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Turbulent Boundary Layers

William W. Liou and Yichung Fang
Department of Mechanical and Aeronautical Engineering
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Abstract

The frequencies of the bursting events associated with the streamwise coherent struc-
tures of spatially developing incompressible turbulent boundary layers were predicted using
global numerical solutions of the Orr-Sommerfeld and the vertical vorticity equations of
hydrodynamic stability problems. The structures were modeled as wavelike disturbances
associated with the turbulent mean flow. The global method developed here involves the
use of second and fourth order accurate finite difference formulae for the differential equa-
tions as well as the boundary conditions. An automated prediction tool, BURFIT, was
developed. The predicted resonance frequencies were found to agree very well with previous

results using a local shooting technique and measured data.
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1.0 Introduction

Many experimental results on incompressible and compressible turbulent boundary lay-
ers have indicated the existence of coherent structures in such flows. The quasi-deterministic
occurrence of large-scale organized structures is collectively called the bursting process. The
bursting process is believed to play a dominant role in the development of turbulent bound-
ary layers.

The bursting process is associated with the appearance of counter-rotating spanwise
rolls of vortical structures, Figure 1. Experiments by Morrison & Kronauer (1969) showed
that the statistically dominant streamwise fluctuations of the streamwise vortical structures
exhibited wavelike characteristics, suggesting that a hydrodynamic wave description for the
streamwise structures is applicable.

Based on a weakly nonlinear theory, Jang et al.(1986) proposed that resonance could
occur for certain damped three-dimensional modes when the eigenmodes of the Orr—
Sommerfeld solution corresponded to that associated with the vertical vorticity equation.
As a result, they showed that for incompressible turbulent boundary layers, the secondary
mean flow induced by these resonant fundamental modes contained streamwise vortical
structures. The shape of the predicted structures and the spacing of the accompanying
low-speed streaks are comparable with experimental observation.

Because of the nature of the numerical integration scheme used in Jang et al. (1986),
some knowledge of the eigenvalues is required a prior: in order for the numerical solution
to be successful. Since this information is not readily available beyond a few simple profiles
for the mean quantities, it severely limits the use of the direct-resonance method in simple
flow cases. Furthermore, the eigenvalue spectra of the Orr—Sommerfeld and the vertical
vorticity equations contain many other eigenmodes. It is possible that the eigenmodes not
considered in Jang et al. (1986) might also excite resonance. These issues may become a
major concern when the flow speed increases, and effects of compressibility are included.

In addition, the Orr—-Sommerfeld and the vertical vorticity equations yield stiff systems
of ordinary differential equations. During the numerical integration of a stiff system, nu-
merical errors associated with one solution may contaminate the other and lose their linear
independence. Extra care, such as the use of a re-orthonormalization procedure, is required
to keep the solution independent. In this research we implemented a modern global numer-
ical scheme for the stability problem. A global method solves the equations using a global

approximation of the solution. The global solution method does not require a
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Figure 1. A sketch of the bursting event. Cantwell (1981).

re—orthonormalization procedure and is ideal for stiff systems such as the Orr-Sommerfeld
and the vorticity equations, Liou and Morris (1992), Baty and Morris (1995), Bridges and
Morris (1984).

The global method provides a description of the entire eigenvalue spectrum of the
stability problem without using any prior knowledge of the eigenvalues, as is required by
the traditional shooting procedure. As such, all possible bursting frequencies are likely
to be identified automatically without artificial intervention. This capability allows an
efficient model of the bursting frequencies in incompressible as well as compressible turbulent
boundary layers.

In this research, second and fourth order accurate finite difference formulae have been
used in approximating the Orr-Sommerfeld equation, the vertical vorticity equation, and
their boundary conditions.

In the following, the derivation and the solution of the equations are described. The

results are presented in section 4.
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2.0 Modeling

Turbulence quantities, f;, are decomposed into three components:
fi=Fi+fi+ fi, (1)

where F; represents a long-time average of f;, f; the wavelike component of f;, and fi
the background fluctuation. Substituting equation (1) into the Navier-Stokes equations,
followed by a linearization of the disturbance quantities, the equations governing the mode
shape of the vertical velocity, 9, the Orr-Sommerfeld equation, and the homogeneous vertical

vorticity, 7, equation can be found:

[i(al — w)(D® — o — %) — ia DU — -;@-(D2 —a? =) =0 @)

(e ~w) ~ £(D* — @ ~ )] = 0 3)

Equations (2) and (3) have been derived by assuming a normal mode solution for the wavelike

disturbances, f;, i.e.,
fi — fiei(a:c+/3z—wt). (4)

In equations (2) and (3), U represents the streamwise mean velocity, and D = d/dy.
Equations (2) and (3) govern the mode shape of wavelike disturbances associated with
the mean quantities in terms of the streamwise and spanwise wavenumbers, a and B; the
wave frequency, w; and the flow Reynolds number, R(= _U%A) Liou and Morris (1992) used
a similar wavelike description for the coherent structures in free shear layers and successfully
calculated the evolution of the time-dependent turbulent motion at the large scale. Their
analysis, which requires a weakly nonlinear solution for the wave amplitude, will not be
performed here for the bounded shear flows. In this study the bursting frequencies of the
streamwise coherent structures in turbulent boundary layers are sought using the direct—

resonance model. The condition for direct resonance can be written as

°5(e, B, R) = cVV(a,,B,R) (5)

where c©

S and ¢VV represent the phase velocity, w/e, associated with the Orr-Sommerfeld
and the vertical vorticity eigenvalue problems.

The boundary conditions for ¥ and # are

0=Do=7=0 at y=0, oo. (6)
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In the following section the numerical solution of equations (2), (3), (5), and (6) are
described.

