SANDIA REPORT
SAND2000-8200 RECE] VED

Unlimited Release

>N / Printed October 1999 JUN 12 200

Yema'l
W s S OsrTy

FlnaILReport on LE)RD Project:
LSlmula\tlonIOptlmlzatlon Tools for System
rVarlablllty / Analysis

Sk R4

< V4

S
7/\ _‘\‘\/}‘:\\ fj ,‘/
}f/\/ /
\ fx’f /\‘_/

erbaum R F Blllau J. E. Campbell, K. D. Marx, R. J. Sikorski, B. M. Thompson,

Aared by
Sandia National L/boratones

Albuquerque, New Mexico 87185 and leermore California 94550

Sandia is a multlprograryaboratqy operated by Sandia Corporation,
a Lockheed Martin Company for the United States Department of
Energy under Contrdct DE-AC04-94AL85000.

Approved for phé release; further dissemination unlimited.

Sandia National Laboratories

.
]
/

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http://www.ntis.gov/ordering.htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: A0l

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND2000-8200
Unlimited Release
October 1999

Final Report on LDRD Project:
Simulation/Optimization Tools for
System Variability Analysis

R. L. Bierbaum and K. D. Marx
Reliability and Electrical Systems Department

R. F. Billau
Software Integration and Technology Department

J. E. Campbell and B. M. Thompson
Systems Reliability Department

R. J. Sikorski
Engineering and Manufacturing Seftware Department

S. D. Wix
Component Information and Models Department

Sandia National Laboratories
Livermore, CA
Albuquerque, NM

Abstract:
This work was conducted during FY98 (Proposal Number 98-0036) and FY99 (Proposal Number
99-0818) under the auspices of the Sandia National Laboratories Laboratory-Directed Research

and Development (LDRD) program.

Electrical simulation typically treats a single data point in the very large input space of
component properties. For electrical simulation to reach its full potential as a design tool, it must
be able to address the unavoidable variability and uncertainty in component properties.
Component variability is strongly related to the design margin (and reliability) of the end
product. During the course of this project, both tools and methodologies were developed to
enable analysis of variability in the context of electrical simulation tools. Two avenues to link
relevant tools were also developed, and the resultant toolset was applied to a major component.

Acknowledgments

We would like to thank the following for contributions to this work: Mike Deveney, 1734,
Carolyn Bogdan, 1734, and Albert Nufiez, 1734 provided semiconductor device models. Wendel
Archer, 1733 provided magnetic core models and laboratory data on the firing set transformers.

Simulations carried out on the MPACTR and CPlant computer systems were made possible
through the work of Michael Johnson, 8114 and Rob Armstrong, 8980, respectively.

Thanks also go to Elmer Collins, Department 12335, and Tom Brown, Department 12333, for
their helpful comments on interim versions of this report.

Table of Contents

ACKNOWLEDGMENTS 4
TABLE OF CONTENTS 5
TABLE OF FIGURES 6
INTRODUCTION 7
OBJECTIVES 7
TOOL LINKAGE 8
STAGE 1 TOOL LINKAGE.....cccereeciccssirrnerenasussessisrrcsssossannns eeeeesenetneaenaernteeenanns 8
APPLICATION OF STAGE 1 TOOL LINKAGE eeeeenenentas ettt et et s ettt es 12
STAGE 2 TOOL LINKAGE.....cccersccruieraressensuvssnsssesssnessanes . esesesestonantessrssnstnasstieratenans 14
METHODOLOGIES 18
DESIGN MARGIN ANALYSIS . : . 19
CUTTENE PTOCESSrvecveerrerrssesreeensassasssscassassssnesasssssssmrestssssatessostsssastestessssstessestortsssistostsssmessssstessesssessesssessessansastssss 19
Proposed New Approach............ccveenveressisesnnnnss reeereeesaseseetsteasasatetstaas e teseaatat e et esas s s R s an 19
SPECIFICATION LIMITS....ccoveourerccrsscrmsssnmsoncissansasnssessasnesssanenes tetneeeeeussserentsiessenrsarananarans cae 21
CUTTONE PrOCESS.evurvareerreesmrrsrssenamssnssresesssssssssastssssmmssssssessssssssssessansssen reteesresseessnresstesareesnsessetesyesaaeseerions 21
Proposed New ADDIOACH..........c..ouccoivinireeneniistireseisisissesssssssss s sss s s sttt atatanssassastressasaes 22
ANOMALY INVESTIGATIONcorererenenscscsosassrssssssssesoecemsssssssssnssssseseasnsenes . ceveesaiiecrenrans 22
Current Process. . . .23
Proposed New Approach eeerteeresbessessetenesreaaantatresataareaseaeaaraseatssste 23
LIFETBVIE PREDICTIONcoveverertssescesecstossacessosssstssasstssssistasssssssesssststnsestssessssnsessasssasssessesassessoventassassstessarasossssseseass 24
CUTTENE PTOCESSe.vvrreveessssrrsanessossssersmssossssssssssssenssnsssssessssssasssessesssersssssassssessssssess eeeeeeuesetee ettt st ananens 24
PrOpOSed NeW APDIOOCH..........couemiuneecueeeiretenerrsisiersissss st ss st nss st sttt s s s bt s e 25
PROBABILITY QUANTIFICATION......c.verseermnrasescascncesssnens eeeveeeeteeasseeeaseete s neeeasaseae s s st et eensae s saseeresasaerntaraeran 26
CUTTEIE PTOCESSe.ovveerereerressissesssssssssssesssssessnessssusesssesessstisssssersssisssssmstassssssesssestisssssssassstsassesssssassresssnnssessesasses 26
PrOPOSEA NeW APDIOOCH.co.....ourvoeueererirsirtrvrireeeeieseseieienessseerasssesssstssessanssassasasasssasassssestosenenssisiniststsensasassnnanes 27

W80 FIRING SET APPLICATION 28
SCOPE ovueciereeervrrrerreisseassesesssssersssssesssnssessrasasssnessssnsssansssassssemmsssessssnssssssssstossssnsnssssesnssasensranssssstsssmensesssasssssassnessssnsosss 28
PROBLEM SETUP ... ecciereveeeseuieseesssssseressesserssssessessensssssenmssaresssassssotsssssstssstsssssssisssssessasasssessnsnsssssssansastsasasssosssssossss 28
ISSUES........... revnereeesereseteeterensteaaetrtsaetennesseanntetrararetttutbbatesebas et ar e nar s tatnsretenrtene ks aeenetteraeanareseetteasanarieteiisis 30
Circuit MOdel DEVEIODIENEc..cueuveeneecnuiiiimerieiiieieseresiessesisnenee s sessssssassessssssssssassesssesssssssssstansstauesasssssnsas 30
Simulator CONVErgeNnCe ... muenmreeserieeeecieeriessssanaans . rerereereeteesnentaeateeaeneaeses 30
Nonlinear Transformer Modeling etttestessesssessesssesssisseeersessseneeasaeataseasaeesateeatraaeeenarenreseaenanabeasenas 31
Extraction of Simulation Results eereereestesssessmeessresereessreesaseenaaeneenretistes 31

Input Correlations in SUNS™ . .32
RESULTS .. etevssseseeesnraneesennsstnseenrssassenrnetnttteeensrritteteebesatsessnstrettossersatrtterrterusesesetaterestirarassatttsnttitstttattriaen 32
CON CLUSIONS .. ceeevereeecreerermtnsrsessseassssnsaseserasssssssscsrasssssassssesesssassarettesssssssisetsssssssssssssnsesssnssansnssssessnnnsessssonsssssssssnssass 37
OPTIMIZATION 37
FOLLOW-ON WORK 38
APPENDIX A: SUNS™ USER’S REFERENCE MANUAL Al
APPENDIX B: GO™ GENETIC OPTIMIZATION USER’S REFERENCE MANUAL B1
APPENDIX C: SUNS™/SPICE DESIGN APPLET PARSE CODE C1
DISTRIBUTION: D1

-5-

Table of Figures

FIGURE 1: STAGE 1 TOOL LINKAGEcucuvivieueieseeeseeseseesserersressasesssessersessessssessssessessassssesssesssessssnsssseasnsssssssessassssesoneeses 9
FIGURE 2: SUNS™/SPICE3 ANALYSIS OF DETONATOR PERFORMANCEcc.verruererreseessaeseseseesseesecssmesssssssrsssssssssnes 13
FIGURE 3: SPICE USER INTERFACEceeereeurereerseresseressessssssssessssassesssessassesssssssessssessssssemsssssssssnsesssesssessesosesosssissssssessnns 15
FIGURE 4: SUNST™ USER INTERFACE ...vercerutereerereessassseesssesssessssessesssarsssssesssnssssssessssssssesssssssresstssseestessenesesasesessssssossnes 15
FIGURE 5: SPICE OUTPUT DISPLAY ..vvvveneererereerseeccenes eeeeeeeesseestestesnresibrenseastesstaebesasesanrensarsteraeesaesee e rerassene 16
FIGURE 6: STAGE 2 TOOL LINKAGE BLOCK DIAGRAMoooermierreernrensresresressssessressessessssssassesssessessssessesssssssssssesssssaneesssn 17
FIGURE 7: ANALYSES AS A FUNCTION OF WEAPON LIFETIME PHASE ...ocuveeeeeserreeeeererensssresacesseesncessessasescssocssssssssessans 18
FIGURE 8: ANOMALY INVESTIGATION PROCESSccverierrertereassseseesssssessessessassssssessssesssssssssssssensesassesaesnsonconssassssssssase 23
FIGURE 9: SBMPLE RAW CORRELATIONS FOR “TIME TO 90% FOR C17 ..cniiiiirectenecrceienncetnseteectessessessesanessesanens 33
FIGURE 10: SIMPLE RAW CORRELATIONS FOR “TIME TO 90% FOR C27occuverieeeenieeeeereeeeraeenteneesarasracsesesssesssasesssensens 33
FIGURE 11: SIMPLE RAW CORRELATIONS FOR “VREG C17.....ericeeeimrereneeeesceriaeseeseeeesntesosasessesacestransssessessssessasassssanns 34
FIGURE 12: SIMPLE RAW CORRELATIONS FOR “VREG C27.....uvieeererrrerereererreesessaessontesasesssssassasasesesntosssssessessssssessssasnn 34
FIGURE 13: HISTOGRAM FOR “TIME TO 909 FOR C17 .. nteeeeiieereceeiesteesaessesssesessesnsrassesseasasnsestesesneessssmessssssssessssens 35
FIGURE 14: HISTOGRAM FOR “TIME TO 9070 FOR €27cvveeieeeereeceeesreereestesssesssesssessressssessasssesssessessesseseseessesssasssssssans 35
FIGURE 15: HISTOGRAM FOR “VREG C17 ..uooiireeertieeeeeeeseereessssesesstestessessassessasssassssessssessessassessassssntenteneesasoneensesmssssns 36
FIGURE 16: HISTOGRAM FOR “VREG €27veuveeeeereeetrereervessiessesisassessesssssssessssssasssesseserssesosassrassessestestentesssensomsosssssassesas 36
FIGURE 17: OUTPUT VARIABILITYcuveeueerreerieseeessrernreessesssssssassseassssssessesssenns eteeereseeessssesstestessteteeraeneerarasteanenaraesaren 37

Introduction

This work was conducted during FY98 (Proposal Number 98-0036) and FY99 (Proposal Number
09-0818) under the auspices of the Sandia National Laboratories Laboratory-Directed Research
and Development (LDRD) program. In addition this work proved to complement two other
efforts, the Model-Based Reliability Analysis (MBRA) Project (funded through Surety
Management, Case 0014) and the High Performance Electrical Modeling and Simulation (funded
through ASCI, Case 5728). Where possible, an effort has been made to leverage the MBRA and
HPEMS work.

Electrical simulation has been used successfully at Sandia over the past decade. Two common
applications have been: (1) supporting the electrical system design process, and (2) analyzing
anomalies detected in the fielded product. Simulation also has a future role in helping to predict
failures when degradation precursors are identified. In short, electrical simulation is a tool that
can be used during the entire product life cycle to develop an understanding of the system over
the range of expected conditions.

Electrical simulation typically treats a single data point in the very large input space of
component properties. For electrical simulation to reach its full potential as a design tool, it must
be able to address the unavoidable variability and uncertainty in component properties.
Component variability is strongly related to the design margin (and reliability) of the end
product. This project addressed a set of problems that hinder effective use of simulation,
especially in the context of understanding variability.

Objectives

The first goal of this effort was to create a novel linkage of disparate variability analysis
approaches to greatly reduce the overall analysis time. The target tools were SUNS™
(Sensitivity and Uncertainty Analysis) and GO™ (Genetic Optimization), both of which were
developed by Department 6411. A software copyright was obtained for both of these codes in
FY99, and user’s manuals are included in this report as Appendices A and B. The electrical
simulation tool selected was SPICE (Simulation Program with Integrated Circuit Emphasis), a
general-purpose circuit simulator that serves as the industry standard. There are many variants
of SPICE available commercially. For this project, Berkeley SPICE 3f5 was selected because
the source code is available. This version will be referred to henceforth as SPICE3, while SPICE
will be used to refer to the general simulation tool.

There was also a need for methodologies to effectively apply this toolset to a range of problem
types. The second goal was to develop an approach to quantify the reliability impacts of
variability, especially for time-dependent issues. Ultimately, the benefits and limitations of the
developed tools and methodologies were explored, including a consideration of the uncertainties
and underlying assumptions. A specific application was explored, that of the W80 firing set.
This will be discussed in detail in a later section. Note that in the area of methodologies, the
LDRD and MBRA projects were quite complementary because of the strong reliance in MBRA
on the ability to integrate variability analysis with modeling.

An extremely important aspect of this project was that of the user interface. The intent was to
develop a tool that could be used by designers and analysts who were not necessarily experts in

-7-

the use of either electrical simulation tools or uncertainty analysis tools. As will be discussed in
the next section, significant strides were made in this area by leveraging with on-going HPEMS
work.

Tool Linkage

There were two generations of tool linkage in this project. These will be described below with
some examples of how they were exercised.

Stage 1 Tool Linkage

The first approach to tool linkage was predicated on the use of MultiSPICE, a process for
running multiple simultaneous SPICE3 simulations on multiprocessor computer systems. The
general concept was to use the SUNS™ tool to generate input vectors and to develop software
to: (1) incorporate these vectors into a family of simulation code input files, (2) manage the
execution of these input files, (3) extract relevant response variables from the resultant
simulation code output files, and (4) build a SUNS™-compatible file such that the uncertainty
analysis could be performed. A block diagram is shown in Figure 1. Each of the blocks is
described below. Note that most of the code resides on the multiprocessor machine.

SUNS™ (input editor):

This is the SUNS™ Input Editor program. The user specifies the set of inputs (e.g., the part
properties that describe the resistors, diodes, transformers, etc.) for which variability is to be
analyzed. Nominal values, distribution types, and distribution parameters are then defined for
each of the inputs. Correlations between inputs must also be specified. This is extremely
important because failure to identify strong correlations could result in incorrect determination of
the variability of the output variables. Given this information, SUNS™ generates a set of input
vectors using either Monte Carlo sampling or Latin Hypercube Sampling (LHS). Each
individual vector has a value for each of the inputs. The information on inputs is stored in a .sun
file, and the input vectors are written to a .vec file.

Microsoft® Excel:

This serves an intermediary role between the .vec file and the parsing code (“Parse”) that inserts
parameter values into the simulation code input files. The Excel operations could be as simple as
stripping off the header rows in the .vec file. However, in some instances more sophisticated
operations are necessary. For example, one might want to choose among a set of alphanumeric
input options, such as model file names. The SUNS™ input editor does not have this capability
directly, so software is needed to map discrete input values to different model file names that can
then be passed to the simulation code. This is straightforward to accomplish using one of the
SUNS™ “Empirical Discrete” distribution types followed by an Excel operation. This
distribution type selects between a set of integers, each of which corresponds to a specific model
name; this allows one to “sample” between the various model file options. Note that one could
write custom code to handle these scenarios, but it was considered to be a lower priority activity
given the ability of Excel to manipulate and remap parameter values.

Figure 1: Stage 1 Tool Linkage

PC | Multi-Processor
SUNS Machine
(input editor)
| y___rcvec

Microsoft re.txt
Excel

>| parse |< re.cir
i rc¥** cir

batch

spice3

re*¥* raw

sconvert

rc*** gsc
analyze
. -y rc¥redb
Mllac;gsloft _all.out I gather |
7 v revec
I SUNS
(results viewer)

Parse:

This code takes the .txt file (the modified .vec file) plus a template simulation input file (.cir) and
inserts the input values, creating a family of simulation input files. The template simulation
input file includes all of the necessary information for the simulation code to execute it, other
than the values of the inputs that are supplied by SUNS™. The “Parse” code gives each
simulation input file a unique name.

Batch:

The “Batch” software submits the family of simulation input files to a multiprocessor machine.
The code must be customized for the particular multiprocessor machine being used. MPACTR
uses a Distributed Queuing System (DQS) to manage the execution of multiple simultaneous
jobs, and thus it was straightforward to send the family of files off to SPICE3. Recently, the
Computational Plant (CPlant) machine has been used. This system has a less mature queuing
system and requires more user intervention to submit the simulation input files. It is anticipated
that the CPlant queuing system will improve with time, requiring less direct management by the
user and supporting a more seamless interface.

SPICE3:

The electrical simulation code used was SPICE Version 3f.5, developed at the University of
California at Berkeley. SPICE3, while not as user-friendly as commercial versions such as
PSpice®, is nonetheless a very useful simulator. It has the capability for modeling many
electrical components (including the most common semiconductor devices), a rudimentary but
workable graphical postprocessor, and some analog behavioral modeling capability. From the
standpoint of the present work, its primary advantage was the fact that the source code had
already been acquired by Sandia. Hence, it was not necessary to obtain licenses for the multiple
instances of the executable necessary for running several dozen simultaneous simulations on
multiprocessor computer systems. Its primary disadvantage was that it does not have the
capability for modeling nonlinear magnetic cores, necessitating the in-house development of
such models. As noted below, considerable effort is required to obtain realistic models that
perform well. It is expected that the use of SPICE3 for this type of simulation will eventually be
superseded by the implementation of the CHILESPICE and DSpice codes which are currently
under development at Sandia.

Store:

This code retrieves the SPICE3 output files (.raw files) from each of the processors on the
multiprocessor machine. As with the “Batch” operation, this is easier to accomplish for the
MPACTR machine as compared to the CPlant machine, although the larger number of
processors on CPlant (128 vs. 64 on MPACTR) is a significant step forward.

Sconvert:

One can select either binary or ASCII file output from the SPICE3 code. However, the output
post-processing code, “Analyze”, requires ASCII files as input. Thus when binary files are used,
a conversion must be done and this is the function of the “Sconvert” code. The binary files are
more compact (by roughly a factor of three) and thus desirable because of the reduced disk space
required to store data for the large number of runs. In addition, binary files can be pulled off the
processors more quickly. However, they have the undesirable feature of being unusable if the
simulation code terminates prematurely due to lack of convergence. During the development
phase, files have generally been stored in ASCI format because of convergence problems which

-10-

arise when running the simulations. In order to reduce data file size, only selected node signals
have been collected rather than the entire set of output that is available. As the firing set model
and the simulation code matures, binary format should become the norm.

Analyze:

The output of the electrical simulation code is a set of voltage and current signals as a function of
time. In order to analyze variability, key characteristics must be extracted from these
waveforms. The characteristics of interest tend to be problem-specific. They may be maximum
or minimum values, rise times, ripple levels, etc. Sometimes performance analysis is very
complex. For example, proper initiation of a detonator relies upon deposition of adequate energy
in the bridgewire within a certain amount of time. This will be discussed in more detail later in
this section for a specific application. Data analysis for situations like this is generally not
available in a commercial software package. To date, custom modules have been written to
extract the outputs of interest. Many of these custom modules will have utility for a wide class
of problems. However, the development of a truly general output extraction suite (one of the
original goals of this LDRD) has proven to be elusive because of the broad range of electrical
simulation analyses that are performed. '

Gather:
This code simply collects the set of outputs that were extracted by the “Analyze” code and puts
them into a single file.

Microsoft® Excel:

Excel is used to paste the file of extracted outputs into the original .vec file. This file is then
passed back to the SUNS™ Results Viewer code. Note that this step could be incorporated into
the Gather code if desired.

SUNS™ (results viewer):

The user has numerous options for analyzing and viewing the results: correlations (simple raw,
simple rank, partial raw, and partial rank), output and input variable histograms and cumulative
distribution functions, scatter plots, and tables of values. Examples of some of these will be
shown later in the report, and they are also described in the SUNS™ User’s Reference Manual.

MultiSPICE and computing platforms:

Besides the SPICE3 simulator running on the multiprocessor computer, the MultiSPICE system
includes the auxiliary elements of software Parse, Batch, Store, Sconvert, Analyze, and Gather.
These are discussed in the descriptions above. It should be noted that MultiSPICE performs
uncoupled (i.e., serial) simulations on multiprocessor machines (rather than parallel
computations).

The first implementation of MultiSPICE used the Massively Paralle] Computer Resource
(MPACTR) located in California. It consists of an array of from 9 to 14 computers, each of
which contained four Pentium 200 processors. From 32 to 52 processors were available on
MPACTR for MultiSPICE simulations.

More recently, MultiSPICE has been set up on the Computational Plant (CPlant) computer
system. Up to 128 DEC Alpha computers have been available for simulation. As many as 64
simultaneous runs have been executed in the completion of the present work. These simulations

-11 -

were completed in approximately 24 hours on the CPlant system (each simulation required up to
24 hours of CPU time, but they all ran simultaneously). In the case where results were obtained
from 101 simulations (discussed in the “W80 Firing Set Application” section), the entire job was
completed by utilizing 42 processors over a weekend. It should be noted that such large numbers
of simulations could not have been carried out in any practical manner if it were necessary to do
them sequentially on personal computers. The great improvement in turnaround time achieved
by the use of multiprocessor systems made the work possible.

Application of Stage 1 Tool Linkage

The initial application to exercise the Stage 1 Tool Linkage approach was a very simple analysis
of a Resistor-Capacitor (RC) filtering circuit. The problem was set up such that variability was
specified for both the resistor and capacitor. The goal was to use the SUNS™/SPICES3 toolset to
determine the variability of the key response variable, the 3 dB cut-off frequency which is a
common characteristic of interest for filter circuits. This simple problem (solvable analytically)
was intended to provide a vehicle for evaluating the integrated tools. The results were very
promising in that a relatively seamless toolset was put together to perform this analysis, although
it did require some custom code.

The next problem was of more interest to the stockpile. There have been instances of high
voltage breakdown observed in firing sets. Using SPICE3, the characteristics of the breakdowns
that are germane to system performance (breakdown time and breakdown resistance) can be
modeled. The values of breakdown time and breakdown resistance were derived for actual
instances of breakdown during testing. While these instances did not lead to system failure,
there was concern that under certain conditions breakdown could cause failure. The
SUNS™/SPICES3 toolset was used to develop a performance map as a function of these
characteristics.

As mentioned earlier, the issue of detonator initiation is complex. Detonator function is
characterized by a threshold current and energy; when a detonator is being initiated, the current
must remain above this threshold level until adequate energy has been deposited to initiate it. If
energy is deposited too slowly, the detonator will not initiate properly. The threshold current
represents the level at which, when adequate energy is deposited, half the detonators would fire
properly and half wouldn’t. From a modeling perspective, the detonator is treated as a nonlinear
resistance as a function of the energy deposited in it. The magnitude of the current flowing
through the detonator is squared and integrated using SPICE3. The simulation code monitors the
current to see if it remains above the threshold current level until adequate energy has been
deposited.

For this problem, SUNS™ was used to generate one hundred input vectors that covered the
breakdown time/breakdown resistance state space. The SPICE3 code was then run to see if the
threshold current condition was met. Figure 2 summarizes the results of these runs. The
approximate regime of concern appears to be breakdowns that have a breakdown time of less
than 200 ns or a breakdown resistance of less than 350 m<Q. Of course, this is based upon the
assumptions inherent in the model, such as the breakdown inductance (here assumed to be
constant across the state space at 1 nH) and the circuit parasitics included in the firing set model.
Note that there appears to be a modestly positive slope to the boundary between above and below
threshold for breakdown times of less than 200 ns. This is not an intuitive result. We speculate

-12-

that “early” breakdowns result in increased current in the circuit and that energy is stored in the
parasitic inductances to maintain the current. Later breakdowns allow for less energy storage.
The inductances for runs th007 and th038 (indicated in Figure 2) were reduced in subsequent
runs, resulting in behavior more consistent with expectations (i.e., a modestly negative slope).

Figure 2: SUNS™/SPICE3 Analysis of Detonator Performance

0.5 L A ® .'. ° ® ' e Above threshold
Q] X ° o ° ® o ‘ o Below threshold
™ o ©
S 0.4} toor o ° d 1 .. o -
°
*l;) L o o (o} Y
c ()
o} [o) ¢ / o °
O o O O ®
: 03F o o o tho3s ° ® -
o @ o o o
c 0 o &
-lg o) o OO i
_g 0.2} o 0o ® o ® -
o °© o o ° g
o
g O o ®o o ° °
a 0.1F o o Oo O ° |
LL o® PY)
o o ° ®
o) oS o)
0.0 o O - 1 x 1 a L &, 1 x
0 50 100 150 200 250 300

Time to Breakdown (ns)

100 samples taken from uniform distribution

Fault inductance =1 nH

Low-current model used to better simulate threshold behavior
Runs th007 and th038 studied to investigate non-intuitive results

This example typifies the role that uncertainty analysis plays. It shows performance over a broad
range of conditions, it highlights unusual behavior, and it provides focus for follow-on analyses.
This example also pointed out one of the challenges of modeling performance in the context of
reliability. The threshold current represents a failure probability of fifty percent for the
detonators, clearly an unacceptable level for weapons. Trying to ascertain true success/failure
criterion for detonator modeling is an enormous task. Instead, testing under realistic and diverse
conditions is used to estimate the reliability.

In general, the Stage 1 Tool Linkage worked very well. It allows for significant flexibility and
control by the analyst. It is clear that much insight can be gained from this type of analysis
approach. The tradeoff is that some customization and user interaction are required to exercise
the toolset.

-13-

Stage 2 Tool Linkage

The opportunity arose in FY99 to capitalize on the development of a “designer/analyst”
graphical user interface (GUI) being developed for ASCIL. This interface effectively shields the
user from the intricacies of the SPICE electrical simulation tool but provides enough control to
the user to perform meaningful analyses. This provided an opportunity to enhance the LDRD
work to date in the following areas:

(1) The interface is online, graphical, and easy to use, focusing on changes to key variables. It
is a web-based interface, which is much easier to use than the usual SPICE interface.

(2) It allows for quick problem setup and viewing of results.

(3) It offers the potential for a more general interface solution, albeit at a cost of some user
flexibility initially.

The SUNS™/SPICE Design Applet Tool provides users with the capability of performing “what
if” analyses on a circuit design. Using a SPICE netlist for a power management circuit for an
existing weapon system, a user can download an applet using Netscape (4.08 or higher) and
change the values and/or models for existing transistors, diodes, resistors, and capacitors, as well
as voltage and current sources. Optionally, the user can vary the range of values for a resistor or
capacitor between some interval (i.e., high / low values), and submit a SUNS™/SPICE run to
analyze the effects of the changes for a given number of trials.

The software generates a netlist for each trial and automatically runs SPICE for each trial run on
a UNIX Server using SPICE Server software written in Java. The SPICE Server software on the
UNIX workstation communicates with SUNS™ on an NT 4.0 workstation to execute various
processes of the SUNS™ software to edit the inputs and analyze the results of the SPICE runs
(this software is also written in Java). Upon completion the user, through the design Applet on
their workstation, can view plots generated by SPICE and the statistical output graphs generated
by SUNS™., Ultimately it is desire to execute the simulation runs on a multiprocessor platform
such as CPlant using CHILISPICE.

