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Photosensitive films incorporating molecular photoacid generators
compartmentalized within a silica-surfactant mesophase were prepared by an evaporation-
induced self-assembly process. UV-exposure promoted localized acid-catalyzed siloxane
condensation, enabling selective etching of unexposed regions, thereby serving as a
‘resistless’ technique to prepare patterned mesoporous silica. We also demonstrated an
optically-defined mesophase transformation (hexagonal—tetragonal) and patterning of
refractive index and wetting behavior. Spatial control of structure and function on the
macro- and mesoscales is of interest for sensor arrays, nano-reactors, photonic and fluidic
devices, and low dielectric constant films. More importantly, it extends the capabilities of
conventional lithography from spatially defining the presence or absence of film to spatial
control of film structure and function.

Since the discovery of surfactant-templating procedures to prepare ordered mesoporous
silicas (1), films have been identified as a promising application. Thin film silica mesophases
have been prepared at solid-liquid (2) and liquid-vapor interfaces (3), and by spin-coating (4, 5),

and dip-coating (6, 7). These procedures have been combined with soft lithographic techniques
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(8) to create patterned films (9, 10). However such techniques required long processing times
and have been limited to physically defining the presence or absence of film (9, 10). For sensor
arrays and micro-fluidic devices, it is of interest to pattern the thin film mesostructure (for
example, hexagonal versus cubic or disordered), thereby spatially controlling properties like
refractive index and accessibility of the mesoporosity to a fluid phase.

Our process exploits the pH-sensitivity of both the siloxane condensation rate and the
silica-surfactant self-assembly process to chemically define film presence or absence as well as
to spatially control mesostructure and properties. We begin with a homogeneous solution of
silica, surfactant, photoacid generator (PAG, a diaryliodonium salt) and HCI (11) with initial acid
concentration designed to minimize the éiloxane condensation rate (12, 13). Preferential ethanol
evaporation during dip- or spin-coating (14) concentrates the depositing solution in water and
non-volatile constituents, thereby promoting self-assembly (6, 15) into a photosensitive, one-
dimensional (1-dH) silica/surfactant mesophase. Due to chemical modification with a long-chain
hydrocarbon, the PAG serves as a co—;surfactant during the assembly process, promoting its
uniform incorporation within the mesostructured channels of the 1-dH film.

Irradiation of the PAG at Anmax = 256 nm results in homolytic or heterolytic
photodecomposition to yield the Brensted super-acid, H'SbFs, plus an iodoaromatic compound

and organic by-products (16):

SbFy hv

54
+ CoHsOH/H,0 > R-Ar-l + Are + H*SbF; + Solvente
(Solvent)
/\/\/\/\/\/r-l\o R=alkyl chain Ar=aryl
(1)

UV exposure of the photosensitive mesophase through a mask creates patterned regions

of differing acid concentrations (Fig. 1). Co-incorporation of a pH-sensitive dye (ethyl violet)
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allows direct imaging of these patterned regions as shown in Fig. 2a, where the yellow (exposed)
and blue (masked) regions correspond to pH 0 and pH 2, respectively (17).

Suppression of the siloxane condensation rate during film deposition enables several
modes of optically-mediated patterning. First, since acid generation promotes siloxane
condensation, selective UV exposure results in patterned regions of more and less highly
condensed silica (18). Differential extents of siloxane condensation result in turn in differential
solubility, allowing selective etching of more weakly condensed regions in aqueous base (0.2 M
NaOH). Figure 2b shows an optical micrograph of a UV-exposed and etched thin film
mesophase after calcination to remove the surfactant templates. Consistent with Figure 1, we
observe a lithographically-defined pattern of mesoporous mesas, i.e. film is present in the
exposed regions and absent in the un-exposed regions. The plan-view TEM micrograph (Fig. 2b
inset) reveals a striped mesoscopic structure consistent with a 1-dH mesophase with unit cell size
a =37 A. This process eliminates the need for a photoresist in the patterning of mesoporous low
K films needed by the microelectronics industry (19).

