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Abstract

The frequencies of the bursting events associated with the streamwise coherent struc-

tures of spatially developing incompressible turbulent boundary layers were predicted using

globzd numerical solutions of the Orr-Sornmerfeld and the vertical vorticity equations of

hydrodynamic stability problems. The structures were modeled as wavelike disturbances

associated with the turbulent mean flow. The global method developed here involves the

use of second and fourth order accurate finite difference formulae for the differential equa-

tions as well as the boundary conditions. An automated prediction tool, BURFIT, was

developed. The predicted resonance ilequencies were found to agree very well with previous

results using a local shooting technique and measured data.
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Nomenclature

A. coefficient in equation 7

13V coefficient in equation 7

17T coefficient in equation 8

C coefficient matrices in equation 10

D%

D lambda matrix

Fi averaged turbulence quantity

L length scale

Re Reynolds number

U mean velocity in the x-direction

c wavespeed ,

i index or @

m transformation metric @dy
t time

z x coordinate

y y coordinate

z z coordinate

U= iiee stream velocity

~i turbulence quantity

.f~ background fluctuation
$i wavelike component

u~ wall frictional velocity

O mode shape for the wavelike y–component of velocity

v solution vector in equation 9

v transformed y coordinate
y+ &

v
a wavenumber in the x-direction

~ wavenumber in the z-direction

J boundary layer thickness

J* boundary layer displacement thickness

ij mode shape for the x–component of vorticity

v kinematic viscosity

7
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1.0 Introduction

Many experimental results on incompressible and compressible turbulent boundary lay-

ers have indicated the existence of coherent structures in such flows. The quasi-deterministic

occunence of large-sczde organized structures is collectively called the bursting process. The

bursting process is believed to play a dominant role in the development of turbulent bound-

ary layers.

-The bursting process is associated with the appearance of counter-rotating spanwise

rolls of vertical structures, Figure 1. Experiments by Morrison & Kronauer (1969) showed

that the statistically dominant streamwise fluctuations of the streamwise vertical structures

exhibited wavelike characteristics, suggesting that a hydrodynamic wave description for the

strearnwise structures is applicable.

Based on a weakly nonlinear theory, Jang et al.(1986) proposed that resonance could

occur for certain damped three-dimensional modes when the eigenmodes of the Orr–

Sommerfeld solution corresponded to that associated with the vertical vorticity equation.

As a result, they showed that for incompressible turbulent boundary layers, the secondary

mean flow induced by these resonant fundamental modes contained streamwise vertical

structures. The shape of the predicted structures and the spacing of the accompanying

low–speed streaks are comparable with experimental observation. .

Because of the nature of the numerical integration scheme used in Jang et al. (1986),

some knowledge of the eigenvalues is required a priori in order for the numerical solution

to be successful. Since this information is not readily available beyond a few simple profiles

for the mean quantities, it severely limits the use of the”direct-resonance method in simple

flow cases. Furthermore, the eigenvalue spectra of the Orr-Sommerfeld and the verticzd

vorticit y equations contain many other eigenmodes. It is possible that the eigenmodes not
.

considered in Jang et al. (1986) might also excite resonance. These issues may become a

major concern when the flow speed increases, and effects of compressibility are included.

In addition, the Orr-Sommerfeld and the vertical vorticity equations yield stiff systems

of ordinary differential equations. During the numerical integration of a stiff system, nu-

merical errors associated with one solution may contaminate the other and lose their linear

independence. Extra care, such as the use of a r=rthonormalization procedure, is required

to keep the solution independent. In this research we implemented a modern global numer-

ical scheme for the stability problem. A global method solves the equations using a global

approximation of the solution. The global solution method does not require a

9



Figure 1. A sketch of the bursting event. Cantwell (1981).

x,

re-orthonorrnalization procedure and is ideal for stiff systems such as the Orr-Sommerfeld

and the vorticity equations, Lieu and Morris (1992), Baty and Morris (1995), Bridges and

Morris (1984).

The global method provides a description of the entire eigenvalue spectrum of the

stability problem without using any prior knowledge of the eigenvalues, as is required by

the traditional shooting procedure. As such, all possible bursting frequencies are likely

to be identified automatically without artificial intervention. This capability allows an

efficient model of the bursting i%equenciesin incompressible as well as compressible turbulent

boundary layers.

In this research, second and fourth order accurate finite difference formulae have been

used in approximating the Orr-Sommerfeld equation, the vertical vorticity equation, and

their boundary conditions.

In the following, the derivation and the solution of the equations are described. The

results are presented in section 4.

10



2.o Modeling

Turbulence quantities, T, are decomposed into three components:

where Fi represents a long-time average of Z, fi the

the background fluctuation. Substituting equation (1)

followed by a linearization of the disturbance quantities,

(1)

wavelike component of ~, and f:

into the Navier–Stokes equations,

the equations governing the mode

shape of the vertical velocity, 0, the Orr-Sommerfeld equation, and the homogeneous vertical

vorticity, fi, equation can be found:

[i(aU - W)(D2 - a’ -p’)

~(au-f.d)-

–iaD2U– ~R( D2-a2-@2)2]ti=0

;( D2-~2-@2)]~=()

(2)

(3)

Equations (2) and (3) have been derived by assuming a normal mode solution for the wavelike

dMmrbances, fit i.e.,

fi = fi~(az+flz-Wt) . (4)

In equations (2) and (3), U represents the streamwise mean velocity, and D a d/dy.

