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ABSTRACT

and Gilbert (BG) is described and applied to the inverse
5-channel, filtered array of x-ray detectors (XRD’S). This

diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray
photons (S 2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral
resolution limits on the system of response fimctions that are in good agreement with the unfold
method currently in use. The resolution so defined is independent of the source spectrum. For
noise-free, simulated data the BG approximating function is also in reasonable agreement with
the source spectrum (150 eV black- body) and the unfold. This function may be used as an
initial trial function for iterative methods or a regularization model.

I. Introduction

Arrays of individually faltered detectors have been used to study x-ray spectra since
the time of Rontgen and Barklal. This technique consists of simultaneously exposing several
detectors of differing spectral response to x rays and inferring information about the incident
spectrum from the data. The method is often capable of yielding coarse spectral estimates
and is also usefi.d in testing theoretically-derived spectra. While now largely supplanted by
energy- and wavelength-dispersive methods to study steady-state x-ray sources, it is however
still used to diagnose x rays emitted by high temperature, pulsed plasmas2. In particular, for
investigating the spectra of soft x rays emitted by laser-driven and Z-pinch plasmas, fdtered-
detector arrays have been made of thin-film K- and L-edge falters coupled to photoemissive x-
ray detectors (XRDS)3, XRDs plus mirrors4, silicon PIN detectors, monolithic silicon
photodiodes6, photoconductive detectors, and microchannel platess.

An array of five, time-resolved, filtered XRDsg is used at the Z-facility10 (a 20 MA, Z-
pinched plasma source) to measure x-ray flux and fluence. (Other applicable x-ray
diagnostics include bolometersll, calorimeters 12,and a transmission grating spectrometer13.)
Typical response functions for such an array are shown in Fig. 1. These overlapping
functions are characterized by sharp, x-ray edge features as well as by a “hump” at higher
photon energies. Representative signals are shown in Fig. 2. When the detectors are run in a
linear current regime, the time-dependent XRD data g(t) (i= 1,2, .... 5) maybe described by
a system of Fredholm integral equations (fnst kind):
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@ = J-f(wylw + Ei(t) (l),
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where fis the unknown source spectrum (differential flux), Ri is the i-th response function,
E is the x-ray photon energy, and t is the time. The random variable ei represents noise. The
integral limits in Eqs. (1) reflect the largest possible energy domain for X in practice, this
domain may be reduced to the finite interval [E~i#__j and the interval limits adjusted,
depending on the relative shapes of the incident spectrum and the response functions. (See
Appendix I.) To obtain the spectrally-integrated x-ray flux incident on the XRD array, one
estimates ~ from Eqs. (1) and computes ~E, t)dll The x-ray fluence is then the time integral
of the flux.

The estimation of a source f from a set of response functions and discrete data, as in
Eqs. (l), is a well-known, non-trivial, linear inversion problem14-21.A complete pointwise
reconstruction (or unfold) of ~ is not possible generally due to non-uniqueness: i.e., to any
unfolded solution one can add an infinite number of (usually highly oscillatory) functions that
average out to zero in Eqs. (1). Numerical instabilities are also common. But, the existence
of such difficulties does not preclude the recovery of useful information about f– if the
possible number of solutions can be limited and oscillations controlled. To guide the
unfolding process, most classical and modern inversion techniques rely on some inclusion of
relevant information about the measurement or source in addition to the data and responses
(e.g., known spectral values, functional parametrizations, regularization, 14-21interpolation
constraints).

A first step in deciding what information to add is taken by understanding the
averaging behavior of the coupled system of Eqs. (1). The system of responses (as opposed
to individual response functions) defines the scale and location of source detail retained by
the data and thus defiies the spectral resolution of the measurement. Armed with an estimate
of resolution, one may suggest constraints for the unfold. For example, one may suggest how
to partition the spectral domain for a simple histogram-type solution of Eqs. (1) or judge
whether emerging details in a more complicated unfold are likely to be present in the source
spectrum.

A little-used technique for studying inverse problems as posed by Eqs. (1) was
introduced by Backus and Gilbert (BG)22-~. Their procedure attempts to modify the given
response functions Ri into more localized responses. The narrowest of these characterize the
ability of Eqs. (1) to resolve spectra, independent of the source f. The method also defines an
estimate fBG of ~ at each photon energy of interest.

