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ABSTRACT

The generalized method of Backus and Gilbert (BG) is described and applied to the inverse
problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD’s). This
diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray
photons (< 2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral
resolution limits on the system of response functions that are in good agreement with the unfold
method currently in use. The resolution so defined is independent of the source spectrum. For
noise-free, simulated data the BG approximating function is also in reasonable agreement with
the source spectrum (150 eV black- body) and the unfold. This function may be used as an
initial trial function for iterative methods or a regularization model.

1. Introduction

Arrays of individually filtered detectors have been used to study x-ray spectra since
the time of Rontgen and Barkla'. This technique consists of simultaneously exposing several
detectors of differing spectral response to x rays and inferring information about the incident
spectrum from the data. The method is often capable of yielding coarse spectral estimates
and is also useful in testing theoretically-derived spectra. While now largely supplanted by
energy- and wavelength-dispersive methods to study steady-state x-ray sources, it is however
still used to diagnose x rays emitted by high temperature, pulsed plasmas® In particular, for
investigating the spectra of soft x rays emitted by laser-driven and Z-pinch plasmas, filtered-
detector arrays have been made of thm-ﬁlm K- and L-edge filters coupled to photoemissive x-
ray detectors (XRDs)?, XRDs plus mirrors®, silicon PIN detectors’, monolithic silicon
photodiodes®, photoconductive detectors’, and microchannel plates®,

An array of five, time-resolved, filtered XRDs® is used at the Z-facility'® (a 20 MA, Z-
pinched plasma source) to measure x-ray flux and fluence. (Other applicable x-ray
diagnostics include bolometers", calorimeters’, and a transmission grating spectrometer.)
Typical response functions for such an array are shown in Fig. 1. These overlapping
functions are characterized by sharp, x-ray edge features as well as by a "hump" at higher
photon energies. Representative signals are shown in Fig. 2. When the detectors are run in a
linear current regime, the time-dependent XRD data g(#) (i = 1,2, ..., 5) may be described by
a system of Fredholm integral equations (first kind):




80 = [fEDREEE + € (),
0

where f is the unknown source spectrum (differential flux), R, is the i-th response function,
E is the x-ray photon energy, and ¢ is the time. The random variable €, represents noise. The
integral limits in Eqs. (1) reflect the largest possible energy domain for f; in practice, this
domain may be reduced to the finite interval [E,,,E,,,J and the interval limits adjusted,
depending on the relative shapes of the incident spectrum and the response functions. (See
Appendix 1.) To obtain the spectrally-integrated x-ray flux incident on the XRD array, one
estimates f from Eqgs. (1) and computes [{E,f)dE. The x-ray fluence is then the time integral
of the flux.

The estimation of a source f from a set of response functions and discrete data, as in
Egs. (1), is a well-known, non-trivial, linear inversion problem'*?. A complete pointwise
reconstruction (or unfold) of f is not possible generally due to non-uniqueness: i.e., to any
unfolded solution one can add an infinite number of (usually highly oscillatory) functions that
average out to zero in Egs. (1). Numerical instabilities are also common. But, the existence
of such difficulties does not preclude the recovery of useful information about f — if the
possible number of solutions can be limited and oscillations controlled. To guide the
unfolding process, most classical and modern inversion techniques rely on some inclusion of
relevant information about the measurement or source in addition to the data and responses
(e.g., known spectral values, functional parametrizations, regularization,**! interpolation
constraints).

A first step in deciding what information to add is taken by understanding the
averaging behavior of the coupled system of Egs. (1). The system of responses (as opposed
to individual response functions) defines the scale and location of source detail retained by
the data and thus defines the spectral resolution of the measurement. Armed with an estimate
of resolution, one may suggest constraints for the unfold. For example, one may suggest how
to partition the spectral domain for a simple histogram-type solution of Eqgs. (1) or judge
whether emerging details in a more complicated unfold are likely to be present in the source
spectrum.

A little-used technique for studying inverse problems as posed by Egs. (1) was
introduced by Backus and Gilbert (BG)*?. Their procedure attempts to modify the given
response functions R, into more localized responses. The narrowest of these characterize the
ability of Egs. (1) to resolve spectra, independent of the source f. The method also defines an
estimate fy; of f at each photon energy of interest.