3.0 Numerical Solutions

3.1 Mean Flow

The local mean velocity in the streamwise direction, U, for the turbulent boundary layer

over a flat plate can be obtained from the solutions of either the boundary layer equations
or the Navier-Stokes equations. We found the resulting eigenvalue problems sensitive to
the profile shapes of U and D2U. For the results presented, the U and D?U profiles were
obtained by using dense grids (= 1000) in a boundary-layer equation solver to retain a
higher order of fidelity of the velocity as well as its second order derivative. A mixing-length
turbulence model was used for the turbulent eddy-viscosity.

3.2 Wavelike Structure
To resolve the near-wall behavior of the boundary layer, an algebraic stretching of the

grid was used beginning from the wall. In the transformed coordinate, §, the equations are

m(m(m(md")")) + Aym(md') + By, =0 (7)
m(md') + By = 0, (8)
where
Ay = =2(c? + %) —iR(aU —w)
B, = (o? + %) +iR(c? + f?)(@U — w) + iRaD*U
By = ~iR(aU ~w) — (a® + %)
and
0=

y denotes the transformed coordinate. The global solution method developed in this research
for the Orr-Sommerfeld and the vertical vorticity equations involves the use of second and
fourth order accurate finite difference formulae for the equations and the boundary condi-
tions. The second order formulae are widely available. The fourth order formulae used here

are listed in the Appendix. The resulting homogeneous systems of equations form eigenvalue
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problems, for both the Orr-Sommerfeld and the vertical vorticity equations, nonlinear in

the parameter, a. For the Orr-Sommerfeld equation the system can be written as
Dy(a)v=0 9)

The matrix, Da, is a lambda matrix of degree four, Lancaster (1966), and can be expressed

as a scalar polynomial with matrix coefficients:
D4(a) = Coa4 + C]_as -+ Czaz + Cga 4 Cag. (10)

With the inclusion of the boundary conditions, the matrices C’s are square matrices of order
n, which represents the number of grid point in §. A linear companion matrix method,
Bridges and Morris (1984), was used to linearize the lambda matrix. The resulting general
eigenvalue problem becomes

—Cl —Cz —Cs —C4 Co 0 00 a3i3
I 0 0 0 0 I ooO o?d
o I o o ] % o o0o1Io o | =0 (D
0 0 I 0 0 0 0 I ]

Equation (11) can be further transformed to an algebraic eigenvalue problem seeking the

eigenvalues of matrix A:

—CglC; —-Cz'C: -Cp'Cs —CjlC,

| 0 0 0
A=1 o 1 0 o | (12)
0 0 | | 0

The eigenvalues may be obtained by using QR or QZ algorithms. The details of the formu-
lation and the application of the Linear Companion Matrix method can be found in Bridges
and Morris (1984) and Liou and Morris (1995).

The resonance in the stability problem occurs when there is a set of parameters (¢, 8,w)
for which the solutions of the Orr-Sommerfeld and the vertical vorticity equations exist for
a given mean velocity distribution and a Reynolds number. To locate the resonance mode,

we choose to solve the following equations:
a?(B,w) — o)V (B,w) =0 (13a)
a?®(B,w) — o}V (B,w) =0 (133)
A subroutine in the IMSL package called NEQBF has been used to solve the system of

equations.
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4.0 Results

In this section the solutions of the resonance stability problem obtained by using the
high order finite difference global method are described.

A polynomial type of distribution was first used as the mean velocity profile. The
profile

U(3) =25 - 2037 + (5

was often used as an approximation to the streamwise velocity for flat-plate boundary layers.
0 represents the boundary-layer thickness. The eigenvalues obtained by using the present
global method were compared with those obtained by using the local shooting method. The

comparisons are shown in Table 1.

Table 1: Comparison of the calculated eigenvalues, a.

Re w Equations Present Shooting
8,000 0.2354 Orr-Sommerfeld (0.780864,-0.013533) (0.781148,-0.01356)
10,000 0.1202 vertical vorticity (0.41512,0.40891) (0.415119,0.408911)

Figure 2 shows the calculated complex phase velocity for a plane mode, and Re(gfi) =
8,000 and 10,000 for the vertical vorticity equation. The frequencies are 0.0122 and 0.1202,
respectively. An analytical form of the continuous spectrum was also included for compar-
ison, Grosch and Salwen (1978). For Re = 10,000, the two discrete Tollmien—Schlichiting
instability modes can be clearly identified. For Re = 8,000, the discrete spectrum appearers
close to the continuous spectrum. For both cases the continuous spectrum are well-resolved.

Numerical experiments were conducted to examine the effects of the order of the finite
difference approximation, the number of grid points, and the location of the outer boundary
of the computed domain in y. Second-, as well as fourth—, order approximations were applied
to the differential equations and the boundary conditions. Figure 3 shows a result of the
calculated complex phase velocity for a plane mode for the Orr~Sommerfeld equation using
various order of finite differencing, numbers of grid point, and (%)mes. Figure 3 includes
the Tollmien—Schlichiting instability modes and the continuous spectra. for the approximate
laminar boundary layer profile. The symbols represent the results for the various calculated
cases denoted by a-b-c, where [a] denotes the order of accuracy, [b] the number of discretized
points used, and [c] the far field boundary distance to the wall. The first, second, and the

third number in [a] represent the order of accuracy for the derivatives in the Orr—Sommerfeld
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equation, for the far field boundary condition, and for the wall boundary condition, re-
spectively. The agreement between the computed and the analytical continuous spectrum
improves with the increasing number of grid nodes. It also appears that increasing the order
of accuracy of the discretization enhances the agreement. The results shown in the following
were obtained by using the fourth-order formulae and a grid of 200 nodes.

