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Investigation and evaluation of a complex system is often accomplished through the use of
performance measures based on system response models. The response models are constructed
using computer-generated responses supported where possible by physical test results. The
general problem considered is one where resources and system complexity together restrict the
number of simulations that can be performed. The levels of input variables used in defining
environmental scenarios, initial and boundary conditions and for setting system pammeters must
be selected in an efilcient way. This report describes an algorithmic approach for performing this
selection.

Key Words: Computer-aided desigw Experimental desi~, Large-scale simulation; Uncertainty
analysis; Supercomputing.

I. Introduction

Analyses of complex systems performed in support of scientific and engineering projects are
frequently based to a large extent on results generated through computer (or computational)
simulation. Suppose we have specific concerns about a system or process that might operate in
one of a number of environmental settings. Initial and boundary conditions specifying the
systems interface with the environment vary from application to application and the system
description itself requires specification of a number of parameters related to dimensions, material
properties etc. Computer ‘experiments’, performed over a subset of the range of these ‘inputs’,
provide information toward abetter understanding of what might be expected of system
performance. Alternatively, consider an engineering design problem. Some of the variables or
inputs might fit into the description given abov~ others are to be optimized to determine the most
appropriate, efficient or perhaps most robust design. Again, computer experiments can provide
insight -- but the computer runs are generally expensive and orIIya restricted number of these
experiments can be performed. As the complexity of the analysis increases it becomes more
difficult to choose informative input levels by intuition alone. Consequently, more relevant
information can often be obtained when experimentation is performed using a statistically
designed set of input levels.

The use of computer algorithms to support experimental design for complex problems began
when computing resources became readily available to most statisticians. Wynn (1970) and
Mitchell (1974) provide early examples addressing D-Optimal designs for multiple regression
problems. More recently, Sacks et al (1989a, b) use computer algorithms in the selection of
simulation experiments designed for fitting a response model to limited computer generated data
in several dimensions. Designs are selected that reduce functions of the expected mean square
error in the fitted response model.

The purpose of the proposed methodology is to extend the development of algorithmic support in
experimental design to accommodate still more complex situations where interest is focused on
performance measures. Performance measures are assumed here to be the system characteristics
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that directly address the objectives of the analysis. They ni.ightbe complex fimctions of a set of
system responses perhaps measured over time. The performance measures, themselves, have a
distribution function reflecting variability in the input variables and modeling uncertainty
associated with the computer response. This report describes an algorithmic approach for.
choosing an experimental design (a set of supplemental computer runs) that strives to maximize
the amount of information obtained concerning the performance criteria as measured through
increased precision in their distribution.

The remainder of the report is organized into four sections. Section II gives a more detailed
description of the problem, a review of relevant literature and an example. Section Ill gives the
details of the system experimental design methodology proposed here. Section IV addresses the
example in more detail providing results for the design constructed for a base case analysis and
for designs reflecting changes in the assumptions. The report concludes with a Summary and
Discussion Section.

II. Problem Description

General Formulation and Notation

A general formulation of the problem consists of the following. A computer experiment is
performed through execution of the code after specification of a vector of inputs x. Some or all
of the components of x may be elements of an assumed multivariate distribution FX(X). Assume
that each p-vector of inputs xi yields a q-dimensional vector of simulated responses ri. A set of
n experiments will yield then X q response data matrix. For the analyses considered here, it is
assumed that the computer model or code is correct. Modeling uncertainty related to the physics
or conceptual model providing the code is an important issue, but one not considered further
here. Consequently, reference to the response model is used to address the response surface and
not the computational simulation model. It is assumed fi.uther that (computer) experimentation is
expensive enough that an effort to model the system response is useful -- this as opposed to
assessing system performance on the basis of averages or weighted averages of the discrete
responses alone (as one would with Monte Carlo simulation for example). T@s modeling might
be accomplished (as in Figure 1) using a set of response surfaces r*(x)= r*J(x), j=l,.. .,q for
estimating the system response r. These response surfaces maybe supplemented by some
measure of uncertainty h(x) associated with the estimate. Uncertainty here is assumed to be the
result of modeling uncertainty in the estimation of r at untested ‘locations’ in the input space but
not with the choice of model form. It is assumed that an appropriate response model has been
selected. Formally, each response model r~(x), j=l ,.. .,q is a function defined over some subset
of Euclidean p-space.

