

Fuel Processing for Fuel Cell Powered Vehicles

by

S. Ahmed, R. Wilkenhoener, S.H.D. Lee, J.D. Carter,
R. Kumar, and M. Krumpelt

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

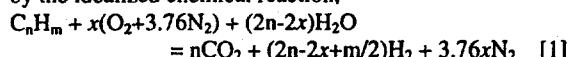
RECEIVED
JAN 18 2000
OSTI

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

January 1999

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Fuel Processing for Fuel Cell Powered Vehicles
 S. Ahmed, R. Wilkenhoener, S. H. D. Lee, J. D. Carter,
 R. Kumar, and M. Krumpelt
 Argonne National Laboratory
 9700 S. Cass Ave., Argonne, IL 60439

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

The partial oxidation process can be represented by the idealized chemical reaction,

where the hydrocarbon (C_nH_m) reacts with oxygen from air and water to produce carbon dioxide and hydrogen, while the nitrogen passes through as an inert. The oxygen-to-fuel molar ratio is a critical control parameter because it determines the heat of reaction and the percentage of hydrogen in the product gas.

Even though any hydrocarbon fuel can be used to produce this hydrogen, the choice of fuel for these light-duty fuel cell vehicles will be determined by many factors, such as hydrogen yields, refueling infrastructure, well-to-wheel efficiency, energy density, cost of production, carbon dioxide emissions, and contaminants (e.g., sulfur). Considering that the existing refueling infrastructure is only for petroleum-derived fuels and represents a massive investment (2), an attractive strategy to market the fuel cell vehicles, at least for the near-term, is one based on gasoline or a similar fuel.

Given the uncertainty about the fuel and the fact that gasoline itself is a blend of many different types of hydrocarbons (paraffins, olefins, etc.), the partial oxidation process would be much more effective if a catalyst was developed that is effective with all variants of hydrocarbons. Further, fuel-cell systems analysis and hardware cost constraints indicated that a partial oxidation process at relatively low temperature ($<800^\circ C$) would be most attractive.

Argonne National Laboratory has developed a novel new catalyst that has shown remarkable ability to convert a variety of hydrocarbon species into a hydrogen-rich gas. Micro-reactor studies using 2g of catalyst have shown (Table 1) that paraffins, olefins, aromatics, alcohols, etc., can be converted to produce high concentrations of hydrogen at temperatures below $800^\circ C$.

To verify the ability of this catalyst to convert gasoline to hydrogen, experiments were conducted in an engineering-scale reactor – a cylindrical reactor filled with 2-kg of catalyst pellets. With natural gas, the product gas contained 42% hydrogen. With retail gasoline, the product gas contained 38% H_2 , 12% CO_2 , 10% CO , 2%

CH_4 , and balance N_2 , at temperatures less than $800^\circ C$ (Figure 1). The 1.7 liters of catalyst pellets in the reactor produced over 40 L/min of hydrogen, which is sufficient to sustain a 3-kW fuel cell stack. A light-duty fuel cell vehicle will require a 40 to 50-kW fuel cell stack.

Table 1. The Argonne catalyst converted different hydrocarbons and alcohols to a H_2 -rich gas. [*balance is methane].

	Temp., °C	Product Composition*, % (dry, N_2 -free basis)		
		H_2	CO	CO_2
i-Octane	630	60	20	16
Toluene	655	50	42	8
2-Pentene	670	60	22	18
Ethanol	580	62	18	15
Methanol	450	60	20	18

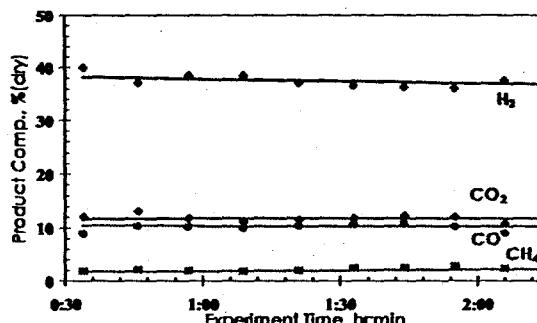


Figure 1. Product gas composition obtained from the partial oxidation reforming of retail gasoline in an engineering-scale reactor.

The Argonne reforming process has demonstrated the catalytic partial oxidation reforming of hydrocarbon fuels with a novel catalyst that works at hundreds of degrees cooler than uncatalyzed processes. This device is compact and lightweight and it is suitable for use on-board light-duty fuel cell vehicles slated for introduction in the next few years. This paper will discuss the fuel processing options in fuel cell vehicles and some principles of the partial oxidation process, and will present data on the development at Argonne National Laboratory.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Advanced Automotive Technologies under Contract No. W-31-109-ENG-38.

References

1. Kumar, R., Ahmed, S., Krumpelt, K., and Myles, K. M., "Reformers for the Production of Hydrogen from Methanol and Alternative Fuels for Fuel Cell Powered Vehicles," Argonne National Laboratory Report ANL-92/31 (1992).
2. Espino, R. L., and Robbins, J. L., "Fuel and Fuel Reforming Options for Fuel Cell Vehicles," 30th International Symposium On Automotive Technology and Automation, Florence, Italy, June 1997.