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Abstract

The analysis of many complex multiphase fluid flow systems is based on a
scale decoupling procedure. At the macroscale continuum models are used
to perform large-scale simulations. At the mesoscale statistical homogc+
nization theory is used to derive continuum models based on representative
volume elements (RVES). At the microscale small-scale features, such as
interracial properties, are analyzed to be incorporated into mesoscale simu-
lations. In this research mesoscopic simulations of hard particles suspended
in a Newtonian fluid undergoing nonheax shear flow are performed using
a boundary element method. To obtain an RVE at higher concentrations,
several hundred particles are included in the simulations, putting consider-
able demands on the computational resources both in terms of CPU and
memory. Parallel computing provides a viable platform to study these large
multiphase systems. The implementation of a portable, parallel computer
code based on the boundary element method using a blocl-block data dis-
tribution is discussed in thk paper. The code employs updated direct-solver
technologies that make use of dual-processor compute nodes.



DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



# 1

1 Introduction

Many modern day manufacturing processes involve the use of multiphase
fluid suspensions (particles suspended in a carrier fluid) to atileve certain
characteristics in a product. Suspensions are also prevalent in many in-
dustrial processes where the particulate phase serves some active role in
the functionality of the process. In either event the suspension flows into
place, and the resulting distribution of volume fraction of the suspended
particulate phase often dictates the effectiveness of the fluid suspension in
the process. Owing to the complex nature of fluid-particle interaction in a
suspension, the planned use of suspensions in a process often relies heavily
upon design experience rather than systematic analytic design procedures.
In an effort to better understand suspension flows, researchershave experi-
mentally studied the overall characteristics of the flow [1, 2]. These efforts
have produced new insights and phenomological continuum models of sus-
pension flow behavior [3]. Using these phenomological models as part of
numerical models, it has been demonstrated that this approach has some
merit for predictive design [4].

Mesoscopic analyses of multiphase systems are used to determine pa-
rameters used in continuum models, such as dHfusioncoefficients or hindered
settling correlations. In these analyses individual elements of the dispersed
phase are explicitly included in the models. A number of different meth-
ods for mesoscopic simulations have been used for this purpose including
the method of Stokesian dynamics [5], the finite element method, and the
boundary element method. In this research mesoscopic simulations of hard
particles suspended in a Newtonian fluid undergoing nonlinear shear flow
are performed using a boundary element method.

The advantage of using a boundary element method for modeling the
particle motions in a suspension is that the difficulty in generating a volume
grid for the fluid/particle system, as in a finite dfierence or %lte element
approach, is avoided since the boundary element method uses only a surface
discretization. Although some finite element simulations of this type have
been carried out [6], they are generally limited to ddute systems and use
empirical models to address the issue of particle-ptilcle interactions. Fur-
thermore, these applications often require specialized grid generation tools
that might not be available to many analysts.

Boundary integral formulations have been used for several years to
study systems comprised of solid particles suspended in low Reynolds num-
ber fluid flows. Youngren and Acrivos [7] presented a direct boundary in-
tegral element method (DBIEM) to model the inertialess flow about single
particles. Hlgdon [8] used a similar formulation to study shear flows over
ridges and cavities, and Pozrikidis [9] later used the DBIEM to study some
creeping flow problems in channels. Tran-Cong et al. [10] used the DBIEM
to study the effective viscosity of a few particles in arrays of periodic cells,
and Vincent et al. [11] modeled the flow about particles of arbitrary shape.
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The same techniques used in boundary element models of systems with
a few particles can be extended to fluid suspensions containing a large num-
ber of particles. To obtain an RVE at higher concentrations, several hundred
particles must be included in the simulations, thus placing considerable de-
mands on the computational resources both in terms of CPU and memory.
Parallel computing provides a viable means to study these large multiphase
systems. Reported parallel implementations of boundary element method
computer codes for the analysis of low Reynolds number fluid flows include
the indirect BIEM implementation of Karilla et al. [12] and the direct BIEM
implementation of Ingber et al. [13]. Both of these implementations have
been somewhat specitilzed in nature, as they target a specific compute plat-
form or a specific message-passing procol.