This paper describes the application of the Backus-Gilbert method to the inverse
problem posed by XRD arrays at the Z-facility. The issue is what information this method
can give to an unfold procedure. The BG method for constructing an averaging kernel from a
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set of response functions is described in Sect. I The results of a BG analysis applied to the
XRD array for simulated noise-free data are given in Sect. IIT and compared in Sect. IV to
the unfold analysis currently in use at the Z facility. Details of the unfold procedure are given
in Appendix I. The notion of an averaging kernel, inherent to the BG method and rarely
considered in the x-ray diagnostics literature, is discussed in Appendix II.

. The Backus-Gilbert method

Central to the Backus-Gilbert approach is the realization that one not need deal with
Egs. (1) as written. Rather, without distorting the problem, one can form linear combinations
of the equations. Such simultaneous manipulations (transformations) of both data and
integrals may advantageously modify the integrands and thus yield a more manageable
inversion problem. This basic insight is illustrated in Fig. 3. Shown in Fig. 3a are three,
hypothetical response functions {R; R, R}, two of which overlap. Assume that these
responses belong to a three-element detector array that produces corresponding noise-free data
{8, &, g5} from some unknown spectrum f according to Egs. (1). One wishes to estimate f
incident on this instrument within the domain [E,, = E, - AE, E,,. = Es+ AE], defined here
by the response functions. The basic BG analysis has two parts. First, it is clear that a
narrower, transformed set of response functions can be obtained (Fig. 3b) if one combines the
last two responses: i.e., define Ry = R; - (hy /h,)R,. The set {R; R, R;'} has now three non-
overlapping responses. One may argue that {R; R, R;'} determines the smallest details in f
that can be obtained by this particular instrument”. The second step in the BG analysis
estimates the source function. If one forms the same linear combination of the original data
as for the transformed responses, one generates transformed data {g, g, 8= &3 - (h;/hy)g,}-
For this simple case, dividing each transformed datum by the width of its transformed
response, one estimates source function values g,(21,AE)", g,2h,AE)", and g/'(2h,AE)",
which turn out to be simple averages of the source over the narrower bins centered at E,, Es,
and E,, respectively. The full BG technique differs from this illustration in providing a
general method for choosing the linear combination of responses and in estimating f at
arbitrary photon energies within the domain [E, ,,.E, ]

The Backus-Gilbert technique starts with the set of response functions {R{E)}.,",
where N is the number of filtered detectors, or channels. For each photon point of interest E,
at which one wishes to estimate f, the method finds the linear combination of response
functions that is as narrow as possible according to prescribed criteria. Thus define

N
4,0 EyE) = 3, o (EDR(E) @.
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on the practical domain [E,,,, E,,,J]. As shall be clear presently, Az; may be called an
averaging kernel (AK), a scanning function®, or a sampling function; A,; depends on the
photon energy E but is different for each point of interest E, The scalars {a,}, which may
be positive, negative or zero, are then chosen to make

E
f E, - E)ZABG(EO,E)ZdE = minimum (3),
E

and -

E
[ A B BVAE = 1 @),
E.

min

for fixed E,. In Eq. (3) the arbitrary weighting term (E,- E)* and square of the AK
accentuate a narrow result. The minimization procedure to obtain the ;s uses the method of
Lagrange multipliers and is well described in the literature'*'%%; the resulting matrix
procedure has been programmed in FORTRAN,

Backus and Gilbert also define two mathematical diagnostics for characterizing
Aps(Ey ,E). Reminiscent of the “mean” and “variance” from probability theory, both measures
are functionals of the AK shape as well as functions of E, The “center” c[Ag] of A is
defined as

E
f EA_(E.E‘dE
E

BG® 0O
min
cld, ] = P (5).
2
f A, (E E)dE
Emin

the “width” w[AzgE,] of A is defined as

E

w4, ] = 12 f E - cl4, G])ZABG(EO,E)ZdE ().
E

The center diagnostic ¢ thus defines a weighted average energy for the AK A, (at fixed E,),
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and the width? w is a measure of the spread A, about its center. One notes the same use of
Az’ in Egs. (5) and (6) as in (3).

