
,. .
b *

.s

.p.s~~Integer Multiplication with Overflow Detection or Saturatlo

Michael J. Schulte, Pablo I. Balzola, and Ahmet Akkas
Computer Architecture and Arithmetic Laboratory

Electrical Engineering and Computer Science Department
Lehigh University

Bethlehem, PA 18015

Robert W. Brocato
Digital Microelectronics

Sandia National Laboratories
Albuquerque, NM 87185

1

————- .-— — —-....7-7T,T, , . . . I

DISCLAIMER

This repo~ was prepared as an account of work sponsored
by”anagency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any ;gency thereof.

-—T> -f-w ,.-7-7-,,,.,,,,,,. v~p+~ ,., ,. .,+,-—-K-. ,,. .,-. rra ,*-C -y
,--- —-=--—— .—. - -—

. ..—

DE CLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best availabIe original
document.

.

. ., -,.,..,,.<..,,~,-.-y-~i~,.i..; ,,4.Y. ..4 >.7”@~ ,.r,., .v ..-. s-,, .-.> W.XZ?% ., ,-;., <..772--- ,. .,. ,. T-— --— — -- —--

,
1

‘

Abstract

High-speed multiplication is frequently used in general-purpose and application-specific
computer systems. These systems often support integer multiplication, where two n-bit
integers are multiplied to produce a 2n-bit product. To prevent growth in word length,
processors typically return the n least significant bits of the product and a flag that indicates
whether or not overflow has occurred. Alternatively, some processors saturate results that
overflow to the most positive or most negative representable number. This paper presents
efficient methods for performing unsigned or two’s complement integer multiplication with
overflowdetection or saturation. These methods have significantly less area and delay than
conventional methods for integer multiplication with overflowdetection or saturation.

Index terms - Overflow, saturation, two’s complement, unsigned, array multipliers, tree
multipliers, computer arithmetic.

1 Introduction

Most modern computers directly support multiplication in hardware [1]. In high-performance
systems, multiplication is typically implemented using either array multipliers [2], [3], [4] or tree
multipliers [5], [6], [7], [8]. Both types of multipliers have area proportional to the square of
the operand word length. The delay of array multipliers is proportional to the operand word
length, whereas the delay of tree multipliers is proportional to the logarithm of the operand word
length [9]. The advantage of array multipliers is that they are more regular than tree multipliers.
Consequently, they require less area and are easier to implement in VLSI technology. As operand
word lengths and clock speeds continue to increase, it is important to reduce the area, delay, and
power dissipation of high-performance multipliers.

When two n-bit numbers are multiplied, a 2n-bit product is produced. To avoid growth in word
length, many computer systems require that the result of each arithmetic operation is the same
length as its input operands [1]. Typicallyj when these systems perform integer multiplication,
only the n least significant bits of the product are returned. For example, the Java Virtual
Machine supports integer multiplication through the imul and lmul instructions [10]. The imul
instruction multiplies 32-bit two’s complement integers and returns the 32 least significant bits
of their product. The lmul instruction is similar, except the input operands are 64 bits and
the 64 least significant bits of the product are returned. Since the actual product may not be
representable in the format of the result, it is desirable to have a flag th”at indicates whether or
not overflow has occurred [II], [12]. Alternatively, on many “digital signal processing systems, if
the results are too large or too small to represent, they saturate to the most positive or most
negative representable number [13], [14], [15].

Previous research on overflow detection and saturation has focussed on fractional operands [14],
[16], or operations other than multiplication [17], [18]. The main difference between fractional
and integer multiplication is that fractional multiplication typically returns the most significant
bits of the product. Also, with fractional two’s complement multiplication overflow detection
and saturation are much easier, since overflow only occurs when the multiplication –1 x —1 is
performed [14].

This paper presents efficient techniques for implementing integer multiplication with overflow
detection or saturation. Sections 2 and 3 present techniques for overflow detection or saturation

--l-%-m , .>7T .----r m,a.rmw -m.-.w,w, ,C. ,> . . ,., ,. ,. -,.. ~
—..———- .—.

>.