To calculate the eigenvalues of the direct-resonance problems associated with a tur-
bulent flat plate boundary layer, the mean streamwise velocity and its second derivative
distribution were needed. A boundary-layer equation solver using the Prandtl’s mixing
length model with the van Driest damping function was developed. The calculated turbu-
lent mean velocity distribution for Re = 1,000 is shown in Figure 4. The results compared
well with the log law—of-the—wall in the log layer of the boundary layer. The number of
grid points is 998. The second derivative of the mean velocity, DU, was obtained using a
fourth-order accurate finite difference formula. Figure 5 shows the D2U distribution. For
laminar boundary layers, the solutions of the Orr~Sommerfeld and vertical vorticity equa-
tions are known to be sensitive to the input velocity and its second derivative. We found
that this sensitivity of the Orr-Sommerfeld and vertical vorticity equations to the input
U and D?U remains for the current problem involving turbulent boundary layers. As can
be seen in figures 4 and 5, the U and D?U profiles vary significantly over a small distance
in the near-wall region of the flow. It is necessary that the multiple length scales of tur-
bulent boundary layers be captured properly in the Orr-Sommerfeld and vertical vorticity
problems. Algebraically stretched grids were used to ensure an appropriate resolution of
the different regions. Comprehensive numerical experiments showed that a parameter set
of yf = 1 and (£)maz = Y1 = 50 gives the best results in terms of both the discrete, as
well as the continuous, spectra of the Orr—-Sommerfeld and vertical vorticity equations for
a wide range of Reynolds numbers. 6* denotes the displacement thickness and (); the first
grid point away from the wall. Figure 6 shows some results of the numerical experiments.
Figure 6 shows the complex phase velocity spectrum of the vertical vorticity equation for
w=2; B = 10; y; = 50; and y; = 0.001,0.01,0.1,1.0,5.0. Except for y§ = 5, the computed
discrete modes agree well. There is a more significant separation between the discrete and
the continuous spectra for y = 1 than for the other values. This separation between the
discrete and the continuous modes was used as a criterion to identify the discrete modes
from the continuous modes in an automated procedure of bursting frequency prediction. A

calculation with yi" = 1 and y; = 90 shows no changes in either the discrete or the
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continuous spectra. Figure 7 shows the eigenvalue spectrum for the Orr-Sommerfeld equa-
tion for a turbulent boundary layer for Re(yﬁf—.) = 1,000.

As was stated earlier, based on the direct-resonance theory, an automated procedure has
been developed for the prediction of the bursting frequencies associated with the streamwise
structures in turbulent boundary layers. To identify a resonance mode, the Orr—Sommerfeld
equation and the homogeneous vertical vorticity equation were first solved. Resonance
occurs when the eigenvalues of the Orr—Sommerfeld solution correspond to that associated
with the vertical vorticity equation. The resonance condition has been written in the form
of a system of two equations, equation (13), nonlinear in their parameters, w and 3. The
resonance mode is identified when a solution of equation (13) is found. The solution of
equation (13) involves an iteration process. The search for resonance mode is complete when
the solution of equation (13) is obtained. The procedure for searching the resonance mode
has been automated. The automated search procedure was implemented in a FORTRAN
software called BURFIT (BURsting Frequency prediction in Incompressible Turbulent
boundary layers).

Figures 8, 9, and 10 show the results of using BURFIT for a turbulent boundary layer
of Re = 1,000. Figures 8 and 9 show the convergent history for the complex a and ¢,
respectively. The search process was terminated when the right-hand side of equation (13),
denoted by dg and dj, have reduced to the order of —4. Figure 10 shows the evolution of
dr and dy. The predicted resonant frequency is w*=0.0962, which compares well with that
of Jang et al.(1986), of 0.09, calculated by using a shooting method and the measured data
of Morrison and Kronauer (1969).

The eigenvalue spectra for the Orr—-Sommerfeld and vertical vorticity equations at the
resonance condition for Re = 8,000 are shown in figure 11. When the resonance condition
was met, there was apparently a matching of not only the discrete mode but also the

continuous modes.
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5.0 Concluding Remarks

In this study a global solution method has been successfully developed to predict the
bursting frequencies associated with the coherent streamwise structures in incompressible
turbulent boundary layers. The prediction was based on the direct resonance model. The
prediction tool developed, BURFIT, has been automated, and no artificial intervention
is necessary other than assigning the starting values. In the present study the predicted
bursting frequencies have been found to agree very well with previous numerical calculations
and experimental data for incompressible turbulent boundary layers over a flat plate. The
development of a global mechanism is also necessary when a direct resonance theory, perhaps
similar to the one implemented here for incompressible flow, is extended to the prediction of
the bursting frequencies of high-speed turbulent boundary layers. There can be more than
one discrete mode associated with the bursting events when the effects of compressibility
are considered.
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Appendix A

The fourth order, O(A*), finite difference formulae used in the current study are given
below. All formulae are given for the derivatives at a point denoted by ()o and its neighboring
points in decreasing order, ()-1, ()-2,..., and in increasing order, ()+1, ()+2,..., etc.. A

denotes the uniform grid spacing.