The analysis is focused on understanding of the system or process through a set of performance
measures g(r) that are based, in some generally complex way, on the set of system responses.
To simplify this presentation, I will assume a single performance measure z=g(r). Performance
measures can usually be constructed so that the objectives of the analysis are best accomplished
by reducing their uncertainty. For example, if the objective of the analysis is to evaluate
expected performance (as in the example given later), this comparison would be facilitated by
reducing the uncertainty with which the performance criteria (expected total degradation in the
example) can be predicted. In this paper, precision is assessed through variability in g, a
quantity that will reflect the uncertainty resulting from probabilistically defined inputs as well as
the response modeling uncertainty mentioned above. Note that it is the efficient reduction of this
second component that provides the focus for the experimental design.

(Figure 1 goes here)

2

.,-., .,, .7 .,. . +... . .*. ..- . . . ..—v ,.. .,— —



. .

Figure 1 illustrates these relationships. In this figure, p = 2, xl and Xz,the two inputs, are
shown as the axis of the three sets of contour plots. The figure also indicates q = 2 by the two
overlapping response contours and the two overlapping contour maps providing estimates of
their pointwise uncertainty. The third set of contour maps provides the relative probabilities
associated with FX(x). The arrow providing feedback from the right side of the diagram to the
experimental design indicates that these are three of the sources of information contributing to the
design. In order for this approach to work, prior information (system knowledge) is required.
Typically this prior knowledge can be obtained through more traditional statistical design in the
process of screening and scaling experiments for the large array of inputs.

The information contained in these contour plots and their linkage to the performance measures
will clearly impact the degree to which further experimentation at particular points (in the input
space) will prove informative. More specifically, three considerations are important in
determining the information content provided through further computer experimentation:
1. The sensitivity of the performance measure to the responses corresponding to the

experimental points in the input space;
2. The ‘closeness’ in the input space of previous experimentation (and hence response model

uncertainty at the point); and
3. The relative likelihood of the inputs at that point (as specified through FX(X),where “

applicable).
Each of these factors will influence the choice of an efilcient experimental design.

Related Research

A substantial literature has been produced addressing issues related to selecting input levels for
simulation or test levels for physical testing of large-scale systems. The statistical design
literature for system testing has followed more classical lines of analysis focusing primarily on
designs providing specific information regarding individual effects, interactions and low order
polynomial response surfaces. Classical methods are used in the process discussed in this
report to screen the inputs and to address questions of sensitivity that wil~be used to help
reduce the dimension of and scale the input space. Application of these methods in the early
stages of analysis generally provides the prior information required of the algorithmic
procedures. A review of classical response surface methods is given in Box and Draper
(1987).

The statistical design literature for system simulation on the other hand has focused on two,
more general areas related to large-scale systems analysis – sampling methods and response
modeling methods. These areas and some of the contributing literature are outlined in the
following two paragraphs. Sampling approaches include Monte Carlo analyses, stratified “
approaches and directed approaches to random sampling. Strict Monte Carlo in the present
notation would yield an experimental design taken as a random sample of (say) n locations in
the input space based on probabilities specified through FX(X).For most applications, more
informative designs can be obtained, on average, by using a stratified sample to assure
information is dktributed appropriately across the range of the inputs. Latin Hypercube
sampling, McKay et al (1979) presents one method for accomplishing this task. In Latin
Hypercube sampling, stratification is accomplished by taking one sample from each of n
equal-probable intervals (or regions). Iman and Conover (1982), Tang (1993), Owen (1994)
and Ye (1998) propose techniques for extending the Latin Hypercube for use with multivariate
correlated or uncorrelated input distributions. Directed sampling approaches such as
importance sampling can be used when portions of the region are thought to be more
informative than others. In importance sampling, specific regions of the input space are given
higher probability of selection (when compared to probabilities specified through ~(x)) to
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increase, on average, the relevant information obtained for a f~ed number of experiments. The
results are then weighted to remove the bias introduced. Ripley (1987), for example, includes
a discussion of this sampling approach.

