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Theoretical two-phase-flow analyses have recently been developed to describe the structure and

stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined

geometries. The results of these studies are reviewed, with an emphasis on the fundamental differ-

ences that emerge with respect to the two types of geometries. In particular, pressure gradients are

usually negligible in unconfined systems, whereas the confined problem is generally characterized

by a significant gas-phase pressure difference, or overpressure, between the burned and unburned

regions. The latter leads to a strong convective influence on the burning rate arising from the

pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating

of the unburned material. It is also shown how asymptotic models that are suitable for analyz-

ing stability may be derived based on the largeness of an overall activation-energy parameter.

From an analysis of such models, it is shown that the effects of porosity and two-phase flow are

generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than

their pristine counterparts, may be more readily subject to combustion instability and nonsteady

deflagration.
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STRUCTURE AND STABILITY OF DEFLAGRATIONS IN

POROUS ENERGETIC MATERIALS
.

I. Introduction

●

✎

The combustion behavior of porous energetic materials is of increasing interest due to the

realization that even supposedly nonporous materials may develop significant porosities over time

due either to aging or to other types of degradation that may arise from exposure to abnormal

environments. In such materials, two-phase-flow effects are especially significant due to the presence

of gas flow relative to the condensed material both within the unburned porous solid as well as in

the exothermic liquid/gas layers that typically form on the surfaces of many types propellants, such

as nitramines. 1–5 In the presence of confinement, the significance of the convective transport effects

due to two-phase flow are enhanced, leading, through gas permeation into the unburned solid, to

a preheating of the solid and, consequently, to a strong enhancement of the burning rate relative

to the unconfined case. Indeed, this type of preheating associated with gas permeation into the

unburned solid is generally associated with the onset of specially identified modes of combustion,

such as convective burning (cf. Ref, 6 and the additional references therein). However, even in

unconfined problems, two-phase-flow effects play an important role, affecting not only fundamental

thermodynamic characteristics such as the burned temperature, but also the burning rate and the

stability of steady, planar burning.

In the present work, we synthesize and describe the results of several recent analyses that,

by means of asymptotic methods, have been successful in predicting the effects of two-phase flow

on the structure, burning rate and linear stabi~ity of a propagating deflagration wave. 7–12 For

the case of a confined or partially confined geometry, a quasi-steady propagation regime can be

identified such that in the limit that the pressure difference, or overpressure, between the burned

and unburned regions approaches zero, the combustion wave collapses to that corresponding to an

unconfined deflagration. Indeed, a sketch of the geometry for the simplified chemistry adopted here

is shown in Fig. 1, which indicates an unburned solid/gas region, a melting surface, a liquid-gas

region within which is embedded a thin reaction zone in which burning takes place, and finally

a burned gaseous product region. The primary difference between the unconfined and confined

problems is that in the case of confinement, the direction of gas flow in the unburned region is

likely to be negative, resulting in a preheating effect that results in a rapid increase in the burning

rate as a function of overpressure. This permeation-enhanced burning is generally referred to: for

obvious reasons, as convective burning, and one of the successes of the present model formulation

and analysis is the ability to predict the transition from ordinary conduction-controlled burning

that is characteristic of unconfined deflagrations to one in which convection plays a significant role.

The model used to investigate the wave structure described above is essentially a simplified

version of more general models of two-phase reacting flow (c~. Ref. 13). In particular, the model

essentially consists of continuity and energy equations for each coexisting phase, a simplified ac-
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counting for momentum conservation appropriate for deflagrations, an equation of state for the

gas, and an appropriate set of boundary and melting surface conditions. Although it is critical to

the focus of our study to allow for velocity differences between coexisting phases, for simplicity

we assume good thermal contact and adopt the single-temperature approximation that the tem-

perature at a given spatial location is the same for each phase. Also, in keeping with our goal of

focusing on two-phase-flow effects, we deliberately simplify the chemistry by postulating the overall

process R(s) -+ R(l) ---+ P(g), where the first step denotes the melting (assumed to be slightly

endothermic) of the solid material! and the second represents a one-step exothermic process in

which liquid-phase reactants are directly converted to burned gaseous products. Extensions oft he

analysis to more complicated global mechanisms have been given,5~10>11but such extensions are

not critical to the examination of the primary two-phase-flow effects of interest here.

In what follows, we first present the formulation and nondimensional models that will be

considered for the analysis of the two types of problems (confined and unconfined) introduced

above (Sections 11 and HI). The case of steady (unconfined) or quasi-steady (confined) burning

is then considered in order to derive, via asymptotic methods, analytical expressions for the re-

spective planar burning rates and other aspects of the deflagration structure (Sections IV and V).

A time-dependent, multidimensional asymptotic model, one in which the reaction zone becomes

represented by a reaction sheet, is then derived (Section VI) and used to examine the stability of

a basic planar mode of burning (Sections VII and VIII). Finally, the results and indications for

fhture investigations are summarized in the Conclusion (Section IX).

II. Formulation

A sketch of the physical problem is shown in Fig. 1. The unburned porous solid lies generally

to the left, and the burned gas products lie to the right. The two are separated by a deflagration

wave that generally moves from right to left, converting the former into the latter. These regions

(unburned and burned) in turn are bounded on the left and right, respectively, but these boundaries

are assumed to be sufficiently far away (relative to the width of the flame region) such that the

only significant effect on the combustion wave itself occurs in the case of confinement, where a

significant difference develops between the upstream and downstream values of the pressure. In

the unconfined problem, the gas flow is unrestricted in the burned region and pressure gradients

remain sufficiently small that they may be neglected on the nonacoustic scales of interest here.

In the confined case, however, gas flow in the burned region is restricted and hence the continual

production of gas via chemical reaction causes the pressure to become greater in the burned region

than in the unburned solid. This pressure difference drives at least some of the gas upstream in

the direction of the unburned solid, where momentum conservation plays a critical role in reducing

the gas velocity far upstream to zero so as to satisfy the ambient conditions there. Depending on

the magnitude of the overpressure, the gas velocity in the burned region, on the other hand, may

be either positive or negative. Hence, for moderate overpressures, the gas velocity can experience

6



.

a turning point within the reaction region where the gaseous products are generated.

The structure of the combustion wave thus consists of a solid/gas preheat region that, for

the confined problem, contains a gas-permeation boundary layer in which the pressure rises from

its ambient value to its larger (possibly much larger) value in the liquid/gas region, the melting

surface that marks the left boundary of a liquid/gas preheat region (and the right boundary of

the gas-permeation layer if one exists), the liquid/gas preheat zone, a relatively thin exothermic

reaction layer in which chemical reaction occurs , and the burned gaseous region that extends

to the right boundary. In the limit that the activation energy of reaction is large, the reaction

zone asymptotically becomes a propagating surface similar to, but displaced from, the melting

surface. In the laboratory-fixed spatial coordinate system (21, 22, 23), the porous solid extends to

23 = —cm, where conditions are denoted by the subscript u, and the gas extends to 53 = +CC,

where conditions are identified by the subscript b. The deflagration generally propagates in the —iZ3

direction, although, in general, the wave motion is allowed to be both nonsteady and nonplanar.

Here and in what follows, a tilde over a symbol (e.g., i3 ) will denote a dimensional quantity,

and the subscripts s, 1 and g will denote solid, liquid and gas-phase quantities, respectively. A

continuum formulation, in which appropriate gas- and condensed-phase volume fractions (a and

1 – a, respectively) multiply the physical variables associated with each phase, will be used to

model the physical problem just described.

The governing system of equations that will be considered incorporate a number of assumptions

that greatly simplify the analysis without compromising the fundamental two-phase-flow aspects of

the problems of interest here. Two of these include restricting the analysis to the single-temperature

limit and considering only weakly nonplanar deflagrations. The first implies sufficiently good

thermal contact between co-existing phases such that corresponding temperature differences are

small, while the latter, which implies that the transverse velocity components are small relative

to the component of velocit y in the Z3-direction, allows the velocity field (for the gas and liquid

phases) to be approximated by i-il,gN (O,O,iil,~(&l, i2, i3,;) ), with the velocity of the solid assumed

to be zero. Other assumptions will be indicated as they are introduced. We remark that the single-

temperature assumption, which can be readily relaxed by considering the limit of sufficiently large,

but finite, rates interphase heat, transfer,714 is quite reasonable for many two-phase-flow problems.

In contrast, the corresponding limit of large interphase momentum transfer is not so plausible,4~7

and thus it is important to retain velocity differences in the model if one wishes to capture true

two-phase-flow effects.