Equations (2) and (3) govern the mode shape of wavelike disturbances associated with

the mean quantities in terms of the streamwise and spanwise wavenumbers, a and ~; the

wave frequency, u; and the flow Reynolds number, I?(= ~). Lieu and Morris (1992) used

a similar wavelike description for the coherent structures in free shear layers and successfully

calculated the evolution of the tim~dependent turbulent motion at the large scale. Their

analysis, which requires a weakly nonlinear solution for the wave amplitude, will not be

performed here for the bounded shear flows. In this study the bursting frequencies of the

streamwise coherent structures in turbulent boundary layers are sought using the direct–

resonance model. The condition for direct resonance can be written as

cqa,~, R) = Cqa,p, R) (5)

where Cos and Cvv represent the phase velocity, w/a, associated with the Orr–Somrnerfeld

and the vertical vorticit y eigenvalue problems.

The boundary conditions for O and ij are

G=Dij=jj= Oat y= O,cO. (6)

11
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In the following section the numerical solution of equations (2), (3), (5), and (6) are

described.

3.o Numerical Solutions

3.1 Mean Flow

The local mean velocity in the strecunwise direction, U, for the turbulent boundary layer

over a flat plate can be obtained from the solutions of either the boundary layer equations

or the Navier–Stokes equations. We found the resulting eigenvalue problems sensitive to

the profile shapes of U and D2 U. For the results presented, the U and D2 U profiles were

obtained by using dense grids (x 1000) in a boundary-layer equation solver to retain a

higher order of fidelity of the velocity as well as its second order derivative. A mixing-length

turbulence model was used for the turbulent eddy-viscosity.

3.2 Wavelike Structure

To resolve the near-wall behavior of the boundary layer, an algebraic stretching of the

grid was used beginning from the wall. In the transformed coordinate, ~, the equations are

m(m(m(mti’)’)’)’ + Avm(mO’)’ + 13vil= O (7)

m(mf)’ + Bqij = O, (8)

where

A. = –2(a2 + ~2) – iR(aU – u)

Bv = (CY2+ ~2)2 + iR(cr2 + @2)(aU – u) + i.RaD2U

Bq = –iR(aU –u) – (Q2 + @2)

and

~ denotes the transformed coordinate. The global solution method developed in this research

for the Orr-Sommerfeld and the vertical vorticity equations involves the use of second and

fourth order accurate finite difference formulae for the equations and the boundary condi-

tions. The second order formulae me widely available. The fourth order formulae used here

are listed in the Appendix. The resulting homogeneous systems of equations form eigenvalue



.

problems, for both the Orr–Sommerfeld and the vertical vorticity equations, nonlinear in

the parameter, a. For the Orr-Sommerfeld equation the system can be written as

D4(CY)V= O (9)

The matrix, D4, is a lambda matrix of degree four, Lancaster (1966), and can be expressed

as a scalar polynomial with matrix coefficients:

D4(cr) = CO(24+ CICYS+ c2a2 + c@ + C4. (lo)

With the inclusion of the boundary conditions, the matrices C’s are square matrices of order

n, which represents the number of grid point in ~. A linear companion matrix method,

Bridges and Morris (1984), was used to linearize the lambda matrix. The resulting general

eigenvalue problem becomes

{(
–cl

I
o

‘;2 ‘;’ ‘vii’ i ! !)}(O=O ’11)0010

Equation (11) can be fimther transformed to an ilgebraic eigenvalue problem seeking the

eigenvalues of matrix A:

(
–c;lc~ –C;1C2 –C;lcs –C;1C4

A=
I o 0 0
0 I o

)
o“

o 0 I o

(12)

The eigenvalues maybe obtained by using QR or QZ algorithms. The details of the formu-

lation and the application of the Linear Companion Matrix method can be found in Bridges

and Morris (1984) and Lieu and Morris (1995).

The resonance in the stability problem occurs when there is a set of parameters (a, /?, w)

for which the solutions of the Orr-Sommerfeld and the vertical vorticity equations exist for

a given mean velocity distribution and a Reynolds number. To locate the resonance mode,

we choose to solve the following equations:

Cry(p,w)- a:v(p,cd)= o (13a)

(13b)

A subroutine in the IMSL package called NEQBF has been used to solve the system of

equations.

13
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4.0 Results

In this section thesolutions of theresonance stability problem obttinedby using the

high order finite difference global method are described.

A polynomial type of distribution was first used as the mean velocity profile. The

profile

u(;) = 2(;)–2(;)3+(;)4
was often used as an approximation to the streamwise velocit y for flat-plate boundary layers.

6 represents the boundary-layer thickness. The eigenvalues obtained by using the present

global method were compared with those obtained by using the local shooting method. The

comparisons are shown in Table 1.

Table 1: Comparison of the calculated eigenvalues, a.

Re w Equations Present Shooting
8,000 0.2354 Orr-Sommerfeld (0.780864,-0.013533) (0.781148,-0.01356)
10,000 0.1202 vertical vorticity (0.41512,0.40891) (0.415119,0.408911)

Figure 2 shows the calculated complex phase velocity for a plane mode, and Re( ~) =

8,000 and 10,000 for the vertical vorticity equation. The frequencies are 0.0122 and 0.1202,

respectively. An analytical form of the continuous spectrum was also included for compar-

ison, Grosch and %lwen (1978). For Re = 10,000, the two discrete Tollmien-Schlichiting

instabilityy modes can be clearly identified. For Re = 8,000, the discrete spectrum appearers

close to the continuous spectrum. For both cases the continuous spectrum are weu–resolved.

Numerical experiments were conducted to examine the effects of the order of the finite

difference approximation, the number of grid points, and the location of the outer boundary

of the computed domain in y. Second–, as well as fourth-, order approximations were applied

to the differential equations and the boundary conditions. Figure 3 shows a result of the

calculated complex phase velocity for a plane mode for the Orr-Sommerfeld equation using

various order of finite differencing, numbers of grid point, and ( ~)~az. Figure 3 includes

the Tolhnien-Schlichiting instability modes and the continuous spectra for the approximate

kuninar boundary layer profile. The symbols represent the results for the various calculated

cases denoted by a-b-c, where [a] denotes the order of accuracy, [b] the number of discretized

points used, and [c] the far field boundary distance to the wall. The first, second, and the

third number in [a] represent the order of accuracy for the derivatives in the Orr-Sommerfeld

14
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equation, for the far field boundary condition, and for the wall boundary condition, re-

spectively. The agreement between the computed and the analytical continuous spectrum

improves with the increasing number of grid nodes. It also appears that increasing the order

of accuracy of the discretization enhances the agreement. The results shown in the following

were obtained by using the fourth-order formulae and a grid of 200 nodes.

