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The short-range order (SRO) present in disordered solid solutions is classi-

fied according to three characteristicsystem-dependent energies: (1) forma-

tion enthalpiesof ordered compounds, (2) enthalpiesof mixing of disordered

alloys, and (3) the energy of coherent phase separation, (the composition-

weighted energy of the constituents each constrained to maintain a common

lattice constant along an A/B interface). These energies are all compared

agaimt a common reference, the energy of incoherent phase separation (the

composition-weightedenergyof the constituentseach at their own equilibrium

volumes). UnlikeIong-rangeorder (LRO), short-rangeorder is determined by

energeticcompetition between phases at a jized composition, and hence only

coherentphase-separated states are of relevancefor SRO. We find five dis-

tinct SRO types, and show examples of each of these five types, including

CU-AU,A1-Mg, GaP-InP, Ni-Au, and Cu-Ag. The SRO is calculated from
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CU-AU,A1-Mg, GaP-InP, Ni-Au, and Cu-Ag. The SRO is calculated from
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first-principlesusing the mixed-space cluster expansion approach combined
.

with Monte Carlo simulations.

siori of coherency strain in the

Additionally, we examine the effect

calculation of SRO, and specifically

the appropriate functional form for accurate SRO

of inclu-

examine

calculations.”
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I. INTRODUCTION: SHORT-RANGE ORDER

STABILITY

AND COHERENT PHASE

.

The equilibrium regions involved in solid-state binary alloy phase-diagrams are ordered

phases, two-phase regions, and disordered solid solutions. The latter form at elevated tem-

peratures, and consist of an AI–3. phase in which the A and ~ atoms of the alloy are

distributed in a disordered fashion on the sites of a single, underlying lattice (often a Bra-

vais lattice, e.g., fee). In the disordered phase, the atomic-scale occupation of sites of the

lattice .by A and13 atoms does not occur perfectly randomly, nor does it occur with any

long-range atomic ordering. Instead, local ordering or local clustering takes place in this

solid solution, and is collectively referred to as short-range order (SRO). The degree and

type of SRO in a solid solution can be quantified by specifying the

parameters, cqmnfor

Here, ~~~)(z, T) is

is a B atom at shell

a given composition (z) and temperature (T):

Cqmn(z,T) = 1-
q::) (z, T)

x“

Warren-Cowley

the conditional probability that given an A atom at

(lmn). This probability is necessarily dependent on

the origin,

SRO

(1)

there

composition and

temperature, thus giving an x– and T–dependence to a. If the lattice sites are occupied

completely at random, the conditional probability P(z, 1“) is equal to x, and thus a=O.

Therefore, the departure of Q from zero indicates the extent to which atom-atom correlations

exist within disordered alloys. Ordering-type correlations (the predominance of A– B bonds)

manifest themselves as a <0 while clustering-type correlations (the predominance of A – A

and B – B bonds) manifest themselves as Q >0.

In diffraction experiments, short-range order does not give rise to superstructure reflec-

tions (as in the case of long-range order), and hence one must look “under” or “between” the

Bragg diffraction peaks to observe SRO. The SRO gives rise to modulations in the mono-

tonic Laue background, and using diffuse scattering techniques, (e.g., see Refs. [1–7]) one

can examine these modulations between the Bragg peaks. By analyzing the diffuse scattered
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intensity, one can extract the portion, ~~i~~~ej o f the diifuse scattering due to SRO, which is “p-

roportional to the lattice Fourier transform of the Warren-Cowley parameters:

The connection between high-temperature SRO in the disordered phase and the low-

temperature structures is fascinating. [3,8,9] As one cools the disordered phase, it eventually

gives way to long-range order (LRO), either in the form of ordered compounds or phase-

separation. Are the SRO fluctuations of the high-temperature disordered phase simply

“precursors” or “remnants” of the underlying LRO in the low-temperature phase, or can

there be a competition between local ordering/clustering vs. long-range ordering/clustering?

This question can be phrased more quantitatively as follows: The maximum of Eq. (2)

‘RO for SRO fluctuations in the disordered phase. Long-indicates the dominant wavevector k.

range order at 1ow-T is often similarly characterized by an ordered structure composed of

‘RO. [10,11] The question is then: What is the relationshipa dominant composition wave, k.

‘RO = k~RO, there are many examplesbetween k~ROand k~RO? Although in many cases, k.

[3,8,9] where the dominant wavevector of SRO and LRO do not coincide. [12] Some of these

cases of distinct wavevectors can be explained [8] by noting that whereas SRO is determined

by the energetic competition between all possible phases at a fixed composition, LRO stability

is determined by the energy relative to all possible mixtures of phases, even those at diflerent

compositions.

II. QUALITATIVE UNDERSTANDING OF LRO KS. SRO

To understand the distinction between fixed-composition and global stability, and the

concomitant differences between SRO and LRO, we define three characteristic energies:

(a) The formation enthalpy of an ordered (0) structure is the total energy Eo(o, a.) of

the ordered phase o with lattice constant am,taken with respect to equivalent amounts of

the A and B constituents, each at their “natural”, equilibrium lattice constants aA and aB,

respectively
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AHO =

(b) The mixing enthalpy

random alloy:

AH~ =

Notice that in both Eqs.

*..

:

~o(~, ~c) – [(1 – ~)~A((JA)+ ~~~(a~)].

of a random @) alloy is the analogous energy
.

