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ABSTRACT

Analytical and numerical methods are employed to determine the electric potential, fluid veloci~ and late-
time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The
electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical
solutions are presented for the velociiy in a tube and channel in the. extremes of large and small Debye layer
thickness. The electroosmotic fluid veloci~ is used to analyze late-time transport of a neutral non-reacting
solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined
analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial
concentration proilles. These eigenvalues and the functions describing transverse variation of the concentration
field are determined numerically using a shooting technique. Results are presented for both tube and channel
geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical
approximations to the eigenvzdues are also provided for the limiting cases of large and small values of the
Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor
problem of late-time transport and d~persion in pressure-driven flows.

INTRODUCTION

Mlcrochannel devices are finding increased use
in the identification and synthesis of chemical and
biological species. Employing transverse channel
dimensions from a few microns to about one mil-
limeter, such systems may permit the miniatur-
ization and large-scale integration of many chem-
ical processes in a manner analogous to that al-
ready achieved in microelectronics. Applications
for microchannel devices now under development
include such diverse processes as DNA sequencing,
immunoassay, the identification of explosives, iden-
tification of chemical and biological warfare agents,
and the synthesis of chemicals and drugs.

Electroosmotic flows [1,2] offer two important
benefits over pressure-drken flows for solute tram-.
port in microchannel devices. First, fluid speeds in
electroosmotic flows sre independent of the trans-
verse dimension of the tube or channel over a wid~
range of conditions, making this technique for driv-

ing fluid motion extensible to extremely small phys-
ical scales. In contrast, pressure-driven flows rc+
quire a pressure gradient that increases inversely
with the square of the minimum transverse dimen-
sion to maintain a given fluid speed. Second, the
proille of the electroosmotic fluid veloci~ across a
tube or channel is essentially flat, again over a wide
range of conditions. All transverse variation in the
axial speed is confined to a small region adjacent to
the tube or channel walls and comparable in thick-
ness to the electric Debye layer. The benefit of this
flat veloci~ profile is that solute samples may be
transported over long ranges with very little disper-
sion due to nonuniform fluid speeds.

In a previous study [3], we employed analytical
methods to investigate the late-time transport of
a neutral non-reacting solute in an incompressible
electroosmotic flow. Although closed-form expres-
sions for the solute distribution and coefficient of
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dispersion were obtained in that study, the analyt-
ical solutions were necessarily based on the Debye-
Huckel approxhation that the zeta potential at the
tube or channel walls is small. Whale such solu-
tions are valuable in understanding the fundamental
phenomena of fluid motion and solute transport in
electroosmotic flows, there are many practical appli-
cations in whkh the zeta potential is not negligibly
small. Thus, this approximation is not used in the
present study. Instead we employ combined ana
lytical and numerical methods to obtain the fluid
veloci~ and a two-term series describing the late-
tirne concentration field for electroosmotic flow at
non-negligible zeta potentials. Solutions are pre-
sented for both a translating solute interface and a
solute peak evolving from an initially planar source
of unit strength.

GOVERNING EQUATIONS

Consider the electroosmotic fluid motion and
solute transport in a tube or a channel of infi-
nite width. Assuming that the fluid is incompress-
ible and that transport properties are constant, the
time-dependent concentration field is governed by

# + U.VC = DV2C (1)

where c is the local solute concentration, t is time,
u = ui + vj is the local fluid velocity, and D is
the coefficient of diffusion. Further assuming that
the flow is steady, that there are no applied pressure
gradients and that inertial effects are small, the mo-
mentum equation may be written as

,UV2U= pev(j (2)

where p is the fluid viscosi@ p= is the net local
charge density, and @ is the electric potential. Fi-
nally, for a dielectric constant, e, that does not vary
with position, the Poisson equation governing the
electric potential is

e v2(iJ= –pe (3)

and the charge densie for equivalent ions may be
related to the electric potential through the Boltz-
mann distribution, pe = –2Fzc.sinh (zF@/RT)
where F is the Faraday constant, z is the ion charge
number, Ce is the bulkfluid ion concentration, R is
the universal gas constant, and T ia the tempera-
ture.

We now introduce a set of dimensionless vari~’
ables. The new normaJzed dependent variables are

taken as c*= c/co, u*= u/U and ~ =6/<, where co
is some reference concentration yet to be specified,
U is the mean axial fluid speed spatially averaged
across the tube or channel, and c is the electric po-
tential at the tube or channel wall. The new inde-
pendent variables are z*= (x – Ut)/a, y* =y/a and
t*= Dt/a2, where x and y are the axial and trans-
verse coordinates, and a is the tube radius or chan-
nel half-height. ThE normalization leads to three
new parameters, the norms.hzed Debye length,
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A*2= i = eRT
a 2F2z2cea2

(4)

the normalized wall potential, ~“ = zF~/RT, and
the Peclet number, Pe = Us/D indicating the rela
tive magnitudes of advective and difhsive transport
rates.

Introducing these normalized variables into
the primitive governing equations and rearranging
sIightly yields

( 8C*)~ +Pe u*.VC* – — =
ax”

y72c* (5)

@ V2U* = –V2+* E* (6)
and

for Eqs. (l), (2) and (3), respectively. The new de-
pendent variable, E*= –V@/EZ is the electric field
vector normalized by the applied axial electric field,
E=. Note that the operators V and V2 above implic-
itly involve derivatives with respect to the normal-
ized independent variables Z* and g“ when applied
to any normalized dependent variable.

The normalization additionally introduces one
dimensionless unknown constant, ~ = –p U/e (E=.
This constant is the mean axial fluid speed normal-
ized by the Hehnholtz-Smoluchowski speed for flow
past a plane charged surface. Its value is given by
the condition

(8)(n+l) J’u”y”’dy” = 1

in accordance with the definition of the mean fluid
speed, U. The parameter n in Eq. (8) is used to de-
scribe either the planzu or axisymmetric geometries
by taking n = O or 1, respectively.

RecognMng that the incompressible flow in a
long tube or channel must be one dimensional, and
that the radial component of the fluid velocity is
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therefore everywhere zero, the difhsion-advection Introducing this new variable into the diffusion-
equation (5) may be rewritten as advection equation yields

where U* ia the normalized fluid speed in the ax-
ial dhection. Initial and boundary conditions for
the normalized solute concentration are given in Ap
pendix A.

Now recognizing that the second derivative of
the electric potential in the axial direction is small
compared to that in the transverse direction, and
that the normalized electric field is defined such that
E*. i = 1, the axial component of the momentum
equation (6) may be written as

~d ()*ndu” la
~@y~

=———
()

‘“~ (lo)y 8Y+y’n Oy”

and the Poisson-Boltzmann equation becomes

Boundary conditions for the fluid velocities are
du*/dy* = O at y* =0 and U* =0 at y*= 1. Those
for the electric potential are 8#/8y* = O at y*= O
and ~“ = lat y“=l.