Screen shots of the user interface are shown in Figures 3 through 5. Figure 3 shows the circuit
schematic and the means by which input values are selected. Note that the tolerance value for
each input can be selected here. Figure 4 shows the SUNS™ interface. This is where the input
distribution is selected. Ultimately, the capability to set input correlations will be added to this
screen. Finally, a selected output from the SPICE run is shown in Figure 5.

-14 -

Figure 3: SPICE User Interface

Power Management Control Circuit Tool

MMBRS521

P
R38 £
500 MBRSJ’

=~
g $089
500
Q2 Ry

mmbt2389 } Ay
1K

00

5

Specifications

Desc v Piot
B ories %) m

"l Distribution Corretation t Output Vars,
‘ R Modet Value: _ R
Distribution Variables Dist. Type:

% Change:

Low Value: v . T
o omears: I
. High Value: m

Figure 5: SPICE Output Display

A notional block diagram of the desired process is shown in Figure 6. The data flow is as
follows:

(1) Applet downloads from Server; user constructs desired problem

(2) User submits job

(3) Server builds .sun file and initial netlist

(4) .sun file sent to SUNS™ platform

(5) SUNS™ builds .vec file

(6) .vec file passed to Server

(7) Server builds set of netlists from .vec file (the parsing code is included as Appendix C)
(8) Server submits set of netlists to computational engine

(9) Computational engine performs multiple SPICE analyses

(10) Analysis results sent to Server

(11) Server modifies .vec file to include computational results

(12) Server sends .vec file to SUNS™ platform

(13) SUNS™ platform generates standard set of resuits; notifies user via email results are ready
(14) SUNST platform publishes results to web site on Server for user analysis

- 16 -

Figure 6: Stage 2 Tool Linkage Block Diagram

The data flow is very similar to the Stage 1 process. However, the architecture will initially be
very restrictive. In SUNS™, only passive components will have variability associated with
them. There will be a limited number of component tolerance options. Correlations between
input variables will be assumed to be negligible. For SPICE, the circuit topology will be fixed.
Limited options for output variable extraction will be available. However, it will be very easy to
use and the data flow will be transparent to the user. The goal is to continue this effort in FY00
to expand the capabilities available to the user without sacrificing ease of use.

There are many approaches that could be used to expand analysis capabilities while retaining
ease of use. One option is to incorporate an “Analysis Advisor” software tool that aids in
problem set-up and execution. Successful use of modeling is made difficult by the scope of
knowledge required: basic phenomenology, multi-disciplinary modeling, computational
capability, analysis methodologies, etc. Incorrect use of the tools can lead to misleading
conclusions, a serious issue in the area of surety because of the consequences of error. An
Analysis Advisor would aid the surety analyst in using modeling appropriately, both in tool
selection and interpretation of results. The Advisor framework will be developed and populated
with knowledge in selected modeling areas to permit evaluation. The initial focus will be on
advising on rudimentary issues for which written “rules of thumb” would suffice. For example,
performing an uncertainty analysis requires the analyst to make critical choices about the sources
and nature of variability, variable correlations, what sampling approach to use, and the sample
size required. The Analysis Advisor would provide guidance and recommendations on these
issues, either on request or in response to user inputs. More sophisticated capabilities such as

-17-

R £ SR L ol TV ATV T L ROFESY T TR T T T Inaniaiie mr——

selection of appropriate computational resources (vis-a-vis problem class and size) can then be
added. In its most advanced state, the Analysis Advisor could extract features from simulation
code outputs (using neural networks, for instance) to highlight key characteristics. It is
envisioned that projects such as ASCI HPEMS and MBRA would also incorporate the Analysis
Advisor.

Methodologies’

In this section, several applications for the SUNS™/SPICE will be described. Note that these
span much of the nuclear weapon life cycle (Phases 3 through 6, from development through the
lifetime of the weapon), as shown below in Figure 7. The bold chevrons depict points in the
weapon life cycle where it is anticipated that the tools will be particularly helpful. The
rectangles with text in italics show specific processes that are being developed.

Figure 7: Analyses as a Function of Weapon Lifetime Phase

Specification
Limits

VA
Weapon *
{}

Specification
Limits

A

Anoy
L Detected J

%

Life Cycle l/\I
AD;ﬂg'n Lifetime AnoTnal)_l ﬁesig.n Lifetime
argu'z Prediction Investigation argzr‘1 Prediction
Analysis Analysis
L I/\l I/\l I
Specification Probability
Limits Quantification
Lifetime
Prediction

Each of the five processes shown above (Design Margin Analysis, Specification Limits, Lifetime
Prediction, Anomaly Investigation, and Probability Quantification) will be discussed in the
context of their purpose (as a function of life cycle), current implementation, the proposed new
approach, and the benefits of the new approach.

An important point here is that the processes below are all predicated on the development (or
existence) of validated models. These models must balance adequate fidelity and level of detail
with execution time; this is an important consideration since sensitivity and uncertainty analyses
may require tens to hundreds of simulation runs. Depending on the issues being explored, the
models could range from piece-part level to system-level in scope. Obviously, developing and
validating such models (or tailoring them as needed) is an expensive enterprise requiring keen
engineering judgment to ensure that the models are appropriate for a broad range of applications.

' Much of this information is also included in the MBRA Interim Report.
-18-

However once this investment has been made, the models provide an extremely valuable
resource, and their use can be leveraged over the life cycle of the weapon. There is also a
significant amount of understanding that is accrued during the course of modeling a subsystem or
system. This is extremely beneficial as weapons continue to age and their designers retire.

Design Margin Analysis

The Design Margin Analysis process has perhaps the lowest technical risk of any of the
processes but potentially a large payoff. It can be used at almost any stage of the weapon life
cycle when there is a desire to either quantify the range of possible performance of a system or
subsystem or improve the performance of a system or subsystem. As will be seen in subsequent
sections, Design Margin Analysis serves as a foundation for each of the other processes.

Current Process

Design margin has historically been determined (and improved) using an iterative process. A
design is generated and development hardware is built and characterized. The amount of design
margin is of course dictated by the requirements, but generally these continue to be negotiated
during the design and development phase as the actual capabilities of the hardware become
clearer. The requirements for one subsystem are driven by the interface requirements of adjacent
subsystems, and thus the process of finalizing them can be prolonged as the design evolves. As
the time for First Production Unit (FPU) nears, product acceptance specifications are
documented and implemented. Product performance data are analyzed and the production
processes are revised. Generally the drivers for these changes are too much rework, processes
that are time-inefficient, and lower-than-desired yield. In addition, failures and anomalies are
evaluated to identify causal factors — these may also result in changes to the production process
or part selection process.

The drawbacks to the current process are as follows:

(1) The process can be costly, since it may require several iterations of development hardware
until the desired performance is achieved.

(2) Variability is very difficult to determine because of the limited quantities of hardware that
can be built and characterized.

(3) The on-going modifications to the production processes following FPU lead to non-
homogeneous product; this complicates the job of surveillance and stockpile evaluation.

(4) Specifications may be set too stringently for a variety of reasons. For example, the observed
variability is small and therefore those limits are deemed to be easily obtained from the
product; thus the limits may be set tighter than necessary.

Proposed New Approach

1t is proposed to use SUNS™/SPICE to both quantify and improve design margin. The key
difference in the new approach is that modeling is used to explore the state space in a systematic

e~

T S S R TV AT L TR T TT R YT T e m——— o

or impossible to control. In addition, sometimes it is impossible to make the necessary
measurements to fully characterize a subsystem without affecting the subsystem’s performance.

The proposed process is described below. Note that the approach would be similar for other
modeling disciplines and could be extended to multi-disciplinary modeling when technically and
computationally feasible; this is one of the goals of the MBRA project. The process is as
follows:

(1) Develop and validate a model of the electrical subsystem using an electrical simulation tool.

(2) Identify the circuit parameters that are suspected to contribute to the output and its
variability. This involves engineering judgment in conjunction with limited
experimentation, although the process itself will allow identification of the most important
among these. Determine the anticipated variability in each of the selected parameters. Note
that this might include variability due to different environments, such as temperature and
total dose radiation, in addition to variability from sources such as manufacturing.

(3) Use SUNS™ to generate a set of input vectors that will explore the state space thoroughly.
There are many nuances to this, which must be documented such that the user does not
generate meaningless or misleading results.

(4) Execute SPICE using the values in the input vectors. Perform data post-processing to
extract the relevant outputs.

(5) Using SUNS™, identify the key contributors to the outputs and the variability of the
outputs.

These results can be used in a number of ways. First of all, they can be used to identify
meaningful specifications for the subsystem being analyzed. This will be described in more
detail in the next section on Specification Limits. Secondly, they can be used to target
improvements. Parameters that affect the output variability most can perhaps be screened to
minimize the variability they contribute; alternatively, other parts can be selected that
demonstrate more stable performance. And finally, this analysis may set the stage for an
optimization study once the key contributors to the outputs have been identified.

The expected benefits are as follows:

(1) Development time and required test assets will be reduced. In addition, there will be fewer
design iterations necessary.

(2) Because of the increased understanding obtainable by modeling, it is expected that the yield
will be better at FPU that it would have been without the use of the toolset.

(3) Fewer modifications in the production processes will be needed, leading to a more
homogeneous product.

(4) These tools can be used to evaluate the impact of production and part changes if they do
become necessary.

-20 -

(5) This process can provide focus for resource allocation, aiding in decisions about what parts
to upgrade or screen. It also allows for intelligent selection of production acceptance
specifications to optimize yield.

(6) Design margin will be improved. Although this may not be a quantifiable reliability
improvement, it is obviously desirable and makes the subsystem more resilient to external
changes and changes over time.

Note that there are some risks to the use of this process (listed below), although they are
outweighed by the benefits of increased understanding:

(1) Not all parameters that influence output and output variability may be included in the
analysis.

(2) The parameters that are included may not have their variability quantified correctly.

(3) Failure to identify correlations between input variables can lead to poor estimates of output
variability.

Specification Limits

As discussed in the previous section, one of the variants of the Design Margin Analysis process
is that of setting specification limits. This is an activity that could have significant payoff — the
cost of overly conservative specification limits can be very high due to excess scrap and rework,
unneeded inspection and screening, and selection of more expensive parts. Specifications that
are not tight enough can lead to unexpected failure; even worse, these failures may not be easily
detected in the surveillance program.

Current Process

Currently, specification limits for subsystems are negotiated using a combination of knowledge
gained through development hardware characterization and the bounds dictated by the interface
requirements. As already pointed out, this is an evolutionary process and can lead to overly
stringent requirements because of the limited data available. Drawbacks of the current process
are as follows:

(1) The current evolutionary process is costly because of the number of hardware development
iterations that are necessary.

(2) Overly stringent specifications lead to numerous exceptions (SXRs) that must be evaluated.

(3) There is an important reliability implication to setting specifications. Because it is
impossible to conduct full-up tests, the surveillance program must infer system success or
failure by comparing subsystem performance to the specifications. There have been
numerous Significant Finding Investigations where the focus of the investigation was
understanding how realistic the specifications were and whether they really related to
overall system success/failure. The subsystem may have failed the specification limit but

-21-

would not have precluded the system from working. This can be a very costly and time-
CONSuIing process.

Proposed New Approach

The Specification Limits process builds on the Design Margin process. The first step in
establishing specifications is quantifying the design margin of the subsystem as described in the
previous section. Using the information derived from that exercise, specification limits can be
defined. First of all, the acceptable output level must be determined. This is based on both the
interface and operational requirements. Then specification limits can be placed on the
parameters, focusing primarily on those that contribute most to the output and the output
variability. During this process, it must be determined if variability needs to be reduced (and if it
can be reduced) or if additional margin is needed. If variability can be reduced, it may be
possible to “give back” margin to the system (i.e., allow another subsystem to have greater
variability).

The advantages of the new process are the same as mentioned in the previous section. In
addition:

(1) The number of SXRs will be reduced. Those that remain will be more meaningful in the
sense that they reflect a failure to meet a specification that is more closely tied to overall
system success/failure.

(2) The number of Significant Finding Investigations where the subsystem failed the
specification but would have been successful at the system level will be reduced.

Both of these have significant potential for reducing the cost of production and surveillance.

Note that there has been one example of a specification limit application for the stockpile. For
Alt 339 for the B61, the MET (MCCS Encryption Translator) is being added to the units to allow
for encrypted PAL operations. A study using modeling in conjunction with a Monte Carlo
analysis was performed to determine if the existing specifications for input voltage could be met
when the MET was added. The study examined both part parameter variability as well as
variability due to temperature. The results indicated that the MET could be added without
jeopardizing performance over the range of expected conditions. More importantly, a realistic
set of specifications was developed for the B61 PAL subsystem during the course of this study®.

Anomaly Investigation
Modeling is a natural choice for investigation of anomalies, and a variety of modeling tools have

already been used for this application. It is a cost-effective way to perform root cause analysis,
to examine in a general sense the effect of an anomaly, and to identify fixes.

* This study is documented in an unclassified memo, R.C. Elder, 2671, and R.I. Eastin, 8116, to Distribution, “Final
Report for the MCCS Low Voltage Qualification”, dated August 28, 1995.

-2

Current Process

Although there is a formal process for investigating anomalies (Significant Finding
Investigations, or SFIs), the specific elements of each investigation tend to be customized to
address the problem at hand. A combination of testing and analysis is generally done, and
resources across the lab are brought to bear, including modeling. For example, electrical
simulation was used extensively on several W87 SFIs to examine firing set high voltage
breakdown. While the modeling capabilities did not allow for true root cause analysis (i.e.,
identifying the actual source of the breakdown and the factors influencing it), it did allow for an
examination of the effects of the breakdown and the impact of breakdowns with slightly different
characteristics (location and timing). As discussed earlier, SUNS™/SPICE could be used to
thoroughly explore the performance state space for several variables.

Proposed New Approach

The toolset offers a more formalized approach to modeling in the context of anomaly
investigation, as well as integrated tools to perform the analyses. Figure 8 shows the proposed
process. It consists of four steps:

(1) Develop a model with adequate detail (which may already exist) to emulate the anomalous
results; this requires engineering judgment accompanied by hardware validation and is often
an iterative process. Note that the optimization tool may accelerate model development by
automating the process of varying parameters to match model outcomes to observed results
from hardware testing.

(2) Postulate root causes and inject them into the model; compare with the observed anomaly
and add to the list of possible sets of anomalous behavior if they are similar.

Figure 8: Anomaly Investigation Process

Observed Potential Co [The candidate causes can enter the
mponent . S AR
Anomalous Component [— simulation via the circuit topology,
. Performance .
Output Malfunction " component characteristics, sources
of variability, or local environments.]
iterate
Comparison
Electrical poor
Simulation | Output Possible
Sources

of
Variability \ Candidate
Causes
Sets of Possible /
Local

Anomalous :
Component Performance Environments

(3) After generating a set of anomalous behaviors, it is then necessary to determine their impact.
It is important to recall that specific anomalies themselves may not lead to system failure.
However, they may be indicators that other units similarly afflicted could fail due to

-23.

T e v e e st 2 retee—pyee— e - AL ST et o rweene

different environments or even different interface conditions. Thus a critical role of
modeling is taking each anomalous behavior and developing a generalized view of its
impact. As shown below, each type of anomalous behavior is explored vis-a-vis the sources
of variability, the different environments that can be expected, and the interface conditions
that might be experienced. Additionally, any time dependence must be examined; this will
be discussed further in the next section. Finally, the relevance of this anomaly to other parts
or technologies must be examined to identify any other impacts.

(4) The final step is quantifying the impact. Initially it is expected that the primary contribution
to the anomaly investigation process will be qualitative. Issues surrounding probability
quantification using SUNS™/SPICE will be discussed in more detail later in this report.

There are important advantages to this new approach:

(1) Modeling is a much less expensive way to gain insight than testing. Parameters are easily
controlled and monitoring can be done unobtrusively. The ability to inject faults without
otherwise affecting performance is particularly critical. Many iterations can be done quickly
with a model while varying parameters and conditions based on a small number of
validation tests. To gain the same understanding with testing alone could be very costly and
time-consuming.

(2) Typically it has been challenging in the past to determine the generalized impact of an
anomaly (i.e., how the observed anomalous behavior may manifest itself in other
components, under different environments, and for other weapon capabilities). Use of a
modeling framework allows one to easily inject the behavior under these different
conditions and observe the consequences. This would be prohibitively expensive to do with
hardware in most cases. It addition, it is difficult or impossible to test at some
environmental extremes (for instance, shock and vibration at higher levels of assembly).

Lifetime Prediction
As shown in Figure 7, the need for a lifetime prediction capability spans the weapon life cycle.
Lifetime is a key decision-making and resource allocation metric, and improved means of

predicting it are critical as the Nuclear Weapons Complex continues to shrink.

Current Process

There are three important times when lifetime prediction is necessary. The first is during design
and development. The most obvious issue is that of the need for Limited Life Component
Exchanges (LLCEs) for those components that are known to have a limited life. A combination
of testing and analysis has been done in the past to determine if LLCE was needed and when it
would be needed. A secondary issue was that of identifying and performing an adequate
qualification program such that there was some assurance that the weapon would meet its
specified lifetime goal (often 20 years). This was done via accelerated aging tests, IC burn-in,
part dissection to look for changes, and environmental cycling. This was not accompanied by a
formal lifetime prediction, although the tests and conditions were selected to try to emulate a
long life.

-24 -

The second time when lifetime prediction is used is during investigation of an anomaly. Itis
necessary to determine if the anomaly is time-dependent. If it is, the expected failure probability
as a function of time must be estimated such that a decision regarding corrective action can be
made. Again, testing and analysis has been relied upon to answer these questions. Historically
there have been instances where time dependent degradation was observed, but the time constant
was so slow that it was deemed to not be a concern during the expected lifetime of the weapon.
On the other hand, some anomalies have shown a degradation rate sufficiently large to motivate
a retrofit. Because such unanticipated retrofits are costly and difficult, credible and accurate
lifetime prediction is essential — and becoming more so as resources decrease.

The third instance where lifetime prediction is important is during planned retrofits; for example,
those conducted to incorporate a new capability into the stockpile. The role of lifetime
prediction is very similar to that done during initial design and development.

Proposed New Approach

The new approach capitalizes on the modeling of aging behaviors being done as a part of the
Enhanced Surveillance Program. The approach will be hierarchical, building a bridge between
the material models and the piece-part models in order to examine the effects of aging in a
subsystem- or system-level context. This provides a framework to evaluate pervasive aging
throughout the system (e.g., if multiple piece-parts are changing with time).

The steps in the process are as follows:

(1) Analyze the subsystem or system for key contributors using the Design Margin Analysis
process. Both parameters prone to variation and parameters that are suspected to affect
system output and variability should be included.

(2) Develop a model of behavior as a function of age. This may be physics-based or empirical.
Furthermore, although it will often be at the piece-part level, it could be at any level of
assembly (piece-part, printed wiring board, Major Component, Major Assembly, or system).
One of the key assumptions in using SUNS™/SPICE to perform these analyses is that the
aging models can be cast into the context of electrical parameter changes.

(3) Incorporate the models developed in step (2) for all critical age-related variables as
identified in step (1) into an electrical subsystem or system model. -

(4) Exercise the model as a function of time and examine the outputs to see if specifications are
not met at some point in time. This will give a prediction of lifetime. Note that this could
then be extended to examine reliability as a function of time.

The advantages of the new approach are as follows:

(1) There can be more informed choices during design of materials and parts, based on the
modeling results. Critical parameters can be identified for on-going monitoring.

(2) There is a much better understanding of design margin as a function of age.

_25.

ST TR T R LR AP r e & SERA N s AN TS A

(3) The process can help identify if an age-related problem is a gradual degradation or a cliff.
(4) Parametric lifetime studies can be done with the Lifetime Prediction process.

(5) Cost/lifetime trade-off studies can be performed.

Probability Quantification

This is often considered to be the ultimate goal of modeling and simulation. It is the culminating
step, but it is also carries with it the highest technical risk. It is important to realize that failure to
achieve a generalized probability quantification approach using modeling does not preclude the

major benefits accrued by the other processes.

Current Process

During design, a reliability prediction is performed. Since relevant performance data is typically
not available, the prediction tends to be based on a comparison to similar piece-parts, Major

Components, or systems that operate under similar environments. Design of Experiments might
be used with development hardware to examine different options vis-a-vis margin and reliability.

The reliability prediction is used in a variety of ways. Early in the design, trade-off studies can
be performed. If the overall reliability requirement is not met, the prediction provides a basis on
which to allocate resources to improve it. As FPU approaches, the reliability prediction serves as
an initial estimate of reliability for the system as it enters the stockpile and until sufficient data
are available to make a data-based assessment.

Probability quantification is an important part of the anomaly investigation process. It lays the
foundation for deciding whether or not to take corrective action. The current process is as
follows:

(1) Following detection of the anomaly, analysis is performed to identify the root cause.

(2) A determination is made as to what test data are available to assess the impact. This
requires a significant amount of engineering judgment, since each type of test (and
associated test condition) must be evaluated to see if it would be capable of detecting the
anomaly.

(3) If there is insufficient data to assess the impact, additional testing or analysis may be
performed to supplement the information available to quantify the impact.

(4) Once sufficient data are available, they are used to quantify the impact (probability of failure
equals the number of failures divided by the number of relevant tests).

There have been instances where this approach has been modified slightly. In some cases, it has
been recognized that it is more meaningful to think of performance in terms of distributions
rather than in terms of failure to meet a specification. The analysis is customized based on the
specific anomaly, but the general approach is that probability of failure is determined by
examining the overlap of distributions.

-26 -

Proposed New Approach

Probability quantification builds on the other processes, most importantly the Design Margin
Analysis. It is more demanding, though, in the sense that one can tolerate uncertainty in design
margin analysis because the goal is typically understanding relative (rather than absolute)
margin. For probability quantification, it is essential to minimize uncertainty in the results and to
ensure that all salient factors are included. The results must be highly credible when major
allocation of resources and potential disruption to the Nuclear Weapons Complex are at stake. It
is anticipated that initially the process for probability quantification will be used sparingly or in
conjunction with other methods until its credibility is validated. Of course there will be instances
where, because of cost or urgency, it is the only option. SUNS™/SPICE is limited in that it only
examines electrical performance, which is only one aspect of system success (and hence
reliability).

The process in general is described below:

(1) A model of the relevant subsystem or system is developed. Note that it is likely that this
will need to be a multi-disciplinary model with aging effects incorporated and must be
capable of emulating combined environments. It also needs to be a synergistic model — that
is, the different simulation regimes cannot operate independently but must exchange
information dynamically (e.g., electrical parameters in the electrical simulation tool must
respond dynamically to temperature changes derived by the thermal modeling tool).

(2) The models are exercised under the range of expected conditions (operational and
environmental) to determine the distribution of performance values.

(3) These output distributions are compared to specified success/failure criteria to determine
reliability. Alternatively, sets of distributions are evaluated to determine the frequency of
unacceptable outcomes.

There are numerous benefits to the Probability Quantification process:

(1) After the initial investment to develop the requisite models, the use of modeling is much less
expensive than testing. In addition it does not rely on obtaining hardware assets — assets
which may or may not be controlled by DOE.

(2) Modeling allows for examination of a much wider multi-disciplinary parameter space.

(3) Direct cost/reliability trade-off studies can be performed.

The risks are as follows:

(1) The initial investment for the models could be substantial.

(2) The need for high credibility has aiready been discussed. Understanding the sources and

magnitude of the uncertainty is an enormous technical challenge. The cost to validate the
model results could be substantial.

-7 -

(3) There is always a risk that the model has not captured all of the key factors. This could
lead to misleading results and improper allocation of resources.

Despite the technical challenges noted above, it is strongly recommended that this process be
explored thoroughly. Quantifying reliability is the ultimate goal and culmination of the work
being done under the auspices of ASCI and ESP. The investment in these projects cannot be
fully recouped unless a methodology for more complete use of information obtained from
modeling is developed. On the other hand, there is a serious danger that modeling information
can be misused; a careful approach with thorough consideration of uncertainty is essential.

W80 Firing Set Application
Scope

The WSO firing set was selected as the prototype application for the SUNS™/SPICE3 tool. The
issue to be explored was that of variability of the firing set charging circuitry. In this case, the
evaluation variability included that due to random part variability as well as the variability in
performance due to temperature.

The W80 firing set charging circuit is a DC-to-DC converter that transforms 28 V DC power to
DC voltages at the kilovolt level in order to charge the main CDU and neutron generator
capacitors in the firing set. The output voltages reach regulation at 720 ms in the nominal circuit
model. The voltage levels at regulation are 4580 volts on the main CDU and 1720 volts on the
neutron generator capacitor. The firing set contains an oscillator, power amplifier, and voltage
regulator. The circuit model used in the present work consisted of models for those three
subcircuits and includes the two capacitors mentioned above as output loads.

The circuit model contains a total of 46 electrical components, as follows: 20 resistors, 7
capacitors, one inductor, 11 diodes, two transistors, an opamp, two transformers, and two 28 V
DC voltage sources. The resistors, capacitors, inductor, and voltage sources are modeled with
the standard SPICE models. Temperature-tracking models for the semiconductor devices were
supplied by Department 1734. Models for the transformers were supplied by Departments 1733
and 8418.

Problem Setup -

We used SUNS™ and SPICES3 for this application, with SUNS™ run on a Windows NT
machine and SPICE3 run on CPlant. Note that the problem was executed as a set of independent
runs on the CPlant processors rather than as distributed runs.

The goals of the analysis were: (1) to determine the major contributors to variability, and (2) to
model the variability of the firing set, given some assumptions on random part variability and
behavior over temperature. This necessitated two separate SUNS™ cases, referred to below as
the uncorrelated case and the correlated case. The first assumed no correlations between the
input variables. Obviously this does not reflect reality in that the temperatures of different parts
in the weapon cannot be vastly dissimilar at a given time. Any information on output variability
for this case would be meaningless; however, it does allow one to identify the major

-28 -

contributors. The second case induced correlations between the input variables (i.e., for any
given run, the temperature was effectively held constant across the circuit) in order to emulate a
real case and thus result in meaningful output variability.

As described earlier in the section on Stage 1 Tool Linkage, the SUNS™ Input Editor was used
to set up the variations in the 46 electrical components used in the multiple simulations described
below. In the case of resistors, capacitors, and inductors, the distributions were simply taken as
uniform over the range of product specifications (e.g., a2 uniform distribution from 0.95 nominal
to 1.05 nominal for a 5% resistor, etc.). This was assumed to encompass both random variability
as well as the variability due to temperature. For the correlated SUNS™ case, each of the
resistors was defined to have a correlation coefficient of 0.3 with temperature. This effectively
allowed some degree of correlation between resistance and temperature but did not tie them
together completely. The selection of 0.3 as the correlation coefficient was arbitrary, and the
sensitivity of the results due to this assumption has not been explored.

Nominal models for the semiconductor devices were used in all cases, with temperature included
as an independent variable. We chose to investigate the sensitivity of the circuit performance to
variations in these devices by sampling the temperature from a uniform distribution over the
range specified by the STS environment. The approach for the uncorrelated case was to sample
the temperature in each model from the distribution independently of the temperature in every
other model. For the correlated case, the approach was to sample from a single temperature
distribution and set the temperature in every device equal to that unique temperature. This
mimics what would happen for the real hardware.

When the first simulations were run, it became apparent that allowing the temperature to vary
widely in two Zener diode models was leading to unmanageable convergence problems (see the
discussion of convergence below). In order to circumvent this difficulty, the temperatures in
these two diodes were held at 27 °C. Hence, they did not participate in the investigation of the
effects of variability.