E’~(R, a.) – [(1 – Z)17~(aJ + zl?~(a~)]

(3)

difference for the

(4)

(3) and (4) the reference energies are A at its lattice constant a~

and B at a~. For alloys with lattice mismatched constituents (aA # a~), incoherent mixtures

of phases with different volumes often contain misfit dislocations at the interfaces between

the two phases to relieve

state of phase separation

separated (IPS) state as

strain. Thus, the reference energies of Eqs. (3) and (4) involve a

(A+B) which is incoherent. Thus, we define the incoherent phase

~p~ = [(1 – ~)~~(aA) + ~~~(~~)] (5)

and is simply chosen as the zero reference energy for our comparisons. In contrast, coherent

two-phase mixtures contain no such misfit dislocations, and thus both phases are somewhat

strained due to this constraint of coherency. This leads to:

(’c) The Coherent Phase Separated State or coherency strain (CS), which involves strain

in the plane of the interface and relaxation of the atoms perpendicular to the interface.

Thus, the strain energy necessary to maintain coherency at an interface between A and B

(called the “coherency strain”) is necessarily dependent on the orientation of the interface

k. AEcs (~, z), the coherency strain energy, is defined as the energy change when the bulk

solids A and B are deformed from their equilibrium cubic lattice constants a,4 and aB to a

common lattice constant al in the direction perpendicular to ~, while they are relaxed in

the direction parallel to k: [13]

A17Cs(~,r) = ~~ [(1 – z-)A13~pi(k,al) + xA13jpi(~, al)] (6)

where A13~pi(~, al) is the energy required to deform A biaxially to al. Each of the energies

A17jpi and A1.7jpiare positive definite, and hence, the coherency strain of Eq. (6) is positive

definite. Of particular importance is the lowest attainable coherency strain
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AE~$(x) = m~ AEcs (~, Z) ‘ (7)

,.
where the minimization is performed over all directions k. Al?&/’(z) then gives the formation.

enthalpy of the energetically most favorable coherently phase-separated state.

Using the definitions of Eqs. (3)-(6), we can now note that:

(I) Long-range order is determined by incoherent phase stability for a long-range ordered

compound to be a ground state (a zero-temperature stable phase), it must be lower in energy

than any other compound at that composition, as well as lower in energy than any incoherent

two-phase mixture of phases at other compositions, including a mixture of the constituent

elements. Thus, a necessary condition for a ground state structure is that AHO <0. The

formation energy AHO of Eq. (3) demonstrates clearly that the long-range order, and hence

the equilibrium phase diagram behavior is determined by incoherent phase stability.

(2) short-range order is determined by coherent phase stability The short-range order

involves a single-phase field (disordered solid solution) of the phase diagram, and thus does

not pertain to incoherent two-phase mixtures. [12] In fact, two crucial quantities towards

determining the types of fluctuations which develop in disordered alloys are the “ordering

energy”

6.E0,~= AHO – AH~

and the “coherent phase-separation energy”

6ECPS = L?3~~ – AHR

JEO,d(JEcps) represent the energy required to form the ordered

state, starting from the random alloy of the same composition.

(8)

(9)

(coherent phase-separated)

Both 6130,~and dEcps are

fixed-composition energy differences and are independent of the energy of incoherent phase

separation.

Figure 1 illustrates five possible relative orders of the energies AHO, AHR, and A13cs of

Eqs. (3)-(6). The ordered structures “O” in Fig. 1 are representative of ‘the lowest-energy

coherent configurations, i.e., structures with dominant composition waves at the Brillouin
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zone boundary (e.g., the Llo, .LI1, or .L12structures). It should be noted that in cases (e.g.,

A1-CU) where the lowest-energy coherent configurations correspond to ordered compounds

which have a large degree of “clustering”, ofie can obtain clustering-type SRO even in a

“Type I“ alloy (see Ref. [14]). In this paper, we study these types I-V of LRO/SRO behavior

in real alloy systems using a first-principles total energy technique for calculating AHO and

A13cs, and a cluster expansion method for calculating AHR and SRO.

The salient features of the SRO are decided by the quantities 6J%d and JJ!7cps,so we

examine the qualitative possibilities for these two quantities, defining the five alloy types of

Fig. 1:

Type I: JEO,d<0< dEcps (e.g., CU-AU)

Type II: 6&,d <0 w dEcps (e.g., A1-Mg)

Type III: 6E0,d < 6&Ps <0 (e.g., GaP-InP)

Type IV: d&d * dEcPs <0 (e.g., Ni-Au)

Type V: 6J?& < &EO,d

The arrows in Fig. 1 show

energetically most favorable.

alloy is lower in energy than

<0 (e.g., Cu-Ag)

schematically the fluctuations in the random alloy which are

In “Type I“, “Type II”, and “Type III” alloys, the ordered

both the random alloy (~~~,d < O) and the coherent phase

separated state (6.&d < JEcps). Therefore, energetic fluctuations of the random alloy are

expected to be be of ordering type, depicted as R ~ 0 in Fig. 1. Thus, the SRO of solid

solutions of Types I, II, and III alloys are all ordering type (ksRo # O), even though the LRO

is ordering only in Types ~ and II, but phase-separating (incoherently) in Type III. On the

other hand, a “Type V“ alloy is a prototypical “clustering” alloy, where the coherent phase

separated state is lower in energy than both the random alloy (d.Ecps < O) and the ordered

alloy (dEcps < JEO,d). Hence, the SRO is expected to be of clustering-type (ksRo = O),

represented by R a CS in Fig. 1. Since phase separation is the lowest-energy incoherent

state in a “Type V“ alloy, the LRO of this alloy is also phase separation. “Type IV” alloys,

are intermediate between “Type III” and “Type V“. In type IV, there is strong competition

between ordering and coherent phase separation (6E0,d w 6Ecps), and thus, it is difficult to

7
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predict even thequalitative behavior of the SROfor this case, since there are expected to ““

be competitive energetic fluctuations simultaneously towards ordering and phase separation

in these alloys (illustrated by both R~ OancIR ~ CSarrows in Fig. 1). As shown below,

the SRO of the “Type IV” alloy, Ni-Au, is intermediate between a strongly ordering alloy

(Types I, II, and III) and a strongly clustering ~loY (TYPe V).