Many large-scale analyses, where (computer) experimentation is expensive, resort to
constructing a model of the response function. The resulting surface is then used to estimate
system performance. This is usually accomplished through one of two approaches that are
referred to here as analytical or reliability methods and response modeling methods. Analytical
approaches have been developed in the engineering literature primarily for reliability problems.
These approaches consist of estimating a region of the response with a low order polynomial
expansion based on values and derivatives calculated or estimated at a specific point. Ang and
Tang (1984) provide an introduction to this approach; Robinson (1998) provides a review of
significant developments. While this approach is popular in special areas of engineering, it is
not general enough for the problems addressed here. Response modeling methods have been
applied to a wide variety of applications requiring experimental design for computer
experiments. The terminology response model is used hereto include polynomial response
surfaces, common in many earlier applications and also the more flexible surfaces based on
local criterion such as kriging, see O’Connell and Wolfinger (1997) for example. A review of
developments in response surface methodology is provided in Myers et al (1989) and Barton
(1994).

Sacks et al (1989a,b) introduce an algorithmic approach to constructing a computer
experimental design when the objective is to reduce some function of the expected response
mean square error. Their approach uses universal kriging to estimate the response surface and
also to obtain an approximation to the relative pointwise uncertainty. The approach takes
advantage of the fact that when the (spatial) covariance function of the responses is assumed
known – the reduction in variability provided through a specific experimental design can be
predicted independently of the values obtained in the experimen~ hence a response-variance
based objective fimction depends only on the input locations of the design itself. This
approach was expanded in Morris et al (1993) to utilize the results of derivative calculations at
the points of experimentation.

The approach proposed in this report is a further attempt to take advantage of the ability to
evaluate potential information provided through an experimental design but here, this is
accomplished by evaluating the likely impact of a candidate design on the precision with which
the performance criterion can be estimated. The approach is useful, not only for uncertainty
analyses and prediction, but for engineering design and other large-scale system analyses, as
the following example will demonstrate.

Example

This simplified example has been taken from a reliability problem involving a response variable
related to the mechanical failure for a subassembly contained in a space vehicle. The
subassembly is expected to encounter severe vibration during reentry into the atmosphere. The
purpose of the analysis is to predict the expected performance of a new subassembly and
compare it to the well-known performance of the current design. Experiments are to be
conducted through a computational simulation model for the new design. The complexity of the
simulation model leads to computational costs that limit the number of simulations that can be
performed ton runs.

A ‘true’ (analytical) response surface is available for this example that permits evaluation of the
proposed system experimental design methodology. A three-dimensional plot of this (generally
unknown) response r is shown in Figure 2. Two inputs are involved in the analysis; both input
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axes are transformed to [0,1] for convenience. The xl-axis in Figure 2 indicates the frequency
for the horizontal vibration where the magnitude is assumed IObe constant. The scenario
specified for the comparison with the present subassembly ISassumed to include all frequencies
in equal proportion during reentry. The recorded responses are adjusted so that integration
across this range of frequencies will be comparable to a typical reenby sequence. The problem,
then, is one-dimensional except that ‘running the code’ will only reveal a single response on the
two-dimensional surface shown in Figure 2. The x2-axisrepresents temperature at an interior
point during reentry a quantity assumed to follow a uniform distribution on [0,1] for the base
case analysis. These somewhat arbitrary settings are considered realistic enough to provide a fair
basis for comparison with the present subassembly.

(Figure 2 goes here)

The response shown in Figure 2 represents a variable relating to degradation that could contribute
to failure of the subassembly. Only the response values r (X1,XJabove a threshold D* are

considered damaging and those values greater then T ae assumed to contribute to degradation at

a rate proportional to (r(x) – D*)C. The performance measure ‘expected integrated damage’ is
computed as

- z= JJl(r(x,,x2)>D*)(r(x,,x2)-D*y&,dq2(x2) (1)

and where I is an indicator function of the form 1(x, y) =1 if x>y and Ootherwise.

The objective of the analysis is to decide whether of not to replace the subassembly with the new
design on the basis of expected integrated degradation – clearly, the precision with which the
performance measure can be estimated will impact the ability to make this decision. This
example is pursued further in Section IV where results are presented. The darnage threshold
parameter D* , the design size n, the assumed distribution of temperatures and the objectives of
the analysis are varied to illustrate their impact on the experimental design.