Second, when we calcine (rather than etch) the olstically-pattemed films, we effect the
patterning of film thickness and refractive index as evinced by the optical interference image
shown in Fig 2c¢. Spectroscopic ellipsometry indicates that the Uerxposed regions are thicker
with greater pore volume and lower refractive index (see Table 1). As discussed below these
differences largely stem from a hexagonal to tetragonal mesophase transformation. Significantly
the refractive index contrast (4n = 0.025 at 630nm) (20) is sufficient to make optical
waveguides (21).

A third aspect of this approach is photo-definable wetting behavior. Photolysis of PAG

produces organic by-products (Eqn. 1) that render UV-exposed regions more hydrophobic
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(contact angle = 40°) than unexposed regions (contact angle <10°). Figure 2d shows that
patterned hydrophobic regions serve as corrals for water. Such corrals (22) are of great interest
for creating sensor arrays, e.g. by selective derivatization of the hydrophilic areas with aqueous-
based precursors or bio-molecules.

A final aspect of our approach is the optically-defined transformation of the mesophase
structure (nanostructural lithography). Figure 3 compares thin film X-ray diffraction' (XRD)
patterns of unirradiated and irradiated samples after calcination at 450°C to remove surfactant.
Also shown is the XRD pattern of an unirradiated PAG-containing film exposed to HCI vapor
(14) prior to calcination. The XRD pattern of the unirradiated film (Figure 3, trace A) is
consistent with a 1-dH mesophase with lattice constant a = 42.1 A, whereas the pattern of the
irradiated sample (Figure 3 trace B) is assigned to a mixture of 4 tetragonal (distorted cubic)
mesophase with @ = 66.8 A and b =c =72.8 A (23) and the un-transformed parent structure, a 1-
dH mesophase with @ = 38.5 A (24). The XRD pattern of the HCl-exposed sample is
comparable to that of the irradiated sample but shifted to higher d-spacing. TEM images of the
corresponding unirradiated and irradiated calcined films are shown in Figure 4. The cross-
sectional TEM image of the unirradiated film (Figure 4A) reveals a striped pattern characteristic
of the [110]-orientation of a 1-dH mesophase (a = 42.7 A), with mesopore channels oriented
parallel to the substrate surface. The cross-sectional TEM image of the irradiated film exhibits
predominantly a diamond-shaped texture consistent with the [010]-orientation of a tetragonal
mesophase, however the occasional presence of horizontal stripes suggests an incomplete 1-dH
—> tetragonal phase transformation. Th‘e magnified image of the striped and diamond textures

(Figure 4 A and 4B insets) points out the topotactic relationship between the 1-dH and tetragonal
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mesophases and suggests that the transformation results in a factor of /3 increase in lattice
constant consistent with the mechanism proposed below.

For the supported thin film mesophases adhesion to the substrate can distort the
mesostructure and influence the phase transformation process. To avoid this complication and
enable acquisition of powder XRD patterns, we detached the films before irradiation and
calcination. Figure 5 compares powder XRD patterns of the unirradiated and irradiated
specimens after calcination. Similar to results for comparable, attached films, the XRD pattern
of the unirradiated powder is consistent with 1-dH (@ = 52.8A), while that of the irradiated
powder is consistent with tetragonal (@ = b = 81.5 A and ¢ = 107.8 A) (23, 24). The smaller
lattice dimension observed for attached film (Figure 3) compared to powder (Figure 5) results
from polymerization-induced shrinkage occurring in the unconstrained direction (normal to the
substrate) probed by X-ray reflectivity experiments. Corresponding TEM images of the calcined
powders (Fig. 6) show hexagonal and tetragonal mesostructures consistent with the XRD results.

