ANLET JCP-100/22)

USE OF THIN FILMS IN HIGH-TEMPERATURE SUPERCONDUCTING
BEARINGS *

John R. Hull and Ahmet Cansiz
Energy Technology Division, Argonne National Laboratory
9700 South Cass Avenue, Argonne, Illinois 60439

The submitted manuscript has been authored by a
contractor of the U.S. Government under contract No. W-31-
109-ENG-38. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or aliow others to do so,
for U.S. Government purposes.

2 ECEIVER
September 1999 JM‘ 1@% Zﬂ%‘ﬁ
0ST!

Invited paper for 12th International Symposium on Superconductivity
Morioka, Japan, Oct. 17-19, 1999.

*Work supported by the U.S. Department of Energy, Energy Efficiency and
Renewable Energy, as part of a program to develop electric power technology, under
Contract W-31-109-Eng-38.




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, compieteness, or usefuiness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof. '




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




J. Hull ISS’99 text 9/22/99 1

USE OF THIN FILMS IN HIGH-TEMPERATURE
SUPERCONDUCTING BEARINGS

John R. Hull and Ahmet Cansiz

Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 USA

Abstract: In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain
the large levitation force provided by the bulk with a lower rotational drag provided by the very high
current density of the film. For low drag to be achieved, the thin film must shield the bulk from
inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a
combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational
drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the
magnetic field on the other side of the film was measured, showed.that the thin film provides good
shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is
parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a
horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to
the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current
flow in the film for this coil orientation.
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INTRODUCTION

The use of bulk high-temperature superconductors (HTSs) in levitation applications such as magnetic
bearings has seen considerable development during the past decade [1]. The most common configuration
for a HTS bearing incorporates a rotatable permanent magnet (PM) stably levitated in close proximity to
a stationary bulk HTS of (RE)-Ba-Cu-O. More recently, interest in the use of thin-film HTSs in
supercm}ducting bearings has increased [2-6]. Although YBCO thin films often have J; values of >1
MA/cm“ at 77 K, the thickness of these films is only =1 pm and they do not provide much levitation
force.

The use of high-J. thin-films in HTS bearings has long been thought to offer the potential for reduced
rotational drag [7,8]. This conjecture is based on the generally accepted hysteretic loss mechanism for
HTS bearings that is based on the critical-state model. Hysteretic loss is produced whenever there is a
cyclic change in applied magnetic field, and the energy loss per cycle is [9] »

E}, = Ko (AH)3/J, )

where Ey, is the h/ystere&ic energy loss per unit area per cycle, K is a geometric coefficient of order unity,
Ho = 4m x 107' N/A“ is the magnetic permeability of vacuum, AH = AB/|, is the peak-to-peak
amplitude of the varying magnetic field, and J is the critical current density in the HTS. When a
levitated PM spins over a HTS, rotational loss occurs because of azimuthal inhomogeneities of the
magnetic field of the PM, which causes a AB at a surface location on the HTS over a complete rotation of
the PM. The amplitude of the AB increases if there is any appreciable whirl amplitude of the PM, in
which case the radial gradient of the magnetic field also contributes to the AB. One may conceptualize
the magnetics of the bearing system as the PM providing a constant magnetic field B that interacts with
the HTS to provide levitation force and a circumferentially varying magnetic field AB that produces the
rotational loss. 1In general, the AB associated with inhomogeneity is much less than the constant
magnetic fields B that provide the levitation force.
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A further consequence of the critical-state model, beyond the energy loss described in Eq. (1), is that the
interior of the HTS is shielded from the varying magnetic field, so that the hysteresis losses occur only
on the surface of the HTS. Thus, it was conjectured that if a thin-film HTS were interposed between the
PM and bulk HTS, the levitation force would remain approximately the same and most of the hysteretic
loss would occur in the thin-film HTS. The thin-film HTS would shield the bulk HTS from the effects
of the applied AB, so that the bulk HTS experiences only a constant applied magnetic field. Because J;
is so much higher in the thin film, the total hysteretic loss (and therefore the rotational drag on the
levitated PM) should be much lower with the HTS film installed.

When the above considerations were tested in rotational drag experiments, we found that the HTS film
was not effective in reducing rotational drag [10]. We then conducted magnetic shielding tests on the
HTS film to help elucidate its failure to reduce the rotational drag. This article reports the results of the
rotational drag and shielding tests. A theoretical interpretation of the results is also provided.

ROTATIONAL DRAG

Experimental Method. A detailed description of the experimental apparatus for rotational drag
measurements has been described elsewhere [10,11]. In essence, a PM disk rotor was levitated over a
HTS in a vacuum chamber, with an oil-diffusion pump reducing the pressure to <100 ptPa. The HTS
was inside a room-pressure cryochamber, through which liquid nitrogen flowed from a gravity feed at =3
kPa. Rotational loss of an HTS bearing is evidenced by the decay rate of the rotational frequency fand is
characterized by the coefficient of friction (COF),

COF = -[2nR,*/(eRp)] df/dt Q@)

where R., is the radius of gyration of the rotor, g is the acceleration of gravity, tis time, and RD is the -
welghteéy mean radius at which the drag force acts.