This paper describes the application of the Backus-Gilbert method to the inverse
problem posed by XRD arrays at the Z-facility. The issue is what information this method
can give to an unfold procedure. The BG method for constructing an averaging kernel from a
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set of response functions is described in Sect. II The results of a BG analysis applied to the
XRD array for simulated noise-ji-ee data are given in Sect. III and compared in Sect. IV to
the unfold analysis currently in use at the Z facility. Details of the unfold procedure are given
in Appendix I. The notion of an averaging kernel, inherent to the BG method and rarely
considered in the x-ray diagnostics literature, is discussed in Appendix II.

II. The Backus-Gilbert method

Central to the Backus-Gilbert approach is the realization that one not need deal with
Eqs. (1) as written. Rather, without distorting the problem, one can form linear combinations
of the equations. Such simultaneous manipulations (transformations) of both data and
integrals may advantageously modify the integrands and thus yield a more manageable
inversion problem. This basic insight is illustrated in Fig. 3. Shown in Fig. 3a are three,
hypothetical response functions {Rl, Rz, R3}, two of which overlap. Assume that these
responses belong to a three-element detector array that produces corresponding noise-free data

{gl, g2,g3} from some u*own spec~m.f according to Eqs. (0” One wishes to estimate.f
incident on this instrument within the domain [E.j. = El - AZ Em= E5 + AEI, defined here
by the response fimctions. The basic BG analysis has two parts. First, it is clear that a
narrower, transformed set of response functions can be obtained (Fig. 3b) if one combines the
last two responses: i.e., define R; - R3 - (h3 /hJR2 The set {Rl, R2,R:} has now three non-
overlapping responses. One may argue that {Rl, R2,R;} determines the smallest details in $
that can be obtained by this particular instrument. The second step in the BG analysis
estimates the source function. If one forms the same linear combination of the original data
as for the transformed responses, one generates transformed data {gl, g2,g~= gq - (h3/hJg2}.
For this simple case, dividing each transformed datum by the width of its transformed
response, one estimates source function values gQhlAE)-l, g2(2h2AE)-1,md g~(2h3A@,
which turn out to be simple averages of the source over the narrower bins centered at El, E3,
and E5, respectively. The fill BG technique differs from this illustration in providing a
general method for choosing the linear combination of responses and in estimating ~ at
arbitrary photon energies within the domain [Emin,EJ.

The Backus-Gilbert technique starts with the set of response functions {R(E)} ~lN,
where N is the number of faltered detectors, or channels. For each photon point of interest EO
at which one wishes to estimate f, the method finds the linear combination of response
functions that is as narrow as possible according to prescribed criteria. Thus define
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on the practical domain [Ewi~,Ed. As shall be clear presently, ABGmay be called an
averaging kernel (AK), a scanning functionzo, or a sampling function; ABGdepends on the
photon energy E but is different for each point of interest Em The scalars {u ~},which may
be positive, negative or zero, are then chosen to make

and

E

~(EO - E)2ABG(E0,~2dE = minimum (3),
E

mill

E

~ABG(%3QdE=I
E

Min

(4),

for fixed E@ In Eq. (3) the arbitrary weighting term (,?30- E)2 and square of the AK
accentuate a narrow result. The minimization procedure to obtain the a ~s uses the method of
Lagrange multipliers and is well described in the literature 14-16’23;the resulting matrix
procedure has been programmed in FORTRAN26.

Backus and Gilbert also define two mathematical diagnostics for characterizing
ABG(EO,E). Reminiscent of the “mean” and “variance” from probability theory, both measures
are functional of the AK shape as well as functions of Em The “center” C[ABG]of ABGis
defined as

E

~EABG(Eo,E)2dE
Ed

C[ABG]= =

~ABG(E0,E)2dE
E&

the “width” WIABG;EO]of ABGis defined as

E
max

(5).

/
W[ABG]= 12 (E - c[ABJ)2ABG(E0,E)2dE (6).

Eti

The center diagnostic c thus defines a weighted average energy for the AK ABG(at fixed EJ,
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and the width27w is a measure of the spread ABGabout its center. One notes the same use of
ABG2in Eqs. (5) and (6) as in (3).

If the AK ABG(EO,E), derived from Eqs. (3) and (4), is taken as a transformed
(possibly improved) response function for the experiment, then the integral of the source j
with ABGby Eqs. (1) produces transformed data in the spirit of Fig. 3. Backus and Gilbert
define the function ~~~:

fBG(EJ =

This definition justifies the use of synonymous terms like averaging kernel, scanning
function, and sampling fiuzction for ABG,used above, since for each selected EOABGaverages,
scans, or samples f over the x-ray energies to which the instrument (represented by the R,’s)
responds. The transformed result of such an interaction is the original data gi, weighted by
the same, known scalars {ai } that determine ABJEO ,E). That fB~EJ should also
approximate fiEO) in Eq. (7) is due to two considerations: (1) the normalization constraint on
A~G~q. (4)] makes the SCa.lars{ Ui} inversely proportional collectively to the set of integrals
~R@’)dE(the calibration information)”; and (2) the narrower the width of ABGand the closer
its center to EO,the more local is the average off with ABC. (Appendix II gives an heuristic
argument for the constraints Eqs (3) and (4) and describes other properties of AKs that relate
to the BG method.)

