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Abstract

Theoretical two-phase-flow analyses have recently been developed to describe the structure and
stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined
geometries. The results of these studies are reviewed, with an emphasis on the fundamental differ-
ences that emerge with respect to the two types of geometries. In particular, pressure gradients are
usually negligible in unconfined systems, whereas the confined problem is generally characterized
by a significant gas-phase pressure difference, or overpressure, between the burned and unburned
regions. The latter leads to a strong convective influence on the burning rate arising from the
pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating
of the unburned material. It is also shown how asymptotic models that are suitable for analyz-
ing stability may be derived based on the largeness of an overall activation-energy parameter.
From an analysis of such niodels, it is shown that the effects of porosity and two-phase flow are
generally destabﬂizing, suggesting that degraded propellants, which exhibit greater porosity than
their pristine counterparts, may be more readily subject to combustion instability and nonsteady
deflagration.
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STRUCTURE AND STABILITY OF DEFLAGRATIONS IN
POROUS ENERGETIC MATERIALS

I. Introduction

The combustion behavior of porous energetic materials is of increasing interest due to the
realization that even supposedly nonporous materials may develop significant porosities over time ‘
due either to aging or to other types of degradation that may arise from exposure to abnormal
environments. In such materials, two-phase-flow effects are especially significant due to the presence
of gas flow relative to the condensed material both within the unburned porous solid as well as in
the exothermic liquid/gas layers that typically form on the surfaces of many types propellants, such
as nitramines.!~® In the presence of confinement, the significance of the convective transport effects
due to two-phase flow are enhanced, leading, through gas permeation into the unburned solid, to
a preheating of the solid and, consequently, to a strong enhancement of the burning rate relative
to the unconfined case. Indeed, this type of preheating associated with gas permeation into the
unburned solid is generally associated with the onset of specially identified modes of combustion,
such as convective burning (¢f. Ref. 6 and the additional references therein). However, even in
unconfined problems, two-phase-flow effects play an important role, affecting not only fundamental
thermodynamic characteristics such as the burned temperature, but also the burning rate and the
stability of steady, planar burning.

In the present work, we synthesize and describe the results of several recent analyses that,
by means of asymptotic methods, have been successful in predicting the effects of two-phase flow
on the structure, burning rate and linear stability of a propagating deflagration wave.”~2 For
the case of a confined or partially confined geometry, a quasi-steady propagation regime can be
identified such that in the limit that the pressure difference, or overpreséure, between the burned
and unburned regions approaches zero, the combustion wave collapses to that corresponding to an
unconfined deflagration. Indeed, a sketch of the geometry for the simplified chemistry adopted here
is shown in Fig. 1, which indicates an unburned solid/gas region, a melting surface, a liquid-gas
region within which is embedded a thin reaction zone in which burning takes place, and finally
a burned gaseous product region. The primary difference between the unconfined and confined
problems is that in the case of confinement, the direction of gas flow in the unburned region is
likely to be negative, resulting in a preheating effect that results in a rapid increase in the burning
rate as a function of overpressure. This permeation-enhanced burning is generally referred to, for
- obvious reasons, as convective burning, and one of the successes of the present model formulation
and analysis is the ability to predict the transition from ordinary conduction-controlled burning
that is characteristic of unconfined deflagrations to one in which convection plays a significant role.

The model used to investigate the wave structure described above is essentially a simplified
version of more general models of two-phase reacting flow (¢f. Ref. 13). In particular, the model

essentially consists of continuity and energy equations for each coexisting phase, a simplified ac-




counting for momentum conservation appropriate for deflagrations, an equation of state for the
gas, and an appropriate set of boundary and melting surface conditions. Although it is critical to
the focus of our study to allow for velocity differences between coexisting phases, for simplicity
we assume good thermal contact and adopt the single-temperature approximation that the tem-
perature at a given spatial location is the same for each phase. Also, in keeping with our goal of
focusing on two-phase-flow effects, we deliberately simplify the chemistry by postulating the overall
process R(s) — R(l) — P(g), where the first step denotes the melting (assumed to be slightly
endothermic) of the solid material, and the second represents a one-step exothermic process in
which liquid-phase reactants are directly converted to burned gaseous products. Extensions of the
analysis to more complicated global mechanisms have been given,%'%1! but such extensions are
not critical to the examination of the primary two-phase-flow effects of interest here.

In what follows, we first present the formulation and nondimensional models that will be
considered for the analysis of the two types of problems (confined and unconfined) introduced
above (Sections II and III). The case of steady (unconfined) or quasi-steady (confined) burning
is then considered in order to derive, via asymptotic methods, analytical expressions for the re-
spective planar burning rates and other aspects of the deflagration structure (Sections IV and V).
A time-dependent, multidimensional asymptotic model, one in which the reaction zone becomes
represented by a reaction sheet, is then derived (Section VI) and used to examine the stability of
a basic planar mode of burning (Sections VII and VIII). Finally, the results and indications for

future investigations are summarized in the Conclusion (Section IX).

I1. Formulation

A sketch of the physical problem is shown in Fig. 1. The unburned porous solid lies generally
to the left, and the burned gas products lie to the right. The two are separated by a deflagration
wave that generally moves from right to left, converting the former into the latter. These regions
(unburned and burned) in turn are bounded on the left and right, respectively, but these boundaries
are assumed to be sufficiently far away (relative to the width of the flame region) such that the
only significant effect on the combustion wave itself occurs in the case of confinement, where a
significant difference develops between the upstream and downstream values of the pressure. In
the unconfined problem, the gas flow is unrestricted in the burned region and pressure gradients
remain sufficiently small that they may be neglected on the nonacoustic scales of interest here.
In the confined case, however, gas flow in the burned region is restricted and hence the continual
production of gas via chemical reaction causes the pressure to become greater in the burned region
than in the unburned solid. This pressure difference drives at least some of the gas upstream in
the direction of the unburned solid, where momentum conservation plays a critical role in reducing
the gas velocity far upstream to zero so as to satisfy the ambient conditions there. Depending on
the magnitude of the overpressure, the gas velocity in the burned region, on the other hand, may

be either positive or negative. Hence, for moderate overpressures, the gas velocity can experience



a turning point within the reaction region where the gaseous products are generated.

The structure of the combustion wave thus consists of a solid/gas preheat region that, for
the confined problem, contains a gas-permeation boundary layer in which the pressure rises from
its ambient value to its larger (possibly much larger) value in the liquid/gas region, the melting
surface that marks the left boundary of a liquid/gas preheat region (and the right boundary of
the gas-permeation layer if one exists), the liquid/gas preheat zone, a relatively thin exothermic
reaction layer in which chemical reaction occurs, and the burned gaseous region that extends '
to the right boundary. In the limit that the activation energy of reaction is large, the reaction
zone asymptotically becomes a propagating surface similar to, but displaced from, the melting
surface. In the laboratory-fixed spatial coordinate system (%1, Z3,Z3), the porous solid extends to
Z3 = —oo, where conditions are denoted by the subscript u, and the gas extends to I3 = +o0,
where conditions are identified by the subscript b. The deflagration generally propagates in the —Z3
direction, although, in general, the wave motion is allowed to be both nonsteady and nonplanar.
Here and in what follows, a tilde over a symbol (e.g., Z3) will denote a dimensional quantity,
and the subscripts s, I and g will denote solid, liquid and gas-phase quantities, respectively. A
continuum formulation, in which appropriate gas- and condensed-phase volume fractions (o and
1 — «, respectively) multiply the physical variables associated with each phase, will be used to
model the physical problem just described.

The governing system of equations that will be considered incorporate a number of assumptions
that greatly simplify the analysis without compromising the fundamental two-phase-flow aspects of
the problems of interest here. Two of these include restricting the analysis to the single-temperature
limit and considering only weakly nonplanar deflagrations. The first implies sufficiently good
thermal contact between co-existing phases such that correspondihg temperature differences are
small, while the latter, which implies that the transverse velocity components are small relative
to the component of velocity in the Zs-direction, allows the velocity field (for the gas and liquid
phases) to be approximated by @5 ~ (0,0, @; 4 (%1, %2, %3,t)), with the velocity of the solid assumed
to be zero. Other assumptions will be indicated as they are introduced. We remark that the single-
temperature assumption, which can be readily relaxed by considering the limit of sufficiently large,
but finite, rates interphase heat, transfer,”>! is quite reasonable for many two-phase-flow problems.
In contrast, the corresponding limit of large interphase momentum transfer is not so plausible,*”
and thus it is important to retain velocity differences in the model if one wishes to capture true
two-phase-flow effects.

Denoting the melting surface that separates the solid/gas and liquid/gas regions by Z3 = Zm,
and the gas-phase volume fraction by «, continuity in the region Z3 > Z,, is expressed separately
for the liquid and gas phases, where the latter may be replaced by an overall continuity equation

for the two-phase medium. Consequently, we have

1= )il + 5 [0 - i) =~ Ap(1 - @)exp (~EYRT) . B3> dm, (1)
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0 . - 0 - . - -
P (1 - a)pr + apg| + 5% (1~ a)piu + apglig) =0, T3> Zm, (2)

where g, u; , T and % denote density, velocity, the single temperature and time, respectively. For
simplicity, we will assume a constant value for g;, but not for p,. In the reaction rate expression,
E, is the overall activation energy, R° is the universal gas constant, and A is the exponential
reciprocal-time prefactor which, for simplicity, will be assumed constant. For this type of global
kinetic modeling, however, it may be reasonable to assign a pressure, as well as a temperature,
dependency to A. In the solid /gas region Z < Z,,, we assume for the solid phase a constant density
ps and zero velocity (@ = 0), with & = a; also constant in this region. Gas-phase continuity for
Z < Zp, is thus independent of the solid phase and is given by

op g . . L -
8—54‘8—‘%3(/)9’11,5,):0, I3 < T - (3)

Conservation of energy for each phase in the liquid/gas and solid /gas regions is similarly
given by separate equations for each coexisting phase, which, as before, may be summed to give an
overall energy equation in each region. In the single-temperature limit, however, only the overall
energy equations remain and these are given by

0

= |71 = (@ +&T) + potyol | +

0
5 [ prin(1—a)(Q +&T) + pgcgugaT]
_ (4)
=V- [5\5(1 - a)ﬁf -+ ;\gaﬁf] -+ Ol?a% y T3> Im,

a% [5355(1 - as)f’+5959°‘8ﬂ * a?: <’3 ‘ ~gaj) (%)

=V- [ o(1— ) )VT Agaﬁﬂ + as%, 3 < Fm s
where Eq. (1) has been used to eliminate the reaction-rate term in Eq. (4). Here, & X and p
denote heat capacity (at constant volume for the liquid, and at constant pressure for the gas, both
assumed constant), thermal conductivity and pressure, respectively, and Q is the heat release for
the global reaction at temperature 7. We remark that because of the small Mach number and
the small ratio of gas-to-condensed phase densities in the problems to be considered, no terms
involving the pressures in the condensed phases appear in these equations. Terms involving pg,
however, arise from the contribution to the rate of change of the internal energy of the gas from the
sum of the rate of surface work —8{aiiyp,)/0% and the rate of volume work —p,0a /8t performed
by the gas.