The height of the levitated PM was measured with a traveling telescope at intervals throughout the
experiment, and no change in height from the initial levitation value was observed to- within 10 pm.
The levitation height in these experiments includes the thickness of the cryochamber (3.5 mm) and the
gap between the PM and the top of the cryochamber. The height was recorded after the system had
cooled, so as to avoid obfuscation by any changes due to thermal contraction.

Three configurations of HTS were used: (a) bulk HTS, (b) thin-film HTS, and (c) thin-film HTS over
bulk HTS.

The bulk TS was a melt-textured Y-Ba-Cu-O cylinder with its c-axis aligned along the vertical, J.

20 kA/em*, critical temperature T = 92 K, diameter of 32 mm, and thickness of 22 mm. We chose a
thin-film HTS with a diameter mgmﬁcantly larger than that of the bulk HTS, hopmg that the film wou&d
significantly shield the bulk. The disk-shaped thin-film Y-Ba-Cu-O HTS had J. = 3.7-4.1 MA/cm~,
critical temperature T, = 89.2-89.6 K, diameter of 51 mm, and thickness of 350 nm. The film was
deposited on a La-Al-O3 substrate with a thickness of 0.5 mm. When the film was used together with
the bulk, they were coaxial and the film substrate was immediately above the bulk.

The same PM rotor was used in all the tests. The PM rotor is an axially polarized NdFeB disk with
magnetization of M =1.1 T, diameter of 25.4 mm, height of 6.35 mm, and mass of 35.6 gm. The
levitation force provided by the thin-film HTS was too low to levitate this PM. The levitational force
was augmented by placing a stationary PM above the rotor in an Evershed configuration to produce an
attractive force between the two PMs [12]. The distance between the two PMs was adjusted to that the
upward force due to magnetic attraction was slightly lower than the gravitational force downward.
Because the additional PM in the Evershed configuration does not move, it does not contribute to
hysteresis loss in the thin-film HTS. The velocities of the experiment are low enough that loss due to
eddy currents induced by relative velocity of the PMs will be negligible compared to the hysteresis loss.
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Fig. 3. COF vs. frequency at 8.0-8.1 mm height
for PM levitated over HTS in various HTS
configurations.

Results. In Figs. 1-3, the data sets are arranged to show the behavior for each HTS configuration at
approximately the same levitation height. For all the levitation heights, the resonant frequency is
consistently lowest for the bulk alone and highest for the combination of bulk and film. For all the
levitation heights, both above and below the resonance, the minimum loss occurred when bulk HTS was
used alone, and the loss was maximum when the bulk and film were used together. In these regions,
the COF of the bulk and film is approximately equal to the sum of the COFs for the bulk alone and the
film alone.

We assumed that the substrate on which the thin film was deposited was not contributing to the
rotational loss. An experiment was performed in which a bare substrate (without an HTS film) was
placed above the bulk HTS. The rotational loss in this experiment was essentially identical to that of
the bulk HTS alone, consistent with our assumption.

SHIELDING

The results of the rotational loss measurements were opposite to our original expectations and motivated
the shielding experiments described in this section. Although the mean magnetic moment of the PM is
in the vertical direction, any inhomogeneity in the PM is likely to have a substantial amount of its
magnetic moment in the horizontal direction. This horizontal moment has been previously ignored in
analyzing HTS bearings.
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Experimental Method. The same HTS thin film used in the experiments described in the previous
section was used as a barrier between two coils. The source coil was wound with 220 turns on a
nonconducting parallelepiped former that was 10 mm long, 5 mm wide, and 10 mm high. The pickup
coil was wound with 100 turns on a cylindrical former that was 10 mm in diameter and 5 mm high. The
coils were oriented coaxially in the vertical direction and constructed to rotate in a single vertical plane.
The rotation axis of the source coil was 11 mm above the HTS film, and the rotation axis of the pickup
coil was 8.5 mm below the film substrate. The source coil was connected to a function generator that
provided a sinusoidal signal of known voltage and frequency. The current through the source coil was
measured with a shunt resistor and was found to be proportional to the drive voltage for all of the
frequencies used in the experiment.

The voltage in the pickup coil was measured by a lock-in amplifier that was referenced to the function
generator. Measurements were taken with the HTS film absent and with the HTS film present and
submerged in liquid nitrogen. Frequency f varied from 50 Hz to 3.0 kHz, and the drive voltage V
varied from 1.0 V to0 5.0 V. At the maximum voltage, the peak amplitude of the current in the source
coil was 170 mA, corresponding to a peak magnetic field amplitude of about 420 uT at the surface of the
HTS film when the axis of the source coil was oriented perpendicular to the film (&g = 0°).

