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Abstract

Inverse and forward kinematic models were derived to analyze the performance of a parallel-
chain hexapod machine. Analytical models were constructed for both ideal and real structures.

Performance assessment and enhancement algorithms were developed to determine the strut

lengths for both ideal and real structures. The strut lengths determined from both cases can be
used to analyze the effect of structural imperfections on machine performance. In an open-
architecture control environment, strut length errors can be fed back to the controller to

compensate for the displacement errors and thus improve the machine’s accuracy in production.

Introduction

Traditional industrial robots are open-chain serial mechanisms constructed of consecutive
links connected by rotational or prismatic joints each with one degree of freedom. They exhibit
low stiffness and poor positioning accuracy, and are not suitable for large loads and highv
accuracy applications [1-2]. On the other hand, parallel-chain robots and machines have the
advantages of (1) high force/torque capacity since the load is distributed to several in-parallel
actuators, (2) high structural rigidity, and (3) better accuracy due to non cumulative joint error.
Hence, in recent years increasing attention has been focused on parallel mechanisms, primarily
for the improved performance they can offer in robotic and manufacturing applications [3-4].

Since proposed by Stewart in 1965 [5], parallel-chain manipulators have been used in many
applications such as aircraft simulators and robot wrists. The hexapod machine is one of the
recent developments based on the Stewart platform concept. Despite the aforementioned

advantages over serial-chain machines and the recent technology advancement in designing and
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controlling of parallel-chain machines [6-11], the performance of parallel-chain machines is
below par due to manufacturing tolerances and assembly errors. Hence, there is a need to
develop a robust and effective method for hexapod machine performance assessment and
enhancement.

In this paper, both inverse and forward kinematic models were derived to assess and then
- enhance the positioning performance of a hexapod machine located at Sandia National
Laboratories, Livermore, California. A performance assessment algorithm was developed to
determine the six strut lengths to drive the tool to any point within designated machine
workspace. Then structural imperfections in machine component were considered in deriving
another set of inverse and forward kinematic models to determine different six strut lengths that
will bring the tool to the same designated location. In an open-érchjtecture control environment,
the newly determined strut length can be fed back to the controller to compensate for
displacement errors due to sfrﬁéniral imperfections and thus improve the machine’s accuracy in

real-time.

Inverse Kinematic Model for Ideal Structure

The configuration of the parallel-chain hexapod machine that has six identical struts is shown
in Fig 1. The lower platform, called the “BASE”, is a semi-regular hexagon. The upper
platform, which is referred to as the “TOP”, is an equilateral triangle. One end of each strut ié
connected to the vertices of the base platform through a three-degree of freedom universal joint.
The other end of the strut is connected to another strut through a bifurcated joint first to form a
pair-linked structure. Each pair-linked structure is then connected to the vertices of the t:)p
platform through a three-degree of freedom universal joints. The whole system has six degrees
of freedom. The BASE frame is established by fixing the reference coordinate system (X, Y, Z)
at the center of gravity of the base platform with the Z-axis pointing vertically upward. The TOP
frame is established by fixing the tool coordinate system (x, y, z) at the center of gravity of the
top platform with the z-axis normal to the platform and pointing outward.

Let’s define the lengths of the six struts as Ly, Ly, L3, Ly, Ls, and Lg. Denote the location of
the origin of the TOP frame with respect to the BASE frame by [Py, Py, P;]. Let
(o, B, v) represent the rotation angles defined by rotating the TOP frame first about the X-axis
with o degrees, then about the Y-axis with B degrees, and finally about the z-axis with y degree




as shown in the Figure 2. The rotation angles o and f§ are used to define an “approach vector” of

the upper platform while 7y is used to define the roll angle about the approach vector.

Figure 1 Hexapod Machine Configuration
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Figure 2. Rotation Angles Define Approach Vector for Top Frame

Using the Euler angle method, the transformation matrix between the mobile TOP frame and
the fixed BASE frame can be derived as follows:

cos fcosy +sinasin fsiny —cosBsiny +sinasin fcosy cosasinf P,

cosasiny cosa cosy ~sinaz P,

—sin fcosy +sina@cos fsiny  sin Bsiny +sinacos fcosy cosacosf P,
0 0 0 1

0P _
T, BASE —

The coordinates of the TOP frame’s vertices can be transformed to the BASE coordinate system

through the transformation matrix as follows.