In this paper a new implementation of a portable, parallel boundary el-
ement computer code is dkcussed for the analysis of suspension flows. The
goal in developing this code is to provide a nearly platform-independent
implementation of the boundary element method that can be used in both
sequential and parallel computing. This new implementation draws heav-
ily upon previous experience with the DBD3M [13, 14]. Portabtity of the
code for parallel platforms is enhanced by employing the MPI message
passing library [15]. The code employs updated parallel direct-solver tech-
nologies which can take advantage of dual-processor compute nodes. Pre-
liminary performance timings obtained, with the code on a platform with
dual-processor compute nodes, are reported.

2 Governing Equations

The continuity equation for incompressible flow about suspended particles
is given by

(1)

where u~ are the components of velocity. For steady-state low Reynolds
number creeping flow of a Newtonian fluid with viscosity p, the momentum
equation becomes

(5%Q(x) ap(x)
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(2)

For limiting values u~ + O and p -+ O at infilty, the fundamental
solutions of the above equations are

— (dij + T,i ?’,j ) ,‘@j (x>Y) = ~mlpr (3)

and

P;(X, Y) = = > (4)
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where r = lx – yl. The shear stress tensor, Tij, in terms of the physical
variables is given by

(%w-Tij(ui,p)=–P&j+P ~zj +azi (5)

Further considering anadditional scalar field, q, a vector field, vi, anda
corresponding stress tensor, Tij (vi, q), it can be shown using the divergence
theorem [16] that the governing velocity boundary integral equation is given
by

/
cij(x)~j(x)+ qtj~(x,y)~j(y)~~(y)dr(y) =–~~jj(x,y)fj(y)dr(y),

r
(6)

where ~j(x) is a coefficient tensor function, q~jk(x>y) is a fundamental
solution

(7)

fj are the traction components, and nj are components of the unit normal
vector along r(y).

The above equations are generally sufficient to permit solution of fluid
flow problems on a given domain. However, for problems of suspension
flow where neither the velocity nor traction components on the particle
surface are known, the boundary integral equations must be supplemented
with additional equations to provide closure. To this end the velocities at
the particle surface can be related to the particle translational and angular
velocities, u: and W;, as

where ~ijk is the alternating tensor, and Ixk - xi I is the distance from the
particle surface to the particle center.

Closure for particle suspension flows can then be achieved by introduc-
ing the static equilibrium relations for the particles. For force and moment
equilibrium, the total forces on a particle surface, P, are equal to the ex-
ternal forces, ~, applied to the particle

J f@p(y) +%=0, (9) .
r’P

and no net torque acting on the particle implies

J 6~jklZi– Z$’lfi~p(y) = O .
rP

(lo)
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3 Code Implementation

To obtain a numerical boundary element method implemention, discrete
interpolants are introduced for the field variables components, uij and -fj,
and for the boundary geomet:y, I’, with local support over elemental sub-
divisions of the surface boundary. In particular, superparametric elements
are used in which the geometry is interpolated quadratically and the field
variables are considered constant Within the element. Substituting these
interpolations into (6,9,10), along with the fundamental solutions (3,7), the
discretized boundary integral equations are obtained. These discretized
equations can then be integrated numerically to obtain a system of equa-

(11)

Here Gij and Hil represent the integrations in (6), Mij representthe integra-
tions in (9) and (10), and Klj represents possible modifications in (6) owing
to (8). It is important to note that unliie most boundary element formu-
lations which yield dense fully-populated matrices, the partitioned system
(11) contains dense upper blocks and sparsely populated lower blocks.

Given a set of proper boundary conditions along the problem bound-
ary, I’, removed from the particle surfaces, the system of equations can then
be solved for the unknown surface tractions and velocities as well as the
particle translational and angular velocities. In the present code implemen-
tation, provisions for user-defined boundary conditions and periodic bound-
ary conditions are provided similar to those used by ‘llan-Cong et al. [10]
in addition to the standard velocity and traction boundary conditions.

