .
FIG. 1. Kelvin cell and two TCP structures, Weaire-Phelan (A15) apd Friauf-Laves (C15),

showing the poljrhedra in a representative volume (unit cell) of foam.

FIG. 2. The fundamental topological transition is reversible. A vanishing edge produces a
triangular face (ET), and its reverse, a vanishing triangular face produces a new edge'(TE). The

lines labeled ‘f” designate cell‘ edgés in the foreground and ‘b’ refers to the backg‘round.

FIG. 3. The QQ transition ‘rotates’ a quadrilateral face; the one on the left lies in the plane
of thé page and the one on the right is nea.ﬂy perpendicular. An ET transition followed by a TE

transition would produce the same result. )

FIG. 4. Energy cross sections leading to bifurcation of foam structure. A local minimum

becomes a saddle point as strain increases.

FIG. 5. Deformed Weaire—Ph-elan foams viewed frém two directions. From top to bottom

7 = 0,0.30, and 0.65 (just before the first topological transition). -

FIG. 6. Shear stress o,y as a function of shear strain -y for orientation 1 of the Weaire-Phelan
foam (WP1). The stress scale is T/V3 in all figures. The solid bar represents the period of the

. foam response yg.

FIG. 7. First normal stress difference Ny = 0,z — 0yy (solid curves) and second normal stress

difference Ny = oyy — 0, (dashed curves) as a function of strain for WP1.

"{ FIG. 8. Shear stress as a function of strain for WP2a.

FIG. 9. Shear stress as a function of strain for WP2b. The solid bar represénfs the foam period
~r and the dashed bar represents the lattice period 7. The label ‘k’ indicates those branches that

only involve Kelvin cells.




FIG. 10. Shear stress as a function of strain for Friauf-Laves orientations FL1a and FL1b. The

only difference between the two is indicated by the dotted lines.

FIG. 11. Shear s.tress as a function of strain for FLlc.

FIG. 12. Shear stress as a function of strain for Friauf-Laves orientation 2; FL2a starts at v=0

and FL2b starts at v = 1/+/2 as indicated by the dashed line.




TABLES A
TABLE 1. Structure evolution for WPI. Columns labeled 3-10 contajn the number of faces

with p edges. Columns labeled D,-Z5 show how a particular polyhedron gains and loses faces as
the foam deforms and undergoes topolégical transitions. Rows beginning with ‘a range of strain
refer to stable structures that persist until the next T1 cascade. The { refers to the pbsitions
occupied by a particular polyhedron at the end of the cycle; e.g., dodecahedron D, becomes Y7,
~a 14-hedron in the y-column, and t'he driginal Y71 moves to Do, i.e., Do andAYl shuffle witﬁin the

lattice. The } indicates final positions for an alternate bifurcation path.

faces with'p edges faces on a particular cell
y 3 4 5 6 7 8 9 10 D' Dy, X3 X Y\ Y Zi Z
0070 0 0 48 6 0 0 0 0 12 12 14 14 14 14 14 14
2 5 3 14 0 1 0 0 4 12 15 15 14 14 14 14
070098 0 14 22 18 2 0 0 0 18 16 13- 13 14 14 12 12
6 14 16 15 6 2 0 1 18 16 15 15 14 14 14 14
098110 0 17 20 16 4 1 0 0 16 16 14 14 - 14 14 14 - 14
3 15 10 .14 6 2 0 0 16 17 14 14 14 15 14 14
0 15 23 15 3 1 0 O 16 17 14 14 12 15 13 13
1 13 24 15 3 1 0 0 16 17 14 12 14 13 14 14
0 11 30 11 4 0 0 0 16 16 14 12 14 12 14 14
0 8 3 10 3 0 0 © 14 14 14 14 14 14 14 14
3 6.3 13 1°2 0 0 4 14 14 14 15 15 14 14
0 6 37 11 1 0 0 0 4 .12 14 14 15 15 13 13
1 2 42 9 1 0 0 0 12 14 14 14 13 15 14 14
110170 0 0 48 6 0 0 0 0 12 14 14 14 12 14 14 14

T Db i X2 X D Y2 Zy 2
P D Y Xo X Yi D %L Zy
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TABLE II. Average shear stress Gz and the normal stress differences, N1 = Gz — Gy and

N, = Gyy — Tz Orientations that involve Kelvin cells are denoted by (K). Stress is scaled by

| T/V3, .

Orientation - Ty N N,
WPL : 0.354 © 0212 -0.172
WP2a 0.296 0.092 -0.042

WP2b (K) | 0.272 -0.112 0.106

| V_AFLla,b (K) " - 0.498 0.106 -0.098

FLlc (K) 0.054 0.299 -0.194

FL2a,b
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