III. System Experimental Design Methodology

Outlinefor the Proposed Methodology

For the-system experimental design methodology described here, it is assumed that enough
previous experimentation has been performed (or information is available from related sources)
to provide an initial approximation of system knowledge – the system responses together with an
assessment of uncertainty. As more information is obtained through computer experimentation,
the approximation is updated. This approximation is accomplished here through ‘realizations’
modeling possible system responses as a function of the system inputs. An ensemble of these
realizations is generated using ‘stochastic simulation’ to estimate and capture the uncertainty in
the system response. Stochastic simulation used in this way is terminology common to the
geostatistics literatur~ see, for example, Deutsch arid Journel (1998) and its references. This
construct (the ensemble) replaces the simpler representation of system knowledge given through
a mean response and corresponding estimated pointwise uncertainty (as in Figure 1). It is used
as an approximation to a probability measure over the system response space. Specifically this
representation is used to accomplish two tasks in the proposed approach:
1. To provide a method for propagating response surface uncertainty through the function g to

the performance criterion permitting a probabilistic estimate of the performance criterion; and
2. To provide a discrete approximation to a probability measure for the response that can be

used to generate (hypothetical) data. These data are then used to evaluate the potential
information provided by candidate experimental designs.
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These uses are described further in the next two subsections: Characterizing the State of System
Knowledge and The Design Evaluation Process.

(Figure 3 goes here)

Figure 3 provides a flow diagram illustrating the proposed methodology. Candidate
experimental designs are selected using a random search procedure. Each candidate design
consists of a set of n input locations. For each selection, the potential for providing relevant
information is evaluated using hypothetical results obtained using the generated realizations. An
algorithmic outline of this portion (the ‘design evaluation iteration’) of the approach follows.

_ Use the initial set of generated realizations to get hypothetical response data at the
(candidate) input locations.
= Evaluate this addition~ information together with the ac~~ data and cons~ct a set
of ‘augmented realizations’ using the same methods as for the initial ensemble.
= Detefine $e imPact of ~s new .~ypothetical) information on the performance
measures by evaluating the change m preclslon for g.
= Repeat Steps 1 through 3 for each or for some subset of the realizations (depending
on the resources available).

This sequence is repeated for each set of n candidate input locations. No actual (computational)
simulation is performed. The resulting distributions of the performance measure are computed
and compared to determine the estimated change in precision and hence, estimate the information
provided by the candidate. Finally the simulations that indicate the most potential relevant
information through this iterative process are selected to be performed in support of the analysis.
Sets of experiments that don’t affect the system response estimates or those that effect them in
ways that don’t impact the distribution of the performance measure are eliminated from
consideration.

This outline provides a brief overview of the components of the system experimental design
methodology. More detail is provided in the following subsections. The frostsubsection
consists of further discussion of methods for constructing an approximate probability measure
over the response space that will be used to characterize system knowledge. The second, related,
subsection addresses the assessment of potential information at unsampled input locations.
Here, the approach to evaluating candidate designs is described in more detail. The third

.

subsection is focused on selecting the candidate designs.

Characterizing the State of System Knowledge

The construction of an accurate representation of the state of system knowledge involves
modeling based, in general, on results obtained through previous computer experimentation or
related data. This step of going from limited sample information to a probabilistic specification
of the system response requires statistical techniques. Most approaches rely on providing a
smoothed estimate of the system response together with a pointwise estimate of the related
uncertainty. Figure 1 illustrates this approach. The *’s on the upper two contour maps in Figure
1 indicate locations of previous physical testing and simulation, providing results to which the
surface was fit. The second contour map indicates uncertainty in the surface as a function of
these same experiments. One problem with this structure is that the response surface is generally
a smoothed version of the response – perhaps not representing a likely response at all. A second
problem relates to the characterization of response uncertainty. Even when an accurate pointwise
estimate of uncertainty in the response surface can be computed, it maybe difficult to propagate
this uncertainty through a complex functional relationship g to determine its impact on the
precision of the performance criteria. These problems lead to a different representation of system
knowledge used for the proposed approach.
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Simulation of response surfaces to construct an approximate probability measure over the
response is an alternative approach that avoids the problems mentioned above. The objective of
the simulations is to generate an ensemble of multi-dimensional surfaces that represent possible
surfaces for the responses of interest. These generated realizations are usually conditioned to the
prior data from previous simulation and/or physical testing. If generated correctly, the fraction
of realizations in the ensemble (on average) that are within a small neighborhood of the response
space will be consistent with the actual probability of occurrence based on the data. The
ensemble of generated realizations will then capture the uncertainty in the true system response.
An appropriate interpretation of this ensemble, analyzed pointwise, is that the probability of a
response value at a specific input location smaller than any response level TJ, can be estimated by
the fraction of realizations that have a value less than TI at this location. Tlus interpretation can
be extended to multiple locations or to the entire region.- The probability that no response value
in the entire region exceeds the level Tz, for example, can be estimated by the fraction of
realizations where Tz is not exceeded at any point.