Having chosen the initial acid concentration to minimize the siloxane condensation rate
(12, 13) we argue that the as-deposited film represents the thermodynamically favored
surfactant-oligomeric silica mesophase; the evaporation-induced self-assembly process is not
kinetically inhibited by any significant amount of silica condensation accompanying film
deposition. As shown in Figure 2a, the effective pH of the as-deposited mesophase (pH~2) is
much less than the pKa of the silicate oligomers, pKa = 6.5 (25), causing the framework to be
protonated. At pH 2, the protonated framework (b interacts with the protonated ethylene oxide
(EO) blocks of the surfactant head groups \;ia an R-EOp y[(EOQ),*(H;0") ]seezX seewl®
mechanism (where m = number of EO blocks in the surfactant, y = number of hydrogen-bonded

EO blocks making up the hydrophilic headgroup, z = number of hydronium ions attached to the
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EO blocks, X, the anionic species, w= number of silica tetrahedra co-assembling, and J, the
network charge) in which the positive charge of the framework and surfactant is mediated by the
charge of the CI” and SbF¢ anions. Photo-generation of acid promotes siloxane condensation as
shown by *Si NMR results along with decreased film thickness, a reduction in XRD d-spacing,
and development of appreciable biaxial tension as measured using a cantilever beam (26).
Subsequent heating promotes further siloxane condensation (26) and at 125°C we observe by
XRD and TEM the 1dH— tetragonal phase transformation.

The mechanism of the phase transformation may be understood by consideration of how
silica/surfactant mesophases reorganize in response to increased extents of siloxane
condeﬁsation. It is generally believed that the factors governing the formation of a specific silica-
surfactant mesophase are the same as those governing corresponding surfactant-water
mesophases. The thermodynamically; favored phase is that which allows the surfactant
headgroup area a to be closest to its optimal value a,, while maintaining favorable packing of the
hydrophobic surfactant tails (27, 28). The influence of a, along with the surfactant volume v and
tail length / on the resultant mesophase can be understood qualitatively by the dimensionless
packing parameter g = v/a,l : where g = 1 favors formation of vesicles, bilayers, or lamellar
mesophases and decreasing values of g result in the formation of progressively higher curvature
mesophases and ultimately spherical micelles (g < 1/3) (27, 28). Monnier et al. (29) introduced
the term Giyer iﬁ their free energy expression to account for electrostatic interactions between the
silica framework and surfactant head groups. When the framework charge density matches the
average surface charge density of the surfactant head groups 1/a, Giy.r is minimized, establishing

a,, which in turn influences g and the mesophase curvature.
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In the present study, condensation of the silica framework substantially increases its
acidity as reflected by a reduced pKa and isoelectric point (12). Therefore, although the overall
pH of the system is reduced by photo-induced acid generation, the protonation of the silica
framework decreases relative to that of the ethylene oxide headgroups. In order to maintain
charge density matching at the silica-surfactant interface, the optimal ethylene oxide headgroup
area a, must increase. The increased value of g, in turn reduces the surfactant packing parameter
g, favoring transformation to a higher curvature mesophase.

Mechanistically, we propose the phase transformation proceeds through creation of
periodic undulations along the length of the closed packed cylindrical channels of the 1-dH
mesophase, as is known for the temperature-induced hexagonal to body-centered-cubic
transformation of C12EOs; in the C12EO12/H,0 binary system (30). For the silica-surfactant
system undulation results finally in a tetragonal (distorted cubic) packing as depicted in Figure 7.
dyoo for the parent 1-dH mesophase becomes dgo of the tetragonal mesophase, resulting in a

‘factor of /3 increase in the lattice parameter. Distortion arises due to condensation occurring
preferentially normal to the substrate. The 1-dH — tetragonal phase transformation occurs with
minimal displacement of the silica oligomers and surfactant species, and we expect a precise
topotactic relationship between the hexagonal and tetragonal mesophases as shown schematically
in Fig.7 and by TEM in Figs. 4A and 4B. There are two previous reports of condensation-driven
transformations to higher curvature mesophases, lamellar — 1-dH (29) and lamellar — cubic (6),
but our study appears to be the first report of a hexagonal to cubic or tetragonal transformation.
Since it depends critically on the initial surfactant and acid concentrations (31), the

transformation may be realized or avoided by judicious choice of these parameters.
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We anticipate that the procedures reported here will extend the capabilities of
conventional lithography from patterning the presence or absence of films to the spatial
definition of both thin film structure and properties. As such this optical patterning technique
should find application as an alternative to micro-machining in the construction of microsystems
and, ultimately, nanosystems, where it would be desirable to define and integrate multiple