Denoting the melting surface that separates the solid/gas and liquid/gas regions by Z3 = 2m,

and the gas-phase volume fraction by a, continuity in the region ti3 > fim is expressed separately

for the liquid and gas phases, where the latter may be replaced by an overall continuity equation

for the two-phase medium. Consequently, we

; [(1 - a)p~] + & [(1 - cl)p~ii~]=
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(2)

where ~, iil , ~ and ; denote density, velocity, the single temperature and time, respectively. For

simplicity, we will assume a constant value for ~1, but not for Fg. In the reaction rate expression,

fil is the overall activation energy, ~ is the universal gas constant, and ~ is the exponential

reciprocal-time prefactor which, for simplicity, will be assumed constant. For this type of global

kinetic modeling, however, it may be reasonable to assign a pressure, as well as a temperature,

dependency to ~. In the solid/gas region Z < &, we assume for the solid phase a constant density

~~ and zero velocity (U, = O), with a - as also constant in this region. Gas-phase continuity for

Z < in is thus independent of the solid phase and is given by

(3)

Conservation of energy for each phase in the liquid/gas and solid /gas regions is similarly

given by separate equations for each coexisting phase, which, as before, may be summed to give an

overall energy equation in each region. In the single-temperature limit, however, only the overall

energy equations remain and these are given

$ [P,(l-a)(Q+zt7) +Pgz,aT]

= G. [ii(l

by

where Eq. (1) has been used to eliminate the reaction-rate term in Eq. (4). Here, Z, ~ and @

denote heat capacity (at constant volume for the liquid, and at constant pressure for the gas, both

assumed constant ), thermal conductivityy and pressure, respectively, and Q is the heat release for

the global reaction at temperature ~. We remark that because of the small Mach number and

the small ratio of gas-to-condensed phase densities in the problems to be considered, no terms

involving the pressures in the condensed phases appear in these equations. Terms involving fig,

however, arise from the contribution to the rate of change of the internal energy of the gas from the

sum of the rate of surface work –~(crii@~)/dZ and the rate of volume work –z5&b/i% performed

by the gas.

Although analogous equations may be written for momentum conservation, we avoid intro-

ducing them explicitly by adopting certain simplifying approximations which are often used in

these types of problems. In particular, in place of gas-phase momentum, we adopt, depending on

the type of problem, either the assumption of constant pressure throughout or Darcy’s law (in the

solid/gas region). In the latter instance, which provides a convenient formulation when pressure

.

8



gradients are not negligible (as in the confined geometry introduced below), it is still reasonable to

assume, based on the assumption of small Mach number, that the gas pressure is homogeneous in

the liquid/gas region. If it is further assumed that the gas pressure in the burned region varies on

a longer time scale than that associated with the flame structure itself (e. g., when the confining

boundary is sufficiently remote with respect to the flame), then the upstream and downstream

pressures may be regarded as constant in the quasi-static sense. This argument is supported by

numerical calculations,15 which, though based on the assumption of a flame sheet propagating with

constant velocity, nonetheless enabled the authors to correctly identi~ this quasi-steady regime,

which they described as a “gas-permeation boundary-layer solution.” The latter refers to the fact

that the solution is characterized by a relatively thin gas-permeation layer in the solid/gas region,

described below in the context of the present model, that arises from the difference, or overpres-

sure, between the upstream and downstream values of the gas pressure. Thus, in place of gas-phase

momentum, we adopt either the conditions

(6a)

which is appropriate for

Here, the first of Eqs.

the confined problem, or, for the unconfined problem,

I%= F;, —cu<~<+m. (6b)

(6a) is the planar approximation of Darcy’s law, fig = –kbPg/(a,&),

implied by the planar representation of the velocity field introduced above. The coefficient k is

the permeability of the solid/gas region and ~Q is the gas-phase viscosity, while the value ~~ is the

specified upstream boundary condition on the gas pressure according to Eq. (9) below. We observe

that Eq. (6b) is actually obtainable from Eq. (6a) in the limit k -+ co (which implies ~] -+ p;), so

that in the aforementioned quasi-steady burning regime, the solution to the unconfined problem

constitutes a limiting case of the corresponding solution obtained from the more general condition

given by Eq. (6a).

The equation of state for the gas is assumed to be ideal, and thus fig is, in general, coupled to

the other field variables through the gas-phase equation of state,

fig = @gPT/wg ,

where ~, is the molecular weight of the product gas. Consideration of condensed-phase

(7)

momen-

tum, on the other hand, leads in principle to an equation for the liquid-phase velocity ill. Based

on a previous analysis,4 a reasonable first approximation is to set the condensed velocity equal the

condensed mass burning rate divided by the condensed-phase density. In the present context, this

implies that, since ii~ = O,

()(l& ji_l . .

‘1=–%- z ‘ ‘3>xm’ (8)

where tMm/d~ < 0 is the (unknown) propagation velocity of the melting surface. A modification

to this expression that introduces a linear dependence of iil on the gas-phase volume fraction Q

9



that qualitatively takes into account viscous and surface-tension-gradient (Marangoni) effects in

the liquid/gas region has been proposed,4 but in the present work we shall adopt the simpler result

given by Eq. (8).

The above equations now constitute a closed set for the variables a, iig, ~, ~g and ~g. The

problem is thus completely determined once initial and boundary conditions (including interface

relations at Z3 = im) are specified. However, since we will not be concerned with the initial-

value problem, but only the long-time solution corresponding to a (quasi-) steadily propagating

deflagration, only the latter are required here. Thus, the required boundary conditions are given

by

?+FU,a=Q~fOr2<iim; iig+o, fig-+~~as~+-~, (9)

where the burned temperature Tb, gas velocity ii; and pressure fig are to be determined, except in

the unconfined limit where, from Eq. (6b), ~~ = ~~. The unburned and burned values ~~ and ~~

of the gas density then follow from the equation of state. We remark that the upstream boundary

condition on the gas velocity is, except in the unconfined limit, merely a consistency condition in

the present formulation, since it is implied by the corresponding upstream condition on pressure

and the first of Eqs. (6a). Finally, denoting by + superscripts quantities evaluated at 2 = i%, the

continuity and jump conditions across the melting surface are

the third of which implies 3p9/8Z3 ~ O in the infinite-permeability /unconfined limit k ~ M. In

addition, overall conservation of enthalpy flux across 2 = 5m is expressed, using Eq. (8), as

where the geometric factor Gm and the unit normal nm are given by

Gm = [1+ (6’im/&iI)2+ @ire/822)2] , iim = G~l(–iiim/&iil, –8i.m/W2, 1) , (13)

respectively, and where ~~ is the heat of melting of the solid at temperature ~ = O (~~ being

negative when melting is endothermic).

HI. Nondimensionalizations and Further Approximations

The formulation presented above is meant to be a reasonable representation of cert ain classes

of materials, such as the nitramine propellant HMX, that satisfy the main assumptions introduced

.

.
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thus far. Typical values associated with the physical properties of two widely studied nitramines,

HMX and RDX, are quoted in various places. 5~16The only additional primary approximation

that will be introduced below is the assumption, already alluded to in the previous sections,

of gas-phase quasi-steadiness. 17–19 This approximation is common in analyzing the stability of

deflagrations in nonporous propellants (though it can be relaxed under certain conditions20-22),

and, for multidimensional stability analyses, has generally been accompanied by a quasi-planar

assumption as well.23 This notion of gas-phase quasi-steadiness, which is discussed in more det ail

in Ref. 9, is thus extended to the two-phase-flow problems associated with porous materials,

and is a particularly convenient approximation for the present study in that both confined and

unconfined geometries can then be treated within the same framework. However, we emphasize

that even though the velocity field can be approximated as one-dimensional (due to the dominance

of the normal component) by restricting the analysis to weakly nonplanar deflagrations, terms

representing transverse diffusion of heat remain. As a result, the present formulation retsins certain

multidimensional gas-phase effects, and thus does not explicitly invoke gas-phase quasi-planarity

as a simplifying assumption.

In proceeding with a reasonable nondimensionalization for the present class of problems,

it is convenient to introduce a characteristic velocity ~ defined as the speed of propagation

~ = –dZm/d; associated with the special case of a quasi-steady planar deflagration (an explicit

expression for U is presented in Sections IV and V). Assuming constant values for heat capacities

and thermal conductivities, we then introduce the nondimensional variables

where ~~ = p; fig/~ ~U denotes the gas density at the unburned temperature ~! and pressure 15~.

In addition, the nondimensional parameters

are defined, where ~ is the ratio of specific heats for the gas. It may be remarked that A is

the appropriate burning-rate eigenvalue, the determination of which will provide the quasi-steady,

planar propagation speed ~.

Transforming to the moving coordinate &= X3 – Xm(~1, az, t), whose origin is thus defined to

be mm, and introducing the above nondimensionalizations, Eqs. (1) – (12) become

(15)
2+$[’+-31=0) ‘<O)

[ ( =)+’4”9-%)1=0)‘>O ‘1’): [a(+pg – T-)]+ + 7-(1– u!) ‘u~–
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W’1-Q)(U’-31=A’1 -”) ’XPN1-31) ‘>O)

(): [(1– cl. + A,pg)q +(1 – a.) –-&--

-+ ’’”SW9-W9T1

tlxm ~T

8(

–Vm. [(
1(

apg axm apg— l–a. +b, )vmz’ +l?a. ~– ——
a a( )

, Cf<o,

(17)

(18)

: [r(@(Q+bT)+f&gT +31 M [“@i”’-wQ+bT)+’ ia(ug-a’Tl

=~m{[z(l-~)+~~]vmT}> t>”>
(19)

p~Tg = pg , (20)

19xm
U1= –;(l–r)—

at ‘

subject to the boundary and melting-surface conditions

(21)

(22)

.
(24)

~(l-aS)+iaS]‘m-~mT~,=o+- ~-as +ias]nmovmT~,=o_
(25)

= (1 – a8)G~l% [v. + (1 – ~)ym] ,

where T7m = (t3/6’xl – {tlxm/8x1 }i3/8~, 8/8x2 – {6’xm/8x2 }8/8[, O/O&) is the gradient in the

moving coordinate system. The limit p: a 1 and the elimination of the tbird of Eqs. (24) may be

taken in the case of an infinitely permeable material and/or unconfined geometry,

In the quasi-steady gas-phase limit discussed above, the gas phase is regarded as steady with

respect to &= O, and thus time derivatives of gas-phase quantities in the moving coordinate system

(vzz. 8pg/&, 6’(apg)/i% and d(czp,T)/&) maybe set to zero, so that with the use of Eq. (21),

Eqs. (15) – (19) become

(26)

(27)

(28)
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.