y_f-2—=8f14+8fi—fo

fo 12A
= —3f-1—10fo +18f1 —6f2 + f3
o0~ 12A
. 3fi+10fo ~18f1+6f 2— f3
0 12A
£l = —25f0 +48f1 —36f2 + 16f3 — 314
0 12A
£ = 25f0 —48f-1+36f—2 —16f-3 +3f—4
0~ 12A
" "2f—2 + 16f—1 - 30f0 + 16f1 - f2
° 12A2
" 10f-—1 - 15f0 —4f1 + 14f2 - 6f3 +’f4
° 12A2
n_ 10fi —15fo —4f 1 +14f 2 —6f 3+ f—4
o 12A2
"o _ f—~3 - Sf-Z + 13f—1 - 13f1 +8f2 - f3
° 8A3
m _ —f-2—8f-135f0 —48f1 +29f> —8f3 + fa
° - 8A3
"o _ f2 + 8f1 - 35f0 +48f—1 - 29f—2 + 8f—3 - f—4
0 8A3
" _ "f—-3 + 12f—2 - 39f—1 + 56f0 - 39f1 + 12.f2 - f3
0 6A*
m_ 20f_2 —55f_1 +155f; —220fs + 135fs — 40fs + 5fs
° - 30A%
o 20f; —55f1 +155f_1 —220f_» + 135f_3 —40f_4 +5f_s
° - 30A4



Appendix B

A listing of the code BURFIT is included in this appendix. Two subroutines that were

used in the code were taken out due to copyright. They are called LUBKSB and LUDCMP
from Numerical Recipes.
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c***********************************************************************c

BURFIT

William W. Liou

Western Michigan University
July 31, 1999

For Sandia National Laboratories

The package is a software tool for the solution of the
linearized model, based on finite difference global numerical
method, for bursting frequency prediction of incompressible
turbulent boundary layer over flat plates.

aO0a000a0g000000a0
Q000000000000

c***************************'********************************************c

c***********************************************************************c

c c
c Locate Direct Resonance using IMSL subroutine NEQBF c
2***********************************************************************2
c
integer iparam(6)
real fcn, fscale(2),fvec(2),rparam(5),x(2),xguess(2),xscale(2)
external fcn,negbf
data xscale/2*1./, fscale/2*1./
c
xguess(1)=0.3076573
xguess(2)=2.33344
c
¢ ipapam array controls iteration parameters
c
iparam(1l)=0
c
call negbf (fcn,2,xguess, xscale, fscale, iparam, rparam, x, fvec)
print *,’ Ha! Ha! Ha! Converged! omega = ‘,
& x(1),’ beta= ’,x(2)
stop
end
c
subroutine fecn(ndumy,x,rf)
c

c***********************************************************************c

c c
c 7/8/1999 for SNL c
c V-V Eg. and 0OS EQ. c
c length scale: delta(u=0.99U) c
c velocity scale: free stream U . c
c nmax : total number of points and the size of the matrices c
c Fourth order accurate for all derivatives c
c Transformed domain c
c c
c***********************************************************************c
c

c dimnesions, common blocks, variables types....

c

parameter (nmax=201)

implicit complex (c)

real x(2),xrf(2)

complex c0 (nmax,nmax) ,cl (nmax, nmax) , ¢2 (nmax, nmax)
,c3 (nmax, nmax) , c4 (nmax,nmax) , ca (nmax*4,nmax*4)
b0 (nmax, nmax) , bl (nmax, nmax) , b2 (nmax, nmax)
. b3 (nmax, nmax) ,b4 (nmax, nmax)
,cunit (nmax, nmax) , cwork (nmax, nmax) , alpha (nmax*4)
.alphal (nmax) , vl (nmax, nmax) , vr (nmax, nmax) , work (nmax*2)
£.g,cwavespd(2)

R RR




real m, NP, MPP, MOPP
dimension y(nmax),umean(nmax),umeanpp (nmax)
& rwork (nmax*8) , indx (nmax) , disc (nmax*4, nmax*4)
& ,rm(nmax) , rmp (nmax) , rmpp (nmax) , rmppp (nmax)
namelist /input/ neqq,omegaq,betaq,yplusl,yl
character jobvl,jobvr

c
omega=x(1)
beta=x(2)
c
c Set dimensions of parameter window
c
if(omega.gt.0.6.0or.beta.gt.7.5)then
print *,’*****%%% QUTOF BOUND’,omega,beta
stop
endif
c
¢ Do 0S(neqg=1l) and VV(2) eqns.
c
do 100 neqg=1,2
c
¢ Parameters
c
nmax4=nmax*4
nmax2=nmax*2
open(l, status=‘unknown’,file=’ov.i’)
read (1, input)
close(l)
c write(*,*) neqqg, omegaqg, betaq, yplusi, yl
c
open(l, status='unknown’,file="meaninfo’)
read(1l,*) redelst
read(l,*) vi,ul,ppl
close(1l)
re=redelst
c Find du/dy|wall
wshear=ul/yl
c
c initializaiton
c
czero=(0.,0.)
cone=(1.,0.)
ci=(0.,1.)
do i=1,nmax
do j=1,nmax
c0(i,j)=czero
cl(i,j)=czero
c2(i,j)=czero
c3(i,j)=czero
c4(i,j)=czero
cunit(i,j)=czero
cwork(i,j)=czero
enddo
enddo
c
c Find coordinates
c
njml=nmax
njm=njml-1
c
dely=yplusl/sqrt(wshear*re)
c
rayl=1.
dyl=yl/float(njmi-1)
ray=1.01




(o

ddel=ray-rayl
do icount=1,1000
toy=0.
do j=2,njm
toy=toy+ray**(j-2)
enddo
toy=toy+ {njml-njm) *ray** (njm-2)
dy=yl/toy
ddel=ddel* (dyl-dely) / (dyl-dy) *0.1
rayl=ray
dyl=dy
ray=rayl+ddel
if(abs(ddel) .le.l.e-8)go to 5
enddo
print *,’ ray did not converge !!! Latest are ',ray,ddel
continue
y({1)=0.
do j=2,njm
y(3)=y(j-1)+dy*ray** (j-2)
enddo
do 1305 j=njm+l,njml
y{3)=y(j-1) +dy*ray** (njm-2)
enddo