The transformers were treated differently. It was not feasible to vary them continuously over the
range of their specifications, so nominal, high, and low spec models were developed and used. It
is assumed that the specification range encompasses both random variability and the variability
due to temperature. The “Empirical Discrete” SUNS™ distribution was used to randomly select
one of the three different models for each case; the choice made was to distribute them in the
ratio 0.5:0.25:0.25 for nominal, high, and low, respectively.

The charging circuit depends upon voltage outputs (V1 and V2) from power supply circuitry that
was not included in the analysis. A range of voltage values for V1 and V2 was provided by the
firing set designer, and these ranges were input into SUNS™ with a uniform distribution. No
correlations of V1 or V2 with temperature were induced in either of the SUNS™ cases.

Output from the SUNS™ Input Editor was processed using Excel and then sent to the Parse
program to produce netlists for the SPICE3 simulations (see Figure 1).

Signal outputs to both the main CDU capacitor (C1) and the neutron generator capacitor (C2)
which were used to measure the performance of the charging circuit were as follows: Voltage at

-29 .

(RS R o e v I ST LN VS AR et e e e - — -
v TR LA R TP L LN T R Tt o T NIRRT T T

regulation, time to 90% of regulation voltage, dV/dt at 50 ms, voltage at 300 ms, and dV/dt at
300 ms.

Issues

In this section, we discuss a number of issues that arose in simulating the W80 firing set charging
circuit.

Circuit Model Development

In developing the circuit model itself, it proved to be useful to start with a PSpice© schematic.
The PSpice© package includes a schematic capture graphical user interface which allows the
user to draw a schematic in a window on the computer screen. The original charging circuit
model was developed in the form of just such a PSpice© schematic. The schematic is then
converted to a netlist by the schematic capture program. The netlist is the input file that is read
by the simulation code (PSpice© or SPICE3). The netlist refers to device models to completely
define the circuit in terms of (e.g.) semiconductor and magnetics models. These models are
typically contained in library files for convenience.

The SPICE3 code does not include a schematic capture interface. Input to SPICE3 is
accomplished strictly by netlists. A SPICE3 model for the charging circuit was prepared by
generating a netlist with the PSpice© schematic capture program and modifying it for
compatibility with SPICE3.

In some cases, it was also necessary to modify the semiconductor device models themselves in
the model libraries, as the syntax used in SPICE3 is slightly different from that used in PSpice®.

The greatest difficulty encountered in developing device models for the charging circuit that
would run under SPICE3 was in providing good models for the nonlinear magnetic core in the
MC2929 transformer in the oscillator. The PSpice© code has a nonlinear magnetics model, but
SPICE3 has none. Hence, it was necessary to develop behavioral models for the transformer that
were SPICE3-compatible. This is briefly described below.

Simulator Convergence

Simulation of nonlinear electrical circuits as complex as the charging circuit are frequently
subject to convergence problems. This occurs when the computer code attempts to reduce the
time step to an unacceptably small value (typically of the order of femtoseconds for the firing set
circuit) in order to solve iteratively for the next solution step while maintaining a specified
accuracy. The code then stops the simulation.

The earlier discussion of the convergence failures due to temperature variations in two Zener
diodes (see the section on the W80 firing set charging circuit) provides one example of this
problem.

We also frequently found nonconvergence of the charging circuit simulations to be associated
with nonlinear transformer models. The presence of hysteresis in the transformer cores leads to a

-30 -

complex model, which has the potential for introducing convergence problems. Furthermore, the
hysteresis process itself, involving multivalued functions, is a natural source of difficulties.

The following measures were taken to obtain better convergence: (1) The tolerances on the
solution accuracy were relieved (while still maintaining the tolerances at a level such that the
results were sufficiently accurate for our purposes), and (2) The order of the appearance of
devices in the netlists was altered (which presumably effects favorable changes in the ordering of
the solution matrix). The result was that the rate of convergence failures prior to the simulation
of the onset of voltage regulation were reduced to approximately 4%. Although the elimination
of this 4% from the results presents a risk that effects in some region of sample space are being
ignored, it was felt that this risk was statistically small enough to be acceptable.

Nonlinear Transformer Modeling

For reasons discussed previously, the development and application of a model for the MC2929
oscillator transformer has required a great deal of time and care. We currently have models that
work well for simulation of the operation of the oscillator and power amplifier subcircuits, but
we still have frequent convergence difficulties in the long runs necessary for a full simulation of
the charging process.

The parameters which dominate the determination of the firing set oscillator frequency are those
which govern the properties of the magnetic core in the MC2929 transformer. Specifically, the
frequency is approximately inversely proportional to the difference between the saturation
magnetization and the minimum core magnetization.

Hysteresis in the core of the MC2929 is very important in determining the oscillator frequency.
The reason is that when the excitation of the core returns to zero, the magnetization does not do
so because of hysteresis. Hence, the aforementioned difference between saturation
magnetization and minimum core magnetization is less than it would be if hysteresis were not
present, and the oscillator frequency is higher as a result.

An MC2929 model which includes hysteresis was developed, but it was found necessary to
utilize a model without hysteresis in order to carry out the long simulations involved in the
variability investigation without convergence failures. The elimination of hysteresis reduced the
oscillator frequency, as noted above. Since hysteresis is important in the operation of the
oscillator, it is necessary to justify the use of a model without hysteresis in this work. Since the
effect that hysteresis has is to reduce the peak-to-peak change in core magnetization that occurs
in an oscillator cycle, the effect of hysteresis can be simulated within a model without hysteresis
by reducing the saturation magnetization. Even so, such a reduction was not done for the
simulations carried out in the current work, as the oscillator frequency does not have a direct
effect on the charging circuit output voltage, and our purpose was to compare the significance of
varying parameters and not to obtain extreme accuracy.

Extraction of Simulation Results
One part of the process that required a significant amount of time was the extraction of results

from the SPICE3 output files (the Analyze step in the Stage 1 Tool Linkage). As noted above, it
was necessary to write new code or to significantly alter existing code for different circuit

-31-

T sC T . e b~

configurations. This is simply a result of asking different questions about the behavior of each
configuration. This code occasionally became rather intricate because of the need for focusing
on the behavior at specific points in a circuit process and ignoring data from the signals at other
points.

Input Correlations in SUNS™

Some difficulty was encountered in setting up the correlated SUNS™ case. Initially, we
attempted to use SUNS™ to correlate the temperatures for all of the semiconductor devices, with
a correlation coefficient set close to 1.0. SUNS™ was unable to generate a satisfactory
correlation matrix, perhaps because of the sheer quantity of variables being correlated. This was
solved by reducing the set of semiconductor device temperatures to a single temperature
variable. This was varied using a uniform distribution. Microsoft® Excel was then used to set
this temperature for all of the semiconductor values for that particular run.

Another issue appeared to be that of the number of runs. The uncorrelated SUNS™ case used 60
runs, of which 57 converged when put into SPICE3. Discussions with the SUNS™ team
indicated that 2 minimum of 100 runs are suggested to develop statistically meaningful results.
For the correlated SUNS™ case, 105 runs were selected with 101 that actually converged.

Some contradictory results were obtained when comparing results from the uncorrelated and
correlated cases. For example, for the case when inputs were uncorrelated, the input C2 was
shown to be positively correlated with the output “Time to 90% for C2”. This is the expected
dependence. However, for the correlated case, C2 was shown to be negatively correlated with
“Time to 90% for C2”. It both cases, the magnitude of the correlation coefficient was rather
small at approximately 0.2.

The cause of this anomalous result is unknown. However, we speculate that it may be due to the
limited quantity of samples combined with the inability to force zero correlation coefficients
between uncorrelated inputs. The SUNS™ software offers the option to force zero correlation
coefficients, but it was unable to generate a correlation matrix for this case (again, perhaps
because of the large number of inputs). Thus some of the inputs that were intended to be
uncorrelated had relatively high correlation coefficients (up to 0.3 in some cases) with other
inputs. If the C2 input described above was inadvertently correlated with other inputs (especially
those that were strong contributors), it might appear to affect the output differently because of its
accidental convolution with the other input.

Results

Pareto charts of the correlation coefficients between selected outputs and the inputs are shown in
Figures 9 through 12. As can be seen from Figures 9 and 10, the variability of V2 has the most
influence on the variability of the time to charge up to 90% of the regulated voltage value.
Figures 11 and 12 show that R110A has the most influence on the value of the regulated voltage.

-32-

Figure 9: Simple Raw Correlations for “Time to 90% for C1”

srmpleRawcorreJaﬂons. tso%reg 01 v
10 2. QB5D(TEMP) .
' 3 RH0A
08 4R35t
5 R30
081 8 C2
£ 04 7: CI2A
s 02 l_l '8 R4
E) ["I 8: CRIO1(TEMP)
;8 00 H ! l_! f—l] OO 16 C1
& U l__| L] 11: CRIOSA(TEMP)
‘o 02 12 R1A
.(% 041 13: R2B
14: R104A
06 15: R2A
064 16: X 7300
17: RI0SA
A0 o e s ermat el WU R e 18: C101A
T2 3 4 5 65 7 8 B.10 i1 12 13 i4 15 1B 47 18 19 -
: 7 19: CR302(TEMP)
Input Variables e
Figure 10: Simple Raw Correlations for “Time to 90% for C2”
' S §fmple Raw Correlationé' i'§6°k;regcz o w2
0 2 Q350(TEMP)
' 3: RUDA
038; 4: R3O1
0 5. R351
61 B €2
2 04 ~ 17 cieA
'8 02 ﬂ , - 18 R4
‘202 |—| : 1 o creoiqEMP)
38 00 l_l]—[l—l m [I O R Y Y
& 02 U L] L o 1 11 reB
2 L : 12: CRIOZATEMP)
‘% 0.4 - ’ . 13; R1A
: 14: R1D4A
08 15: R2A ,
081 16: CR302(TEMP)
) . 17: R350
'1,0 4 * ~a e 7 el T o dTTT LY N e e o . T Tl p i e e o iaata el .
1 % 3 456 7 B8 d0 1 2 i3 4745 9 i7 i 4o | 18 RIDSA
o 19: X _T300
e e . Ippdt Variables e
-33.
AT A TN T A g et LTI N T T 7 - e RN T Y T meER AT

1.0

Simple Raw Correlations
o o
o 3,1

&
a

1.0

o
tnh

Simple Raw Carelations
o
[}

05;

Figure 11: Simple Raw Correlations for “Vreg C1”

; SIr{';pié‘Ra‘wﬁqrrelaﬂon‘s: Vreg}'::'! -

CHLNDUHEYN

SEERE N

N i o I e A i
[N | e

.- input Varibles'

g g e e

5 878 8 o it @2 BT A8 i 8 e

: 'RU10A
RI11A
CR302(TEMP)
: . CR3SO(TEMP)
R10BA

. “VRIDZA(EMP)
R10SA

R351

9 RI00A

10: 2B

-

11: RS0
1] 12: CRIGIA(TEMP)
1. 13; 1300

14: R107A
15: R1A
16; C2
17: R4~

“18: R102A

19; CR301(TEMP)

Figure 12: Simple Raw Correlations for “Vreg C2”

Simple Raw Correlations: VregC2

U= =

==l

12 3 4 5 6 7 B & o i1 d2.13:4 95 6 77 i8 1o

Input Variabllels

-34 -

1: - R110A

: RI11A
CRIB4ATEMP)

: R100A

2

3

4

5 VRIIA(TEMP)
16 RIB

7

8

8

: VRIG2A(TEMP)
CR350{TEMP)

RIR%)

11 R4
12: R104A

_13. CR3R(TEMP)

14: CI05A°
15: €350

16: U10CA(TEMP)
17: X730
18: C2

18 R101A

Figures 13 through 16 show the expected distributions of the four above outputs, given the
assumptions as to the variability of the inputs.

Figure 13: Histogram for “Time to 90% for C1”

| Output Results -t 90%reg C1

0.15
0.14
0,134
0,12 1
0414
0.10

0.09+
0.08
0.07
0.06 4
0,054
0.04

0.03 4
0.024
0.01

000},
| 0.00 0.25

" Probability

seaded — b i ias e e e s s Y

L ST BN, S

075 1.00 1.25 150 175 200
190%megC1

oS0

Figure 14: Histogram for “Time to 90% for C2”

Output Resuits -t §0%reg C2

0.15

0,141
. 0131
i 0,124
0.114
0,104
0.03
0.03
0,07
0.06
8.05
0,041
0.031
0'02
Q.01 {
0.00 - R BN IeDIE e . S e T . e 7 © e,
0.00 0.25 0,50 075 1.00 125 150 175 206
.. 190%reg C2_

Probabifity

——— T v AT BT e

-35-

R e s e t rs e e and ~ o rp—— - -

Probability

Probability

Figure 15: Histogram for “Vreg C1”

Output Results - Vreg C1

0.15
0.141
0.13
.12

0.114
0.10
0.09
0.08
0.07 1
0.05 1
0.051
0.04
003
0.021
0.01
0.00

54

Figure 16: Histogram for “Vreg C2”

~Ou£pufR—ésults-Vr§gC:2 o ' , .

0.186
0.15
0.14
0.13
0.12
0.11 4
0,104
0.084
0.08
DO74"
0.05 4
005
.04
0.03
0.02;
0.014
poo! . C e AL
1400 - 1520 © 1840 7 1760 1680) 2000
) Vieg C2 o

-36-

Figure 17 summarizes the means and standard deviations for each of the outputs above.

Figure 17: Output Variability

Variable. ‘Mean | Standard
. o Deviation
Time to 90% for C1 (sec) 0.609 0.165
Time to 90% for C2 (sec) 0.617 0.172
Vreg for C1 (Volts) 4535 259
Vreg for C2 (Volts) 1712 104

Conclusions

For each of the output variables, the variability does not result in failure to meet specification
(i.e., for the expected range of inputs, the outputs are always within specification). These are
encouraging results, suggesting that the firing set charging circuit design margin is adequate.

Note that if the outputs failed to meet specification for some combinations of inputs, the analysis
of key contributors would provide insight into which inputs might need better control.
Furthermore, the degree of control could be determined using the variability tool. Also, the
expected unreliability due to the variability could be estimated by examining the output
histogram vis-a-vis the output specification. The fidelity of this estimate obviously hinges upon
the fidelity of the input information, the completeness of the analysis (i.e., have all important
factors been included?), and the relationship of the output specification to the actual pass/fail
criteria. Despite all of these caveats, the variability analysis will certainly help to identify areas
where design margin is questionable or inadequate. In those cases, either further analysis or
focused testing can be performed as validation.

Optimization

One of the initial goals of this project was to do a similar tool linkage and methodology
development for an optimization code, GO™ (Genetic Optimization). Further work on GO™
was not pursued because of the opportunity to pursue the Stage 2 variability tool linkage.

Although it was not used in the present work, some optimization software has recently been
applied to improve the agreement between simulation results and laboratory data in the case of
the oscillator circuit in the W80 firing set charging circuit. The software employs a technique
referred to as the asynchronous parallel direct search (APDS) optimization method and was
implemented on the CPlant computing system.

There is a predecessor to APDS, the standard parallel direct search (PDS) optimization method
which can be quite useful for engineering optimization problems characterized by expensive

objective function evaluations. However, PDS does not perform well on cluster computational
platforms such as CPlant because it is hindered by synchronization penalties and crashes in the

-37-

PRI 22 S AN N P ¢ > <

event of a node failure. The APDS technique is an asynchronous fault-tolerant version of PDS

that overcomes these limitations’.

A previous attempt to optimize the oscillator model without using the APDS approach had
involved the adjustment of a limited number of parameters in a rather crude procedure. It
resulted in a significant improvement in the agreement between simulation results and laboratory
data, but it required detailed prior knowledge of the effects of certain parameter variations.
When the APDS method was employed, it utilized more circuit parameters and was done as a
blind test. That is, the approach was not influenced by prior knowledge of effects. The APDS
method performed very well; it resulted in a significant improvement over the crude procedure in
the comparison of simulation results with laboratory data.

We feel that such optimization software could play a strong role in future modeling efforts. Itis
a much more efficient way to close the gap between modeling results and laboratory
measurements, an often time-consuming process when high fidelity models are required for
analysis.

Follow-On Work

There are three main thrusts for follow-on activities. The first is continued development of the
variability tool within the framework of the HPEMS user interface, including the addition of an
“Analysis Advisor”. This provides a valuable tool for the designer to perform variability
analysis during the course of the design, when there is maximum flexibility to make changes to
the circuit design. The second thrust is incorporating the optimization capability in the HPEMS
user interface. This will allow the designer to identify means by which design margin can be
improved. As noted in the previous section, this could also provide an important capability to
the modeling community. The final area for exploration is analyzing time-dependent phenomena
such as aging or low-dose radiation. There is a need for tools that can examine the impact of a
degrading parameter on the overall system, particularly when the effect is a pervasive one
throughout the system.

3 See the following references for more information:

J. E. Dennis and V. Torczon, “Direct Search Methods on Parallel Machines”, SIAM J. Optimization, 1(1991):448-
474.

P. D. Hough, T. G. Kolda, V. Torczon, “Asynchronous Parallel Direct Search Algorithms for Nonlinear
Optimization”, in preparation (1991).
-38-

Appendix A: SUNS™ User’s Reference Manual

Al

This page intentionally left blank

A2

enter for System Reliability

SUNS™
User’s Reference Manual

Version 1.0

Sandia National L.aboratories
Albuquerque, New Mexico

October, 1999

“Exceptional Service in the National Interest”

A3

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Govemment. Neither the United States Government nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefuiness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof or any of their
coniractors or subcontractors. The views and opinions expressed herein do not necessary state or reflect
those of the United States Government, any agency thereof or any of their contractors.

A4

Contents

CONEENES 1ueeeeeererereemanieessennancrsrsomssnsteasasnasssassssssasssnsnnsssssssnnsstsnessassantasssssssnansasssans i
FiOUIES cuviureersarsesssnsmsaisensssusnsennsnsasssnssnsssssssmsnssisssssanssansansensnsnesnssssnnsassnaseastessasss iii
TADIES ceceerereescemsmssssmmsmnssennnnsssessnnsssssnsssnsssssssssssssesnnnnsnsnsennnasssnsssassssssanensssssnsnnnsnses \'
1 Getting Started.......ccscvevcriscirnrrnnreesnnscnsansnisss e s ssnnssasenssnsesasansssnsannsanas 1
1.1 Introduction to SUNS for WindOws.........cccccevvmiiiiinimneeniiieinnieneicnieees 1
1.2 System RequiremMentS........ccoveiiiiinininei e 1
1.3 Installing SUNS ...ttt 2
1.4 Users Reference Manual........cccocceveceecinniininnnrcceeiinnrinnrsssssinene e 3
1.5 IN ClOSING. .. ceveerererrereeieneeiiicierisne st s st s st et 4
2 SUNS Design OVEIVIEWccccuieciseresmsssssnsssssnisasssssinnsasssasssnmssnssanssnsansssanssssssssss 5
3 SUNS Statistical SamMpPling.....cccccceveminininreessncsaniisnncnianissessessnenssnsisssseensess 7
3.1 Sampling Methodology........ccoveeimmneinnici e 7
3.1.1 DiStIDUHONS ...ccceiiiierrreeerecrire et ra e s ae s 7

T D23 07011 (=1 1= 1 (1) o - NURR ORI POPPP RS PPRPIPS 7
3.1.3 ProOPeriEs ..cceeeerrtiitiiiiiienieinn et 7
3.1.4 SUNS Distribution TYPESccvvirmiiiiiiirinncenireciencienieneatieenn 8

3.2 SUNS Data FilES ...uueveeiiiiererreriseineeeeceiiteniiinneessessssnssnsssssssnnecssesessannasenaas 9
3.3 The User Application........c.cccoviiieieinniininenceiccni e 10
3.4 SUNS RESURS VIBWELevvrieeiereeeerienieienisienteeesrirassesnessseesseesssaannssessnns 11

4 Linking SUNS With Your Application.......cccccrsmsinsansemsniniasessnsssssrsssensnsas 13
4.1 Creating @ New File....cc.ciomic e 13
4.2 Saving YOUr WOTKcovuimiiiiirrnineieitscecatinste s 13
4.3 Opening an EXisting File ..o 14
4.4 Editing Variable Datacvieeiinineniiis 14
4.4.1 Theoretical DistribUtioNScccvveerveriiiiiiiieans 15
4.4.2 Empirical DIStibUtiONSccuevmviiiieie s 16
B.4.3 NOIES cuveeeeeeeeeiieeeeiieieeeeeeeiirneeereeeeseessiree st essssassss s snnanrerenessssssasissianes 16

4.5 Editing Correlations........cccouerereeienimnienininenininiiienss s 17
4.5.1 Correlation GroUDPSc.ceeeveererieinimiiinniteeesrsssines ettt s sseenns 17
4.5.2 Choosing Correlated Variables. ... 18
4.5.3 Entering Correlation (@701 1{(1=) 17O 18

A5 ‘

B Al varacaaanasb R L RN T S P A T 7 Wit 7h- amecia s L Rl TWAAT € ot a@TS

4.6 Arranging the Variable Orderecviiiieeeriirrcirreiericccncccnnenereee s 20

4.7 Setting Sampling Options.........cccccvvvveiieeeneens R 21
R T o 1101 (14 o [OOSR 22
4.9 Running the Sample........ccoovirmirrririiemnetrr e 22
4.10 Using the TOOIDAr........cccciiereiieee ettt 22
5 SUNS ReSUIS VIEWETcccceeiviiinsnninsscissnmnnisssssssnasssssssssssnssossnsnnnassianssssssasases 24
5.1 SUNS ReSUIt FleS .enerieieeieeeietee et 24
W2 D11 o] P21/ o To IV L=To7 (o] ¢ TP 24
5.2.1 INPUE SAMPIE ceenreeeeeeeeeeeeeterec e 24
5.2.2 Output Displaysccoveeiceiirriiecir e, 27
5.3 Displaying Correlationscccccoceriiiiiiiieimenieiiiiineienenee e 28
5.4 Other DiSPlayS....uueeeeeiveriiiirciiene ettt ssasas s ranne e s 29
5.4.1 Uncertainty IMporanceccocoviiiniiiiiiiiininiiiiiiinenccteieeccceee, 29
5.4.2 Input and Result VECIOrsccooviveiiiiiiiiiiiiniiii et 29
I G IS Tor=Ya (=] gl d (o) -0 30

5.5 The Results Viewer TOOIDAr........ccoiviiimmiiieeriieenierrntrere e 31
6 SUNS EXaMPIE...ccorccrmmrerinsasronmmssscmcmmmmsssssssisisssssanassmsisssessesssssnsnnansssssssasssanans 33
3 I (0101 G B - - OO OO 33
6.2 Example Application......cccc.cccviiiiiiiiiiiiiiiiiiii s 35
A 5 (= (= (= £ o= S 39

A6

Figures

Figure 1.1 SUNS Installation FOIMcccccoeverrmrimniiiirteec et 3
Figure 2.1 SUNS Structure for Statistical ANalysisoccovveveeiinicniininniinnn, 5
Figure 4.1 SUNS Main Program Screen.........ceeminineneninninneeccnnnncecsnine, 13
Figure 4.2 Editing Variables...........cooouiiiiiiiniiicecncee 14
Figure 4.3 Supplying Parameters for a Normal Distribution............cccceoeininie 15
Figure 4.4 Entering Data Pairs for an Empirical Distribution........c...c.cocceeeeinnee 16
Figure 4.5 Correlation GroUPScocreeiuiiriiiieeiiieiinren et 17
Figure 4.6 Adding Variables to a Correlation Group.........cceeceveesiinceiiincniinne 18
Figure 4.7 Entering Correlation Coefficientscvveeiiiieninininniiiinnii 19
Figure 4.8 Correlation Coefficients are Inconsistent...........cccocevveniinniiininnnn 19
Figure 4.9 Edit Correlation Coefficients or Choose Suggested Correlations.....20
Figure 4.10 Form to View and Arrange Order of Variables........c..ccoccecvnveninnnne 21
Figure 4.11 SUNS Sampling Optionscoeeemeineninecinininnsinncne 22
Figure 4.12 The SUNS TOOIDArccooiemiiirccrei e 22
Figure 5.1 SUNS Results Viewer Main SCreen.........occeeervienncniniiiiniineinnn 24
Figure 5.2 Selecting a Variable..........coeeiiieiiinicee 25
Figure 5.3 Histogram of Input Variable Sample.........c.cceeeiiniinniiniiniinnnnne 25
Figure 5.4 Cumulative Distribution Function of Input Variable Sample.............. 26
Figure 5.5 Complementary Cumulative Distribution Function of Input Variable
S T: 111 o) =3O SO P Y S PP P PP 26
Figure 5.6 List of Input Variable Sampled Values...........cc.ccocoviieiniiniinninnnnn 27
Figure 5.7 Summary Statistics of Input Variable Sampled Values..................... 27
Figure 5.8 List of Available Output Results.......ccceeiiiiienieiniiiiiiis 28
Figure 5.9 Selecting the Correlations to be Displayed............cccoeveniiveniicinnnnnnnn. 28
Figure 5.10 Pareto of Simple Raw Correlations.........cceceeenicneninniinniiinnnnne 29
Figure 5.11 Grid Display of Input and Output Valuesc.cccooivviniinninnne 30
Figure 5.12 Select Input and Outputs for Scatter Plotccooviiiiniiinnnnn 30
Figure 5.13 Scatter PlOt ..ot 31
Figure 5.14 The SUNS Results Viewer Toolbar ..., 31
Figure 6.1 TestApp Main FOrM ...t 35
Figure 6.2 Histogram of MTBF Values..........ccooeiiiiiininiiiiiiienns 36

iii

A7

Figure 6.3 Partial Raw Correlations for MTBF

Figure 6.4 Scatter Plot of MTBF vs Hard Drive Failure Rate

A8

Tables

Table 3.1 Parametric Distributions in SUNS ..., 8
Table 3.2 SUNS Sample File FOrmatc.ccccoveiveiniininineienceeeeecneene 9
Table 3.3 Example SUNS File ...t 10
Table 3.4 User Application Output File ..o 10
Table 3.5 Example SUNS Sample Output Fileccccoeeiimmiinieiiiccee 11
Table 6.1 Failure Rate Distributions for Example Problem.........ccccccccvveinnnnnnanns 34
Table 6.2 Empirical Failure Rate Distributions..........ccooiiieniiinniiiniins 34
Table 6.3 Down Time Distributions for Example Problemcccccoiinnnniinin. 35
Table 6.4 Summary Statistics for MTBFcccoooriiie 36

A9 v

B e e e R SRR PRRIVEL UL A e f e R " . . [- -

This page intentionally left blank

Al0

1 Getting Started

1.1 Introduction to SUNS for Windows

SUNS is an acronym for Sensitivity and Uncertainty Analysis Shell. SUNS for
Windows is a 32-bit application that runs under Windows 95/98 and Windows
NT. It is designed to aid in statistical analyses for a broad range of applications.
The class of problems for which SUNS is suitable is generally defined by two
requirements:

1. A computer code is developed or acquired that models some process
(referred to here as the user application) for which input is uncertain and the
user is interested in statistical analysis of the output of that code.

2. The statistical analysis of interest can be accomplished using Monte Carlo
analysis.

The implémentation then requires that you identify which input to your application
should be manipulated for statistical analysis. With this information, changes
required to loosely couple SUNS with the application can be completed. Finally,
SUNS is used to generate the required samples and your application analyses
the sample.

This document provides a brief introduction to the statistical sampling capabilities
included in SUNS for Windows. Previous versions of SUNS were DOS
applications. For the sake of simplicity, this documentation refers to SUNS for
Windows Version 1 as “SUNS.”

Note: The version of SUNS documented here is at a beta development
stage, meaning that it is currently being tested.