If the AK Ag4(E, ,E), derived from Egs. (3) and (4), is taken as a transformed
(possibly improved) response function for the experiment, then the integral of the source f
with Az; by Egs. (1) produces transformed data in the spirit of Fig. 3. Backus and Gilbert
define the function fgs:

E E
max N max N

FoB) = [ 4, EERBEE = 3 o (E) [ RERE)E = ), o E)g, = RE) ().
E i= E . i=

This definition justifies the use of synonymous terms like averaging kernel, scanning
function, and sampling function for Agg, used above, since for each selected Ej Ay averages,
scans, or samples f over the x-ray energies to which the instrument (represented by the R/'s)
responds. The transformed result of such an interaction is the original data g;, weighted by
the same, known scalars {«; } that determine Ag(E, ,E). That fz(Ey should also
approximate f(E,) in Eq. (7) is due to two considerations: (1) the normalization constraint on
Ags [Eq. (4)] makes the scalars {¢;} inversely proportional collectively to the set of integrals
IR, E)dE (the calibration information)®; and (2) the narrower the width of A,; and the closer
its center to E,, the more local is the average of f with Az;. (Appendix II gives an heuristic
argument for the constraints Egs (3) and (4) and describes other properties of AKs that relate
to the BG method.)

In the BG formulation the notion of spectral resolution also arises from Eq. (7). That
is, fyg results because Ay effectively samples the unknown source f over a finite subregion
of the domain. Roughly speaking, details in f on a finer scale than the width of Ay, at E,
will average out in Eq. (7) or be weakly reproduced in fzs. It is reasonable, therefore, to
associate the width w[A] with each estimate f;(E,) as a pointwise measure of resolution or
resolving power. One can also assign resolution bands to the whole photon energy domain
by selecting a finite subset of the AK’s that together span it. (See Sect. IV.) In either sense
resolution refers to no particular source function.

III. Test problem and results

We have applied the BG method to the response functions of the 5-channel, filtered-
XRD diagnostic, described above. Following Eqgs. (1) we folded an arbitrary 150 eV
blackbody spectrum (Fig. 4) with the response functions R; (Fig. 1) to obtain the noise-free,
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fixed-time data g, shown in the lower curve of Fig. 5. The Backus-Gilbert AK Ap; was
constructed at several observational points E, together with the center and width diagnostic
functions and the f3; approximation. For these calculations, the spectral domain [E,,, , E,, 1

was defined as [137, 2300] eV and the simulated data unfolded by the methods summarized
in Appendix L.

Figure 6 shows the evolution of the averaging kernel A, with the parameter E, This
behavior is typical. As E,increases, continuously changing contributions «; from the various
response functions [Eq. (2)] give the impression that Ay; also moves (scans) unilaterally to
higher energies. For example, when E,= 250 eV, Ay consists primarily of R, modified by a
negative correction from R,, which removes the high energy “hump” of R,. But as E,
increases to 350 eV, the contribution from R, decreases in A,(350,E) while the contribution
from R, increases. At E;= 450 eV, the contribution of R, becomes the major component.
The process repeats at E,= 600 eV when the contribution from R, begins to appear and R,
wanes.

In contrast to the smooth evolution of Az, the BG measures of width and center
oscillate as E; increases. For example, in Fig. 7 one can see the width w[Ap; ] pass through
five local minima. Likewise, in Fig. 8 the center measure c[A,g] oscillates about E;, One
can show that ¢ and E;coincide when the width w passes through a local minimum. The
reason for such broadly oscillatory behavior is that the measures w and ¢ are sensitive to the
lateral extension of Apz;, which expands and contracts discontinuously with E, (Fig. 6) even
though the components o, of A,;change smoothly.

Given the set of coefficients { ¢} and the set of simulated data {g,}, one can construct
the associated approximating function fz(E,). This function is compared to the simulating
150 eV spectrum in Fig. 4. It is clear that while f3E,) has roughly the same size and
shape as f, and even approximates f well at some points, it deviates significantly from f near
the peak and exponential tail.

IV. Discussion

Although the continuous construction of fz;shown in Fig. 4 is not the primary focus of
this paper, it helps illustrate the concept of resolution in the BG method. As discussed in
Appendix II, one can intuitively understand the pointwise behavior of f,(E,) relative to AE,)
in terms of two independent components: the local shape of f (i.e., slope, curvature, efc.) and
the resolution of Ay associated with the width w[Azg]. In Fig. 4 f,; thus wanders about f as
a function of E, because f varies in shape and A, in width. Conversely, one expects the best
agreement where f changes most gradually and Ag is narrowest.
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Now in such a comparison one has little control over the shape of the incident
spectrum f; but one can, however, choose to report f; only for the narrowest available BG
averaging kernels. This is done by selecting values E, at which w[Ag;] is a local minimum.
In the filtered-XRD example, these minima occur at E,= 250, 450, 850, 1200, and 1800 eV
(Fig. 7). The corresponding AK’s are clearly less spread out than the rest of the BG kernels
[e.g., in Fig. 6 compare Agz;(350,E) with Ap4(250,E) and A;;(450,E)]; they are also, for the
most part, improvements over the five, original response functions R;. For example,
comparing Fig. 9 with Fig. 1, one sees that the AK’s for E;= 250, 450, 850 eV are
respectively narrower than R;, R,, and R; because the high energy "humps” have been
removed. On the other hand, the AK’s for E,= 1200 and 1800 eV are only slightly narrower
than R, and R; . :