Once the particle translational and angular velocities have been de-
termined, the quasi-static approach of Dingman et al. [14] can be used to
simulate particle motions. In thk approach the equations of particle motion
are integrated using a set of Euler parameters [17].

As in most BIEM codes, there are two portions of the code which ac-
count for most of the CPU time, namely, assembling the system of equations
(11) by performing the numerical integrations to obtain the components Gij,
Hi/, ~d Mij, ad solving the assembled system of equations. For a small
number of unknowns, the computation cost of matrix assembly can be on
the same order of the solution phase. However, as the number of unknowns
increases, the cost of dhect solution greatly outweighs the cost of assembly.
For sequential applications the system of linear equations (11) is solved using
the LAPACK [18] direct solver. For parallel platforms, addkional strategies
are adopted as discussed below to exploit different aspects of parallelism.

The assembly phase of the code can be efficiently parallelized since all
integrations required to assemble (11) are independent. It is, however, im-
portant that the workload be balanced for each of the processors, and to
this end a block-block data decomposition is adopted that assigns specific
integrations in the dk+creteform of (6), (9), and (10) to be performed on



certain processors. In this scheme each processor is responsible for popu-
lating submatrices of the same general form as (11) and is equivalent to the
oumer-computes approach described by Natarajan and Krishnaawamy [19].

Many parallel solver packageshave appeared over the past severalyears,
but most of these packages are dedicated to providing iterative solutions for
sparse systems of equations. Generally speaking, iterative solvers work best
when the system matrix is somewhat diagonally dominant but because of
the underlying structure of (11), that may not be the case when using the
DBIEM to analyze suspension flows. Nevertheless, there has been some
success in using iterative solvers for parallel boundary element simulations
[20, 21, 22]. The use of iterative solvers often requires experience in their
operation, since some of the solver parameters may require adjustments ap-
propriate to the application. Since the motivation herein the development
of thk code is to provide a tool that is easy to use and requires less skill on
the part of the analyst, a parallel direct solver is implemented.

Although there are a number of different approaches that can be used
in developing parallel direct solvers [23], a family of solvers utilizing a two-
dimensional torus-wrapped mapping appears to provide the best perfor-
mance. Use of such a solver in the context of the boundary element method
has previously been reported by Natarajan and Krishnaawamy [19]. In the
current work an updated version of the torus-wrapped solver of Hendrkk-
son and Womble [24] is used. The solver requires that the system matrix be
mapped into a two-dimensional block-block array, and the block-block data
decomposition used in the current DBIEM implementation is compatible
with thk requirement.

4 Test Problem

A simple pressure-driven flow in a square conduit with suspended particles
as shown in F@ure 1, is chosen as a demonstration benchmark test problem.
Boundary conditions used in the simulation are no-slip velocity conditions
along the boundaries parallel to the flow direction and traction conditions
on the boundaries perpendicular to the flow direction. Two variations of
the problem are studied. One to demonstrate speedup and the other to
examine scaled parallel efficiency.

All simulations are carried out on the Intel ASCI Red Teraflops super-
computer at Sandla National Laboratories. The compute platform includes
4,536 333MHz Pentium II Xeon dual-processor compute nodes with 256Mb
of memory available on each node. In normal operation program execu-
tion utilizes only one of the CPUS on an individual compute node. More
recently the Intel computational scientists have released math libraries writ-
ten specifically to take advantage of the other CPU. This paper compares
the performance of the current benchmark problem with and without the
use of the second CPU.

The test problem concerning speedup serves a dual purpose in the anal-



Figure 1: Model cell geometry.
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ysis. Thk problem is used to provide working estimates of speedup and is
also used to quantify any improvement in performance contributed by the
secondary processor. To demonstrate speedup, a problem of fixed size is
considered with 48 particles and 4,512 degrees of freedom using a solver
blocksize of 32. After analyzing the problem on a single node, the same
problem is analyzed on an increasing number of nodes, namely, 4, 16, 32,
and 64 nodes both with and without the second processor active. In all
cases, the torus-wrap mapping used a square processor array. Things for
the individual analyses are given in Table 1. The use of two processors per
node is seen to yield lower overall and solver CPU times than when using
only one processor. Further, the matrix assembly time is seen to be essen-
tially perfectly scalable. This is a result of the fact that all integrations
are independent, and the only communication required during the assembly
phase is a gather of the load vector.