Xy Xy

i

N

i Yo
"= BZ(.)Y;(R:’P}uPuaaﬂs}’) ZT_

Ti Ti

1 1

Thus the six struts length can then be determined as

|
L2 =,(_’Bz’ -.32’232)—(_’7}’ -’71’27;]
L, =\(~B,’ _’Ba ’.ZBs)—(_.Tz’ ‘TZ’ZTz]
L4 = (-.BA’_.34’234)_(—.7'2’»7'2’27'2]
L5 = (—Bs’ _.BS’ZBS )_(—‘73’ —’Ts’ZTal
Ly = (ﬁBﬁijZBﬁ )‘(»T,’YT;’ZTJ

Forward Kinematics Model for Ideal Structure

For a serial-link manipulator, the derivation of forward kinematic models is much simpler
then that of inverse kinematics. However, for a parallel-link manipulator, the situation is
reversed. A detailed report on this issue can be found in [7]. . To derive the forward kinematic

model, the physical dimensions of BASE and TOP structures are defined as shown in Figure 3.
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Figure 3. Physical Dimensions of Base and Top Structure




It < >
B2i—1 I* P’ Vl‘ b P‘ rl
i=123

Figure 4. Geometric Relationship of Pair-Linked Structure

The kinematics transformation is the mapping from the actuator lengths L; to the upper .
platform position and orientation. Once all six struts’ length are determined, the geometric
characteristic of all three pair-linked triangular structures (ABy;.1TiB2z i=1,2,3) will be defined, as
shown in Figure 4. The heights of the three pair-linked triangular structures (h;, hy, h3) can be
represented by L; and P;. Through simple geometric calculation, the coordinates of Xp; and Yp;,

where 1=1,2,3, can be denoted as follows.

Vel

pi =2ib(b2 +L§i—l _Léx)al = 132’3 XP2 =__6_(b+2d)

hi:.,/Lzzl._l—pf;i:l,Z,}’ YP2=%(d—2p,)
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Since the three pair-linked triangular structures (B;T;B>, B3T>B4, BsT3B¢) are interconnected
together, they cannot move freely without constraint. Instead, the locations of T; are limited to
some certain points such that T;, T», T3 must form an equilateral triangle with fix dimensions.
Although the coordinates of these TOP structure vertexes, T;, are unknown, it is relatively easy
to show that their projections on the X-Y plane can move only along the straight lines that pass
through (Xp;, Ypi; i=1,2,3) and are perpendicular to the lower hexagonal platform, respectively.
Hence, the vertexes coordinates (Xr;, Yt;; i=1,2,3) of the TOP structure will be defined by the

following constraints.
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The distance from vertex Tj to the intersection points (Xp;, Ypi; i=1,2,3) is denoted as h; and can

be calculated as follows.
hzz =(Xy —XPi)2 + (¥ — YPi)2 + Z%i
To close the kinematic chain, three more constraints must be added, they are

(X "XTz)2 + ¥y "YTz)Z "'(Zn _ZT2)2 =a’
(Xp _XTB)Z + ¥y "YT3)2 +(Zp _ZT3)2 =a’
(X135 _sz)2 + (¥4 "YTz)z +(Zp3 _ZT2)2 =a’

By combining the above equations yields three nonlinear algebraic equations with three variables
(X1, XT3, XT5).

a* +2XT1XT2 —ZXTI[Xpl +\/§(Ypl "'sz)]'"szerz _[(\/-3_Xpl "Ypl +sz)2
+(h12+h22)‘"4X12,1_X12;2]+2\/[h12'“4(XT1"Xp1)2][h22"(sz_sz)z =0

a’ _4XT1XT3Y_2XT1[XpI —3X, +\/§(Ypl Y )] -2X 03X, + Xy +\/§(Ypl =Y,5)]
—[(\/g(Xpl +Xp3)_Ypl +Yp3)2 +(h12 +h32)_4X;1 _4X1273]+
2l ~4(Xry = X)) 1 = (Xps = X 5)? =0

a’ +2X 1y X s ’"2X13[Xp3 +\/§(sz —Yp3)]_2Xp2XT2 _[(ﬁXp3 —sz +Yp3)2
+(h +h))-X2, —4X§3]+2\/[h22 = (X7 =X )2 H —4(X 5 — X ,5)? =0

Since the derived forward kinematic models are highly nonlinear, it is impossible to solve them

explicitly. Hence, for its capability of quadratic converging in the vicinity of a solution, the




Newton-Raphson numerical method is used to solve the three nonlinear algebraic equations

simultaneously. Once the positions of those TOP vertexes are defined, the tool position can be

determined as follows.