In the BG formulation the notion of spectral resolution also arises from Eq. (7). That
is, fBG results because ABCeffectively samples the unknown source f over a ftite subregion
of the domain. Roughly speaking, details in f on a freer scale than the width of ABC at E.
will average out in Eq. (7) or be weakly reproduced in fBG It is reasonable, therefore, to
associate the width W[ABG] with each estimate fBJEJ as a pointwise measure of resolution or
resolving power. One can also assign resolution bands to the whole photon energy domain
by selecting a ftite subset of the AK’s that together span it. (See Sect. IV.) In either sense
resolution refers to no particular source fi.mction.

III. Test problem and results

We have applied the BG method to the response functions of the 5-channel, filtered-
XRD diagnostic, described above. Following Eqs. (1) we folded an arbitrary 150 eV
blackbody spectrum (Fig. 4) with the response functions Ri (Fig. 1) to obtain the noise-free,
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fixed-time data gi, shown in the lower curve of Fig. 5. The Backus-Gilbert AK ABGwas
constructed at several observational points EO,together with the center and width diagnostic
functions and the ~~~approximation. For these calculations, the spectral domain [E~i~, 24?-]
was defined as [137, 2300] eV and the simulated data unfolded by the methods summarized
in Appendix I.

Figure 6 shows the evolution of the averaging kernel ABGwith the parameter E& This
behavior is typical. As EOincreases, continuously changing contributions u i from the various
response functions @q. (2)] give the impression that ABG also moves (scans) unilaterally to
higher energies. For example, when EO= 250 eV, ABGconsists primarily of RI modified by a
negative correction from R4, which removes the high energy “hump” of RI. But as EO
increases to 350 eV, the contribution from R ~decreases in A~~350,E) while the contribution
from Rz increases. At EO= 450 eV, the contribution of Rz becomes the major component.
The process repeats at EO= 600 eV when the contribution from R3 begins to appear and R2
wanes.

In contrast to the smooth evolution of ABG,the BG measures of width and center
oscillate as EOincreases. For example, in Fig. 7 one can see the width W[ABG] pass through
five local minima. Likewise, in Fig. 8 the center measure C[ABG]oscillates about E& One
can show that c and EOcoincide when the width w passes through a local minimum. The
reason for such broadly oscillatory behavior is that the measures w and c are sensitive to the
lateral extension of ABG, which expands and contracts discontinuously with EO(Fig. 6) even
though the components ct~of ABGchange smoothly.

Given the set of coefficients {Ui} and the set of simulated data {gi}, one can construct
the associated approximating function ~~JEo ). This function is compared to the simulating
150 eV spectrum in Fig. 4. It is clear that while fB~EO) has roughly the same size and
shape as f, and even approximates f well at some points, it deviates signiilcantly from f near
the peak and exponential tail.

IV. Discussion

Although the continuous construction of fBGshown in Fig. 4 is not the primary focus of
this paper, it helps illustrate the concept of resolution in the BG method. As discussed in
Appendix II, one can intuitively understand the pointwise behavior of fB~EJ relative to flEJ
in terms of two independent components: the local shape off (i.e., slope, curvature, etc.) and
the resolution of ABGassociated with the width W[ABG].In Fig. 4 fBG thus wanders about f as
a function of EObecause f varies in shape and ABGin width. Conversely, one expects the best
agreement where fchanges most gradually and ABGis narrowest.
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Now in such a comparison one has little control over the shape of the incident
spectrumfi but one can, however, choose to repoti~~~ only for the narrowest available BG
averaging kernels. This is done by selecting values EOat which W[ABG]is a local minimum.
In the filtered-XRD example, these minima occur at l?O= 250,450, 850, 1200, and 1800 eV
(Fig. 7). The corresponding AKs are clearly less spread out than the rest of the BG kernels
[e.g., in Fig. 6 compare A~~(350,E) with A~~(250,E) and A,J450,E)]; they are also, for the
most part, improvements over the five, original response functions Ri. For example,
comparing Fig. 9 with Fig. 1, one sees that the AK’s for .!?O= 250, 450, 850 eV are
respectively narrower ti,an RI, Rz, and R3 because the high energy “humps” have been
removed. On the other hand, the AK’s for EO= 1200 and 1800 eV are only slightly narrower
than R4 and R5 .