Given the governing equation (10) and parallels
beixveen the u“ and @ boundary conditions, we see
that the normalized fluid velocity can be expressed
directly in terms of the normalized electric potential

In a previous analysis, we showed that Eq. (14) pos-
sesses a late-time solution of the form

(..nalz = f. + -+ f1+PJ$91Ct )
1 ( dfl

‘F )~2+Pe~gl+pe2$$g2 + ... (15)

where the functions gj depend only on the trans-
verse position, y*, and the functions fkdepend only
on the’ transformed axial position, q. Values of the
parameter m = O or m = 1 identify the cases of
a translating interface or instantaneous source, re-
spectively.

Substituting Eq. (15) into Eq. (14), grouping
like powers of time, ‘and separating the results
into functions of the axial and transverse dmections
yields governing equations for the functions fkand
gj. For the first few terms these are

(1 +aOPe2) ~~ + 2q~& + 2m~o = O (16)

(l+CYOPe2) f{+2qf~ + 2(m+l)fl =

–CMPe3J$” (17)
and

g:+nfi -(u” –1)=0 (18)
I

9x+n; –(u*–l)91=ao (19)

as

(12)

Substituting this result into Eq. (8), the normalized
mean fluid speed may be written explicitly as

P=-g= (13)(n+l) 11(1 - 4*) y“ndy”

Note that @ here implicitly represents only the in-
trinsic portion of the electric potential, as described
by Eq. (11). The fluid veloci~ thus possesses no
axial variation due to the applied electric field.

METHOD OF SOLUTION

g~+n ~–(u*–l)g2 –aclgl=crl (20)
Y*

Note that primes applied to the functions fk denote
differentiation with respect to q, while those applied
to gj denote differentiation with respect to y*. The
separation constants or eigenvzdues cro and al are
yet to be determined.

Boundary conditions for the functions fk are
given in Append~ A for the cases of a traveling
interface and an instantaneous planar source. Based
on symmetry about the centerline and the condition
of zero solute flux through the tube or channel walls,
boundary conditions for the functions gl and gz are

9;(O) = g;(l)= g~(0) = g;(l) = O. In addition, these
functions must satiify

To solve Eq. (9), we now introduce one more”

/

1

transformation of the axial coordinate, q =z*/2@.
~j=(n+l) o gj y“ndy” = O (21)
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for all j in order that all axial variation of the con-
centration field is carried by the functions ~k alone.

Because the governing equations (18-20) are
second order, only one constant of integration is
available to satisfy the MO boundary conditions on
the derivative g; (y”). As a result, one of the two
boundary conditions can be satisfied only by ap-
propriate choices for the eigenvalues, ~k. From the
governing equation (18) and condition g{(0) = O, the
derivative g;(1) at the tube or channel wall can be
written as

/
g{(l) = ‘(U* - l)y’~dy” = o (22)

o
By Eq. (8), the fist-order solution therefore auto-
matically satisfies all required conditions and so im-
poses no constraint on either CIO or al. For the
higher-order terms, however, the conditions gj(l) =
O and g~(l) = O require that

a)= -(n+l) (’[(u’-l)g,]y”ndy”(23)
Joand

Ja,=-(n+1)l[(u* -1) g, + a~g~] y*ndy* (24)
o

respectively. These eigenvalues are thus uniquely
determined by the two boundary conditions g$(0) =
g~(1)= O. The two constants of integration for each
&nction gj me then determined by the integral con-

straint (21) and the condition g;(0) = O. Note that
the term crogl in Eq. (24) arises naturally in the
derivation of th~ expression from Eq. (20), but by
Eq. (21) it does not contribute to the integral.

Although this method of solution was derived
for electroosmotic flow, it is more broadly applica-
ble to any parallel flow in a tube or channel. In Ap-
pendix C, we apply this approach to the classic Tay-
lor problem of late-time solute transport in pressure-
driven flows. The zeroth-order solution yields Tay-
lor’s result for the coefficient of dispersion, whale the
first-order solution describes the approach to this
late-time asymptote.

NUMERICAL PROCEDURE

As discussed later, Eqs. (16) and (17) describing
the axial variation of the solute concentration pos-
sess closed-form analytical solutions. Equation (11),
however, possesses no such solution for the electric
potential in a tube or channel of finite width and
non-negligible values of <“. In general, Eq. (11) and
the dependent equations describing the fluid veloc~
ity and transverse variation of the solute concentra-
tion must be solved numerically. For this we employ

a very accurate shooting technique based on the fol-
lowing procedure.

Given values of A* and ~, Eq. (11) is first in-
tegrated from y* = O to y* = 1 using the boundary
condition #*’(O) = O and an initial guess for @(0).
The resulting value of &(1) does not necessarily
satisfy the required boundary condition @(1) = 1,
so an improved value of &(0) is computed based
on the discrepancy beWeen the observed and re-
quired boundary values. This process in repeated
to convergence, each time using the improved esti-
mate of @(0) to begin the integration. These in-
tegrations are performed using a double-precision
routine, DDERKF [4], with specified relative and
absolute error tolerances of 10–12 and 10–20, respec-
tively. New values of& (0) are computed automat-
ically using the nonlineaz algebraic equation solver
DNSQE [4]. The convergence criterion for the re-
sults shown here is a relative error of 10–s in the
value of @*(0). This criterion yields an error below
10-6 in satisfying the boundary condition &(l)= 1.

Once the electric potential is known, the cor-
responding value of ~ is computed from Eq. (13).
The required quadrature is performed by integrat-
ing Eqs. (11) and (13) together as a coupled pair,
using the correct value of &(0) previously deter-
mined. From Eq. (12), the velocity profile is then
known. Next, Eqs. (18), (19), (21), (23) and (24)
are added to the system of equations and integrated
along with Eqs. (11) and (13) to yield gl (Y), 92(Y),

Q. and oq. This final system of equations con-
sists of ten coupled, first-order ordinary differential
equations. These are again integrated by means of
DDER.KF, using the relative and absolute error tol-
erances described above.

To satis& the integral constraints imposed by
Eq. (21), the system of equations is simply inte-
grated multiple times. During the first integru
tion, the unknown value gl (0) is taken ss zero
and the equations are integrated from y* = O to
y*= 1, yielding a tentative value of ~1 from Eq. (21).
The integration is then repeated, this time setting
gl (0)= –~1. By this method Eq. (21) is satisfied ex-
actly. Once gl (y) is known, the system of equations
is integrated again, with gz (0)= O, to yield CYO and a
tentative value of ~z. One more integration, setting

92(0) = –i72, gives gz(y) satisfying Eq. (21). A final
integration yields CM.