Although analogous equations may be written for momentum conservation, we avoid intro-
ducing them explicitly by adopting certain simplifying approximations which are often used in
these types of problems. In particular, in place of gas-phase momentum, we adopt, depending on
the type of problem, either the assumption of constant pressure throughout or Darcy’s law (in the

solid/gas region). In the latter instance, which provides a convenient formulation when pressure
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gradients are not negligible (as in the confined geometry introduced below), it is still reasonable to
assume, based on the assumption of small Mach number, that the gas pressure is homogeneous in
the liquid/gas region. If it is further assumed that the gas pressure in the burned region varies on
a longer time scale than that associated with the flame structure itself (e.g., when the confining
boundary is sufficiently remote with respect to the flame), then the upstream and downstream
pressures may be regarded as constant in the quasi-static sense. This argument is supported by
numerical calculations,'® which, though based on the assumption of a flame sheet propagating with
constant velocity, nonetheless enabled the authors to correctly identify this quasi-steady regime,
which they described as a “gas-permeation boundary-layer solution.” The latter refers to the fact
that the solution is characterized by a relatively thin gas-permeation layer in the solid/gas region,
described below in the context of the present model, that arises from the difference, or overpres-
sure, between the upstream and downstream values of the gas pressure. Thus, in place of gas-phase
momentum, we adopt either the conditions

. Flas) 0D .~ . e
?.ng_as/]g(‘?—iS’ < ZTm; pg:pg>p.g’ L > Tm, (6(1,)

which is appropriate for the confined problem, or, for the unconfined problem,
Pg =Dy, —00<I<+00. (6b)

Here, the first of Eqs. (6a) is the planar approximation of Darcy’s law, @i, = —&V,/(asily),
implied by the planar representation of the velocity field introduced above. The coefficient & is
the permeability of the solid/gas region and ji, is the gas-phase viscosity, while the value pj; is the
specified upstream boundary condition on the gas pressure according to Eq. (9) below. We observe
that Eq. (6b) is actually obtainable from Eq. (6a) in the limit & — oo (which implies $% — p%), so
that in the aforementioned quasi-steady burning regime, the solution to the unconfined problem
constitutes a limiting case of the corresponding solution obtained from the more general condition
given by Eq. (6a).

The equation of state for the gas is assumed to be ideal, and thus p, is, in general, coupled to
the other field variables through the gas-phase equation of state,

ﬁg = ﬁgRoT/Wg ) (7)

where Wg is the molecular weight of the product gas. Consideration of condensed-phase momen-
tum, on the other hand, leads in principle to an equation for the liquid-phase velocity ;. Based
on a previous analysis,* a reasonable first approximation is to set the condensed velocity equal the
condensed mass burning rate divided by the condensed-phase density. In the present context, this
implies that, since 4; = 0,

iy = OZm (ﬁs

SZEm (Ps 1) Fs > Em, 8
ot \ pi ) 3o m ®)
where 8%, /0t < 0 is the (unknown) propagation velocity of the melting surface. A modification

to this expression that introduces a linear dependence of %; on the gas-phase volume fraction o
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that qualitatively takes into account viscous and surface-tension-gradient (Marangoni) effects in
the liquid /gas region has been proposed,* but in the present work we shall adopt the simpler result
given by Eq. (8).

The above equations now constitute a closed set for the variables «, g, T, pg and py. The
problem is thus completely determined once initial and boundary conditions (including interface
relations at 3 = %,,) are specified. However, since we will not be concerned with the initial-
value problem, but only the long-time solution corresponding to a (quasi-) steadily propagating |
deflagration, only the latter are required here. Thus, the required boundary conditions are given
by

a=o, for T<Zpy; dy—0, T—T,, Dy — Py as T — —o0, 9)

b

ﬁgzﬁg for 2>%m; a—1, dg—1, T —T, as & — 400, (10)

where the burned temperature T}, gas velocity ﬁg and pressure 152 are to be determined, except in
the unconfined limit where, from Eq. (6b), ﬁg = pg. The unburned and burned values gy and ﬁz
of the gas density then follow from the equation of state. We remark that the upstream boundary
condition on the gas velocity is, except in the unconfined Hmit, merely a consistency condition in
the present formulation, since it is implied by the corresponding upstream condition on pressure
and the first of Egs. (6a). Finally, denoting by & superscripts quantities evaluated at Z = :Z';%, the
continuity and jump conditions across the melting surface are |

+ 0 -+

- o5
a’ =o =as, U ﬂ(as)—gg

=11—, U, = ——7T %=
g g Qsfig O3

T=Zm
(11)
the third of which implies c';’pg /0Z3 — 0 in the infinite-permeability /unconfined limit & — co. In

addition, overall conservation of enthalpy flux across Z = Zp, is expressed, using Eq. (8), as

(1= i+ 0y - w' ~ (= 0+ @] - 97

=Zm 55 =Tm (12)
(1 V5 —19Tm [ 5 =\
- (1 as)ps Gm ai’ ['Ys + (Cs cl)Tm:I 3
where the geometric factor Gy, and the unit normal n,, are given by
G = [+ (0%m/0%1)% + (0%m/0%2)%] , fum = Gy} (—0Fm /0%, —0%m/0F2,1), (13)

respectively, and where 7, is the heat of melting of the solid at temperature T =0 (9s being
negative when melting is endothermic).
III. Nondimensionalizations and Further Approximations

The formulation presented above is meant to be a reasonable representation of certain classes
of materials, such as the nitramine propellant HMX, that satisfy the main assumptions introduced
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thus far. Typical values associated with the physical properties of two widely studied nitramines,
HMX and RDX, are quoted in various places.>'® The only additional primary approximation
that will be introduced below is the assumption, already alluded to in the previous sections,
of gas-phase quasi-steadiness.!”~!% This approximation is common in analyzing the stability of
deflagrations in nonporous propellants (though it can be relaxed under certain conditions?®~22),
and, for multidimensional stability analyses, has generally been accompanied by a quasi-plé,nar
assumption as well.23 This notion of gas-phase quasi-steadiness, which is discussed in more detail
in Ref. 9, is thus extended to the two-phase-flow problems associated with porous materials,
and is a particularly convenient approximation for the present study in that both confined and
unconfined geometries can then be treated within the same framework. However, we emphasize
that even though the velocity field can be approximated as one-dimensional (due to the dominance
of the normal component) by restricting the analysis to weakly nonplanar deflagrations, terms
representing transverse diffusion of heat remain. As a result, the present formulation retains certain
multidimensional gas-phase effects, and thus does not explicitly invoke gas-phase quasi-planarity
as a simplifying assumption.

In proceeding with a reasonable nondimensionalization for the present class of problems,
it is convenient to introduce a characteristic velocity U defined as the speed of propagation
U= —dim /dt associated with the special case of a quasi-steady planar deflagration (an explicit
expression for Uis presented in Sections IV and V). Assuming constant values for heat capacities

and thermal conductivities, we then introduce the nondimensional variables

sl RIS Ts, i, p P
T =2 T, t= = t, Ts,l,g:#’ ul,gz'Tga pg::%7 pg=~_ia (140’)
As As Ty U Pg Pq

where gy = ﬁgﬁfg / R°T, denotes the gas density at the unburned temperature T, and pressure py.

In addition, the nondimensional parameters

~ay X . X —~ . ~' ~
:&, 'F:g.g—v l:':l_7 l==, bZ—S—L, b:f_g’ ’Ysz,.,’yi ) Q=~Q~ )
Ps Ps As As Cs Cs csTy CsTy (14b)
5sEsPLR pU . -1 E A A
p=P00e o Pe g =0T N= L A= 0L N
As,“g psCsTy Y R°T, psCsU2

are defined, where v is the ratio of specific heats for the gas. It may be remarked that A is
the appropriate burning-rate eigenvalue, the determination of which will provide the quasi-steady,
planar propagation speed U.

Transforming to the moving coordinate £ = 23 — . (21, Z2,t), whose origin is thus defined to

be zn,, and introducing the above nondimensionalizations, Egs. (1) — (12) become

(ug—%’gﬁ)]=o, £<0, (15)

0 0 ™ . ™
53 000y =+ 2 =) (w = 22 wrap, (w- Z2) =0, €50, 9



5 x| (u-Z2) | —aa-wen [N (1-2)], €50, an

(_% (1= s+ #bosp)T] + (1 - ax) ( axm) O i 2 [(ug _ %) pgT]

0 ) ot
‘ 6;5 0%y, Op (18)
- . _ T A g _ m a
=V, {(1 as+{as)va}+was (T% s '“ag)’ £<0,

Oz,

% [fr(l —a)(Q +bT) + fEapgT] + gg {‘r(l —a) (uz 5 ) (Q +bT) + 7ba <ug 8;—?) pgT]

=Vm~{[l(1~a)+laJVmT}, £€>0,

(19)
peTy = pg, (20)
1 OTm
= —2(] — )2 21
w=-1-nZn, (21)
subject to the boundary and melting-surface conditions
_ __#las) 0p
a=a;, ug=-——>-— for {<0; T—1, p;,—1as {——c0, (22)
Olg 8{
pg=p, for £>0; a—1, ug—>ug, T—T, as £ = +oo, (23)
_ _ _ k(o) O _ _
ot =0 =0, uy=uy, u; =-— () Oy p; =py =py, TT=T" =Ty,

as O |gmp-

(24)
[1(1 — )+ ias] fim ‘vmﬂ . [1 .+ l"as} By, va[

=0 s=0" (25)

= (1= @)G 22 1y 4 (1~ BT
where Vi, = (8/8zy — {0%m/02,}0/0¢,8/022 — {0zm/0x2}0/0E,8/0€) is the gradient in the
moving coordinate system. The limit pg — 1 and the elimination of the third of Eqs. (24) may be
taken in the case of an infinitely permeable material and/or unconfined geometry. ’

In the quasi-steady gas-phase limit discussed above, the gas phase is regarded as steady with
respect to £ = 0, and thus time derivatives of gas-phase quantities in the moving coordinate system
(viz. Opg/0t, (apy)/Ot and B{ap,T}/Ot) may be set to zero, so that with the use of Eq. (21),
Egs. (15) — (19) become

o} m
o) o
r%?—Jr—a—{(l—a)aat fan(“g—aT;”tnlﬂ:O’ £>0, @)
T%_‘;_,_c%[(l_a)%;—;”]:rA(l—a)expliN(l—%)}, §>0, (28)
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oT oy, 0T .~ 0 O%m
(]. — Ots)—a—t - (1 —_ as)wa—é_ +7‘bC¥sa—£ [(’U‘g - W) pgT:I

(29)
=V, - [(1 — o +Zas)va} — frasag—;”%%, £ <0,
8 0 O, O,
v [(1—-a)(Q+0bT)] + 5 [ (1-a)—== 5 ™ (Q + bT) + ha (ug ey ) pgT]‘ (50)

:vm.{[z(l—a)+ia]va}, £€>0,

Equations (20) — (24), along with the equation of state (20) and the boundary /interface conditions
(22) — (25), constitute the final model that will be considered below.