III. THE MIXED-SPACE CLUSTER EXPANSION - A DESCRIPTION OF

ATOMICALLY-RELAXED, COHERENT ALLOY ENERGETIC

& General Formalism

Calculating the equilibrium SRO in solid solutions from an energetic approach requires,

in principle, a statistical sampling of all configurations o. Even a binary alloy system with

a modest number of sites N possesses 2N possible configurations, and hence the number of

configurations for which we need to know the energy quickly becomes impractically large.

Hence, one method used to obtain finite-T thermodynamics is to perform statistical calcu-

lations by means of a Monte Carlo algorithm using an energy functional which describes

the alloy in question. The Monte Carlo calculations efficiently sample the energy in regions

of configuration space where the energy is close to its thermal average. Still, Monte Carlo

calculations require the alloy energy functional be sufficiently computationally inexpensive

so that it is easily evaluated for very large unit cells and for many different configurations.

Hence, we wish to use a method whereby one maps first-principles alloy energetic onto

an energy functional which is sufficiently simple so that Monte Carlo simulations become

possible, but also sufficiently accurate to reflect the atomically-relaxed energetic of a wide

variety of alloy configurations. Such a method, the mixed-space cluster expansion (CE), has

been developed [15,16] and applied to several alloy systems. [17–21] The CE method relies

on (i) a separation of formation enthalpy into strain and chemical contributions, and (ii)

a mapping of the chemical term onto a generalized Ising-like model: One selects a single,



underlying parent lattice (in the case of this paper, fee) and defines a configuration, o, by

specifying the occupations of each of the N lattice sites by an A-atom or a B-atom. For
A

each configuration, one assigns the spin-occupation variables, Si = +1 to each of the N sites.

Within the Ising-like description of the mixed-space CE, the positional degrees of freedom

are integrated out, leaving an energy functional of spin variables only ~; which reproduces

for each configuration a the energy of the atomically relaxed structure, with atomic positions

at their equilibrium (zero-force, zero-stress) values.

The details of construction of this energy functional within the LDA are discussed else-

where, [15,20] and thus we give here only the salient points. We have used full-potential,

fully-relaxed, linearized augmented plane wave method [22] (LAPW) total energies in the

construction of the mixed-space cluster expansions. (In the case of GaP-InP, LAPW en-

ergies were used’ to fit a ternary valence-force-field functional, which was in turn used to

construct the mixed-space cluster expansion. [23]) Details of the LAPW method typically

used in these calculations, as well as the number and types of alloy structures used in the

CE fit are described in Ref. [20].

The expression used for the formation energy (the energy with respect the the compo-

sitional average of the alloy constituents) of any configuration o in the mixed-space CE

is

1 ~AEcs(i,z)\S(k, a)\2.
‘4Z(1 –z) k

(lo)

J(k) is the Fourier transform of the pair interaction energies, S(k, o) is the structure factor

for a, ~ is a symmetry-distinct figure comprised of several lattice sites (pairs, triplets, etc.),

Df is the number of figures per lattice site, Jt is the Ising-like interaction for the figure

j, and the “lattice-averaged product” ~f is defined as a product of the variables ~i, over

all sites of the figure j with the overbar denoting an average over all symmetry equivalent

figures of lattice sites. Our approach is based on the fact that for simple configurations o we

know the left-hand side of Eq. (10) quite accurately from first-principles LDA total energies,

9



.

so we can solve for the interaction energies {Jf } and J(k). Thus, we incorporate at the

outset, a detailed quantum mechanical picture (LDA) for interactions, and hence for SRO.

Also, we note that the total energy includes eigenvalue (or one-electron), electrostatic, and

exchange-correlation terms.

The mixed-space CE of Eq. (10) is separated into three parts:

(i) The first summation includes ail pair jigw-es corresponding to pair interactions with

arbitrary separation. These pair interactions are conveniently summed using the reciprocal-

space concentration-wave formalism. [10,1I] J(k) and S(k, a) are the lattice Fourier trans-

forms of the real-space pair interactions and spin-occupation

tively.

(ii) The second summation includes only non-pair figures.

variables, Jij and ~i, respec-

The real-space summation of

Eq. (10) is over j,

(iii) The third

above.

the symmetry-distinct non-pair figures (points, triplets, etc.).

summation involves AEcs (~, Z), the coherency strain energy, defined

B. The Attenuated Coherency Strain Term

The reason to include a L@cs term in Eq. (10) is to describe the elastic strain effects be-

tween lattice-mismatched phases brought into contact and strained as a result of coherency.

To understand the need for this term in the cluster expansion, consider a subset of coherent

two-phase configurations: Long period n a cm superlattices A./l3~ with layer orientation
.

along k. These long-period structures possess small (k + O)dominant wavevectors, but their

strain energy depends on the layer orientation, thus the direction of k, as seen in Eq. (6).

However, the cluster expansion of Eq. (10) without AEcs and with finite-ranged interactions

will give [24] AH(n) * 1/n as n ~ N, independent of ~. Thus, one must include a AEcs

term in Eq. (10) since this introduces the orientation dependence in coherently-strained

two-phase configurations, which cannot be described by short-ranged real-space interactions

J(R). Further, because long-period superlattices possess k + O dominant wavevectors, but

10



the strain energy is dependent on the direction of k, there is a k + Onon-analyticity in the

reciprocal-space description of the coherency strain. Thus, the coherency strain cannot be

described everywhere by reciprocal-space interactions J(k) which are analytic.