This numerical procedure was checked against
previously-published analytical solutions describing
the electric potential in a tube for ~’= 2.7 and sev-
eral values of A* between 0.01 and 10 [5]. The lmo
results agree within the accuracy of reading the ear-
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lier plots. The present results show similarly good
agreement with previous analytical solutions based
on inner and outer expansions for ~ between Oand
10 and ~“ between 0.01 and 1 [6]. The procedure
was further benchmarked against known analytical
solutions describing the electric potential for negli-
gibly small ~ in both tubes and channels [3]. In
those cases, the two results agree within a relative
error of 10-6 for all values of y“ and values of A“
between 10-3 and 103. Finally, computed values of
cro, al, gl(y) and gz(y) were compared with known
analytical solutions for a parabolic proiile of the
fluid speed [7,8,9]. Such a profile arises in the linit
~“ ~ co. The numerical solutions reproduce these
analytical results within relative errors of 10–6 for
both tube and channel geometries.

The shooting procedure described above works
well when A“ is greater than about 10-3. For smaller
values, the shooting target becomes diflicult to hit
since very small changes in @(0) then yield large
changes in @(1). This sensitivity results from para-
sitic solutions to Eq. (11) that grow exponentially in
Y*. The rate of this growth increases with decreas-
ing A“. Still worse, such exponential growth can lead
to a numerical overflow before. reaching the target
loadion, y* = 1, unless &(O) is very close to the
correct value. Integrating Eq. (11) backwards from
y* = 1 helps to solve this problem, but introduces
new problems of comparable severity. Because of
these difllculties, an alternate method is employed
when A“ is very small.

When A“ is small, the electric potential varies
only in a region close to the tube or channel wall.
The boundary condition @’(O) = O becomes nearly
superfluous in this limit, and the electric potential
can be well approximated by [10]

ss ~“ ~ (). This is an exact solution to Eq. (11) for all

~ and satisfies the boundary condition v(l) =1. It
ia approximate only in the sense that the condition
qW(0) =0 is not satisfied exactly except in the tilt
A“ ~ O. In practice, however, th~ solution is very
accurate for all A“ less than about 0.01. Shooting is
thus unnecessary when A“ is small, and the electric
potential can be described instead by this closed-
form result. The values of gl(y), gz(y), cro ~d oa
in this alternate method are still computed by the
balance of the numerical procedure described above

since all of the required integrals of @, as expressed
by Eq. (25), are not known in analytical form.

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Position - y*

Figure 1. Normalized electric potential (@) and
normalized fluid speed (u* ) for electroosmotic flow
in a tube at non-negligible zeta potentials.

FLUID MOTION IN A TU33E

The computed normalized electric potential
and axial fluid speed are shown in Fig. 1 for elec-
troosmotic flow in a tube. These sample results are
for A“=0.3 and a range of values of ~. Here we see
that increasing <“ is somewhat analogous to decreas-
ing J’. In both cases, the electric potential and fluid
velocity develop a steeper gradient near the tube
wall, but then exhibit an increased region of nearly
uniform values near the centerline. We thus expect
that increased <“ will yield more uniform concentra-
tion fields and reduced late-time solute dispersion.

Figure 2 shows computed values of the normal-
ized mean fluid speed, ~, corresponding to the con-
ditions of Fig. 1. Here we see that increasing <“
always increases ~. This is again because larger C*
yields an effectively smaller Debye layer thickness
and so yields a normalized electric potential closer
to zero over a broader portion of the tube cross-
section. By Eq. (13), P is thus increased. We also
see that @ approaches uni~ as A“ becomes small and
falls as l/A*2 for all ~ as A“ grows large.

In addition to numericaJ results like those of
Figs. (1) and (2), we have obtained analytical so-
lutions for the fluid velocity in the extremes of
small and large A“. Such solutions serve to quanti~
the general observations above and further provide
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,.-2 10-1 100 10I 102

Normalized Debye Thickness -L*

Figure 2. Normalized mean fluid speed for
electroosmotic flow in a tube (solid) and channel
(dashed) at non-negligible zeta potentials.

The asymptotic behavior of Eq. (25) in the liiit
of small ~ is

zs ~’ ~ Oand ~ ~ O. The corresponding normalized
axial speed in this double limit is

This expression for ~ is consistent with our previous
result [3] of /3=1 -2A*11(l/A*)/lo (l/A*) w 1–2A* for
the case of vanishmgly small ~’. The values of 1– P
computed using Eq. (29) agree with those of Eq. (26)
within 3% for ~ <2 and within 15% for <“ <4. Note
that the mean normalized fluid speed varies weakly
with ~ when ~ is small. The term ~2/72 yields
a correction to 1 – @ of only about 5% for (“ =2.
Thus by Eq. (13), the dimensional mean fluid speed
should grow about linearly with ( for small <“ when
A“ is small.

In the alternate extreme of large ~, the asymp-
totic behavior of Eq. (25) is

valuable benchmark results for testing more general
finitdifference and finite-element methods. Recall fP*‘-$ln[sech2(%)’-(”’2-tanh(%)l
from Eq. (12) that the local fluid speed under all (30)

conditions is given by u* = (1 – &)/@. Thus 10- as A*~ O and (* 4 co. This yields a corresponding

cal axial fluid speeds, U*, are uniquely determined normalized mean fluid speed of

by speci&ing only the normalized electric potential,
&, and the normalized mean axial fluid speed, P. 13N1-X$ as A’+o, <*+CO (31)
These are given below in analytical form for small
and large A*.

In the important practical linit of small ~“, the
This expression for ~ can be obtained duectly from

electric potential is given by Eq. (25) and the corre-
Eq. (26) since E41 as ~“ ~co and Liz(l)–Liz(–1) =

spending normalized mean fluid speed is
7r2/4. Values of 1– 13computed using Eq. (31) agree
with those of Eq. (26) within 370 for ~’ >10, and

p.1-~ [Li2(&) - Liz(-&)] as A“~0 (26)
within 170 for ~’ z 14.