–-+ ’’”s+[(”,-3’4
(l-as) ~-(l-w)a; :~

[( 1

axm apg
(29)

=Vm. 1 – a. + ~aJVmT – @--
(% 8( ‘

(<0,

[ (g%)’,Tl (,,)
r&-c$(Q+b T)]++ –(k#&Q+bT)+~&a U –

=V~”{~(l–@+kY Vw2 , &>O,1}
Equations (20) – (24), along with the equation of state (20) and the boundary/interface conditions

(22) - (25), constitute the final model that will be considered below.

IV. The Burning-Rate Eigenvalue for Steady, Planar Combustion

Time-independent solutions of the final formulation given in the previous section correspond to

either steady (unconfined) or quasi-steady (confined) deflagrations. In either case, the nondimen-

sional propagation speed Oxm/dt = – 1 by definition, and the classical problem is to determine the

dimensional burning rate ~ by obtaining an expression for the burning-rate eigenvalue A. Thus,

first considering the more general case of a confined geometry, a solution is sought for the steady

eigenvalue problem

(31)

-$[(l++qqug+l)] =0, {>0, (32)

[ ( J1 ‘>0
-$(1 -a)= -rA(l-a)exp N l-~ (33)

subject to the boundary and melting-surface conditions (22) – (25) which, when specialized to one

dimension, become

(36)

13



Here, the alternate expression for the coefficient i indicated in Eqs. (14b) has been used in the

last term of Eq. (29), and the equation of state (20) has been used to give a closed problem for a,

Pg, Ug, T and the eigenvalue A.

IV.1. Preliminary Analysis .

A partial solution in the region <<0, where chemical activity is absent, as well as expressions

for T5, u: and Ug (0) = u~ IC=O,are obtained as follows. From Eqs. (31) and the boundary conditions

(36), we have

P9(u9+l)=T, E<O, (40)

and hence

%l,=O=%-l.
(41)

We observe from Eq. (40) that since T >1, the gas velocity UQ> – 1 in the gas/solid region ~ <0.

That is, consistent with a quasi-steady mode of burning, the speed of gas permeation into the

solid must be less than the propagation speed of the deflagration. Equation (32) and the surface

conditions (38) and (41) then imply

CY+(2.(G1)T
P:(U9 +1) = , <>0,

i%!
(42) ‘

which, upon evaluation at &= co, determines u: in terms of Tb as

(43)

Turning attention to the energy equations (34) and (35), we may readily perform a single integration

and use the above relationships to obtain

(1-a, +&J(T-1) =(l-a.+fa.)~++~xa.@g-l),C<O, (44)

[()”( ][ &
b 1 –a +b ci -a, +i%.) T= z(H) +icij ~–(1–@)Q+&(l–a.+?a.)T5, f>o. (45)

Thus, subtracting Eq. (44) evaluated at ~ = 0- from Eq. (45) evaluated at f = 0+ and using the

jump condition (39), we obtain an expression for Tb given by

T,= (1 - Q.)(Q + 1 +7s) +ffk [1+X(P: - q]
8(1– a. + h!.)

9 (46)

which, from Eq. (43), determines u; as

(47) -
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We note that in the limit pi -+ 1,Eqs. (46) and (47) collapse to the results for unconfined burning,

where in place of Darcy’s law in the solid/gas region, pg = 1 throughout.

It is clear from these results that, since O < x = 1 – l/~ <1, Tb increases linearly with the

overpressure p: – 1, as shown in Fig. 2. It is readily seen that for small overpressures Tb decreases

with increasing values of the porosity as, whereas at higher overpressures, the opposite trend is

observed. Indeed, denoting the burned temperature at zero Porosity by ~~ = (Q + 1 + 7S)/~,

which is independent of p;, we obtain from Eq. (46) that for as >0, Tb = T: at the critical value

of overpressure given by p: — 1 = (T: — 1)/x. For overpressures greater than this critical value,

the preheating effect due to gas permeation is sufficient to overcome that due to a decrease in the

amount of solid material, resulting in an increase in burned temperature above T:. Subsequently, it

is clear from Fig. 2 that the magnitude of the difference Tb—T} at a given value of the overpressure

is an increasing function of as. In connection with this result, we observe from Eq. (47) and Fig.

3 that the burned gas velocity u: is a monotonically decreasing function of the overpressure. In

fact, for sufficiently large overpressures that satis& the condition

l–a!, (Q+l+YS_l =(l–cvs)(T&)
p:–1>

1 – Cl!sx ) (48)
?% ?(1 – O!.x) ‘

which depends on a$, we find that u: is negative, implying a gas flow in the upstream direction

throughout the multi-phase flame. This is clearly illustrated in Fig. 3, which shows the curves for

u; as a function of p; —1 crossing the horizontal axis at the above critical value of the overpressure.

Also shown in Fig. 3 is the value of the gas velocity u~(f) at the solid/liquid interface&= O, which

is only positive for relatively small values of the overpressure. In particular, from Eq. (41), Ug(0)

crosses the horizontal axis at the critical value p; – 1 = Tm– 1,beyond which gas flow is directed into

the solid/gas region, resulting in the preheating effect due to gas permeation as described above.

Further solution of the problem in the liquid/gas region, which is necessary for the determination

of the burning-rate eigenvalue, is considered in the following section.

Before proceeding with an analysis of the liquid/gas reaction region, we observe that the

problem in the solid/gas region can be reduced to a scalar problem for the gas pressure pg. In

particular, from Eq. (40) and the Darcy formula

terms of pg by

‘= ’9(1-:%)

for Ug in Eq. (36), T and thus u~ are given in

T
Ug=— —l, (<0. (49)

P9

Substituting these results into Eq. (44) thus yields a second-order equation for p~ in the region

&<0 given by

[ (l-:%) -ll=(l-@s+’as): [p,(l-:%)l+’’xQs(pg-l) ’50)
(l–cl!,++;%) pg

subject to the boundary conditions

51)
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where the second condition follows from the Darcy formula and Eq. (41) for u~ evaluated at f = O.

We note that the last condition, aside from being consistent with the first of Eqs, (49), is already

built into Eq. (50) by virtue of the fact that Eq. (50) is really a first integral of Eq. (34). Had

the above expression for T been substituted directly into the latter, a third-order equation for pg

would have been obtained, permitting the specification of the three boundary conditions (51). The

problem (50) – (51), the solution of which will determine T and u~ according to Eqs. (49), will be

treated in the section following the determination of the burning-rate eigenvalue.

IV.2. The Burning-Rate Eigenvalue

In order to determine the burning-rate eigenvalue, we must complete our analysis of the

liquid/gas region f > 0. In this regard, Eqs, (28) and (36) constitute two equations for T and

a in this region, with Ug then determined by Eq. (33) and the eigenvalue A determined by the

boundary conditions. In order to handle the Arrhenius nonlinearity, we exploit the largeness of the

nondimensional activation energy IV and analyze the problem in the asymptotic limit N >>1. Since

pg = P: throughout the liquid/gas region, the analysis of the confined and unconfined problems is

essentially the same for ~ >0.

In the limit lV + co, all chemical activity is concentrated in a very thin region where T is

within O (l/N) of Tb. Denoting the location of this thin zone by & > 0, we see that the semi-

infinite liquid/gas region is comprised of a preheat zone (O <

exponentially small, the thin reaction zone where the chemical

burned region ~ > ~T. Thus, we conclude from Eq. (33) that

and from Eqs. (42) and (43),

( < &) where chemical activity is

reaction goes to completion, and a

(52)

(53)

Since T is within 0(1/i’V) of Tb in the reaction zone, the analysis of this thin region requires the

use of a stretched coordinate (see below). As a result, T is continuous with respect to the 0(1)

out er variable f at &= &r, and thus the gas velocity jumps across &= ~. by the amount

(54)

which is positive assuming the unburned gas density is less than that of the solid (i.e., f < 1).

Finally, using Eq. (52), Eq. (45) may be integrated a second time to completely determine the

outer temperature profile in the liquid/gas region as

{

B + (Tm – 1?) exp
[

b(l – a,) + ?%!.

1
‘5, o<<<<,

T(f) = 1(1– a.) +k!,

Tb , <>(.,

(55)
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where

.

●

1 – C?.)(1 +’-y.) + i% [1+ X(P; – 1)1
B=(

b(l – a.) +&.
(56)

We note that T(<) for ~ < 0 is still to be determined from Eq. (49) and the solution of the

pressure problem (50) – (51), os described in the next sectiory however, it is not required for the

determination of the burning-rate eigenvalue A. The location (r of the reaction zone, which appears

as a sheet on the scale of the outer variable <, is thus determined by Eqs. (55) from continuity of

T as

()

Z(1 – as) +ias In Tb –.B
&.=

b(l – a!,) + i$a. Ti n-B “
(57)

The determination of the burning-rate eigenvalue A, as well as the spatial evolution of the

variables a and Ug (which are discontinuous on the scale of the outer variable ~), requires an

analysis of the thin reaction-zone region in the vicinity of &. We thus introduce a stretched inner

variable q and a normalized temperature variable @ defined by

T–1e=—
Tb–1’ q= P(f–&)> /3=(1 -T;l)N>l, (58)

where @ is the Zel’dovich number, and seek solutions in the form of the expansions

cY’-Jo@+f7-lo3+p-2cY2+. . . , ug-uo+p –%1 + p–2u2 + . . . ,

e~l+.p-%l+ p-%2+... , A=@(Ao+ p-lAl+p-2A2 +.4.).
(59)

The coefficients in the expansion of u~ are readily determined from Eq. (42) in terms of the %

and t?z,which themselves are obtained from solving the sequence of inner problems that arise from

substituting the above expansions into Eqs. (33) and (45) and mat thing with the outer solutions

for &< fr and &> &r. In particular, at leading order the inner problem is given by

do(o—=
dq

TAO(l —@o) e“l ,

subject to the mat thing conditions

ao-+l, f31-+Oasq++co.