Figure 10 compares the known spectrum~ with a discrete representation of ~~~(solid
points), based only the five narrowest BG AKs of Fig. 9. The indicated horizontal error bars
are the corresponding widths, which represent the resolution of the BG reconstruction process
at each energy point. The five points shown are the most accurate BG estimates of ~ (with
this set of response functions) because at these energies the BG AK samples the most limited
segments of the source. Moreover, since the width W[ABG]is not calculated from $ the
collection of horizontal bars can also be interpreted as a set of resolution bands representing
the best overall, spectral detail. obtainable from the given responses and any source function
on the spectral domain [E~i., Ed. Such bands may turn out to be overlapping or non-
contiguous; they may even be somewhat ill-defined, depending on the shallowness of the
minima of W[ABG]vs. EO.

The BG estimate of resolution can provide useful guidance to the unfolding of fdtered-
XRD data. The unfold procedure described more fully in Appendix I attempts to extract
information about the source ~ only sufficiently well to estimate ~E, t)dE over the spectral
domain. To do this, one assumes f can be approximated by a histogram (defined on a
contiguous partition of the domain) so that details off within the bins of the partition average
out in .(j(E,t)dE. The solid line fuNFoD in Fig. 10 is such an unfold of the simulated data
(solid circles) in Fig. 5. Using this method, one obtains reasonable flux estimates from
response functions like those in Fig. 1 and blackbody-like spectrag: 95% of the flux in the
spectral domain is recovered for a 150 eV blackbody and 103% for a 250 eV blackbody (not
discussed here). But, a major problem in setting up this unfold procedure is determining the
number and location of the bin boundaries (or joints) in the histogram a poorly-chosen
partition can predispose the unfold to spurious structure and excessively bias the estimate of
flux. In Appendix I, the bin-selection process is based largely on x-ray absorption edges, an
identification that is clear at low photon energies but rather arbitrary at energies higher than
the edge features. In particular, a joint at -1500 eV is not supported by an absorption edge
feature. Now, the BG resolution bands provide an independent assessment of the partition
because these bands are a measure of the source detail preserved by the response fimctions.
Comparing the horizontal BG resolution bars of fBG with the bins of fuNFom in Fig. 10, one
finds corroboration for the unfold partition — including a boundary at 1400-1500 eV.
(Exact agreement between the two methods need not be expected since the selection criteria

~7~%-~~—m . .—— — . . . ..—
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differ and the BG resolution bands can be non-contiguous.) When the response functions
have no easily identifiable absorption features (e.g., arrays of diamond photoconductors29
filtered with CH material and used for photon energies 2500 eV), the BG resolution bands
may be used as an initial guess for an unfold partition.

The BG method has other uses as well. For example, when one is unfolding with
more flexible basis functions (e.g., polynomials) and little a priori information, the BG
resolution bands can suggest if an unfolded feature is too narrow to be resolved and possibly
spurious. More information is needed. Likewise, in more sophisticated unfolding techniques
~.~ maybe used as a trial function or a model for regularization. Lastly, Craig and Brown’9
note a role for the BG in experimental design: by examining the resolution bands of a
proposed set of response functions, one may decide that some of the responses need
adjustment (e.g., filter changes) to optimize the spectral coverage of the array and the
subsequent unfold process.

Like most numerical procedures the BG method is not a panacea. It works well for
the type of response functions used here, but there are classes of response functions for which
this methodzogives less satisfactory results. Moreover, as one might expect, the matrix
manipulation procedures required in the BG method become numerically unstable as the
response functions approach linear dependence. Finally, if one is interested in obtaining fBG
from real data, error propagation must be considered. Unlike the inaccuracy studied here, the
random uncertainty in j& due to data imprecision or noise is inversely related to the width of
the AK: i.e., the narrower the AK, the greater the propagated uncertainty. The general
Backus Gilbert method not only provides error propagation information about j~~, it can even
incorporate specified error bounds in the minimization process that yields an AK, thus
effectively trading resolution off against propagated precision. This option is treated in the
literature 14-ls’22-24but is beyond the scope of this paper; it too has been programmed in
FORTRAN*S.