Laks et al. [15] formulated Al?cs by insuring that it retained the”correct n + co super-

lattice limit:

AECS(0) =

Laks et al. demonstrated that

l_ ~, ; A&s(~jz)lS(k, 0)12
4X(1

(11)

this form gives the correct orientation- and composition-

dependence in the long-period limit of the coherency strain. [15] Furthermore, it was shown

that this form is uniquely defined for short-period superlattices and non-superlattices. How-

ever, this form treats short-period superlattices (k -+ 2m/n) the same way that long-period

superlattices (k -+ m) are treated. To generalize Eq. (11), we note that the k + O non-

analyticity could still be satisfied if we were to multiply Ecs by a function F(k):

AECS(o) = ~x[ll ~, ;A_Ecs(i, z)lS(k, a)[2F’(k)— (12)

so long as F(k) ~ 1 as k+ O for all directions. However, the introduction of F(k) enables

different treatments of short- VS. long-period systems. So, the question is: Which F(k) is

best?

We exploit the inherent flexibility in the choice of the form of F(k) to improve the

convergence of the cluster expansion. Intuitively, one might expect that A13cs of Eq. (12)

should be related to the strain energy inherent in the structure, and thus related to the

relaxation energy

Indeed, consider the following decomposition of the formation enthalpy of any configuration

a (either ordered or random):
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The first term on the right-hand side is the “volume deformation energy”, i.e., the energy

required to deform the alloy constituents hydrostatically from their equilibrium lattice con-

stants to that of the alloy structure a. The s6cond term is the “chemical energy”, i.e., the

energy difference between the unrelaxed (UR) structure (with all atoms at iead lattice sites)

and AEW, so that AEVD + 8-E~~m = ~~~jA. The third term, the “relaxation energy”, is

the energy gained upon atomic and cell-shape distortions.

In systems where d13,,1is small, the CE is rapidly convergent. [20]

laxations lead to long-ranged pair and muItibody interactions. For an

superlattice,
I

Substituting Eq. (15)

i$E,,l(Anl?., k) = AEcs(k, Z) – AEVD(Z)

into Eq. (14), we find that

However, large re-

A~B. long-period

(15)

(16)

in accordance with Eq. (10). Eq. (15) holds for infinte superlattices only, but we want a

form which gives a reasonable relaxation energy for short-period ordered structures and

disordered alloys as well, i.e., we want to introduce a wavevector-dependence into Eq. (15).

Within a second-order expansion of the elastic energy, 6.E,,I can be written as [10,11]

where V~el(k) can be related to the lattice Fourier transforms of the Kanzaki forces and

dynamical matrix. [10,11] We will retain the form of Eq. (17), but we will generalize ~,l(k)

to accommodatesome of the shortcomings of the second-order expansion derivation.

To gain insight into the wavevector-dependence of the relaxation energy, consider the

following breakdown of the

The cell-internal relaxation

relaxation energy:

dErel(o) = &?3g(o) + (L?3;:t(0) - . (18)

J1.3~~is the energy gained when atomic positions within the unit

cell are relaxed, but the unit-cell vectors maintain their ideal angles and lengths, whereas

12
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the cell-external relaxation ~17~~tis the energy gained when the unit-cell vectors are allowed

.

to relax. For some high-symmetry structures, Jllfi = O by symmetry: Structures with.

dominant composition wavevectors at the Brillouin zone boundary often possess only cell-

external degrees of freedom. For example, the A1131superlattice along (001) is tetragonal,

composed of k = (001) waves, and possesses only the tetragonality ratio c/a as a symmetry-

allowed degree of freedom. However, the A2132(001) superlattice is composed of k = ~(001)

waves, and in addition to the c/a ratio, ako possess a cell-internal degree of freedom.

It is interesting to know the extent to which cell-internal and cell-external relaxations

are energetically important in various alloy systems. Table I shows the LAPW calculated

relaxation energy for A2B2 and AIB1 (001) superlattice structures for a variety of size-

mismatched noble-metal and aluminum-alloy systems: Ni-Au, CU-AU, Cu-.Ag, Ni-Al, CU-A1,

and A1-Mg. The relaxation energy is decomposed into cell-internal and cell-external pieces.

Table I demonstrates that (i) when symmetry does not prohibit cell-internal relaxation, this .

mode of relaxation is dominant (e.g., 100% in A12Mg2). Yet, (ii) cell- ezternal relaxation
.

is not negligible: It is 100% (by symmetry) for Al B1 along (001) or (111); it is ~50Y0 for

(001) CUZ.AIZ,and ~10-15% for Ni2.Au2and CUZ.AUZ.(iii) The A2B2 structure has much

larger (mostly cell-internal) relaxation than the AIB1 structure. Similar studies [15] on

longer-period An13nsuperlattices confirm that 6E,,1 increases with n. Thus, the cell-internal

relaxation decays as the dominant wavevector k N I/n increases towards the Brillouin zone

boundary (small period superlattices). However, cell-external relaxation does not.

second-order expansion approaches, it can be shown [10] that the relaxation energy

precisely to zero at the Brillouin zone boundary. Thus, these types of approaches

In the

decays

do not

account for energy lowering due to cell- ezternal relaxations. For some systems (A1-Mg), this

is probably an adequate assumption, while for others (Ni-Al, CU-AI) it is not. It is possible

to introduce macroscopic elastic strain into the first-principles linear response approaches,

[25] however, to our knowledge this approach has not been applied to studies of bulk alloy

systems. In this vein, we also note that linear response and alchemical calculations have
.

been extended to third order. [26,27] However, to our knowledge, none of these third-order

13
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approaches treats the effects of macroscopic elastic strain, required to describe cell-external “

relaxations. To obtain a non-zero relaxation energy at the Brillouin zone boundary, V,,l(k)

will be given ‘by .

~,l(k) =
AEVD(Z) – AEC$(Z, k)

4X(1 – x)
J’(k) ‘ (19)

where F(k) is chosen so that the relaxation energy from Eq. (19) matches the first-principles

.