Here, D and E are defined as

(60)

(61)

(62)

(63)

(64)

where the latter is calculated from Eq. (55).
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The problem (60) - (63) is now readily solved by employing a. as the independent variable.

Thus, using Eq. (60), Eq. (61) may be written as

~ d91 D
rAo~+(~–l)ao] e’—=—

da. Tb–1’

which is readily integrated from as (at q = —co) to any a. s 1 to give

(65)

(66)

Evaluating the latter at czo = 1 (at which 01 = O) thus determines the leading-order coefficient A.

in the expansion of the burning-rate eigenvalue as

A. =

D

[

i
l+i

(Tb - l)T(i- z)ln l+(L1)O!. ‘

(*b‘,)T,(l ‘as) ‘
l=i,

and using this result in Eq. (66) for arbitrary a. then determines f31(a. ) as

(([
In in J+ (t–l)ao] -ln ~ + (~- i)a~]

)

1+1
in ~ + (i– l)a.] ‘(31(0!()) = h )

( lnl–

in
0!0 —O!,g

l–a. ‘

The determination of so(q), and hence 61(q),

From Eq. (67) and the definition of A

(67)

(68)

i=l.

then follows directly from Eq. (60).

according to the last of Eqs. (14b) and (59), the

leading-order expression for the dimensional propagation speed ~ is given by

where A?U= EZ/@ TU= NTb is independent of Tb and the last factor: which contains the complete

dependence of the burning rate on the thermal conductivities, is given by

(70)

The expression (69) for the burning rate, though virtually identical in form for both the confined

problem and the unconfined problem obtained in the limit of constant pressure (p: = 1), nonethe-

less differs implicitly for the two types of problems through the linear dependence of Tb on the

overpressure p; – 1. In particular, because there is an exponential dependence of the reaction
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rate on Tb: relatively small changes in Tb can produce significant modifications in the propagation

speed,

In order to analyze explicitly the dependence of the burning rate on the overpressure, it is

convenient to define the normalized burning rate U* = U(j$ )/U(1),where the argument denotes

the value of p:. Consequently, from Eq. (69), we obtain U* = Un[~(P~)/~(l)]li2, where the

coefficient Un is given by

(71)

and where Tb as a function of p; is given by Eq. (46). In this form, it is readily seen, since T~ is a

linearly increasing function of overpressure and the nondimensional activation-energy parameter N.

is typically very large (its definition, given below Eq. (69), is in terms of the unburned temperature

~!), that Un is exponentially sensitive to Tb and hence p:. Thus, as the overpressure p: – 1

increases from zero, the burning rate increases exponentially (Fig. 4), reflecting the sensitivityy to

the corresponding increase in the rate of gas permeation into the solid/gas region given by Eq.

(41). We remark that this result cannot be predicted with a constant-pressure model appropriate

for unconfined deflagrations, since in that case, the gas flow is always in the downstream direction

(if one imposes the upstream boundary condition that U9 vanish) and an increase in pressure then

serves only to decrease Tb due to the increase in the gas density (? increases) that absorbs more of

the heat of reaction. In the present context, the upstream gas density ? remains constant, and an

increase in overpressure serves to preheat the unburned solid through enhanced permeation of the

burned gas into the solid/gas region. In the limit of large overpressures, Tb–l becomes small and

the exponential factor in Eq. (71) approaches a constant value. Consequently, in the range of large

overpressures, the dependence of Un on p] becomes algebraic. This is also illustrated in Fig. 4, in
,.

which case (since b = b) the saturated dependence of Vn on p: is linear, We note that this feature

(exponential transition to an algebraic pressure-dependent burning rate) is qualitatively consistent

with most experiments in Crawford-type (large volume) bombs that indicate a rapid increase in

the burning rate frequently associated with the onset of convective burning,6~24~25followed by a

less dramatic pressure dependence that is typically represented in the form Apn.

V. Analysis of the Gas-Permeation Layer

The pressure-driven permeation of hot gases into the unburned porous solid has been shown

to be a critical factor in causing the rapid increase in the burning rate associated with the onset

of convective burning. However, this implies nontrivial pressure and velocity profiles in this region
2

in order to satisfy the ambient upstream boundary conditions on these variables. Thus, although

the calculation of the burning-rate eigenvalue in the previous section did not require a detailed

knowledge of the actual solution profiles in the solid/gas region, it being sufficient to determine

the results (40) – (41) for Ug, there is nonetheless a strong interest in computing these profiles in
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order to better understand the role of convection in these types of two-phase-flow problems. Since

gas permeation is clearly a strong function of the pressure difference across the deflagration, it is

convenient to define an overpressure variable p = p~ — 1, in terms of which the pressure problem

(50) - (51) can be written as

[ 1 [ 1
(l-a$+ ?&a.) p- ;(p+l)~ =(1- a.+ia.); P- :(P+l): +i%~Cl!#, (72)

subject to

z=%%%p=pb=p:–~, ‘p at&=O; p~Oas&—+ -cm. (73)

Since our goal is a qualitative understanding of gas-permeation effects, it suffices to obtain ap-

proximate solutions using asymptotic methods. In particular, we may introduce a bookkeeping

parameter e <<1 and consider the realistic parameter regime in which ;, ~, as, and K/oi, are all

O(c), where we note that the permeability K is usually proportional to some power of as that is

greater than unity. 13’26That is, we scale these small quantities as

in terms of which Eqs. ((72) and (73) become

The problem given by Eqs. (75) and (76) has been analyzed 12for two primary cases of interest;

namely p N O(1) and p w O (~–1), corresponding to two different magnitudes of p:. The results

of this analysis are as follows. For O(1) overpressures, the second condition in Eq. (76) suggests

that there is an O(e) boundary layer in the vicinity of ~ = O. Consequently, a stretched coordinate

q = </c is introduced to describe the solution within the boundary layer, which is then matched

to the outer solution for negative O(1) values of ~. In this fashion, the leading-order composite

solution is determined as

P ‘w Po(&/~) + (T’m– I)(e& – 1), (77)

where the leading-order inner solution p., which has been functionally expressed in terms of the

outer variable ~, is given implicitly by

(78)

The boundary-layer (inner), outer and composite solutions are illustrated in Fig. 5. From Eq.

(77), the gas velocity in the solid/gas region is, in turn, given by

20
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We observe that PO(&/e) ~ Tm – 1 as & approaches O(1) negative values, and thus, as indicated

in Fig. 5, it is clear that gas permeation for O(1) overpressures is only significant in the thin

boundary layer adjacent to the solid/liquid interface, assuming Pb > Tm – 1. Although this last

qualification is by far the typical case (since Tm – 1 = ~m/~. – 1 is not likely to be larger than

unity), it is nonetheless of interest to point out that the structure of the solution will change as pb

approaches the value Tm —1 due to the fact that the gradient of pressure at &= O, which has been

scaled as O (c– 1) in Eq. (76), will cease to be large in that limit. Indeed, for small overpressures

(O < p~ < Tm – 1), the pressure gradient becomes negative at f = O, indicating, according to

Eqs. (36) and (41), a gas flow out of the solid in the downstream direction, as in the case of an

unconfined deflagration.

The other primary case of interest in many applications is the limit in which the overpressure

itself becomes large. In that case, it is useful to rescale p in Eqs. (75) and (76) by defining the

scaled overpressure P = ep. In terms of F’, Eqs. (75) and (76) become

There is now no reason to suspect a boundary layer near &= O, but a straightforward perturbation

solution on the &- scale leads to the approximate solution

(82)

which is valid everywhere except at f = —<0where the derivative is discontinuous. This kink in the

solution thus suggests the existence of a thin corner layer in that vicinity. Hence, we interpret Eq.

(82) as the leading-order outer solution, and proceed to construct an inner solution in a thin region

centered about &= —&.. In particular, it turns out that the proper scales on which to analyze this

layer are P w O(e) and &N O(e). The result of a matching of the solution in this region with the

outer solution (82) is the uniform composite approximateion12

(83)

The outer and composite solutions (82) and (83) for the scaled overpressure P are illustrated in Fig.

6. It is clear that in this case, gas permeation extends an O(1) distance into the gas/solid region,

although, as in the previous case of O(1) overpressures, the extent of gas permeation remains,

because of the relative smallness of the permeability K, an order of magnitude less than that of the

overpressure itself.
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VI. An Asymptotic Model for Nonsteady, Nonplanar Burning

The solution analyzed above constitutes the special case of a quasi-steady, planar deffagration,

and is not necessarily the only long-time solution of the final model presented in Section III. For

example, one generally expects that there exist parameter thresholds beyond which such a solution

Ioses stability to one or more nonsteady and/or nonplanar modes of burning. In order to perform

such stability analyses, it is appropriate to extend the previous one-dimensional large activation-

energy analysis of the reaction zone to obtain a more tractable flame-sheet type of model. In such

a model, the reaction zone is asymptotically relegated to an infinitesimally thin region, and the

(outer) solutions on either side of this reaction front are connected by derived jump and continuity

conditions. This effectively simplifies the problem by allowing consideration of a coupled problem

for the reactionless outer variables, and is the basis on which most modern analytical stability

analyses are based.