1 L

~ %-1 %-2 ‘------------------------------” % %

bn.l bn.2--------------------------------bl ~

%-lb.-l

kdll %-261 ‘---------------------------- albl

>j],h ~~,2b1 ----------------------------- albl yebl
..-

-. . . -.
, -’r..- -. ~..

.- ,.- I --- -..
. . /. : --- . .

--- .- ---
,.-... --- ---

/- ..- --- ..-
#.- ,.- 0 ..- -..

,. ,.- ..- -..
..- . . . --- >..,. ,.- ..- >....- . . --- -../- ---.. ..- ~.-

. . /- --- .-

!albn.2%-~.2a..1bn.2a..2bn.2----------------.---------.:
~-2b-l-----------------------------al~-l ~@n-l

,
P2n-1 P2.-2 P2n-3-------------------------------”Pn

jR-l--------------------------------------:.R ~

Figurel: Unsigned Multiplication Matrix for.P=A .11

with unsigned and two’s complement multiplication, respectively. Section 4 gives area and delay
estimates for tree multipliers that use either our proposed methods or conventional methods for
overflow detection. Section 5 presents our conclusions. The technique for two’s complement
integer multiplication with overflow detection has been used in the design of the Sandia Secure
Microprocessor, which implements a subset of the Java Virtual Machine in hardware.

2 Overflow/Saturation for Unsigned Multipliers

Figure 1 shows the partial product matrix for an n-bit unsigned integer multiplication. In this
figure, the n-bit multiplicand A = an_la._2 . . . alao is multiplied by the n-bit multiplier B =
bn_1bn_2. . . blbo to produce a 2n-bit product P = p2n_1p2._2 . . .plpo. The values of A, B, and P
are

n–1 n—1 2n–1

A=~ai.2i B=~bi.2i P=~pi.2~
‘idl i=(l ‘i+)

If the n least significant bits of the product are used as the result, then overflow occurs if
P > 2“. The conventional method for detecting this is to compute the entire 2n-bit product and
then compute overflow as

V = P273-1+ p2n-2 + . . . + j%z+l + f%

where + denotes logical OR. Computing the entire product is necessary if the computer system
supports instructions that require the most significant half of the product. The main disadvantage
of this technique is that the hardware used to compute the most significant bits of the product and
detect overflow contributes significantly to the area, delay, and power dissipation of the multiplier.

On machines that support unsigned saturating integer multiplication, overflow is usually de-
tected in the manner described above. If overflow occurs, then least significant bits of the product
are all set to ones, which corresponds to 2“ – 1, the largest representable number. This can be

3

----—,1’ .,.,
—----

-.

“

s

a7 %%aa3a2al b

b’-kFk#l

“a

PO

bz PI

b, P2

P3

Pa

b6 Ps

P6

b.

b, P.

b
P1

b, P2

b. P3

b~ P4

b6 P5

b, P6

P7
v

v

(b) ProposedOvefflowDetection

Figure 2: Unsigned 8-bit Array Multipliers

accomplished by ORing each of the n least significant product bits with the overflow bit. Thus,
the bits of the saturated product < P >=< pn_l >< p.–2 >... < pl >< p. > are computed as

<p~>=p~+v (O~i~n–1)

2.1 Unsigned array multipliers

A block diagram of an unsigned 8-bit array multiplier that performs conventional overflow detec-
tion is shown in Figure 2a. The cells along each diagonal in the array multiplier correspond to a
column in the multiplication matrix. In this diagram, a modified half adder (MHA) cell consists
of a AND gate and a half adder (HA). The AND gate generates a partial product bit, and the
HA adds the generated partial product bit and a partial product bit from the previous row to
produce a sum bit and a carry bit. Similarly, a modified full adder (MFA) consists of a AND
gate, which generates a partial product bit, and a full adder (FA) that adds the partial product
bit and the sum and carry bits from the previous row. The bottom row of adders produces then
most significant bits of the product. At the bottom of the array, (n – 1) OR gates operate on the
n most significant product bits to detect overflow. If any of these bits are one, then V = 1. An
n-bit array multiplier that uses this technique has n2 AND gates, (n – 1) OR gates, n HAs, and
(n2 - 2n) FAs.