To calculate the eigenvalues of the direct-resonance problems associated with a tur-

bulent flat plate boundary layer, the mean streamwise velocity and its second derivative

distribution were needed. A boundary-layer equation solver using the Prandtl’s mixing

length model with the van Driest darnping fimction was developed. The calculated turbu-

lent mean velocity distribution for Re = 1,000 is shown in Figure 4. The results compared

well with the log law-of-the-wall in the log layer of the boundary layer. The number of

grid points is 998. The second derivative of the mean velocity, .V2U, was obtained using a

fourth-order accurate finite difference formula. Figure 5 shows the D2 U distribution. For

kuninar boundary layers, the solutions of the Orr-Sommerfeld and vertical vorticity equa-

tions are known to be sensitive to the input velocity and its second derivative. We found

that this sensitivity of the Orr–Sornmerfeld and vertical vorticity equations to the input

U and D2 U remains for the current problem involving turbulent boundary layers. As can

be seen in figures 4 and 5, the U and D2 U profdes vary significantly over a smrill distance

in the near-wall region of the flow. It is necessary that the multiple length scales of tur-

bulent boundary layers be captured properly in the Om–Sornmerfeld and vertical vorticity

problems. Algebraically stretched grids were used to ensure an appropriate resolution of

the different regions. Comprehensive numerical experiments showed that a parameter set

of yy = 1 ad (~)nza. = vz = 50 gives the best results in terms of both the discrete, as

well as the continuous, spectra of the Orr-Sommerfeld and vertical vorticity equations for

a wide range of Reynolds numbers. 6“ denotes the displacement thickness and 01 the first

grid point away from the wall. Figure 6 shows some results of the numerical experiments.

Figure 6 shows the complex phase velocity spectrum of the vertical vorticity equation for

w =~; P = 10; yz = 50; and VT = 0.001,0.01,0.1,1.0,5.0. Except for VT =5, the computed ~

discrete modes agree well. There is a more significant separation between the discrete and

the continuous spectra for yy = 1 than for the other values. This separation between the

discrete and the continuous modes was used as a criterion to identify the discrete modes

from the continuous modes in an automated procedure of bursting frequency prediction. A

calculation with y: = 1 and yl = 90 shows no changes in either the discrete or the

17
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continuous spectra. Figure 7 shows the eigenvalue spectrum for the Orr-Sommerfeld equa-

tion for a turbulent boundary layer for Re( ‘;6” ) = 1,000.

As was stated earlier, based on the direct-resonance theory, an automated procedure has

been developed for the prediction of the bursting frequencies associated with the strearnwise

structures in turbulent boundary layers. To identi~ a resonance mode, the Orr-Sommerfeld

equation and the homogeneous vertical vorticity equation were first solved. Resonance

occurs when the eigenvalues of the Orr-Somrnerfeld solution correspond to that associated

with the vertical vorticity equation. The resonance condition has been written in the form

of a system of two equations, equation (13), nonlinear in their pammeters, w and /3. The

resonance mode is identified when a solution of equation (13) is found. The solution of

equation (13) involves an iteration process. The search for resonance mode is complete when

the solution of equation (13) is obtained. The procedure for searching the resonance mode

has been automated. The automated search procedure was implemented in a FORTRAN

software called BURFIT (BURsting Frequency prediction in Incompressible Turbulent

boundary layers).

Figures 8, 9, and 10 show the results of using BURFIT for a turbulent boundary layer

of Re = 1,000. Figures 8 and 9 show the convergent history for the complex a and c,

respectively. The search process was terminated when the right–hand side of equation (13),

denoted by dR and dr, have reduced to the order of 4. Figure 10 shows the evolution of

dR and dr. The predicted resonant fkequency is w‘=0.0962, which compares well with that

of Jang et al.(1986), of 0.09, calculated by using a shooting method and the measured data

of Morrison and Kronauer (1969).

The eigenvalue spectra for the Orr-Sornmerfeld and vertical vorticity equations at the

resonance condition for Re = 8,000 are shown in figure 11. When the resonance condition

was met, there was apparently a matching of not only the discrete mode but also the

continuous modes.

21
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5.0 Concluding Remarks

In this study a global solution method has been successfully developed to predict the

bursting frequencies associated with the coherent streamwise structures in incompressible

turbulent boundary layers. The prediction was based on the direct resonance model. The

prediction tool developed, BURFIT, has been automated, and no artificial intervention

is necessary other than assigning the starting values. In the present study the predicted

bursting frequencies have been found to agree very well with previous numerical calculations

and experimental data for incompressible turbulent boundary layers over a flat plate. The

development of a global mechanism is also necessary when a direct resonance theory, perhaps

similar to the one implemented here for incompressible flow, is extended to the prediction of

the bursting frequencies of high-speed turbulent boundary layers. There can be more than

one discrete mode associated with the bursting events when the effects of compressibility

are considered.
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Appendix A

The fourth order, O(A4 ), finite difference formulae used in the current study are given

below. All formulae are given for the derivatives at a point denoted by 00 and its neighboring

points in decreasing order, ()–1, ()–2 ,..., and in increasing order, ()+1, ()+2,..., etc.. A

denotes the uniform grid spacing.