VI.1. The Outer Problem

In the limit of large activation energy, the reaction zone collapses to a reaction front located

at Z3 = Zr (ZI, X2, t) > Zm(z1, X2, t), and it is convenient to shift the (nonorthogonal) moving

coordinate by defining the new coordinate ( = &– (Zr – Xm), or in terms of the original variables,

~ = Z3 – W.(ZI, XL,t). In this new coordinate system, the origin is thus defined to be at ZS = Z.,

and in terms of ~, the problem defined by Eqs. (15) - (25) becomes, given the assumption of a

quasi-steady gas phase with respect to the new coordinate system and the expression (21) for Uz,

W“g-%)]=o ‘<-(zr-$m)
(84)

~ X[ (%+r{%-%})l=rA(l-a) expw31 ~ ‘>-(’T-zm)
rx+g (1 –a)

(86)

{[ (-%) +’’”S(”9-%)P$’1T}
(l-a.) g+; (1–0!.)

{[ 1}

ax. apg
(87)

=V. . l–as+tas V.T –fia3— —
at 8( ‘

( < –(xr–fcm) ,

“:’(l-”)(Q+’T)’+ +[(l-”) (-*-”{%-=}) (Q+’T)I

+;[fq%-~)PgT] =V?.{p(l-a)+qw} , (>-,zr-zm), ’88)

subject to the equation of state (20) and the conditions

~(%) ~P9 for ( < _[~. – Zm) ; pg + 1 (U9 + “)CY=a.$, ug=— —— T~laS<~-CQ,
Q, t?[ –

>

(89)
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where all variables are implicitly continuous across the melting surface ~ = – (Zr —Xm) and, anal-

ogous to the definition of Vm given below Eq. (25), the operator VT = (d/~z1 – {ilzr/6’z1}8/~~,

~/~z2 – {&q./&cz}i2/~~, ~/~~) is the nondimensional gradient operator expressed in terms of the

moving coordinate system attached to the reacting surface. The final burned temperature Tb that

appears in the boundary condition (90) for the general nonsteady, nonplanar problem is the same

as that calculated for the special case of steady, planar burning analyzed in Section IV, and is thus

given by Eq. (46).

As in the special case of steady, planar combustion, we again consider the limit of large

activation energy (IV >> 1), in which case all chemical activity and heat release associated with

the reaction term in Eq. (86) are confined to a thin O(iV-l ) reaction zone at < = O. In this way,

the original distributed-reaction problem is reduced to a pair of reactionless problems in the outer

regions ~ < 0 and ~ > 0, the solutions of which must be matched to the reaction-zone solution

valid in the thin inner region I~I << 1. The result is an asymptotic model for the outer variables,

subject to nonlinear jump conditions across ~ = O that depend on local conditions there, and an

evolution equation for Zr (ZI, X2, -t). With this asymptotic simplification, the out er solution of Eqs.

(84) - (86) for the gas-phase volume fraction and velocity is given by

~=
{

cu., (<0

1, (>0,
(93)

{

–(T/pg – l)8x./&, ~ < ‘(%~–~rn)
Ug = –(T/p; – l)8x,/&, –(zr-zm) <(<o (94)

(T/P~) g(~l, x2, ~)+ ~xr/dt, 4’>0,

where the first of these indicates that all variation in the volume-fraction variabIe a is confined

to the inner reaction zone analyzed in the next subsection and the second expresses Ug in terms

of the local temperature and the instantaneous propagation speed of the reaction zone, with the

“constant” of integration g(zl, X2, t) = (p~/Tb)(ug I~.++m — 8zr/&) to be determined. The top

expression in Eq. (94) may be combined with the expression for Ug in Eq. (89) (Darcy’s law) to

give the additional relation

~=l++;g(~y], ,<-(.,-.m), (95)

which is the appropriate generalization of Eq. (49). By use of these results and the equation of

state (20) in Eqs. (87) and (88), the outer problem becomes

(1–as)g+(l–%+?bbs)
()

ax. m ax, apg
–= ~ = (1–a5+kY.)V:T–ikY.——

& a< ‘
( < ‘( Z.r-Xm) ,

(96)
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&r . 8x, 8T
Tb(l–o!s)— + [rb(l —as)+b

1( )
~xm 8T

&
–— —–b(l–r)(l–f3!.)——

at 8< & 8( (97)

subject to

below Eq.

=[w-f%)+qwl -(~~-~m)<(<o) ‘-’
,,.8T

‘bgx
=tV:T, ~>0, (98)

the boundary and interface conditions (89) – (92) on T’ and P9. From the expression

(92) for V., the Laplacian operator V? in the (XI, z2, ~) coordinate system is given by

where G? = 1+ (&c./&cl )2 + (i%zr/&c2)2. We observe that substitution of the relation (95) into Eq.

(96) gives a nonlinear partial differential equation for p,, analogous to the ordinary result (50) for

steady, planar burning. These conditions, however, are still not sufficient to completely determine

the solution for the outer variables. To do so requires additional jump and continuity conditions

across the thin reaction zone located at ( = O, as well as an expression for the gas-velocity function

g(zl, X2, t) in the region [ >0, which necessitates an analysis of the inner reaction-zone problem.

The derivation of two of the additional conditions needed to close the outer problem may be

obtained direct ly from an integration of Eq. (88) across the

to ~ = 0+. Using the results (93) and (94), and accounting

T, aug’T, aT, (1 – CV)T,a&i!’/8< and (1 – a)8T/6’( behave,

as distributions there, the continuity and jump relations

Tl<=o- = ~l<=o+

thin reaction region; i.e., from ~ = O–

for the fact that quantities such as a,

in the limit of large activation energy,

(loo)

[

ax.
+(1 –cY, )Q r—

dxm

1 (

ox. m
at + (1–~)~ .(& f)(l-.5) *g+~-

)1 (=0

=G:{~; ,=o+-K~J+foJJ; ,=o_

(101)

are obtained. The structure of the inner reaction zone, with suitable matching of solutions in that

region to the outer solutions; must now be addressed to obtain an additional jump condition across

~ = O and an expression for the function g introduced in Eq. (94). We thus employ the method of

matched asymptotic expansions and seek solutions to the coupled outer problems in the form of

the expansions T w Z“(o) + N-IT(lI + N-2T12) + . . . . and similarly for the gas-velocity function g.

Hence, to leading order, the outer equations obtained thus far are given by Eqs. (89) - (101) with

T and g replaced by T(o) and g(o), respectively.
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VI.2. The Reaction-Zone Solutions

.

.

.

Spatial variations in the reaction-zone solutions in the normal (<) direction occur on a short,

of order N– 1, length scale relative to that of the outer solutions. Accordingly, it is appropriate to

introduce the stretched normal coordinate q defined by

~= P(=P(x3 –%), (102)

where ~ is the Zel’dovich number defined in the last of Eqs. (58) ~ and it is also convenient to

introduce again the normalized temperature variable @ = (2” —1)/ (T~ — 1). Solutions to the inner

problem are then sought in the form of the expansions

cY~cl!o +@-lck’1+~-2a2 +... ,

ug’-’’’u%l +p%2u2+2u2+. .. ,
@Nl+p-%~+p’e~+... ,

Awp(Ao+ p-lA~+/3-2A2 +...),

(103)

where the latter represents the appropriate expansion of the burning-rate eigenvalue of the basic

solution corresponding to steady, planar burning. We note that since pg = p; throughout the

gas/liquid region, no such expansion is required for p~ and thus, provided the assumption of gas-

phase quasi-steadiness remains valid, the development in this section is valid for both unconfined

and confined geometries. Substituting these expansions and definitions into Eqs. (85), (86) and

(88) and equating coefficients of like powers of ~, the leading-order inner problem is derived in the

following fashion. Beginning with Eq. (85), we obtain

(104)

Integrating this result and applying the matching conditions aO -+ a. and UO~ –(T~/p~ –l)i3zr/t3t

as q ~ —cu, we obtain an expression for U. as

(105)

From the matching conditions a. + 1 and u. ~ (Tb/p~)gIOJ+ 6’zr/@t as q ~ +m, an expression

for the outer gas-velocity function g(o) (zl, X2, t) in the region ~ >0 is then found to be

gqz-1, Z2, t) =
[ 1

* (k)~-(1-r)% -~, (106)

which is needed in Eq. (98).

Utilizing Eq. (105) for the gas velocity, we find that the remaining part of the leading-order

inner problem for a. and 01 is now determined from Eqs. (86) and (88) as

[

ax. ax

1
—+(l–r)-# *=

r a
–rAo(l —ao) eel , (107)
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[

ax. axm
—+(l–T)=r a ][ 1

Q+(b-;)Tb ~=
{

(Z’b- I) G:: ~ + (i- Z)QO]~} , (108)

subject to the mat thing conditions

Qo+l, @l N@(l) I<=o+ = ~ + +~ (109)

and

(110)

where, consistent with the definition of ~, the ~(z) are defined as @(i) = (T(i) – 1) / (Tb– 1). We note

that since spatial variations in the normal (~) direction are large relative to those in the transverse

direction and those with respect to time, as reflected in the transformation (102), the reaction-zone

probIem (107) - (110) is always quasi-steady and quasi-planar, independent of the assumption of

quasi-steadiness for the outer gas-phase equations introduced earlier. Thus, integrating Eq. (108)

using Eq. (109), and then transforming to a. as the independent coordinate according to Eq.