Figure 10 compares the known spectrum f with a discrete representation of fp; (solid
points), based only the five narrowest BG AK’s of Fig. 9. The indicated horizontal error bars
are the corresponding widths, which represent the resolution of the BG reconstruction process
at each energy point. The five points shown are the most accurate BG estimates of f (with.
this set of response functions) because at these energies the BG AK samples the most limited
segments of the source. Moreover, since the width w[A,;] is not calculated from f, the
collection of horizontal bars can also be interpreted as a set of resolution bands representing
the best overall, spectral detail obtainable from the given responses and any source function
on the spectral domain [E;, E,,J. Such bands may turn out to be overlapping or non-
contiguous; they may even be somewhat ill-defined, depending on the shallowness of the
minima of w[Ag;] vs. E,.

The BG estimate of resolution can provide useful guidance to the unfolding of filtered-
XRD data. The unfold procedure described more fully in Appendix I attempts to extract
information about the source f only sufficiently well to estimate I]‘(E, H)dE over the spectral
domain. To do this, one assumes f can be approximated by a histogram (defined on a
contiguous partition of the domain) so that details of f within the bins of the partition average
out in [(E,HdE. The solid line Junrorp in Fig. 10 is such an unfold of the simulated data
(solid circles) in Fig. 5. Using this method, one obtains reasonable flux estimates from
response functions like those in Fig. 1 and blackbody-like spectra® 95% of the flux in the
spectral domain is recovered for a 150 eV blackbody and 103% for a 250 eV blackbody (not
discussed here). But, a major problem in setting up this unfold procedure is determining the
number and location of the bin boundaries (or joints) in the histogram: a poorly-chosen
partition can predispose the unfold to spurious structure and excessively bias the estimate of
flux. In Appendix I, the bin-selection process is based largely on x-ray absorption edges, an
identification that is clear at low photon energies but rather arbitrary at energies higher than
the edge features. In particular, a joint at ~1500 eV is not supported by an absorption edge
feature. Now, the BG resolution bands provide an independent assessment of the partition
because these bands are a measure of the source detail preserved by the response functions.
Comparing the horizontal BG resolution bars of f;, with the bins of fyyro;p in Fig. 10, one
finds corroboration for the unfold partition — including a boundary at 1400 - 1500 eV.
(Exact agreement between the two methods need not be expected since the selection criteria
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differ and the BG resolution bands can be non-contiguous.) When the response functions
have no easily identifiable absorption features (e.g., arrays of diamond photoconductors®
filtered with CH material and used for photon energies = 500 eV), the BG resolution bands
may be used as an initial guess for an unfold partition.

The BG method has other uses as well. For example, when one is unfolding with
more flexible basis functions (e.g., polynomials) and little a priori information, the BG
resolution bands can suggest if an unfolded feature is too narrow to be resolved and possibly
spurious. More information is needed. Likewise, in more sophisticated unfolding techniques
f3g may be used as a trial function or a model for regularization. Lastly, Craig and Brown"
note a role for the BG in experimental design: by examining the resolution bands of a
proposed set of response functions, one may decide that some of the responses need
adjustment (e.g., filter changes) to optimize the spectral coverage of the array and the
subsequent unfold process.

Like most numerical procedures the BG method is not a panacea. It works well for
the type of response functions used here, but there are classes of response functions for which
this method® gives less satisfactory results. Moreover, as one might expect, the matrix
manipulation procedures required in the BG method become numerically unstable as the
response functions approach linear dependence. Finally, if one is interested in obtaining fgg
from real data, error propagation must be considered. Unlike the inaccuracy studied here, the
random uncertainty in fz; due to data imprecision or noise is inversely related to the width of
the AK: i.e., the narrower the AK, the greater the propagated uncertainty. The general
Backus Gilbert method not only provides error propagation information about fg;, it can even
incorporate specified error bounds in the minimization process that yields an AK, thus
effectively trading resolution off against propagated precision. This option is treated in the
literature'*'%**2 byt is beyond the scope of this paper; it too has been programmed in
FORTRAN?.