The dashed line in Figure 2a indicates a typically worst case delay path through the multiplier.
The worst case delay is approximately equal to the delay through one AND gatel, two OR gates,

lA1l partial products bits are available after one AND gate delay.

4

I

I ,

two HAs, and (2n –4) FAs. Toimprove petiormance, the bottom rowofadders mdthe row of
ORgates can bereplacedby a fast (n– 1)-bit carry-propagate adder (CPA) anda tree of OR
gates, This approach, however, increases the area and reduces the regularity of the array. In some
systems, overflow detection is performed after the entire product is stored in a 2n-bit register.

In computer systems that require only the n least significant bits of the product and an
overflow flag or saturation, a significant reduction in area, delay and power consumption can be
achieved. In Figure 2a, components below the diagonal dashed line do not contribute to the n
least significant bits of the product. This line corresponds to the vertical dashed line in Figure 1.

Our method for detecting overflow avoids computing the n most significant bits of the product.
Instead, it signals overflow if any of the partial product bits in columns n to (2n – 2) of the
multiplication matrix are one or if any of the carries into column n are one. This approach is
illustrated in Figure 2b for an 8-bit array multiplier. In this figure, the MFAs below the diagonal
dashed line have been replaced by AND-OR cells, which are referred to as A30 cells and A20
cells. Each A30 cell consists of an AND gates that computes a partial product bit, and a 3-input
OR gate that ORS the partial product bit and two signals from neighboring cells. Each A20 cell
consist of an AND gates that computes a partial product bit, amd a 2-input OR gate that ORS
the partial product bit and one signal from a neighboring cell. An n-bit array multiplier that
uses our technique requires nz AND gates, (n2 – 3n + 2)/2 2-input OR gates, (n – 2) 3-input
OR gates, (n – 1) HAs, and (n2 – 3n + 2)/2 FAs. Depending on the technology used for the
multiplier, the actual implementation of the cells may vary. “For example, with static CMOS, the
AND-OR cells may be implemented using NAND/NOR gates or complex gates to improve area
and performance. Our method for overflow detection has (n2 – n)/2 fewer adders and (n2 – 3n)/2
more OR gates than the conventional method.

Since the AND-OR cells have less area and delay than the modified adder cells, a significant
reduction in area and delay is achieved. The dashed line in Figure 2b indicates a typical worst
case delay path through this multiplier. This worst case delay is approximately equal to the delay
through one AND gate, one OR gate, one HA, and (n – 2) FA.s. Compared to array multipliers
that detect overflow using the conventional method, array multipliers that use our method have
worst case delay paths that are approximately half as long.

To perform saturating multiplication with either our method or the conventional method, the
V is ORed with then least significant bits of the partial product. This requires n additional OR
gates, and the worst case delay path increase by the delay of one OR gate.

2.2 Unsigned tree multipliers

With tree multipliers, the bits of the multiplicand and multiplier are ANDed to generate an n-
word by n-bit partial product matrix. After this, stages of HAs and FAs are used to reduce the
partial product matrix two rows, which are summed using a fast carry-propagate adder (CPA).
Figure 3a shows the dot diagram of an 8-bit tree multiplier that uses Dadda’s method of partial
product reduction [6]. Although Dadda tree multipliers are not as efficient as the tree multipliers
described in [7], [19], [20],they are useful to examine because the number and type of cells required
to implement them can. easily be determine based on n. Results similar to the ones presented here
are expected for other types of tree multipliers.

In Figure 3a, a partial product bit is represented by a dot, the outputs of a full adder are

5

t

15141312111098765432 1 0
.

.
.

.
.0.

.
. ...0...

. ..0....

..*. O

. . . ///A:::::”
“:: YA: :::”

. ..00..

.

“ : Y//////x ::: “
“ Y2X.ZA :: “ “.

1514131211109 8:7 65 4 3 2 1 0
.

.
.

.
● .0 .;

.

.:. .

.

““””jX:::::”0000

&. . . .
.
00

.