(107), we obtain a first-order equation for 0, given by

where

Ml =H2 Q+(b–@b 1
rAoee~ —

ih!o ‘“ Tb–~ “ 2+(i–l)ao’

H
[-

m,r = –G-l r~Xrr & 1
+(1–r)% .

Equation (111) may then be integrated with respect to a. by using Eq. (110) to give

rAoe@I = H2
Tb_l .{l_l(aoja,/

Q + (b – &)Tb (i-l)-’ in Z+(t-l)czo] -ln~+(~-l)a.]}, i#l
m,r

> 1=1

(111)

(112)

(113)

For the special case of

the matching condition

the result (67) for the

steady, planar burning, ~xm/& = ~x~/& = —1, and ~(11 l<=.+ = O in

(109). Since Eq. (113) must hold for all solutions, these conditions imply

leading-order coefficient A. in the last of the expansions (103) for the

burning-rate eigenvalue. Here, Tb was given in Eq. (46), a result that in fact applies to the more

general nonsteady, nonplanar problem given the assumption of a quasi-steady gas phase and the

specification of p:.

For the general nonsteady, nonplanar problem, Eqs. (67), (113) and the matching condition

(109) yield the local temperature-dependent propagation law

‘mr=exp(iell(=o+) ~
(114)

Equation (114) introduces the next-order outer variable @ into the analysis, but this additional

complication, which is fundamental to this type of analysis, 22 can be circumvented in an approx-

imate fashion by truncating the inner expansion for @ given in Eq. (103) after the O (~– 1) term,
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so that the matching condition (109) implies that 6(11\(=0 = ~(@l(=O – 1). Reverting back to the
original outer temperature variable T, we find that Eq. (114) may be expressed as

-.~-(l-r)%= [1+(~)2+(=)21’’2exp(-:”Tb~~’:=0~ ‘115)
where we have used the definition (112) for Hm,r. Substitution of Eq. (115) and the expression

(106) for g into Eq. (101) then leads to the result

~~

W <=0+
- p+(~-1)%] $ ,=o_ +(1- .s)(@&2 (~g+~~)

(

@ Tb – Tlc=o

)
– -(1 - as) [Q+ (b - &)TIC=o] G~’exp -2. Tb _ ~ ,—

c=’ (116)

which, if we retain Eq. (115), replaces Eq. (101) as the required jump condition across the thin

reaction zone. When the outer solution is approximated (truncated) by setting T H T(o) and

9 R g(o), the derived conditions (100) and (101), the propagation law (115), and the expression

(106) for the outer gas-velocity function g close the outer problem (89) - (92), (93) - (98).

VI.3. Summary of the Asymptotic Model

The model derived in the previous two subsections constitutes an asymptotic formulation, valid

for large activation energies, of deflagration in porous energetic materials for the case of a thermally

expansive, quasi-steady gas phase. In this regime, the reaction zone becomes thin relative to the

convective-diffusive structure of the deflagration wave, in such a way that both the jump condition

across the reaction sheet and the propagation law that governs its motion display a sensitivity

to local temperature perturbations. This sensitivity is of a finite, but exponential, form that is

induced by the original Arrhenius nature of the reaction rate in the asymptotic limit described

above. It is helpful to collect the above results for future reference. Hence, the asymptotic model,

expressed in nonort hogonal coordinates (ZI, Z2, ~) attached to the reaction surface (( = O), is given

T=Pg~+;*(~)-’],,<-,.r-xm),

(117)

(118)
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,.

-J?&(k)% (~~b – ~l<=o
=G, exp –5 .

)
Tb–1 ‘

(119)

subject to

( axm axm ) {[–—–—,1 .
8X1 ‘ 8X2

1+ %(L 1)]vTTlc=_(zr_zm)+- [1+4-Q] ~r~l<=-(zr-zm)-}

– %(1 – a.) [T. + (1 - b)Tm] ,—

(122)

Tl<=o- = TIC=O+, (123)

where the dot in Eq. (122) represents the scalar product of the vector on the left with the operator

V. given below Eq. (92), and where expressions for V: = V.. V. and G; were given in and below

Eq. (99). Equations (117) – (124) constitute a closed boundary-value problem for %T,Xm, T and

P~, an equation for the latter being obtained from the combination of Eqs. (117) and (118) in

the region ~ < – (XT – Zm), and may be solved subject to arbitrary initial conditions. In many

applications, however, one is primarily concerned with the long-time basic solution corresponding

to a steady, planar deflagration, as described by the formulation derived in the previous section,

and its stability. We also note that the porosity a has been reduced to a simple step function by

the asymptotic formulation and that other quantities of interest, such as the gas velocity (94), are

given in terms of Z., Zm, pg and T according to the formulas derived previously.

VII. A Basic Solution and its Linear Stability

As an illustration of the usefulness of the asymptotic model derived above, we consider the

stability of a steady, planar deflagration in the unconfined limit p: = 1, which implies that p~ = 1

throughout. A basic solution of the model (117) - (124) in that case, corresponding to a steadily

propagating planar deflagration and denoted by a zero superscript, is given by the solution con-

structed in Section IV, namely

# = –~ ,# = ,Jl
m > T .+ ()Z(1 – Ck!.)+ k. In ~b – ~

b(l – a.)+ Al. T“– B ‘
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To(() =

where

1 + (Tm – 1)exp
[

I+a.(;t l-1)

1
((+&%J > ( < –(%: –z))

l+a,(f–1)

B + (Tm – B) exp
[

b(l – a.) + ?&cl.

1(c+z;-&J,-(~:-&)<(<0(w1(1–cl.)+k.
~b= (1–cYs)(Q+l+ys)+?k

t[l+a. (f–1)] ‘

~ ~ (1– Q%)(1+-y.) +?im.
b(l – a.) + ?%!. ‘

<>0,

and, from Eqs. (94) and (106), the steady, planar gas-phase velocity u: is given by

{

T–1, (<0
u: =

?–l [(1 –?)(1 –a.) +(T~– 1)(1 –cl’s+%?)], ( >0.

(127)

(128)

The burning-rate eigenvalue and propagation speed were given by Eqs. (67), (69) and (70), but

are not needed explicitly in the stability analysis that follows. Here, we are particularly interested

in the effects of the porosity as, in the realistic limit of small gas-to-solid density ratio ?, on the

stability of steady, planar deflagration given by the basic solution (125) – (128). As shown below,

the value of the burned temperature plays a critical role in determining the corresponding neutral

stability boundary, in part because the propagation velocity is exponentially sensitive to Tb in the

large activation-energy regime. From the last line of Eq. (128), Tb has the behavior

[
Tb=;Q+l+Ys –+& (Q+l+wi)+O(f2)

s 1
(129)

for ? << 1. Since the nondimensional heat release Q is typically significantly larger than unity,

whereas the specific heat capacity ratio ~ is generally not significantly larger than unity, the final

burned temperature, and hence the steady mass burning rate, decrease with increasing porosity

and increasing gas density in the unconfined limit. However, as discussed in Section IV (Fig. 3),

the opposite trend is predicted for the confined problem once the overpressure achieves a critical

value.

Using the derived asymptotic model, the linear stability analysis of the basic solution (125) -

(128) follows a standard approach 9. Briefly, perturbation variables & (s1, X2, t), & (z1, X2, t) and

r(al, V2, ~, t) are defined according to

dTO
%I=z)+q$m, xr=x:+ #T, T= TO(<) +~+&-

d~ “
(130)

These definitions are substituted into the asymptotic model defined by Eqs. (117) - (124), and the

equations are linearized with respect to the perturbation variables to obtain a linear problem for

&, & and T given by

(131)
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t[l+a.(f–l)]; =i(t?’2T (927- 6’2T)—, (>0,—+&3+~(2ax;
(133)

(134)

subject to

T+oas(++co, (135)

(“’m%’),=.(r,z%,.=(’+~a,=+,++=o (136)

~+as(f-~)] (~+~m$) ,=_(z,_zo,+ - [l+aS(f- l)](f+~m~) ,=_(z,_zo ,_
m m

= –9(1 – 0!.)[–~.+ (b–l)Tm] ,

~l(=o+
‘(’+’r%) ,=o-

(137)

(138)

&

W (=0+
- [1+4-0] (++h~) ,=o_

[
=-:(1-%) ~

“b-’)(2+sJlTl~=o+, ‘13’)

where we have used the fact that CZ!T”/d~ = O for ~ >0.

From Eqs. (130), steady, planar burning clearly corresponds to the trivial solution @m = @r =

~ = O, whereas nontrivial solutions to the linear stability problem are sought in the form

{}

4+72

{}

%
A-

= #bJt+k1z!1*k2z2)
1,

T 0(()
(140)

which has been normalized by setting the coefficient of+. equal to unity. Equations (131) - (133)

and Eq. (135) then determine the function a(~) as

{

clep< + iw(iutl + k2)–lbobl(Tm—l)ebl(~+z:–%~), << –(7$! –z})
a(~) = Czeq-c + c3eq+c + ‘i(.d(id3 + k2)–l(& – b4Cm)b2(~b – ~)ebz<, ‘(& – x%) < ~ <0

qes~, (>0,
(141)

.