Appendix I. The standard unfold for the filtered-XRD array at the Z facility
The unfold for the filtered-XRD arrays at the Z facility uses classical matrix inversion

techniques'*, It assumes that the incident source spectrum f{E) can at each time step be
approximated by a contiguous set of histogram basis functions B(E)

N
RB) = 3 fB(E) @),
j=1
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defined on the finite domain [E

min »

E,..), which is partitioned into N (= 5) bins of widths AE,
J=1, .., N. (The domain boundaries E,,, and E,,, are described below.) These basis functions
are assumed to have unit height over AEJ- and be zero elsewhere. Other basis functions, like
polynomials or even the response functions themselves (the so-called normal solution'*'?) can
also be chosen; but a histogram was selected because an estimate of the spectral integral of
the source function (the flux) is principally sought, not details of the spectrum, and it was
desired to automate the unfold with a simple algorithm. By substituting Eq. (8) into Eq. (1)
one obtains ;

E

i N Tmx N
g,) = [[EHREME = 3 f, [ RE)B(E)E = 3R f (G =1..N) O
0 HUE =l

where

E
J

R, = Ef R(E)E = AE, <Ri>j Gj = 1,..N)  (10).
7-1

The elements R;; are thus proportional to the average (R); of the i-th response function in the
J-th bin and form an NxN matrix R. If the response functions are linearly independent, the
inverse matrix R exists — although for response functions like those in Fig. 1 the condition
number'*'"*!, which relates to error propagation, is often large (~20 - 30). The unfold-
histogram coefficients f; are then given by ‘

N
=Yk . a.

The inverse matrix is constructed by Singular Value Decomposition®*2. A unique solution is
obtained by assuming that any other solution to Eq. (1) includes components which solve Eq.
(1) with g;=0(Vi=1,2, .., N) and is excluded in Eq. (11)"*'. A disadvantage of this
formulation is that negative values of f; can be obtained from noise in real data and also when
a histogram is a poor approximation to the source function.

Setting up the spectral domain parameters (E,;, , E,,. , and A E;‘s) of the histogram
in Eq. (8) is typically an iterative process that balances successful numerical inversion of R
against approximation of the source f. This process is somewhat arbitrary since one must
estimate the form of f a priori. Yet the choice of histogram parameters is important since ill-
placed endpoints and joints may distort the unfold.
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In principle, Egs. (1) extend from E = 0 — <o since a filtered array generates some
data for all x-ray photons; but practically there is a finite spectral domain [E,,, , E,,] over
which the array almost exclusively responds for a given experiment. The a priori information
needed to make this determination may come from so-called background or null experiments,
plasma theory, or simulations. For the response functions of Fig. 1 and Z-pinch experiments,
the photon energy E,, is identified with 137 eV because all the R;'s are <~1% of their peak
values below this photon energy. It is assumed, therefore, that f is not dominated by intense
XUYV at lower energies. Similarly, one may argue that at the Z facility the emission and
detection of x rays in the keV energy range are relatively less likely than of softer photons
thermalized in the Z-pinch plasma. If one selects E, .. = 2300 eV, then even blackbody
spectra of temperatures ~250 eV have integrated flux levels of only a few per cent in photons

of energy > E, ..

The partition of the spectral domain is then defined to make the matrix R as close to
diagonal as possible while still allowing some flexibility in the unfold from anticipated
spectra. The easily-distinguished, K- and L-edge features in response functions R,, R,, and R,
(Fig. 1) suggest joints at photon energies 284, 513, and 1020, eV (Figs. 10-11); the low
energy portions of these responses (i.e., excluding the “hump”) are nearly non-overlapping.
The additional joint at 1500 eV was added after a series of simulations with blackbody
spectra.

Appendix II. Properties of averaging kernels

The purpose of this appendix is to describe heuristically some of the integral
properties of AK’s that relate to the Backus Gilbert method — in particular, to motivate the
constraint Eq. (4) and the use of A,; in Eq. (3). The inaccuracy between f, and f is also
considered. It should be noted that AK’s can be constructed from other criteria than the BG
method'*1S,

The estimate f; in Eq. (7) depends on the fixed source function f and a function A(E,
,E), which is constructed for each photon energy E, chosen. The result of integrating these
two factors JAE)A(E, ,E)dE is a function of Eyand a functional of f. Simple and convenient
forms of A are often studied. For example, A may be non-negative with a local maximum at
E = E,. Or, A may depend only on the difference (E, - E), thus retaining its shape for all E,
and reducing the integral to a convolution. But, in general, the E, and A(E, ,E) may be
related in a very complicated way: that is, A(E, ,E) may (a) change its shape for different
choices of E,, (b) be positive- or negative-valued or zero within its domain, (3) be
asymmetric about E,, and (d) be peaked elsewhere than E,. (See Fig. 6). In the BG
formalism the mathematical diagnostics of width and center are aimed at characterizing such
behavior.