This interpretation of the set of realizations is used to provide justification for the probabilistic
interpretation of the state of system knowledge. Figure 4 illustrates this proposed framework for
quantifying system knowledge. It shows an example of three generated realizations based on
two input variables. Note that the realizations can provide an estimate of a mean response and of
the pointwise uncertainty, but in addition, they retain likely relationships between neighboring
input locations.

(Figure 4 goes here)

Formally, let R = Ri, i = I,...,m represent the initial ensemble of realizations. This set is used to
produce the initial estimated distribution for the performance measure. The ensemble will yield “
m values of the performance measure if it is a single value such as the probability of failure or
optimal response value over the input space. It will yield m distributions of the performance
measure if it is a distributed function of the responses. In the later case, these distributions are
used to construct an equally weighted mixture distribution for g. It is the precision of the
mixture that is of interest. In the next subsection, an ensemble of realizations will be used again
to evaluate the distribution of the performance measure but after augmenting the data set with
new (hypothetical) data at the candidate design locations.

.

l%e Design Evaluation Process

In the subsection above, the ensemble of realizations was used to provide an estimate of
performance measure precision based on the current state of system knowledge. In this section,
it will be used to provide hypothetical data that are in turn used to evaluate a candidate
experimental design. First assume a candidate design of n input locations has been selected.
Hypothetical data are generated by selecting a realization from the initial ensemble (see Figures 3
and 4) and assuming the appropriate response values at the desired candidate design input
locations. Next, these hypothetical data are combined with the original data to examine their
impact on the performance measure precision. Assume, for example, that realization j was
selected. The augmented data set consisting of the original data together with the values at then
locations of Rj are used to generate anew ensemble of realizations R; = R~i, i = l,...,m’ . This

data-augmented ensemble R’i can be used in the manner described earlier to represent the new
state of system knowledge&d to estimate the resulting distribution of the performance measure.



Designs that provide information relevant to the performance measure will increase precision in
its distribution.

This process is repeated for a subset of ks m iterations yielding k distributions of the
performance measure. In practice letting k = m and using each realization onetime appears to
be a reasonable strategy. Each iteration of the design evaluation loop will yield a different
estimate for the performance criterion. In general, large differences in these estimates will
indicate discriminatory potential in the design. Formally, by conditioning on the results at the
candidate locations, one can partition variability in the performance measure z into the
components Var@,t(zW)) and E,(Var,. (zW)) where the subscripts r and r’ indicate the
operation is performed with respect to the approximate probability measures for the original
responses and augmented responses respectively and where D represents the selected
candidate design. See Parzen (1963) and McKay (1995) for further description of this
partitioning of the variability in z. In the example discussed earlier and further in the next
section one can refer to the within sample vmiance of the expectations:

where there are k’ realizations in the ensemble used for each inner loop evaluation. We can
also estimate the between sample variance of the expectations:

where there are k realizations in the original ensemble or the k realizations are some subset of
that ensemble. Note that an uninformative design would yield roughly &. ~~ /k. The ratio

~~/&~ (=1/k for the uninformative design) provides an indication of the information provided

by that design. A good design would yield a substantially higher value for & and a lower

value for ~~. It is this ratio that is used to select the best design for the example problem.
Different project objectives, the design problem, for example (the minimization problem in the
example) will require slightly different metrics for comparing designs.

Search Methods for Selecting Candidate Designs

Candidate experimental designs are compared using their estimated potential for increasing
precision in the performance measures as an indication of their relative value. These evaluations
are cheap compared to running the computational simulation models or physical testing. For
large problems, however, the input space can be of high dimension and the number of candidate
designs prohibitive. It is worthwhile to develop an efficient approach to selecting these candidate
designs.