"functions (e.g. fluidic and photonic) with high areal densities.
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Table 1 : Ellipsometry data showing thickness (t) and refractive index (n) (at A =

630nm) for B56 films

As-prepared Films Calcined Films

Unirradiated
UV Irradiated

t (A) n t (A) n
3651+26 1.454+0.001 2293+22 1.302+0.002
3602+21 1.457+0.001 2399+23 1.277+0.002
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Figure. 1. Processing map for optically-mediated patterning of thin film silica

mesophases.

Figure. 2. Optical patterning of function/properties in thin-film silica mesophases. (A)
Optical image of localized acid generation via co-incorporation of a pH-sensitive dye
(ethyl violet). The blue areas observed for the unexposed film correspond to pH* > 2.0
and the yellow areas observed for the exposed film to pH* ~ 0 (where pH* refers to the
equivalent aqueous solution pH required to achieve the same colors) (B) Optical
micrograph of a U\}-exposed and selectively etched mesostructured thin film (after
calcination). Feature size = 10 pm. Inset : TEM image of the film seen in (B) consistent
with the [110]-orientation of a 1-dH mesophase with lattice constant a = 37 A. (C)
Optical interference image showing thickness and refractive index contrast in a
patterned, calcined film. The green areas correspond to UV-exposed and calcined
regions and the black areas to unexposed and calcined regions. (D) Optical image of an
array of water droplets contained within patterned hydrophilic-hydrophobic corrals.
Water droplets sit on hydrophilic regions with contact angle <10° and are bounded by

the hydrophobic UV-exposed regions with contact angle = 40°.

Figure 3 X-ray diffraction patterns of calcined thin-film silica mesophases. Trace A:
unirradiated film pattern, consistent with a 1-dH mesophase with lattice constant a =
42.1 A . Trace B: irradiated film pattern, consistent with a tetragonal mesophase with a

=66.8 A b=c=72.8 A along with parent 1-dH mesophase with a = 38.5 A. Trace C:
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an unirradiated film exposed to HCI vapors and then calcined. The pattern is similar to
the one obtained for the irradiated film (trace B) but with lattice constants a = 74.2 A b=

¢ = 82 A for the tetragonal mesophase and a = 43 A for the 1-dH mesophase.

Figure 4 Cross-sectional TEM images of patterned film. (A) [110]-orientation of
unirradiated calcined region prepared as in Fig 3 trace A. Striped pattern is consistent
with 1-dH mesophase with a = 37 A. (B) Irradiated calcined region prepared as in Fig 3
trace B capturing the 1-dH — tetragonal mesophase transformation. Inset: magnified
image showing relationship between the 1-dH and tetragonal mesophases and defining

the a and c lattice constants of the transformed tetragonal mesophase.

Figure 5 Powder X-ray diffraction pattern for calcined silica/surfactant mesophases. (A)
pattern for the unirradiated powder ié consistent with a 1-dH mesostructure with lattice
constant a = 52.8 A. High 26 region is magnified by 25x (B) pattern for UV-irradiated
powder is consistent with tetragonal mesophase with a = b = 81.5 A, ¢= 107.8 A. High
26 region is magnified by 175x. Note that the (200) and (400) reflections of the
tetragonal mesobhase could also be indexed as (100) and (200) reflections of a 1dH

mesophase with a = 47.4 A

Figure 6 TEM images of calcined powder samples. (A) Unirradiated powder
corresponding to the [110]-orientation of a 1-dH mesophase. (B) UV-irradiated powder

corresponding to the [001]-orientation of a tetragonal mesophase.
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Figure 7 Schematic diagram showing the mechanism of the transformation from the 1-
dH mesophase (top) to a tetragonal (distorted cubic) mesophase (bottom). As
condensation of the siloxane framework proceeds, the framework charge density
decreases relative to that of the EO headgroups. The corresponding increase in the
optimal surfactant headgroup area drives the 1-dH to tetragonal mesophase
transformation through a periodically undulating intermediate as known for the thermally