IV. The Burning-Rate Eigenvalue for Steady, Planar Combustion

Time-independent solutions of the final formulation given in the previous section correspond to
either steady (unconfined) or quasi-steady (confined) deflagrations. In either case, the nondimen-
sional propagation speed 0z, /0t = —1 by definition, and the classical problem is to determine the
dimensional burning rate U by obtaining an expression for the burning-rate eigenvalue A. Thus,
first considering the more general case of a confined geometry, a solution is sought for the steady

eigenvalue problem

d%[%(ugﬂ)]:o, £<0, (31)
%[(1—a)+m%€-(ug+1)]=o, £>0, (32)
d%(l—a)=~rA(1—a)exp [N (1—%” , £>0, (33)

(1— as)—g-i-'rbas [pg(ug+1)]=diig[(1—as+ias)%]'f"f'lA)XOfs%pgla £<0, (34)

d [(1—a)(Q+bT)+rbapg(ug+1)] d {[1(1 a)+l”a]‘£}, £>0, (35)

dé de d¢
subject to the boundary and melting-surface conditions (22) — (25) which, when specialized to one
dimension, become

(as) dpg for

=0, Ug=-— v & E<0; T—1, pg—1a8s - —o0, (36)
pg:pg for £€>0; a—1, ug—->ug, T—Tp, as £ = +00, (37)
o - K(as) dp - b _
at=a" =a, “;_UQZ-TS—_dﬁig:o— Pg =p;=p9, TH=T" =Tn, (38)
~ 1dT ~ 1d
(1l —og)+los| — — |1~ as+la ——~’ = (1l —og)|—vs +{b—1)Tn] . 39
M-antin] G —[imeria] Gl —O-a)bwr-0Td. @)

13




Here, the alternate expression for the coefficient # indicated in Eqgs. (14b) has been used in the
last term of Eq. (29), and the equation of state (20) has been used to give a closed problem for c,
Py, Ug, T and the eigenvalue A.

IV.1. Preliminary Analysis

A partial solution in the region £ < 0, where chemical activity is absent, as well as expressions
for Ty, ug and ug4(0) = ug|e=0, are obtained as follows. From Egs. (31) and the boundary conditions
(36), we have

pg(ug+1) =T, £<0, - (40)
and hence
T
Ugleg =5 — 1. (41)
Pq

We observe from Eq. (40) that since 7' > 1, the gas velocity u, > —1 in the gas/solid region £ < 0.
That is, consistent with a quasi-steady mode of burning, the speed of gas permeation into the
solid must be less than the propagation speed of the deflagration. Equation (32) and the surface
conditions (38) and (41) then imply

a+ ag{f —1)

ph(ug +1) = T, £>0, (42)

b in terms of T} as

which, upon evaluation at & = oo, determines Ug

by Ll—oas+rfay (T

ug_—ﬁ———<52—)—1. (43)

Turning attention to the energy equations (34) and ‘(35), we may readily perform a single integration
and use the above relationships to obtain

R -~ dr .
(1—oas+7ba)(T—1)=(1-as+ loes)—&—g— +fhxas(pg — 1), €<0, (44)

R ~ 1dT -
[b(l — o)+ bla—a, + fas)] T = [zu —a)+ za] - (1-@)Q+b(l-a+ia)Ty, £>0. (49)
Thus, subtracting Eq. (44) evaluated at £ = 0~ from Eq. (45) evaluated at £ = 0% and using the
jump condition (39), we obtain an expression for T} given by

_ (1= a)(@+1+7) + 7ba [1 +x(ph — 1)]

T 7 ) 46
’ B(1— s + Fcis) (46)
which,/from Eq. (43), determines ug as
1 e
up = — [(1 — ;) (Q + 1 4, — 7#b) — 7b(p% — 1)(1 — asx)} : (47)
7hpb

Q
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We note that in the limit pg — 1, Egs. (46) and (47) collapse to the results for unconfined burning,
where in place of Darcy’s law in the solid/gas region, p, = 1 throughout.

It is clear from these results that, since 0 < x = 1 — 1/y < 1, T} increases linearly with the
overpressure pg — 1, as shown in Fig. 2. It is readily seen that for small overpressures T} decreases
. with increasing values of the porosity oy, whereas at higher overpressures, the opposite trend is

observed. Indeed, denoting the burned temperature at zero porosity by 7P = (@ + 1 + vs)/ 13,
which is independent of pg, we obtain from Eq. (46) that for oy > 0, Ty = T at the critical value
of overpressure given by pg — 1= (T2 — 1)/x. For overpressures greater than this critical value,
the preheating effect due to gas permeation is sufficient to overcome that due to a decrease in the
amount of solid material, resulting in an increase in burned temperature above Tp. Subsequently, it
is clear from Fig. 2 that the magnitude of the difference T, — T} at a given value of the overpressure
is an increasing function of a;. In connection with this result, we observe from Eq. (47) and Fig.
3 that the burned gas velocity ug is a monotonically decreasing function of the overpressure. In
fact, for sufficiently large overpressures that satisfy the condition

1-a, <Q+1+vs_1>=(1—as)(T£—f“)
1—asx b (1~ asx)

py—1> (48)
which depends on oy, we find that u_g is negative, implying a gas flow in the upstream direction
throughout the multi-phase flame. This is clearly illustrated in Fig. 3, which shows the curves for
u_g, as a function of pg —1 crossing the horizontal axis at the above critical value of the overpressure.
Also shown in Fig. 3 is the value of the gas velocity ug(£) at the solid/liquid interface £ = 0, which
is only positive for relatively small values of the overpressure. In particular, from Eq. (41), ug4(0)
crosses the horizontal axis at the critical value pg —1 = T,,—1, beyond which gas flow is directed into
the solid/gas region, resulting in the preheating effect due to gas permeation as described above.
Further solution of the problem in the liquid/gas region, which is necessary for the determination
of the burning-rate eigenvalue, is considered in the following section.

Before proceeding with an analysis of the liquid/gas reaction region, we observe that the
problem in the solid/gas region can be reduced to a scalar problem for the gas pressure p,. In
particular, from Eq. (40) and the Darcy formula for u, in Eq. (36), T and thus u, are given in

terms of p, by
K dp T
T= ——-———3> Ug =— —1 <0. 49
Substituting these results into Eq. (44) thus yields a second-order equation for p, in the region

£ < 0 given by

- K dp ~ d 5 dp A3
1— 229 1| =(1— il — =29 —
( 055+Tbas) |:pg ( o d§ ) 1] (1 as"‘las)dé. I:pg ( Y d§ >:' +7"bXOls(Pg 1)7 (50)
subject to the boundary conditions

g _

Pg =Py, de P
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where the second condition follows from the Darcy formula and Eq. (41) for v, evaluated at £ = 0.
We note that the last condition, aside from being consistent with the first of Egs. (49), is already
built into Eq. (50) by virtue of the fact that Eq. (50) is really a first integral of Eq. (34). Had
the above expression for 7" been substituted directly into the latter, a third-order equation for p,
would have been obtained, permitting the specification of the three boundary conditions (51). The
problem (50) — (51), the solution of which will determine 7" and u, according to Egs. (49), will be

treated in the section following the determination of the burning-rate eigenvalue.

IV.2. The Burning-Rate Eigenvalue

In order to determine the burning-rate eigenvalue, we must complete our analysis of the
liquid/gas region ¢ > 0. In this regard, Egs. (28) and (36) constitute two equations for T' and
a in this region, with 4, then determined by Eq. (33) and the eigenvalue A determined by the
boundary conditions. In order to handle the Arrhenius nonlinearity, we exploit the largeness of the
nondimensional activation energy N and analyze the problem in the asymptotic limit N > 1. Since
Py = pg throughout the liquid/gas region, the analysis of the confined and unconfined problems is
essentially the same for £ > 0.

In the limit N — oo, all chemical activity is concentrated in a very thin region where T is
within O(1/N) of T. Denoting the location of this thin zone by & > 0, we see that the semi-
infinite liquid/gas region is comprised of a preheat zone (0 < & < &) where chemical activity is
exponentially small, the thin reaction zone where the chemical reaction goes to completion, and a
burned region £ > &,. Thus, we conclude from Eq. (33) that

as, § <&
a:{l, £>¢ (52)
and from Eqs. (42) and (43),

. ={T/pg—1, 0<é<é 53)
g f"l(l—as—}-ff'as)Tb/pg—l:ug, £E>¢&,,

Since 7" is within O(1/N) of Ty in the reaction zone, the analysis of this thin region requires the
use of a stretched coordinate (see below). As a result, T is continuous with respect to the O(1)
outer variable £ at £ = £, and thus the gas velocity jumps across £ = £, by the amount

ug!g:gj’ "ugfgzg; = %(1 _f)(l_as)nga (54)
which is positive assuming the unburned gas density is less than that of the solid (i.e., 7 < 1).
Finally, using Eq. (52), Eq. {45) may be integrated a second time to completely determine the
outer temperature profile in the liquid/gas region as

b(l—as)'f"rf)asg 7 0<§<§T
1 —as)+log

Tb7 €>£7‘7

B-’r(Tm—B)exp[

() = (55)
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where

(1 = as)(1 +7s) + Pbas [1 + x(p = 1)]
b(1 — o) + Pba

We note that T'(§) for £ < 0 is still to be determined from Eq. (49) and the solution of the

pressure problem (50) — (51), as described in the next section; however, it is not required for the

B

i

. (56)

determination of the burning-rate eigenvalue A. The location &, of the reaction zone, which appears
as a sheet on the scale of the outer variable £, is thus determined by Egs. (55) from continuity of
T as : R
¢ = l(l—as)—i—l?zs ln(Tb—_B) .
b(l—as)—!—fbas Tm—B

The determination of the burning-rate eigenvalue A, as well as the spatial evolution of the

(57)

variables o and u, (which are discontinuous on the scale of the outer variable &), requires an
analysis of the thin reaction-zone region in the vicinity of &.. We thus introduce a stretched inner
variable  and a normalized temperature variable @ defined by

0=z, n=BE-&), A=(-TPHN>1, (58)
b

where 3 is the Zel’dovich number, and seek solutions in the form of the expansions

a~a0+ﬁ_1a1+ﬂ—2a2+-~ N ugwuo-%—ﬂ_lul-i—ﬂ_zuz-l—--' s

(59)
O~14+8710+8%02+ -, A~ BAg+B7 AL+ 872 As+ ).