Appendix I. The standard unfold for the filtered-XRD array at the Z facility

The unfold for the filtered-XRD arrays at the Z facility uses classical matrix inversion
techniques 19’30.It assumes that the incident source spectrum fl.li’)can at each time step be
approximated by a contiguous set of histogram basis functions BJE)
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defined on the finite domain [E~k,EJ, which is partitioned into N (= 5) bins of widths AEY

j =1$ ...9N. (The domain boundaries l?~i~and EM are described below.) These basis fimctions
are assumed to have unit height over AEj and be zero elsewhere. Other basis functions, like
polynomials or even the response functions themselves (the so-called normal solutionl~l~ can
also be chosen; but a histogram was selected because an estimate of the spectral integral of
the source function (the flux) is principally sought, not details of the spectrum, and it was
desired to automate the unfold, with a simple algorithm. By substituting Eq. (8) into Eq. (1)
one obtains

E

gi(t) = ~f(E,t)Ri(E)dE = ‘& (E)Bj(E)dE = ~ RO~ (i = 1,...JJ) (9),
o E&

j=l

where

E

J ()
Rq = JR$E)dE = AEj Ri (ij = 1,..JV) (lo).

E j
1-1

The elements RVare thus proportional to the average (Rjj of the i-th response function in the
j-th bin and form an NxN matrix R. If the response functions are linearly independent, the
inverse matrix R-l exists — although for response fimctions like those in Fig. 1 the condition
number1417*31,which relates to error propagation, is often large (-20 - 30). The unfold-
histogram coefficients $ are then given by

(11).

The inverse matrix is constructed by Singular Value Decomposition31}32.A unique solution is
obtained by assuming that any other solution to Eq. (1) includes components which solve Eq.
(1) with gl = O (V i = 1, 2, ... . N) and is excluded in Eq. (11)1416. A disadvantage of this
formulation is that negative values of$- can be obtained from noise in real data and also when
a histogram is a poor approximation to the source function.

Setting up the spectral domain parameters (Emh , E-, and A Ej ‘s) of the histogram
in Eq. (8) is typically an iterative process that balances successful numerical inversion of R
against approximation of the source ~ This process is somewhat arbitrary since one must
estimate the form off a priori. Yet the choice of histogram parameters is important since ill-
placed endpoints and joints may distort the unfold.

7?=—-7=7- ..- c, -. ,. A7--.-?m??+n?m+n?m. , -& -..7<,T: ,-: . . ... .. -9:,.. - ,,,.: -., :.. ,. T?av?? --v- ::;. , -—-. .—— — . - . .. -. . ..- ._. I
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In principle, Eqs. (1) extend from E = O + m since a filtered array generates some
data for all x-ray photons; but practically there is a finite spectral domain [E~j~, E.J over
which the array almost exclusively responds for a given experiment. The a priori information
needed to make this determination may come from so-called background or null experiments,
plasma theory, or simulations. For the response functions of Fig. 1 and Z-pinch experiments,
the photon energy E~i~is identified with 137 eV because all the Ri’s are <-1’% of their peak
values below this photon energy. It is assumed, therefore, that ~ is not dominated by intense
XUV at lower energies. Similarly, one may argue that at the Z facility the emission and
detection of x rays in the keV energy range are relatively less likely than of softer photons
thermalized in the Z-pinch plasma. If one selects E~m = 2300 eV, then even blackbody
spectra of temperatures -250 eV have integrated flux levels of only a few per cent in photons
of energy > E-.

The partition of the spectral domain is then defined to make the matrix R as close to
diagonal as possible while still allowing some flexibility in the unfold from anticipated
spectra. The easily-distinguished, K- and L-edge features in response functions R ~,R= and R~
(Fig. 1) suggest joints at photon energies 284, 513, and 1020, eV (Figs. 10-11); the low
energy portions of these responses (i.e., excluding the “hump”) are nearly non-overlapping.
The additional joint at 1500 eV was added after a series of simulations with blackbody
spectra.

Appendix II. Properties of averaging kernels

The purpose of this appendix is to describe heuristically some of the integral
properties of AK’s that relate to the Backus Gilbert method — in particular, to motivate the
constraint Eq. (4) and the use of A~G2in Eq. (3). The inaccuracy between ~~~and f is also
considered. It should be noted that AKs can be constructed from other criteria than the BG
method*4-lb.