Analytical solutions to Eqs. (11) and (13) can
also be obtained in the limit of large A*. In this

where ~ = tanh(<*/4) and LIZ(~) is the dilogarithm extreme, the potential and normalized mean fluid

function, speed are

Li2(Q = – J
‘==<k

‘h(l-s)$=~— (27) 4“”1-- (1 – Y*2) as A*~co (32)

o ,=1 ‘2
and

This result, correct to order A’, was obtained by in-
1 sinh ~

o“——8~*Z <* as A*+ccl (33)

tegratkg Eq. (25) in accordance with Eq. (13) defin-
ing the normalized mean fluid speed. It agrees with These expressions were obtained by solving Eq. (11)
the value of/3 computed numerically within 5% for for large ~“ using a perturbation expansion in l/~*
all <“ when A“ is less than 0.5; when A“ is less than’ and then using the resultant electric potential to
0.2, the two agree within 1%. compute ~ from Eq. (13). As a result, they carry the
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additional restriction that sinh~/~ << ~*2. Equa-
tion (33) reproduces the values of ~ determined nu-
merically within about 270 for all A*z 3, provided
that sinh~/~ < ~*2/50. Note that the fluid veloc-
ity in this Iiiit of large A* recovers the expected
parabolic profile u“ = (1 - gV)/~ = 2(1 - Y*2) for
pressure-driven flow in a tube.

The asymptotic behavior of Eq. (33) for small
values of ~“ is

()@“J- 1+;28A*2
as A*4c0, ~+o (34)

Again this is consistent with the result ~ = 1 –
2A*I~(l/A*)/1() (1/A*) N l/8A*2 for A* h co and

<* =0. The expansion of Eq. (33) for large ~ is

1 e~”
P“——8A*2 2<*

as A*-+00, (*+ca (35)

We note that the effect of ~ on the normaked mean
fluid speed at large A“ is much stronger than it is
when A“ is small. This is especially the case as ~
becomes large. In this Iimit, the dimensional fluid
speed increases exponentially with increasing c so
long as e~*/2~ remains much smaller than A*2.

FLUID MOTION IN A CHANNEL

Results paralleling those of Fig. 1 for a tube are
shown for a channel in Fig. 3. Normalized mean fluid
speeds for flow in a channel appear in the previous
Fig. 2 as dashed curves. These results are very sim-
ilar to those for a tube, except that /3 for a channel
is everywhere a bit higher than that for a tube at
the same values of A* and C*.

As for a tube, local fluid speeds in a channel
are given by u“ =(1 – &)/@. The flow field is thus
again determined uniquely by the normalized elec-
tric potential, @, and normalized mean speed, f?.

In the limit ~’ ~ O, the electric potentizd given
in Eq. (25) applies equally to a tube and a channel
since the Debye layer thickness is then very small
compared to the tube diameter or channel width.
Despite this, the value of/3 differs between the two
geometries owing to the difference in Eq. (13) for the
two cases. For a channel, the normalized mean fluid
speed for small A* is

pml-y [Li2(&) - Li2(-~)] ss A“ ~ O (36)

where again < = tanh(~/4) and Liz(g) is the &log-:
arithm function given by Eq. (27). As before, this

9

1“ Channel I

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Position: y*

Figure 3. Normalized electric potential (d) and
normalized fluid veloci~ (u”) for electroosmotic
flow in a channel.

result was obtained using the analyticzd expression
for the electric potential given by Eq. (25). The ac-
curacy and applicable range of this result are com-
pa~able to the parallel result for a tube, given by
Eq. (26).

In the limit of small A“ and small ~, the electric
potenti~ ina channel is again the same as that in
a tube and is given by Eq. (28). The corresponding
asymptotic behavior of Eq. (36) in this small ~ limit
is

This expression for -a channel is again consistent
with our previous solution P = 1 – A“tanh(l/A*) w
1–A* for vanishing ~ [3]. The asymptotic behavior
of Eq. (36) at large ~ is

p+A*$ as A*-+0, (*+CO (38)

The corresponding potential in th~ limit is again
given by Eq. (30), which appIies to both the tube
and channel geometries when A“ is small. The accu-
racy and applicable range of Eqs. (37) and (38) are
comparable to those of the corresponding results for
a tube.
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Analytical solutions to Eqs. (11) and (13) have
also been obtained for flow in a channel at large A*.
In th~ case, the results are

As with Eqs. (32) and (33), these results were ob-
tained by solving Eq. (11) for large A’ using a pertur-
bation expansion and so again carry the restriction
that sinh~/~* << A*2. Equation (40) reproduces the
numerically-determined values of@ within about 470
for all A“ 24 provided that sinh~/<* < A*2/100.
Note that these expressions recover the parabolic
profile u*= (1 – @*)/~= 3(1 – y*2)/2 for pressure-
driven flow in a channel.

The asymptotic behavior of Eq. (40) for small
values of ~ is

DJ- ()~+gzx 3~*2 6
as A“+m, (“+0 (41)

Again, th~ is consistent with ~= 1–A* tanh(l/A*) ~
l/3A*2 for A“ ~ co and ~“ = O. The corresponding
expansion of Eq. (40) for large ~ is

The additional
applies here.

~c=
~ se A*-+Co, <*+ CC) (42)

restriction that sinh~ /~ <<A*2also

AXIAL VARIATION OF
THE CONCENTRATION FIELD

The axial variation of the mean solute concen-
tration, spatially averaged across the tube or chan-
nel cross-section, is governed by Eqs. (16) and (17).
These equations were previously solved [3], subject
to the inkial and boundary conditions outlined in
Appendix A. For the case of a translating interface,

m= O, the results are

~~ = ~erfc q’ (43)

and

“= ‘* ‘1-2’”) ’-”’2 ‘u)

where

“ = d&
(45)

For the case of an instantaneous planar source of
unit strength, m= 1, the zeroth and first-order func-
tions are

1 la
f,= ‘–T (46)

24-

and

f,=
CYIPe3

(3-2q’2) q’e-n” (47)
2X (l+crOPe2)2

where q’ is again given by Eq. (45). The applicability
of these expressions is dkcussed in Appendix B.

Noting the definition of q given above, we see
that Eqs. (43) and (46) describe a dtision process
in which the molecular difTusivi@ D, is replaced
by an effective diffusivity D’= D (1 + crOPe2).The
eigenvalue CYois thus equivalent to the more familiax
coefficient of dispersion. Similarly, the eigenvalue al
is also equivalent to the coefficient of skewness.

The solutions for f. and fl describing the axial
variation of the concentration field are applicable to
both the tube and channel geometries and to all pro-
files of the fluid velocity. The geometry and velocity
distribution influence these solutions only through
the eigenvalues a. and al, which are determined
by solving the equations describing the transverse
variation of the solute concentration.

TRANSVERSE VARIATION OF
THE CONCENTRATION FIELD

Figure 4 shows computed values of the function

gl (Y*) describing the first-order term Of the trw-
verse variation of the concentration field. These
results are useful in understrmding the effects of a
nonuniform fluid velocity on the concentration field.