~;= f-z – 8f-1 + gfl – f2

12A

f;=
–3f_~ – 10fo + 18fl – 6fz + fs

12A

f;=
3fl + 10fo – 18f-1 + 6f_2 – f._3

12A

f;=
–25fo + 48fl – 36f2 + 16fs – 3fA

12A

f;=
25fo – 48f_l + 36f_2 – 16f_3 + 3f_4

12A

f:=
–2f_2 + 16f_l – 30fo + 16fl – fz

12A2

f:= lof_~ – 15fo – 4fl + 14fz – 6fs + fA

12A2

f;=
lofl – 15f0 – 4f-1 + 14f–z – 6f–s + f–A

12A2

f:= fz + 8fl – 35fo + 48 f-1 – 29 f-z + 8f-s – f-A
8A3

f~ = –f-3 + 12f_2 – 39f_l + 56fo – 39fl + 12f2 – f3

6A4

fr’ =
2of_2 – 55f_l + 155fl – 220f2 + 135f3 – 4of4 + 5f5

30A4

fgm . 2of2 – 55f~ + 155f_~ – 220f_2 + 135f_3 – 4of_4 + 5f_s

30A4



Appendix B

A listing of the code BURFIT is included in this appendix. Two subroutines that were

used in the code were taken out due to copyright. They are called LUBKSB and LUDCMP

fiorn Numerical Recipes.
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c
c***********************************************************************c

c c
c BURFIT c
c c
c William W. Lieu c
c Western Michigan University c
c July 31, 1999 c
c For Sandia National Laboratories c
c c
c The package is a software tool for the solution of the c
c linearized model, based on finite difference global numerical c
c method, for bursting frequency prediction of incompressible c
c turbulent boundary layer over flat plates. c
c c
c***************************.********************************************c
C******************** ************************ ***************************c

c c
c Locate Direct Resonance using IMSL subroutine NEQBF c
c c
C********************** ********************** ***************************c

c
integer iparam(6)
real fen, fscale(2),fvec(2) ,rparam(5),x(2),xguess (2),xscale(2)
external fcn,neqbf
data xscale/2*1./, fscale/2*1./

c
xguess(l)=O .3076573
xguess(2)=2.33344

c
c ipapam array controls iteration parameters
c

iparam(l)=O
c

call neqbf (fcn,2,xguess,xscale, fscale,iparam,rparam,x, fvec)
print *,’ Ha! Ha! Ha! converged! omega = ‘,

&“ x(l),’ beta= ‘,x(2)
stop
end

c
subroutine fcn(ndumy,x,rf)

c
c***********************************************************************c

c c
c 7/8/1999 for SNL c
c V-V Eq. and OS EQ. c
c length scale: delta(u=O.99U) c
c velocity scale: free stream U c
c Ilmax: total number of points and the size of the matrices c
c Fourth order accurate for all derivatives c
c Transformed domain c
c c
c************************************************************** *********C

c

c

c

&
&
&
&
&
&

dimnesions, common blocks, variables types. ...

parameter (nmax=201)
implicit complex (c)
real x(2),rf(2)
complex co(nmax,Iunax),cl(nmax,nmax),c2 (nmax,nmax)

,c3(nmax,nmax) ,c4(nmax,nmax) ,ca(nmax*4,nmax*4)
,bO(nmax,nmax) ,bl(nmax,nmax) ,b2(nmax,nmax)
,b3(nmax,nmax) ,b4(nmax,nmax)
,cunit(nmax,xunax),cwork(nmax,nmax) ,alpha(nmax*4)
,alphal(nmax) ,vl(nmax,nmax) ,vr(nmax;nmax) ,work(nmax*2)
,f,g,cwavespd(2)



real mwfmpptmpp
dimension y(nmax) ,umean(nmax) ,umeanpp(nmax)

& ,rwork(nmax*8) , indx(nmax) ,disc(nmax*4, nmax*4)
& ,rm(nmax) ,rmp(nmax) ,rmpp(nmax),rnKX?P(nmax)

n?unelist /input/ neqq,omegaq,betaq,yplusl,yl
character jobvl,jobvr

c
omega=x (1)
beta=x(2)

c
c Set dimensions of parameter window
c

if(omega.gt.0.6.0r.beta.gt.7.5) then
print *,‘******** OUTOF BOUND’,omega,beta
stop
endif

c
c Do OS(neq=l) and w(2) eqns.
c

do 100 neq=l,2
c
c Parameters
c

nmax4=nmax*4
nmax2=nmax*2
open(l,status=’unknown’ ,file=’ov.i’)
read(l,input )
close(1)

c write(*,*) neqq, omegaq, betaq, yplusl, yl
c

open(l,status= ‘Unknown’,file= ‘meaninfo’)
read(l,*) redelst
read(l,*) yl,ul,ppl
close(1)
re=redelst

c Find du/dylwall
wshear=ul/yl

c
c initializaiton
c

czero=(O.,0.)
cone=(l.,0.)
ci=(O.,1.)
do i=l,nmax
do j=l,nmax

cO(i,j)=czero
cl(i,j)=czero
c2(i,j)=czero
c3(i,j)=czero
c4(i,j)=czero
Cunit(i,j)=czero
cwork(i,j)=czero

enddo
enddo

c
c Find coordinates
c

njml=nmax
njm=njml-1

c
dely=yplusl/sqrt (wshear’re)

c
rayl=l.
dyl=yl/float(njml-1)
ray=l.01
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ddel=ray-rayl
do icount=l,1000

toy=o .
do j=2,njm

toy=toy+ray** (j-2)
enddo
toy=toy+(njml-njm) *ray**(njm-2 )
dy=yl/toy
ddel=ddel’ (dyl-dely)/(dyl-dy)*O.l
rayl=ray
dyl=dy
ray=rayl+dde 1
if(abs(ddel) .1e.1.e-8)go to 5

enddo
print *,’ ray did not converge !! ! Latest are ‘,ray,ddel

5 continue
y(l)=o.
do j=2,njm

y(j)=y(j-l)+dy*ray** (j-2)
enddo
do 1305 j=njm+l,njml

y(j)=y(j-l)+dy’ray” (njm-2)
enddo

c
cFind m’, m“, m’”
c m

i=l

rm(i)=12./(-25.*y(i )+48.*y(ii-1)
& -36.*y(i+2)+16.*y(i+3)-3 .*y(i+4))

i=2
rm(i)=12./(-3.*y(i-l) -10.*y(i )+18.*y(i+l)