Results. Figure 4 shows the voltage on the pickup coil when the film is present divided by the voltage
with the film absent as a function of frequency for different combinations of source and pickup coil angle.
Figure 4 clearly shows that the ratios are independent of frequency. These results were also independent
of the coil drive voltage. '

For a fixed frequency and drive voltage, Fig. 5 shows the pickup coil voltage as a function of pickup coil
angle &, for three orientations of the source coil. When the axis of the source coil is perpendicular to the
film surPace (@5 = 0), the pickup coil voltage is lowest, indicating that the maximum shielding is
occurring. Figure 4 indicates that only about 2% of the field penetrates in this orientation. As a function
of @, the voltage exhibits approximately a cosine dependence, which implies that the magnetic field on
the shielded side of the film is predominantly vertical.

When the source coil is horizontal (@4 = 90°), the pickup voltage is approximately a sine function of
@, indicating that the field on the shielded side is predominantly horizontal. The maximum pickup
voltage (at @y, = 90°) is about four times higher in this case than the maximum (at ®,, = 0) for ¢ = 0,
despite the somewhat lower magnetic field at the film surface. This result confirms our hypothesis that
the film does not shield horizontal magnetic moments very well. When the source coil is oriented at
45°, the results are a linear mixture of the two extreme cases.
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The case of a thin disk in a uniform applied magnetic field has undergone considerable analysis [13-15],
but the configuration of our experiment is considerably more complicated and seemingly not yet
susceptible to elementary analysis. We have shown previously that if drag of magnetic flux through the
film were the dominant loss mechanism, the loss in the film should be much higher [12]. We have also
shown that the J and thickness of the film is sufficient to shield out the expected magnetic field from a
vertically oriented magnetic dipole [12]. This result is consistent with the results of the experiments
described in this section.

Based on the properties of the PM used in the experiments and assuming Eq. (1) is applicable, one
would expect the COF to be lower by at least a factor of 25 with the film, compared to the case of the
bulk HTS alone. Because the COF is not lower for the film, plus the COF when bulk and film are used
together are essentially the sum of the COFs when they are used separately, we believed that there is
probably a nearly complete lack of shielding of the bulk HTS by the film. This hypothesis is verified by
the results of the shielding experiments.
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Fig. 6. Schematic of hypothesized current flow in HTS film. (a) Vertical cross section, where
magnetization of PM is perpendicular to surface of film. (b) Vertical cross section, where magnetization of

PM is in plane of film and current flows through film thickness. (c) Top view, where magnetization of
PM is in plane of film and current flows in plane of film,

These results lead us to consider the three-dimensional nature of the currents in the film. The currents
under consideration are those caused by the PM inhomogeneity and are in general different from the
currents associated with the levitation. The main possibilities are shown in Fig. 6. If a magnetic dipole
were oriented perpendicular to the film surface, as indicated in Fig. 6(a), currents need run only in the
plane of the film and mainly in the region immediately below the perimeter of the PM, and we should be
able to shield the field out of the film interior and below the film, which is consistent with the
experimental results. However, if the dipole moment is oriented parallel to the film surface, as indicated
in Figs. 6(b) and 6(c), then there are two major possible current flows. To shield the applied field in this
orientation, currents at the surface of the film must flow in the same direction as the fictitious Amperian
currents in the bottom arc of the PM, as indicated in Figs. 6(b) and 6(c). Because current is conserved in
these systems, the cutrents must return within the system, either by flowing through the thickness of the
film and passing along the bottom half in the opposite direction, as shown in Fig. 6(b), or in the plane of
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the film around the perimeter of the inhomogeneity, as shown in Fig. 6(c). In either case, the extended
area over which the current must flow (compared to that shown in Fig. 6(a)), is probably sufficient to
account for the additional loss in the film in the rotational drag experiments. The current flow shown in
Fig. 6(b) is likely to provide almost no shielding, and one would expect the ratios shown in Fig. 4 to be
higher. This leaves the most likely alternative for the current flow as that shown in Fig. 6(c). Such a
current distribution would provide some shielding under the center of the film but would provide
additional field under the perimeter of the film. While this seers the most likely explanation at present,
final resolution of the detailed current distribution awaits further experimentation.

CONCLUSIONS

We measured rotational drag of a PM/HTS bearing that used either an HTS thin-film, bulk HTS, or
combination of film over the bulk. In all cases the rotational drag was velocity independent, consistent
with a hysteretic energy loss. The rotational drag contributed by the film was much higher than
expected. We then measured the shielding properties of the HTS film for different angles of an AC
excitation coil. The results showed that the film shields well when the magnetic moment of the coil is
perpendicular to the film surface, but it does not shield well when the moment is parallel to the plane of
the film. All of the results are consistent with the inhomogeneity of the PM magnetic field having a
substantial horizontal component. For horizontal components, the low aspect ratio of the film geometry
results in current flow extending over a much larger surface area than is required by a bulk HTS, and the
expected losses and poor shielding in this case are consistent with the experimental results.
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