What properties of the AK Api(E, ,E) in Eq. (7) make fp; (E,) at least approximately
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equal to f(E;)? Clearly, if A(E, ,E) = 0(E - E,), the Dirac § function, the problem would be
trivial. But for most physical problems Ag; has finite width. Since the AK in the Backus-
Gilbert analysis is specified as a linear combination of the given response functions [Eq. (2)],
a more appropriate question is this: if one were to chose among a collection of AK’s A,, all
defined at E, and applied to Eq. (7), which would produce the most accurate estimate of f{E)?

To explore this point, consider first the special case in which A(E, ,E) is non-negative

and symmetric about E,. Also assume that f{E) is slowly varying over the width of A(E, ,E)
and expanded in a Taylor series about fixed E,. Then, [RE)A(E, ,E)dE becomes

[f®AEE)E = f&) [AEEE + f'(E) [AEE)E - E)E +

1., A
7/ [AEEE - E)dE ..

oD (12),

A :; 1o, "11“?’1‘

where the symbols (") and () denote single and double differentiation, respectively. The
integrals in the middle of Eq. (12) can be regarded as moments of A about E;, Suppose now
that the function A(E, ,E) is normalized by dividing through with the zeroth-order moment
IA(EO ,E)dE; i.e., constraint Eq. (4) is adopted. Then, remembering that A(E, ,E) is assumed
symmetric about E,, one finds fy; (E,) = f(E) with a second-order correction proportional to f
”(E,) plus higher order corrections proportional to even-order derivatives of fat E, Thus,
in choosing among a collection of so-normalized functions A, to achieve the best local
approximation to f{(E;), one might then chose the A, which minimizes JA\(E, ,E) (E - Ep)? dE.
The narrower A(E, ,E), the smaller is the correction. Of course, one might choose other
"narrowness" criteria; in particular, the BG method chooses to minimize JA\(E, .E)* (E -
Ey*dE, Eq. (3). ’

When the AK A is not required to be symmetric about E, or non-negative, it is usually
still possible to normalize A with the zeroth moment, but the estimate of [fz; (Ep - AAEy] is
more complicated. It is then convenient to decompose A into symmetric and antisymmetric
components® about Ey: A(E, ,E) = A,,,(Ey ,E) + A,u{E, ,E). Again forming JA(E, ,E)f(E)dE
and expanding f about E,, one obtains the same type of terms as in Eq. (12), except that now
the first- and second-order correction terms become, respectively, f (EQJA ufEq ,E)E - E)dE
and YVof "(E)A,,..(Eo ,EXE - E)*dE. As above, if one were sorting through a collection of
AK’s A, to get the closest approximation or local average to f{Ey, one would now need to
choose both A,,,, and A, as narrow as possible. Here the BG criterion Eq. (3) becomes
really useful: since JA,XE - E)*dE = J[A,,2 + A, WE - E)*dE, selecting JA,XE - E)*dE

small restricts both even and odd components of A.

The terms in the series of Eq. (12) divide the discrepancy between fz; and f into two
independent parts: moments of the AK (related to the width) and derivatives of the source
function f (related to its local shape). One can then qualitatively understand the behavior of
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Sz relative to f in Figs. 4 and 10 by examining these terms. A dependence on f” is
particularly clear: e.g., where f” is small (in the nearly linear sections), f5; approximates f
fairly well; but where f” is large (e.g., at the peak and in the exponential tail region), fy; is
less accurate. The sign of f;;- f also follows f”. That the effect of f’ in this example is
small can be seen in Fig. 11, which is like Fig. 10, except the simulating source function has
been constructed with a straight section at high photon energies. In this region, the second

derivative of f is zero, and fp; at the points of best resolution approximates f more closely
than in Fig. 10.

Sandia is a multiprogram 1ab})ratory
operated by sandia Corporation, &
Lockhecd Martin Company,ffg; :-l;y
United States Department 0

under contract DE-AC04-94AL85000.