The selection of candidate sets of experiments presents an np dimensional optimization problem
where n sets of p input levels are to be determined. Typically, the problem can be simplified by
applying a grid in p dimensional input space and treating each set of n grid locations as a discrete
alternative. In this formulation the problem is a combinatorial optimization problem. The
objective function or fitness value for each set of candidate input locations is a measure of
potential change in performance measure precision as estimated through the design-evaluation
portion of the algorithm. Combinatorial optimization problems of the size likely to be
encountered in application can be approached in a number of ways.
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Two basic approaches mentioned here are: 1) finding a global optimal solution using
combinatorial optimization methods; and 2) finding a near optimal solution using random search
procedures. Branch and bound algorithms provide one example of combinatorial optimization
methods that can be used to find an exact optimal solution over the input grid. These algorithms
derive their benefit (compared to an exhaustive search of every possible candidate), by
dismissing large numbers of solutions through a single comparison of objective function values.
Szidarovszky (1983) applies branch and bound search methodology to problems of this type in
the geosciences. Simulated annealing and evolutionary algorithms are random search methods
that compare solutions iteratively, providing a near optimal solution where “near” depends on the
efficiency of the algorithm and the number iterations involved (see Back (1996) for a description
of evolutionary algorithms). Only a hybrid version of the later approach is used for the example
discussed in this report.

IV. Example (revisited) - Further Description, Results and Discussion

The base case analysis considered here uses the performance measure specified in the integrand
of(1) with parameter values, T=1Oand c=2. The input and response dimensions are p=2,
q=l and a uniform distribution was used for ~ (temperature). Ten initial data were obtained at
input locations selected using a Latin Hypercube design with zero (rank) correlation (see Iman
and Conover (1986) for the technique used). The response values r were taken from the “true”
response shown in Figure 2 as if computer analyses had been performed at these input
locations. These data were used to construct the initial response estimate illustrated in Figure
5. Figures 5b and 5Cshow the average estimated response. Figure 5b can be compared to
Figure 2 (repeated as Figure 5a), an estimate of the response. Figure 5Cand Figure 5d
correspond to the contour maps of Figure 1. These figures include stars indicating the ten
input locations of the original computer runs. The standard deviations in Figure 5d, like the
average values in Figures 5b and 5c, are computed using the generated realizations in a
pointwise fashion. Note that the standard deviation is Oat the data locations because (for this “
example) ~hesurfaces were constructed to interpolate the data exactly.

(Figure 5 goes here)

Figure 5e illustrates six of the twenty-five generated realizations that are used to approximate a
probability measure over the response surface. The functional form of these surfaces is a
model of the form

(2)

where i = 1,2 andj = 1,2. Here, s(x) is a stochastic process over the inputs x defined

) C(1through a spatial covariance function C(x~,x, = x~ – xl ) for any x~ and xl and where the

(exponential) covariance function parameters were estimated using weighted least squares, see
Cressie (1985).

This model has been used successfully for applications in geology and hydrology for several
years. It was introduced as a model for engineering analyses in Sacks, et al (1989), and is
discussed in detail in O’Connell and Wolfinger (1997). The approach used to generate the
realizations is Sequential Gaussian Simulation. Deutch and Journal (1998) describe this
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stochastic simulation approach and provide software that can be used to construct the
realizations in two or three dimensions.

It is an open issue how designs might be formally evaluated for these algorithmic approaches.
One common “metric” is to compare the information obtained though the experimentation to
that obtained through Monte Carlo sampling to determine an equivalent amount of random
samples required to obtain the same information. This quantity, however, is a very problem-
dependent and provides no basis for comparing approaches applied to different problems. For
this reason, I will rely hereon a subjective comparison of results to the three criterion of a good
design stated in Section II to assess the selected design.

The best design for the base case analysis is shown in Figure 6. The design points are the
squares; previous data are the stars. The contours are the original contours based on the initial
data, included here to help understand why the design was selected. From this figure, one can
conclude that the desigri is spread through the region of high response variability at locations
where the response would be contributing significantly to accumulated degradation. Hence it
appears to satisfy two of the three criterion for a good design (the third was not applicable here
because of the uniform distribution selected for x~.