The estimate f~G in Eq. (7) depends on the fixed source function f and a function A(EO
,)3), which is constructed for each photon energy EOchosen. The result of integrating these
two factors ~E)A(EO ,E)dE is a function of EOand a jkctional of J Simple and convenient
forms of A are often studied. For example, A may be non-negative with a local maximum at
E = EO.Or, A may depend only on the difference (J!ZO- ~, thus retaining its shape for all Z70
and reducing the integral to a convolution. But, in general, the EOand A(EO ,E’) may be
related in a very complicated way: that is, A(EO,E) may (a) change its shape for different
choices of EO, (b) be positive- or negative-valued or zero within its domain, (3) be
asymmetric about EO, and (d) be peaked elsewhere than E@(See Fig. 6). In the BG
formalism the mathematical diagnostics of width and center are aimed at characterizing such
behavior.

What properties of the AK ABG(EO,E) in Eq. (7) make fBG (EO) at least approximately



11

equal tojWo)? Clearly, if A(EO,E) = 6(E - Eo), the Dirac 5 fimction, the problem would be
trivial. But for most physical problems A~Ghas finite width. Since the AK in the Backus-
Gilbert analysis is specified as a linear combination of the given response functions Pq. (2)],
a more appropriate question is this: if one were to chose among a collection of AK’s Aa, all
defined at E. and applied to Eq. (7), which would produce the most accurate estimate ofj(EJ?

To explore this point, consider fust the special case in which A(EO,E) is non-negative
and symmetric about E& Also assume that fiE) is slowly varying over the width of A(EO,E)
and expanded in a Taylor series about fixed Em Then, J(E)A(EO ,E)dE becomes

Jf(mwow =f(%)p(qyw +f’(qpq-p - qyE +. . . .

where the symbols (’) and (“) denote single and double differentiation, respectively. The
integrals in the middle of Eq. (12) can be regarded as moments of A about E@ Suppose now
that the fi.mction A(EO,E) is normalized by dividing through with the zeroth-order moment
~A(Eo,E)dE; i.e., constraint Eq. (4) is adopted. Then, remembering that A(EO,E) is assumed
symmetric about Eo, one finds fBG (Eo) =fll?~ with a second-order correction proportional to f
“(Eo)plus higher order corrections proportional to even-order derivatives of fat E& Thus,
in choosing among a collection of so-normalized functions AA to achieve the best local
approximation to flEo), one might then chose the Al which minimizes /A~(Eo,E) (E - E~2 dE.
The narrower A(EO,E), the smaller is the correction. Of course, one might choose other
“narrowness” criterhy in particular, the BG method chooses to minimize jA~(Eo ,E)2 (E -
Eo)2dE,Eq. (3).

When the AK A is not required to be symmetric about E. or non-negative, it is usually
still possible to normalize A with the zeroth moment, but the estimate of ~~~ (EJ - f(E~] is
more complicated. It is then convenient to decompose A into symmetric and antisyrnmetric
components33 about Eo:A(EO,E) = Aaen(EO,E) + AOAEO,.0 Again forming ~A(Eo,E’)f(E)dE
and expanding f about Eo, one obtains the same type of terms as in Eq. (12), except that now
the first- and second-order comection terms become, respectively, f ‘(E~~Ati~(EO,E)(E - E~dE
and 1/2f“(Eo)~AW,.(Eo,E)(E - EO)2dE. As above, if one were sorting through a collection of
AKs AA to get the closest approximation or local average to fiEJ, one would now need to
choose both An,. and AOUas narrow as possible. Here the BG criterion Eq. (3) becomes
really useful: since JA12(E- EO)2dE = J[AOM2+ A0..2 ](E - E~2 dE, selecting ~A12(E- EJ2 dE
small restricts both even and odd components of A.

The terms in the series of Eq. (12) divide the discrepancy between fBG and f into two
independent parts: moments of the AK (related to the width) and derivatives of the source
function f (related to its local shape). One can then qualitatively understand the behavior of

w--?? ~.. y- -. . .>,. -.=---- , .. ---? ,...
———. . . . .. ... . . . . . . . .

7.7T7% ,.7.
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jBGrelative to f in Figs. 4 ad 10 by ex~ning these terms. A dependence on f” is
particularly clear: e.g., where f” is small (in the nearly linear sections), fB~ approximates f
fairly well; but where f” is large (e.g., at the peak and in the exponential tail region), fBG is
less accurate. The sign of fBG- f also follows f”. That the effect of f‘ in this example is
small can be seen in Fig. 11, which is like Fig. 10, except the simulating source function has
been constructed with a straight section at high photon energies. In this region, the second
derivative off is zero, and fBG at the points of best resolution approximates f more closely
than in Fig. 10.

Sandia is a multiprogram Iabomtov
operated by %ndia Corporation, a
Lockheed Martin Company, for t~
United States Depanment of Energy
under controct DE-ACW-94W85~.