1 1 1 |
Px =§(Xn + X1y +Xp3); py =§(Yn + Y7, +173); P2 =§(ZT1 +Zpy +Zps)-

Inverse Kinematic Model for Real Structure

Since structural imperfections will degrade a machine’s performance in producing parts, the
derived kinematic models need to be modified to include the effect of those imperfections in
assessing as well as enhancing the machine performance. The position errors of those ball joints
located within the BASE structure can be expressed as 0Xs;, 8YB;, and dZB; where i=1,2...,6.
The position errors of those ball joints located within the TOP structure can be expressed as dXT;,
dYT;, and 8Zt; where i=1,2,3. The strut length errors can be expressed as 6L; where i=1,2,..,6.
The modified inverse kinematic model for the hexapod machine can be derived from the ideal

inverse kinematic model by including the error term into the original equation as follows.

L= (X5 =X, + (Y =Y, ) +(Zy - Z, )

Where
X ﬂ =P, + [—\7—3_— +20X j[SinaaS’in,BSin(y +60°)+ CosfSCos(y + 60° )]

Xy =Xy +8X, = —‘/g (2b+d)+6X,
| 2

Y, =P + +26Y. [|CosaSin(y +60°
5 =5, (\[3— n][ ( )]

Y, =Y, +6Y, = %d +6Y,

Z, =P+ (-\7—5 +257; ][Sin aCosfSin(y +60°) — SinfiCos(y +60°)]

Zl;l =62,




L= (X; - X, Y + (Y -1, ) +(Z; - Z, )
Where

Xy =X, +6X, = —-‘/6—3_-(b ~d)+8X,,

Y, =Y, +6Y, =%(b+d)'+5YB2

Z, =82

2 BZ

L= Xy, — X, Y + (Y, -1, ) +(Z;, - Z, )’
Where
X =P, ~ [% +28X,, )[SinoaS’inﬂS‘iny + CospCosy]
Xy =X, +8X, =—€(b+2d)—éXBJ
. a
Y, =P ~ (E +26Y, )[CosaSin}/]

Yy =Y, +67, =—21—b+5YB3

Z'T2 =P - (% +26Z 1 )[Sin aCosSiny — SinﬂCosy]

Z, = &y,

L= \/(X'Tz =X )+ (Y ~ Y, ) +(Zy, - Z, )




Where

V3

Xy, =X; +6X, = e

(b+2d)- 68X,
Y, =Y, +6Y, = —%b -7,

Z,

4

=éZB‘

L= \/(X'Tz — X)) + (¥ =Y ) +(Zy, - Z, )

Where

X T3 =P + (—5_—3— +26X ][SinaS’in/iS’in(y —60°) + CosBCos(y — 60° )]

V3

Xy =Xy +8X, =—?(b+a’)—éi>(35
Y, =P, +| = +26¥, |CosaSin(y -60°)]
V3
Y, =Y, +6Y, = ——;-(b+d)—éYBs
Z}; =P + [% +28Z,, )[SinaCos,BSin(}/ -60°)-SinfCos(y —‘60“)]

Zy, =62y

L= \(Xp, - X, ) + (X, Y, ) +(Z;, - Z, )
Where
3

X =Xy +8X; = ~ Bord)+ax,
Y, =Y, +6¥, = —éd - 67,

Z;gs = éZBs
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Forward Kinematic Model for Real Structure
The modified forward kinematic model that includes the effect of structural imperfection can
be derived base on the ideal forward kinematics. Once L; (i=1, 2, ..,6) are determined, the actual

tool position and orientation of the hexapod machine can then be determined as follows.

2

1 2 . 2 . . : :
F, =2_H(bi +Ly, —Ly) Ly =L, +dl,; k=12,..6 h = LHZH2 -P,.2; i=123

b; = ‘J(X;;m - X.Bzi—l )2 + (Yﬂjzi - YB:ZI—l )2 + (Yl;zi - YB:zi_x )2 ; l = 192’3
NE)

6

3

6

1 ﬁ [} 1 ' v 1] 1 . 1] -
pr =’g‘(2bl+dl—3p1) sz = (b, +2d,) Xpa = ‘(b3-—d3—3p3)

dy =G X3 ) + (@, ~ 13 ) + (Y, - Ty )’

dy = (X, — X, ) + (Y, — V) +(Y, ~Y,)

dy = (X, - X, ) +(¥, =Y, )} + (T, =Y, )
12 v + . v v Z'2_1+Z‘_
h, =(XT;_XI’})2+(YTi_Y1>,)2+(ZTi_( 31_2 2y)?