:*. *

“ Z+VZ2X :: “
. ...0...

n7z/w2zYx : “

(a) ConventionalOverflowDetection (b)ProposedOverflowDetection

Figure 3: Unsigned 8-bit Dadda Tree Multipliers

represented by two dots connected by a plain diagonal line, and the outptits of a half adder are
represented by two dots connected by a crossed diagonal line [6]. Each stage of adders is divided
by a horizontal line. The bottom two rows of the figure correspond to sum and carry vectors S and
C’. A n-bit unsigned Dadda tree multiplier has n2 AND gates to generate the partial products,
(n – 1) HAs and (n2 – 4n + 3) FAs to reduce the partial products to S and C, and a (2n – 2)-bit
CPA to add S and C’ to produce P [6], [7]. Computing overflow using the conventional method,
requires (n – 1) OR gates.

The worst case delay through the Dadda tree multiplier is equal to the delay for partial product
generation (one AND gate delay), plus the delay for partial product reduction through s stages
(s full adder delays), plus the delay of a (2n – 2)-bit CPA [7]. For a given multiplier size n, the
number of stages s is determined from Table 1. For example, an 8-bit multiplier has four stages,
and a 32-bit multiplier has eight stages. With tree multipliers, overflow detection is performed
with a tree of (n – 1) 2-input OR gates, which has a delay equal to [log2(n)l 2-input OR gates.

When detecting overflow or performing saturation, the n most significant bits of the product
are not needed, adders are not required in columns n to (2n – 2). With our method, the adders in
these columns are replaced by a tree of OR gates, which OR the partial products bits in columns
n to (2n – 2) and the carries going into column n. Figure 3b illustrates the hardware saving that
is achieved by using our method for overflow detection with an 8-bit Dadda tree multiplier, where
the output of a 2-input OR gate is represented by the symbol ‘o’. In each stage, the number of
bits to be ORed for overflow detection is reduced by approximately a factor of two. Depending on
the implementation technology, OR gates with more inputs or NAND/NOR gates may be used
to implement overflow detection.

Since there are n(n – 1)/2 partial products bits in columns n to (2n – 2) and (n – 1) carries
going into column n (including one from the CPA), the number of OR gates required to implement

6

--?-7- -r ,:; .!, .,,.. —7- ‘--7-T.T *........ .,-,. , ,L. . “7W--!YZ% 9.<., ~~:. +;.-k, ..,, y ,A,.. , l,~y,.> ., >... ● *, , ~ -
—.-.——-”—. ..__.....,..,’{. I

,

Table 1: Number of Stages s for n-Bit Dadda Tree Multipliers.

overflow detection with this technique is

n(n–1)/2+ (n–1)–~=(n2+n–4)/2

The entire multiplier with overflow detection has n2 AND gates, (n2 + n – 4)/2 OR gates, (n – 2)
HAs, (n2 – 5n + 6)/2 FAs, and a (n – I)-bit carry-propagate adder. This is (n2 – 3n + 2)/2 fewer
adders and (n2 + n – 4)/2 more OR gates than the conventional method. The size of the CPA is
also reduced by (n – 1) bits.

The tree of OR gates that detects overflow operates in parallel with the partial product re-
duction and carry propagate-addition. Since the delay for partial product reduction and carry-
propagate addition is greater than the delay for overflow detection, the worst case delay through
the Dadda tree multiplier is the delay for partial product generation (one AND gate delay), plus
the delay of partial product reduction (s FA delays), plus the delay of a (n – 1)-bit CPA, plus the
delay of one OR gate, to include the carry out of the CPA. If saturating multiplication is required,
the overflow bit is ORed with the n least significant bits of the product.

3 Overflow/Saturation for Two’s Complement Multipliers

With two’s complement integer multiplication, the multiplicand A = a.._1a._2 . . . alao is multi-
plied by the multiplier B = &_1bn_2 . . . blbo to produce P = p2n.-.1p2n_2...plpo. The values of A,
B, and P are

. 2“-1 + “~2ai .2’ B = -b._l . 2“-1 + “~2bi -2’
2n–2

A= —C&l P = –p2n_l .22”-1 + ~ pi . 2i
‘i=o i=o ieo

The most significant bit of a two’s complement number, called the sign bit, has a negative weight
[9]. If the sign bit is one, the number is negative; otherwise, the number is zero or positive.