Recall from Eq. (15) that the late-time con-
centration field is given by c*t*m’2 = fo + (f 1+
Pe f~ gl)/2@ + 0[1/t*]. Thus the function gl in
the concentration field is multiplied by both the
Peclet number and the derivative of f.. For the case
of a moving interface having a high concentration on
the trailing side, the derivative of f. is everywhere
negative. Thus from Fig. 4 we see that the electroos-
motic veloci~ profile increases the concentration on
the tube centerline, Y* = O, at all axial positions.
Likewise, the concentration at the tube wall is ev-
erywhere reduced. For the case of an instantaneous
source, however, the derivative of .fOis positive for
q <0 and negative for q >0. In th~ case, concen-
trations on the centerline are reduced behind the
mid-plane of the solute peak, but are antisymmet-
rically increased on the centerline ahead. Concen-
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Figure 4. First-order correction describing the
transverse variation in solute concentration for elec-
troosmotic flow in a channel.

trations at the tube walls exhibit just the opposite
behavior. We also see in Fig. 4 that increasing values
of the zeta potential tend to reduce the transverse
variation of the concentration field. ThE is consis-
tent with the previous observation that increasing
~ produces a more uniform fluid veloci~ over a
large central portion of the tube cross+ection.

Computed values of a. and Q1 are shown
in Fig. (5). These values along with Eqs. (43)
through (47) provide the complete two-term solu-
tion describing axial variation of the mean concen-
tration field in the late-time limit. Here we see that
a. is positive for all values of ~“ and (*, and that
increasing ~ always decreases its value. Since CYois
the same as the coefficient of dispersion, solute dis-
persion is thus reduced when C* is increased. This
is again due to the fact that increasing ~ produces
a steeper gradient of the fluid velocity at the tube
wall, but also gives a more uniform veloci~ near the
centerline.

Increasing ~ aIso decreases the magnitude of
al for all A“, which by Eqs. (44) and (47) reduces
the late-time skewness of the mean solute concen-
tration. Note that values of al are negative on the
right of Fig. 5, but become positive below some crit-
ical value of ~“ that depends on ~“. For the problem,
of a translating solute interface, the centroid of the”
mean concentration field is thus shifted forward of
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Figure 5. Elgenvalues for flow in a tube. Fnst-
order eigenvalue a. is the coefficient of dispersion;
al is coefficient of skewness.

its asymptotic position for small values of ~“, but is
shifted rearward of th~ position for large A“. The

‘ centroid of the concentration field is similarly shfied
from its asymptotic position for the case of an in-
stantaneous planar source. For the special case in
which al vanishes, the late-time solutions exhibit
no asymmetry except that due to still higher-order
terms.

Although the eigenvalues in Fig. 5 exhibit a
complex dependence on ~“ and ~, they follow well
defined asymptotes in the limits of both small and
large A“. When A“ is large, the charge distribution
and electric potential are nearly uniiorm across the
tube. In this case, the applied electric field pro-
duces a nearly uniform body force that acts on the
fluid in manner analogous to the pressure gradient
in pressurAriven flows. The result in both cases
is a parabolic profde of the fluid veloci~, having a
maximum speed of two that occurs on the centerline
of the tube. In this limit of large A“, our present so-
lutions recover the well-known results of Taylor [7]
and ChatWin [9] for pressuredriven flow in a tube.
These are

The applicable range of these results is ~“ >2 and
~2 < A“. Over this range, the discrepancy between



Eq. (48) and the numerical results of Fig. 5 is less
than 2% for a. and less than 3% for al.

In most practical applications of electroosmotic
flow, the normalized Debye length ia very small. In
the limit, the results of Fig. 5 can be expressed as

czoN; A*2ho as ~*~0 (49)

where the factor A*2/2 is the asymptotic value of
a. for ~“ 40 and negligible (’ [3]. The function ho
depends only on ~’ and ia well-approximated by

ho z
2592 +24 ~*2

2592 +96 ~2 + ~4
(50)

This function is an emphical fit to the numerical
results of Fig. 5, taking into account the asymptotic
behavior at small and large values of ~’. These lim-
iting behaviors are ho= 1 – ~*2/36 as ~ ~ O, and
ho= 7r4/4~2 = 24/~*2 as ~ ~ m. Equation (49),
with ho given by Eq. (50), agrees with the numeri-
cal results within 4% for values of A“ less than 0.01
and all values of ~“.

The behavior of al in the limit of small A*simi-
larly can be expressed as the product of the solution
for ~“ ~ O and a function accounting for the effect
of non-negligible ~“. In th~ case, the result is

where

hl %
5760 + 120 (*2

5760 + 360 ~2 +12 ~3 + ~*4 + ~5
(52)

As with ho, the function hl represents an ernphi-
cal fit to the numerical results. Here the asymp-
totic behaviors are hl = 1 – ~2/24 as ~ ~ O, and
hl = 7r6/8c73 z 120/~3 as ~ ~ co. The applica-
ble range of Eq. (51) is again roughly A“ <0.01.
For all smaller A“ and all ~, Eqs. (51) and (52)
yield values for cq that are within 20% of the val-
ues computed numerically. This relative error falls
to 2% for A“<0.001. In this latter range, all inaccu-
racy in Eq. (51) is attributable to the approximation
#/8 z 120 in the expression for hl.

Results describing transverse variation of the
concentration field in a channel closely parallel those
for a tube presented above. Figure 6 shows com-
puted values of the function gl(y*) for A*= 0.3 and
values of (* between O and 12. We see that the be-
havior of th~ function is qualitatively very simil~
to that shown in Fig. 4 for a tube. The main dif~
ference ia that the intercept gl (y”) = O, indicating

0.06
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Figure 6. First-order correction describing the
transverse variation in solute concentration for elec-
troosmotic flow in a channel.

a neutral point at which the solute concentration
is neither increased nor reduced, is shifted closer to
the midpoint between the centerline and wall for
the case of a channel. This occurs because of the
constraint ~1 = O given by Eq. (21). The radkd g~
ometry of the tube shfis this neutral point towards
the wall, close to the median of the cross-section
area, while the pkmar geometry of the channel re-
quires that the neutral point occur somewhat near
the midpoint for any function that is reasonably an-
tisymmetric about the intercept. The previous com-
ments concerning regions of solute enrichment and
reduction apply also to the channel geometry.

The eigenvalues CYOand al for a channel are
shown in Fig. 7. These were computed using the
same numerical procedure previously described for a
tube. We see that the two geometries yield very sim-
ilar results for ao, but that al differs significantly
between the two. In the case of the tube, this ce
efficient of skewness changes signs from positive to
negative in the vichity of A“ = 1. The results for
a channel show no such behavior; cq is everywhere
positive.