¢ Findm’, m"’, m"*"’

(o]

m
i=1
rm(i)=12./(-25.*y(i )+48.*y(i+l)
& —36.*y(i+2)+16.*y(i+3)-3.*y(i+4))
i=2
rm(i)=12./(-3.*y(i-1)-10.*y(i )+18.*y(i+1)
& -6.*y(i+2)+ v(i+3))
do i=3,nmax-2
m(i)=12./{y(i-2)-8.*y(i-1)}+8.*y(i+1)-y(i+2))
enddo
i=nmax-1
rm(i)=12./(- 1.*y(i-3)+6.*y(i-2)-18.*y(i-1)
& +10.*y(i )+3.*y(i+l))
i=nmax
m(i)=12./( 3.*y(i-4)-16.*y{(i-3)+36.*y(i-2)
& ~48.*y (i-1)+25.*y(i ))
ml
i=2
rmp(i)=(-3.*rm(i-1)~10.*rm(i)+18.*rm(i+1)-6.*rm(i+2)
& +rm(i+3)) /12.
do i=3,nmax-2
rop(i)=(rm(i-2)-8.*rm(i-1)+8.*rm(i+1)-rm(i+2))/12.
enddo
i=nmax-1
rmp(i)=(- 1l.*rm(i-3)+6.*rm{i-2)-18.*rm(i-1)
& +10.*rm(i )+3.*rm(i+l))/12.
ml ’
do i=3,nmax-2
rmpp{i)=(- 1.*rm(i-2)+16.*rm(i~1)-30.*xrm(i)
& +16.*ym(i+l)~ 1.*rm(i+2))/12.
enddo
m’
i=3
rmppp(i)=(- 1.*rm(i-2)-8.*rm(i-1)+35.*rm(i )-48.*rm(i+1)
& +29.*rm(i+2)-8.*rm(i+3)+ 1l.*rm(i+4))/8.
do i=4,nmax-3
rmppp (i) ={ rm{i-3)-8.*rm(i-2) +13.*rm(i~1)-13.*rm(i+1)
& +8.*rm(i+2)~-1.*rm(1i+3)) /8.
enddo
i=nmax-2

rmppp (1) =(- rm(i-4)+8.*rm(i~3)-29.*rm(i-2) +48.*rm(i-1)



& -35.*rm(i )+8.*rm(i+1)+ rm(i+2)) /8.
c
c Find U
c
call mean(nmax,y,umean,umeanpp)
write(14,9030) (y(i),umean(i) ,umeanpp(i),rm(i),rmp(i)
& ,ropp (i), rmppp (i), i=1,nmax)
c
c
c
Cc Select 0S (neqg=1l) or VV (neq=2) Eq.
c
if( neqg.eq.l ) then
c
c

c 0-S equation
¢ Begin here

(o]

nmaxeqg=nmax4

0000

Matrix entries
Zero, lst and 2nd derivatives

cargu=2.*beta**2-ci*re*omega

do
c
c zZero
c first
c
c

c second

15 i=3,nmax-2

ubar=umean (i)
ubarpp=umeanpp{i)

m=rm(i)

mp=xmp (1)

mpp=rmpp (i)

mpEpp=rmppp (i)

cOv =cone

clv =ci*re*ubar

c2v =cargu

c2vp =-2.%*m*mp

c2vpp =-2.*m**2

c3v =ci*re*beta**2*ubar+ci*re*ubarpp
c3vp =-ci*re*ubar*m*mp

c3vpp =-ci*re*ubar*m**2

cdv =beta**4-ci*re*omega*beta**2

cdvp sm*mp**3+4 . *m* *2*mp*mpp+m* * 3 *mppp+m*mp* (-cargu)
cdvpp =7.*m**2*mp**2+4 . *m**3*mpp+m* *2* (-cargu)

c0(i,i)=cOv
cl(i,i)=clv
c2(i,i)=c2v
c3(i,i)=c3v
cd(i,i)=civ

c2(i,i-2)= (1./12.)*c2vp
c2(i,i-1)=~(8./12.)*c2vp
c2(i,i+l)= (8./12.)*c2vp
c2(i,i+2)=-(1./12.)*c2vp

c3(i,i-2)= (1./12.)*c3vp
e3(i,i-1)=-(8./12.)*c3vp
c3(i,i+l)= (8./12.)*c3vp
c3(i,i+2)=-(1./12.)*c3vp

cd(i,i-2)= (1./12.)*c4vp
c4(i,i-1)=-(8./12.)*c4vp
c4(i,i+l)= (8./12.)*cdvp
cd(i,1+2)=-(1./12.)*cdvp

c2(i,i-2)=~( 1./12.)*c2vpp+c2(i, i-2)




c2(i,i-1)= (16./12.) *c2vpp+c2(i,i-1)
c2(i,i )=-(30./12.)*c2vpp+c2(i,i )
c2(i,i+l)= (16./12.)*c2vpp+c2(i,i+l)
c2(i,i+2)=—-( 1./12.)*c2vpp+c2(i,i+2)

c
c3(i,i-2)=-( 1./12.)*c3vpp+c3(i,i-2)
c3(i,i-1)= (16./12.)*c3vpp+c3(i,i-1)
c3(i,1i ==~(30./12.) *c3vpp+c3(i,i )
c3(i,i+l)= (16./12.) *c3vpp+c3(i,i+l)
c3(i,i+2)=~( 1./12.)*c3vpp+c3(i,i+2)