If the n least significant bits of the product are used as the result, overflow occurs when

7

. .. .—,-- 4-”7W+Z?S=-ZZ77W .,
———. .._ —___ .-........ t-.-f,e$eu.,. , ,, .-. ., ,.-. . .- :. . ..!.. ;.% 3 .-,

. 8

With the conventional method, overflow is detected by testing if pn.-l differs from any product bit
to the left of it (i.e., pn to p2._l). Thus, overflow is computed as

where @i = pi o pn_l and (II denotes logical exclusive-or (XOR). Detecting overflow with this
method requires n XOR gates and n – 1 OR gates.

For saturating multiplication, the product saturates to –2n = 10...0 when overflow occurs
and t = an–l o bn-l = 1; and it saturates to 2“-? – 1 = 01...1 when overflow occurs and
t = an-l @ b.-l = O. If overflow does not occur, then the n least significant bits of the product
are returned. The bits of the saturated product < P >=< Pn–l >< Pn–z >. ..< PI >< p. > are
computed as

< Pn-1 > = Vt + Vpn-1

<pi> = V7+Vpi (O<i<n-2)

This is implemented using an XOR gate to compute t and an n-bit 2-to-1 multiplexer to select
the correct values for the saturated partial product bits.

Several techniques have been proposed to implement two’s complement multipliers including
Pezaris arrays [3], variations of the Baugh-Wooley algorithm [21], [22], [23], and Booth’s algorithm
[24] and its extensions [25]. These techniques modify the way in which the partial products are
generated or combined in order to handle partiid products with negative and positive weights.
With Pezaris arrays, adder and subtracter cells are used to combine negative and positive partizil
products. With the Baugh-Wooley algorithm and its extensions, the partial product matrix is
modified so that it contains only positive partial product bits. With Booth’s original algorithm,
pairs of multiplier bits are encoded to determine if –1, O, or 1 times the multiplicand is used as a
partial product. Extensions to Booth’s algorithm encode more than two multiplier bits at a time
to reduce the number of partial products that need to be accumulated. After the partial products
are generated using one of these techniques, they are then reduced using array or tree multiplier
methods.

Unfortunatelyj previous techniques for two’s complement multiplication do not work well for
overflow detection or saturation without computing the most significant product bits. To illustrate
this, Figure 4 shows partial product matrices using the Baugh-Wooley [21] and the Complemented
Partial Product Word Correction [7], [23] algorithms for n-bit multiplies. In these types of mul-
tipliers, carry out of column (2n – 1) is ignored. When two numbers that do not cause overflow
are multiplied (e.g., 1 x 1) some of the partial product bits in columns n to (2n – 2) are one and
others are zero. The partial product bits that are one may cause carries out of column (2n – 1),
which do not contribute to the product. Thus, it becomes difficult to test for overflow without
computing the n most significant bits of the product.

To provide overflow detection or saturation for two’s complement multiplication without com-
puting the n most significant bits of the product, our technique multiplies the magnitudes of the
input operands. This allows overflow detection to be performed using a technique similar to the
one presented in Section 2, since the magnitudes can be treated as unsigned numbers. Typically,
the magnitude of a two’s complement integer is obtained by inverting the bits of the number and
adding a one when the sign bit is one (i.e., the number is negative). To avoid the carry-propagation

8

-... .,..,.,—------t?-T5?7—~,———~————— ,,,.. ,,>..,.-.,,.,. -wsmvmwrR. ?+%.:.. . >; -., >>.- --—~~— .—.. —...
... .-, * ,.,

; %-1 %.2QI ----------------------------- al~ %&
~~bl a!-~ ~~

,,.., ..- ----/ /..- / ..>../- .=- .-”-... ...,.. ..- /-..-/. ---- -“--- /- .--’
/. ..”- ...”..- / ..-