& -6.*y(i+2)+ y(i+3) )
do i=3,nmax-2

rm(i)=12./(y(i-2)-8.*y(i-l) +8.*y(i+l)-y(i+2) )
enddo
i=nmax-1
rm(i)=12./(- 1.*y(i-3)+6.*y(i-2)-18 .*y(i-1)

& +10.*y(i )+3.*y(i+l))
i=nmax
rm(i)=12./( 3.*y(i-4)-16.*y(i-3) +36.*y(i-2)

& -48.*y(i-1)+25.*y(i ))
c m’

i=2
rmp(i)=(-3.*rm(i-1) -10.*rm(i)+18.*nn(i+l) -6.*rm(i+2)

& +rm(i+3))/12.
do i=3,nmax-2

rmp(i)=(rm(i-2)-8.*rm(i-1) +8.*rm(i+l)-rm(i+2))/12.
enddo
i.~–l

rnrp(i)=(-1.’rm(i-3)+6.*rm(i-2)-l8. *rm(i-1)
& +10.*rm(i )+3.*rm(i+l))/12.

c m ,,

do i=3,nmax-2
rmpp(i)=(- 1.*rm(i-2)+16.*rm(i-1) -30 .’rm(i)

& +16.*rm(i+l)- 1.*rm(i+2))/12.
enddo

c m ,,,

i=3
rmppp(i)=(- 1.’rm(i-2)-8.*rm(i-l)+35. ‘rm(i )-48.*rm(i+l)

& +29.*rm(i+2)-8.*rm(i+3 )+ 1.*rm(i+4))/8.
do i=4,nmax-3

rmppp(i)=( rm(i-3)-8.*rm(i-2) +13 .*rm(i-l)-13.*rm(i+l)
& +8.*m(i+2)-l.*m(i+3) )/8.

enddo
i.~-2

rmppp(i)=(- rm(i-4)+8.*rm(i-3) -29.*rm(i-2)+48.*rm(i-1)



& -35. *rm(i )+8.*rm(i.+1)+ rm(i+2) )/8.
c
c Find U
c

call mean (nmax,y,wean, umeanpp)
write (14,9030) (y(i),umean(i),umeanpp(i), rm(i),rmp(i)

& lrmPP(i),rmPpp(i),i=l,~)
c
c-----------_________________________________________________________

c
c
c

c
c
c
c
c

c
c
c
c

c

c

c

c

c

c

Select OS (neq=l) or W (neq=2) Eq.

if( neq.eq.l ) then

O-S equation
Begin here

nmaxeq=nmax4

Matrix entries
Zero, 1st and 2nd derivatives

cargu=2.*beta**2-ci*re*omega
do 15 i=3,nmax-2

Zero

first

ubar=umean(i)
ubarpp=umeanpp (i)
m=rm(i)
mp=rmp(i)

wp=~p(i)
mppp=rmppp(i )
Cov =cone
Clv =ci*re*ubar
C2V =cargu
c2vp =-2.*m*~

c2vpp =_Z.*m**z

C3V =ci*re*beta**2*tiar+ci*re*tiarpp

c3vp ._ci*re*tiar*m*~

c3vpp =_ci*re*fiar*m**2

C4V =beta**4-ci*re*omega*beta**2
c4vp .m*mp**3+4. *m**2*mp*mpp+m**3*mppp+m*mp* (-cargu)

c4vpp =7.*m**2*mp**2+4. *rn**3*mpp+m**2*(-cargu)

cO(i,i)=cOv
cl(i,i)=clv
c2(i,i)=c2v
c3(i,i)=c3v
c4(i,i)=c4v

c2(i,i-2)= (1./l2.)*c2vp
c2(i,i-1)=-(8./l2.)*c2vp
c2(i,i+l)= (8./l2.)*c2vp
c2(i,i+2)=-(1./l2.)*c2vp

c3(i,i.-2)= (1./l2.)*c3vp
c3(i,i-1)=-(8./l2.)*c3vp
c3(i,i+l)= (8./l2.)*c3vp
c3(i,i+2)=-(1./l2.)*c3vp

c4(i,i-2)= (1./l2.)*c4vp
c4(i,i-l)=- (8./l2.)*c4vp
c4(i,i+l)= (8./l2.)*c4vp
c4(i,i+2)=-(1./l2.)*c4vp

second
c2(i,i-2)=-( 1./l2.)*c2vpp+c2(i,i-2)
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c2(i,i-1)= (16./12.)*c2vpp+c2(i,i-l)

c2(i, i )=-(30 ./12. )*c2vpp+c2(i, i )
c2(i, i+l)= (16. /12. )*c2vpp+c2(i, i+l)
c2(i,i+2)=-( 1./l2.)*c2vpp+c2(i,i+2)

c3(i,i-2)=-( 1./l2.)*c3vpp+c3(i,i-2)
c3(i,i-1)= (16./l2.)*c3vpp+c3(i,i-l)
c3(i,i )=-(30./l2.)*c3vpp+c3(i, i )
c3(i,i+l)= (16./l2.)*c3vpp+c3(i, i+l)
c3(i,i+2)=-( 1./l2.)*c3vpp+c3(i,i+2)

c4(i,i-2)=-( 1./l2.)*c4vpp+c4(i,i-2)
c4(i,i-1)= (16./l2.)*c4vpp+c4(i, i-1)

c4(i,i )=-(30./l2.)*c4vpp+c4(i, i )
c4(i,i+l)= (16./l2.)*c4vpp+c4(i, i+l)
c4(i,i+2)=-( 1./l2.)*c4vpp+c4(i,i+2)

c
15 continue

c
c 3rd and 4th derivatives in C4 only
c

do 16 i=4,nmax-3

c 3rd

c 4th

16
c i=3

c 3rd

c 4th

m.rm(j.)