1.2 System Requirements

To install SUNS you will need an IBM-compatible PC with a 486 or Pentium
processor. A Pentium-based system is recommended. SUNS is a 32-bit
Windows application and will run under Windows 95/98 and Windows NT. The
installation requires approximately 5 MB of free hard drive space. The amount of
RAM required to run SUNS is dependent on the memory requirements of the
application you are going to use with SUNS.

To use SUNS you will need to be familiar with basic Windows functions such as
menus, dialogs, files, and mouse operation. If you are-not accustomed to using
Windows applications, please refer to your Microsoft Windows User’s Guide. To
link your application with SUNS you will also need a detailed knowledge of your
application source code. A detailed description of the file format used to transfer
data to and from your application is provided in Chapter 4, Linking SUNS with
Your Application.

All

ey e o R
T . ot P e g3 oo v ¢
Kt o ull ARt o FTNEEPIIF N S YRR TR L v - S SRR

1.3 Installing SUNS

SUNS must be installed on your computer using the provided Setup program.
The program files are compressed and cannot be used by copying them directly
to your hard drive.

To install SUNS from floppy disks:

Start Windows.

insert SUNS Disk 1 into your floppy disk drive (A: or B:).
Choose “Run...” from the Start menu.

Type A:\Setup (or B:\Setup) in the Command Line text box.

o &> 0 bnp -

. Follow the on-screen instructions.

To install SUNS from a CD-ROM:

1. Start Windows.

2. Insert the GO CD-ROM into your CD-ROM drive (fypically D:).
3. Choose “Run...” from the Start menu.
4

. Type D:\Setup (where D: is the letter for your CD-ROM drive) in the
Command Line text box.

5. Follow the on-screen instructions.

When you run the Setup program, you'’ll see a form like the one shown in Figure
1.1. If you want to install SUNS in the default directory, click the Next button to
proceed. If you want to install SUNS in some other location, click the Browse
button to select an alternate location. Then proceed with the installation by
clicking the Next button.

As part of the installation process, Setup will create a Program item “SUNS” on
your Start|Programs menu. In addition to the program files, Setup will aiso install
some example files and an online version of this Users Manual.

Al2

42 Choose Destination Lacation

Seiup v;ill install Sunsin thefollowing folder.

Toinstall intd a different folder, click Browse, and select another
folder.’ - , , ,

/;You can choose notto iﬁstall Suns by clicking Cancel to exit Setup.

Destiriation Folder—
[Q\ngram Files\Suns

<B,nc(l;“'

Figure 1.1 SUNS Installation Form

1.4 User’s Reference Manual

The SUNS documentation set consists of this User's Reference Manual (paper
and on-line versions), a context-sensitive help system, and the Readme.ixt file
copied to your SUNS program directory during installation. The SUNS User's
Reference Manual provides information on the distribution and correlation
options available in SUNS as well as information on how to use the SUNS
software. Here’s what you'll find in each chapter of this manual:

Chapter 1, Getting Started, provides system requirements and information on
how to install SUNS on your computer.

Chapter 2, SUNS Design Overview, briefly describes how SUNS is designed and
how it interacts with your application.

Chapter 3, SUNS Statistical Sampling, provides a detailed description of the
distributions available in SUNS and defines the file format used to transfer
sample values to your application.

Chapter 4, Linking SUNS With Your Application, describes how to use the SUNS
user interface to define variables, assign distributions and establish correlations.

Chapter 5, SUNS Results Viewer, shows you how to display the results of an
analysis performed using the SUNS sample vectors.

Chapter 6, SUNS Example, provides a simple example that uses the SUNS
software to address sensitivity and uncertainty questions.

Al3 3

|+ e e ———— T b

SLaEe T L TWTIROVSTRECITTITT T Y s s 8 T TS TTOINTETT L SFENTTT L o« R iy

Chapter 7, References, provides a list of references for Latin Hypercube
Sampling.

1.5 In Closing...

If you run into difficulties and cannot find a solution in the documentation, please
consult the Readme.1xt file installed in your SUNS program directory. It contains
information that has become available since the manual was written and also
contains contact information if you need help.

Like most software, SUNS has benefited from the comments and suggestions of
others. If you have comments or suggestions for improvements, please share
them with the authors. In addition, we would like to hear about your applications
of SUNS.

Lastly, please keep in mind that SUNS is copyrighted software. You may make
backup copies of the software for your own use but you may not distribute the
software or documentation to others without prior consent.

Microsoft, Windows, Windows 95, Windows 98, and Windows NT are
trademarks of Microsoft Corporation. Pentium is a trademark of intel
Corporation. SUNS is a trademark of Sandia Corporation.

Al4

2 SUNS Design Overview

The previous (DOS) version of SUNS was designed for tight coupling with your
application. That is, your computer code had to be modified to fit into the SUNS
structure and compiled as an integral part of SUNS. SUNS then provided an
input editor, a statistics driver (which was integrated and compiled with your
application) and a results viewer. Thus SUNS provided the entire interface
including an executive program to control execution of the various SUNS
modules. In the current (Windows) design, Windows provides executive
functions and there is only a loose coupling of SUNS with your application. By
“loose coupling” we mean that your application will not be coupled directly with
SUNS by compilation. Instead your code will remain a separate application and
communication with SUNS will be performed using data files.

When using SUNS as a statistical driver, analysis proceeds in three phases:
1. The SUNS statistical driver creates an input sample.

2. Your application analyzes all the input vectors in the sample.

3. Results are viewed using the SUNS results viewer.

The structure is shown in Figure 2.1.

SUNS
Results
Viewer

SUNS
Input
Editor

ASCI! File of
Sampled Input
Vectors

User's
Application

ASCII File of
Input and Output

Figure 2.1 SUNS Structure for Statistical Analysis

As shown in Figure 2.1, statistical (sensitivity and uncertainty) analysis requires a
single pass. For this reason, SUNS does not need any connection to, or control
over your application. A file of sampled input vectors can be created and then
analyzed at any time the user chooses. Similarly, the SUNS results viewer can
open any existing file that contains sampled input and output values.

AlS

This page intentionally left blank

Al6

3 SUNS Statistical Sampling

The SUNS Statistical Driver provides an interface allowing you to specify input
variable distributions and, if desired, correlations among input variables. Once
input is complete, SUNS creates the sampie and saves it to an ASCII text file.

3.1 Sampling Methodology

The statistical sampling approach uses Latin Hypercube Sampling (LHS) [1, 2]
by default although random (Monte Cario) sampling is also available. All the
algorithms required to create the sample and induce correlations are
encapsulated into an ActiveX DLL, which is a type of reusable software
component.

3.1.1 Distributions

Each distribution is either a theoretical type, which must have associated
parameters, or an empirical type, which must have associated data pairs. In
addition, a “Fixed” distribution may be specified. In this case, a specified value is
assigned to a variable for every sample.

3.1.2 Correlations

Variables may be correlated with each other [3, 4]. A positive correlation
between two variables A and B means that when one variable A is toward the
upper end of its allowable range, variable B tends to be towards the upper end of
is allowable range. Conversely, a negative correlation between two variables A
and B means that when variable A is toward the upper end of its allowable
range, variable B tends to be towards the lower end of is allowable range. The
correlation coefficient must be in the range (-1, 1). A value of +1 indicates
perfect positive correlation while a value of —1 indicates a perfect negative
correlation. A correlation coefficient of 0 indicates that the variables are
independent.

The user can select an option to induce zero correlations. If there are non-fixed
variables for which no correlations have been specified, selecting this option
causes SUNS to attempt to induce zero correlations between all variable pairs
that are not correlated. If there are correlations specified, the user can partition
the correlated variables into groups. A group is characterized by a set of
variables (none of which appear in any other group) for which correlations have
been specified. Note that if you select the option to induce zero correlations,
groupings are ignored.

3.1.3 Properties

In addition to distributions for each variable and correlations amongst variables,
several options can be set. These include:

e Use of LHS or random Monte Carlo sampling.

Al7

R A tanr e 2 AP - I T caceaac e ST e SO P e e et e v]

e A seed value for the random number generator.
e The number of trials to be performed.
e The option to induce zero correlations between variable pairs for which no

correlations have been specified.

3.1.4 SUNS Distribution Types

The primary purpose of the SUNS user interface is to allow the user to specify
variable distributions to be sampled.
available for selection from a drop-down list. The parametric distributions are

listed in Table 3.1.

A large number of distributions are

Distribution Parameter 1 Parameter 2 Parameter 3 Parameter 4
Fixed Value
Normal Mean StdDev > 0
Truncated Normal Mean StdDev > 0 LowBd >0 LowBd < UpBd <1
BoundedNormal® Mean StdDev > 0 LowBd LowBd < UpBd
End Point Normal 0.1 P'Tile 99.9 P'Tile
ErrorFactor Lognormal Median >0 ErrorFactor > 1
Lognormal *" Mean StdDev > 0
TruncatedErrorFactor Lognormal Median > 0 ErrorFactor > 1 LowBd >0 LowBd < UpBd <1
Truncated Lognormal " Mean StdDev >0 LowBd >0 LowBd < UpBd <1
BoundedErrorFactor Lognormal” | Median > 0 ErrorFactor > 1 LowBd LowBd < UpBd
BoundedLognormal " ¥ Mean StdDev >0 LowBd LowBd < UpBd
End Point Lognormal ¥ 0.1PTile>0 | 99.9PTile>0
Uniform Min Max > Min
LogUniform Min >0 Max > Min
Exponential Rate >0
Maximum Entropy Min>0 Mean > Min Max > Mean
Weibull™ Shape > 0 Scale > 0
Pareto Shape > 2 Scale >0
Gamma Shape >0 Scale >0
Beta Min Max > Min Shape, = 0.001 Shapeq 2 0.001
Inverse Gaussian® Mean >0 Spread >0
Triangular ¥ Min BestEst > Min Max > BestEst
Poisson 10° > Freq > 0
Binomial 0 < p(fail) < 1 #Tests > 1
Negative Binomial ™ 0 <p(succ) <1 | #Tests > 1
Geometric 0 < p(succ) < 1
Hypergeometric #Tests > 1 0 < #Fail < #Tests | O<#Samp<i#Tests

(1) Mean, StdDeyv in underlying normal units

(2) Bounds input in lognormal units. In normal units for derived underlying Mean and StdDev,
Log(Min) < Mean + 5 StdDev and Log(Max) > Mean - 5 StdDev

(3) Bounds in normal units. Also require Min < Mean + 5 StdDev and Max > Mean - 5 StdDev

(4) Percentiles in lognormal units, so must be positive.

(5) Regquire Shape ™ < 31.91505 + 0.3597197 Log(Scale)

(6) Require ratio of spread to mean from 107 to 80.

(7) Require Min < Max, but BestEst could equal one or the other.

(8) Binomial requires failure probability.

(9) Negative Binomial and Geometric require success probability.

Table 3.1 Parametric Distributions in SUNS

Al8

In addition to the parametric distributions listed in Table 3.1, there are 5 user-
definable empirical distributions. These are:

Continuous Linear: The user provides N ordered pairs where the first number in
the pair is the value of the variable at a particular point and the second is the
cumulative probability associated with that value.

Continuous Logarithmic: Same input as Continuous Linear.

Continuous Frequency: The user provides N ordered pairs where the first
number is the value of the variable at a particular point and the second number
is the relative frequency at that point.

Discrete Cumulative: The user supplies N ordered pairs where the first entry of
a pair is a value and the second entry is its cumulative probability. Values must
increase monotonically from pair to pair.

Discrete Histogram: The user supplies N ordered pairs where the first entry of a
pair is a value and the second entry is its relative frequency. Values must
increase monotonically from pair to pair and all frequencies must be positive, but
they need not add to one.

All of these distributions (parametric and empirical) are available from a drop-
down list. Parameter checking is done at the time of data entry. Empirical
distribution data is entered in a grid and is also checked at input time.

To specify correlations among input variables, those variables to be correlated
are selected from a list by the user. All possible variable pairs are then
presented in a grid for the user to provide correlation values. When all input is
complete, the user will be able to create the sample (with or without correlations)
and save the sampled values to a file of their choosing.

3.2 SUNS Data Files

In addition to creating a file of sampled values (vec file), SUNS can save a file
containing all of the user-supplied variable distributions and correlation data (sun
file).

The format of the vec sample file is illustrated in Table 3.2.

NumTrials NuminputVars

Variable Name 1 Variable Name 2 Variable Name 3 Variable Name 4
Sample ;4 Sample 54 Sample 34 Sample 44
Sample 4, Sample ,» Sample 35 Sample 4,

Table 3.2 SUNS Sample File Format
e NumTrials is an integer indicating the number of trials (the sample size).
e NuminputVars is an integer giving the number of input variables sampled.

e Variable Name j is a string giving the user-provided name of the i input
variable.

« Sampley; is the | sampled value of the i variable.

Al9

T ST RN nn S LA TR, RN T

g ez e e e s
AT TR, NIRRT RS

The file is comma-delimited. An example of a file having 3 input variables and a
sample size (NumTrials) of 5 is shown in Table 3.3.

53

“Resistance R1”, “Resistance R2", “Resistance R3”
510,55.2,77.3

498.2, 61,4, 70.3

503.7, 58.3, 74.6

495.9, 60.6, 73.5

508.2, 59.7, 74.4

Table 3.3 Example SUNS File

3.3 The User Application

While we cannot provide specifications for the user application, it is necessary
for the application to be able to read the vec file produced by SUNS. For the
user application, the vec file provides NumTrials input vectors to be processed.
For example, in Table 3.3, the user application would perform an analysis setting

Resistance R1 =510
Resistance R2 = 55.2
Resistance R3 =77.3

Thus the first input vector is 510, 55.2, 77.3. When processing is complete for
each input vector, your application must add output results to the end of the input
vector. The general form of the user application output file is shown in Table 3.4.

NumTrials NumlnputVars NumOutputVars

Variable Name 1 | Variable Name 2 | Variable Name 3 | Output Name 1 | Output Name 2
Sample 44 Sample » 4 Sample 34 Qutput 4 4 QOutput 5 4
Sample ¢» Sample 5, Sample 2, Qutput 45 Qutput 55

Table 3.4 User Application Output File
e NumTrials is an integer indicating the number of trials (the sample size).
e NumlnputVars is an integer giving the number of input variables sampled.

e NumOutputVars is an integer giving the number of outputs calculated per
simulation.

e Variable Name j is a string giving the user-provided name of the i input
variable.

e OQutput Name k is a string giving the name of the K" output result.
« Sample;; is the " sampled value of the i"" variable.
o Output y; is the value of the iy, output resulting from the ji, input vector.

For example, suppose there are two outputs of interest - call them Voltage V1
and Voltage V2. Then the output file from the user application might look like
that shown in Table 3.5.

A20

[T R (o et Rt L PR B g g o T Tl g

5,8,2

“Resistance R1”, “Resistance R2”, “Resistance R3”, “Voltage V1”7, “Voitage V2~
510.0, 55.2,77.3,17.9,5.2

498.2, 61,4, 70.3, 18.1, 5.1

503.7, 58.3, 74.6, 18.0, 5.0

495.9, 60.6, 73.5, 17.8, 4.9

508.2, 59.7, 74.4, 17.9, 5.1

Table 3.5 Example SUNS Sample Output File

3.4 SUNS Results Viewer

The SUNS Results Viewer reads the output file from the user application and
displays various results in graphical and tabular form. The SUNS Results Viewer

cannot modify the user application’s output file.

A21

11

This page intentionally left blank

A22

4 Linking SUNS With Your Application

This section describes how to use the SUNS interface to enter variables and
their associated distributions and correlations. Also included in this section are
1) the steps required to perform sampling once the data entry process is
completed, and 2) a brief description of other options that are available within the
software. Figure 4.1 shows the main SUNS screen when the program is first
started.

. J—— - - - © v m— s -

& SUNS - No File . 0]
' File Edit View Bunl Help \ ‘

D=z=EE o ==Ek| .7

it
;

i

D £ 72 7 1

Figure 4.1 SUNS Main Program Screen

4.1 Creating a New File

The definition of distributions and correlations associated with each variable,
together with other sampling options, are stored in a file with the sun extension.
To create a new file, pull down the File menu and select the New command.
You will be prompted to enter a new file name. SUNS then creates the file and
opens it so that you can proceed to enter information.

4.2 Saving Your Work

When you have entered information about the distributions and correlations
associated with the variables in you application, you will want to save the data.
To do so, pull down the File menu and select the Save command. This
command will write your current data to the file you are currently editing. Note
that SUNS saves this data in a file with the sun extension.

A23 13

et e e e - <o P T, - R
L YT PR RIS A TN ST TR L epidA s P e

If you want to save your work to a new file, use the Save As command on the
File menu. This command will prompt you for a new file name and will then save
the current information to the file that you supplied. From that point forward, any
changes that you make will be to the new file.

4.3 Opening an Existing File
To open an existing SUNS file, pull down the File menu and select the Open
command. You will be prompted for the sun file that you want to edit.

4.4 Editing Variable Data

To enter or edit the variables for which you wish to generate sampled values, pull
down the Edit menu and selected the Variables command. You’'ll see a form like
the one shown in Figure 4.2. On the left side of the form is an area where you
can maintain a list of the variables for which you want sampled values. On the
right side of the form is an area where you can edit, for a selected variable, the
required distribution type, distribution parameters, and notes.

Edit Variables - - - . - T B |
Varizbles— e 7Di§lsbuﬁon0ata.l';,“.. — - {‘-, o :
i Dlstﬁbuhm Tybgz . lFugedv ' _"_l .
'—p%@n?aawas
2l
Add l ﬁcnamel Delete] ‘ , |
ok | cene |

Figure 4.2 Editing Variables

To add a variable to the list, click the Add button. You'll be asked for a variable
name. Variable names can be any non-blank text, but they must be unique. The
variable name that you enter will be added to the list, which is maintained in
alphabetical order. Until you make a different selection, variables that you add to
the list will be assigned “Fixed” distributions with a value of zero.

A24

To change the name of a variable already in the list, first select the variable to be
renamed and then click the “Rename” button. You'll see the current name and a
space to type in the new name. Just as with adding variables, the new name
must be unique amongst the list of variables.

To delete a variable from the list, first select the variable to be deleted and then
click the Delete button. You'll be asked to confirm the command. If you do
confirm the command the currently selected variable will be deleted from the list.
In addition, any correlations involving the deleted variable will be removed from
the correlation matrix.

4.4.1 Theoretical Distributions

To enter a non-fixed distribution for a variable, first select the variable and then
pull down the list of available distributions from the Distribution Types list on the
form shown in Figure 4.2. Choose the required distribution and you will see
spaces to enter the distribution parameters. For example, Figure 4.3 shows
what the screen will look like when you select a Normal distribution for the
variable named “Resistance R1.” Two spaces are shown so that you can enter
the mean and standard deviation for the distribution. If instead of a normal
distribution, you choose a bounded normal distribution, four spaces would be
visible for mean, standard deviation, upper bound, and lower bound.

et o v ottt oo e v e e i v~ Sy o o

_ | —

§Edit Variables
; ~Yariables T — ?Dmbﬁafméeﬁmmm;wwn ——
§ Raistanga AT Distibaion Type:]EQ{@BJ - ”_:w E
-DistrbutimPatqn;kessm ‘

_ Mezn | [0 '

Standerd Deviation > 0 F —

- Notes—————
Normal di\stribu\tion for Fiésistance R1. Manufacturer's data used 2|
N (for mean and standard deviation.
ass | menane |1 poee ||| - -

K | geen |

Figure 4.3 Supplying Parameters for a Normal Distribution

A25 15

SALTY ETRATTOCETI TR L N T bl Y ST TR DR U S RSN S art i C

If you select a new theoretical distribution type, as many parameter values as
possible from the old distribution are retained. This may be useful in some
cases but in others cases you'll need to re-enter all the parameter values.

4.4.2 Empirical Distributions

Empirical distributions are defined by pairs of values and are entered into a two-
column grid. To see the data entry grid, select a variable and then choose one
of the supported empirical distributions. When you do so, a grid like the one
shown in Figure 4.4 replaces the 1 to 4 distribution parameter boxes. Column
headers are provided to indicate which values are to be entered in which
columns. If you need more rows than are displayed, use the scroll bar on the
right side of the grid to see more cells.

Edit Variables . : ') | .

~Yariables———— e~ Distbulion Dala for Resistance R ———— e
Distribution Tm\:e:(]Empirical Continuous Frequency _ﬂ
' ~Distibuion Parameters* S —
Pair | . Value ~ | Relative Frequency 14
1 97 o 1 ""
2_ S8 LR
2 D .- 51 -
4 ~ 100 60}~
51 L 771
5 ~ 102 301 -
7 104 29|
~Notes
Empirical Continuous Frequency distribution for Resistance R1. |
Based on test measurements made 1/1/37 through 12/31/97.
gddlgem;]gdael . , . o

® | e |

Figure 4.4 Entering Data Pairs for an Empirical Distribution

4.4.3 Notes

Figures 4.3 and 4.4 show an area on the right hand side on the Variables screen
for entering notes. Here you can enter an unlimited amount of text for each
variable. You may want to use this to clarify the use of a particular variable or to
record the reasoning used to select a distribution type or distribution parameters.

A26

4.5 Editing Correlations

Defining correlations between variables requires several steps. First you define
one or more groups. Each correlation group is composed of two or more
variables that you want to correlate. So, for each correlation group you must
select the variables you want to include in the group. Lastly, for each group of
correlated variables you provide correlation coefficients.

4.5.1 Correlation Groups

To enter or edit correlations between the variables, pull down the Edit menu and
select the Correlations command. You'll see a form like the one shown in Figure
4.5.

J Correlation Groups]

‘ _ . _ — _M' ’
I i S N R |
’: Resistance : ic;:;;;l’:;
i N -

0 o

Edt..
i ——
| | Add.
" Bename...

t Toedit agroup of conelations, selecta
* group and click the Edit button.v

Figure 4.5 Correlation Groups

To add a correlation group to the list, click the Add button. You'll be asked for a
group name. Correlation group names can be any non-blank text, but they must
be unique. The group name that you enter will be added to the list, which is
maintained in alphabetical order.

To change the name of a group already in the list, first select the group to be
renamed and then click the “Rename” button. You'll see the current name and a
space to type in the new name. Just as with adding groups, the new name must
be unique amongst the list of correlation groups.

To delete a correlation group from the list, first select the group to be deleted and
then click the Delete button. You'll be asked to confirm the command. If you do
confirm the command the currently selected group will be deleted from the list.
In addition, any correlations involving the deleted group will be removed from the
correlation matrix.

A27 17

1 T T o e gt ¢y g o P PO
ER A A e s 1 PACHAIL I BNREY S LA PPt

4.5.2 Choosing Correlated Variables

When you have created a correlation group, the next step is to decide which
variables to include in the group. To make the selection, select the correlation
group from the list and then click on the Edit button (Figure 4.5). A form like the
one shown in Figure 4.6 will be displayed. On the left side of this form is a list of
variables not already included in other correlation groups. The list includes only
variables that have a distribution other than “Fixed” assigned. To add a variable
to the current group, select the variable in the list on the left and click the right
arrow button. Alternatively, just double-click on the variable to move it. Similarly,
to remove a variable from the current group, select the variable in the list on the
right and click the left arrow button. Alternatively, just double-click on the
variable to move it. Notice that a variable can be in one list or the other but not
in both lists.

Coultéd\faiaie : N '
~ Corelation Group: Besiétanc\eﬁ - — - — ~— ' a -
Avallable Variables: -, i Conelated Varables:

®

Tapacitance G _ EERESERMNN Fcsistance R ' 3 S

Capacitance C2 2 Resistance B2 . Cancel

Capacitance C3 w3 |Resistance R3 | em————
- < Conelations...

Figure 4.6 Adding Variables to a Correlation Group

4.5.3 Entering Correlation Coefficients

When you have selected the variables that you want to include in a correlation
group it is time to enter the correlation coefficients. From the form shown in
Figure 4.6 click on the Correlations button. You’ll then see a form like the one
shown in Figure 4.7. Notice that SUNS has already made up a list of all the
possible pairings between the variables that you included in this correlations
group. For each pairing, enter the correlation coefficient. Each coefficient must
be greater than or equal to —1 and less than or equal to +1.

A28

fn Edit Carrelations ‘ : :
— Conelations for Group: Resistance~————= e = = wEKW
Variable N Variable ‘Correlation | — ;
" |Resistance R _ Resistance R2 L 0}~ " Cancel [
ResistanceR1 ~_ ~ ResistanceR3 =~ OF =
Resistance R2 Resistance R3 11 p
&
?%
&
&
;
RS
2%

Figure 4.7 Entering Correlation Coefficients

When you have finished entering correlation coefficients, click the OK button on
the form shown in Figure 4.7. If your correlations are consistent, you will be
returned to the form shown in Figure 4.6. If, however, you have specified
correlations that are not internally consistent, you’ll see a form like the one
shown in Figure 4.8, followed by a form like the one shown in Figure 4.9. Notice
that an extra column of Alternate Correlations has been added.

B Correlations Ervor]

: Your conelations do not yield a positive definite correlation matrix.
This indicates that your correlations are inconsistent.

You may edit your conelations or accept the altemative correlations
;uggested by SUNS.

: HK] 4 §

Figure 4.8 Correlation Coefficients are inconsistent

A29 19

I s . L G we Aabl h e o s e - P A

Edit Correlations

~Conelations for Gro;p: R ééistarw

i Variable | Varlable i Comrelation | Suggested |2 | - - .
! |Resistance R1 Resistance R2 0.9 0.4996833[— | - e
...... . esiblanee he e 3OI00SI .
Resistance R1 _ Resistance R3 09 -0.4996831 _-i’id_]
Resistance R2 Resistance R3 0.8 0.4896831} * pcsept -
i . — . o o - T~ Suggested .

Coxrelations

Figure 4.9 Edit Correlation Coefficients or Choose Suggested Correlations

Consider a simple example. Suppose we have three variables A, B, and C. We
specify that B has a strong positive correlation with A (lets say +0.9). We also
specify that C has a strong positive correlation with B (again, let's say +0.9). |f
we now specify that A has a strong negative correlation with C (e.g., -0.9) we are
asking for something that makes no sense. The impact in such cases is a
correlation matrix which is not positive definite. If SUNS detects this condition, it
displays a message (Figure 4.8) followed by a form like the one shown in Figure
4.9. The Alternate correlations are the “nearest” correlations to the ones you
specified that do create a positive definite correlation matrix. If you want to use
the Alternate correlations, check the “Use Alternate Correlations” box and then
click the OK button. Otherwise, edit your correlations as needed. SUNS will not
let you proceed uniil you have entered valid correlations or accepted it's
Alternate correlations.

4.6 Arranging the Variable Order

It is likely that the application that will use the statistical sample provided by
SUNS will need sampled variables to be presented in a particular order. To see
the order in which sampled variable values will be written to the SUNS output file
(vec file, see Section 3.2), select Arrange Variables from the Edit menu. The
form shown in Figure 4.10 will appear. This form shows you the order that
variable values will be written to the SUNS output file. If you want the variables
written in a different order, you can highlight a particular variable and then use
the up and down buttons to move the variable to the location you desire.

A30

&, Arrange Yariables
Variable Sampling Order =~ - .
i {Backup Tape FailRate
¢ {CDRom FailRate
i {Drive Control FailRate
I Floppy Drive FaiRate
Hard Diive FailRate
Keyboard FailRate
Microphone FailRate
ldodem FailRate

Mother Board FailRate
Power Supply FailRate
 Power Switch FaiRate |

R Ty NI B el 4

T - Cancel

Figure 4.10 Form to View and Arrange Order of Variables

4.7 Setting Sampling Options

To edit sampling options pull down the Edit menu and selected the Options
command. You'll see a form like the one shown in Figure 4.11. Here you can
select the following:

Type of Sampling — Select LHS or Monte Carlo sampling.

