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Kinematic Performance Analysis of a Parallel-Chain Hexapod Machine

Abstract

Inverse and forward kinematic models were derived to analyze the performance of a parallel-

chain hexapod machine. Analytical models were constructed for both ideal and real structures.

Performance assessment and enhancement algorithms were developed to determine the strut

lengths for both ideal and real structures. The strut lengths determined from both cases can be

used to analyze the effect of structural imperfections on machine performance. In an open-

architecture control environment, strut length errors can be fed back to the controller to

compensate for the displacement errors and thus improve the machine’s accuracy in production.

Introduction

Traditional industrial robots are open-chain serial mechanisms constructed of consecutive

links connected by rotational or prismatic joints each with one degree of freedom. They exhibit

low stiffhess and poor positioning accuracy, and are not suitable for large loads and high

accuracy applications [1-2]. On the other hand, parallel-chain robots and machines have the

advantages of (1) high force/torque capacity since the load is distributed to several in-parallel

actuators, (2) high structural rigidity, and (3) better accuracy due to non cumulative joint error.

Hence, in recent years increasing attention has been focused on parallel mechanisms, primarily

for the improved performance they can offer in robotic and manufacturing applications [3-4].

Since proposed by Stewart in 1965 [5], parallel-chain manipulators have been used in many

applications such as aircraft simulators and robot wrists. The hexapod machine is one of the

recent developments based on the Stewart platform concept. Despite the aforementioned

advantages over serial-chain machines and the recent technology advancement in designing and



DISCLAIMER

This report was prepared as an account of work sponsored
byanagency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disciosed, or represents that
its use wouid not infringe privateiy owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or impiy its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.



DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.



*

2

controlling of parallel-chain machines [6-11], the performance of parallel-chain machines is

below par due to manufacturing tolerances and assembly errors. Hence, there is a need to

develop a robust and effective method for hexapod machine performance assessment and

enhancement.

In this paper, both inverse and forward kinematic models were derived to assess and then

enhance the positioning performance of “a hexapod machine located at Sandia National

Laboratories, Livermore, California. A perfornmnce assessment algorithm was developed to

determine the six strut lengths to drive the tool to any point within designated machine

workspace. Then structural imperfections in machine component were considered in deriving

another set of inverse and forward kinematic models to determine different six strut lengths that

will bring the tool to the same designated location. In an open-architecture control environment,

the newly determined strut length can be fed back to the controller to compensate for

displacement errors due to structural imperfections and thus improve the machine’s accuracy in

real-time.

Inverse Kinematic Model for Ideal Structure

The contlguration of the parallel-chain hexapod machine that has six identical struts is shown

in Fig 1. The lower platform, called the “BASE”, is a semi-regular hexagon. The upper

platform, which is referred to as the “TOP”, is an equilateral triangle. One end of each strut is

connected to the vertices of the base platform through a three-degree of freedom universal joint.

The other end of the strut is connected to another strut through a bifurcated joint first to form a

pair-linked structure. Each pair-linked structure is then connected to the vertices of the ~p

platform through a three-degree of freedom universal joints. The whole system has six degrees

of fi-eedom. The BASE frame is established by fixing the reference coordinate system (X, Y, Z)

at the center of gravity of the base platform with the Z-axis pointing vertically upward. The TOP

frame is established by fining the tool coordinate system (x, y, z) at the center of gravity of the

top platform with the z-axis normal to the platform and pointing outward.

Let’s define the lengths of the six struts as L1, Lz, L3, Lq, L5, and L6. Denote the location of

the origin of the TOP frame with respect to the BASE frame by [P,, PY, P.]. Let

(CL~, y) represent the rotation angles defined by rotating the TOP frame first about the X-axis

with u degrees, then about the Y-axis with ~ degrees, and finally about the z-axis with y degree
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as shown in the Figure 2. The rotation angles a and ~ are used to define an “approach vector” of

the upper platform while y is used to define the roll angle about the approach vector.