c
cd(i,i-2)=—-( 1./12.) *cdvpp+cd (i,i-2)
cd(i,i-1)= (16./12.) *cdvpp+cd(i,i-1)
cd(i,i )=-(30./12.)*cdvpp+cd(i,i )
cd(i,i+l)= (16./12.) *cdvpp+cd (i, i+l)
cd(i,i+2)=~( 1./12.) *c4dvpp+cd (i, i+2)

c

15 continue

c

c 3rd and 4th derivatives in ¢4 only

c

do 16 i=4,nmax-3
m=xm({i)
mp=rop (i)
cdvppp =6.*m**3*mp
cdvpppp=m**4

c 3rd
cd(i,i-3)= ( 1./8.)*cdvppp
cd(i,i-2)=-( 8./8.)*cdvppp+cd (i, i-2)
cd(i,i-1)= (13./8.)*cdvppp+cd (i, i~1)
cd(i,i+1)=-(13./8.)*cdvppp+cd (i, i+l)
cd{i,i+2)= ( 8./8.)*cdvppp+cd (i, i+2)
c4(i,i+3)=-( 1./8.)*cdvppp

c 4th
c4(i,i-3)=-(1. /6.)*cdvpppp+cd (i, i-3)
cd(i,i-2)= (12./6.)*cdvpppp+cd (i, i-2)
cd(i,i-1)=-(39./6.) *cdvpppp+cd (i, i-1)
cd{i,i) = (56./6.)*cdvpppp+cd(i,b i)
c4(i,i+1)=-(39./6.)*cdvpppp+cd (i,i+1)
cd(i,i+2)= (12./6.)*cdvpppp+cd (i,i+2)
cd(i,i+3)=~(1. /6.)*cdvpppp+cd(i,i+3)

16 continue

c i=3
i=3
m=xm({i)
mp=xmp (i)
cdvppp =6.*m**3*mp
c4dvpppp=m**4

c 3rxrd
c4(i,i-1)=-(15./8.) *c4dvppp+cd (i,i-1)
cd(i,i )= (56./8.)*cdvppp+cd(i,i )
cd(i,i+1l)=-(83./8.) *cd4vppp+cd (i, i+l)
c4(i,i+2)= (64./8.) *cdvppp+cd (i,i+2)
cd(i,i+3)=-(29./8.) *cdvppp+cd (i,i+3)
cd(i,i+d)= ( 8./8.)*cdvppp+cd(i,i+4d)
c4(i,i+5)=—( 1./8.) *c4vppp+cd (i, i+5)

c 4th

c4(i,i-2)= ( 20./30.) *c4vpppp+cd (i, i-2)
cd(i,i-1)=-( 55./30.) *c4vpppp+cd (i, i-1)
cd(i,i+l)= (155./30.) *c4vpppp+cd (i, i+l)
cd4(i,i+2)=-(220./30.) *c4dvpppp+cd (i,i+2)
cd(i,i+3)= (135./30.) *cdvpppp+cd (i,i+3)
c4(i,i+4)=—( 40./30.) *cdvpppp+cd (i, i+4)
c4(i,i+5)= ( 5./30.)*cdvpppp+cd (i, i+5)

¢ i=nmax-2
i=nmax-2



m=rm(i)
mp=xmp (1)
c4vppp =6.*m**3*mp
c4vpppp=m**4

c 3xd
c4(i,i-5)= ( 1./8.)*cdvppp+cd(i,i-5)
c4(i,i~-4)=-( 8./8.) *cdvppp+cd (i, i-4)
c4(i,i~-3)= (29./8.)*cdvppp+cd (i, i-3)
c4(i,i~-2)=-(64./8.) *cdvppp+cd (i, i-2)
cd(i,i~1)= (83./8.)*cAdvppp+c4(i,i-1)
cd(i,i )=-(56./8.)*cdvppp+cd(i,i )
c4(i,i+l)= (15./8.)*c4dvppp+cd(i,i+l)

c 4th
cd(i,i+2)= ( 20./30.)*c4vpppp+cd (i, i+2)
c4(i,i+1l)=-( 55./30.) *cdvpppp+cd (i, i+l)
c4(i,i-1)= (155./30.) *cdvpppp+cd(i,i-1)
cd(i,i~-2)=-(220./30.) *c4vpppp+cd (i, i-2)
c4(i,i~3)= (135./30.) *c4vpppp+cd (i, i-3)
c4(i,i-4)=-( 40./30.) *c4dvpppp+cd (i, i-4)
cd(i,i-5)= (  5./30.) *cdvpppp+cd (i, i-5)

c BC's

c4(1,1)=cone

¢4 (nmax, nmax) =cone
c
c v’'’=0

¢ Zero first derivative at boundary (fourth order accurate)

c
c4(2,1)=-25.
cd(2,2)= 48.
cd(2,3)=-36.
c4(2,4)= 1e6.
c4(2,5)==3.
c4 (nmax-1,nmax-4)= 3.
c4 (nmax-1,nmax-3)=-16.
c4 (nmax-1,nmax-2)= 36.
c4 (nmax~1,nmax-1)=-48.
c4 (nmax-1,nmax )= 25.
c
c Transformation
c
£=2.*cone
g=2.*cone
do i=1,nmax
do j=1,nmax
bO(i,j)= cO(i,7)*(£**4)
+cl(i,j)*(£**3)
+c2(i,j)*(£**2)
+c3(i,3)*(£)
+c4(i,jr*(1.)
bl(i,j)= c0(i,j)*(-4.*E**3*q)
+Cl(i,j)* (=3 .*E**2*gsf*r*3)
+C2(1,3) *(=2.*E*g+2 . *£**2)
+c3(i,j)*(-g+3.*f)
+cd(i,j)*(4.)
b2(i,j)= cO(i,F)*(6.%Ex*2*gr*2)

R R R R

R R R

+C2(i,j)*(g**2-4 *f*g+f**2)
+¢3(i,j)*(=3.*g+3.*f)
+c4(i,j)*(6.)

b3(i,j)= c0(i,j)*(-4.*E*xg**3)
+c1 (il j ) * (_g**3+3 . *f*g**2)
+C2(1i,3)*(2.*g**2-2 *£*q)
+c3(1i,3)*(-3.*g+f)

R R R R R

R R

+CL(1,J)* (3. *E*g**2-3 *¥Fx*2*g)




f

+c4(i,jr*(4.)
bd(i,j)= c0(i,3)*(g**4)
+cl(i,j)*(-g**3)
+c2(i,3j)*(g**2)
+e3(i,3j)*(-g)
+cd(i,3)*(1.)