.....

values obtained from Eq. (13). We have selected [28]

)7(k) = ~-W4/M2

with kCbeing an adjustable parameter. We find that

15Ere~(a)= –; ~
A&~(z) – A&,s(z, k)

k 4Z(1 – z)

(20)

S(a, k) ]2e-(lkll~c12 (21)

with kCw 0.6 (2~/ao) matches the LD.A relaxation energies (e.g., Table I) of many compounds

very well, hence we will use

A13cs(a) = 4Z(11_ ~, ;AEcs(~,z)lS(k, a)12e-(lkli’c12 (22)

in our cluster expansion instead of Eq. (11) of Ecs (a). The resulting mixed-space cluster

expansion then is

1 ~AEcs(~,z)\S(k, a)\2e-(lkl/’c12
‘4X(1 – z) k

(23)

We refer to Eq. (22) as the “attenuated coherency strain”. It differs from previous calcula-

tions in the choice of F(k) of Eq. (20) rather than F(k) = 1.

To summarize this section, we find that Eq. (23) impioves the conventional cluster ex-

pansion since the effect of strain for large-k (small-period) structures is attenuated. This

will turn out to be important when anharrnonic strain is large and when the relaxation

energy of short-period, k + ~ structures is particularly small relative to that of long-period

k ~ Ostructures, so treating them equally [as is the case if F(k) = 1] is unbalanced. Since

14



attenuation does not affect k ~ Oenergetic, it is unimportant, for phase-separating systems

■
✎✎

✎

✎❉
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where the SRO peaks near k=O.

We next discuss the F’(k) = 1 form of the coherency strain energy [Eq. (11)] used in the

mixed-space CE of Eq. (23) and show how it can fail for some short-period superlattices

in systems which possess strongly enharmonic strain. The failures include prediction of

spurious ground state structures, and incorrect short-range order patterns (when compared

with measured patterns). Attenuating the form of the coherency strain energy via Eq. (20)

is shown to rectify these problems.

C. Attenuating the coherency strain for short-period

.

The problems which can arise with the unattenuated form of

explained with an example: Cu-rich CU-.AUalloys. This system has

superlatt ices

the CS are most easily

a very large lattice con-

stant mismatch (12?ZO),and thus enharmonic strain effects are significant. First-principles

calculations of the

harmonic strain of

simply means that

differently-oriented

coherency strain in CU-AU alloys [20] have shown that the strong an-

Au results in a low CS for the (201) direction in Cu-rich alloys. This

(201) long-period superlattices (small k) will be lower in energy than

long-period superlattices. However, this energetic preference for (201)

structures does not necessarily hold for short-period superlattices (large k), due to the first

two terms of Eq. (10) which describe interracial energies of atoms near the Cu/Au inter-

faces. But the unattenuated form of the coherency strain energy given in Eq. (11) will give

a large energy lowering to any Cu-rich structure which possesses composition waves lying

along the (210) direction, regardless of the magnitude of the wave (the superlattice period).

Thus, the short-period CUAAUIsuperlattice along (210), which is a“structure composed of

composition waves at the origin and k = 2/5(210) (a rather large k, 8070 of the way to the

Brillouin zone boundary) will be given a low energy by Eq. (11) due to the low energy of

the small-k long-period (210) superlattices. [29] This is illustrated in Fig. 2 which shows

the unattenuated (F = 1) and attenuated cluster expansion predictions for the formation
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enthalpy of this CU4AU1structure as well as the directly-calculated LAPW formation en-

thalpy. The SRO of CUO.9AU0.I is shown in Fig. 3 as calculated & the unattenuated aIId

attenuated CE, as well as obtained from diffuse scattering measurements. [30] The F = 1

unattenuated CE has the following features: [1) The CU4AU1(210) superlattice is artificially

low in energy due to the low (210) CS energy (Fig. 2). (2) The F = 1 cluster expansion

incorrectly predicts this structure’s energy to lie below the tie-line connecting CU3AU(L12)

. and Cu, in disagreement with both experiment and direct LAPW calculations. (3) As we

see from Fig. 3, the unattenuated F = 1 cluster expansion predicts (210)-type SRO in the

solid solution for Cu-rich alloys. The predicted SRO along the (210) direction is due to the

low (210) long-period superlattice energy for Cu-rich alloys. However, the measured SRO

pattern [30] shows peaks at the (100) points.

The effects of attenuating the CS are significant: (1) The form of F(k) of Eq. (20)

progressively attenuates the CS for structures with larger wavevectors. Thus, in our ex-

ample, the energy of the short-period CUA.AU1superlattice is not given an artificially large

relaxation energy due to the large relaxation energy of the long-period (210) superlattices.

Consequently, its energy is raised significantly, in excellent agreement with direct LAPW

calculations (Fig. 2), despite this fact that this energy was not used in fitting either the

attenuated or unattenuated CE. (2) The energy of CU4.4U1is brought above the tie-line

connecting CU3AU+ Cu; thus, attenuating the CS solves the problem of false ground states

due to low energy long-period strain energies. (3) Fig. 3 shows that the SRO pattern is

brought into quantitative agreement with experiment by the attenuation. Calculated peaks

in the SRO move from the (210) direction to the (100) direction upon attenuation of the CS,

Thus, we see that the form of the attenuated coherency strain is most likely to be crucial

in ordering systems (where wavevectors away from the origin are important) which possess

highly enharmonic strain energies (where the soft elastic direction can shift as a function of

composition).

Next, we discuss the short-range order behavior for a series of alloys classified according

to their energetic as in Figure 1. We show that the ALMg system represents a Type II

16



alloy, which has not previously been discussed. We specifically point to the strong effect

●
✍✎

✎

✎✚
✎

of attenuating the CS for the CU-AU and Ni-Au systems, and show that the attenuated

strain leads ;O SRO in Cu-rich CU-AUalloys in agreement with experiment and significantly

changes the predicted SRO in Ni-rich Ni-Au, for which there are currently no measurements.