B

2

Figure 1 Hexapod Machine Cor@uration
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Figure 2. Rotation Angles Define Approach Vector for Top Frame

Using the Euler angle method, the transformation matrix between the mobile TOP frame and

the fixed BASE frame can be derived as follows:

i.

cos ~ cos y + sin a sin P sin y –cos~siny +sincxsin~cosy cosczsinfl Px

T:$E .
Cosasiny cosacosy – sin a PY

–sin/?cosy +sinacosflsiny sin P sin y + sin a cos~ cosy cosa cosP P=

o 0 0 1 1

The coordinates of the TOP frame’s vertices can be transformed to the BASE coordinate system

through the transformation matrix as follows.
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Thus the six struts length can then be determined as

, ,

L2= (YB2,‘B,,‘B, )-(Q?T,ZT]
L3 = (ZB3 ,‘B,,‘B, )- (1,2 ,F,2,2,, ~

L4 = (lB, ,‘B,,~B, )- (1,2 ,Y,,,.ZT2]

L5 = (XB, ,YB,,- ~B, )- (z,, ,%, 7z~ ~

& = (G6 ,t?6,Z, )- (Iz ,i?T,,ZL ]

Forward Kinematics Model for Ideal Structure

For a serial-link manipulator, the derivation of forward kinematic models is much simpler

then that of inverse kinematics. However, for a parallel-link manipulator, the situation is

reversed. A detailed report on this issue can be found in [7]. To derive the forward kinematic

model, the physical dimensions of BASE and TOP structures are defined as shown in Figure 3.

.514!!3KB2
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Figure 3. Physical Dimensions

a

of Base and Top Structure
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Figure 4. Geometric Relationship of Pair-Linked Structure

The kinematics transformation is the mapping from the ac@ator lengths Li to the upper

platform position and orientation. Once all six struts’ length are determined, the geometric

characteristic of all three pair-linked triangular structures (AB2i.1TiB2t i=l ,2,3) will be defined, as

shown in Figure 4. The heights of the three pair-linked triangular structures (hl, h2, h3) can be

represented by Li and Pi. Through simple geometric calculation, the coordinates of Xpi and Ypi,

where i=l ,2,3, can be denoted as follows.

pi = &(b2 +L~i-l –L~i);i = 1,2,3 Xp2=-:(b+2d)

hi = ~~; i =1,2,3 YP2=#d-2p, )

Xp, =$(2b+d-3p,)
Xp,=-:(b-d-3p,)

Yp,=&+P, ) Y,, =-;(b+d-p,)

triangularstructures@ITI&, BSTZB4,&T@6) are interconnectedSince the three pair-linked

together, they cannot move freely without constraint. Instead, the locations of Ti are Iimited to

some certain points such that T1, Tq, T3 must form an equilateral triangle with fix dimensions.

Although the coordinates of these TOP structure vertexes, Ti, are unknown, it is relatively easy

to show that their projections on the X-Y plane can move only along the straight lines that pass

through (Xpi, Ypl; i=l ,2,3) and are perpendicular to the lower hexagonal platform, respectively.

Hence, the vertexes coordinates (Xm, YTi; i=l,2,3) of the TOP structure will be defined by the

following constraints.
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Y,, =Y,2 =+(Lj-L;)

Y,, = -%5X,3- (%5X,,

The distance from vertex Ti to the intersection points (Xpi, Ypi; i=l ,2,3) is denoted as hi and can

be calculated as follows.

/’2:= (X,i – X,,)* +(Y,i - Y,,)* + z;,

To close the kinematic chain, three more constraints must be added, they are

(x,, – X,2)2+ (YTI– YT2)2 + (ZT1 – ZT2)2 = a2

(x,, - X,3 )2+ (Y,, –YT3)2+(ZT1 –ZT3)2 =a2

(~,, - x,’ )2+ (q –YT2)2 +(ZT3 –ZT2)2 = a2

By combining the above equations yields three nonlinear algebraic equations with three variables

(XT,, XT,, XT,).

a’ +2XTlX~2 – 2X~l [XPI + fi(YPl – YP2)]– 2XP2X~2 – [(&YP1 – YPl+ YP2)2

+(lz:+h; )-4X;1-X;2]+2 [h; –4(X~l –&l)2][h; –(x’~2 –XP2)2 = O

a2 – 4XT,XT~– 2XTl[Xpl – 3x,, +ti(YP, - YP2)]- 2XTJ-3xP, +xp, +&(Y,, - y,,)]