mp=rmp(i)
c4vppp =6.*m**3*mp
c4vpppp=m* *4

c4(i,i-3)= ( 1./8.)*c4vpPP
c4(i,i-2)=-( 8./8.)*c4vppp+c4(i,i-2)
c4(i,i-1)= (13./8.)*c4vppp+c4(i, i-1)
c4(i,i+l)=-(13./8.)*c4vppp+c4 (i,i+l)
c4(i,i+2)= ( 8./8.)*c4vppp+c4(i,i+2)
c4(i,i+3)=-( 1./8.)*c4vppp

c4(i,i-3)=-(1. /6.)*c4vpppp+c4(i,i-3)
c4(i,i-2)= (12./6.)*c4vpppp+c4(i, i-2)
c4(i,i-1)=-(39./6.)*c4vpppp+c4 (i,i-1)
c4(i,i) = (56./6.)*c4vpppp+c4(i,i)
c4(i,i+l)=-(39./6.)*c4vpppp+c4 (i,i+l)
c4(i,i+2)= (12./6.)*c4vpppp+c4(i, i+2)
c4(i,i+3)=-(1. /6.)*c4vpppp+c4(i,i+3)

continue

j.=s
m=rm(i)
mp=rmp(i)
c4vppp =6.*m**3*mp
c4vpppp=m**4

c4(i,i-1)=-(15./8.)*c4vppp+c4 (i,i-1)

c4(i,i )= (56./8.)*c4vppp+c4(i,i )
c4(i,i+l)=-(83./8.)*c4vppp+c4 (i,i+l)
c4(i,i+2)= (64./8.)*c4vppp+c4(i, i+2)
c4(i,i+3)=-(29./8.)*c4vppp+c4 (i,i+3)
c4(i,i+4)= ( 8./8.)*c4vppp+c4(i,i+4)
c4(i,i+5)=-( 1./8.)*c4vppp+c4(i,i+5)

c4(i,i-2)= ( 20./3O.)*c4vpppp+c4(i, i-2)
c4(i,i-1)=-( 55./3O.)*c4vpppp+c4(i, i-1)
c4(i,i+l)= (155./3O.)*c4vpppp+c4 (i,i+l)
c4(i,i+2)=-(220./3O. )*c4vpppp+c4 (i,i+2)
c4(i,i+3)= (135./3O.)*c4vpppp+c4 (i,i+3)
c4(i,i+4)=-( 40./3O.)*c4vpppp+c4(i, i+4)
c4(i,i+5)= ( 5./3O.)*c4vpppp+c4(i,i+5)

c i=~-2
i.~-2



rn=rm(i)
mp=rmp (i )
c4vppp =6.*m**3*mp
c4vpppp=m** 4

c 3rd

c 4th

c
c Be’s
c V=o
c

c
c V’=o
c Zero
c

c

c4(i,i-5)= ( 1./8.)*c4vppp+c4(i,i-5)
c4(i,i-4)=-( 8./8.)*c4vppp+c4(i,i-4)
c4(i,i-3)= (29./8.)*c4vppp+c4(i,i-3)
c4(i,i-2)=-(64./8.)*c4vppp+c4 (i,i-2)
c4(i,i-1)= (83./8.)*c4vppp+c4(i,i-l)

c4(i,i )=-(56./8.)*c4vppp+c4(i,i )
c4(i,i+l)= (15./8.)*c4vppp+c4(i,i+l)

c4(i,i+2)= ( 20./3O.)*c4vpppp+c4(i,i+2)
c4(i,i+l)=- ( 55./3O.)*c4vpppp+c4(i,i+l)
c4(i,i-1)= (155./3O.)*c4vppPP+c4(i, i-1)
c4(”i,i-2)=-(220./3O. )*c4vpppp+c4 (i,i-2)

c4(i,i-3)= (135./3O.)*c4vpppp+c4(i,i-3)
c4(i,i-4)=-( 40./3O.)*c4vpp~+c4(i,i-4)
c4(i,i-5)= (“ 5./3O.)*c4vpppp+c4(i,i-5)

c4(l,l)=cone
c4(nmax,nmax) =cone

first derivative

c4(2,1)=-25.
c4(2,2)= 48.
c4(2,3)=-36.
c4(2,4)= 16.
c4(2,5)=-3.

at boundary (fourth order accurate)

c4(nmax-l,nmaX-4)= 3.
c4(nmax-l,nmax-3) =-16.
c4(nmax-l,nmax-2)= 36.
c4(nmax-l,nmax-1) =-48.

c4(nmax-l,nmax )= 25.

c Transformation
c

f=2.*cone
g=2.*cone
do i=l,nmax
do j=l,nmax

bO(i,j)= cO(i,j)*(f**4)
& +cl(i,j)*(f**3)
& +c2(i,j)*(f**2)
& +c3(i,j)*(f)
& +c4(i,j)*(l.)

bl(i,j)= cO(i,j)*(-4.*f**3*g)
& +cl(i,j)*(-3.*f**2*g+f**3 )
& +c2(i,j )*(-2.*f*g+2.*f**2)
& +c3(i,j)*(-g+3.*f)

& +c4(i,j)*(4.)
b2(i,j)= cO(i,j)*(6.*f**2*g**2)