13

REFERENCES:
1. N. A. Dyson, X rays in Atomic and Nuclear Physics, 2ndEd. (Cambridge University Press,

NY 1990).
2. T. F. Stratton, “X-ray Spectroscopy;’ in Plasma Diagnostic Techniques, R. H. Huddlestone

and S. L. Leonard, eds., (Academic Press, NY 1965).

3. G. A. Chandler, et. al., Rev. Sci. Instrum. 63,4828 (1992).

4. H. N. Kornblum, R. L. Kauffman, and J. A. Smith, Rev. Sci. hstrum. 57,2179 (1986).

5. J. F. Cuderrnan and K. M. Glibert, Rev. Sci. Instrum. 46(l), 53 (1975).

6. G. C. Idzorek and R. J. Bartlett, “Silicon Photodiode characterization from 1 eV to 10
keV,” in “EUV, X-ray and Gamma-Ray Instrumentation for Astronomy VIII, O. H. W.
Sigmund, M. A. Gummin, eds., Proceedings of the SPIE 3114349 (1997).

7. R. B. Spielman, Rev. Sci. Instrum., 63(10) 5056 (1992).

8. K. L. Baker, et. al., Rev. Sci. Instrum., 70(4) 2012 (1999).

9. G. A. Chandler, et. al., Rev. Sci. Instrum. 70(1), 561 (1999).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. B. spielman, et. al., Phys. Plasmas 5,2105 (1998). .

R. B. Spielman, et. al., Rev. Sci. Instrum. 70(1), 651 (1999).

D. L. Fehl, et. al., Rev. Sci. Instrum. 70(1), part II, 270 (1999).

J. L. Porter, Sandia National Laboratories, private communication.

M. Bertero, “Linear Inverse and Ill-posed Problems, “ in Advances in Electronics and
Electron Physics (cd. P. W. Hawkes) VOI75 (Academic Press, London: 1989) p 1.

M. Bertero, C. De Mel, and E. R. Pike, Inverse Problems 1, 301 (1985).

M. Bertero, C. De Mel, and E. R. Pike, Inverse Problems 4,573 (1988).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute
of Physics Publishing, Philadelphia 1998).

V. B. Glasko, Inverse Problems of Mathematical Physics, (American Institute of Physics,
New York 1984).

I. J. D. Craig and J. C. Brown, Inverse Problems in Astronomy, (Adam Hilger, Boston:

. . -- -’-cry. ,. .,-. .r, ., , . ,,.. ,. ,,,. ,~v?.~,, ,4, < . . . . !- ,. . . . .J,r=.5.! .. .,., .. s.. J , %7-YV7, +, (, 6 -
—.. — ..— . . . .

...1., 1



14

1986).

20. S. Tworney, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements, (Dover Publications, Mineola, New York: 1996).

21. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, (John Wiley, New
York: 1977).

22. G. E. Backus and J. F. Gilbert, Geophys. J. R. Astr. Sot. 13, 247 (1967).

23. G. E. Backus and J. F. Gilbert, Geophys. J. R. Astr. Sot. 16, 169 (1968).

24. G. E. Backus and J. F. Gilbert, Phil. Trans. R. Sot. 266, 123 (1970).

25. Not all combinations are improvements: e.g., forming a linear combination of RI and Rz
generates a wider response than either of the components.

26. L. Kissel, F. Biggs, and T. Marking, “UFO (Unfold Operator): USER GUIDE:
PART I – Overview and Brief Command Descriptions,” Sandia National Laboratories
Report SAND82-0396 UC-705 (Sandia National Laboratories, Albuquerque, NM,
June 1991), unpublished.

27. The numerical factor of 12 in Eq. (6) was inserted by Backus and Gilbert so that the
spread of a single histogram B(E), defined as B = 1/! for IE - .EO1S !/2 (O otherwise), is !
about its center c = Em Apart from this factor, one also sees that Eq. (3) represents a
minimization of the width of AB~ about fixed J!30as the scalars a i are varied subject to
the constraint Eq. (4).

28. In the simple example of Fig. 3, the “modified” response functions were not re-
normalized in the sense of Eq. (4).

29. T. W. L. Sanford, et. al., Rev. Sci. Instrum. 68, 852 (1997).

30. D. L. Fehl, R. J. Leeper, and R. P. Kensek, Rev. Sci. Instrum. 63(10), 4786 (1992).

31. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer methods for mathematical
computations, (Prentice-Hall, Englewood Cliffs, N. J.: 1977).