The coefficients in the expansion of u, are readily determined from Eq. (42) in terms of the a;
~ and 6;, which themselves are obtained from solving the sequence of inner problems that arise from
substituting the above expansions into Eqgs. (33) and (45) and matching with the outer solutions

for £ < & and £ > &,. In particular, at leading order the inner problem is given by

dag

P rAo(1 — ap) €, (60)
- dfy D

- =1 - 1
[+ (T = D] 3 =g g2, (61)

subject to the matching conditions
ag — ag, B~ FEnasn— —o0, (62)
ap—1, 0 —0 as n—+oo. (63)

Here, D and E are defined as
L - _ 1 dr

=4
where the latter is calculated from Eq. (55). |

17




The problem (60) - (63) is now readily solved by employing aqg as the independent variable.
Thus, using Eq. (60), Eq. (61) may be written as

91 d91 D

rio [z + ([~ l)ao] e = (65)
which is readily integrated from o, (at 7 = —00) to any ap < 1 to give
D oo da
61(co) / 0 66
e . .
(Ty = VrAo Jo, 1+ (1—Dag (66)

Evaluating the latter at ag = 1 (at which 8; = 0) thus determines the leading-order coeflicient Ag

in the expansion of the burning-rate eigenvalue as

D In j } 141
Ag = (T —]_—)1)7‘({'_ 1) L+ (1 -Dos ' (67)
m(l—as), l=1,

and using this result in Eq.‘ (66) for arbitrary oo then determines 8, (ayg) as

: In {l+(i—l)a0}—ln [l+(f—l)a5] -
o 'y f ’
81 () = i=tn i+ (- Day] -
ln<a0—as)’ izl'
1—a,

The determination of ag(n), and hence 6;(n), then follows directly from Eq. (60).
From Eq. (67) and the definition of A according to the last of Egs. (14b) and (59), the

leading-order expression for the dimensional propagation speed U is given by

(T, — 1)A(ph)
BDpscs

(b — I;)Tb +Q . PsCs Ny

e V. f(j‘g, S\Z) = e_Nu/Tb ' f(j‘!-b ;\l) ) (69)

where N, = E} / R°T, = NTy is independent of T} and the last factor, which contains the complete
dependence of the burning rate on the thermal conductivities, is given by

.- o~ ~ ~/\g -Al = ) 5‘9 7é 5\1
Fg h) = 0 (Rg/ T+ (B = M)as]) (70)
/(1= as), Ag =N

The expression (69) for the burning rate, though virtually identical in form for both the confined
problem and the unconfined problem obtained in the limit of constant pressure (pg = 1), nonethe-
less differs implicitly for the two types of problems through the linear dependence of Ty on the

overpressire pz - 1. In particular, because there is an exponential dependence of the reaction
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rate on T}, relatively small changes in T} can produce significant modifications in the propagation
speed.

In order to analyze explicitly the dependence of the burning rate on the overpressure, it is
convenient to define the normalized burning rate U* = U (pg) JU(1), where the argument denotes
the value of p). Consequently, from Eq. (69), we obtain U* = Un[fi(pg) JA(D]Y/2, where the
coefficient U, is given by

_ Ty(ph)
T Ty()

U, (b-bHT(1) +Q }1/2 exp [Nu (_1_ _ L)] - (71) |

(b—B)Th(p?) +Q 2 \T(1)  Ty(eh)

and where T} as a function of pg is given by Eq.(46). In this form, it is readily seen, since 7} is a
linearly increasing function of overpressure and the nondimensional activation-energy parameter N,
is typically very large (its definition, given below Eq. (69), is in terms of the unburned temperature
Tu), that U, is exponentially sensitive to T} and hence pg. Thus, as the overpressure pg -1
increases from zero, the burning rate increases exponentially (Fig. 4), reflecting the sensitivity to
the corresponding increase in the rate of gas permeation into the solid/gas region given by Eq.
(41). We remark that this result cannot be predicted with a constant-pressure model appropriaté
for unconfined deflagrations, since in that case, the gas flow is always in the downstream direction
(if one imposes the upstream boundary condition that u, vanish) and an increase in pressure then
serves only to decrease T}, due to the increase in the gas density (7 increases) that absorbs more of
the heat of reaction. In the present context, the upstream gas density 7 remains constant, and an
increase in overpressure serves to preheat the unburned solid through enhanced permeation of the
burned gas into the solid/gas region. In the limit of large overpressures, Tb”1 becomes small and
the exponential factor in Eq. (71) approaches a constant value. Consequently, in the range of large
overpressures, the dependence of U, on pg becomes algebraic. This is also illustrated in Fig. 4, in
which case (since b = 13) the saturated dependence of U, on pg is linear. We note that this feature
(exponential transition to an algebraic pressure-dependent burning rate) is qualitatively consistent
with most experiments in Crawford-type (large volume) bombs that indicate a rapid increase in
the burning rate frequently associated with the onset of convective burning,5242% followed by a
less dramatic pressure dependence that is typically represented in the form Ap™.

V. Analysis of the Gas-Permeation Layer

The pressure-driven permeation of hot gases into the unburned porous solid has been shown
to be a critical factor in causing the rapid increase in the burning rate associated with the onset
of convective burning. However, this implies nontrivial pressure and velocity profiles in this region
in order to satisfy the ambient upstream boundary conditions on these variables.. Thus, although
the calculation of the burning-rate eigenvalue in the previous section did not require a detailed
knowledge of the actual solution profiles in the solid/gas region, it being sufficient to determine

the results (40) — (41) for u,, there is nonetheless a strong interest in computing these profiles in
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order to better understand the role of convection in these types of two-phase-flow problems. Since
gas permeation is clearly a strong function of the pressure difference across the deflagration, it is
convenient to define an overpressure variable p = pg; — 1, in terms of which the pressure problem
(50) — (51) can be written as

e K dp ~ d K dp 3
— by b s - — | =(1- s ls'_ - 1)— s
(1-a +ra){p as(p-l_l)dg} (1-a +a)d£ {p as(p+ )dg + hyosp (72)

subject to

d «
p=p=p,—1, £=f(1—

T
py+1

) at £=0; p—0 as £ — —o0. (73)

Since our goal is a qualitative understanding of gas-permeation effects, it suffices to obtain ap-
proximate solutions using asymptotic methods. In particular, we may introduce a bookkeeping
parameter € < 1 and consider the realistic parameter regime in which 7, Z, as, and k/a; are all
O(e), where we note that the permeability  is usually proportional to some power of a, that is
greater than unity.1®26 That is, we scale these small quantities as

as =ake, k=~r*e¢, F=7%, [=l", (74)

in terms of which Eqgs. ((72) and (73) become

*

A%T %k * d X T % d d AT *
(1—eat +27#*bat) [p— 6%(]}—}— 1)_p} = (1—ea® + €% aS)d_g [p— e%(p—%-l) pjl +E7*byalp,
8 )

d¢ dg
(75)
d * T,
b 4 1% m
- = —1 —_— = —_— — t == M —_— — .
P=Dpp =D, e € — (1 pb+1> at £=0; p—0 as & 0o (76)

The problem given by Egs. (75) and (76) has been analyzed!? for two primary cases of interest;
namely p ~ O(1) and p ~ O(e™1), corresponding to two different magnitudes of pg. The results
of this analysis are as follows. For O(1) overpressures, the second condition in Eq. (76) suggests
that there is an O{e) boundary layer in the vicinity of ¢ = 0. Consequently, a stretched coordinate
n = &/e is introduced to describe the solution within the boundary layer, which is then matched
to the outer solution for negative O(1) values of £&. In this fashion, the leading-order composite
solution is determined as

p=~po(€/€) + (T — 1)(e* — 1), (77)

where the leading-order inner solution pg, which has been functionally expressed in terms of the
outer variable £, is given implicitly by
a: ) po — Tm + 1
—= =pg — Tolnl — . 78
% /9 =po -y + Tl (2212 1) 78

The boundary-layer (inner), outer and composite solutions are illustrated in Fig. 5. From Eq.
(77), the gas velocity in the solid/gas region is, in turn, given by .

Tm K*
— e (T —1)€b. (79)
W@+l ‘artm Y
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We observe that po(&/€) — T, — 1 as € approaches O(1) negative values, and thus, as indicated
in Fig. 5, it is clear that gas permeation for O(1) overpressures is only significant in the thin
boundary layer adjacent to the solid/liquid interface, assuming pp > Tp, — 1. Although this last
qualification is by far the typical case (since Ty, — 1 = Tpn /Ty — 1 is not likely to be larger than
unity), it is nonetheless of interest to point out that the structure of the solution will change as py
approaches the value T,, — 1 due to the fact that the gradient of pressure at £ = 0, which has been
scaled as O(e™!) in Eq. (76), will cease to be large in that limit. Indeed, for small overpressures V
(0 < pp < T, — 1), the pressure gradient becomes negative at £ = 0, indicating, according to
Egs. (36) and (41), a gas flow out of the solid in the downstreain direction, as in the case of an
unconfined deflagration. ‘

The other primary case of interest in many applications is the limit in which the overpressure
itself becomes large. In that case, it is useful to rescale p in Egs. (75) and (76) by defining the
scaled overpressure P = ep. In terms of P, Egs. (75) and (76) become

* - dp 274 * d K* * *
(1—ea -I—erba)[ a(P+)d§]_(1_6a +e“l*a )df[P as( +) ]-{—erbxaP
(80)
. _1 b dP_O{: ETm AL
P—-Pb_e(pg 1), E - (1 Pb+€> at £=0; P—0 as £ > —c0. (81)

There is now no reason to suspect a boundary layer near £ = 0, but a straightforward perturbation

solution on the £ - scale leads to the approximate solution

*® * _ < O K]*
P~ Py= (a5 /6" )€ + o), §o<&< ’ =P, 82
() {0, £ < —& €o ar b (82)
which is valid everywhere except at { = —&y where the derivative is discontinuous. This kink in the

solution thus suggests the existence of a thin corner layer in that vicinity. Hence, we interpret Eq.
(82) as the leading-order outer solution, and proceed to construct an inner solution in a thin region
centered about £ = —&q. In particular, it turns out that the proper scales on which to analyze this
layer are P ~ O(e) and & ~ O(e). The result of a matching of the solution in this region with the

outer solution (82) is the uniform composite approximation'?