Correlations — Indicate that you want correlations not specified to be zero.
Selecting this option causes SUNS to ignore correlation groups, imposing a limit
on how many variables can be correlated. This option is typically most useful for
small sample sizes. These small samples are usually generated only when the
application is very computationally expensive. The other option under this
heading may be useful in very large problems where numerical errors cause
problems in the positive definite checking that SUNS performs. You may have
many correlation groups that independently yield positive definite correlation
matrices. However, when these group correlation matrices are “assembled” the
resulting matrix may not be positive definite. Checking this option tells SUNS to
use it's alternate (i.e., “nearest” good) correlations matrix and proceed with
sampling.

Sampling Parameters — Enter a random seed for the random number generator.
The seed must be an integer greater than zero and less than 9,999,999.
Additionally, specify the number of trials (i.e., the sample size).

A3l 21

T AR

~Type of Sampling;———————
S LHS .
'{‘\ MonteCarlq

~Conelations; ——
[~ Induce zero conelations whete
- not specified. o X

f7 UseLHS corelations when-
* user conelations are nvalid.

~Sampling Parameters;——

‘Random See&' I123458? (

l "\SgnxpleSizé: 500

Figure 4.11 SUNS Sampling Options

4.8 Printing

SUNS allows you to print a readable text version of your sun file. To print the
currently loaded file, select Print from the File menu.

4.9 Running the Sample

When you have entered variables, correlations, and options, you are ready to
perform the sampling. To do so, select the Run! command. SUNS will prompt
you for an output file name that, by default will be the same as the fun file but
with a vec extension. When you've provided a vec filename, the sampling
process begins.

4.10 Using the Toolbar

Many of the SUNS commands that have been described above are accessible
directly from a toolbar as well as from the pull-down menus (Figure 4.12). To
view the toolbar, choose Toolbar|Small or Toolbar|Large from the View menu.
The large toolbar is shown in Figure 4.12.

New Open Close] Save Print Options | Varables { Conslations Run Help

Figure 4.12 The SUNS Toolbar

A32

Working from right to left along the toolbar in Figure 3.10, the buttons perform
the following tasks:

New

Open

Close

Save

Print

Options

Variables

- Correlations

Run

Help

Creates a new SUNS file. Performs the same function as the New
command on the File Menu.

Opens an existing SUNS file. Performs the same function as the
Open command on the File menu.

Closes the current SUNS file. Performs the same function as the
Close command on the File menu.

Saves the current SUNS file to disk. Performs the same function
as the Save command on the File menu.

Prints the current SUNS file. The printout includes options,
variables, distributions, and correlations.

Opens the Options form. Performs the same function as selecting
Options from the Edit menu.

Opens the Variables form. Performs the same function as
selecting Variables from the Edit menu.

Opens the Correlations form. Performs the same function as
selecting Correlations from the Edit menu.

Begins the sampling process. You will be prompted for a file where
SUNS can write the sampled values. Performs the same function
as the Run! Menu command.

Provides access to the online help system.

A33 23

5 SUNS Results Viewer

5.1 SUNS Result Files

When using SUNS to create a set of input vectors, you first create a SUNS input
file to define variables, distributions, and correlations. When you are ready to
create the input vectors, you use SUNS to create a file of vectors, usually in a file
with a vec extension (type). Your application uses these vectors to calculate
results, append the results to the input vectors, and update the same vec file or
create a new file (with a vec or some other extension).

The SUNS results viewer (Figure 5.1) can be used to display data from a file of
SUNS input vectors either before or after application results have been
appended. By default, the SUNS Resulis Viewer looks for files with the vec type,
but any file containing vectors in the required format can be opened. If the file
contains only input vectors (with no results appended) some items will not be
available in the Resuits Viewer.

#: SUNS Results Viewer - PExample.vec '
Data’_Conelations' QOther View : Window Help... . =

SOk R

&

[Viewing File D:\Suns\PCExample.vec.. . .0 s] X

Figure 5.1 SUNS Results Viewer Main Screen

5.2 Displaying Vectors
5.2.1 Input Sample

To display information about input vectors, select Input Sample from the Data
menu. Five display types are available on the sub-menu, three graphical

A34

displays (histogram, cumulative distribution function (CDF), and complementary
cumulative distribution function (CCDF)), and two text displays (list and summary
statistics). After choosing a display type, you will be asked to select from the list
of input variables (Figure 5.2).

: Ni. Input Sample \ EIE

LS%!ebt én*ir}btk?éﬁab'!e: ,

Backup Tape DawnTime
Backup Tape FaiRate
CDRom DownTime

+ {CDRom FailRate

Drive Control DownTime
; * | Drive Control FailRate
Floppy Drive DownTime
Floppy Drive FailRate
Hard Drive DownTime
{Hard Drive FailRate
Keyboard DownTime

=

Figure 5.2 Selecting a Variable
Figures 5.3 through 5.7 show examples of the five displays available.

Input Sample - Drive. Control FailRate

1
H

0.20

. D15 -

=

8 0.10;

B

: 0.

© 0054

U.UU Froce o s S \:«\ ,_j‘_’__f?,,,,,’,_mtﬁ;i‘;’::;,.;‘:;”:i::..u~ e T T T TR
0.00000 0,00005 . goomO-c - 000015 - - 0.00020

’ Dr?yg\'pont'rbl FailRate

Figure 5.3 Histogram of Input Variable Sample

A35 25

g 2 o ol b bt S/ REAE SR W S SL LR o Zan o ~amdh 0 2 vcie ol odes b licd rd RISV TD. 7 ah a2 bacte - gn Sum uNE U L (Y R NL S L - -

o lnput Sample DnveContro! FailRate :
' InputSampfe Dme Control FallRate

Cumulative Probability

050+

1.00

075+

0.25

0. 00 ‘-
0. DDE%{IU

éi‘sogfafs\ii

SU0EDS 7S0EQS 1O0ED4 A25E04 1S0E04

Dnve Contro! FallRate -

Figure 5.4 Cumulative Distribution Function of Input Variable Sample

Curnulative Probabiiity .

1007 ™

050

; Input Sample - Dnve Control Fathiate

: lnput Sample ane Control FailRaie

075

0.25+

ool i
ooosmo 2505-05

5 DOE-BS YSOE-US 1 OUE-04

11.55"5.64 :
* Drive Control FallRate ' <

1.50E-04

Figure 5.5 Complementary Cumulative Distribution Function of Input

Variable Sample

A36

Input Sample - Drive Conliol FalRate

[Tl | Diive Contol Faiate []
in 5.20E-05 5%;
: 354E-05 ;.

2
3 1.78E05 -7
14 1.18E-05 5 -
5 2.06E-05 ¥
6 1.876-05 .5
7 B
8

| Mean:. .~ | 250E-08
|| std. Devietion: - [1.45E-0
| 1stPercentie: [369E09

SihPercentile: | 6.62E-06)

| - 25th Percentile:] ﬁle—USI

Il sothPercentile: [2.23E-05
| 75t Percentie: [3.25E-08)
| 95t Percentile: | 5.25E-05

99th Percentile: | 7.02E-0)

Figure 5.7 Summary Statistics of Input Variable Sampled Values

5.2.2 Output Displays

To display information about result vectors, select Output Results from the Data
menu. Five display types are available on the sub-menu, three graphical
displays (histogram, cumulative distribution function (CDF), and complementary
cumulative distribution function (CCDF)), and two text displays (list and summary
statistics). After choosing a display type, you will be asked to select from the list
of output results (Figure 5.8). Figures 5.3 through 5.7 show examples of the five
displays available.

A37 27

L TN AL RN A A R AR e, AT ATy oy eym—— e e e I

Dutput Besults . 2 |
c Se!ectanDutput Reeuit “::f’ e
L Ava:l:sbxhw —

. {MTBF
+ IMTTR

Figure 5.8 List of Available Output Results

5.3 Displaying Correlations

The SUNS Results Viewer can display simple and partial correlations. Each type
of correlation may be displayed for raw data values or ranks. Choose the type of
correlation you want to display from the Correlations menu. The information can
be displayed as a Pareto chart or as a text list.

You must decide whether to look at the correlations between a selected output
and all input variables or at the correlations between a selected input variable
and all outputs. The choice is made on the form shown in Figure 5.9.

s Select Correlatmns - K l

(‘ Correlate selected Uutpmﬁesuibc to ail mputs :
r* ;Cone!ate selected Tl Sample i au outpuls: .

. Td & DownTnme

: Backup Tape FailRate

CDRom DownTime

CDRom FailRate

Diive Control DownTime

Diive Contiol FailRate

Floppy Drive DownTime

- §Floppy Drive FailRate
Hard Drive DownTime 2

Hard Drive FailRate “

Keyboard DownTime

Keyboard FailRate B

JMicrophone DownTime , =

® | ma

Figure 5.9 Selecting the Correlations to be Displayed

A38

When you have made a selection from the form shown in Figure 5.9, the
correlations are shown using the display type that you chose. An example of the
Pareto display of simple raw correlations is shown in Figure 5.10.

5.4 Other Displays

The SUNS Result Viewer can provide several additional results and displays.
These include Uncertainty Importance as well as scatter plots and a spreadsheet
display of all input/result vectors.

T 7 Simple Raw Correlations:. MTBE -] ¢ Backup Tape FailRate
: : : — —— | 22 Monitor FailRate -
3t Hard Drive FailRate

3
4 Mother Board FailRate
5

027"

: Floppy Drive FailRate

- 7:

7: Power Supply FailRate
| B Removable Drive FailRate

Simple Raw Correlations

054 || L oo S i e Modem FailRate
e s s ez | 10: Diive Control FailRate

475 8 78 e o1 | o
Ing E‘Vqrfﬁa“blas“ o 11: E?ﬁ‘efid SubWoofer

[PV I DUV S DS AN oo s s St v s, 2 e B e s e P AR 10 B A NG SO # 590

-
N
w

Figure 5.10 Pareto of Simple Raw Correlations

5.4.1 Uncertainty Importance

To display uncertainty importance, select Uncertainty Importance from the
Correlations menu. After choosing a display type (Pareto or text list), you must
choose an output variable for which uncertainty importance will be calculated for
all input variables. Note that the uncertainty importance calculation requires that
all input variable sample values be positive. If this is not the case, you will see a
warning message and uncertainty importance will not be displayed.

5.4.2 Input and Result Vectors

To display the complete set of input/output vectors, select Display Data from the
Other menu. You can then choose to display only input vectors, only output
vectors, or both input and output vectors. If you open a file that does not yet
have output values appended to the input values, the SUNS Resulis Viewer will
not offer output values as an option. The selected data will be displayed in a
form like the one shown in Figure 5.11. This form allows the data to be sorted
and the numerical values reformatted. This can be useful when dealing with very
large or small numbers, or with numbers that vary greatly in range.

A39 29

% Input Sample ~ Qutput Besults .~ R
— e e eg: 1 € . - D T A
1 [Backup Tape FailRate]l CDORom FailRate Drive Control FailRate Floppy Drive FailRate Har-
2 000 227E05 _ B20EQs BAED5
3 o 000 511EGS 3.54E-05 _ 395ED5 ¢
i T000 . _1BSEDs | _178EGE 472605
5 0.00 5.01E-05 1.18E-05 2.90E-05
& 0.00 7.18E-05 ~ 2.06E-05 2.35E-05
7 000 383D CIB7E0S | A97ELS
8 0.00 5.45E-05 - 3.87E05_ ~ 3.70E-05
] 000 . 204805 _17EQS BI4EDS
w | . . 000 5MEDS 22305 344E05
11 o 323605 3RS BHIED
12 S - 0.00 4 26E-05) 1.67E-05 2.38E-05 o<
13] 0.00 584E05 1.52E05 3.06E05
_"'1"‘!‘ T om o 474EQs . BWBEDS . AO0IEDS. o~
3 . T A I R e I R T A R I N T LIRS L S e oy
© Soat " Fomat® o / oLl © Close’

Figure 5.11 Grid Display of Input and Output Values

5.4.3 Scatter Plots

To display a scatter plot of one input variable and one or more output variables,
select Scatter Plot from the Other menu. You will see a form like the one shown
in Figure 5.12. Select an input variable from the list on the left and one or more
output variables from the list on the right. To select more than one output
variable from the list, hold down the Control (CTRL) key while making you
selection. When you have made your selections, a scatter plot like the one
shown in Figure 5.13 will be displayed.

-, t aé o ScattexPlot : T l

| SeedtinpwSampleforkAds - SeleolOupit Besulslfor YAws

“{Keyboard DownTime Al " 1Availabilt
Keyboard FailRate :
Microphone DownTime .~ IMTTR
Microphone FailRate

Modem DownTime

Modem FailRate

Monitor DownTime

Monitor FailRate

Mother Board DownTime

tother Board FailRate - ¢

Power Supply DownTime

Power Supply FailRate >
Power Switch DownTime et

T e |

Figure 5.12 Select Input and Outputs for Scatter Plot

A40

o s e A S gt Tt e e n,

Tioiher Board Failiate -NTEF

£000
40004 o RO :
| - "-",_.".,’2: o ¢ " :
* . : %o 2 :“’ -, g =’ .« ® “‘
| LS LT
I T RN RAG alan T :
iE A L o'i\l\..-.".~‘.a .“ - “ R «® o . .
; m 1 » l’:‘:’-‘ ~ Ql.: ' :’.:'-‘ ‘: -r- . 3 = . B -
¥ o« o ! * . "".7-. \‘ " - - * . .' -
: . ™ ..n:c - '.‘t.-..;llu\..z.n.'.,:;:! ’.‘ -;? " T l(- »
; 1000 1 b - ﬁ': .. I. ke . ":l ,) -
N e \
; 0.00000 0.00003 - - pQoo0s - - 0OOoOS 0.00012 -
Mother Board FailRgte

W s AV S s AW a8 8 b s o ——w L w Y e

Figure 5.13 Scatter Plot

5.5 The Results Viewer Toolbar

Figure 5.14 shows the SUNS Results Viewer toolbar. The toolbar can be
displayed in a large or small format by selecting the appropriate command from
the View menu.

EOEE

Closo | Piw | Copy | Tooba | Coloba

Paitems | Memo

Figure 5.14 The SUNS Results Viewer Toolbar

Working from right to left along the toolbar in Figure 5.14, the buttons perform
the following tasks:

Open Opens an existing SUNS file containing input vectors optionally
appended with output values. Performs the same function as the
Open command on the File menu.

Close Closes the current SUNS file. Performs the same function as the
Close command on the File menu.
Print Prints the active results from. If the active form contains a graph,

the graph will be printed. If the active form contains text data, the
text will be printed.

Copy Copies the active results form to the Windows clipboard. If the
active form contains a graph, the graph will be copied. If the active
form contains text data, the text will be copied.

Toolbar Adds a graphics toolbox to the active form if the form is displaying
graphics.

ColorBar Adds a color bar to the active results form if the form is displaying
graphics.

A4l 31

AT RTINS PO, Y N ST LT RTINS e e~ Tl M Ye h g L NTRDY, Sinmeemnee sepacmy s

Patterns

Memo

Format

Minimize
Maximize
Hide

Adds a pattern bar to the active results form if the form is displaying
graphics.

Adds an area at the botton edge of the current form where you can
type in a note. This can be useful, for example, for recording
pertinent information with a graph or table before copying results
from the SUNS Results Viewer to a report.

Adds an area to the bottom edge of the current results form where
you can change the formatting applied to numeric values in the
display. You can choose standard formatting (the default),
scientific formatting, or custom formatting. With the custom
formatting option, you enter an Excel-like formatting string to
specify how numeric values are displayed.

Minimizes the active result form.
Maximizes the active result form.

Makes the active resuit form invisible. To redisplay the form,
choose the appropriate command from the View menu.

A42

6 SUNS Example

An example based on repairable systems reliability has been developed to
illustrate the use of SUNS in a practical application. The application on which
the example is based was written in Visual Basic 5. Both executable and source
code files as well as example problem input and results are included in the
installation files. The example application (called TestApp) calculates Mean
Time Between Failures (MTBF), Mean Time to Repair (MTTR), and availability
for a series system. The required inputs for each failure mode are:

Failure Rate: The failure rate for a particular failure mode is the number of
occurrences per hour of operational time. For example, a failure rate of 0.0001
would mean that the particular failure mode occurs, on average, once every
10,000 hours.

Down Time: Down time (also called repair time) is the total time in hours required
to return the system to operation after a particular. failure mode occurs. For
example, a down time of 2.5 would mean that, on average, the failure mode
takes 2.5 hours to repair and return the equipment to operation.

MTBF, MTTR and availability are calculated from the following equations:

1

24

=LN

Zﬂj”j

=L,N

A

FLN

MTBF =

MTIR =

MTBF
MTBF+MTTR

where), is the failure rate for failure mode i and 7; is the down time.

Availability =

6.1 Input Data

The example is based on hypothetical field failure data for 20 personal
computers operated for 3 years with average use of 2000 hours per year. Input
failure rate data for this example is given in Tables 6.1and 6.2. Down time
distributions are given in Table 6.3. For the down time input variables, uniform
distributions use Parameter 1 as a minimum value and Parameter 2 as a
maximum value. Triangular distributions take Parameters 1, 2, and 3 as
minimum, best estimate, and maximum values respectively.

A43 33

Failure Rate Variables Distribution Shape | Scale
Backup Tape FailRate Empirical Cont. Freq. *

CDRom FailRate Gamma 4 120000
Drive Control FailRate Gamma 3| 120000
Floppy Drive FailRate Gamma 5| 120000
Hard Drive FailRate Empirical Cont. Freq. *
Keyboard FailRate Gamma 2| 120000
Microphone FailRate Gamma 1| 120000
Modem FailRate Gamma 2| 120000
Monitor FailRate Empirical Cont. Freq. *

Mother Board FailRate Gamma 3] 120000
Power Supply FailRate Gamma 3| 120000
Power Switch FailRate Gamma 1| 120000
Powered SubWoofer FailRate | Gamma 3| 120000
Removable Drive FailRate Gamma 4| 120000
Speaker FailRate Gamma 1| 120000
Video Control FailRate Gamma 2| 120000

* See Table6.2 below.

Table 6.1 Failure Rate Distributions for Example Problem

Empirical Failure Rate Distributions Value Relative Freq.
Backup Tape FailRate 0 17
0.000167 2
0.000333 1
Hard Drive FailRate 0 13
0.000167 6
0.000333 1
Monitor FailRate 0 17
0.000167 2
0.000333 1

Table 6.2 Empirical Failure Rate Distributions

Ad4

Down Time Variables Distribution Par. 1 Par. 2 Par. 3
Backup Tape DownTime Uniform 1 4
CDRom DownTime Uniform 1 4
Drive Control DownTime Triangular 1 2 4
Floppy Drive DownTime Uniform 1 2
Hard Drive DownTime Triangular 2 5 8
Keyboard DownTime Uniform 0.25 1
Microphone DownTime Uniform 0.25 1
Modem DownTime Triangular 1 2 4
Monitor DownTime Uniform 0.25 1
Mother Board DownTime Triangular 6 12 26
Power Supply DownTime Uniform 2 6
Power Switch DownTime Triangular 2 6 8
Powered SubWoofer DownTime | Triangular 0.25 0.5 1
Removable Drive DownTime Triangular 2 3 5
Speaker DownTime Trianguiar 0.25 0.5 1
Video Control DownTime Uniform 2 4

Table 6.3 Down Time Distributions for Example Problem
6.2 Example Application
The example application (TestApp) is written in Visual Basic 5. Both an

executable program and source code are included in the installation package.
There is only one user-interface form in TestApp which is shown in Figure 6.1.

’ W, Series eliabty Model B =i 1

k]

Ig@veﬁg\u;ﬁe -}

[Goenveosfle |

B T —

A S PN I T SRR A R e

K :*‘E»‘ziti E

Figure 6.1 TestApp Main Form

F e ey 3

-A45

35

You open a SUNS output (vec) file by clicking the Open Vectors File button.
When a valid file has been opened, the Save Output File button is enabled. To
save a file with MTBF, MTTR, and availability resuits, just click the Save Output
File button.

Figure 6.2 shows a histogram of MTBF values for the example problem.
Summary statistics are shown in Table 6.4.

Protiability -

0.20

.16

s=71'
B

0121

Qo

OufputResults - MTBF . o

©
'8

v s cru [awer o nseekes © Nt ne YL W A W
AT RIS LI T WR e MR ACRE e T e BRER L &

Figure 6.2 Histogram of MTBF Values

Statistic Value

Mean 1,755.17

Standard Deviation 412.01

1st Percentile 986.51

5th Percentile 1,227.05

25th Percentile 1,475.92

50th Percentile 1,688.75

75th Percentile 1,990.00

95th Percentile 2,477.42 -
99th Percentile 3,067.72

Table 6.4 Summary Statistics for MTBF

A46

Figure 6.3 shows a Pareto of partial raw correlations indicating that MTBF is
most highly correlated with the hard drive failure rate followed by the monitor and
backup tape failure rates. The correlations are negative because an increase in
a failure rate causes a decrease in MTBF.

. Patial ii{mi' E&&Eiéé?&'riy MTBF | 1 Haid Dive FaiiRate

’ > | 2 Monitor FailRate -

’ 0.0 : ‘ 3: Backup Tape FailRate
;é 02, U UU U U U U 4: * Powered SubWoofer FailRate
ig 1 (L 5: Removable Drive FailRate
34; 041 \ - - S \\6: Mother Board FailRate
(& 4| 7 CDRom FailRate

.5 08 o I o

i §) 4 8 F!loppy.Dm‘re FailRate -
. -0.8; - | @ Drive Control FailRate.
_1" »2m§~,w4w~hé - g émmgwmwﬂ | 10: Power Supply FailRate

1, , Input yanables 11: Modem FailRate

Figure 6.3 Partial Raw Correlations for MTBF

Given the high partial raw correlation between MTBF and hard drive failure rate,
it is instructive to look at a scatter plot for these two variables. The scatter plot,
Figure 6.4, clearly shows that MTBF is strongly dependent on hard drive failure
rate.

 Hard Drive FailRate - MTBF

4000

3000 it —=.
: H... LLLNN . = 3 - . .
T Rl PSPl RO S SV Y . . =
+ M M l'{'-‘l o an B e - o .
& 2 Y R
: :"':-- " :,::'-;:!,-?‘: '?fﬁa‘r‘ ".fﬂ.ﬁ-:e. ot o e e '?“.‘. oy . *.‘
) » - ¥ l‘l..:. LTI :'. ~..‘ .l" . -u.":':' = ;.. .-l"- at e " '\:.’:.'-’

1000 R s B

1 LA - Ca i R N S D o o R TR n B v 3 e e s e
0,00000 g.ooo1e ., " 0.00020 800030 - 0.00040
' Hard Dme FaﬂRa’te

Figure 6.4 Scatter Plot of MTBF vs Hard Drive Failure Rate

A4T 37

3 e NI Sor i S SRE ' SANU AN AN S WL i A TN L RS e Yy T T T T ey T - Taxe

We leave it to the user to explore other outputs from the example problem. If
you plan to couple an application with SUNS, you may want to review the source
code for the example. Source files are included in the installation package and
can be examined with any text editor. In particular, you should examine the
subroutines that read the SUNS vec file and write the resulting output file.

A48

7 References

[1]

(2]

(3]

[4]

Iman, R. L. and M. J. Shortencarier, 1994. A FORTRAN 77 Program and
user’s Guide for the Generation of Latin Hypercube and Random Samples
for Use With Computer Models, NUREG/CR-3624, SAND83-2365, Sandia
National Laboratories, Albuquerque, NM.

Iman, R. L., and W. J. Conover, 1980. Small Sample Sensitivity analysis
Techniques for Computer Models, with an Application to Risk
Assessment, Communications in Statistics A9: 1749-1842.

Iman, R. L., and W. J. Conover, 1982. A Distribution-Free Approach to
Inducing Rank Correlations Among Input Variables, Communications in
Statistics B11: 311-334.

Iman, R. L., J. C. Helton, 1988. An Investigation of Uncertainty and
Sensitivity Analysis Techniques for Computer Models, Risk Analysis 8: 71-
90.