.

●

✎
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where the Cj are constants of integration, and the other quantities that appear in Eq. (141) are

given by

,. .

b. =
+ba~

& =
?bci~

bl =
l+a,(it–1)

, 61=
l–a,

l+ C%(L1)) Z+ck!.(t-1) ‘ 1 +C@- 1) l+ O!.(L1)’

bz =
b+a~(?i–b)

, &=
rb(l – as) b4 = b(r – 1)(1 – a.) 6

b~=j[l+a~(i– l)],
J+a,(i–1) l+a, (t–1) ‘ J+a.(f–1) ‘

(142)

and

~=;pl+~]7 ~.=;~z+d~]j ,143,

~=;~,-w]

The remaining conditions embodied in Eqs. (134) and Eqs. (136) – (139) serve to determine the

Czand the dispersion relation ti(k), where k = ~m.

VIII. Analysis of the Dispersion Relation

The linear stability analysis is completed here for a representative case in which r = b = 1 = 1,

corresponding to the neglect of differences between the physical properties of the solid and liquid

phases of the material. While this restriction is introduced in order to reduce algebraic complexity,

it clearly can be relaxed if there is interest in other values oft hese parameters. As a resuIt, bz = 61,

Lo = bo, & = & (which implies that q+ = p) and b~ = O. Then, from Eqs. (133) and Eqs. (136) -

(138), the coefficients in Eq. (141) are determined as

ef7– (z:–m:)
C2= (B – l)bl

[

iwboq–
%Z(q’– + ‘iW)+

q– – q+ 1L& + k2 ‘
(144)

–bl
~~+(~:–% )

C3 =
% – !?+ {

cm [(B – l)(q+ + iw) + (Tm – 1)(Q- – q+)]

+
iw;:k2 ‘(Tin

– l)(q- – q+) + q+(~ – 1)]
}

where x: —x% was given by the second of Eqs. (125) and

cm=; [(T6-l)(b+~)-(B-l)bl+ (T,-B)i::;;2]e-~+Z:-Z%,

+
iwbobl

[

e(q-–~+)(~~–zi) _ 1
q- (B – 1)

1
–(Tin-B) ,

D(i& + k2) q– – q+
(145)

D = 151(T!!– 1) – (1? – l)b~(q_ – q+)–l [(q_+ iw)e(q-–q+)(z~–z~)– (q+ + iu)].

31



We remark that, in light of the above simplification, all effects due to melting of the solid are

embodied in the parameter ~~. In the limit that the heat of melting becomes negligible (~~ 4 O),

we have B ~ 1 and hence C2~ O. In that case, the functional form of the temperature function

a(() is the same

“invisible”.

An equation

thus far into Eq.

iic4 – (1 – Q. +

on either side of ( = – (z$ — z:), and the melting surface becomes effectively

for the dispersion relation w(k) is now obtained by substituting the results given

(139). The result is, in terms of the coefficients defined above,

[

Q +(1 – &)T~

1
k) [q-c2 +q+c3 +~;(n – B)] = –(I – Q.) D ~(Tb _ ~, + 1 – ~ c4) (146)

where s and q+ depend on iw and k according to their definitions given above. This is a fairly

complicated dispersion relation, but typically, the gas density is small compared with that of the

condensed phases, the thermal conductivityy of the gas

melting is small compared with the thermal enthalpy.

density ratio ? is treated as a small parameter, and the

is correspondingly small, and the heat of

For these reasons, the gas-to-solid/liquid

scalings

~=p+, -y. = ~;f. (147)

are introduced for the corresponding conductivity ratio ~ and the nondimensional heat of melting

~~, where the scaled values P and ~~ are considered to be of order unity. The dispersion relation

w(k) is then expanded as

(148)w~wo+wl?+w2P2 +.””.

Associated expansions of all quantities in Eq. (146) that depend on these small parameters are

then performed, keeping the overall heat release QO with respect to the solid, QO = Q + ~., a fixed

parameter. Under this constraint, there is an expansion of the burned temperature

Qo+lwT; ++T: +..., Tf=— T; = –A(T;– 1).Tb
$’

In addition, the expansions

Tb given by

(149)

and

%t-q;+qi++ ”””, i?:=; [ 1
1 & ~1 + 4(iwo + k2) ,

[ 1

i+ P(2iwo +4k2) *
(151)

l_l~s 6– 2Pq: +
iwl.—

‘+–ii l–a, 2q; – 1 2q:–1’

apply. Substitution of these expansions into Eq. (146) determines the equation for the leading-

order dispersion relation we(k) to be (2iw0 +P) (1 – q! ) +iw(~ —26) which after some manipulation,

can be expressed as

.

.

.
4(zwO)3 + (iwo)2 ~k2 +4@ –;) + 2(1 + 2&)~ – ~z)] + 2iwo@ + 2k2) + ~2k2 = 0. (152)
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This dispersion relation is identical to the result obtained when a constant density for the gas

phase was assumed. 8 It is therefore concluded that in the absence of confinement and in the first

approximation for small values of f, the gas-phase thermal expansion has no effect on the stability

behavior, a result that might be anticipated based on the small contribution of the mass fraction

of gas in this limit.

The neutral stability boundary, corresponding to neither growth nor decay of the infinitesimal

perturbations of the form given by Eqs. (140), can be displayed in a plane of the Zel’dovich

number ~, defined by the last of Eqs. (58), and the nondimensional wavenumber k. This boundary

is obtained by setting the real part of the complex growth rate iw to zero. By setting the real and

imaginary parts of Eq. (152) separately to zero, the neutral stability boundary at leading order,

PO(k), can be obtained as the positive root of the quadratic

(6+ 2k’)p; + 2 [k’ - (1+ 28)(6 + 2k’)] po - 4(8 + 2k2) [L(I- 6)+ k’]= o, (153)

and the corresponding leading-order frequency W.(k) of the neutral disturbance is

u; = ;po(i+2k’) . (154)

Since W. # O, the stability boundary is of the pulsating type, like that obtained for solid-propellant

combustion in the absence of two-phase flOW17~20J21(such intrinsic pulsating instabilities are also

observable experiment ally27). This leading-order stability boundary was obtained and discussed

previously and, for completeness, has been included in Fig. 7 (solid curves), which also exhibits

the next-order approximation for a modified Zel’dovich number /3°(k) (chain-dash and chain-dot

curves) as discussed below. Several curves, corresponding to different values of ~, are shown,

indicating that decreasing values of 6 are destabilizing, which suggests that diminished thermal

influences of the gas phase (which convects heat away from the reaction zone in the direction of

the burned region) is less able to damp the known thermal/diffusive instability of the condensed

phase .28Indeed, we also show for reference the neutral stability boundary corresponding to strictly

condensed-phase combustion (combustion synthesis), which can be recovered from the present
.

analysis by setting ? = 1 = ~ = 1 and as = O in Eq. (146). This stability boundary, which is

determined (in the absence of melting) from the dispersion relation

[ 1
4(iw)3 + (iW)’ 1 +4k’ + 28 – & + ;(iw)(l + 4k2) + +8%’ = 0, (155)

is qualitatively similar to the stability boundaries obtained from (152), reflecting the fact that this

particular type of instability phenomenon arises from combustion of the condensed phase, with the

presence of the gas having a secondary, perturbative effect as discussed below. The fact that the

minimum value of /30(k), given by PO= 1 +2;+ @, occurs at a nonzero value of k = (~/8) 1j4 >0

(as compared with ~.= 1 +2$+ i= at k = O) suggests that nonplanar, cellular patterns will

be observed at the transition to nonsteady burning as the stability boundary is crossed. Since the
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leading-order results for the neutral stability boundary are independent of the porosity as, they

are also the same as those obtained previously for a nonporous case in which two-phase-flow effects

were confined to the liquid/gas region14, as well as for a different model in which two-phase flow

effects were suppressed in favor of an intrusive gas flame adj scent to a pyrolyzing solid surface .20

Consequently, these same or very similar results are likely to occur in a variety of different energetic

systems.

Since the leading-order results regarding the neutral stability boundary are independent of as,

the leading-order effects of nonzero porosity are determined by proceeding to the next order with

respect to the ratios of gas density and conductivity to those of the condensed phases. With the

neutral stability boundary thus represented as

an expression for L+(k), intreduced in Eq. (148), can be obtained from the dispersion relation at

0(?) given by

[ 1

2iLJo+ PO + z~wo c1
Zwl /3(J+2(l–&-q:)–

24! – 1 {
~(~+ -1 +W1 = & PO(I -C&)p

s

[

iL.lJ@Jq: + 1) ~ + : 2iL4J+ /!30 -
+ ;/30(2qi – 3) – kJo(po – 1) + iwo i- N 1 2“ 2q$. -l

p+ (2ZW0+ 4k’)P] }

“{0 1[ 0 1
–-ys (T~ – 1)- po(’i’wo– q!!) – f(2i(.Jo +Po)

}
+ (Tm – l)–l(iuo + q~)(2iwo + Do) ~(~!-~!)ln[(~~-l)/(~m-l)] ,

(157)

where DOand W. were given by Eqs. (153) and (154), respectively. It is observed that Eq. (157)

differs from the corresponding result8 that assumed a constant gas density, and thus modifications

in the neutral stability boundary due to thermal expansion of the gas, as well as those due to

two-phase flow, appear at this order in the analysis. Setting Re(iwl ) to zero and equating real and

imaginary parts of Eq. (157) separately to zero then gives a coupled system of linear equations for

~1 and W1 that may be solved and analyzed.g These results are summarized below.