In the limit }“ ~ cm, the values of cto shown
in Fig. 7 recover the known’ coefficient of d~per-
sion for pressure-driven flow in a channel of infi-
nite width [9]. We find no published record of al,
the coefficient of skewness, for this geometry. These
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Figure 7. First and second-order eigenvalues for
flow in a channel. Increasing ~ always reduces these
coefficients of dispersion and skewness.

asymptotic values for the channel are

2 4

‘0”=
and crl ——

17325
as A“ + co (53)

In the opposing limit of small A“, we find that the
eigenvalues for a channel are

cro~;A*2ho as A*+O (54)

and
~~*3 hl ss ~“ ~ O

‘1 N 45
(55)

where ho and hl are the same as those given above
for a tube.

The functions ho and hl are the same for both
the tube and charnel geometries because they apply
only in the Iirnit of very small ~“. In this limit,
both geometries appear to be planar over the small
region in which the electric potential varies. The
fluid velocities in the two geometries are thus the
same in thk limit, at least within a constant, and
the values of aO and al must therefore share the
same dependence on <’ for the two geometries.

SUMMARY

We have examined the electroosmotic fluid me-:
tion and late-time solute transport in a tube and

in a channel for cases in which the zeta potential
is not negligibly small. Using both numerical and
analytical methods, the transverse variation of the
electric potential and fluid speed were computed
over a broad range of the normalized Debye layer
thickness, A*, and the normalized zeta potential, ~.
These fluid velocities were then used to compute
the late-time dtiribution of a neutral non-reacting
solute carried ih the flow.

The numerical procedure used here is based on
a shooting method. This procedure was checked
against previously-published analytical and numeri-
cal solutions for both large and small values of the
zeta potential. In comparisons with analy-iical re-
suhts for a negligible zeta potential, the two agree
within a relative error of 10-6 for all values of the
transverse position and values of A“ between 10-3
and 103.

Analytical solutions were also obtained for the
fluid veloci~ in a tube and channel in the asymp
totic limits of small and large A“. The first of these
applies when the Debye layer thickness is small com-
pared to the transverse tube or channel dimension
and is valid for all values of the normalized zeta
potential. The second is applicable to large values
of the Debye layer thickness. These solutions are
again valid for all ~, but carry the restriction that
sinh~/~* < J*2. The accuracy and applicable range
of each solution is discussed, and expansions of the
solutions for large and small ~ are provided.

Based on these fluid velocities imd a series de-
scribing the full late-time concentration field, the
mean axial variation of the field was determined in
closed form. The first and second-order solutions
describing this variation contain two unknown con-
stants that arise as eigenvalues in the series solution.
These eigenvalues are the coefficients of axial dis-
persion and skewness. They are determined numer-
ically along with the solutions describing transverse
variation of the concentration field. The numerical
procedure reduces the governing equations to a sys-
tem of ten coupled first-order ordinary differential
equations, which are integrated in the transverse di-
rection using a standard integration routine.

The results presented here recover the well-
known solutions for dispersion in pressurdriven
flows when the Debye length is sufficiently large. In
this limit, the axial dispersion is propofilonal to the
square of the Peclet number based on the transverse
dmension of the tube or channel and is independent
of the zeta potential. The skewness in this limit is
proportional to the cube of this Peclet number and is
also independent of the zeta potential. In the limit
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of a small Debye layer thickness, we find that the
dispersion varies as the square of the Peclet number
based on the Debye length. The skewness varies as
the cube of this Peclet number. In this limit, both
the dispersion and skewness exhibit a first-order de-
pendence on the zeta potential. Simple approxima-
tions to the dependence are presented. We find that
increasing values of the zeta potential always reduce
both late-time dispersion and skewness.

The methodology devised here for analyzing
the latetime transport in electroosmotic flow was
also applied to the Taylor problem of pressure-
driven flow in a tube and channel. This analysis,
presented in Appendix C, yields new analytical so-
lutions describing the axial variation of the mean
solute concentration for the problems of an initial
planar source and a translating solute interface.

NOMENCLATURE

a
c
c~
D
D’
E=
fk
F
~

m
n
Pe
R
t
T
u
u
u
x
Y
z

~k
P
e
P
A
Pe

4

4-

E*

tube radius or channel half-height
solute concentration
ion concentration
binary dfisivity
effective diffusivity inclusive of dispersion
applied axial electric field: E== –d@/dz
sxial concentration functions
Faraday constant
transverse concentration functions
distance of travel (4= U-t)
interface (m =0) or plane source (m= 1)
channel (n=O) or tube (n= 1)
Peclet number: Pe = Us/D
ideal gas constant
time
temperature
sxial fluid speed
local fluid velocity
mean fluid speed
sxial position
transverse position
charge number

eigenvalues
normalized mean fluid speed (~ = –pU/e~EZ)
dielectric constant
viscosity
Debye length
charge density
electric potential
surface electric potential

electric field: E*= –Vq5/Ez

t“ time: t“= Dt/a2
u’ local fluid speed: u* = u/U
x* axial position z“ = (z – Ut)/a

Y“ transverse position: y“ = y/a

v axial position q = Z* /2@
A“ Debye length A* = A/a
<* surface potential: (*= zF</RT

Subscripts and’ Superscripts
j, k order of solution
* asterisk denotes normalized variable

bar denotes spatial average
,.

hat denotes initial distribution
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APPENDIX A: INITIAL
AND BOUNDARY CONDITIONS

In the present study we consider two fundm
mental problems. The first ia the transport in the
vicinity of a traveliig solute interface, as indicated
by m = O. The second is the transport of a solute
peak following injection of a instantaneous planar
source into the fluid stream. This problem is indi-
cated by m= 1.

The initial conditions for these two problems
are described by c*(z*, y“, t“) = t“ (z*) at t’ = O,
where . *~.

(5*= ~ erfc — as t“+o
2fi

(Al)

for the interface, and

e-z”’/4t*

‘“ = 2m
as t“+o (A2)

for the planar source. The first of these approxi-
mates an initial unit step at Z*= O,while the second
approximates an initial plane source of unit strength
centered at Z* = O. Since we are interested here in
a late-time solution, it is convenient to express the
initial conditions in terms of moments of the solute
distribution. That is,

co

“uZ*P l(C*-t”) y*ndy*dz* = O (A3)
co o

as t* ~ O, for all p a O. If all moments of the func-.
tions c* (z*, y*, t*+ O)and 2*(z*) exist and are equal, -
then the two functions are the same.
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In terms of the normalized variables, the initial
conditions (A2) and (A3) require that

1.

w
2fo drl = 1 m=l (A4)

for the case of the planar source. The initial condi-
tion (A3) additionally requires that the higher-order
functions ~~ for’both the translating interface, m= O
and instantaneous plane source, m = 1, must also
satisfy

1

co
Tlpfkdq = O for O <p 5 k+m–1 (A5)

w

for all k> 1. Higher-order moments of ~k need not
vanish since the net exponent of the time in the
corresponding terms of Eq. (A3) is greater than zero
forp>k+m–1.