32. W. H. Press, et. al., Numerical recipes in FORTRAN: The art of scientific computing,
(Cambridge University Press, NY: 1992).

33. The properties of these functions are Aa.m(EO,E-EO)= AO,.(EO,EO-E)and AO~LEO,E-EO)=
-AO~EO,EO-E).Explicitly, Afl.n = W’ A(EO JO + A(EO ,2E0 - E)] and
A Y2[ A(EO,E) - A(EO,2E0 - q].Oati =



15

FIGURE CAPTIONS:

1. Five response functions for a fdtered-XRD array, fielded at the Z facility on line-of-sight
(LOS) 5/6. The sharp features at low energies are due to the x-ray absorption edges
of filters, photocathodes, and surface contaminants. A “hump” feature appears at
higher energies as the filters become transparent to x-ray photons, and photo
absorption in the photocathode dominates the overall spectral response. All the
response functions are <-l % of peak values for E S E~i~= 137 eV.

2. Time-dependent, filtered-XRD voltage traces for shot Z-306, LOS 5/6. The set of signals
{XRIX} correspond to the calibrated response functions {Ri} used in this shot, which
are similar to those in Fig. 1. The voltage traces must be multiplied by known
geometric and electrical factors to obtain time-dependent data g(t) in units consistent
with Eq. (l). See Ref. 9 and Fig. 5.

3. Example of the Backus-Gilbert approach. (a) A hypothetical set {R#?#?~} of simple
response functions: RI(E) = hl for IE -El I < Al? (O otherwise); R@) = hz for
IE - E,l < All (O otherwise); and R,(E)= h, for IE -23,1< 2AE (O otherwise),
where Ej =E1+(j-l)AE, (j=12 , , ... ,5). (b) A modified set of response functions
{Rl,l?z,l?~}is formed as a linear combination of {R&R~}. The modified responses
are not normalized in the sense of Eq. (4).

4. Comparison of a test source fi.mction~ (150 eV blackbody spectrum) and the continuous
Backus-Gilbert approximating function ~~~, constructed from data which were
simulated from f folded with the response functions of Fig. 1. There are no adjustable
parameters.

5. Data simulated from test spectra and the response fimctions of Fig. 1. The solid circles in
the lower curve refer to the 150 eV blackbody spectrum of Fig. 4; the diamond
symbols refer to the spectrum of Fig. 11. The line segments between symbols in both
curves are shown to guide the eye. The units of these data come from the spectrum
(W/sr-cm2-eV), the response functions (A/MW), and Eqs. (1) with photon energy in
eV.

6. The Backus-Gilbert averaging kernel ABJEO J?) at selected energies of interest EO= 250,
350, 450, and 600 eV. These functions are here displaced along the ordinate axis for
clarity, but the relative size has been preserved. The center C(EO) is noted for each
curve with a dotted vertical line. Since A~~is constructed as a linear combination of
the XRD response functions, x-ray absorption features of these underlying functions
can still be recognized.

7. Backus-Gilbert width function w for AB~ as a function of E@ The arrows indicate the
values of EOfor which AB~ is shown in Fig. 6.

-— ... .. . . ..,,. ..,./ . .. ..... . .. .. .--- ,,.--, . ------r-.-rm%z? . , --—. . .. . . . . —.. . . ? !
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8. Backus-Gilbert center function c for A~~ as a function of E@ The arrows indicate the
values of E. for which AB~ is shown in Fig. 6 Where C(EO)crosses the dotted diagonal
line the point of interest and center coincide (e.g., at EO= 250, 450 eV, ...).

9. The five “narrowest” BG averaging kernels, defined by local minima in Fig. 7, to be
compared with the original response fimctions in Fig. 1.

10. Comparison of the test source function f (a 150 eV blackbody) with selected points of the
BG approximating function fBG and a histogram unfold of Eq. (l), both from simulated
data. The BG reconstruction corresponds to the narrowest averaging kernels shown in
Fig. 9; these points are included, but not specifically noted, in Fig. 4. The horizontal
bars represent the BG width of the AK’s and are interpreted as the resolution available
from the given response functions. The bins and domain (137 -2300 eV) for the
standard unfold are discussed in Appendix I and were obtained independently of the
BG resolution.

11. Test of Eq. (12) in Appendix II. A comparison of a modified test source function f (solid
line) with selected points of the BG approximating function fBG and a histogram unfold
from simulated data. The tail of the 150 eV blackbody spectrum (Figs. 4 and 10) has
been replaced by a linear segment to eliminate second-derivative effects in the source
at high energies. The horizontal bars are the same resolution bands as in Fig. 10.
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