-[{J(XP*+x,,) - y,, +Y,,)*+(42+%)-4X;*- 4~:J +
2~[h: –4(X,, - X,I)’][h: - (X,, -X,3)2 = O

a’ +2XT2XTB– 2XT3 [XP3 + 3(YP2 - ‘,3)1 - 2X,*XT* – [(fi~p3 – YP2 + YP3)2

+(h; +h; )–X;2 –4X;3]+2~[h; –(Xr2 –XP2)2][h; –4(X~3 –XP~)2 = O

Since the derived forward kinematic models are highly nonlinear, it is impossible to solve them

explicitly. Hence, for its capability of quadratic converging in the vicinity of a solution, the
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Newton-Raphson numerical method is used to solve the three nonlinear algebraic equations

simultaneously. Once the positions of those TOP vertexes are defined, the tool position can be

determined as follows.

Inverse Kinematic Model for Real Structure

Since structural imperfections will degrade a machine’s petiormance in producing parts, the

derived kinematic models need to be modified to include the effect of those imperfections in

assessing as well as enhancing the machine performance. The position errors of those ball joints

located within the BASE structure can be expressed as &Qi, 8yBi, and 6zBi where i=l ,2,..,6.

The position errors of those ball joints located within the TOP structure can be expressed as 6X3,

8YT, and 6zTi where i=l,2,3. The strut length errors can be expressed as 6Li where i=l ,2,..,6.

The modified inverse kinematic model for the hexapod machine can be derived from the ideal

inverse kinematic model by including the error term into the original equation as follows.

L; =@; –X;,)* +(Y; –Y;,)* +(Z; –2;, )2

Where

z,=p.+[~,)[+22X SinaSin&z(y +60”)+ CosflCos(~+600)]
—

XB, =.xB &B, s:(2b+d)+tiYB 1

y,=Py:(:+2m,][c..di.(Y+60)l

Y;, =YB,+3YB,=++WB*

Z,=f’z+(: ,)[
,,

+2Z SinaCosflin(Y +60°) - Sin&os(Y +60°)]

z;, = d’z,,
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(+ –XB2)2+(Y; –Y;*)2 +(Z;–ZB2)2

Where

XB2 = XB2 + &xB,= &
---(b -d)+ax,,

Y;*=YB2+dYB2=:(b+d)+dYB2

ZB2= aZB2

(x; –xB, )2+-(Y;2 – Y;, )2+(Z;*–z;,)2

Where

‘;2=px-[%+26iT2)’sindinminy+cOs~Os”

x; =x, +6XB .++’.)+

y“=p:[%~’~l’c”’~’”” 3

Y;, =YB3+(5YB3=;b+dYB3

‘;=pz-(%+’a,)’sind”spin’-sinflos”

z;,= a,,

(x;,–X;,)*+(Y;, –YB,)* +(Z;,–Z;,)*



Where

x; =x,, +6..,4 =-:(b+,d)-mB
4 4

Y;4=YB4+b’YB4E-:MYB4

.zB,= dzB4

(~;, –X;5 )2+(Y;,–YB, )2+(z;,– z;, )2

Where

%=p..+(%.)[+2&Y SinaiSin@in(y -60° ) +Cos#Cos(y -60° )]

XB, =x,, +*XB .-:(b+d)-MB

yi=py+(~:2fl.)[cosdin(Y-:o)l

q =L?5+WB5=+++%,

zi=pz+(~+z%)[SinaCos~in(y - 60°) - Sin~os(y - 600)]

z;, = (zB,

(x;, –&J2 +(Y;,–Y;6)2+(Z;*–ZE6)2

Where

XB6=x, +6XB6=:(2b+d)+dxB6 6

Y;6=YB6+mB, =–:d–dYB,

z;,= tizB6

.
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Forward Kinematic Model for Real Structure

The modified forward kinematic model that includes the effect of structural imperfection can

be derived base on the ideal forward kinematics. Once Li’ (i=l, 2, ..,6) are determined, the actual

tool position and orientation of the hexapod machine can then be determined as follows.