The n-node speedup, S., is defined as the ratio of the time taken to
complete the analysis on a single node, 571,to the time taken to complete
the analysis on multiple nodes, T~, and is given by

s .5
n Tn “

(12)
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matrix 1 proc 2 proc 1 proc 2 proc
assembly solver solver total total

procs (n) I DOF time time time time time
1 I 4512 72.8 285.8 164.1 358.9 238.7
4 2256 18.6 77.9 48.2 97.1 67.5
16 1128 6.5 23.1 16.0 30.3 23.3
36 752 3.9 13.2 10.1 19.5 14.8
64 564 1.8 8.8 6.9 11.2 9.4

Table 1: Timings for boundary element code speedup study.

matrix BLK 32
assembly solver

procs (n) DOF time time
1 3510 44.3 86.4
4 7032 41.9 164.5
16 14076 40.5 363.3
64 28088 39.4 725.8

BLK 40 BLK 32 BLK 40
solver total total
time time time
112.3 I 131.1 157.3

Table 2: Timings for boundary element code scaled parallel efficiency study.

A plot of the speedup ratio for these runs shown in Figure 2 indicates that
the use of two processors per node yields a slightly lower speedup than
obtained with a single processor per node. This is the result of the com-
munication time being a larger portion of the overall wall clock time when
using two processors. Nevertheless, CPU times are substantially reduced
when using the second processor on each node.

The scaled parallel efficiency of the code is next studied by consider-
ing a sequence of problem sizes chosen so that as the number of nodes is
increased, the problem size also increases so that the size of the coefficient
matrix assembled and reduced on each node remains nearly constant. The
different combinations of number of nodes and problem sizes characterized
by the degrees of freedom are shown in Table 2. Timing results for these
problems are also shown in Table 2, where the results for different blocl&ze
are denoted as BLK 32 for a blocldze of 32 and BLK 40 for a blocluize of
40. From these results the assembly portion of the code is again seen to
be almost perfectly scalable, since the assembly time is nearly constant for
all cases. Based upon these timings, the scaled parallel efficiency is seen
to be close to 100 percent for the torus-wrap direct linear equation solver
showing the efficiency of the block-block data dktribution in minimiziig the
communication overhead.

From the solver timings and the overall execution times, it is seen that
in all cases using a blocksize of 32 works better than blocl&ze of 40. This is
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also shown graphically in Figure 3, where it is interesting to note that based
upon the slope of the curves, the combhed benefit of the second processor
and a blockize of 32 seems to be greater (CPU times are lower) for a larger
number of processors.

5 Discussion

The development of a portable boundary element code for the analysis of
low Reynolds number suspension flows is outlined in this paper. Testimony
to the portability of the code is given by its successful use on different com-
pute platforms. To date the code has been compiled and run on several
Unix workstation serial platforms that include HP, SGI, Digital, and Sun.
Although the computer code can be used exclusively for sequential calcula-
tions, its full power is best appreciated in a parallel computing environment.
The parallel code has been successfully run on several multiprocessor plat-
forms that include Alta, SGI, IBM, Sun, and the Intel Teraflops.

Using a simple test problem, it has been demonstrated that the par-
allel boundary element code solution algorithm is scalable to at least 64
processors for a fixed-size problem. Although the problems presented here
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utilize but a modest number of processors, it is worth mentioning that the
code has already been used in analyses employing thousands of processors.
This provides some confidence that the computer code can be used to study
suspension flows containing a large number of particles.

The results generated using the Jntel Terai30psmachhe demonstrate
that the computation time can be significantly reduced using the second
processor on each node simply by linking the appropriate BLAS libraries.
The results of the study also indicate that when using the torus-wrapped
solver on thk platform, the best performance is obtained by using a solver
blocksize of 32, whereas Natarajan and Krishnaawamy [19] determined that
a blocluize between 40-50 proved optimum for the IBM SP2.
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