IV. SHORT-RANGE ORDER TYPES

We now investigate the SRO/LRO types of Fig. 1. The calculations of some of these

alloy systems (CU-AU, Ni-Au, and Cu-Ag) have been discussed previously [17] using the

unattenuated F = 1 form of the coherency strain. Thus, for these alloys, we do not provide

a detailed account of the experimental and theoretical literature on the SRO of these solid

solutions. Rather, we discuss the effects of attenuating the coherency strain on the SRO,

and compare with experimental diffuse scattering measurements where appropriate.

A. Type I alloy, CU-AU: 6E~.d<0< JEcps

CU-AUis the prototypical ordering alloy system. Its compounds exhibit negative forma-

tion and mixing enthalpies, AHO <0, AHR <0 (see Ref. [20] for a recent compilation of

the mixing and formation enthalpies in this system). The ordering energies are negative,

JEO,d< 0 as is the coherent phase separation energy 613cps < 0, placing this alloy into

‘:Type I’ of Fig. 1. [31] Figure 3 shows the calculated SRO a(k) for CU0.9AU0.1.The SRO

of this system has recently been measured [30] by diffuse x-ray scattering, and the measured

results are also shown in Fig. 3 for comparison. As expected for a “Type I“ alloy, the SRO

shows ordering type fluctuations (peaks in the SRO off the r point) consistent with the

R 70 arrow schematically illustrated in Fig. 1. The calculated SRO pattern with atten-

uated SRO is in quantitative agreement with the measured results [30], which also shows
. .

(100)-type SRO.
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B. Type II alloy, A1-Mg: ~Eo~d<0 * ~EcPs

The A1-Mg phase diagram shows a series,~f complex ordered compounds. Calculations

of ordered A1-Mg compounds show [32,33] that the low-energy fee-based compounds have a

negative formation enthalpy, AHO < 0, whereas the mixing enthalpy of the solid solution

phase is positive, AHR > 0, both from experiment [34] and theory. [33] First-principles

calculations of the heat of solution of Mg impurities in Al also show a positive formation

enthalpy. [35] Thus, the ordering energy is negative, and because the coherency strain energy

is comparable to the mixing energy dECPS w O, and thus A1-Mg is a Type II alloy. The

calculated SRO of an Ahj.ssMgo.15solid solution is shown in Fig. 4. Table I shows that

the cell-external relaxation energy of ordered A1-Mg compounds is nearly zero and that the

relaxation is almost completely due to cell-internal relaxations. But, for structures with

wavevectors near the Brillouin zone boundary such as an AllMgl (001) superlattice, there

are no cell-internal degrees of freedom, and thus the total relaxation energy is nearly zero

(despite the fact that this cell is tetragonal). Hence, the relaxation tendencies in this system

follow the attenuated form of Eq. (20), and thus we have performed the calculations for

this system using the attenuated CS. The calculated SRO shows a clear ordering tendency

with peaks at (100), despite the fact that AHR > 0. These (100) fluctuations in the solid

solution are interesting since aged A1-Mg alloys show the existence of an ordered A13Mg

(L12) phase in the precipitation sequence, [36,33] with this structure being composed of (100)

composition waves. The metastable L12 phase does not appear in the A1-Mg phase diagram

because the equilibrium phases are incoherent with the fcc Al matrix; however, based on the

existence of L12 in coherent precipitation experiments, one might expect that the metastable

coherent phase diagram contains this phase. Thus, the (100)-type fluctuations in the SRO

are a reflection of the underlying coherent phase stability of the (100)-type A13Mg phase.

Note that the calculated SRO fluctuations follow the R + 0 schematic of Fig. 1. To our

knowledge, there have been no measurements (diffuse scattering or otherwise) of the SRO

in A1-Mg solid solutions.
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C. Type III alloy, GaP-InP: Lf&d < dEcps <0

The GaP-InP alloy system possesses positi~e formation enthalpies for all bulk structures,

AHO >0, AHR >0, but a negative ordering energy, d~o~d <0. [8,18,23] In other words,

the formation enthalpy of low-energy ordered compounds is below that of the random alloy

(d&rd < O) as is the coherency strain energy (~&Ps < O). (Surface ordering [37,24] is

●

✌✎

✎✌

✎

b“lk > 0 in bulk but the constraint of coherent epitaxy (epi)another effect whereby AHO

changes the sign of AH~pi < 0 near the surface.) Further, Lu et ai. [18] have shown that

the SRO in this system is ordering, thus making it a Type III alloy. Another previous

study [38] suggests that Ti-V might be a Type III alloy. Figure 5 shows the SRO calculated

for Gao.51no,5Pusing the cluster expansion of Ref. [23]. The calculations of Fig. 5 were

obtained from a cluster expansion constructed from a “ternary” valence force field model

which was carefully fit to a large database of LAPW formation enthalpies. [23] In contrast,

the cluster expansion of Ref. [18]was directly fit to LAPW energetic, with no force field as an

intermediate step. Other than the GaP-InP cluster expansion used in Fig. 5, all other cluster

expansions in this paper were constructed directly from first-principles total energies. The

SRO of Gao.Jno.SP clearly shows an ordering tendency, with peaks at the (1~0) positions,

as found by Lu et al. [18] The lowest-energy coherent ordered structures in the GaP-InP

system correspond to (210)-type short-period superlattices, as these structures possess the

optimal geometry for relaxation of tetrahedrally-coordinated systems. The calculated SRO

is a manifestation of these low-energy (210) structures, and corresponds to the R + O

fluctuations, schematically illustrated in Fig. 1 for “Type III” alloys.