driven 1-dH — body-centered-cubic transformation of of C,,EQO,,in the C;,EO,,/H,0

binary system (30).
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Figure. 1. Processing map for optically-mediated patterning of thin film silica mesophases.
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Figure. 2. Optical patterning of function/properties in thin-film silica mesophases. (A) Optical image of
localized acid generation via co-incorporation of a pH-sensitive dye (ethyl violet). The blue areas
observed for the unexposed film correspond to pH* 2 2.0 and the yellow areas observed for the exposed
film to pH* ~ 0 (where pH* refers to the equivalent aqueous solution pH required to achieve the same
colors) (B) Optical micrograph of a UV-exposed and selectively etched mesostructured thin film (after
calcination). Feature size = 10 um. Inset : TEM image of the film seen in (B) consistent with the [110}-
orientation of a 1-dH mesophase with lattice constant a = 37 A. (C) Optical interference image showing
thickness and refractive index contrast in a patterned, calcined film. The green areas correspond to UV-
exposed and calcined regions and the black areas to unexposed and calcined regions. (D) Optical image
of an array of water droplets contained within patterned hydrophilic-hydrophobic corrals. Water droplets
sit on hydrophilic regions with contact angle <10° and are bounded by the hydrophobic UV-exposed
regions with contact angle = 40°.
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Figure 3 X-ray diffraction patterns of calcined thin-film silica mesophases. Trace A: unirradiated
film pattern, consistent with a 1-dH mesophase with lattice constant a = 42.1 A . Trace B:
irradiated film pattern, consistent with a tetragonal mesophase with a= 66.8 A b=c =728 A
along with parent 1-dH mesophase with a = 38.5 A. Trace C: an unirradiated film exposed to HCI
vapors and then calcined. The pattern is similar to the one obtained for the irradiated film (trace

B) but with lattice constants a = 74.2 A, b = ¢ = 82 A for the tetragonal mesophase and a = 43 A

for the 1dH mesophase.
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Figure 4 Cross-sectional TEM images of patterned film. (A) [110]-orientation of unirradiated calcined region prepared as in Fig 3 trace
A. Striped pattern is consistent with 1-dH mesophase with a = 37 A. (B) Irradiated calcined region prepared as in Fig 3 trace B capturing
the 1-dH — tetragonal mesophase transformation. Inset: magnified image showing relationship between the 1-dH and tetragonal
mesophases and defining the a and c lattice constants of the transformed tefragonal mesophase.
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Figure 5 Powder X-ray diffraction pattern for calcined silica/surfactant mesophases. (A) pattern for the unirradiated powder is consistent with a 1-
dH mesostructure with lattice constant a = 52.8 A. High 26 region is magnified by 25x (B) pattern for UV-irradiated powder is consistent with

tetragonal mesophase with a= b = 81.5 A, ¢ = 107.8 A. High 20 region is magnified by 175x. Note that the (200) and (400) reflections of the

tetragonal mesophase could also be indexed as (100) and (200) reflections of a 1-dH mesophase with a = 47.4 A
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Figure 6 TEM images of calcined powder samples. (A) Unirradiated powder corresponding to the [110]-orientation of a 1-dH mesophase. (B) UV-

irradiated powder corresponding to the [001]-orientation of a tetragonal mesophase.
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Auxiliary Figure A : Stress development during UV irradiation for films prepared
with and without PAG. Development of 4.5 MPa of biaxial tensile stress is
observed for films with PAG after UV irradiation of 60 min, whereas negligible
stress develops for films prepared without PAG under similar conditions.
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Auxiliary Figure B: Biaxial tensile stress development during the initial stage of

calcination for irradiated and unirradiated films prepared with PAG. The irradiated
film shows a higher initial stress at room temperature due to acid-promoted

siloxane condensation. Upon heating to 150°C, the irradiated film develops an
additional 48MPa of stress whereas the unirradiated film develops an additional

30MPa.