13

REFERENCES:

1. N. A. Dyson, X rays in Atomic and Nuclear Physics, 2" Ed. (Cambridge University Press,
NY: 1990).

2. T. F. Stratton, “X-ray Spectroscopy,” in Plasma Diagnostic Techniques, R. H. Huddlestone
and S. L. Leonard, eds., (Academic Press, NY: 1965).

3. G. A. Chandler, et. al., Rev. Sci. Instrum. 63, 4828 (1992).

4. H. N. Kornblum, R. L. Kauffman, and J. A. Smith, Rev. Sci. Instrum. 57, 2179 (1986).

5. J. F. Cuderman and K. M. Glibert, Rev. Sci. Instrum. 46(1), 53 (1975).

6. G. C. Idzorek and R. J. Bartlett, “Silicon Photodiode characterization from 1 eV to 10

keV,” in “EUV, X-ray and Gamma-Ray Instrumentation for Astronomy VIII, O. H. W.

Sigmund, M. A. Gummin, eds., Proceedings of the SPIE 3114 349 (1997).
7. R. B. Spielman, Rev. Sci. Instrum., 63(10) 5056 (1992).
8. K. L. Baker, et. al., Rev. Sci. Instrum., 70(4) 2012 (1999).
9. G. A. Chandler, et. al., Rev. Sci. Instrum. 70(1), 561 (1999).
10. R. B. Spielman, et. al., Phys. Plasmas §, 2105 (1998).
11. R. B. Spielman, et. al., Rev. Sci. Instrum. 70(1), 651 (1999).
12. D. L. Fehl, et. al., Rev. Sci. Instrum. 70(1), part II, 270 (1999).
13. J. L. Porter, Sandia National Laboratories, private communication.

14. M. Bertero, “Linear Inverse and Ill-posed Problems,” in Advances in Electronics and
Electron Physics (ed. P. W. Hawkes) vol 75 (Academic Press, London: 1989) p 1.

15. M. Bertero, C. De Mol, and E. R. Pike, Inverse Problems 1, 301 (1985).
16. M. Bertero, C. De Mol, and E. R. Pike, Inverse Problems 4, 573 (1988).

17. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute
of Physics Publishing, Philadelphia: 1998).

18. V. B. Glasko, Inverse Problems of Mathematical Physics, (American Institute of Physics,
New York:1984).

19. L J. D. Craig and J. C. Brown, Inverse Problems in Astronomy, (Adam Hilger, Boston:

e n il B L Attt o L o o, Lo att B M > 0t B T St N NG 7 ¥ TTICT e o S ey [ A Laie 2.3 OIS S I L A e i =LA A M R B PRt g



20.

21.

22.

23.

24.

25.

26.

27.

28.

29

30.

31.

32

33

14

1986).

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements, (Dover Publications, Mineola, New York: 1996).

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, (John Wiley, New
York: 1977).

G. E. Backus and J. F. Gilbert, Geophys. J. R. Astr. Soc. 13, 247 (1967).
G. E. Backus and J. F. Gilbert, Geophys. J. R. Astr. Soc. 16, 169 (1968).
G. E. Backus and J. F. Gilbert, Phil. Trans. R. Soc. 266, 123 (1970).

Not all combinations are improvements: e.g., forming a linear combination of R, and R,
generates a wider response than either of the components.

L. Kissel, F. Biggs, and T. Marking, “UFO (Unfold Operator): USER GUIDE:
PART I — Overview and Brief Command Descriptions,” Sandia National Laboratories
Report SAND82-0396 UC-705 (Sandia National Laboratories, Albuquerque, NM,
June 1991), unpublished.

The numerical factor of 12 in Eq. (6) was inserted by Backus and Gilbert so that the
spread of a single histogram B(E), defined as B = 1/8 for |E - Eo| < 0/2 (0 otherwise), is ¢
about its center ¢ = E,. Apart from this factor, one also sees that Eq. (3) represents a
minimization of the width of A about fixed E, as the scalars «; are varied subject to
the constraint Eq. (4).

In the simple example of Fig. 3, the “modified” response functions were not re-
normalized in the sense of Eq. (4).

. T. W. L. Sanford, et. al., Rev. Sci. Instrum. 68, 852 (1997).
D. L. Fehl, R. J. Leeper, and R. P. Kensek, Rev. Sci. Instrum. 63(10), 4786 (1992).