(Figure 6 goes here)

Deviations from the base case were planned to illustrate the flexibility and generality of the
proposed approach. The number of design points, the functional form and parameter values
associated with the function g and the distribution of the inputs were changed. Each parameter
influences the value of information provided through subsequent computer experimentation and
hence leads to a different optimal design. Two additional analyses are examined in this section.
First, changes to the objective of the analysis to a minimization problem demonstrates the
generality of the approach. This analysis might be performed in an engineering design analysis
where packaging materials in the subassembly could be selected by the design engineer to
control reentry temperatures. Next, changes to the form of the response surface are examined.
Responses are modeled using a linear approximation in place of the quadratic model and using
a constant as the structural component to be combined with the stochastic element. Because
these modeling choices are somewhat arbitrary in actual application, one would hope for results
that are somewhat robust to this type of change.

Modification to the optimal designs based on these changes are illustrated in Figure 7 and
discussed in the following subsections. Figure 7 shows the optimal design, the base case
design and the origional data for each case.

(Figure 7 goes here)

Increasing n, the Number of Design Points

Changing the problem to include 5 design points yields a design similar to the 3-point design,
but where additional points are spread across the high average degradation region (see Figure
7a). Again, the optimal design points are located at locations of relatively high variability,
Perhaps the best approach to using this algorithm is to obtain an optimal design for the number
of computer experiments that are anticipated (if this is a reasonably low number) and then to
choose from these the best m < n experiments to run. At this time, the algorithm would be
executed again. Note that the optimal design for a single run may not even be included in a
multiple point design.

,
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Changing Parameters of the Performance Measure

The threshold parameter was changed to T= 12 from the base case value of T = 10. This
change resulted in the design focus being relocated in regions of higher estimated degradation
(see Figure 7b). The design points were again located at points of relatively high estimated
variability.

Changing the Input Distribution

Changing the temperature distribution to a truncated normal with mean.5 and standard
deviation .25 resulted in a change in design that was focused on the more highly probably
region in the center of the temperature axis (see Figure 7c). This is an example of the influence
of the third criterion for a good design algorithm listed in Section II.

Changing Objectives of the Analysis

Changing the problem to a minimization problem resulted in a completely different
experimental design as expected (See Figure 7d). The optimal design for this problem is
spread across the lower temperature region) where the original data indicated the minimum
degradation (when averaged across frequencies) might occur. Horizontal regions, where there
were high values of degradation and little uncertainty were not included in the design.

Changing the Response Su~ace Form

Two changes were considered in the functional forip of the response model. The first excluded
the third term in Equation (2); the second excluded both the second and third term of that
equation. The resulting designs were both similar to the base case desib~, but neither included
the low temperature, low frequency point of that design (See Figures 7e, 7f). Apparently,
these reduced models were not influenced to the same degree by the response value obtained in
the lower left comer of the input space (note the differences in contours in that region). These
changes in design indicate some sensitivity to the choice of response model. It is important for
a specific application to choose a flexible class of response models that is reasonable for the
problem to which it is applied.

V. Summary and Discussion

This report describes a system experimental design methodology --an algorithmic approach to
experimental design for large-scale computer analyses. This approach can be viewed, as an
extension of previous algorithmic methodology developed to accommodate more general
problems whose formulation includes a set of system performance measures. The approach
consists of an algorithm where simulated results are used to capture possible responses at input
locations specified for candidate experimental designs. Candidate designs are selected using
random search methods and compared in terms of their potential increases in performance criteria
precision. The design selected for the computational simulation runs is the design that is optimal
according to this potential information criterion.

The flexibility of the approach is illustrated through the example in Sections II and IV. A design
is determined for a base case analysis and the problem is changed in a number of ways to
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illustrate how these changes are accommodated by changes in the desi=w. The two dimensional
example shows encouraging results for this approach which is now being tested on larger
problems.

The methods used in this approach to algorithmic design are quite general. The approach can
be applied to physical testing where inputs can be controlled for experimentation, to combined
designs with both physical and computer experimentation or to computer analyses involving
multiple levels of analysis, dKfering in their degree of physical detail (and hence cost). In these
later types of analysis, the restriction to n tests would be expressed instead as a limitation of
resources -- generally, making the selection of candidate designs more difficult.
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