R R R

enddo
enddo

End of 0S Eq.

O00a0a0 0000

0O00O0

else if( neg.eqg.2 )then

V-V equation.
Begin here

nmaxeg=nmax2

Matrix entries
Zero, 1lst and 2nd derivatives

do i=3,nmax-2

ubar=umean (i)

c0v =-cone

clv -ci*re*ubar

c2v = ci*re*omega-beta**2
= rm(i) *rmp (i)
c2vpp= rm(i)**2

c2(i,i-2)= (1./12.)*c2vp-(1l. /12.) *c2vpp
c2(i,i-1)=-(8./12.) *c2vp+(16./12.) *c2vpp

c0(i,i)=cOv
cl(i,i)=clv
c2(i,i)=c2v~(30./12.)*c2vpp

c2(i,i+1l)= (8./12.)*c2vp+(16./12.) *c2vpp
c2(i,i+2)=~(1./12.)*c2vp-(1. /12.) *c2vpp

enddo

i=2

i=2

ubar=umean (i)

cO0v =-cone

clv =-ci*re*ubar

c2v = ci*re*omega-beta**2

c2vp = (i) *rmp(i)

c2vpp= rm(i)**2

c0(i,i)=clv
cl(i,i)=clv
c2(i,i)=c2v

c2(i,i~-1)=-( 3./12.)*c2vp+(10./12.) *c2vpp
c2(i,i )=-(10./12.)*c2vp-(15./12.)*c2vpp+c2{i, i)
c2(i,i+l)= (18./12.)*c2vp-( 4./12.)*c2vpp
c2(i,i+2)=—( 6./12.)*c2vp+(14./12.) *c2vpp
c2(i,i+3)= ( 1./12.)*c2vp-( 6./12.) *c2vpp
c2(i,i+4)= ( 1./12.)*c2vpp

i=nmax-1
i=nmax-1
ubar=umean (i)
cOv =-cone
clv =-~ci*re*ubar
c2v = ci*re*omega-beta**2



c2vp = rm(i) *rmp(i)
c2vpp= rm(i)**2

c0(i,i)=cOv
cl(i,i)=clvy
c2(i,i)=c2v

c2(i,i-4)= ( 1./12.)*c2vpp

c2(i,i~3)=-{( 1./12.)*c2vp-( 6./12.) *c2vpp
c2(i,i-2)= ( 6./12.)*c2vp+(14./12.)*c2vpp
c2(i,i~1)=-(18./12.)*c2vp~( 4./12.) *c2vpp

c2(i,i )= (10./12.)*c2vp-(15./12.) *c2vpp+c2(i,i)
c2{i,i+l)= ( 3./12.)*c2vp+(10./12.) *c2vpp

BCs
c v=0

Q

c2(1,1)=cone
c2 {nmax, nmax) =cone

Transformation

0

f=cone
g=cone
do i=1,nmax
do j=1,nmax
b0(i,j)= c0(i,j)*(£**2)

& +cl(i,J)*(£)

& +¢2(i,3)
bl(i,j)= c0(i,j)*{(-2.*f*qg)

& +cl(i,J)*(£-qg)

& +c2(i,j)*(2.)
b2(i,j)= c0(i,]j)*(g**2)

& +cl(i,J)*(-g)

& +c2(i,j)*(1.)
b3(i,j)= czero
ba(i,j)= czero

enddo
enddo

else

print *,’ ===== NO SUCH CASE ====='

print *,’ ===== BING! IS NEQ > 2 ? ====='
end if

end of equation selection

Form companion matrix in ca

(2 200 T o T o I 0 IO ¢ BN 0]

call lemm( nmax, b0, bl, b2, b3, b4, ca, cunit, cwork, indx )

Get eigenvalues using IMSL

oaon

do i=1,nmaxeq
alpha(i)=czero

enddo

call EVLCG(nmaxeq, ca,nmax4,alpha)

do i=1,nmaxeq
calphatemp=(alpha(i) *£-g) / (alpha(i)+cone)
alpha(i)=calphatemp

enddo

Q

Find Discrete Eigenvalue




do i=1l,nmaxeq
do j=1,nmaxeq
disc(i,j)=abs({omega/alpha(j)-omega/alpha(i))
enddo
enddo
do i=1,nmaxeq
disc(i,i)=1l.e+10
enddo
dmax=0.
imax=1
do i=1l,nmaxeq
d=1l.e+10
do j=1,nmaxeq
d=min(d,disc(i, 3j))

enddo
if( d.gt.dmax )then
dmax=d
imax=i
endif
enddo
c
print *,°
print *,’ neq,imax,alpha(imax),omega/alpha(imax) "’
write(*,*) neq, imax,alpha(imax),omega/alpha (imax)
write (16, *)neq, imax, alpha (imax) , omega/alpha (imax)
print *,’ omega+, alpha+’
write(*,*) omega/wshear,alpha(imax)/sgrt(re*wshear)
c

cwavespd (neq) =alpha (imax)