& +cl(i,j)*(3.*f*g**2-3 .*f**2*g)

& +c2(i,j)*(g**2–4. *f*g+f**2)

& +c3(i,j)*(-3.*g+3 .*f)
& +c4(i,j)*(6.)

b3(i,j)= cO(i,j)*(-4.*f*g**3)
& +cl(i,j )*(-g**3+3 .*f*g**2)
& +c2(i,j )*(2.*g**2-2 .*f*g)
& +c3(i,j)*(-3.*g+f)



& +c4(i, j)*(4.)
b4(i,j)= cO(i,j)*(g**4)

& +cl(i,j)*(-g**3)
& +c2(i,j)*(g**2)
& +c3(i,j)*(-g)
& +c4(i,j)*(l.)

enddo
enddo

c
c End of OS Eq.
c--------------------------------------------------------------------
c

else if( neq.eq.2 )then
c
c V-V equation.
c Begin here
c
c

nmaxeq=nmax2
c
c Matrix entries
c Zero, 1st and 2nd derivatives
c

do i=3,nmax-2
ubar=umean(i )
Cov =-cone
Clv =-ci*re*ubar
C2V = ci*re*omega-beta**2

C2VP = rm(i)*rmp(i)
c2vpp= rm(i)**2

c
c2(i,i-2)= (1./l2.)*C2vp-(l. /12.)*C2vpp

c2(i,i-1)=-(8./l2.)*c2vp+ (16./l2.)*c2vpp
c

cO(i,i)=cOv
cl(i,i)=clv
c2(i,i)=c2v-(30./l2.) *c2vpp

c
c2(i,i+l)= (8./l2.)*c2vp+(l6./l2 .)*C2VPP
c2(i,i+2)=-(1./l2.)*c2vp- (1. /12.)*c2vpp

enddo
c i=2

i=2

ubar=umean(i )
Cov =-cone
Clv =-ci*re*~ar

C2V = ci*re*omega-beta**2

C2VP = rm(i)*rmp(i)
c2vpp= rm(i)**2

cO(i,i)=cOv
cl(i,i)=clv
c2(i,i)=c2v

c2(i,i-1)=-( 3./12.

c2(i,i )=-(10./12.
c2(i,i+l)= (18./12.
c2(i,i+2)=-( 6./12.
c2(i,i+3)= ( 1./12.
c2(i,i+4)= ( 1./12.

c i=nmax-1

i=nmax-1
ubar=umean(i )
cOv =-cone
Clv =-ci*re*ubar

*c2vp+(lo./l2 .)*c2vpp
*c2vp-(15./l2.)*c2vpp+c2 (i,i)
*c2vP-( 4./l2.)*c2vpp
*c2vP+(14./12.)*c2vpp
*c2vP-( 6./l2.)*c2vpp
● c2vpp

C2V = ci*re*omega-beta**2



c

c

c
c BCS
c *=O

c

c2vp = rm(i)*rmp(i)
c2vpp= nn(i) **2

cO(i, i)=cOv
cl(i, i)=clv
c2(i, i)=c2v

c2(i, i-4)= ( 1./12. )*c2vpp
c2(i, i-3) =-( 1./12. )*c2vp-( 6./12. )*c2vpP
c2(i,i-2)= ( 6./l2.)*c2vp+(l4./l2 .)*c2vpp
c2(i,i-l)=- (18./l2.)*c2vp-( 4./l2.)*c2vPP
c2(i,i )= (10./l2.)*c2vP-(l5./l)*c2VPP+c2c2 (i,i)
c2(i,i+l)= ( 3./l2.)*c2vP+(lO./l2 .)*C2VPP

c2(l,l)=cone
c2(nmax,nmax) =cone

c Transformation
c

f=cone
g=cone
do i=l,runax
do j=l,nmax

bO(i,j)= cO(i,j)*(f**2)
& +cl(i,j)*(f)
& +c2(i,j)

bl(i,j)= cO(i,j)*(-2.*f*g)
& +cl(i,j)*(f-g)
& +c2(i,j)*(2.)

b2(i,j)= cO(i,j)*(g**2)
& +cl(i,j)*(-g)
& +c2(i,j) *(l.)

b3(i,j)= czero
b4(i,j)= czero

enddo
enddo

c
c--------------------------------- -------------------------- --------—

else
print *,’ ===== NO SUCH CASE =====’

print *,’ ---—- BING ! IS NEQ>2? ----- #-----

end if
c---------------------------- --------------------- -------------------

c
c end of equation selection
c
c
c Form companion matrix in ca
c

call lcmm( runax,bO, bl, b2, b3, b4, cat cunit, cwork, indx )
c
c Get eigenvalues using lNSL
c

c
c Find
c

do i=l,nmaxeq
alpha(i)=czero

enddo
call EVLCG(nmaxeq,ca,nmax4,alpha)
do i=l,nmaxeq

calphatemp= (alpha(i)*f-g)/(alpha(i)+cone)
alpha(i)=calphatemp

enddo

Discrete Eigenvalue
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do i=l,nmaxeq
do j=l,nmaxeq

disc (i,j)=abs (omega/alpha(j)-omega/alpha (i))
enddo
enddo
do i=l,nmaxeq

disc(i,i)=l.e+10
enddo
dmax=o.
imax.1
do i=l,nnaxeq

d=l.e+10
do j=l,nmaxeq

d=min(d,disc(i, j))
enddo
if( d.gt.dmax )then

dmax=d
*=i

endif
enddo

print *,‘ ‘
print ●,’ neq,imax,alpha(imax) ,omega/alpha(imax) ‘

write(*,*) neq,imax,alpha(imax) ,omega/alpha(imaX)
write(16,*)neq,imax,alpha (imax),omega/alpha (imax)
print *,’ omega+, alpha+’
write(*,*) omega/wshear,alpha(imax) /sqrt(re*wshear)

c
Cwavespd(neq)=alpha(imax)