Z—§(§+£o)~P+eln (%) . (83)

The outer and composite solutions (82) and (83) for the scaled overpressure P are illustrated in Fig.
6. It is clear that in this case, gas permeation extends an O(1) distance into the gas/solid region,
although, as in the previous case of O(1) overpressures, the extent of gas permeation remains,
because of the relative smallness of the permeability &, an order of magnitude less than that of the
overpressure itself. |
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VI. An Asymptotic Model for Nonsteady, Nonplanar Burning

The solution analyzed above constitutes the special case of a quasi-steady, planar deflagration,
and is not necessarily the only long-time solution of the final model presented in Section III. For
example, one generally expects that there exist parameter thresholds beyond which such a solution
loses stability to one or more nonsteady and/or nonplanar modes of burning. In order to perform
such stability analyses, it is appropriate to extend the previous one-dimensional large activation-
energy analysis of the reaction zone to obtain a more tractable flame-sheet type of model. In such
a model, the reaction zone is asymptotically relegated to an infinitesimally thin region, and the
(outer) solutions on either side of this reaction front are connected by derived jump and continuity
conditions. This effectively simplifies the problem by allowing consideration of a coupled problem
for the reactionless outer variables, and is the basis on which most modern analytical stability
analyses are based.

VI.1. The Outer Problem

In the limit of large activation energy, the reaction zone collapses to a reaction front located

at z3 = z,(z1,22,t) > ZTm(z1,2Z2,t), and it is convenient to shift the (nonorthogonal) moving
* coordinate by defining the new coordinate { = £ — (2, — Zpm, ), or in terms of the original variables,
¢ = z3 — z.(x1,Z2,t). In this new coordinate system, the origin is thus defined to be at 3 = z,,
and in terms of ¢, the problem defined by Eqgs. (15) - (25) becomes, given the assumption of a
quasi-steady gas phase with respect to the new coordinate system and the expression (21) for uy,

0 0 Oz, oz, Oz N 0
r£+—€)z[(1—a)(~;7+r{;t - gt>}>—rong(ug ;)}"O ¢> —(r — Tm),

(85)

B 0m (Ge er (5-5p))] mraeee [V (- F)) <(>)

(- as)aa—f + a% { [(1 ) (‘ aé?) + b (“g 6;5 ) pg} T} (87)
=V {[1- e+l VT -0, B2 L (<@ -2,

[(1 —a)(Q +bT)] + ffC [(1 - ) (_ag;n —r {35; _ 3;:% }> Q@+ bT)} 58)

+ a% {ﬁ;a <ug - %) pgT} =V, {[1(1 - a) +ia] VTT} (> (T — Tm),

subject to the equation of state (20) and the conditions

L
as OC

o=, U= — (< —(@r~Tm); pg—1 (ug—0), T—1as (——o0,

(89)
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pg:pg for (> —(zp —2zp); a—1, T —T, as { — +00, (90)

T|C=—-(m,.-a:m) =T, (91)
U1 = ) +lorg | o - 9, T — (1~ 0y +la,) fim - 7,7
[ ( o )+ Qs Ny r = () Qs+t nm r (= (@rmtim)- (92)
_410z
= Gml“atﬂ(l —as) s + (L= 0)Tn] ,
_ where all variables are implicitly continuous across the melting surface { = —(z, — z,,) and, anal-

ogous to the definition of V,, given below Eq. (25), the operator V, = (8/0z; — {8z, /0z1}8/8¢,
8/8zs — {0z, /032}0/0¢,8/¢) is the nondimensional gradient operator expressed in terms of the
moving coordinate system attached to the reacting surface. The final burned temperature T} that
appears in the boundary condition (90) for the general nonsteady, nonplanar problem is the same
as that calculated for the special case of steady, planar burning analyzed in Section IV, and is thus
given by Eq. (46).

As in the special case of steady, planar combustion, we again consider the limit of large
activation energy (N >> 1), in which case all chemical activity and heat release associated with
the reaction term in Eq. (86) are confined to a thin O(N~1) reaction zone at ¢ = 0. In this way,
the original distributed-reaction problem is reduced to a pair of reactionless problems in the outer
regions { < 0 and ¢ > 0, the solutions of which must be matched to the reaction-zone solution
valid in the thin inner region |{| <« 1. The result is an asymptotic model for the outer variables,
subject to nonlinear jump conditions across { = 0 that depend on local conditions there, and an
evolution equation for z,.(z1, z2,t). With this asymptotic simplification, the outer solution of Egs.

(84) — (86) for the gas-phase volume fraction and velocity is given by

_ Jas, (<0
o= {1, 60, (93)
—(T'/pg — 1)0z./0t, ¢ < ~(zr — Tm)
Uy = —(T/pg — 1)0z,./ot, —(Zr —zm) < (<0 (94)

(T/pg) g(z1, z2,t) + 8z, /O, (>0,
where the first of these indicates that all variation in the volume-fraction variable & is confined
to the inner reaction zone analyzed in the next subsection and the second expresses ug in terms
of the local temperature and the instantaneous propagation speed of the reaction zone, with the
“constant” of integration g(z1,z2,t) = (95/Th)(ugl¢—+00 — 82,/0t) to be determined. The top
expression in Eq. (94) may be combined with the expression for u, in Eq. (89) (Darcy’s law) to
give the additional relation

T=p, |14+ 5% (02 - ¢ < —(%r — Tmm) (95)
g o ac Bt H r mj o

which is the appropriate generalization of Eq. (49). By use of these results and the equation of
state (20) in Eqs. (87) and (88), the outer problem becomes

oz,
ot

92, 0P
ot o¢’

T - R
(1—as)%?+(l—as+fbas) (— ) or = (1— s + 10, ) VAT — frax
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rb(1 — as)% + [rb(l — o) + ff)as] (-%ﬁ) %% —b(1=r)(1— as)%g_? o

= [1(1 — a) +ias} V2T, (2~ %m) < (<0,

~ 0T N
fbg%zzzviT, (>0, (98)

subject to the boundary and interface conditions (89) — (92) on T and p,. From the expression -

below Eq. (92) for V.., the Laplacian operator V2 in the (z1, z2, () coordinate system is given by

9? 52 82 Oz, 02 oz, 0O 0%z 9%z 0
2_ 9 o 2 O T T T ry ¢
V2 + 2 e 2 (8:3% 8m§>a§’

922 T 532 T O B8 T %52y 52100 “ms 9wadC (99)

where G2 = 14 (9z,/0z1)? +(8z,/812)%. We observe that substitution of the relation (95) into Eq.
(96) gives a nonlinear partial differential equation for py, analogous to the ordinary result (50) for
steady, planar burning. These conditions, however, are still not sufficient to completely determine
the solution for the outer variables. To do so requires additional jump and continuity conditions
across the thin reaction zone located at { = 0, as well as an expression for the gas-velocity function
g(z1,x2,t) in the region ¢ > 0, which necessitates an analysis of the inner reaction-zone problem.

The derivation of two of the additional conditions needed to close the outer problem may be
obtained directly from an integration of Eq. (88) across the thin reaction region; i.e., from ¢ =0~
to ¢ = 0F. Using the results (93) and (94), and accounting for the fact that quantities such as «,
T, augT, o, (1 — )T, adT/0¢ and (1 — a)0T/9¢ behave, in the limit of large activation energy,

as distributions there, the continuity and jump relations

| cmo- = Tlecor (100)

and

oz,

ot

{ﬂSg + [(1 — ag)rb+ asﬂ;} + (1= as)(1— r)b%} T o

Oz, oz, 8T Oz, 6T) }
C:

4 (1 - a)Q [Tﬁ +(1- ’I”)W] ~ (=D -a) (3331 Bz, | O, Oy

- [l(l - as) + Zas] 8—T }

(101)

8C ¢=0—

are obtained. The structure of the inner reaction zone, with suitable matching of solutions in that
region to the outer solutions, must now be addressed to obtain an additional jump condition across
¢ = 0 and an expression for the function g introduced in Eq. (94). We thus employ the method of
matched asymptotic expansions and seek solutions to the coupled outer problems in the form of
the expansions T ~ T 4+ N=17(1) 4 N=27() 4 ... and similarly for the gas-velocity function g.
Hence, to leading order, the outer equations obtained thus far are given by Egs. (89) - (101) with
T and g replaced by T(® and ¢(©, respectively.
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VI1.2. The Reaction-Zone Solutions

Spatial variations in the reaction-zone solutions in the normal ({) direction occur on a short,
of order N1, length scale relative to that of the outer solutions. Accordingly, it is appropriate to
introduce the stretched normal coordinate 7 defined by

n=p6¢ =Bz —zr), (102)

where 3 is the Zel’dovich number defined in the last of Eqs. (58), and it is also convenient to
introduce again the normalized temperature variable © = (T"— 1)/(T} — 1). Solutions to the inner
problem are then sought in the form of the expansions

a~ap+ e +8 2+,

ug ~ug 4+ B ey + Uy + -,

O~1+8710+67%0+--,

A~ BAo+ B A+ 572 M0+ ),

where the latter represents the appropriate expansion of the burning-rate eigenvalue of the basic

(103)

solution corresponding to steady, planar burning. We note that since p, = ps throughout the
gas/liquid region, no such expansion is required for p, and thus, provided the assumption of gas-
phase quasi-steadiness remains valid, the development in this section is valid for both unconfined
‘and confined geometries. Substituting these expansions and definitions into Eqs. (85), (86) and
(88) and equating coefficients of like powers of 3, the leading-order inner problem is derived in the
following fashion. Beginning with Eq. (85), we obtain

b b
(7‘ rTb) 5 oy +(1—7) 5 oy + T_’Tb B (apup) =0. (104)