b; = (X~,j – X~2j_,)2 +(Y~2i- Yj,,.,)2 +(Y~lj- y~,,.,)2; i =1,2,3

x;,=&~(2b; +d; - 3p1) X;,=-$(b;+2d;) Xj, =-$(b~-d;-3p3)

d; = (xE, -X;,)* +(Y;, -Y;,)* +(YE,-Y;,)*

(XE3–XB2)2+(Y;, –Y;,)* +(Y;, –Y;,)*

d; = (G5 -x:,)2+ (Y;, –Y;4)2 +(Y;, –Y;4)2

h;2=(X: -X~)2 +(Y; -Y~)2 +(Z; -(2’2’-’2+‘B2’))2

By combining the derived equations, yields

The Newton-Raphson nu&erical algorithm is applied to solve for X’Tl, X’T2,and X’TS

P;=~(x;+x;,+x;,) p;=;(Y;+Z2 +LJ f’;=;(2; +42 +-z;,)



.
.-

11

The orientation parameter can then be determined as follows.

[

–2[X;,(Z;3–z;, )+x;, (z; –z; )+x;, (z~–z;, )l
a’ = arctan

a(Y; – 2Y;2+ Y~)Lsiny+ J%(q – Y;,)Cw
1

[

- (Z: - 2Z~1+ Z; )Cosy + 43(Z; - Z;, )Siny
p’= arctan

(X; - 2X~, + X; )Cosy - J5(X~ - X;, )Siny )

Simulation Analysis

Upon the completion of deriving the inverse and forward kinematic models that including

both ideal and real structures for the hexapod machine, a simulation was implemented to test

those models’ robustness and reliability. The simulation program was written in C++

environment and the interface between the hexapod machine’s kinematic models and the

hexapod machine’s open architecture controller was also implemented. So the simulation

program can also be executed on the hexapod machine controller to verify its validity.

For the case of ideal structure, a set of randomly selected tool positions (x, y, z coordinates)

and orientations (pitch, roll, yaw), as shown in Table 1, was first determined. Then, the inverse

kinematic modeling algorithm was called to calculate the six struts’ length, as shown in Table 2.

Next step, the forward kinematic model was utilized, with the prior determined six struts’ length

as input, to estimate the tool’s position and orientation, as shown in Table 3. This method was

used to veri~ the model’s consistency. The results show that the precision and consistency of

the computational algorithm was about 0.01 pm.

The inverse and froward kinematic models for imperfect structure were tested with the same

approach. The assumed errors include the six BASE structure joints’ position error (5XBi, 8YBi,

6zBi, i=l,z,...,6), three TOP structure joints’ position error (6xTj, byTj, 8zTj, j=l,z,s) and six

struts’ length error (&Lk, k=l ,2,..., 6). A random error generator was designed to produce

random error value for the error terms listed above. The randomly determined values for those

error terms were limited within the range of +1 O pm. Meanwhile, the error terms will have

different values from iteration to iteration throughout the simulation. The purpose of this design
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was to increase the inference space of the simulation in assessing the impact of structural

imperfection in joints and struts on machine performance.

The same procedure for verifying the ideal kinematic models was applied to the kinematic

models for real structure. The simulation results for real structure were listed in Table 4 and

Table 5. The precision and consistency of the computational algorithm are about 0.1 pm.

Table 1. Simulation Input of Tool Position and Orientation
(units : mm for position& degree for orientation)

I Simulation Tool Position and Orientation
Sequence

a P “’Y x ~ z
1 0 0 0 0 0 400
2 5 0 0 0 0 400
3 0 5 0 0 5 395
4 0 0 5 5 5 405
5 5 10 5 5 0 405
6 -5 -5 0 10 5 390
7 0 0 -10 -5 -5 400
8 0 -5 5 0 -5 410
9 -5 -5 -5 5 5 390
10 515151 -51-5 390

Table 2. Simulation Result of Strut Lengths for Ideal Structure

Simulation Strut Length (mm)
Sequence

LI L2 L3 L4 L5 L6

1 509.192 509.192 509.192 509.192 509.192 509.192
2 519.494 519.808 509.192 509.192 499.282 498.955
3 499.912 496.715 514.582 520.11 501.872 499.342
4 519.107 504.277 520.295 509.075 526.297 501.901
5 518.513 508.068 546.228 530.246 500.178 480.904
6 490.653 498.915 489.823 495.628 523.37 512.131
7 496.496 528.037 494.915 523.095 489.633 531.001
8 530.602 516.578 517.223 494.499 529.916 516.503
9 486.934 507.415 479.137 502.49 513.017 523.219
10 518.118 500.329 522.633 500.222 489.566 480.991
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Table 3. Simulation Prediction of Tool Position and Orientation for Ideal Structure
(units : mm for position& degree for orientation)