: S R : 1 2 .
r =\/§XT, _F(Ll -L,) Yy =“'§Z'—(L4_ - L
1 2

2 2

. . 1 " "
) Y, =-3X, +b—,(L52,—.L6 )
3

v

Zy = WA =X, Zy =B X, ) Zy = [ A(Xy - X))
By combining the derived equations, yields

Xy, =X + (Y, =Y +(Zy, - Z;,) =a
(X, =X+ —Y) +(Z; -Zp) =a’
(Xp =XV + (Y -V +(Zy —Z) =d’
The Newton-Raphson numerical algorithm is applied to solve for X’Tl, X’Tz, and X’T3

U DUPRPI [IF
szé(XTi w5+ Xy) B=3W b 4By P=(Z 42,4 Zy)
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The orientation parameter can then be determined as follows.

' = arctanl (Y, -2Y, +Y;)
BE -1)
a = arctan —2[X'T‘(Z'T3 —Z'T2)+X;Z(Z'Tx —Z'T3)+X'T3(Z'Tl "Z}z)]
a(¥y —2Y; +Y,)Siny ++3a(¥; - Y; YCosy
5 = actan ~(Zy —2Zy, +Zy, YCosy +~3(Z; — Z;, )Siny
(XT —ZX}Z +X'T3)C037—\/—3—(X'Ti —X'Tj)Siny

Simulation Analysis

Upon the completion of deriving the inverse and forward kinematic models that including
Both ideal and real structures for the hexapod machine, a simulation was implemented to test
those models’ robustness and reliability. The simulation program was written in C++
environment and the interface between the hexapod machine’s kinematic models and the
hexapod machine’s open architecture controller was also implemented. So the simulation
program can also be executed on the hexapod machine controller to verify its validity.

For the case of ideal structure, a set of randomly selected tool positions (X, y, z coordinates)
and orientations (pitch, roll, yaw), as shown in Table 1, was first determined. Then, the inverse
kinematic modeling algorithm was called to calculate the six struts’ length, as shown in Table 2.
- Next step, the forward kinematic model was utilized, with the prior determined six struts’ length
as input, to estimate the tool’s position and orientation, as shown in Table 3. This method was
used to verify the model’s consistency. The results show that the precision and consistency of
the computational algorithm was about 0.01 pm.

The inverse and froward kinematic models for imperfect structure were tested with the same
approach. The assumed errors include the six BASE structure joints’ position error (6Xs;, 6 YB;,
0Zs;, 1=1,2,...,6), three TOP structure joiﬁts’ position error (8X1;, 8YT;, 87T, j=1,2,3) and six
struts’ length error (8L, k=1,2,...,6). A random error generator was designed to produce
random error value for the error terms listed above. The randomly determined values for those
errof terms were limited within the range of £10 pm. Meanwhile, the error terms will have

different values from iteration to iteration throughout the simulation. The purpose of this design
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was to increase the inference space of the simulation in assessing the impact of structural
imperfection in joints and struts on machine performance.

The same procedure for verifying the ideal kinematic models was applied to the kinematic
models for real structure. The simulation results for real structure were listed in Table 4 and

Table 5. The precision and consistency of the computational algorithm are about 0.1 pm.

Table 1. Simulation Input of Tool Position and Orientation
(units : mm for position & degree for orientation)

Simulation Tool Position and Orientation
Sequence
o B Y X Y z

1 0 0 0 0 400
2 5 0 0 0 0 400
3 0 5 0 0 5 395
4 0 0 5 5 5 405
5 5 10 5 5 0 405
6 -5 -5 0 10 5 390
7 0 0 -10 | -5 -5 400
8 0 -5 5 0 -5 410
9 -5 -5 -5 5 5 390
10 5 5 5 -5 -5 390