A49 39

B TLT e YT ¢ 4D de 0 P WD atar TR LY L e e oo v S eI il PEN T STEL T LTS ezt opme - - -

This page intentionally left blank

A50

Appendix B: GO™ Genetic Optimization User’s Reference Manual

Bl

b LA TTFOSTTTETIO BRI 3 SRR 4 G ot e T A PN - T T

This page intentionally left blank

B2

enter for System Reliability

GO-Genetic Optimization
User’s Reference Manual

Version 1.0

Sandia National Laboratories
Albuquerque, New Mexico

November, 1998

“Exceptional Service in the National interest’

B3

This page intentionally left blank

B4

Contents

(070) 11 (=101 (I PTPUR ORI PP I OPPPPPPPPPPPPPR i
1o 13 (=T T PP PSSP PP PRIS iii
B =1 o) L=V OO UUOIPPPTOROPPPPP iv
1.0 Getting StAredcceeveeiriiriceiiiiiee e 1
1.1 Introduction 10 GO.....eeeeeiirreceiieee, e 1
1.2 System ReqUIreMeNtS.......ccocivirieiiinienneeee e 1
1.3 INStalliNg GO ...eeeeecitctiicctc e 2
1.4 USErs ManUalccccveeeeiieereereenieeriieccsniire i s e s e s s as e s nnas 3
1.5 INCIOSING. .. cerrerreeeeererierreitisiine st ee sttt ettt 3
2.0 An Overview of Genetic Optimizationcoceeeeeiimmiiiemincieieene 5
P23 T 101 £ (0o [1 (o1 [o) o IR RSP PP PPPPPPRR 5
2.2 The GO Genetic AlGOTthM.......c.ccovvueiiiiriiiiiee e 5
2.3 Calculating FIINeSS....ccccovrviieiiiiiinieiineteenr et 6
2.4 Implementing Genetic Optimizationoocviveeviniciiiiniiens 8
3.0 GO Optimization INPUL........ccoviveirierreneetrerrecre et 9
3.1 Combinations INPUL......c.cceeereiiniiiiiiiiicce e 9
3.2 Problem SEtUPcccceervieririiniiiiiiirneree ettt 10
3.2.1 Genetic Optimization Parameters..........ccocvveiceinnniniiinininiiinnnnn. 10
3.2.1.1 General Tab (FIgure 3.2)......cccviviierinrinniencennneces it 10
3.2.1.2 Mating Tab (Figure 3.3)......ccccuiimmiimiimnienintenenccniiinni e 12
3.2.1.3 Keeping Tab (Figure 3.4)ccooeeimminenneneeiciniiiiiinineneias 12
3.2.1.4 Mutation Tab (Figure 3.5)....ccovimiiiiiiriieciiecinieee 13
3.2.1.5 Application Tab (Figure 3.6)......ccueeriiimeencnncnciiniiiniiinnns 14
3.2.2 Enumeration Parameters.....ccccceoriiiiiiieniniiiiiiiiiieeenesneeseceecssecinneccenanene 15
3.2.2.1 General Tab (Figure 3.7)....c.couiiiinriirieeereneeneiinc e 15
3.2.2.2. Application Tabcccoieiriminiinie e 16
3.3 RUnN TimMe Parameters.....cccoeeeeveeeeeeeceeeecimniininnccisinne e s sesessisessssesssssssssans 16
3.4 Performance Measure INPUES......ccoouiriiiiminiinennciceccecccan e 16
3.5 Constraint INPUES......coovereerieiriiiie ettt 17
3.6 Saving YOUr Data.......cccevuiieiinumiinnninnienie sttt 18
3.7 The GO TOOIDATttt rcccinrrrrreear e e e s e s s s sssnerrae s e 18
BS5 i

T Pr R < R A Sl T

4.0 Linking GO with Your Applicationceccveviiiiiivieiiniiiiiie e, 21

5.0 GO RESUISuumemiiiiieiiiiccccieee ettt rtee s s s e b s snr e s e s e saasaeas 25
5.1 Summary INformation......c.c.cccoevuiiiiiiiiiiniir e, 25
5.2 Top CombinationsS........ccccvrviiiiiiemnmriiiieeciniiie s snre e 25
5.3 Fitness Graph ..oooo it 26

6.0 GO Example Applicationccooeeiiicnirice it 29
6.1 APPLCALION oeeeeeetrere et e s 30
6.2 Problem Formulation..........cccccuueereriierinieemieiiiisie s seeereeneeseeeeneenns 33

6.2.1 DeCiSioN Variables.......cccoiiiiiccreee s 33

6.2.2 Performance Measures and Constraintscccovemveveminierneceeeeienennn. 35

6.2.3 Genetic Algorithm Parameters........cccoovceiiicciniiiiinnininienccinnee, 35

B.3 RESUIS cuvteeeiieee et rrerer e eraa s eeseesase e st see s e e s s e e eaesaaressn s ranaaras 35

A I 3 =1 (=1 €= (o= TP 39
ii

B6

Figures

Figure 1.1 GO Installation FOIrmMccoeovvriiiiniimiiiiniiniicciie e 3
Figure 2.1 Mating Two Population Membersccovvieriiiniinninnicrineee 6
Figure 2.2 Mutating @ GENEccoreirirnecrercnterctet e 6
Figure 2.3 Fitness Calculationccccccviiiiiiniininiiie e, 7
Figure 2.4. GO Structure for Optimization Analysiscceviviviciiiiiinninecnnenne. 8
Figure 3.1 Combinations Input to Define Genes........ccococuviiviiiiiiiciiiiiinninnenninn, 10
Figure 3.2 General Tab for Genetic Algorithm Parameterscccccceeeiieeniin, 11
Figure 3.3 Mating Tab for Genetic Algorithm Parameterscccceveeevnrnenneneen, 12
Figure 3.4 Keeping Tab for Genetic Algorithm Parameters...........ccccoouveeennncen. 13
Figure 3.5 Mutation Tab for Genetic Algorithm Parametersccoeeeeiie. 14
Figure 3.6 Application Tab for Genetic Algorithm Parameters...........cccccueeeeneenns 15
Figure 3.7 General Tab for Enumeration Analysis.........ccccoevuevcemriccminccinnnnnnnnen. 15
Figure 3.8 Performance Measure INPUtccccvvrmiiiiiiiiiiiiniiinnieecrieeeiees 17
Figure 3.9 Constraint INpULcccovvceiiiiiininiir e 18
Figure 3.10 The GO T0olbar.........ccccccvrvminmiinninieeceecie e, 19
Figure 4.1 Example Data Transfer File ..., 21
Figure 4.2 Example Data Transfer File as Written Your Application................... 23
Figure 5.1 Summary Information FOrmM........cccccevvevmieniiiiiniieiiencieneees 25
Figure 5.2 Top Combinations FOMMccccovvviiniiiniiiniiiiiirece e 26
Figure 5.3 Fitness History for an Optimization Runccccciiiiiiinnnninnnn. 26
Figure 5.4 Fitness Histogram for an Enumeration Run............cccccoiiereinniiiiis 27
Figure 6.1 CIUSIEr TOO! ...ccccceiriuiiieiiiiiitiriiie e 31
Figure 6.2 Fault tree for Cluster Tool Problem..........ccoooiiiviiiniiinnnins 32
Figure 6.3 Effort Curve for reliability improvement............cccociiieenninnnnniiiiss 34
Figure 6.4 Optimization Results for the Cluster Tool Reliability Allocation 36
Figure 6.5. Results of Enumeration Analysis...........ccoceeviiiinininniiiiennniies 38

B7 iii

LR et e RS 5t e TR AT T RE YL VIRRIR YT S N B e 2 A B N e I P e £ < o alind sl

Tables

Table 6.1 Failure Data for Cluster TOOL... ...
Table 6.2 Reliability Improvement and Corresponding Cost.........ccccoeeneninins
Table 6.3 Top solutions in population ...,

1.0 Getting Started

1.1 Introduction to GO

GO is a 32-bit genetic optimization driver that runs under Windows 95/98 and
Windows NT. Genetic optimization refers to an optimization scheme used to
solve large combinatorial problems using “genetic’ algorithms. Genetic
algorithms take their inspiration from the biological world. They operate by
creating an initial “population” of solutions (usually represented as strings of
integers) that “evolve” over successive generations. Each solution string is
called a chromosome and chromosomes are composed of genes. Each integer
value in the string represents a possible level or value for that gene. To evolve
from one generation to the next, the solutions with high “fitness” are “mated” with
other solutions by crossing parts of a solution string with another. Solution
strings are also “mutated” by replacing the value of a randomly selected integer
in a solution string with another value. Over time, the operations of weeding out
poor fitness solutions and reproducing by crossing high fitness solutions at
random points act to sample the state space very efficiently. As in natural
selection, genetic algorithms process fitness information and rank solutions
according to their survival capabilities. In genetic optimization, fitness refers to
the value of the objective function.

Many optimization problems can be easily formulated in a genetic algorithm
framework. Genetic algorithms have been applied to combinatorial optimization
problems in engineering design and reliability. We have successfully applied
genetic algorithms to reliability improvement problems, reliability allocation, and
spare parts inventory analysis. These include problems that are naturally
combinatorial (e.g., spares inventories) and problems that involve continuous
variables that can be discretized (reliability allocation).

This document provides a brief introduction to genetic optimization capabilities
provided by GO.

Note: The version of GO documented here is at the beta development
stage.

1.2 System Requirements

To install GO you will need an IBM-compatible PC with a 486 or Pentium
processor. A Pentium-based system is recommended. GO is a 32-bit Windows
application and will under Windows 95/98 and Windows NT. The installation
requires approximately 5 MB of free hard drive space. The amount of RAM
required to run GO is dependent on the memory requirements of the application
you are going to use with GO.

To use GO you will need to be familiar with basic Windows functions such as
menus, dialogs, files, and mouse operation. If you are not accustomed to using
Windows applications, please refer to your Microsoft Windows User’'s Guide. To
link your application with GO you will also need a detailed knowledge of your

B9

application source code. A detailed description of the file format used to transfer
data to and from your application process model is provided in Chapter 4,
Linking GO with Your Application.

1.3 Installing GO

GO must be installed on your computer using the provided Setup program. The
program files are compressed and cannot be used by copying them directly to
your hard drive.

To install GO from floppy disks:

Start Windows.

Insert GO Disk 1 into your floppy disk drive (A: or B:).
Choose “Run...” from the Start menu.

Type A:\Setup (or B:\Setup) in the Command Line text box.

ok wp -

. Follow the on-screen instructions.

To install GO from a CD-ROM:

1. Start Windows.

2. Insert the GO CD-ROM into your CD-ROM drive (typically D:).
3. Choose “Run..."” from the Start menu.
4

. Type D:\Setup (where D: is the letter for your CD-ROM drive) in the
Command Line text box.

5. Follow the on-screen instructions.

When you run the Setup program, you'll see a form like the one shown in Figure
1.1. If you want to install GO in the default directory, click the large Install button
to proceed. If you want to install GO in some other location, click the Browse
button to select an alternate location. Then proceed with the installation by
clicking the install button.

As part of the installation process, Setup will create a Program item “GO Driver”
on your Start | Programs menu. In addition to the program files, Setup will also
install some example files and an online version of this User's Manual.

B10

__ e

[42 GO Genetic Optxmlzatlon Setup
b —
. Begin the installation by clicking the buttan bq{ow. .

Click this buttonto mstaﬂ GO Genebc Optmzabon 5oﬂ:ware to the specified -
- destination dxrectory .

Directory: e :. e “:.W.a,._ﬂ,\w; Lm e ==IE :,W =T ,M,M,’::;W?:M:,_ :
[OWOQW:! Files\Go_| Drlver\ e e Change Dx’ectory I

T o T o T T R e S e o e ot o e o A ¥ o e s e 2 8 0 g v

Ezsit Setup

o 2 SEINE L i bt S 5% et

Figure 1.1 GO Installation Form

1.4 User’s Manual

The GO documentation set consists of this User's Reference Manual (paper and
on-line versions), a contexi-sensitive help system, and the Readme.xt file copied
to your GO porgram directory during installation. The GO Users Manual
provides information on genetic optimization and how to use the GO software.
Here’s what you'll find in each chapter of this manual:

Chapter 1, Getting Started, provides system requirements and information on
how to install GO on your computer.

Chapter 2, An Overview of Genetic Optimization, describes in general how
genetic optimization algorithms work and how they are implemented in GO.

Chapter 3, GO Optimization Input, provides a detailed description of how to enter
the information required for an optimization problem in GO.

Chapter 4, Linking GO with Your Application, defines how the GO optimization
driver communicates with your application. This includes a detailed description
of the file format used to transfer data to and from your process model.

Chapter 5, GO Results, shows you how to display the results of an optimization
analysis, both during the analysis and at a later time.

Chapter 6, GO Example Application, provides a simple example that uses the
GO software to address optimization problems.
1.5 In Closing...

If you run into difficulties and cannot find a solution in the documentation, please
consult the Readme.txt file installed in your GO program directory. It contains
information that has become available since the manual was written and also
contains contact information if you need help.

B11

P e T T T TN T e T NS e AP T RS TROIRRT SR T O BT PEEL E A Se T- a T A ™o

Like most software, GO has benefited from the comments and suggestions of
others. If you have comments or suggestions for improvements, please share
them with the author. In addition, we would like to hear about your applications
of GO.

Lastly, please keep in mind that GO is copyrighted software. You may make
backup copies of the software for your own use but you may not distribute the
software or documentation to others without prior consent.

Microsoft, Windows, Windows 95, Windows 98, and Windows NT are
trademarks of Microsoft Corporation. Pentium is a trademark of Intel
Corporation. GO is a trademark of Sandia Corporation.

B12

2.0 An Overview of Genetic Optimization

2.1 Introduction

Genetic algorithms take their inspiration from the physical world. Genetic
algorithms operate by creating an initial population of solutions, often
represented by bit sitrings or strings of integers, that evolve over successive
generations. The solutions with high fitness are mated with other solutions by
crossing parts of a solution string with another. Solution strings are also
mutated. Over time, the process of 1) weeding out poor fitness solutions, and 2)
reproducing by crossing high fitness solutions at random points, act to randomly
sample a large part of the huge solution space very efficiently. Artificial
reproduction schemes were first developed in the 1970s [1] and became popular
in the 1980s [2,3]. Sandia National Laboratories has successfully applied
genetic algorithms to several problems in equipment reliability [4,5].

Genetic algorithms search solution spaces effectively by recombining and
maintaining useful schema (building blocks) in the population. Each popuiation
member samples all the possible schema to which its bits belong. For example,
the bit-string 1001110 samples the region of space 1##i##i##. It also samples
#00##4##, etc. In this way, extensive schema in the space are implicitly sampled.
This inherent sampling ability of genetic aigorithms is called implicit parallelism.
This refers to the sampling of numerous schema and the effective resampling of
schema since good schema are maintained in the population over generations.

2.2 The GO Genetic Algorithm

GO creates the initial generation using either a stratified sampling scheme (Latin
Hypercube Sampling, LHS) or random initialization. The genetic algorithm is
applied to the second and successive generations. Keeping population members
from the previous generation creates a portion of the new generation. The
keeping process uses either tournament or proportional selection. Tournament
selection randomly picks two population members and keeps the one having the
highest fitness. Proportional selection picks a population member with
probability proportional to the members fitness. All selection is done with
replacement. After keeping some members from the previous population, the
remainder of the new population is created using mating (illustrated in Figure
2.1).

Bi13

31110{2141310(4]2|3[1{2/0|1]13]4] Parent 1

412131 11210]111210131114/01314|2| Parent 2

31110(2{4{3{112{013[1/2{0[1]3[4]| Child T

41213111210]01412{3]/114]/013]4[2| Child 2

Figure 2.1 Mating Two Population Members

Two parents are selected using either tournament or proportional selection.
Mating the parents then creates two offspring for the new generation. To mate
the parents, GO randomly selects two points in the chromosome, then swaps the
genetic material between these two points. The two children are placed in the
new generation.

Once the new generation is filled, some members of the new generation are
randomly selected for mutation (Figure 2.2).

412(31112|10]014[2/3[1/4/01314|2| Parent

|
\ 4
412131 11213/01412{3]114{0]/3]4|2] Child

Figure 2.2 Mutating a Gene -

Mutation randomly selects one (or a few) genes then randomly changes them to
another acceptable value for that gene.

2.3 Calculating Fitness

Chromosomes or population members are selected for keeping and mating
based on their fitness. Fitness values for the population members drives the
process of evolving better and better results as each new generation is created.
Thus, the methods used to calculate fitness are crucial to efficient optimization.
GO bases its fitness calculation on performance measures and constraint values

6 B14

calculated by your application. Up to 10 performance measures and 10
constraints can be included in the fitness calculation. Because different
performance measures or constraints will generally have different units, they
must be converted to dimensionless values before being incorporated into the
fitness calculation. This dimensioniess conversion is illustrated in Figure 2.3 for
the case where the limiting value is less than the objective.

o~ i
Limit Opjective

Figure 2.3 Fitness Calculation

The limit shown in Figure 2.3 is the minimum acceptable value of the
performance measure or constraint. The objective is the desired value. A third
property, called the relative importance, determines the slope of the curve
beyond the objective. If the relative importance is set to 0, the curve is horizontal
to the right of the objective. If the relative importance is set to 1, the curve
follows the upper dashed line beyond the objective. For values between 0 and 1,
the curve falls between the two dashed lines. The implication is that values of
the performance measure higher than the objective result in higher fitness when
the relative importance is close to 1 but smaller gains in fitness resuit if the
relative importance is close to 0. In cases where the limit is larger than the
objective, the curve in Figure 2.3 is simply reversed.

Fitness is calculated using the following equation:
NP Nc

F= [Z(Pkwk)JHCj
k=1 j=l

where
F = Fitness;

B15

S : o v hy Ty e, e - =
T P . PR AT IRAAIOS ot Suid o < Dus amag

Px = Performance measure k after applying its dimensionless conversion;

W, = Relative weight applied to performance measure k;

Np = Number of performance measures;

Ci = Constraint j after applying its dimensioniess conversion; and
N. = Number of constraints.

You can see from the fithess equation that improving any of the performance
measures can increase fitness. |If the optimization is unable to meet the
objective on any single performance measure, it does not necessarily mean that
the fitness will be low. On the other hand, a single constraint that is outside its
acceptable range will cause a low fitness value.

2.4 Implementing Genetic Optimization

Optimization analysis requires a processing loop. That is, GO will provide an
initial population of solution strings or chromosomes that your application will
analyze. Based on the results of these analyses, GO will provide a second
generation of solution strings designed to improve on the previous results, and
so on. The steps are as follows:

1. The GO optimization driver creates an initial population of solution strings.
Every population member contains a value for each gene to be included in
the optimization analysis,

2. Your application analyzes all the solution strings in the population, and

3. Control returns to the GO optimization driver and processing continues until a
user-specified condition is reached.

Figure 2.4 shows the process graphically.

GO ASCII File of . !
Optimization Data Sets (Population A L:::eall;ion , Ai‘:“ Fc;lgxltzt
Driver Members) PP nput an p

Figure 2.4. GO Structure for Optimization Analysis

Because optimization requires the type of process loop shown in Figure 2.4, GO
must be able to exercise at least minimal conirol over your application. The
required control can be exercised by having GO start your application. This
approach requires that your application be capable of accepting command line
arguments so that GO can specify the file name containing input data for the
application. Once your application is launched to process a population of
solution strings, the optimization driver will wait in an inactive state until a file of
results is available for use in creating the next generation of input data sets. GO
will determine when the results file is available by using standard Windows API
calls. Processing can be terminated directly by the user or when a specified
number of generations is complete.

8 B16

T VTR STIRTS T T S ¢ e e AT RIS T 4 AR T AT ST
Bl ot P AR M SN rxed SR TWERGLI TGRS SIS

3.0 GO Optimization Input

The link between GO and your application is illustrated in Figure 2.4. This type
of link requires that GO take user input to set up the optimization analysis,
launch your application, wait for the application to complete its analysis, create
the next generation of optimization input, etc. Thus, GO requires both the input
needed to structure the optimization analysis as well as information required to
interpret output from the application. The next five sections focus on these two
areas of user input to GO.

3.1 Combinations Input

GO uses a genetic algorithm (GA) as its optimization mechanism. The first
category of input defines genes and chromosomes. To edit this information,
select Combinations from the Edit menu. The form is shown in Figure 3.1.

For each gene the required input is:

e Gene Name: A name to be associated with a particular gene. For example,
applying genetic optimization to reliability problems, a gene name could be
“Hard Drive Upgrade” or “Spare Pump Motor(s).” If genetic optimization is
used to find a “best” or “worst” point in electrical simulation input space, a
gene might be “Resistance R1.”

e Number of Levels: The number of different values or “flavors” the gene can
take on. In reliability optimization, for example, if a gene represents a
component upgrade, there might be 2 levels where level 1 represents no
change and level 2 represents the upgrade. If the gene represents a
particular input variable and the desire is to find some optimal point in input
space, the gene might have say 100 levels where each level will be
interpreted by the user’s application to represent a discrete point on the input
range for that variable.

The Import and Export buttons on the form in Figure 3.1 form allow you to
import data into the form or export data from the form. Both comma-delimited
(Excel) and tab-delimited text files are supported. The Col. Width button adjusts
the width of the data columns to use the entire grid area or to the minimum width
necessary to display column resulits.

B17

Figure 3.1 Combinations Input to Define Genes

3.2 Problem Setup

This section discusses the parameters that are used to control the operation of
the genetic algorithm. To edit this information, select Problem Setup from the
Edit menu. The form for genetic algorithm parameters is shown in Figure 3.2.

You can select one of two analysis types: optimization or enumeration.
Optimization analyses apply the genetic algorithm search for a “best’
combination from a large space of possible combinations. Enumeration is used
to understand the characteristics of the space of possible combinations.
Optimization parameters will be discussed first followed by enumeration
parameters.

3.2.1 Genetic Optimization Parameters

Clicking the mouse anywhere within the Optimization box on the General tab
(Figure 3.2) sets the analysis type to Optimization and accesses optimization
parameters. Conversely, clicking the mouse anywhere within the Enumeration
box on the General tab sets the analysis type to Enumeration and accesses
enumeration parameters. Enumeration means that a fixed number of randomly
selected input combinations will be generated.

3.2.1.1 General Tab (Figure 3.2)

* Population Size: The number of chromosomes or population members to be
analyzed in each generation. The population size might range from 40 or 50
to 200 or more depending on the number of possible combinations. The
maximum population size is 1,000.

10 B1S

Number of Generations: The number of generations or cycles for the
optimization to run.

LHS or Random Initialization: Determines the method used to initialize the
population for the first generation. LHS initialization is a stratified scheme
based on Latin Hypercube Sampling. So long as the population size is large
compared to the number of gene levels for any gene, this scheme ensures a
uniform (but random) scattering of the initial population over the input space.
Random initialization simply makes the first population by selecting gene
levels randomly. If the number of levels for any gene is comparable to the
population size (no. levels >= 0.5 x population size), you should use random
initialization.

Zero Gene Level: Checking this option causes a zero gene level to be
included along with the specified number of non-zero levels. Suppose a gene
was given 3 levels in the combinations input form (Figure 3.1). If the zero
gene level option is not checked, the possible levels for that gene are 1, 2,
and 3. If this option is checked, the possible gene levels are 0, 1, 2, and 3.
This option can be useful in circumstances such as spares optimization
where a gene level of 0 might indicate that none of that particular spare would
be included in the inventory.

., enetic Algorithm Parameters
General | Mobg | _Keeping | Mutalion _

1 P e Ty —

<

|- Optinization i Eruibpration ey

||| Population Size: 700

£

:?!‘lo.' Bg(nelrétiun::,A l5l] 3 " _ .

~Othir Options ===

|| LHS Initialization: -~ & | [Y Zero Bene Level: | [
Bmdomlniﬁaﬁééﬁoh: SRR o+ I Uiiar-SuppﬁedF'xtxzess* r

~ BK. | Cancer' ||

S —————T

Figure 3.2 General Tab for Genetic Algorithm Parameters

e User-Supplied Fitness: Checking this option means that your application will

calculate fitness for each combination. If this option is not checked, the user
must provide performance measure and constraint information as described
in Sections 3.4 and 3.5.

B19 11

[N i s rraandasak .6 (U R O I TR S R) o v e e R R DA IS IS & s Lt R

3.2.1.2 Mating Tab (Figure 3.3)

Mate Selection Options: Choose tournament or proportional selection.

Mating Options: Choose segment crossover as illustrated in Figure 3.1 or
point crossover which swaps genes between the two parents at randomly
selected locations.

Genetlc Algonthm Parameters
Beneral)

Hate Selectlon,ﬂphons'-———-—éz-,—f:-,—'i:\ e Hatmg ﬂphon: - - = M —

(" Toumament Select:on S :\\ 'f“ gggment Cro:sovex;

‘ (“ Proportmna!Selechon "

Figure 3.3 Mating Tab for Genetic Algorithm Parameters

3.2.1.3 Keeping Tab (Figure 3.4)

12

Keep Selection Options: Population members to be kept for the next
generation can be chosen by tournament or proportional selection.

Start Keep Fraction: The fraction of the population to be kept for the next
generation should generally be lower in the early generations than it should
be near the end of the optimization analysis. The reason is that early in the
analysis, the optimization should aggressively search the space. As the
genetic algorithm finds the better areas of the input space, the fraction of the
population to move unchanged to the new generation should increase to
reduce the risk of losing good solutions by mating and mutation. The start
keep fraction is the fraction of the population to be retained for the new
generation at the beginning of the optimization. Typical values might be 0.1
to 0.5.

End Keep Fraction: The fraction of the population to be retained for the new
generation at the end of the optimization. Typical values might be 0.2 to 0.7.

Keep Interpolation: You can choose either linear or exponential interpolation
of the keep fraction between the start and end values.

B20

l "—geép’iateeﬁaiaﬁm'

Keep Selection Options— _
; 10} Toumamnt’Sélei:tiop t"’ Lmear
:; * Proportional Selection R f‘ Exnomnttal
i L S RO & SO S
{ ' .
i - Start Keep Fx"aétxbr’:. E"

T ST

Cancel

Figure 3.4 Keeping Tab for Genetic Algorithm Parameters

3.2.1.4 Mutation Tab (Figure 3.5)

IR it i = e R S R RRNE S SO 1 o
. Y TITIE TUTA Y RENR RY &

Start Mutate Fraction: The fraction of the population to be mutated at the
beginning of the optimization analysis. Setting the starting fraction larger
than the ending fraction provides more aggressive exploration of the space
early in the optimization while reducing the risk of losing good solutions to
mutation at the end of the optimization. Typical mutation starting fractions
might be 0.1 to 0.3.

End Mutate Fraction: The fraction of the population to be mutated at the end
of the optimization. Typical mutation ending fractions might be 0.05 to 0.15.

Max. Genes to Mutate: The maximum percentage of genes to be mutated in
a selected population member. Once a chromosome or population member
is selected for mutation, at least one but not more than this percentage of the
genes will be mutated. Typical values for this input might be 5% to 30%.

Mutation Interpolation: Choose whether the mutation fraction will be
interpolated linearly or exponentially.

B21 13

N AN N AT JOPM LIS

%{
i

| Wi | _Aeoi

} :\\—-Hutatmn lnterpolahon\ e

Lmeat S &
Exponenhal ‘ 1]

: T ‘Statt hiutate Fractxon o ";U.Z
e y End Hutate Fraehom -]U 1 f
Hax Gene: lo Hutate{%}:]10

R vy G pap e

Figure 3.5 Mutation Tab for Genetic Algorithm Parameters

3.2.1.5 Application Tab (Figure 3.6)

14

Application: Ildentify the application that GO will drive for the optimization
analysis (see Figure 2.1). You can type in this information directly or click the
Browse button to locate the application file.

Command Line: GO creates a temporary data transfer file that contains
population information. This file and path name will appear as a command
line parameter when your application is executed by GO (e.g.,
C:\YourDirectory\YourApp.exe C:\YourDirectory\TempOptData.txt).

Autosave Results: If you want GO to automatically save intermediate results,
check Autosave and specify how often (the number of generations) between

saves. If you are running an enumeration problem, GO will automatically
save results after every generation.

B22

| w. Genetic Algorithm Parameters

General

; - . Application:: L e o |
| . . N &

Command Line:‘ |

IE "~ T

| - I Autasave Results
| Lﬂ...ﬂw% {Seﬁétéﬁons

S e

Figure 3.6 Application Tab for Genetic Algorithm Parameters

3.2.2 Enumeration Parameters

Clicking the mouse anywhere within the Enumeration box on the General tab
(Figure 3.7) accesses enumeration parameters. Enumeration means that a fixed
number of randomly selected input combinations will be generated.

g —

. Genetic Algorithm Parameters
T T T T R

Genesal -

" Hutation

|/ Optimization———— e — 5. - :qumefﬁgn m:.,'Mj,; e

.|| ¢ Fractionat .. [0

e A T €, SRS e

N i ¢ ‘:‘/A‘n % . : ”” N P Pty T L RE SR ek] ‘
i o otiiY i@ Combinations:: |3000 -
18 RSN S 2 e T
i . ~ N : . B 2 R .: N A . N cL N

e e

< T ———
i ™ b
H N
s o = =2 s
; _

Figure 3.7 General Tab for Enumeration Analysis

3.2.2.1 General Tab (Figure 3.7)

e Enumeration (Fractional): This option specifies that a fraction of the possible
combinations will be performed. For example, if you specify fractional

B23 15

TN - T T T m s e - o . S LT L DA €7 2 YT E -
roaTr T S aes R TS TR CATT——— e TR LONTIATI €7 3 VYT e TTRYR s LR Ak

enumeration and provide a fraction of 0.00001, then 0.001% of the possible
combinations will be analyzed. Specifying fractional enumeration ensures
that no combinations will be repeated. The maximum fraction is 0.00001.
Further, the maximum number of combinations that can be analyzed by
enumeration is 1,000,000,000.

o Enumeration (Combinations): If the problem is too large for fractional
enumeration, you can simply specify the number of combinations to evaluate
(maximum number is 1,000,000,000). In this case, there is no guarantee that
combinations will not be duplicated. However, the probability of duplicate
combinations being analyzed should be very smali for large problems.

e Zero Gene Level: Checking this option causes a zero gene level to be
included along with the specified number of non-zero. Suppose a given gene
was given 3 levels in the combinations input form (Figure 3.1). If the zero
gene level option is not checked, the possible levels for that gene are 1, 2,
and 3. If this option is checked, the possible gene levels are 0, 1, 2, and 3.
This option can be useful in circumstances such as spares optimization
where a gene level of 0 might indicate that none of that particular spare would
be included in the inventory.

3.2.2.2. Application Tab
The applications tab is described above in section 3.2.1.5.

If you change any of the inputs available through the Problem Setup menu item
under the Edit menu, the analysis will be restarted at the first generation and any
previous results will be lost unless saved under a different file name using the
Save As item under the File menu. However, there is a subset of problem setup
inputs that can be changed without restarting the problem. These are described
in the next section.

3.3 Run Time Parameters

There are some problem-setup parameters than can be changed without
restarting the run. These are available from the Runtime Parameters menu
item under the Edit menu. Problem setup inputs that can be changed without
restarting the optimization analysis include the number of generations, and all
parameters controlling mating, keeping, and mutation. These are described in
section 3.2.1 above.

For enumeration, the number of enumeration combinations can be changed
without restarting the analysis.
3.4 Performance Measure Inputs

The input form for performance measures is shown in Figure 3.8. See Section
3.2 for a discussion of performance measure parameters. Up to 10 performance
measures are permitted.