D. Type IV alloy, Ni-Au: 6E~~dN 6Ecps <0

Ni-Au alloys show positive formation enthalpies AHO > 0, positive mixing enthalpies

AHR >0, a miscibility gap in the phase diagram, and yet both measurements [4] and cal-

culations [8,17,39] of the SRO of Nio.1Auo6 show peaks off the r point, just like GaP-InP.
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However, in contrast with GaP-InP, the CS energy in Ni-Au is slightly lower than the lowest-

energy ordered phase. Thus, as illustrated in Fig. 1, there will be energetically favorable

fluctuations in the random alloy towards botli ordering (1? -+ 0) and coherent phase sep-

aration (R -+ CS). The competition between these two types of flu~tuations distinguishes

“TypeIV”Ni-Au from “Type III” GaP-InP. In GaP-InP, only R + 0 fluctuations are

energetically favorable, as the CS energy is much higher in energy than the lowest-energy

ordered phase.

Using an unattenuated form for the CS, we previously [17] calculated the SRO of Ni-Au

alloys for the NiO.AAuO.bcomposition (where we could compare with experiment) as well as

for other compositions where there are currently no measurements. Like the CU-.AUsystem,

the CS energy of Ni-.4u shows strong enharmonic effects, and the soft elastic direction for

h~i-richalloys is (210) due to the elastic response of Au under compression. Thus, just as

in Fig. 3 for CU-.4U, we found the unattenuated SRO calculation for hi-i-richhTi-Au alloys

produced SRO peaks along the ( (~$0) ) direction. Because we have found this SRO to be

incorrect for the CU-.AUalloys, we also want to re-examine the SRO for Ni-rich (and Au-

rich alloys) and evaluate the effects of attenuating the CS for these alloys. Figure 6 shows

the calculated SRO for Nio.T5.Auo.z5both for unattenuated and attenuated CS. The SRO

peaks change position when the more correct, attenuated form of the CS is used. The SRO

shows peaks along the (fOO) line, in accordance with the measured (and calculated) SRO

peaks for ~-iO.AOAuO.bO.Thus, the SRO in Fig. 6 with attenuated CS is a more accurate

prediction of the SRO for Ni-rich Ni-.&ualloys than our previous calculations. [17] However,

the previous calculations of the SRO in Au-rich NiO.AOAuO.bOwere in qualitative agreement

with experiment. Thus, it is important to see that attenuating the CS does not change the

SRO peak position for Au-rich alloys. Figure 7 shows the calculated SRO for Ni0.40Auo.60.

Clearly, for Au-rich alloys, the attenuation of the CS does not affect the SRO in a qualitative

way, and leaves the calculated SRO in agreement with diffuse scattering measurements. [4]
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E. Type V alloy, Cu-Ag dECPS < dEO,d <0

Cu-Ag is’ a prototypical “phase-separating” alloy, which exhibits positive formation en-.

thalpies AHO >0, positive mixing enthalpies AHR >0, a miscibility gap, and the coherent

phase-separated state is lower in energy than both the random alloy and ordered compounds.

This latter fact distinguishes Cu-Ag from GaP-InP and Ni-Au. In GaP-InP, the CS energy

is above that of ordered compounds, and in Ni-Au the C% energy is slightly below, but very

close in energy to that of ordered compounds. The calculations of SRO in Cu-.Ag have been

discussed previously and the SRO was shown to be clustering (with peaks at I’). [17] In Fig.

8 we show the SRO for a Cuo.g5Ago.05alloy at T=480K. Although this is a different composi-

tion and temperature than the calculations of Ref. [17], the SRO still shows clustering-type

peaks at (000). The effect of attenuating the CS is not likely to have a significant effect

since the attenuation does not affect the energetic near the 17point, where the SRO shows

peaks. Thus, for clustering alloys, the attenuated CS is likely to be unimportant.

V. SUMMARY

Short-range order reflects an energetic competition between perfectly random and imper-

fectly random alloys at the same composition. In contrast, long-range order reflects not only

this iso-compositional competition, but also an energetic competition between a compound

at composition Z, and its constituents at compositions x = O and x = 1 (and, more gener-

ally, between two-phase mixtures of compounds at any compositions). This simple picture

enables us to divide SRO vs. LRO behavior of alloys into five generic groups:

(i) Type I (most compound-forming systems, e.g., CU-AU),where AHO <0 (i.e., ordering

type LRO) and where AHO < AHR so the random alloy can lower its energy by developing

ordering-type SRO (Fig. 3). Thus, the dominant wavevectors kLRo and ksRo are both

ordering type (k # O).

(ii) Type H (’e.g., A1-Mg), where AHO <0 (i.e., ordering type LRO) but AH~ >0
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(unstable random alloy). Here too, the random alloy can lower its energy by developing

ordering-type SRO patterns, even though AHR > 0 (Fig. 4). Again, both kLRo and ksRo

are ordering-type.
.

(iii) Type III (e.g., most semiconductor alloys and perhaps Tz-V); where AHO >0 (i.e.,

phase-separating LRO) and AHR >0 (unstable random alloy), but AHo < AHR. Here, the

random alloy can lower its energy by adopting ordering-type SRO (ksRo # O) even though

the LRO is phase-separating kLRo = O. Thus, kLRo # ksRo.

(iv) Type IV (e.g., Ni-Au), where AHo >0 (i.e., phase-separating LRO) and AHR >0

(i.e., unstable random alloy), but AHO < AHR (as in Type III) and AEcs < AHR. Here,

the random alloy can lower its energy in two channels: by developing fluctuations akin to

the ordered phase (ksRo # O) or fluctuations corresponding to phase-separation (ksRo = O).