Table 2. Simulation Result of Strut Lengths for Ideal Structure

Simulation Strut Length (mm)
Sequence .
L1 L2 L3 L4 L5 L6

1 509.192 509.192 509.192 509.192 509.192 509.192
2 519.494 519.808 509.192 509.192 499.282 498.955
3 499.912 496.715 514.582 520.11 501.872 499.342
4 519.107 504.277 520.295 509.075 526.297 501.901
5 518.513 508.068 546.228 530.246 500.178 480.904
6 490.653 498.915 489.823 495.628 523.37 512.131
7 496.496 528.037 494.915 523.095 489.633 531.001
8 530.602 516.578 517.223 494 .499 529.916 516.503
9 486.934 507.415 479.137 502.49 513.017 523.219
10 518.118 500.329 522.633 500.222 489.566 480.991




Table 3. Simulation Prediction of Tool Position and Orientation for Ideal Structure
(units : mm for position & degree for orientation)

Simulation Predicted Tool Position and Orientation
Sequence
o B ¥ X Y 4
1 7.78E-26 -8.55E-10 | -3.13E-15 5.99E-09 -9.47E-15 400
2 4.99998 -6.61E-10 -2.88E-11 6.00E-09 -8.68E-11 400
3 -1.32E-11 4.99998 -5.83E-13 5.90E-09 5 395
4 -9.95E-12 -6.64E-10 4,99998 5 5 405
5 4.99998 9.99937 4,99998 5 -9.02E-11 405
6 -4.99998 -4.99998 3.57E-11 10 5 390
7 1.58E-11 -6.60E-10 -9.99938 -5 -5 400
8 3.30E-11 -4.99998 4.99998 6.05E-09 -5 410
9 -4.99998 -4.99998 -4.99998 5 5 390
10 4.99998 4.99998 4.99998 -5 -5 390
Table 4. Simulation Result of Strut Lengths for Real Structure
Simulation Strut Length (mm)
Sequence
L1 L2 L3 L4 L5 L6
1 509.193 509.188 509.189 509.188 509.188 509.192
2 519.494 519.804 509.19 509.19 499.279 498.955
3 499.91 496.714 514.58 520.108 501.869 499.342
4 519.105 504.274 520.293 509.071 526.294 501.899
5 518.511 508.067 546.227 530.242 500.174 480.903
6 490.653 498.913 489.822 495.626 523.365 512.129
7 496.495 .| 528.035 494 914 523.093 489.627 531.001
8 530.601 516.579 517.22 494.496 529.914 516.503
9 486.932 507.412 479.135 502.487 | 513.013 523.221
10 518.118 500.327 522632 | 500.218 489 564 480.991
Table 5. Simulation Prediction of Tool Position and Orientation for Real Structure
(units : mm for position & degree for orientation) :
Simulation Predicted Tool Position and Orientation
Sequence
o B ¥ X Y Z
1 -7.99E-05 9.77E-06 0.000137 -0.00471 -0.00083 399.997
2 5.00001 0.00034 0.000267 -0.00378 0.000116 399:998
3 -0.00027 49999 -0.00035 -0.00052 4.99823 394.998
4 -0.00012 0.000232 5.00031 4.99895 4.99948 404.997
5 5.00012 9.99935 4.99992 4.99861 -0.00288 404.997
6 -4.99939 -4.99951 -8.12E-05 9.99708 4,99955 389.998
7 0.00038 0.000698 -9.99978 -5.00364 -5.00229 399.998
8 8.33E-05 -5.00067 4.99969 0.000186 -5.00182 409.998
9 -5.00048 -4.99975 -5.0003 499624 4,99829 389.997
10 4.9998 499975 5.00029 -5.00247 -5.00121 389.998

13
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Conclusions

Inverse and forward kinematic models were derived to analyze the performance of a parallel-
chain hexapod machine. Analytical models were constructed for both ideal and real structures.
Performance assessment algorithm was developed to determine the six struts’ lengths to drive the
tool to any point within designated machine workspace with either ideal or real structures. The
strut length determined from both cases can be used to analyze the effect of those structural
imperfections on machine performance. In an open-architecture control environment, strut
length errors can be fed Back to the controller to compensate for the displacement errors and thus
improve the machine’s accuracy in producing parts.

Simulation results show that the derived kinematic models and corresponding computational
algorithm were robust and accurate in determining the strut length for driving the tool to any
location and orientation within the designated workspace. Simulation results also show that the
derived inverse and froward kinematic models for real structure can be used accurately to
determine a slight different strut length for driving the tool to any location and orientation within
the designated workspace despite the existence of the imperfection. However, the values of
those error terms due to real structure were assumed known in the simulation analysis.
Nevertheless, further research need to be conducted to determine the actual joints and struts
imperfections by using sensor fusion technology and mathematical inference method that are

currently under investigation.
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