Integrating this result and applying the matching conditions g — a and ug — —(T3/ pg —1)0z. /0t

as 11 — —00, we obtain an expression for ug as

~ Tylag—ay) [, oz, Oz, (T Oz,
ug = Phra, [(r—r) 5t —(1=-7) ot ] (pg 1) 5 (105)

From the matching conditions ag — 1 and ug — (T3/p5)g'” + 8z,./0t as 1 — +oo, an expression
for the outer gas-velocity function ¢(® (z, z5,t) in the region ¢ > 0 is then found to be

Oz, 8:cm] _ Oz,

(0) = - (] - )
9 (21,2, G-nGE-a-nTE| -5,

1—
L (106)
7
which is needed in Eq. (98).
Utilizing Eq. (105) for the gas velocity, we find that the remaining part of the leading-order

inner problem for ag and 6; is now determined from Egs. (86) and (88) as

oz, Oxm | O 61
{fr 5 T(1-7) 5 } i —rAo(l —ap)e™, (107)
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{8;;_1.(1— )Ggﬂ [Q+(b b)Tb] %ﬂ (T, — 1)G? a{i]{{l-%—(l——l)ao] %9;}, (108)

subject to the matching conditions

ap — 1, 6’1~@(1)|C:0+ as 1 — +00 (109)

and

560
(SC - as 7 — —o0, (110)

where, consistent with the definition of ©, the ©® are defined as ©® = (T —1)/(T, —1). We note

that since spatial variations in the normal ({) direction are large relative to those in the transverse

Qp — Oy, 91 ~ @(1)!C=O— +7n

direction and those with respect to time, as reflected in the transformation (102), the reaction-zone
problem (107) - (110) is always quasi-steady and quasi-planar, independent of the assumption of
quasi-steadiness for the outer gas-phase equations introduced earlier. Thus, integrating Eq. (108)
using Eq. (109), and then transforming to oo as the independent coordinate according to Eq.
(107), we obtain a first-order equation for 6; given by

961 Q+ (b—bTp 1
rAge?t — = H2 : - , 111
dag T Ty—1  14(-lao ()
where 5 5
Hpr=-G7t [r ;tr (1-r) mm} (112)
Equation (111) may then be integrated with respect to ap by using Eq. (110) to give
DT -t [ _ _ i /
A egl_HmeJr(b B) b.{(z 1) {m[u—(z z)ao} 1n[z+(z l)as]}, I£1 01
Tb—l l"l(ao—as), {=1.

For the special case of steady, planar burning, dz.,/0t = 8z,/8t = —1, and ©)|,_o+ = 0 in
the matching condition (109). Since Eq. {113) must hold for all solutions, these conditions imply
the result (67) for the leading-order coefficient Ag in the last of the expansions (103) for the
burning-rate eigenvalue. Here, T}, was given in Eq. (46), a result that in fact applies to the more
general nonsteady, nonplanar problem given the assumption of a quasi-steady gas phase and the
specification of pg.

For the general nonsteady, nonplanar problem, Egs. (67), (113) and the matching condition
(109) yield the local temperature-dependent propagation law

1
H,, . =exp (5911¢=o+> . (114)

Equation (114) introduces the next-order outer variable ©' into the analysis, but this additional
complication, which is fundamental to this type of analysis,?? can be circumvented in an approx-

imate fashion by truncating the inner expansion for © given in Eq. (103) after the O(8!) term,
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so that the matching condition (109) implies that ©(1)| =0 = B(8] c=0 " 1). Reverting back to the
original outer temperature variable T, we find that Eq. {114) may be expressed as

1/2
oz, &cm oz, \ 2 8z, \ > g Tv— T‘g:o '
_ 1— = |1 _EL T T X=0 115
"ot ~ r) [ ¥ (3&71 - Ox2 TP\ I-1 , )
where we have used the definition (112) for H,, ,. Substitution of Eq. (115) and the expression
(1086) for g into Eq. (101) then leads to the result

AT 40T ~ o (0z, T Oz, OT
T G S R RS (axl ax1+ax26m2)1<—0
(116)
__(1 T _:8 Tb_TIC:O
=-(-a) [Q+ 6 -HT| | 67 e (-5 —5 =57

which, if we retain Eq. (115), replaces Eq. {101) as the required jump condition across the thin
reaction zone. When the outer solution is approximated (truncated) by setting T' ~ T(®) and
g ~ g9, the derived conditions (100) and (101), the propagation law (115), and the expression
(106) for the outer gas-velocity function g close the outer problem (89) — (92), (93) - (98).

VI.3. Summary of the Asymptotic Model

The model derived in the previous two subsections constitutes an asymptotic formulation, valid
for large activation energies, of deflagration in porous energetic materials for the case of a thermally
expansive, quasi-steady gas phase. In this regime, the reaction zone becomes thin relative to the
convective-diffusive structure of the deflagration wave, in such a way that both the jump condition
across the reaction sheet and the propagation law that governs its motion display a sensitivity
to local temperature perturbations. This sensitivity is of a finite, but exponential, form that is
induced by the original Arrhenius nature of the reaction rate in the asymptotic limit described
above. It is helpful to collect the above results for future reference. Hence, the asyinpto’cic model,

expressed in nonorthogonal coordinates (z1, T2, {) attached to the reaction surface ({ = 0), is given
by

(1— @) % 2 riiigi‘% %;gg—"'f
(- |(1=7) % %@Jr(r—f) (é % %? (117)
= 111228 )) V2T — o (1) 8;‘;—129, —(ng—_a(;:);xgmio
0 ¢>0,
T = p, 1+”%(3‘T?’)’1}, ¢ < —(%r —zm), (118)
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Oz, Orm g Ih— T|C=0
5 —(1—r)——ét——Grexp (—5——n_—1 , (119)

T

subject to

T—p;—1a (——o0, T—T as (— +o0, (120)

T=Ty at (=—(z, — Zp), pgng for (> —(zr — Tm), (121)

Oy,
= (1= ) by + (1= B)Th] |
(122)
T|ep- = T ot » (123)
9T X T o (Ox, OT Oz, 8T
5 1+ - e -521420_ +(1-a)(l-DG; ( e 5o e a@) LZO
5 T, (124)
=—(1— —b -1 . e=0
=—(1— o) [Q-{—(b b)Tlg‘:o} G, exp( 5 T 1 ) ,

where the dot in Eq. (122) represents the scalar product of the vector on the left with the operator
V. given below Eq. (92), and where expressions for V2 = V,.- V,. and G, were given in and below
Eq. (99). Equations (117) — (124) constitute a closed boundary-value problem for ., Z,, T and
pg, an equation for the latter being obtained from the combination of Eqs. (117) and (118) in
the region { < —(zr — zn), and may be solved subject to arbitrary initial conditions. In many
applications, however, one is primarily concerned with the long-time basic solution corresponding
to a steady, planar deflagration, as described by the formulation derived in the previous section,
and its stability. We also note that the porosity a has been reduced to a simple step function by
the asymptotic formulation and that other quantities of interest, such as the gas velocity (94), are

given in terms of zr, T, py and T according to the formulas derived previously.

VII. A Basic Solution and its Linear Stability

As an illustration of the usefulness of the asymptotic model derived above, we consider the
stability of a steady, planar deflagration in the unconfined limit pg = 1, which implies that py = 1
throughout. A basic solution of the model (117) - (124) in that case, corresponding to a steadily
propagating planar deflagration and denoted by a zero superscript, is given by the solution con-

structed in Section IV, namely

- } T, — B
WO =t 0oy g dza) o 1n< b ) (125)
b(l - 013) + 7bog ITm—B
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1+ (T —1l)exp | ————= ((+z, — = , < —(z, —xp,
( ) [1-1—043(1—1) (s m) ¢ < ~( )
b(1 — ) + Fhas
T°(¢) ={ B+ (Tjn — B) exp (1-o )+rAba (C—i—m?-—mg%) , —(2%-22)< (<0 (126)
1, = 1=e)@+1+7) + fbas >0,
L b[l+ as(f —1)]
where - )
_ (1—as)(1+73):}—rbas (127)
and, from Egs. (94) and (106), the steady, planar gas-phase velocity ug is given by
0 __ T - 17 C <0
ug = {f‘l (1= #)(1 = ag) + (Tp — (1 — as +asf)], ¢ > 0. (128)

The burning-rate eigenvalue and propagation speed were given by Eqs. (67), (69) and (70), but
are not needed explicitly in the stability analysis that follows. Here, we are particularly interested
in the effects of the porosity as, in the realistic limit of small gas-to-solid density ratio #, on the
stability of steady, planar deflagration given by the basic solution (125) — (128). As shown below,
the value of the burned temperature plays a critical role in determining the corresponding neutral
stability boundary, in part because the propagation velocity is exponentially sensitive to 7} in the
large activation-energy regime. From the last line of Eq. (128), T} has the behavior

Tb=%[Q+1+%—f1as (Q+1+vs—é)+o(f2)] (129)

- L]

for # < 1. Since the nondimensional heat release @) is typically significantly larger than unity,
whereas the specific heat capacity ratio b is generally not significantly larger than unity, the final
burned temperature, and hence the steady mass burning rate, decrease with increasing porosity
and increasing gas density in the unconfined limit. However, as discussed in Section IV (Fig. 3),
the opposite trend is predicted for the confined problem once the overpressure achieves a critical
value.