Boundary conditions for the normalized con-
centration axe c* ~ 1 as x* ~ —co and C* ~ O ss
Z* ~ co for the case of a translating interface, and
c“ ~ O as z“ + &cm for the instantaneous plane
source. In terms of the normalized variables, the
corresponding bounday conditions for the functions

jkare~o~l =q~–mmd~O~O.m q~whthe
case of a translating interface, and j’. + Oas q ~ +x
for the instantaneous planar source. Boundary con-
ditions for higher-order functions in both cases are
fk.+o as rl+kco.

APPENDIX B:
RANGE OF APPLICABILITY

“ The series solution given by Eq. (15) applies
rigorously only in the limit t* ~ 00. Nevertheless,
such a series may provide quite accurate estimates
of the concentration field for iinite values oft*, pro-
vided that these values are sticiently large. Here
we address this applicable range oft* for that part
of the series describing the mean axial variation of
the concentration field.

Because we have obtained solutiona for both
the zeroth and first-order terms, the accuracy and
applicable. range of the zeroth-order solution can be
obtained by comparing its magnitude with that of
the fist-order correction. From the form of Eq. (15),
the condition for applicability may thus be written

1$1! <<1
2/Fl fill

(Bl)

This expression yields criteria that differ slightly for
the tube and channel geometries, as well as for the



interface and plane source problems. By neglecting
constants of order unity, however, we can obtain
from Eq. (Bl) a conservative estimate of the condi-
tion for applicabiMy of the series. The result is

,*=$=--&> “fpe’
(1+ a0Pe2)3

(B2)

where 1 = Ut is the distance of travel over a fixed
time, t,at the fixed mean speed, U. The neglected
constants for the various special cases would all ap-
pear in the denominator of Eq. (B2), and all of these
are greater than one over the range of q where the
solutions are non-trivial.

Equation (B2) exhibits two useful limiting be-
haviors. The first of these holds for aoPe2 <1.
In th~ difision-dominated limit, the condition for
applicability becomes

t* >> a~Pe’ (B3)

The second limiting behavior holds for aoPe2 >>1
or equivalently Pe >>m. Note that this is a
generalization of the condition that Taylor gave for
neglecting difYusion in pressure-driven flows [11]. In
this convection-dominated limit, the condition (B2)
becomes

2

t* >>3 or
c$Pe

:>>— (B4)
at

The right-hand form of this expression is again
functionally equivalent to that given by Taylor for
pressure-driven flow in a tube, though the form
above remains valid for all profiles of the fluid ve
Iocity and for both tube and channel geometries.

In the special case in which A* is small and con-
vective transport is dominant, the condition for ap-
plicability given by Eq. (B4) becomes independent
of A“. It instead depends only on the normalized
zeta potential. This is apparent from the forms of
Eqs. (B4), (49) and (51) for a tube or Eqs. (B4), (54)
and (55) for a channel. For a tube, this limiting be-
havior of Eq. (B4) is

(B5)

where ho and hl are given by Eqs. (50) and (52).
The comparable result for a channel is

128 h:t’ >>——
2025 h:

as A*+O (B6)

The functions ho and hl for a channel are the same
as those for a tube, as discussed earlier in the text.

APPENDIX C: THE TAYLOR PROBLEM

In 1953 and 1954, Sir Geoffrey Taylor wrote two
important papers concerning the origins and anal-
ysis of hydrodynamic dispersion [7,11]. This phe-
nomenon, resulting from the nonuniform profile of
the fluid speed across a tube or channel, yields an
axial variation of the late-time solute distribution
identicrd to that resuking from a diffusion process
alone. Remarkbly, the only distinction is that the
apparent dMusivity of the dispersion process is not
a constant, but instead varies as the square of the
Peclet number.

Taylor’s first paper [7] laid out the essential few
tures of d~persion in pressuredriven flow in a tube
and provided an analytical solution for the late-time
transverse variation of the solute concentration in
terms of the local gradient of the mean axial varia-
tion. ThB analysis was based largely on an insight
that some additional flux, beyond that due to difFu-
sion, crossed the origin of a coordinate system that
translated with the mean speed of the flow. The
extra flux, he concluded, was proportional to the
solute concentration gradient and therefore must be
due to dispersion mimicking the behavior of ordi-
nary diffusion. Taylor reached this conclusion by
means of his considerable intellect and provided the
reader little detailed justification.

In his second paper [11], Taylor presented a
more rigorous derivation of his original result. Here,
as in the original paper, he neglected the contribu-
tion of axial diffusion, but extended the solution to
include first-order and second-order corrections to
the transverse variation of the solute concentration.
Again these results were expressed in terms of SPZ
tial derivatives of the mean axial concentration pro-
file, so neither of Taylor’s first two papers directly
address this axial variation of the solute concentra
tion.

Aris [9,12] later generalized Taylor’s analysis to
include arbitrary tube cross-sections and extended
the solution by including the contribution of axial
diffusion and chemical reactions with a stationary
phase. Expanding the solution in terms of spatial
moments of the solute concentration, Aris repro-
duced Taylor’s results and further provided a rigor-
ous basis for treating a variety of initial conditions.
Nevertheless, his use of moments again relegated the
true axial variation of the solute concentration to a
somewhat secondary concern.

More recently, Chatwin [8] employed a late-
time series to analyze the approach to a normal dis-
tribution of the mean axial solute concentration for
very general initial conditions. His paper clearly
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states the limitations of the previous analyses dis-
cussed above. The present analysis closely resembles
that of Chatwin in that both employ a series expan-
sion in inverse powers of the square-root of time and
both yield the full axial and transverse variation of
the concentration field. ChatWin’s solutions, how-
ever, are presented in terms of Hermite polynomials
for generalized initial conditions, making evaluation
of his results for the simple problems of an initial
planar source or traveling interface a bit dficult.
Moreover, he provided explicit expressions for the
coefficients describing transport in a tube only for
the case of infinite Peclet number and only for the
problem of a instantaneous planar source. Even in
this case, Chatwin provided no simple expressions
equivalent to Eqs. (43) through (47). As a result,
direct comparison of Chatwin’s solutions with the
present results is sufficiently complex that we have
not been able to confirm with certainty that the
ixvo results are identical. We believe that th~ ia the
case, however, owing to the fact that certain ratio-
nal numbers appear in both. Further, the trans-
verse variation of the late-time concentration field
is clearly the same in both and the same as that
obtained by Taylor [11]. ~

Since 1953 the Taylor and Ark papers have
been referenced several thousand times. In 1998-99,
Taylor’s first papers alone have received over 150
citations. Despite this continued and widespread
interest in dkpersion, Chatwin’s paper in 1970 ap-
pears to be the only published account of the flrsti
order late-time correction to the axial solute d~tri-
bution. Here we apply the present methodology to
this classic problem.