100 continue
rf(l)= real(cwavespd(l) -cwavespd(2) )
rf(2)=aimag (cwavespd(l)-cwavespd(2) )
print *,’ ‘
print *,’ Differences’
write(*,*)rf(l) ,rf(2)
print *,‘ ‘
print *,‘ ‘
write(16, *)x(l),x(2),rf (l),rf(2)

c
9010 format(i5,1p4e15.5)
9020 format(10(10f6.1/)//)
9030 format(lx,lp7e15.4)

c

return
end

c
c***************************************************************c
c c
c Linear Coxpaian Matrix Method c
c***************************************************************c

subroutine lcmm( nmax, cO, cl, c2, c3, C4 , ca
& , cunit, cwork, indx )

complex co(nmaX,Iunax) ,Cl(nmax,nmax) ,c2(nmax,nnlax)
& ,c3(nmax,nmax) ,c4(nmax,Iunax) ,ca(nmax*4,nmax*4)
& ,cunit(nmax,nmax) ,cwork(nmax,nmax)

dimension indx(nmax)
c
c Inverse CO and replace
c

call minv(cO,nmax,cunit,indx)
call meq(rmax, cunit,cO)

c
c Multiply cOinv to cl, c2, c3, and C4
c

call mmp(nmax,cO,cl,cwork)
call meq(nmax,cwork, cl)



cal1
call
cal1
cal1
cal1
cal1

c

mmp(nmax,cO,c2,cwork)
meq(nmax,cwork,c2)
mmp(nmax,cO,C3,cwork)
meq(nmax, cwork,C3)
mmp(nmax, cO,c4,cwork)
meq(nmax, cwork,c4)

c Assemble the big A matrix in ca
c

nmati=2 *nmax
nmax3 =3 *nmax
nmax4=4*nmax
call munit(nmax,cunit)

c
do i=l,nmax4
do j=l,nmax4

ca(i,j)=(O.,0.)
enddo
enddo

c
do i=l,nmax
do j=l,nmax

ca(i,j)=-cl(i,j)
ca(i,j+ nmax)=-c2(i,j)

ca(i,j+nmax2)=-c3 (i,j)
ca(i,j+nmax3)=-c4(i,j )
ca(i+nmax,j )=cunit(i,j)
ca(i+nmax2,j+nmax )=cunit
ca(i+nmax3,j+nmax2)=cunit

enddo
enddo

c
return
end

i,j)

i,j)

c***************************************************************c

c c
c Mean U and U“ c
c***************************************************************c

subroutine mean(nmax,y,umean,tuneanPP)
dimension y(nmax),umean(nmax),umeanpp(nmax) ,

& YY(2000),UU(2000) ,pp(2000)
c

kform=2
if( kform .eq. 1 )then

c
c analytical form
c

do i=l,nmax
yi=y(i)
if( yi.le.O.9999 )then

umean(i)=2.*yi-2 .*yi**3+yi**4
umeanpp(i) =-12.*yi+12 .*yi**2

else
umean(i)=l.O
umeanpp(i)=O.O

endif
enddo

c
else

c
c Discrete Form
c
c

open(l,status=’unknown’ ,file=’meaninfo’ )
read(l,*) redelst
i=O
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5

c
10

c

i=i+~
read(l,*,end=lO) yy(i),uu(i),pp(i)
goto 5

print *,‘ Have read ‘,i,’ data point for U and U’”
close(1)

15

is=l
do i=2,nmax

is=is+l
if( y(i) .gt.yy(is) )goto 15
nn=(y(i)-yy(is-1))/(yy(is) -yy(is-1))
rp=(yy(is)-y(i)) /(yy(is)-yy(is-1))
umean(i) =rm*uu(is)+rp*uu(is-1)

umeanpp(i)=rm*pp (is)+rp*pp(is-1)
is=is-2

enddo
11 umean(l)=O.

umeanpp(l)=O.
c

endif
c

return
end

C************************** ●************************************C

c mm’ c
c Unit matrix c
c***************************************************************c

subroutine munit(nmax,cunit)
complex cunit(nmax,nmax)
do i=l,nmax
do j=l,nmax

cunit(i,j)=(O.0,0.0)
enddo
enddo
do i=l,nmax

cunit(i,i)=(l.0,0.0)

enddo
return
end

C********************************************** *****************C

c MMP c
c matrix multiplication c
c***************************************************************c

subroutine nnnp(nmax,cm2,cm3,cwork)
complex cnL2(nmax,nmax),cIu3(~,~) ,cwork(nmax,nmax)

c
do i=l,nmax
do j=l,nmax

cwork(i,j)=(O.O, 0.0)
enddo
enddo

c
do i=l,nmax
do j=l,nmax

do k=l,nrnax
cwork(i,j)=cwork(i,j) +cm2(i,k)*cm3(k,j)

enddo
enddo
enddo

c
return
end

c***************************************************************c

c MEQ c
c Replace cm3 by cm2 c



~***************************************************************c

subroutine meq(nnmx,cm2,cm3)
complex cm2(nmax,nmax), cm3(nmax,nmax)
do i=l,nmax
do j=l,nmax

cm3(i,j)=cm2(i,j)
enddo
enddo
return
end

c***************************************************************c

c c
c Natrix Inversion c
c***************************************************************c

SUBROUTINE NINV(A,N,U,indx)
COMFLEX A(N,N),U(N,N)
DIMENSION INDX(N)
DO 5 J=l,N

5 INDX(J) = O
CALL munit(N,U)
CALL LUDCNP(A,N,N,INDX,D)
DO 10 J=l,N
CALL LUBKSB(A,N,N,INDX,U(l,J) )

10 CONTINUE
RETURN
END

c‘---------------------------- END OF Fortran File--------------
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