100 continue
rf(l)= real (cwavespd(l)-cwavespd(2))
rf{2)=aimag(cwavespd(l) -cwavespd(2))
print *, -
print *,’ Differences’
write(*,*)rf(1l),rf(2)
print *,*
print *," -
write(16,*)x(1),x(2),rf(1),xf(2)

9010 format (i5,1p4el5.5)
9020 format (10(10£6.1/)//)
9030 format(1x,1p7el5.4)

c

return

end
c
c***************************************************************c
c LCOVIM c
c Linear Compaian Matrix Method c

cx* *************************************************************c

subroutine lcmm( nmax, <0, ¢l, c2, c3, c4 , ca

& , cunit, cwork, indx )
complex c0 (nmax , nmax) , ¢l {nmax, nmax) , c2 {nmax, nmax)
& , 3 {nmax, nmax) , c4 (nmax, nmax) , ca(nmax*4,nmax*4)
& cunit (nmax,nmax) , cwork (nmax, nmax)
dimension indx{nmax)
c
c Inverse c0 and replace
c
call minv{(c0,nmax,cunit, indx)
call meqg(nmax,cunit,c0)
c
¢ Multiply c0inv to c¢l, c2, <3, and c4
c

call mmp(nmax,c0,cl, cwork)
call meq(nmax, cwork,cl)



call mmp(nmax,c0,c2, cwork)
call meqg(nmax, cwork,c2)
call mmp(nmax,c0,c3, cwork)
call meg(nmax, cwork,c3)
call mmp(nmax,c0,c4,cwork)
call meq(nmax,cwork, c4)
c
¢ Assemble the big A matrix in ca
c
nmax2=2*nmax
nmax3=3*nmax
nmax4=4*nmax
call munit(nmax,cunit)

do i=1,nmax4

do j=1,nmax4
ca(i,j)=(0.,0.)

enddo

enddo

do i=1l,nmax

do j=1,nmax
ca(i,j)=-cl(i,3)
ca(i,j+ nmax)=-c2(i,J)
ca(i,j+nmax2)=-c3(i,3j)
ca(i,j+nmax3)=~-c4(i,J)
ca(i+nmax,j )=cunit(i,3j)
ca({i+nmax2,j+nmax )=cunit(i,j)
ca({i+nmax3, j+nmax2)=cunit(i,j)

enddo

enddo

return

end
c***************************************************************c
c MEAN c
c Mean U and U’’ c
c***************************************************************c

subroutine mean (nmax,y,umean, umeanpp)

dimension y(nmax),umean{(nmax) ,umeanpp (nmax),

& yy(2000) ,uu(2000) ,pp(2000)
c
kform=2
if( kform .eqg. 1 )then
c
c analytical form
c
do i=l,nmax
yi=y(i)
if( yi.le.0.9999 )then
umean{i)=2.*yi-2.*yi**3+yi**4
umeanpp (i) =-12.*yi+12., *yi**2
else
umean(i)=1.0
umeanpp(i)=0.0
endif
enddo
c
else
c
c Discrete Form
c
c

open(l, status='unknown’,file='meaninfo’)
read(l,*) redelst
i=0




5 i=i+l
read(l,*,end=10) yy(i),uu(i),pp(i)
goto 5

10 print *,’ Have read ‘,i,’ data point for U and U’''*
close(l)

is =1
do i=2,nmax
15 is=is+l
if( y(i).gt.yy(is) )goto 15
m={y (i) -yy(is-1))/(yy(is) —yy(is-1))
rp=(yy(is)-y(i)) /(yv(is)-yy(is-1))
umean(i) =rm*uu(is)+rp*uu(is-1)
umeanpp (i) =rm*pp (is)+rp*pp(is-1)
is=is~2
enddo
11 umean (1) =0.
umeanpp (1) =0.

endif

return
end
c***************************************************************c
c MUNIT (o]
c Unit matrix c
c***************************************************************C
subroutine munit (nmax,cunit)
complex cunit (nmax, nmax)
do i=1,nmax
do j=1,nmax
cunit(i,j)=(0.0,0.0)
enddo
enddo
do i=1,nmax
cunit(i,i)=(1.0,0.0)

enddo

return

end
c***************************************************************c
c MMP c
c matrix multiplication c

c***************************************************************c

subroutine mmp (nmax,cm2,cm3, cwork)
complex cm2 (nmax,nmax), cm3 (nmax,nmax) , cwork (nmax, nmax)

do i=1,nmax

do j=1,nmax
cwork(i,j)=(0.0,0.0)

enddo

enddo

do i=1,nmax
do j=1,nmax
do k=1,nmax
cwork (i, j)=cwork(i,j)+cm2 (i,k) *cm3(k, j)
enddo
enddo
enddo

return

end
c***************************************************************c
[ MEQ [e]
c Replace cm3 by cm2 c




c***************************************************************c

subroutine meq(nmax,cm2,cm3)
complex cm2(nmax,nmax),cm3 (nmax,nmax)
do i=1,nmax
do j=1,nmax
cnl3(ilj)=cm2(ilj)

enddo

enddo

return

end
c***************************************************************C
C MINV C
c Matrix Inversion c

C***************************************************************C

SUBROUTINE MINV(A,N,U, indx)
COMPLEX A(N,N),U(N,N)
DIMENSION INDX(N)
DO 5 J=1,N
5 INDX(J) = 0
CALL munit (N, U)
CALL LUDCMP(A,N,N, INDX,D)
DO 10 J=1,N
CALL LUBKSB(A,N,N,INDX,U(1,J))
10 CONTINUE
RETURN
END
c END OF Fortran File
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