It can be shown that the O(f) perturbation coefficient ~1(k) with respect to the leading-order

stability boundary /30(k) determined by Eq. (153) can be shown to consist of the sum of three

contributions arising from the effects of nonzero density and thermal conductivity ratios ? and ;,

respectively, and the effects of a nonzero heat of melting. In particular,

,&(k) = * [M++Mm]+%M) , (158)
s

where it is readily seen that for ~J = O, the solution for the perturbation coefficient ,& is propor-

tional to the factor as (1 – a.)-l. Positive values of the coefficients &, ~i and & represent an

upward, stabilizing shift in the neutral stability boundary from its leading-order position shown in
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Fig. 2, while negative values represent a downward, destabilizing shift. The magnitude of these

perturbations in the stability boundary, whether positive or negative, is seen from Eq. (158) to

increase with increasing values of the porosity as. In addition, there is a wavenumber dependence

for each effect, with nonzero values of ~being destabilizing for small wavenumbers and stabilizing

for large wavenumbers. The effect of nonzero values of ?, while generally destabilizing, exhibits

the opposite trend (increasing destabilization for increasing wavenumbers), consistent with the

physical expectation that the gas-to-solid/liquid thermal diflusivity ratio of the gas to that of the
,...

condensed phases, which is equal to 1/b?, should play a key role in determining the stabilizing or

destabilizing influence of the gas phase.

For nonzero values of 7$, the third component ~J~7 to the solution of @l provides a correction

that is independent of as and, assuming an endothermic heat of melting (~~ < O), corresponds to

the effect of increasing the amount of heat released in the reaction zone by the amount of heat

absorbed by the liquid that accompanies the phase change in the preheat region. The effect of

melting can be stabilizing or destabilizing ,8 although in the typical case of endothermic melting,

the resulting correction in the stability boundary tends to be destabilizing, especially for smaller,

more typical values of ~ and larger wavenumbers. This trend may be attributed to the fact that

the release of the heat of melting by the liquid-to-gas reaction serves to enhance the heat release

in the highly temperatur~sensitive reaction zone, and that for &<1, a greater proportion of this

energy is absorbed by the reactive condensed phase relative to that absorbed by the nonreactive

gas. A similar destabilizing result was predicted for low-temperature melting in gasless systems ,29

although this effect diminishes and then reverses as the melting temperature increases such that

melt ing occurs within the reaction zone itself.28 Here, too, the effect of increasing Tm (while keeping

T: and all other parameters fixed) is found to be stabilizing, particularly for small wavenumber

disturbances.

There is a final 0(?) effect to be accounted for that is due to the change in the stability

parameter @ itself that accompanies any variation in the density ratio ?. Although we have thus

far adhered to a conventional definition of the Zel’dovich number as defined by the last of Eqs. (58),

this parameter itself varies with F through changes in the burned temperature Tb. In particular,

for small values of ?, T6 decreases as ? increases according to Eq.

effective activation energy. Defining a modified Zel’dovich number

according to
=

(149), thereby increasing the

p“ that does not vary with ?

(159)

where T: is the leading-order burned temperature defined in Eq. (149), we calculate an additional

correction –as (1 – as) ‘l~l? in the position of the neutral stability boundary with respect to the

new parameter fl”, where & = (1 – 2/T~)@o, where Do(k) is the leading-order neutral stability

boundary determined from Eq. (153). That is, analogous to Eqs. (156) and (158),

(160)
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where ~r (k), ~1(k) and &(k) are the same coefficients as those introduced in Eq. (158). The

above two-term approximation of /3° is shown in Fig. 7 (chain-dash curves) for the same values

of 6 as the leading-order approximation PO and for typical values of the remaining parameters.

Also shown in that figure are the corresponding (chain-dot) curves for the case of a constant

gas-phase density,s which, while still indicating an overall destabilizing effect due to gas-phase

influences, nonetheless lie above the modified stability boundaries that are obtained when thermal

expansion of the gas is taken into account. However, because the constant-density analysis did

not assume gas-phase quasi-steadiness, it can be arguedg that at least part of this difference is

likely attributable to the assumption of an instantaneous gas-phase response, since the latter may

result in some overstatement of this destabilizing effect. From Eq. (160), it is clear that because

the linearized correction to the leading-order result, due to nonzero values of the density and

thermal conductivityy ratios ? and ~, is proportional to a. (1 – a.)- 1, whereas the coefficient &

is independent of as, the effect of an increase in porosity is destabilizing with respect to steady,

planar deflagration, and that this effect is enhanced by gas-phase thermal expansion.

IX. Conclusion

The present analysis has summarized recent advances in the application of multiphase-flow

theory to the study of deflagrations in porous energetic materials such as degraded nitramine pro-

pellants. The focus in this work has been on the investigation of the effectsof nonzero porosity

and two-phase flow on the structure and stability of steady, planar deflagration. This was facil-

itated by the application of activation-energy asymptotic and the derivation of an appropriate

asymptotic model for the general case of nonsteady, multidimensional propagation in both uncon-

fined and confined materials. In the present work, this derivation proceeded under the assumption

of a thermally expansive, quasi-steady gas phase, where the latter allowed the reduction of the

more general confined problem to an analogous freely-propagting combustion wave with a specified

pressure difference, or overpressure, between the burned and unburned states.

For the case of steady, planar propagation, it was demonstrated that the existence of an

overpressure in the burned gas region has a significant effect on the burned temperature, gas-

velocity profile, and the burning rate of the material. In particular, because of the pressure-

driven permeation of the burned gases into the unburned material, a preheating effect is produced.

Consequently, the temperature increases linearly, and hence the burning rate initially increases

exponentially, with increases in the overpressure, followed by a more modest algebraic pressure

dependence of the burning rate that is suggestive of Apn - type laws. This rapid increase in the

burning rate, an explicit formula for which was derived, is in qualitative agreement with most

experiment al results on confined materials, which tend to show a sudden and rapid increase in

the deflagration speed that is generally associated with the onset of convective burning. Thus, in

●

m

contrast to the case of an unconfined deflagration, for which the gas flow relative to the condensed

material is always in the downstream direction, the How of gas in the unburned solid is, except in
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the limit of small overpressures, always directed in the upstream direction, providing an important

mechanism for preheating the unburned material and allowing the transition to a convection-

enhanced mode of burning.

Since the steadily-propagating, planar combustion wave represents a basic solution of the

more general nonsteady, nonplanar asymptotic model! its linear stability may be investigated in

a reasonably straightforward fashion. This was illustrated for the case of an unconfined (constant

pressure) deflagration, for which it was determined, as in previous studies of nonporous propel-

lants and condensed-phase combustion, that a pulsating stability boundary exists in the plane of

activation energy and disturbance wavenumber. The neutral stability boundary was shown to be

especially accessible for realistic parameter values that furthermore permit the effects of porosity

on the location of this stability boundary to be handled in a perturbative fashion. Specifically,

in the realistic limit of small gas-to-solid/liquid density and thermal conductivityy ratios, it was

shown that shifts in the stability boundary were essentially proportional to as (1 – a.) – 1 and that

the effects of thermal expansion and two-phase flow thus results in a destabilizing shift in the

neutral stability boundary relative to the nonporous case. Additional stability results are under

investigation for the confined geometry, where two-phase-flow effects associated with burned-gas

permeation and the subsequent convective preheating of the material are anticipated to have an

even more pronounced effect on the stability of the deflagration wave.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Figure Captions

Schematic illustration of deflagration in porous energetic material with two-phase flow in both *
the solid/gas and liquid/gas regions, with combustion occurring in the latter. In the general

case of a confined or partially confined geometry, a difference between the upstream (unburned)

and downstream (burned) values of the gas pressure drives a portion of the burned gases into
*

the pores of the unburned solid, as shown. In the unconfined limit of small overpressures

(p; + 1), the gas flow is everywhere in the downstream direction, whereas for sufficiently

large overpressures, even the gas flow in the burned region is directed upstream.

Final burned temperature Tb as a function of the overpressure p: – 1. As the overpressure

increases past a critical value, Tb changes from a decreasing to an increasing function of the

porosity a..

Burned gas velocity u: as a function of the overpressure p: – 1. Also shown is the gas velocity

Ug(0) at the solid/liquid interface. Negative values indicate gas flow in the upstream direction,

toward the unburned solid.

Normalized burning-rate coefficient Un as a function of the overpressure p; – 1.
..

Pressure profile p(f) in the gas-permeation region for O(1) overpressures. Also shown is the

velocity profile ug (f).

Scaled pressure profile P(f) in the gas-permeation region for large overpressures.

Leading-order neutral stability boundaries PO(k) (solid curves) for the unconfined problem as

a function of wavenumber for several values of the gas-to-liquid/solid heat-capacit y ratio 8.

Also shown is the corresponding neutral stability boundary (top curve) for the strictly solid

combustion-synthesis (SHS) problem, and the modified boundaries ,B”(k) (chain-dot and chain-

dash curves for constant and nonconstant gas density, respectively) that are obtained when the

next-order correction wit h respect to ? is included. The latter boundaries are calculated for

reasonable values of the remaining parameters (a, = 0.3, ~. = O, ? = 0.1, & = 1.0, T: = 6.0).
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