Using the derived asymptotic model, the linear stability analysis of the basic solution (125) -
(128) follows a standard approach®. Briefly, perturbation variables ¢, (z1,z2,t), ¢r(z1,Z2,t) and

7(z1,22,(,t) are defined according to

$m=$?n+¢m, xr=w2+¢r7 T:T0(4)+T+¢rdd_7;' (130)
These definitions are substituted into the asymptotic model defined by Eqgs. (117) - (124), and the
equations are linearized with respect to the perturbation variables to obtain a linear problem for
¢m, ¢r and T given by
or + O _ tha 0. dT”
ot ¢ ot d¢

- 0*r 8% O
= [1+as(l—1)} (Bm% +8x% + 3C2) , (< —(22-22),

(1— a) [1 + g (7h— 1)}

(131)
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) 0
rb(1 — as)—— + [b + a,(7b — b)} 5 [”boz8 8;; +o(1—-r)(1- )Qg?‘} %lé‘
=[l+a(i—l)] (QQ—T+82—T+&> ~ (27 —2m) <¢ <0, >
s oz ' 8x3 T 8(2)
. . or (& Pt  Or
b1+ (7~ 1) 57 = l(ax2+aa:2+5q—5)’ (>0, (133)
¢, Opm B
e T T 2(Ty — 1)T|c:o+’ (134)
subject to
7T—0 as ( — £o0, (135)
dT® a7’
( dC ] |em—(29-00 )~ AC /o=~ (29—a9, )+
) b dQTO ~ 1%} d2T0
[l—}-as(l—l)] <6_Z+¢m'3€‘2—> ’c_ w0s2 - - [1+Oés(l—1)] ( Z + Om—5 ac? ) L_ (2020 )
a g 9 o ™ m
— gt (1= ) [=7s + (b= 1)Tin] ,
(137)
dr®
7'|<=0+ = (T+¢r dc > lc 0_ (138)
~OT A or d?T°
{— I+ a,(l-1 ( + ¢r ) '
OC | o+ [ 2l )} ¢ ¢ d¢? J le—o- (139)

- i [ 5Q _,_(b-b)( Tffblﬂﬂgzw,

where we have used the fact that d7°/d¢ = 0 for ¢ > 0.
From Eqs. (130), steady, planar burning clearly corresponds to the trivial solution ¢, = ¢ =
7 = 0, whereas nontrivial solutions to the linear stability problem are sought in the form

ém ] Cm
b — ez(wt:}:klml +kozs) 1 , (140)
T ) a(C)

which has been normalized by setting the coefficient of ¢, equal to unity. Equations (131) - (133)
and Eq. (135) then determine the function 0( ) as

clepc -+ iw(iwbl + k2>_1bob1 (Tm — 1)6b1(§+m?‘_$g‘), (< (IE - SL'm)
a(¢) @e‘f*g + c3e®+¢ +iw(iwbs + k%) (bg — bacm)ba(Ty — Ble?¢, —(2% —12) < ¢ <0
s, (>0,
(141)
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where the c; are constants of integration, and the other quantities that appear in Eq. (141) are

given by

y . Thas . fba, Cltog(fb—1) . 1-a
ST lha@-1) 7 lvesli-D T Tta(-D ' ltai-1)’
) _ b+ as(fh—b) j.o rhl—as) o b(r—1)(1—0)

I; .
= = y = = s 3 bs = = 1+Ols’f"~1 s
lta(=0 " 7 lxa-0) s =g+l -1)]

I+ as(i-1) i
(142)

and

1 - 1 -
D :5 [bl +. b% + 4(iwby + k‘2)jl , g+ = 5 ‘:bz == \/b% + 4(twbs + k2>:l ,

1
§= 3 [b5 — /b2 +4k2] .
The remaining conditions embodied in Eqs. (134) and Eqs. (136) — (139) serve to determine the
c; and the dispersion relation w(k), where k = \/k% + k2.

(143)

VIII. Analysis of the Dispersion Relation

The linear stability analysis is completed here for a representative case in whichr =b=1=1,
corresponding to the neglect of differences between the physical properties of the solid and liquid
phases of the material. While this restriction is introduced in order to reduce algebraic complexity,
it clearly can be relaxed if there is interest in other values of these parameters. As a result, by = b,
bo = bg, bg = by (which implies that ¢, = p) and by = 0. Then, from Egs. (133) and Eqgs. (136) -
(138), the coeflicients in Eq. (141) are determined as

T —1

wh
¢1 = (T — 1)byet+(@2=3m) [c + &—0——} ,  C4= —2iw ,
' (Tn = 1)1 " by + k2 Ny B
g- (27 —=7,) iwhpg_
ca=(B—- l)ble——-———— {cm(q_ +iw) + __7'_41)_92_} ,
q9- — g+ ’wal + k>
0_.0 (144)
eQ+($r_zm) .
o =~ T e [(B— gy +i0) + (Tn ~ Ve = a1
9- — 9+
iwbo
— (T, ~ 1 - —q + B-1 }
iy 1 k2 [(Tm —1)(q +) + a4 )l
where 20 — 22, was given by the second of Egs. (125) and
1 2w ’l:wb()bl - o __,.0
m = — T —1 —_— ] — - _— —_— 94 (T -2y, )
c D[( ] )(bl—i- 5 ) (B —1)b, + (T B)Z_wbl_l_kQ]e
; (g-~a4)(@p—25,) _
’waobl [’ ( _ 1)6 2+ 1 _ (Tm . B) , (145)

Diiwoby + #2) | T
D =by(Tn ~ 1) = (B - Dbi(a- ~g4) 7" [(g- +iw)e= "0 — (g, +iw)] .

g- — 4+
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We remark that, in light of the above simplification, all effects due to melting of the solid are
embodied in the parameter v,. In the limit that the heat of melting becomes negligible (vs — 0},
we have B — 1 and hence ¢z — 0. In that case, the functional form of the temperature function
o(¢) is the same on either side of ( = —(z2 — 20)), and the melting surface becomes effectively
“invisible”.

An equation for the dispersion relation w(k) is now obtained by substituting the results given
thus far into Eq. (139). The result is, in terms of the coefficients defined above,

Q+(1 b)T

ldcy — (1— o5+ Zas) [q_cz +qres + b%(Tb - B)] =—~(1-as)|p —-—5@————-—7——

+1—5] ca, (146)
where s and ¢+ depend on iw and k according to their definitions given above. This is a fairly
complicated dispersion relation, but typically, the gas density is small compared with that of the
condensed phases, the thermal conductivity of the gas is correspondingly small, and the heat of
melting is small compared with the thermal enthalpy. For these reasons, the gas-to-solid/liquid

density ratio 7 is treated as a small parameter, and the scalings
[ =01, =27, (147)

are introduced for the corresponding conductivity ratio [ and the nondimensional heat of melting
vs, where the scaled values [* and 5 are considered to be of order unity. The dispersion relation
w(k) is then expanded as

W~ W+ wif w4 (148)

Associated expansions of all quantities in Eq. (146) that depend on these small parameters are
then performed, keeping the overall heat release Qg with respect to the solid, Qp = Q + s, a fixed

parameter. Under this constraint, there is an expansion of the burned temperature T} given by

=Q0+1 Tl_

Ty~ TP+ Ty ey = T =g (T ~1). (149)
In addition, the expansions
B—1~~*, [3~0(? ~1 O b Ve Bl X A
Vs 18~ O(F), b~ ld g (b= )Pt by g Lt (150)
and
gr ~ gL+ i+, @ 2[1i\/1+4(z'w0+k2)],
ql.zl- @ |5 2l* :I:B + [*(2iwg + 4k2) " twy (151)

apply. Substitution of these expansions into Eq. (146) determines the equation for the leading-
order dispersion relation wo(k) to be (2iwo+6)(1—¢2%) +iw(B— 2b) which, after some manipulation,
can be expressed as

4(iwg)® + (iwp)? [4k2 + 4b(1 — b) + 2(1 + 26)8 — 52)] + 2iwpB(b +2k%) + B2k* =0.  (152)
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This dispersion relation is identical to the result obtained when a constant density for the gas
phase was assumed.® It is therefore concluded that in the absence of confinement and in the first
approximation for small values of 7, the gas-phase thermal expansion has no effect on the stability
behavior, a result that might be anticipated based on the small contribution of the mass fraction
of gas in this limit.

The neutral stability boundary, corresponding to neither growth nor decay of the infinitesimal

perturbations of the form given by Egs. (140), can be displayed in a plane of the Zel’dovich
number 3, defined by the last of Egs. (58), and the nondimensional wavenumber k. This boundary
is obtained by setting the real part of the complex growth rate iw to zero. By setting the real and
imaginary parts of Eq. (152) separately to zero, the neutral stability boundary at leading order,
Bo(k), can be obtained as the positive root of the quadratic

(b + 2k?)82 + 2 [kz —(1+2B)(b+ 2k2)] Bo — 4(b + 2k?) [5(1 —b)+ kz} =0,  (153)

and the corresponding leading-order frequency wo(k) of the neutral disturbance is

il

wi -;-50(6 +2k?). (154)
Since wg # 0, the stability boundary is of the pulsating type, like that obtained for solid-propellant
combustion in the absence of two-phase flow!?2%2! (such intrinsic pulsating instabilities are also
observable experimentally??). This leading-order stability boundary was obtained and discussed
previously® and, for completeness, has been included in Fig. 7 (solid curves), which also exhibits
the next-order approximation for a modified Zel’dovich number $°(k) (chain-dash and chain-dot
curves) as discussed below. Several curves, corresponding to different values of b, are shown,
indicating that decreasing values of b are destabilizing, which suggests that diminished thermal
influences of the gas phase (which convects heat away from the reaction zone in the direction of
the burned region) is less able to damp the known thermal/diffusive instability of the condensed
phase.?® Indeed, we also show for reference the neutral stability boundary corresponding to strictly
condensed-phase combustion (combustion synthesis), which can be recovered from the present
analysis by setting # = [=b=1and a; =0in Eq. (146). This stability boundary, which is

determined (in the absence of melting) from the dispersion relation
C N3 e N2 2 1o L. 2y, La2,9
4(iw)® + (iw)® |1 +4k* + 28 ~ Zﬁ +§(zw)(1 + 4k )+Z'B k=0, (155)

is qualitatively similar to the stability boundaries obtained from (152), reflecting the fact that this
particular type of instability phenomenon arises from combustion of the condensed phase, with the
presence of the gas having a secondary, perturbative effect as discussed below. The fact that the
minimum value of B4(k), given by 8y = 1+2b+ \/gg, occurs at a nonzero value of k = (5/8)1/4 >0
(as compared with Gy = 1+ 2b+vV1+8bat k= 0) suggests that nonplanar, cellular patterns will
be observed at the transition to nonsteady burning as the stability boundary is crossed. Since the
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leading-order results for the neutral stability boundary are independent of the porosity o, they
are also the same as those obtained previously for a nonporous case in which two-phase-flow effects
were confined to the liquid/gas region'?, as well as for a different model in which two-phase flow
effects were suppressed in favor of an intrusive gas flame adjacent to a pyrolyzing solid surface.?’
Consequently, these same or very similar results are likely to occur in a variety of different energetic
systems.