G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer methods for mathematical
computations, (Prentice-Hall, Englewood Cliffs, N. J.:1977).

. W. H. Press, et. al., Numerical recipes in FORTRAN: The art of scientific computing,
(Cambridge University Press, NY: 1992).

. The properties of these functions are A,,,,(Ey ,E-Eg) = A,,.(Eq ,EyE) and A ,{E, ,E-Eg) =
‘A,,(E, Ey-E). Explicitly, A, = V[ A(E, ,E) + A(E, ,2E, - E)] and
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FIGURE CAPTIONS:

1. Five response functions for a filtered-XRD array, fielded at the Z facility on line-of-sight
(LOS) 5/6. The sharp features at low energies are due to the x-ray absorption edges
of filters, photocathodes, and surface contaminants. A "hump" feature appears at
higher energies as the filters become transparent to x-ray photons, and photo
absorption in the photocathode dominates the overall spectral response. All the
response functions are <~1% of peak values for E< E,;, = 137 eV.

2. Time-dependent, filtered-XRD voltage traces for shot Z-306, LOS 5/6. The set of signals
{XRD:i} correspond to the calibrated response functions {R;} used in this shot, which
are similar to those in Fig. 1. The voltage traces must be multiplied by known
geometric and electrical factors to obtain time-dependent data g(f) in units consistent
with Eq. (1). See Ref. 9 and Fig. 5.

3. Example of the Backus-Gilbert approach. (a) A hypothetical set {R,,R,,R,} of simple
response functions: R(E) = h, for |E - E;| < AE (0 otherwise); R,(E) = h, for
|E - E5| < AE (0 otherwise); and Ry(E) = h, for |E - E,| < 2AE (0 otherwise),
where E; = E, + (j - DAE, (j = 1,2, ... ,5). (b) A modified set of response functions
{R,R,, Ry}is formed as a linear combination of {R,,R,,R;}. The modified responses
are not normalized in the sense of Eq. (4).

4. Comparison of a test source function f (150 eV blackbody spectrum) and the continuous
Backus-Gilbert approximating function fgg;, constructed from data which were
simulated from f folded with the response functions of Fig. 1. There are no adjustable
parameters.

5. Data simulated from test spectra and the response functions of Fig. 1. The solid circles in
the lower curve refer to the 150 eV blackbody spectrum of Fig. 4; the diamond
symbols refer to the spectrum of Fig. 11. The line segments between symbols in both
curves are shown to guide the eye. The units of these data come from the spectrum
(W/sr-cm?-eV), the response functions (A/MW), and Egs. (1) with photon energy in
eV.

6. The Backus-Gilbert averaging kernel Agi(E, ,E) at selected energies of interest E,= 250,
350, 450, and 600 eV. These functions are here displaced along the ordinate axis for
clarity, but the relative size has been preserved. The center ¢(E,) is noted for each
curve with a dotted vertical line. Since Ag;is constructed as a linear combination of
the XRD response functions, x-ray absorption features of these underlying functions
can still be recognized.

7. Backus-Gilbert width function w for Ag; as a function of E,. The arrows indicate the
values of E, for which A,; is shown in Fig. 6.
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8. Backus-Gilbert center function ¢ for Ap; as a function of E,  The arrows indicate the
values of E; for which Ay is shown in Fig. 6 Where c(E) crosses the dotted diagonal
line the point of interest and center coincide (e.g., at E, = 250, 450 eV, ...).

9. The five "narrowest” BG averaging kernels, defined by local minima in Fig. 7, to be
compared with the original response functions in Fig. 1.

10. Comparison of the test source function f (a 150 eV blackbody) with selected points of the
BG approximating function f5; and a histogram unfold of Eq. (1), both from simulated
data. The BG reconstruction corresponds to the narrowest averaging kernels shown in
Fig. 9; these points are included, but not specifically noted, in Fig. 4. The horizontal
bars represent the BG width of the AK’s and are interpreted as the resolution available
from the given response functions. The bins and domain (137 - 2300 eV) for the
standard unfold are discussed in Appendix I and were obtained independently of the
BG resolution.

I1. Test of Eq. (12) in Appendix II. A comparison of a modified test source function f (solid
line) with selected points of the BG approximating function fp; and a histogram unfold
from simulated data. The tail of the 150 eV blackbody spectrum (Figs. 4 and 10) has
been replaced by a linear segment to eliminate second-derivative effects in the source
at high energies. The horizontal bars are the same resolution bands as in Fig. 10.
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