16 B24

w, Edit Parformance Maosures

[‘ i‘_ . Each performanca mansury must’
- - = R m nome.
— AL B c 1T Db 1 A
{1 _iPerformance Measure _Baseline Limiting Value Objective Rel. Importance Rel. Welghtig N fimitis tha mamimum or
™ - T i V- Y | fmumvdueﬁ:myoumuacupt
2 _{MIBF 50 60 100 . i
3 BownTime Iy - -z ‘this pedormnnmmeuunTbs
i e o
O EE - e
-—§v’--d
-
L8 4 - S - - fimp
.9 itwas before. sgnhsmxm
i '1“5"' Rmportanca to 1. lfyoupla.cono

fThe ulatnn weightis uud when

haee] Done | Qenoexl

Figure 3.8 Performance Measure Input

e Performance Measure: A string that will be used to identify the performance
measure. Each performance measure must have a name.

¢ Baseline: The initial value of the performance measure. That is, the baseline
value is the value the performance measure has prior to the optimization
analysis. This value is only used to ensure that performance measure and
fitness graphs start at the proper point.

e Limiting Value: The minimum or maximum acceptable value of the
performance measure.

e Objective: The desired value of the performance measure.

¢ Relative Importance: A value between 0 and 1 that indicates the importance
of exceeding the objective. A value of O places no importance on exceeding
the objective while a value of 1 places as much importance on exceeding the
objective as on meeting it.

e Relative Weight: This input is only needed if more than one performance
measure will be evaluated. When multiple performance measures are used,
the relative weight is used to combine performance measures in the fitness
calculation (see section 3.2). Relative weights are normalized by GO to sum
to 1.

3.5 Constraint Inputs

The input form for performance measures is shown in Figure 3.9. See Section
3.2 for a discussion of constraint parameters. Up to 10 constraints are
permitted.

B2S 17

N T N2 N0 158

w; Edit Constraint Information !E]

= — . o
- -1 A | B 4 € b | B
1 _!Constraint Baseline Limiting Value Objective Rel. Importanc
2__iCost 0 1000 800 . -

s fmetode o . s0 w00 ..‘&?‘;'.‘Ee‘i?‘a%h".“&?“"‘""‘”“ |
5) N , felatxva imponnnee indicatos
6 . Tt T - #the importance of eXcoading the
7 e e e — - lobjective.’ if improvementisas

J _ imporiant after the objective is meat
.8 was bufora, sotthe relative
9 ; “poﬁancato’! lfyouplaceno
0 importancy on achieving valuas of

SpreadShaet

5 o —————— =3
———— st e wn——

Figure 3.9 Constraint Input

e Constraint: A string that will be used to identify the constraint. Each
constraint must have a name.

e Baseline: The initial value of the constraint. That is, the baseline value is the
value the constraint has prior to the optimization analysis. This value is only
used to ensure that fitness and constraint graphs start at the proper point.

e Limiting Value: The minimum or maximum acceptable value of the constraint.
¢ Objective: The desired value of the constraint.

e Relative Importance: A value between 0 and 1 that indicates the importance
of exceeding the objective. A value of 0 places no importance on exceeding
the objective while a value of 1 places as much importance on exceeding the
objective as on meeting it.

3.6 Saving Your Data

GO stores your combinations input and problem setup data in a file with the
extension fgo. If the problem has been analyzed, the file also contains resulits.
To create a new file, select New from the File menu and supply a path and file
name. To open an existing file, select Open from the File menu.

To save changes to an existing file, use the Save command on the File menu. If
you want to base a new file on an existing file, open the existing file and the use
the Save As command on the File menu to create a new file.

3.7 The GO Toolbar

Figure 3.10 shows the GO toolbar. The toolbar can be displayed in a large or
small format by selecting the appropriate command from the View menu.

18 B26

1| e
i Hen

.
2
4

i LI o= -]

Hide | -

Hw| &

Gperr | . Faor

Figure 3.10 The GO Toolbar

Working from right to left along the toolbar in Figure 3.10, the buttons perform
the following tasks:

New

Open

Save
Close

Pause

Run

Toolbar
Copy

Print

Minimize

Maximize
Hide

- RZEE AW S B D R OSE A b i el AT T

creates a new GO file. This command is not available when a file
is already open. Performs the same function as the New
command on the File Menu.

opens an existing GO file. This command is not available when a
file is already open. Performs the same function as the Open
command on the File menu.

saves the current file to disk. Performs the same function as the
Save command on the File menu.

closes the current file. Performs the s‘ame function as the Close
command on the File menu.

interrupts the current analysis. The analysis can be restarted be
clicking on the Run command button. This command is useful if
you want to choose new result displays, or if you need to save an
analysis and restart it at a later time.

begins an analysis or continues a partially complete analysis from
the point at which it was paused. Performs the same function as
the Run command on the File menu.

adds a graphics toolbar to the active form.

copies the active results from to the Windows clipboard. If the
active form contains a graph, the graph will be copied. If the active
form contains text data, the text will be copied.

prints the active resuits from. If the active form contains a graph,
the graph will be printed. If the active form contains text data, the
text will be printed.

minimizes the active result form.
maximizes the active result form.

makes the active result form invisible. To redisplay the form,
choose the appropriate command from the View menu.

B27 19

SOWHKTD R SO NI £ ¢4 TR AR AN TL IR ey s

20

This page intentionally left blank

B28

4.0 Linking GO with Your Application

The link between GO and your application is a text file that passes information.
After GO creates a generation of combinations (population members) to be
evaluated, it runs your application. For example, suppose your application is
called YourApp.exe and resides in directory C:\YourDirectory. Further, assume
that you have specified a command line (data transfer file name) of
TempOptData.txt. Then, once GO has created a generation of combinations to
be evaluated, it will start your application as follows:

C:\YourDirectory\YourApp.exe TempOptData.txt

When your application starts, it must open the file named on the command line
and evaluate each of the combinations. The contents of the data transfer file as
created by GO are illustrated in Figure 4.1.

254,1,1
“Genel”, “Gene2”, “Gene3”, “Gene4”, “Fitness”, “YourPerfMeas”, “YourConstraint”
3,0,3,2,5,0,0,0

4,2,1,5,2,0,0,0
7,1,4,3,0,0,0,0
10,4,2,1,3,0,0,0
11,3,0,0,4,0,0,0
14,1,2,1,2,0,0,0
17,3,0,2,4,0,0,0

Figure 4.1 Example Data Transfer File

First Line
e Number of combinations or population members to be evaluated (25 in the
above example)

e The number of genes (4 in the above example).
e The number of performance measures (1 in the above example)
e The number of constraints (1 in the above example).

Second Line
e Gene Names (1 to number of genes). In Figure 4.1 the gene names are;
Gene1, Gene2, Gene3, and Gene4.

e Fitness (the word ‘Fitness’ will always follow the list of gene names).

e Performance measure names (1 to number of performance measures). In
Figure 4.1, there is one performance measure called ‘YourPerfMeas'.

e Constraint names (1 to number of constraints). In Figure 4.1, there is one
constraint named ‘YourConstraint’.

B29 21

Remaining Lines

The remaining lines are the population members or combinations developed by
GO to be evaluated by your application. The third and remaining lines each
contain the following information.

e Population member index. Recall that after the first generation, GO will keep
unchanged a fraction of the previous population. Members of the new
population that have not been changed do not need to be reevaluated and
are not included in the data transfer file. Only new population members are
written to the data transfer file to be evaluated by your application. The
population member index ensures that results returned from your application
are properly slotted back into the population.

e Gene levels (1 to number of genes). In Figure 4.1, there are 4 gene level
values on each population member line.

e Fitness. GO writes the fitness value after the list of gene levels for each
population member. As written by GO, the fitness value is set to O because
the population member is new and its fitness is not known. If you have
checked the User-Supplied Fitness option (Figure 3.2), your application is
expected to calculate and return a fitness value for each population member.
Otherwise, fitness will be calculated by GO when population results are
returned.

e Performance measures (1 to number of performance measures). These
values must be returned by your application.

e Constraints (1 to number of constraints). These values must be returned by
your application.

After each generation has been created by GO, the data transfer file is written
and GO starts your application. When your application begins execution, it must
open the data transfer file named in the command line. Your application must
translate each population member into appropriate data input values for
evaluation. In evaluating each population member, your application must
calculate the specified performance measures and constraints or calculate
fitness if you have chosen the User-Supplied Fitness option.

When your application has evaluated all the population members in the data
transfer file, you must rewrite the file using the same file name and path. The
data transfer file, as rewritten by your application, must provide performance
measure and constraint values (or optionally fitness) for each population
member.

22 B30

The data transfer file as returned by your application might look like Figure 4.2.

254,1,1

“Genel”, “Gene2”, “Gene3”, “Gened™, “Fitness”, “YourPerfMeas”, “YourConstraint™
3,0,3,2,5,0,15.7,32.1

4,2,1,5,2,0,17.1,30.4

7,1,4,3,0,0, 149,259

10,4,2,1,3,0,18.5,31.3
11,3,0,0,4,0,17.2,28.5
14,1,2,1,2,0,16.3,27.8
17,3,0,2,4,0,15.2,24.9

Figure 4.2 Example Data Transfer File as Written Your Application

Notice that the only changes made the data transfer file have been to replace the
performance measure and constraint values (or fitness value) with results
calculated by your application for each population member.

When your application has evaluated all population members and rewritten the
data transfer file, it must terminate. Termination of your application is a signal to
GO that the file can be read and the next generation created. This process will
continue until all generations have been evaluated or you end the analysis.

B31 23

24

This page intentionally left blank

B32

5.0 GO Results

This section describes results available from the GO Genetic Optimization
Driver. All GO results can be accessed from the View menu. Results forms can
be activated only while the GO driver has focus and not while your application is
running. You can activate any of the results forms before you begin the
optimization run or while the analysis is paused.

5.1 Summary Information

The summary information form shows the gene levels, performance measures,
constraints, and fitness values for the current population. Figure 5.1 shows the
form. Each population member is available with the form defaulting to population
member with the best fitness. The Rank drop-down list is used to view other
population members.

B

| Rk T~ .- - - - Geneafion:6- o

- |t -, [Obigdtive "~ “|Vaue - |Baselne «f:

; 3 o .. _._230e7 ‘0818 i
50.00 *100.0 216.5 20.60
1000500 344600

1

Q
EARIE

Axis lubrication fault
B-ait biast solenoid
B-Céolant in bearing off
B-hyd valve [clamp i/n}
Blue waminglamp
B-pallet clamp bar bblfs ™~
B:table fotary feedback
|| Chip.conveybr. gearbog
CON-thotor poiver supply
Cohveyor 3ir Blow-off .
Conveyor diive $haft
Cdolnt biccked by chips
Coplant fiferclogged
Coplant neléak
RS

20.00 500 2220 0
| [TivetoDo. 15000 .30.00 531.0 0

N OOINO— OOV OO[O]— = —

Figure 5.1 Summary Information Form

The left side of the form shows a list of gene names with the gene levels
corresponding to the selected population member. The right side of the form
shows the fitness followed by all performance measures then all constraints.
The ‘Value’ column shows the fitness, performance measure, or constraint value
for the selected population member. Baseline values are shown along with limit
and objective values for performance measures and constraints.

5.2 Top Combinations

The top combinations form shows the 10 best population members, in terms of
fitness, that have been found so far whether or not they occur in the current
generation. This form is shown in Figure 2 and contains similar information to
that in the summary information form.

B33 25

SRR TS ST e POTYNETR Y SRy, e -

e

e

Rank: {fl e -
- ilevel” T |Limit [Objective © . [Value - |Baseling |4

‘| Axis lubrication fault 1 Filness o o _ 230E7 0.810]

B-air blast solenoid. 1| o [MTBF 5000 100.0 2185 2080
| BCoolatinbearing oil__|1 % [DownTire _ 1000 500 334 e00
| B-hyd valve {clamp y/n] {0 <1 |Cost . - 12000 5.00 222.0 0 -
| Blue waming famp 0 1 |TimetoDo 50.00 30.00 531.0 0 .

B-palletclampbarbokts |0 \) o o

B-table rotary feedback 12 : B o i

Chip conveyor geatbox |0 ;) o -
-} CON-motor power supply |0 <« a e g ; S S

Figure 5.2 Top Combinations Form

5.3 Fitness Graph

To view a graphical display of fitness, select Fitness from the View menu. If you
are running an optimization problem, the graph will show a history of the fitness

of the best population member in each generation as shown in Figure 5.3.

70 FitnessHistory, .o

.20

tD-/‘

. Fitness - -

05

Cre e

00—

100 - 50
’ " Generations

Figure 5.3 Fitness History for an Optimization Run

If you are running an enumeration, the fitness graph is a histogram showing the

distribution of fitness values in the combinatorial space (Figure 5.4).

26

B34

S CorTmmeeT ”imeserstograwmhvw cerrm

0.07

.0.061

" Fraction

0,03 1

L, o oo Y RS o, e, S S e gt ST, T R V. T S AL .

. gomeo® . . ©.000000 -~ 0.0000002 . , £.0000003

o i Ao s i A A 8 i e S s R o W0y 3 e St 0 B o ek vt v e e

Figure 5.4 Fitness Histogram for an Enumeration Run

Similar results to those shown in Figures 5.3 and 5.4 can be displayed from the
View menu for all performance measures and constraints.

B35 27

E R hacudietalionly O AUl SR YO N ARRNRT o JICEON- SR LN S o vin potarih L SRR Ty P b it Jucic g n= e =iyl 47 PRI % - Sl

28

This page intentionally left blank

B36

6.0 GO Example Application

An example based on repairable systems reliability has been developed to
iflustrate the use of GO in a practical application. The example is written in
Visual Basic 5 and both executable and source code files as well as example
problem input are included in the installation files. The example application
(called RelOpt) calculates Mean Time Between Failures (MTBF), Mean Time to
Repair (MTTR) or down time, and availability for series systems. The required
inputs for each failure mode are:

Failure Rate: The failure rate for a particular failure mode is the number of
occurrences per hour of operational time. For example, a failure rate of 0.0001
would mean that the particular failure mode occurs, on average, once every
10,000 operational hours.

Down Time: Down time (also called repair time) is the total time in hours required
to return he system to operation after a particular- failure mode occurs. For
example, a down time of 2.5 would mean that, on average, the failure mode
takes 2.5 hours to repair and return the equipment to operation.

Since RelOpt was developed for use with GO, there must be a way to relate
gene levels to changes in input data. This is done by providing failure rate and
down time multipliers. For example, if a given gene level corresponds to a 30%
improvement in failure rate for a particular component, the failure rate muitiplier
for that component and gene level would be 0.7. Similarly, if a particular gene
implied a 60% reduction in down time for a component, the down time multiplier
would be 0.4. Finally, for use with optimization, RelOpt must provide for
constraints or penalties associated with each gene level. To meet his need,
RelOpt allows the user to specify a cost and time-to-do associated with the
component improvement represented by each gene level. Then, either or both
of these measures can be used as constraints for the optimization analysis.
Failure rates and down times for each failure mode are read by RelOpt from a
file names OptSetup.dat. This file also contains costs, time-to-do, failure rate
multipliers and down time multipliers for each gene level and each failure mode.
The OptSetup.dat file is included in the GO setup.

MTBF, MTTR and availability are calculated from the following equations:

B37 29

FALTITORFYS T TN L. T L RETOTTTYR T s N v T OTEEEATITTIOGT RN TRIORY T

1

MTBF =
24
=LN
Eaﬂﬂﬁ
MTTR =228
A
=1LN
Availability = MTBF
MTBE + MTTR

where A; is the failure rate for failure mode i and t; is the down time.

The reliability allocation optimization is applied to the design of a cluster tool, a
highly complex piece of equipment used in semiconductor manufacturing.
Piecewise “effort curves” specifying the amount of effort required to achieve a
certain level of reliability for each component or subassembly are defined. The
genetic algorithm evolves or picks those combinations of “effort” or reliability
levels for each component, which optimize the objective of maximizing reliability
while staying within a budget.

Reliability allocation, defined as specifying a level of reliability for each
subsystem or module in a system to achieve a given system reliability, should be
performed early in the design cycle to guide designers in choosing components,
materials, and a design architecture that will meet system objectives. Reliability
allocation should start from a base of past experience. Reliability allocation is
not the same as detailed design tradeoff studies, where specific design options
are evaluated for cost and reliability tradeoffs. Nor is reliability allocation the
same as reliability improvement, where the objective is to find the optimal
combination of improvements to upgrade an existing design to maximize its
reliability. However, reliability allocation, design tradeoff studies, and reliability
improvement are all related, subsequent and often iterative steps of the design
process. Reliability allocation should be the first step since it can guide later
design work: it is not efficient to develop a detailed design and then have to
redesign and reallocate reliability if the initial allocation is not achievable.

6.1 Application

The reliability allocation optimization will be applied to a problem of cluster tool
design. The cluster tool consists of a robot arm surrounded by various
processing chambers in which vapor deposition, etching, cleaning, etc. is
performed. A laser alignment system combined with the robot arm move the
wafers from one chamber to another, according to the manufacturing “recipe”
needed. A schematic of the system is shown in Figure 6.1. Since the cost of

30 B38

equipment, labor, and materials is high for the cluster tool machine, downtime is
very expensive and so correct reliability allocation in design is critical.

'/Pm

Transfer

Arm
/

Transfer Load
PC2
Chamber

2
% Unload
\

\PCE}

Figure 6.1 Cluster Tool

The reliability of the system is modeled through a fault tree. The top event is
defined as the failure of the machine to complete one cycle (i.e., taking one set
of wafers through its recipe). This is a task oriented approach to fault trees
which is appropriate to equipment failures involved in processing items.
Processing involves a series of tasks, so failure to complete any one of those
tasks constitutes failure to complete the entire task. Thus, the failure of the
cluster tool to complete a cycle can be decomposed into the failure of the
machine to load the wafers, a failure to transfer the wafers between stations, a
failure to process the wafers in any of the process chambers, or a failure to
unioad the wafers. These tasks can be further decomposed to their immediate
causes. For example, the failure to process the wafers in a chamber could be
caused by a failure of the chamber itself or of the central support systems such
as the power and the system controller or of the support systems to the
chamber. The support systems include the vacuum system for each chamber,
the temperature control unit, the gas distribution system, and the RF plasma.
These could be further decomposed given more information about their function,
however they are not for the purpose of this analysis. See Figure 6.2 for a fault
tree of the process. Note that there are events which occur at more than one
point throughout the tree. For example, a central support system failure will

31

B39

affect the functioning of the process chambers and the loading/unioading. This
does not imply that failures of these modules are double-counted. Such double
counting is eliminated when the fault tree is solved.

The cluster tool is a series system meaning that the system fails if any one of its
parts fail. For this reason, it can be analyzed using the simple series reliability
application presented here.

- ~TOPEVENT . Failure of Cluster ool to comglete.one cydle.
-y LOAD-FAIL Failure to load the wafers
$ CT-LOAD-FAIL Load Station Fail
A CT-WVAC Central Vacuum System
/A CENT-SUPPRT-FAIL Central Support System Failure
- TRANS-FAIL Failure to transfer wafers
L-O CT-TRAN-ROB Transfer Robot
—O CT-TRAN-TC Transfer Chamber
—A CT-WVAC Central Vacuum System

LA CENT-SUPPRT-FAIL Central Support System Failure
—{) PROCESS-FAIL Failure to process the wafers
() PROCIFAIL Failure of Process Chamber 1
$ CT-PROCI-PCi Process Chamber
A\ CENT-SUPPRT-FAIL Central Support System Failure
{3 PROCI-SUPPORT Support for Process Chamber 1
<> CT-PROCI-VACI Vacuum System 1
<& CT-PROCI-TCUT Temp. Control Unit 1

<$ CT-PROCI-GD1 Gas Distribution 1
$ CT-PROCI-RFP1 RFPlasmal
-0y PROC2FAIL Failure of Process Chamber 2

/A CENT-SUPPRT-FAIL Central Support System Failure

£y PROC2-SUPPORT Support for Process Chamber 2
< CT-PROC2-VAC2 Vacuum System 2
& CT-PROCR-TCU2 Temp. Control Unit 2
< CT-PROC2-GD2 Ges Distribution 2
< CT-PROC2-RFP2 RF Plasma 2

-\ PROC3-FAIL Failure of Process Chamber 3
|E<> CT-PROC3-PC3 Process Chamber 3

Eo CT-PROC2-PC2 Process Chamber 2

A CENT-SUPPRT-FAIL Central Support System Failure
{\ PROC3-SUPPORT Support for Process Chamber 3
¢ CT-PROC3-VAC3 Yacuum System 3
<$ CT-PROC3-TCU3 Temp. Control Unit 3
<$ CT-PROC3-GD3 Ges Distribution 3
$ CT-PROC3-RFP3 RF Plasma 3
Ly UNLOAD-FAIL Failure to unload the wafers
CT-UNLOAD-FAIL Unload Station Fail
A
A

CT-WVAC Central Vacuum System
CENT-SUPPRT-FAIL Central Support System Failure
Y ~CENT-SUPPRT-FAIL Central Support System Failure

< CT-CONT System Controller
& CT-POWER Power Distribution -
<O T CT-WVAC Central Vacuum System

Figure 6.2 Fault tree for Cluster Tool Problem

Failure rate and down time data for the system components are given in Table
6.1 below. Note that identical components (e.g., the three gas distribution
components) have been combined on a single line since they are assumed
identical and any upgrade to one of them translates into an upgrade for all three.
Further, combined identical components are given the summed failure rate of the
individual units. These identical components are not redundant since they
perform different, necessary functions. The failure data in Table 6.1 give an

32 B40

MTBF of about 101 hours and an average down time of about 9.65 hours. This
represents the estimated reliability before the new design objective is established
and is the starting point for improving the system.

Name Failure Rate | Down Time
(1/Hours) (Hours)
System Controller 0.00171 1
Load Station Fail 0.00043 6
Power Distribution 0.00029 8
Gas Distribution (3 Units) 0.00087 14
Process Chamber (3 Units) 0.00129 11
RF Plasma (3 Units) 0.00087 6
Temp. Control Unit (3 Units) 0.00087 13
Vacuum System (3 Units) 0.00129 12
Transfer Robot 0.00057 13
Transfer Chamber 0.00086 16
Unload Station Fail 0.00043 6
Central Vacuum System 0.00043 16
Total 0.00991

Table 6.1 Failure Data for Cluster Tool

6.2 Problem Formulation

Four items must be specified to define the reliability allocation optimization
problem:

e Decision Variables

e Performance Measures

e Constraints

e Genetic Algorithm Parameters

These are discussed in more detail below.

6.2.1 Decision Variables

The decision variables in reliability allocation are levels of reliability to assign to
each component or subassembly. In formulating the reliability allocation
problem, an initial design with preliminary failure rates per component is
conceptualized. Then, for each component, potential improvements and the
associated effort to make those improvements are postulated. This is done by
examining multipliers of the failure rate or failure probability. For example, if the
“base case” failure rate on the load station is estimated to have a mean of
.00043 failures per hour, the following table is constructed:

B4l 33

Failure Rate Cost (amount of Failure rate
Multiplier effort) $ (failures/hour)
1.0 0 0.00043
0.9 100 0.00039
0.8 200 0.00034
0.7 300 0.00030
0.6 500 0.00026
0.5 700 0.00022
0.4 1000 0.00017
0.3 2000 0.00013
0.2 3000 0.00009
0.1 5000 0.00004

Table 6.2 Reliability Improvement and Corresponding Cost

Table 1 defines a piecewise “effort curve” shown in Figure 6.3. This graph
shows the effort to improve the reliability of a particuiar failure mode increases as
the failure rate decreases (as the reliability increases): it usuaily costs much
more to halve or tenth the failure rate than to make incremental improvements.

5000
4500 +
4000 +
3500 +
3000 +
2500 +
2000 +
1500 +

Cost ($)

1000 +
500 +

0 t ? g t t t ; 1
0 5E-05 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005

Failure rate (failures/hour)

Figure 6.3 Effort Curve for reliability improvement

Effort curves are defined for all components in the initial design. The
optimization will pick those combinations of “effort” or reliability levels for each
component, which optimize the objective.

Since GO only provides population member definitions in terms of gene levels in
its data transfer file, it is up to the user’s application to translate gene levels into
input data changes. In this example, that means that RelOpt must interpret gene

34 B42

levels into failure rate and down time multipliers as well as costs and times-to-do.
Failure rates, down times, gene-level multipliers, costs, and times-to-do for this
example are read by RelOpt from a file called OptSetup.dat which is included in
the GO installation package.

6.2.2 Performance Measures and Constraints

Typical reliability optimization problems might seek to maximize some
combination of MTBF, availability, average down time, and maintenance costs.
Because this example addresses reliability allocation, we will just set an MTBF
objective for the system and seek to minimize the cost or effort to achieve that
objective.

In addition to the performance measures, it is necessary to define the constraints
upon the system. For the purposes of reliability allocation, we only consider the
constraint of cost. Usually reliability can be improved substantially, but it may be
very costly and not feasible in a world of fixed and shrinking budgets. Thus,
budget is the key constraint. ‘

6.2.3 Genetic Algorithm Parameters

The performance of genetic algorithms is dependent on many of the
implementation factors and can be tuned to the particular problem at hand. See
References 8 and 9 for a detailed discussion of control parameters. We have
found genetic algorithms to be fairly robust to the particular choice of control
parameters. For this example, a population of size 100 was run for 100
generations. The fraction of the population kept unchanged for the next
generation was started at 0.4 and increased linearly to 0.5 by the last generation.
The initial mutation fraction was set to 0.3 and reduced linearly to 0.2 by the last
generation.

6.3 Results

The cluster tool reliability allocation problem has twelve major subassemblies or
components, each with 10 possible levels of reliability (the base case plus nine
additional levels from 0.9 to 0.1 times the base case). Thus the total number of
combinations is 10" or 1 trillion. This is a relatively large optimization and
obviously there are not 1 triillion “realistic” combinations of reliability levels for the
design of this equipment. However, the point of the reliability allocation
optimization is to provide guidance for what the approximate reliability levels for
each subassembly should be, and there certainly could be 1 trillion combinations
of potential allocations.

The top combination as well as fitness, MTBF, and cost histories are shown in
Figure 6.4. The history plots are typical of optimization problems. Fitness rises
rapidly the first few generations then ultimately flattens out as the genetic
algorithm as found its “best’ combination. The cost history begins at 0 since
there is no cost involved until improvements are considered. In the first
generation, the cost goes up as combinations are found that increase MTBF.

B43 35

CUTEINR N U s RN N AN OOV DS AT e 1 L - LT IR R, Sty e o A PTIRE . ST, -t

The optimization then tries to find combinations that reduce cost while increasing
MTBF.

The failure rate multipliers were entered in the order of decreasing cost and the
zero gene level option was used. These choices result in the selected gene level
(times 10) being the recommended percentage improvement in failure rate. The
best combination results in an MTBF of 249.5 hours compared to the objective of
250. Note that the cost of 13,500 came in below our objectlve of 15,000.