Simulation Predicted Tool Position and Orientation
Sequence

P x Y z

1 7.78:-26 -6.55E-10 -3.1 :E-15 5.99E-09 -9.47E-15 400
2 4.99998 -6.61E-10 -2.88 E-I 1 6.00E-09 -8.68 E-I 1 400
3 -1 .32 E-I 1 4.99998 -5.83E-13 5.90E-09 5 395
4 -9.95E-12 -6.64E-10 4.99998 5 5 405
5 4.99998 9.99937 4.99998 5 -9.02E-11 405
6 -4.99998 -4.99998 3.57E-11 10 5 390
7 1.59E-11 -6.60E-10 -9.99938 -5 -5 400
8 3.30 E-I 1 -4,99998 4.99998 6.05E-09 -5 410
9 -4.99998 -4.99998 -4.99998 5 5 390
10 4.99998 4.99998 4.99998 -5 -5 390

Table 4. Simulation Result of Strut Lengths for Real Structure

Simulation Strut Length (mm)
Sequence

LI L2 L3 L4 L5 L6
1 509.193 509.188 509.189 509.188 509.188 509.192
2 519.494 519.804 509.19 509.19 499.279 498.955
3 499.91 496.714 514.58 520.108 501.869 499.342
4 519.105 504.274 520.293 509.071 526.294 501.899
5 518.511 508.067 546.227 530.242 500.174 480.903
6 490.653 498.913 489.822 495.626 523.365 512.129
7 496.495 528.035 494.914 523.093 489.627 531.001
8 530.601 516.579 517.22 494.496 529.914 516.503
9 486.932 507.412 479.135 502.487 513.013 523.221
10 518.118 500.327 522.632 500.218 489.564 480.991

Table 5. Simulation Prediction of Tool Position and Orientation for Real Structure
(units : mm for position& degree for orientation)

Simulation Predicted Tool Position and Orientation
Sequence

a P ‘r x Y z

1 -7.99E-05 9.77E-06 0.000137 -0.00471 -0.00083 399.997
2 5.00001 0.00034 0.000267 -0.00378 0.000116 399,998
3 -0.00027 4.9999 -0.00035 -0.00052 4.99823 394.998
4 -0.00012 0.000232 5.00031 4.99895 4.99948 404.997
5 5.00012 9.99935 4.99992 4.99861 -0.00288 404.997
6 -4.99939 -4.99951 -8.1 2E-05 9.99708 4.99955 389.998
7 0.00038 0.000698 -9.99978 -5.00364 -5.00229 399.998
8 8.33E-05 -5.00067 4.99969 0.000186 -5.00182 409.998
9 -5.00048 -4.99975 -5.0003 4.99624 4.99829 389.997
10 4.9998 4.99975 5.00029 -5.00247 -5.00121 389.998
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Conclusions

Inverse and forward kinematic models were derived to analyze the performance of a parallel-

chain hexapod machine. Analytical models were constructed for both ideal and real structures.

Performance assessment algorithm was developed to determine the six struts’ lengths to drive the

tool to any point within designated machine workspace with either ideal or real structures. The

strut length determined from both cases can be used to analyze the effect of those structural

imperfections on machine performance. In an open-architecture control environment, strut

length errors can be fed back to the controller to compensate for the displacement errors and thus

improve the machine’s accuracy in producing parts.

Simulation results show that the derived kinematic models and corresponding computational

algorithm were robust and accurate in determining the strut length for driving the tool to any

location and orientation within the designated workspace. Simulation results also show that the

derived inverse and fioward kinematic models for real structure can be used accurately to

determine a slight different strut length for driving the tool to any location and orientation within

the designated workspace despite the existence of the imperfection. However, the values of-_-

those error terms due to real structure were assumed known in the simulation analysis.

Nevertheless, further research need to be conducted to determine the actual joints and struts

imperfections by using sensor fision technology and mathematical inference method that are

currently under investigation.
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