Equations (43) and (44) above are the zeroth-
order and first-order terms describing the late-time
transport of a traveling interface near the leading
edge of a serni-itilte non-reacting solute band.
Equations (46) and (47) similarly describe the late-
time transport of an initial planar source. These
expressions are valid for all velocity profiles and ap-
plicable to both the tube and channel geometries.
The influence of the velocity and geometry appears
only through the eigenvalues, aO and al, determined
by Eqs. (23) and (24). Likewise, the equationa gov-
erning the transverse variation of the concentration
field are given by Eqs. (18) and (19) for all velocity
profiles and for both tube and charnel geometries.

For the case of laminar flow in a tube, the fluid
velocity is given by the well-known parabolic rela-
tion

u*=2(l–y*2) . (cl)-
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From Eqs. (18) and (19) and the prescribed
ary conditions, this velocity profile yields

gl = –; (2–6?/*2+3tJ*4)
and

g,= &(31 - 180g*2 + 300Y*4
.

– 200 V*6+ 45 y“s)

bound-

(C2)

(C3)

These ho expressions describing the transverse
variation of the concentration field are exactly the
same as those obtained by Taylor and by both
Chatwin and Aris for this problem. Equations (22)
and (23) similarly yield

1 1
ao=— and ——

48 ‘1 = 2880
(C4)

The first of these is Taylor’s famous result. The
second appears to be the result obtained by ChatWin
for the case of an infinite Peclet number. Aris [9]
gave an expression for the late-time skewness of the
concentration profile, in principle related to al, but
a direct analogy with hk result cannot be drawn.

The results obtained here clearly parallel those
of previous studies. However, earlier results, with
the exception of Chatwin’s solution, were obtained
in the absence of any explicit description of the axial
variation of the mean solute concentration. Expres-
sions paralleling Eq. (15) and Eqs. (43) through (47)
in this study were not provided. Moreover, even
Chatwin’s very general solution does not readdy
yield these expressions. Thus, while the results
above are familiar, they represent an extension of
previous work in the context of Eqs. (15) and (43)
through (47).

The applicable range of these results for use in
Eqs. (43) through (47) is given in Appendix B. In the
difZusion-dominated liiit, Eq. (B3) yields the condi-
tion t“ >>Pe6/8294400 for the valid range of $.. The
result from Eq. (B4) in the convection-dominated
limit is l/a> Pe/75. As noted just before Eq. (B4),
the requirement for such convection-dominated be
havior is Pe >>@ N 6.9. ThB is exactly the
requirement stated by Taylor [11]. However, the
preceding condition is more lenient than Taylor’s,
which he stated as l/a>> Pe/4.

The proille of the fluid velocity in a channel of
iniinite width is also well known and is given by

IL*= ; (1 – y*2) (C5)

. . .. . , .,”, ,.. . . . . . . . . .,



. .

For this case, the transverse variation of the concen-
tration field is described by

91 = –+ (7 – 3og*2 + 15y*4) (C6)

and

‘2= -+(2’ +1020””2 -3570’”4
+ 2940 y*6 – 675 g“s) (C7)

We find no published account of these solutions.
The corresponding eigenvalues for the case of a
channel are

2 4
‘0==

and
‘1 = 1735

(C8)

The first of these was published by Aris [9] in 1959
and popularized by Wooding [13] in 1960. The Aris
result was obtained by moment methods without
solving explicitly for the axial variation of the con-
centration field. The second result does not seem to
have been publiihed.

The applicable range of these results is again
given by Eqs. (B3) and (B4): In the dMusion-
dominated limit, the condition for applicability be-
comes t“ >> 16Pe6/3010225. The condition for
the convection-dominated limit becomes Pe >>

m’ 8.7, about the same as that for a
tube. The corresponding condition for validi~ of
the zeroth-order solution is, however, much more
stringent. For convection-dominated transport in a
channel, this is given by E/a>> 92610 Pe/120409 x
Pe/1.30.

All of the solutions presented above were con-
firmed by direct finite-difference numerical simula-
tion of the transient transport problem. The sx-
ial distribution of the concentration field given in
Eqs. (42) through (46) was similarly confirmed for
both tube and channel geometries.

18



UNLIMITED RELEASE
INITIAL DISTRIBUTION

K. F. Jensen
Massachusetts Institute of Technology
Building 6-469
Chemical Engineering
Cambridge, MA 02139

1413
1425
1425
0710
0149
1094
9001

9056
9056
9671
9214
9054

9671
9401
9051
9056
9671
9671
9161
9671
9405

9042
9051
9042
9042
9214
0841
0826
0826
0826
0843
0827
1003

T. E. M1chalske, 1115
D. R. Adkins, 1715
G. C. Frye-Mason, 1715
A. P. Sylwester, 6245
C. E. Meyers, 4000
M. C. OBorny, 7524
M. E. John, 8000
Attm D. R. Henson, 8400 ~
J. Vitko, 8100
D. L. Lindner, 8102
J. S. Schoeniger, 8120
C. F. Melius, 8130
W. J. McLean, 8300
Attn D. R. Hardesty, 8361

F. P. T1.llly,8353
R. W. Carliig, 8362

E. B. Cummings, 8355
J. M. Hruby, 8355
P. H. Paul, 8355
L. A. Rahn, 8351
D. W. Arnold, 8358
C. G. Bailey, 8358
W. Bauer, 8358
D. J. Rakestraw, 8358
T. M. Dyer, 8700
Attn R. Q. Hwang, 8721

K. L. Wbon, 8722
J. C. F. Wang, 8723
G. J. Thomas, 8724
W. A. Kawahara, 8725
E. P. Chen, 8726
J. L. Handrock, 8727

S. K. Griffiths, 8728 (5)
R. S. Larson, 8728
R. H. Nilson, 8728 (5)
M. W. Perra, 8728
R. C. Armstrong, 8980
P. J. Hommert, 9100
W. L. Hermina, 9111
D. R. Noble, 9111 .
P. R. Schunk, 9111
A. C. Ratzel, 9112
C. C. Wong, 9114
B. L. Spletzer, 9611

9018 Central Technical Files, 8940-2 (3)
0899 Technical Library, 4916
9021 Technical Communications Dept., 8815/

Technical Library, MS 0899,4916
9021 Technical Communications Dept., 8815

fir DOE/OSTI

19



This page intentionally left blank

20