Ele Edit ,‘{:ew ﬂmdcw ﬁelp

:j s ﬁ T S e o e e e
Foo | Core sm‘l Closa | . & | “Copy. | Print | -Minimize |Maximize| Fiide
X Tap Combinations - EB b MTBF History G ey
Renk |y = | . Ganpratoni 100 . . . LS MTBF History
Lovel = Umit __ |Objectivé_|Valug |Baseling =+ 300 ¢
stamConof2 | Fitness. 1045 0001772 - :
LoadSimfion {4 |[MIBE |2258 2500 2470 101_q
Pcwetossmbui3 -1|Cast’ ZDUUD 15000 13500 0 B
2 T
38
3
4
H4
3..
ym|8
g

_CostHistory -

N B FitnessHistory
30000 1 - S S] - e -
) ;2‘ LR L
& -
0s; -
L P SRt PR ISy M 0,0 i ai e L i l
0 2 - & s vwm ool o - - P S ‘e8 10
. -~ Genorations - ‘ji, ?/.‘ N 4 o j‘ ?, . Gmmmns : o)
PIDg:ess"lDOUD/ ’ {eenemom wa - 1Fmess:w«t D ;}c;:mmufonr wosqz }11/8198 - jmm

e e A w16 e e < e e - qp—— =7 =

Figure 6.4 Optimization Results for the Cluster Tool Reliability Allocation

GO tracks the top ten solutions over all generations. The top three solutions are
shown in Table 6.2. Notice that they are very similar. This indicates that the
solution is robust. For example, all solutions have the failure rate of the transfer
robot allocated at 30% of its base case, the failure rate of the central vacuum
system at 30% of its base case, the failure rate of the system controller at 20%
of its base case, etc. There are differences with respect to the reliability
allocation for the power distribution and the unload station. The fitness values
for the top three solutions range from 1.046 to 1.040. These results can provide
guidance for the target levels of reliability that each subassembly shouid attain in
a more detailed design. If you run this application, you might not get exactly the
same results because of the randomness inherent in the optimization algorithm.
You should get results that are very similar to those shown here.

36 B44

the fitness values are very near 0.

Component Solution 1 | Solution 2 | Solution 3
System Controller 0.2 0.2 0.2
Load Station 04 0.4 04
Power Distribution 0.3 0.3 0.6
Gas Distribution (3) 0.2 0.1 0.2
Process Chamber (3) 0.8 0.8 0.8
RF Plasma (3) 0.3 0.3 0.3
Temp. Control Unit (3) 04 0.4 0.4
Proc. Chamber Vacuum (3) 0.4 0.4 0.4
Transfer Robot 0.3 0.3 0.3
Transfer Chamber 0.8 0.8 0.8
Unload Station 0.5 0.6 0.4
Central Vacuum 0.3 0.3 0.3
RESULTS
Fitness 1.046 1.040 1.040
System MTBF (hours) 247.0 249.7 249.6
Improvement Cost ($) 13,500 14,000 14,000

Table 6.3 Top solutions in population

An enumeration of 100,000 randomly selected combinations was run to better
understand the solution space for this problem. Histograms of results are shown
in Figure 6.5. The most interesting result from the enumeration is that most of

In fact, in 100,000 randomly selected

combinations, only 8 had fithess greater than 0.00001. The best combination
found by the enumeration had fitness of 0.846 compared to the optimization
result of 1.046.

B45

37

Blo Edi Vew Wndow Holp -

D) | | H |

New | Cpar | Seve | Close

Pouses] Pun

“Toolbar

155 | By

Meximize

“Hds

% Top Combinations:
Generation; 200

- Oix

ivfLe.

Limit

|Objecive {Valus

[Basatine =

Fness i
MTBF 12250 2500
|{Cast

20000 15000

J084577 0001772
2416 _
15300 0

1010

I\COIS} P

T aw

S

% Higtogram : i
- .- . FitnessHistogram
T 188 -

B Fitas:

© 084
as

oail-

Relative Fraquency

I

B
o
P
‘

W-MTEE Histogram

010

08
“og8d. .

004

>

Rotativa Fraquency

0.2

‘0m

'Progress: 10000% - |Combinaiohs: 100000 -

o

R e S [T TN T R

Figure 6.5. Results of Enumeration Analysis

38

B46

7.0
[1]

[3]

[4]

[5]

References

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI. Reprinted in 1992 by MIT
Press, Cambridge, MA.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, MA.

Powell, D. and M. M. Skolnick, 1993. Using Genetic Algorithms in
Engineering Design Optimization —with Non-linear Constraints,
Proceedings of the Fifth International Conference on Genetic Algorithms,
S. Forrest, ed., Morgan Kaufman, Los Alto, CA.

Campbell, J. E., and L. A. Painton, 1996. Optimization of Reliability
Allocation Strategies Through Use of Genetic Algorithms, American
Institute of Aeronautics and Astronautics, AIAA-96-41 93-CP.

Painton, L. A., and J. E. Campbell, 1995. Genetic Algorithms in
Optimization of System Reliability, |EEE Transactions on Reliability, 44(2),
172-178, June 1995.

B47 39

< I rommmATTR e rEALs © amee oL S Co m peemespnT oM NEn RSKRS YT LR RN VO

This page intentionally left blank

B48

B eme e ——e o
PR SET
IR e Y.

Appendix C: SUNS™/SPICE Design Applet Parse Code

C1

This page intentionally left blank

C2

#1/usr/local/bin/perl
#

ok kkkhkkhhhkhkhkhhdhkdhhhhhhkdhddhhdhdhhhdrddxhdhhkhdhhhhhdhddkrdhhohkhddddhhkhdhrhhrhrrddrixk

Usage: WXXparse -j <jobid> -d <directory> -n <netsuffix> ~e <opsys> -h *
**

Defaults: *
-d <directory> = /home/spice3
-n <netsuffix> = def
-j <jobid > = WXX -h <help> or h or help
-e <exec > = unix {(or nt) *
**
$jobid = "test";
Sunixdir = "/home/spice3™;
Snetsuffix = "def";
$spice3syslog = "spice3" . "sysnet.log";
sexecos = "unix";
$ntdir = "c:\\spice”;
Shomedir = ",
Spathdelim = "/";

unless (open(stdout, ">$spice3syslog")) {
print stdout (
"x*x*Error (WXXParse) : 0002-Unable to open system log: $spice3syslog\n®);
die (
t %% *Error (WXXparse) : 0002-program terminated. Check log file\n");
}
#

’k

Check if more than one argument; if so, there needs to be an even number
*

meet the format of -argcmd <argvalue> *

#

@cmddesg = ""; @cmdargv = ""; Sargerr = 0; Shelp = "";

$Snargs = @GARGV;
if ($nargs > 1) {
$r = $nargs % 2;
if ($r 1= 0) {
Sargerr = 1;
print stdout (
v%x**Erroy (WXXParse) : 0003-Illegal command line\n");
exit;
}
}
#

Gk dkkkhkhkkkhkh kAT hkh Tk hkhh ok kAR TR R I T AR I A A FF b ddkd b dhkhhkhkdkhkdhhhkhkrdrdkhkdhdbdx

4 Capture the command line aruments and values in array for processing:
*

f**
if ($argerr == 0 && Snargs > 0) {
$i = 0; $j = 0;
while ($i < $nargs) {
if (@ARGV[$i] =~ /~-/) {
@cmddesg{$j] = @ARGV([S$il;

Si++;
@cmdargv([$j]l = @ARGVI[S$i];
} elsif (@ARGV[$i] == "help") {
$help = "-h";
} else {

C3

e LA NSTVITINTS XNRY Y0 T2 A eTATL T e T S e w2 T TN & T QYTTTIR TETTTI m Tese I

Sargerr = 2;
print stdout (
"x**Brror (WXXParse) : 0004-Syntax error on command line\n");
exit;
$i = Snargs;
}
Si++; $j++;
}
}

£y
ks

dhkdkhkdkkdhhhrhkhkhkhkkkFhr Ak Rk kb d kT dhhkdhdhk kb bk ko khhkhkhrhhhhkdrkdhkkhkdrxhdkhhkrhhkhx*

- look for a -h (help) *

8
his

kkkkdkkkhkkhkr ok hhkh kA Ak kA Ak kkhk kb hhhdhkdkhhhhhhhhdhhhrhdhkhkrdhkhddhkhkdhhhhhxx

if ($nargs > 0) {
for ($i = 0; $i < @Gcmddesg; Si++) {

if (@cmddesg($i] eg "-h" || @cmddesg([$i] eqg "-help" ||
@cmddesg($i] eqg "help®) {
Shelp = "-h";
$i = @cmddesg;
}
}

P
ks
P X R R R R R R R R 22222222 X222 TR EEESE R L LRSS S S & AR R LR L AR R RS R

Search the array and update the program command line argument values:

*

3&

1w

R R R R R R R R E P R R X R E e AR R X R R AR RN R R TSR E R S R LR R R R R Rt
if (Sargerr == 0 && S$nargs > 0) {

for (%1 = 0; $i < @Gcmddesg; $i++) {
if (@cmddesg [$1i] eqg "-3") {

$jobid = @cmdargvi[$il;
} elsif (@cmddesgis$i] eqg "-d") {
Shomedir = @cmdargv[$i];

} elsif (@cmddesgls$i] eqg "-n") {
$netsuffix = @cmdargvi$il;
} elsif (Ccmddesgl$i] eqg "-e'") {

Sexecos = @cmdargv{$il;
} elsif (@cmddesg[$i] eg "-h" || @cmddesgi$i] eq "-help”
|| @cmddesg[$i] eqg "help") {
$help = "-h";
} elsif ($help i= "-h") {

Sargerr = 5; -
print stdout (
vx**Brror (WXXparse) : 0004-Unknown argument: Gcmddesg[$i]l\n");
exit;

4
k14
khkhkhkhkhkdhhkdkkEhkr ARk bk Sk ko hdhrhkhkhkhkdkh Tk hkhkhkkhkhkkhkhkkdhhkhhrrhdrhkrhhkhdhhkhdrxhhhohxx

tell user there are errors in the command line arguments / values:

*

44

™

P R L R R R R R R R e R R R R R R R e R X EE AR XX T TR TS LRSS SRR R SR L LRSS S LR AR AR S Atk

if (Sargv > 0 || $help eq "-h") {
print stdout (
"x**xBrror (WXXparse) : 0005 Usage: wxxparse -j <jobid> -d <dir>"
C4

" _n <netsuffix> -e <opsys> -h <help> \n");
exit;
}
set the type of path delimiter for nt vs unix:
if (Sexecos eq "nt") {
$pathdelim = "\\";
} else {
$pathdelim = "/";

if ($homedir eqg "" && S$execos eq "nt") {
$dir = $ntdir;
} elsif
($homedir eqg "" && $execos eg "unix") {
$dir = Sunixdir;

} else {
$dir = Shomedir;
}
#
#

Build the dir / file names for spice output files. Directory structure:
*

Directory structure:

*

dir = /home/spice3

*

jobid: WXX

*

dirs: images_def models out_def plots_def

*

files: .mdl .cir *.plt

*

.out

*

.log

*

#

$dir = §&dir . $pathdelim . $jobid;
soutdir = $dir . $pathdelim . "out_" . Snetsuffix;
splotdir = $dir . $pathdelim . "plots_" . $netsuffix;
$spice3net = $jobid . "spice_" . $netsuffix . ".cir";
$spice3out = $jobid . "spice_" . $netsuffix . ".out";
$spice3log = $jobid . "spice_" . $netsuffix . ".log";

#

#

Print options to execute the job to the system log:
*

f**
print stdout (
"jobid = $jobid, dir = $dir, exec = $execos, netsuffix = S$netsuffix\n"
"netlist = $spice3net, spiceout = $spice3out, \n" .
tgpice3log = $spice3log, plotdir = $plotdir, \n"
toutdir = Soutdir \n");
#
#

C5

Check to make sure directory and files are found:

P R X E R R R E R R R P T P EEE R EEEEE RS EEEEE SRS LRSS LS SRR RS SR AR SR EEE S SRS EER]
$filerr = chdir ($dir):
if ($filerr eqg false) {
print stdout (
"x%*Brror (WXXParse) : 0006 - Directory ($dir) does not exist. Quit.\n");
die (
nx**BError:0006 - WXXparse terminated due to errors. Check log
file.\n");
}
$filerr = chdir ($plotdir);
if ($filerr eq false) {
print stdout (
"xxxError (WXXparse) : 0007 - Directory ($plotdir) not found. Quit.\n");
die (
"*x**Error:0007-Program terminated due to erxrrors. Check log file.\n");
}
$filerr = chdir ($outdir);
if ($filerr eqg false) {
print stdout (
"*x*Error (WXXparse) : 0008 - Directory {(S$Soutdir) not found. Quit.\n");
die (
"kx*Errory (WXXparse) : 0008-Program terminated due to errors."
" Check log file.\n");

if (!-e $spice3dnet) {
print stdout (
"x**Error (WXXparse) : 0009 - File ($spice3net) does not exist. Quit.\n");
die (
"***Brror {(WXXparse) : 0009 - Program terminated due to errors.'
" Check log file.\n");
}

2

close (spice3syslog);
unless (open(stdout, ">$spice3log®)){
print stderr (
"*x*Brroy (WXXparse) : 0010 - Unable to open log message"
" file: $spice3log\n");
die (
"**x*Brror (WXXparse) : 0010 - program terminated. Check log file\n");
}
#
P R R E R R R R R R R R R R R e R R R R X R X R R R R R R E R X R A E R EEEF R T TR TR LR EE SRR S S S 5 SRR R,
Open SPICE files:INT Comment lines **PRINT Qnn BE CB
*
#
PR X R R R R T Py R R R XTI SRS LSRR RS & AR SR S
print stdout (
"jobid = $jobid, dir = $dir, exec Sexecos, \n" .
" netlist = $spice3net, spicel3out = $spice3out, spice3log =
$spice3log\n");
4

mw

unless (open(netlistfile, "$spice3net")) {
print stdout (
nx*xError (WXXparse) : 0011 - Unable to open netlist input file:"
" Sabsspice3net\n");

Cé6

die ("***Error (WXXparse):001l - program termintaed. Check log
file\n");
}

**

Search netlist input for **PRINT Qnn BE V 3_4
- save the requested plot files in an array to match with

spice3 output file: *
- Model data in netlist must start with $startmodel comment

**

$i = 0; $j = 0; $endloop = 1; @prntarr ="";
while ($endloop == 1) {
$netline = <netlistfile>;
if ($netline =~ /~**PRINT/) {
chop ($netline);
$netline =~ tr/a-z/A-z/;
@éprntarr = split(/ +/,S$netline);
@arrcmpnt [$i] = @prntarr(l];
@arrplotd([$i] = @prntarr[2];
@arrplotn($i] = @prntarr(3];
Rarrnodes[$i] = @prntarr([4];
Si++;
} elsif ($netline eqg "***Start Model Definitioms:\n") {
$endloop = 0;
} elsif (eof) (
Sendloop = 0;
print stdout (
1% **Brror (WXXparse) : 0012 -"
* Missing ***Start Model Definitions comment”
" in spice netlist input: $spice3net. Job terminated.\n");
die (
"% % *Eyror (WXXparse) : 0012 - Program terminated. Check log file.\n");
}
}
$plotfiles = $i;
if (eprntarr == 0) {
print stdout (

vx**Error (WXXparse) : 0013 ~ No **PRINT statements in spice netlist”
" input: $spice3net. Job terminated.\n");
die (

nxx*Error (WXXparse) : 0013 - Program terminated. Check errlog.\n");
}

Create the plot file names and set the spice node name to N

in an array, and then write the array to a file. Write one file for
each*
set of plot data: *

for ($i = 0; $i < @arrcmpnt; $i++) {

C7

DY

@Qarrplotnames[$i] = @arrcmpnt[$i] . @Garrplotd[$i]

@arrplotn[$i] . @arrnodes($il];
@Garrplotspice[$i] = "N";
Qarrplotnames[$i] =~ txr/a-z/A-Z/;

3
w
Ak kA I IR I A I A AR I KA I I I A I A AT AR RA I XA A T A I A Ak dhdh bk Ak dhkhhkdhdrhkdkdkdhhdhkkhkdkhkdrhhkhhhddk

Open Spice output file, advance to the plot data, save data as xy values
*
in an array, and then write the array to a file. Write one file for
each*
set of plot data: *
P3
kis

$endloop = 1; Sadvxy = 1; S$endfile = 0; S$savexy = 0;
$chkhdr = 0; $wrtplot = 0; S$newplot = 0; Sgetspice = 0;
$currplot = ""; S$nextplot = ""; @xarray =""; @yarray ="";
$ip = 0; $plotnbr = 0; $filenum = 0;

R R A R R 2 R RS E RIS RS EEE E AREEEE

Open the Spice3 Output file to process plot data: *

* dk 3 ok 3k 3k

B R R R R R R R AR R A E E T E RS R RS A S R R R RS E L R R Rl

unless (open(spiceout, "$spice3out™)){
print stdout (
"***Brror (WXXparse) : 0014 - "
"Unable to open spice3.out file: $spice3out\n");
die (
"x**Error (WXXparse) : 0014 - Program terminated. Check
errlog.\n"});
}
#
while ($endloop == 1) {

4
ki3

Ak kA A I IR IR A AR R I I AT A A A I I h AR AR A I I I kA khhkdhdkhkkhkhhd kb hkhhdrhhkkkrrhkhhkhhhddhhhhk

*x*xxx*%xx Advance to first plot file: *

&€
T

if (Sadvxy == 1) {
$advxy = 0; S$stplot = 1;
while (S$stplot == 1) {
$netline = <spiceout>;
if (Snetline ne "") {

if ($netline =~ /Index/ && $netline =~ /time/) {
print stdout ("*** Advance to plot data: " . "S$netline");
$stplot = 0; $chkhdr = 1; $currplot = "";
}
} else {

print stdout (
"% *BError (WXXparse) : 0015 - No plots found in $spice3out file\n");
$stplot = 0;
die (
"% **Error (WXXparse) : 0015 - Program terminated. Check log
file.\n");
}
}

A

C8

#

kkkhkhhkdhhkdhhhhhdhhhhkhkhhkhkrdkkrdhdhhkkddbhhkhdhhhhrhdrdddr bk hhdhhkdhdhrdrrdhhhrhrdhxk

$ **xxxx%x%¥ process header in form: Index time vi{n) - v{(n)
*
#

if ($chkhdr == 1) {
$chkhdr = 0;
@plot = split(/ +/, $netline);

$nextplot = @plot(2];
if ($nextplot eqg $currplot) {

Sgetspiceout = 1;

print stdout (

* (WXXparse) : 0016 - Hdr found: Continue plot " . "$currplot\n");
} else {

Snewplot = 1;

print stdout (

" (WXXparse) :0017 - Hdr found: New plot " . "S$nextplot\n');

if ($currplot ne "") {

swrtplot = 1;
}

}
#

hhdhhkkhkhkkhkhkhkhkhhrkdhrdhkhdhhhdhhkhhkkhhdhhkdhkhhhhhhkdhdhhkhhdhdbkhhdhdkhhhddrhhkhdhrhdrxhkhh it

x** Save xy values from the array for current plot:
*

1:'k'k’k'k'.k}'c'k*.l&''k‘l&".‘:*.k*.k'.k'k'k*ﬁr'k~.k-k~k-J:*.k'k'k*-.k-.k1!:-.’:'.k:‘:3’;-*):~.k1k*'Jc'k'.k**.ku't!k'ku'(*~.k~.k~k~.lr'k3’:1’(**1’:1’:'}(**1’:-.k*'k*k~k~k'k'k"k-kvk*.k*it
if ($savexy == 1) ({
$savexy = 0;

@xarray[$ip] = @éplot[l];

@varray[$ip] = @plot[2];

$ip++;

}

#

xx%%x% Write out xy values from the array for current plot:
*

f**
if (Swrtplot == 1) {
$plotfilename = &cplotname($currplot);
$points = (@xarray);
$absplotfilename = $plotdir . $pathdelim . $plotfilename;
print stdout (
"plot file = $absplotfilename\n"”);
open (spiceplot, ">S$absplotfilename"});
for ($i = 0; $i < @xarray; S$i++) {
print spiceplot ("@xarray([$i] @yarray[$il\n®);
print stdout (
" (WXXparse) : 0017 - x_value = @xarray[$i] y_value = @yarray[$i] "
vx*¥* Save in array for S$currplot\n");

H ok %k

}
close (spiceplot);
$filenum = $filenum + 1;
$points = (@xarray):;
print stdout (
" (WXXparse) : 0018 - Num (x,y) points written to file = $points\n");

C9

sSwrtplot = 0;
@xarray = ""; @yarray = ""; $ip = 0;
if ($endfile == 1) {
sendloop = 0;
print stdout (
" (WXXparse) : 0019 - EOD - End of Spice output\n");

4
ki
Y R LR R R R E R X 2 A RS R R RS R R SRR SRS R R RS RS RS E SRS LR LSS AR RS RS R R SRR ERE SN

i

$ ****xxx* New Plot File Found - initialize values:
*
#
R R R R R R R R R R A R E R A2 R R AR R R R R R R R R RS E RS RS E LR L RS R R
if ($Snewplot == 1) {
Snewplot = 0;
@xarray = ""; @yarray = ""; $ip = 0;
Scurrplot = S$nextplot;
Sgetspiceout = 1;
print stdout (-
" (WXXparse) : 0020 - Initialization for plot: $currplot \n");

}
E:3
w
R R R R R R R R R R A R R A E R A SR E X E T E TR EE R R RS R ERE SRR S LR S & & 8 0k a kR
$ *x*x**x%* read a record from SPICE output file: *
- record can be a plot header record: Index time v(1) - V(2)
- record can be a xy value to be saved in the array
- record can be heading, separator, information, or null line *
#
R R R R R R R R R R e E E R E R R R R R R R E R SR RS TS RS R AR b R
if ($getspiceout == 1) {
Sgetspiceout = 0;

$netline = <spiceout>;
chop S$netline;
if ($netline ne "") {
if (Snetline =~ /Index/ && S$netline =~ /time/) {
Schkhdr = 1;
print stdout (
nxx* Hdr Record Found: " . "$netline\n");
} else {
$getspiceout = 1;
@plot = split(/\s+/, $netline);

if (@plot == 3 && @plot[0] =~ /"~-2\d+$/) {
$savexy = 1;
} else {
print stdout (
"% Snetline\n *** record is not an xy value\n");
1
}
} elsif (eof) {
Swrtplot = 1; $endfile = 1;
} else {
Sgetspiceout = 1;
print stdout (
v* gnetline\n *** record is not an xy value\n");

C10

#**
*

Print out summary to log:

*
#**
*

print stdout (
" (WXXparse) : 0021 - \n\n Summary of job execution results\n");
$i = Rarrplotnames;
print stdout (
" (WXXparse) :0022 - No. plot files requested on input = $i:\n");
for ($i = 0; $i < @arrplotnames; $i++) {
print stdout (
" " _ *(plotname = @arrplotnames{$i].,"
" gpice name = $arrplotspicel$il)\n");
}
print stdout (
" *** No. plot files processed in Spice Output "
" = §filenum\n");
$i = @Garrspice;
print stdout (
" *%%* No. plot files with UNKNOWN plot name = $i\n");
for ($i = 0; $i < @arrspice; $i++) {
print stdout (
u " _ "(spice name = $arrspicel[$il)\n");
}
close (spice3log);
$filerr = chdir ($outdir);
if ($filerr == 1) {
opendir (FILES,$outdir);
@filelist = readdir (FILES);
chmod (0755,@filelist);
closedir (FILES);
lelse {
print stdout (
"% *Error (WXXParse) : 0024 - Directory ($outdir) does not exist.
Quit.\n");
die (
tx%*Error:0024 - WXXparse terminated due to errors. Check log
file.\n");
}
$filerr = chdir ($plotdir);
if ($filerr == 1) {
opendir (FILES,$plotdir):
@filelist = readdir (FILES);
chmod (0755,@filelist);
closedir (FILES);
}else {
print stdout (
n***Error (WXXParse) : 0025 - Directory (S$plotdir) does not exist.
Quit.\n");
die (
nxx*Error: 0025 - WXXparse terminated due to errors. Check log
file.\n");

}
#

Create Plot Filename subroutine

*

Cli1

A Ay TR TS T, ST T, P T B T R e

Input: currplot = v(nn)_v(nn) names given to plot data by spice *
Index time <nodes> where nodes are: *
-v(nn)
v (nn)

v(nn)-v(an)
Returns: plotfilename = value

* 3k o 3k dk 2k 3k dk d3k

P L R R R R R R R R R AR X ST T R YRR SRR R T S S RS A SRR R AR RS

sub cplotname {
my ($Scurrplot) = @_;
my ($plottype, $nodel, $node2, @arrayn, S$nodes, S$currnode);

@€
T

O e R R R R R R R R R R R R X R R R I E R R RS L S R R R

- format nodes: -v(n) = 0_9; v(8) = 8_0; v(2)~-v(4) = 2_4
*
#

Scurrplot =~ tr/a-z/A-z/;
if (Scurrplot =~ /~-/) {
Qarrayn = split(/\(/, Scurrplot):
$plottype = chop (Garrayn[0]):;
CGarrayn = split(/\(/, $currplot);
chop (Garrayn(l]);
$nodes = "Q_" . @arraynl[l];

} elsif ($currplot =~ /-/} {
@arrayn = split(/\(/, $currplot);
Splottype = @arrayn(0];
@Qarrayn = split(/-/, S$currplot);
@arrnodel = split(/\(/, @arrayn(0]);
chop @Qarrnodel(l}];
@arrnode2 = split(/\(/, @arrayn(l]);
if (Rarrnode2(l] =~ /\)S$/) {
chop @arrnode2[1];
}
$nodes = Rarrnodel[l] . "_" . @arrnode2[1l]:;
} else {

Qarrayn = split(/\(/, S$currplot);

Splottype = @arrayn[0];
chop (Rarraynill);

$nodes = @arrayn[l] . "_0";
}

R R R R R R R R e R R RS R R R R R SRR S RS RS R S

Based upon the node (e.g., 1_2), find the Print statement *
in the spice3 netlist array arrnodes:

* Ak 3k 3k 4 3k Ik

P R R R R R R R R R R R X 2 22X 2222 R R E R R R AR SRR S & 2 2 2 0 A b it i a
$i = 0;
$findnode = 0;
while ($findnode == 0) {
if ($nodes eq Rarrnodes([$i] && Splottype eqg Garrplotn$i]) {
$findnode = 1;
CGarrplotspice($i]
Splotfilename
print stdout (
" (WXXparse) : 0022 - Plot found in netlist .cir file:
$plotfilename\n®") ;

$currplot;
@arrplotnames([$i];

Ci12

} elsif ($i < @arrnodes) {

Si++;
} else {
$findnode = 2;
Splotfilename = "UNKN" . $plottype . $nodes . "_00" . $plotnbr;
$plotnbr = $plotnbr + 1;
$3 = @Qarrspice;
@arrspice[$j] = S$plotfilename;

print stdout (
" (WXXparse) :0023 - Warning - plot file name inconsistent:\n"
" Spice name = S$currplot, Plot name = $plotfilename\n");
}
}

return ($plotfilename);

Ci13

This page intentionally left blank

Ci4

Distribution:

MS0311
MS0311
MS0316
MS0405
MS0525
MS0525
MS0661
MS0746
MS0746
MS0746
MS0830
MSO0830
MS1010
MS9201
MS9202
MS9202
MS9202
MS9217
MS9217

O U W i T S e e N N O & I O e e N

MS 9018
MS 0899
1 MS 9021

1 MS 9021
1 MS 0188

L A ek i ae

. J. De Spain, 2125
. P. Roberts, 2671

. F. Chavez, 9204

.D. Brown, 12333
. V. Plunkett, 1734
.D. Wix, 1734

. F. Billau, 4812

. E. Campbell, 6411
.M. Cranwell, 6411

. M. Thompson, 6411

. W. Collins, 12335

. V. Diegert, 12335

. J. Sikorski, 15222

.K. Falcone, 8114 Attn: M. M. Johnson
. P. Ballard, 8418

R. L. Bierbaum, 8418

K. D. Marx, 8418

P. E. Nielan, 8920 Attn: R. C. Armstrong
J. C. Meza, 8950 Attn: T. G. Kolda

Central Technical Files, 8940-2

Technical Library, 4916

Technical Communications Department, 8528/

Technical Library, MS 0899, 4916

Technical Communications Department, 8528 For DOE/OSTI
D. Chavez, LDRD Office, 4001

D1

RS G A Sl Sl Gae e R AR S S SN TEREANT TT O et