(v) Type V (most phase-separating materials, e.g., Cu-Ag), where AHO >0 (i.e., phase-

separating LRO), AHR >0 (unstable random alloy) and AEC.S << A HO. Here, the random

alloy can lower its energy only by developing phase-separating fluctuations, so both kLRo

and ksRo are clustering-type.

This classification scheme (Fig. 1) enables one to guess the qualitative SRO behavior

of an alloy given the measured or calculated enthalpies of ordered and random systems. It

introduces three unusual cases (Types II, III, and IV), in addition to the usual ordering

(Type I) and phase-separating (Type V) cases. By noting that SRO reflects a constant-

composition energy balance bet}veen two phases, one recognizes the possibilities of having

ordering SRO coexisting with phase-separating LRO (Type III).

To accurately calculate the short-range order profile we utilize the first-principles mixed-

bases cluster expansion [Eq. (10)], where the coherency strain energy is first separated out

from the total energy, and the remainder (“chemical energy” ) which reflects the constant

composition term is expanded in (a momentum-space series of) pair interactions and in (a

real-space series of) many-body interactions. We found here that in those alloy systems

where the long-period structures (corresponding to k ~ O) have very different relaxation

energies for some ordering directions than the short-period structures (corresponding to
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k + ~), a wavevector-dependent term F(]kl) must be introduced into the coherency strain to

produce a balanced description. Examples include structures with very large size mismatch
\

such as CU-AU and Ni-.4u, where anharmon~c effects lead to large relaxation energies for

a particular ordering direction in long-period structures, while short-period structures do

not have such a large relaxation. F’(lkl) then attenuates the k + ~ relaxation energy with

respect to that of k + O. For phase-separating systems, where the SRO occurs near k = O,

the function F(lkl) makes no change. Similarly, at the compositions where enharmonic

effects are weak (Au-rich Ni-Au or CU-AU), the F( \kl) function makes no changes even for

size-mismatched alloys. We find that this new, attenuated form of the coherency srain, when

combined with our first-principles cluster expansion, produces SRO patterns in excellent

agreement with diffuse-scattering experiments.
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TABLES

TABLE I. LAPW calculated relaxation energies [Eq. (13)] in a variety of noble metal- and

aluminum-alloys.Shown are the relaxationenergiesfor A2B2 (001)‘and AIB1 (001) superlattices.

The formerpossessesboth cell-internaland cell-externaldegreesof freedou, and the latterpossesses

only a cell-externaldegreeof freedom. The fraction of the relaxation energy which comes from the

cell-internalrelaxation is shown, and to give some idea of the scale of the relaxation energy, the

ratio betweenthe relaxation energy and the formation enthalpy of the structure is also given.

A2B2 (001) Superlattice

Superlattice (5E,,l dE~ /6E,,1 ILE,JAH(A2B2)]

Ni2Au2 -216.5 0.88 3.08

CU2”AU2 -143.1 0.84 21.36

Cu2Ag2 -96.7 0.90 1.24

Ni2A12 -303.9 0.50 0.69

CUZA12 .-88.2 0.80 1.19

A12Mg2 -34.6 1.00 2.52

AIBI (001) Superlattice

Superlattice 6E,,1 6E:~ /dE,,I \6E,,1/AH(AIB1)\

NilAul -22.0 0.0 0.29

CUIAU1 -12.1 0.0 0.25

CulAgl -7.1 0.0 0.07

NilAll -141.7 0.0 0.21

CUIAII -115.9 0.0 0.71

AllMgl -0 -0
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FIGURES

FIG. 1. Schematicillustrationof the classificationof alloy types in terms of energiesof ordered

(0) compounds, random (R) alloys, and coherent phase separation, or coherency strain (CS)

minimized with respect to orientation. Note that the energy difference O+R and O+CS give the

ordering energy and the coherent phase separation energy, ~&d and J13cps, respectively. Energies

are shown relative to the reference state of incoherent phase separation (IPS) A + 13, labelled as

“0.0” to indicate the zero of energy. The ordered structures “O” are meant to be representative

of the lowest-energy structures with dominant composition waves at the Brillouin zone boundary

(e.g., the LIO, -LII, or L12 structures). It should be noted that in cases (e.g., A1-CU) where the

lowest-energy coherent configurations correspond to ordered compounds which have a large degree

of “clustering”, one can obtain clustering-type SRO even in a “Type I“ alloy (see Ref. [14]).

FIG. 2. Energetic of CU4AU1 (210) superlattice relative to CU3AU (L12) and Cu.

FIG. 3. The calculated and measured [30] SRO patterns a(k) in CU0.90AU0.10.Shown are the

calculated results for both (a) non-attenuated coherency strain, (b) attenuated coherency strain,

and (c) the experimentally measured pattern extracted from diffuse x-ray scattering. SRO is shown

in the (hkO) plane, and peak contours are shaded black.

FIG. 4. The calculated SRO patterns a(k) in AIO.@’lgO.lS. SRO is shown in the (hkO) plane,

and peak contours are shaded black.

FIG. 5. The calculated SRO patterns a(k) in Gao.501no+50P.SRO is shown in the (MO) plane,

and peak contours are shaded black.

FIG. 6. The calculated SRO patterns a(k) in Ni0.75Au0.zs. Shown are the calculated results

for both (a) non-attenuated coherency strain and (b) attenuated coherency strain. SRO is shown

in the (hkO) plane, and peak contours are shaded black.
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FIG. 7. The calculated SRO patterns cr(k) in NiO.@hO.60. Shown are the calculated results

for both (a) non-attenuatedcoherency strainand (b) attenuated coherency strain. SRO is shown

in the (hkO)plane, and peak contours are shaded black.

.

FIG. 8. The calculated SRO pattern a(k) in Cuo.9sAg0.05.SRO is shown in the (McO)plane,

and peak contours me shaded black.
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