Since the leading-order results regarding the neutral stability boundary are independent of «,
the leading-order effects of nonzero porosity are determined by proceeding to the next order with

respect to the ratios of gas density and conductivity to those of the condensed phases. With the
neutral stability boundary thus represented as

B BotBride, (156)

an expression for wy(k), introduced in Eq. (148), can be obtained from the dispersion relation at

O(#) given by

. ~ 27:(4} -+ 27,w Qg
zwl[ﬁow(l—b—qi)— > ﬁf’} 0 ,

0o _ 7 — _ 0y*
| e -1 b = - )

+ Eﬁo(zqi —3) —iwo(fo — 1) + M‘fﬁ_ﬂ ; % 2iwo + fo

b+ (2 i
e | bt 2qg_1[+(zwo+4k)l]}

—pfa -0y {ﬁo(z'wo - )~ L 2ico +60)

b (T — 1)~ (i + ¢2)(2i0 + Bo) e(q‘i—c&)1n[(T§—1>/<Tm—1>1} ,

(157)
where 8y and wo were given by Eqgs. (153) and (154), respectively. It is observed that Eq. (157)
differs from the corresponding result® that assumed a constant gas density, and thus modifications
in the neutral stability boundary due to thermal expansion of the gas, as well as those due to
two-phase flow, appear at this order in the analysis. Setting Re(iw1) to zero and equating real and
imaginary parts of Eq. (157) separately to zero then gives a coupled system of linear equations for
B1 and w; that may be solved and analyzed.? These results are summarized below.
It can be shown that the O(#) perturbation coefficient 31 (k) with respect to the leading-order
stability boundary fFo(k) determined by Eq. (153) can be shown to consist of the sum of three
contributions arising from the effects of nonzero density and thermal conductivity ratios # and Z,

respectively, and the effects of a nonzero heat of melting. In particular,

Qs

Buk) = 2 [0 + B +i(0), s

1—053

where it is readily seen that for v} = 0, the solution for the perturbation coefficient 8; is propor-
tional to the factor as(1 — )~ !. Positive values of the coefficients Br, G; and 5’7 represent an

upward, stabilizing shift in the neutral stability boundary from its leading-order position shown in
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Fig. 2, while negative values represent a downward, destabilizing shift. The magnitude of these
perturbations in the stability boundary, whether positive or negative, is seen from Eq. (158) to
increase with increasing values of the porosity a;. In addition, there is a wavenumber dependence
for each effect, with nonzero values of [ being destabilizing for small wavenumbers and stabilizing
for large wavenumbers. The effect of nonzero values of 7, while generally destabilizing, exhibits
the opposite trend (increasing destabilization for increasing wavenumbers), consistent with the
physical expectation that the gas-to-solid/liquid thermal diffusivity ratio of the gas to that of the
condensed phases, which is equal to [ / b#, should play a key role in determining the stabilizing or
destabilizing influence of the gas phase.

For nonzero values of v}, the third component v} B7 to the solution of §; provides a correction
that is independent of ;s and, assuming an endothermic heat of melting (v* < 0), corresponds to
the effect of increasing the amount of heat released in the reaction zone by the amount of heat
absorbed by the liquid that accompanies the phase change in the preheat region. The effect of
melting can be stabilizing or destabilizing,® although in the typical case of endothermic melting,
the resulting correction in the stability boundary tends to be destabilizing, especially for smaller,
more typical values of b and larger wavenumbers. This trend may be attributed to the fact that
the release of the heat of melting by the liquid-to-gas reaction serves to enhance the heat release
in the highly temperature—sensitix?e reaction zone, and that for b< 1, a greater proportion of this
energy is absorbed by the reactive condensed phase relative to that absorbed by the nonreactive
gas. A similar destabilizing result was predicted for low-temperature meltihg in gasless systems,?*
although this effect diminishes and then reverses as the melting temperature increases such that
melting occurs within the reaction zone itself.?8 Here, too, the effect of increasing 7;,, (while keeping
TP and all other parameters fixed) is found to be stabilizing, particularly for small wavenumber
disturbances.

There is a final O(F) effect to be accounted for that is due to the change in the stability
parameter J itself that accompanies any variation in the density ratio 7. Although we have thus
far adhered to a conventional definition of the Zel’dovich number as defined by the last of Egs. (58),
this parameter itself varies with # through changes in the burned temperature 73. In particular,
for small values of 7, T}, decreases as 7 increases according to Eq. (149), thereby increasing the
effective activation energy. Defining a modified Zel’dovich number 3° that does not vary with #
according to

Ey
ReTY’

B =(1-T))N°, N°= (159)

where 7 is the leading-order burned temperature defined in Eq. (149), we calculate an additional
correction —a;(1 — as) 7t 817 in the position of the neutral stability boundary with respect to the
new parameter 3°, where 3 = (1 —2/T9) By, where Fo(k) is the leading-order neutral stability
boundary determined from Eq. (153). That is, analogous to Eqgs. (156) and (158),

TP —2
7

Us

ﬁ”v%+[ (&+&F—

1— o

%>+ﬁﬂﬂf+“n (160)
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where B3,(k), Bi(k) and [3’7(13) are the same coefficients as those introduced in Eq. (158). The
above two-term approximation of 89 is shown in Fig. 7 (chain-dash curves) for the same values
of b as the leading-order approximation 8, and for typical values of the remaining parameters.
Also shown in that figure are the corresponding (chain-dot) curves for the case of a constant
gas-phase density,® which, while still indicating an overall destabilizing effect due to gas-phase
influences, nonetheless lie above the modified stability boundaries that are obtained when thermal
expansion of the gas is taken into account. However, because the constant-density analysis did »
not assume gas-phase quasi-steadiness, it can be argued® that at least part of this difference is
likely attributable to the assumption of an instantaneous gas-phase response, since the latter may
result in some overstatement of this destabilizing effect. From Eq. (160), it is clear that because
the linearized correction to the leading-order result, due to nonzero values of the density and
thermal conductivity ratios 7 and ] , is proportional to as(1 — a;)~ !, whereas the coefficient ,@7
is independent of ‘o, the effect of an increase in porosity is destabilizing with respect to steady,

planar deflagration, and that this effect is enhanced by gas-phase thermal expansion.

IX. Conclusion

The present analysis has summarized recent advances in the application of multiphase-flow
theory to the study of deflagrations in porous energetic materials such as degraded nitramine pro-
pellants. The focus in this work has been on the investigation of the effects of nonzero porosity
and two-phase flow on the structure and stability of steady, planar deflagration. This was facil-
itated by the application of activation-energy asymptotics and the derivation of an appropriate
asymptotic model for the general case of nonsteady, multidimensional propagation in both uncon-
fined and confined materials. In the present work, this derivation proceeded under the assumption
of a thermally expansive, quasi-steady gas phase, where the latter allowed the reduction of the
more general confined problem to an analogous freely-propagting combustion wave with a specified
pressure difference, or overpressure, between the burned and unburned states.

For the case of steady, planar propagation, it was demonstrated that the existence of an
overpressure in the burned gas region has a significant effect on the burned temperature, gas-
velocity profile, and the burning rate of the material. In particular, because of the pressure-
driven permeation of the burned gases into the unburned material, a preheating effect is produced.
Consequently, the temperature increases linearly, and hence the burning rate initially increases
exponentially, with increases in the overpressure, followed by a more modest algebraic pressure
dependence of the burning rate that is suggestive of Ap™ - type laws. This rapid increase in the
burning rate, an explicit formula for which was derived, is in qualitative agreement with most
experimental results on confined materials, which tend to show a sudden and rapid increase in
the deflagration speed that is generally associated with the onset of convective burning. Thus, in
contrast to the case of an unconfined deflagration, for which the gas flow relative to the condensed

material is always in the downstream direction, the flow of gas in the unburned solid is, except in
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the limit of small overpressures, always directed in the upstream direction, providing an important
mechanism for preheating the unburned material and allowing the transition to a convection-
enhanced mode of burning.

Since the steadily-propagating, planar combustion. wave represents a basic solution of the
more general nonsteady, nonplanar asymptotic model, its linear stability may be investigated in
a reasonably straightforward fashion. This was illustrated for the case of an unconfined (constant
pressure) deflagration, for which it was determined, as in previous studies of nonporous propel-
lants and condensed-phase combustion, that a pulsating stability boundary exists in the plane of
activation energy and disturbance wavenumber. The neutral stability boundary was shown to be
especially accessible for realistic parameter values that furthermore permit the effects of porosity
on the location of this stability boundary to be handled in a perturbative fashion. Specifically,
in the realistic limit of small gas-to-solid/liquid density and thermal conductivity ratios, it was
shown that shifts in the stability boundary were essentially proportional to as(1 — ;)™ ! and that
the effects of thermal expansion and two-phase flow thus results in a destabilizing shift in the
neutral stability boundary relative to the nonporous case. Additional stability results are under
investigation for the confined geometry, where two-phase-flow effects associated with burned-gas
permeation and the subsequent convective preheating of the material are anticipated to have an

even more pronounced effect on the stability of the deflagration wave.
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Figure Captions

Fig. 1. Schematic illustration of deflagration in porous energetic material with two-phase flow in both

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

the solid /gas and liquid/gas regions, with combustion occurring in the latter. In the general
case of a confined or partially confined geometry, a difference between the upstream (unburned)
and downstream (burned) values of the gas pressure drives a portion of the burned gases into
the pores of the unburned solid, as shown. In the unconfined limit of small overpressures
(pg — 1), the gas flow is everywhere in the downstream direction, whereas for sufficiently

large overpressures, even the gas flow in the burned region is directed upstream.

. Final burned temperature Tj as a function of the overpressure ps — 1. As the overpressure

increases past a critical value, 7}, changes from a decreasing to an increasing function of the
porosity as.

. Burned gas velocity ug as a function of the overpressure pg —1. Also shown is the gas velocity

ug(0) at the solid/liquid interface. Negative values indicate gas flow in the upstream direction,

toward the unburned solid.

. Normalized burning-rate coefficient U, as a function of the overpressure pg ~1.

. Pressure profile p(¢) in the gas-permeation region for O(1) overpressures. Also shown is the

velocity profile uy(§).

. Scaled pressure profile P(£) in the gas-permeation region for large overpressures.

. Leading-order neutral stability boundaries 85(k) (solid curves) for the unconfined problem as

a function of wavenumber for several values of the gas-to-liquid/solid heat-capacity ratio b.
Also shown is the corresponding neutral stability boundary (top curve) for the strictly solid
combustion-synthesis (SHS) problem, and the modified boundaries 3°(k) (chain-dot and chain-
dash curves for constant and nonconstant gas density, respectively) that are obtained when the
next-order correction with respect to # is included. The latter boundaries are calculated for

reasonable values of the remaining parameters (as = 0.3, v =0, 7 = 0.1, * = 1.0, TP = 6.0).
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