.,,-...: .--” -...
%.1h.1 “---%.zb..2 --------------------------”!a16i.2 ab.z

~., ~.,q.,-. ----~~.l ~~~.l

z-l %-IF-2 ----------------------------- %.15 $&l

1 p.,

P&l l?2m2 Pzn-3 --------------------------------R ;~l . ~ ~

(a)Baugh-Wooley

1 ji7i A.zh -----------------------------alh ah
~~~~ ............. ... .......... al~ KQ
..- /“ ..-

. . . /. ,. . . . . . . -----
,.. >.., : . . .

/ .- . . . ----
..- ./ ..”...””.. . /- .. . ---

./ /- .. . .. .
... >..

..- ,,.. ..-” . ..”--- ...>.. / .-..- ..-” : /.- .--”
.=. ..,,’ : ---- /--

%-1k2 %.2bn.2 ---------------------------[alLz %-&2

.1 %.Ik %.2h ----------------------------- alkl PA-I

~., ~-2 &-3 - . . . . . ..- . . . . . . . . . ..- . . . . . . . . . ..~ J)-, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ ~

(b) Complemented Pardal Product Word Correction

Figure 4: Two’s Complement Multiplication Matrices for P = A. B

9



aJn.2%.,&3----------------------------.qt,~,&
;Zb..l &.3b”.1----------------------------.;lb~l ~~1
&,$ &,& . . . . . . . . ..- . . . . . . . . . . ...& &&

;A
:>.& 441 ----------------------------- 2,$ $-t, fq.l~,

..= ..”- ..-,4- ..= .. .
---- :,.. ----.-.” ..--- . .. .../,,..- .. . .../ >.. ..- ..-

. ... .=’ ..”. .-””,.. /- ..- ..-,,. /. --- >...... >. ..-
.=- /-..

A t-’.f”...’.’”

...

%-2 ..3 %.2 n-3 ‘------------------: ‘-;
:....... &&-3 a -3

&.2t”.2&3$”.2----------- - ‘AG ‘t- ..__ . . . ..----.al *2 q “.2

PM P2n.5 -------------------------------!Pn.l PC-2---------------------------------------- PI I%

Figure 5: Multiplication Matrix for ] P 1=1A I . I B I

required to add the one, the multiplication matrix is modified to directly incorporate computing
the magnitudes.

The product of the magnitudes of the input operands is computed as

. n—2 n—2

IPI = [A1.lBl= (an-l+~tii-2i) .(bn-l+~tj.2~)
i4J j=O

where iii = ai @an–l and & = bi@bn–l. An n-bit multiplication matrix for I A I - I B I is shown in
Figure 5. This multiplication matrix has (n+ 1) rows, (2n – 3) columns, and n2 partial products.

Since the product of magnitudes is always non-negative, it is necessary to return the two’s
complement of the product when the sign bits of the multiplier and multiplicand differ (i.e.,
when the true product is not positive). For two’s complement multiplication, our methods for
performing overflow detection or saturation and conditionally producing the two’s complement of
the product depend on whether array multipliers or tree multipliers are being implemented.

3.1 Two)s complement array multipliers

Figure 6a shows an 8-bit two’s complement array multiplier that uses the Complemented Partial
Product Word Correction algorithm to generate the partial products and the conventional method
for overflow detection. This multiplier is similar to the one shown in Figure 2a, except that (n – 1)
of the AND gates on the left side of the array are replaced by NAND gates, (n – 1) MFAs toward
the bottom of the array are replaced by negating modified full adders (NMFAs), one of the half
adders is replaced by a specialized half adder (SHA), P2n–1is inverted, and n XOR gates are used
at the bottom of the array. The NMFAs and the NAND gates invert (2n – 2) partial product
bits, as shown in Figure 4b. The SHA takes sum and carry bits from the previous row and adds
them with ‘1’ to produce new sum and carry bits. As noted in [7], the specialized half adder has
approximately the same amount of area and delay as a regular half adder. The SHA and the

10

-Tmn7 --TTrrx -r.~.mT-7J=- —— !—’ ----- -“— - ---



inverter that complements p2~_1 add the ones shown in columns n and 2n – 1 of Figure 4b [7].
The n XOR gates perform pi @pn-1, for n S i S 2n – 1.

An n-bit two’s complement array multiplier that uses conventional overflow detection has
2 AND gates, (n – 1) OR gates, n XOR gates, n HAs, and (n2 – 2n)(2n – 1) inverters, n

FAs. When implemented in CMOS technology, (2n – 2) of the AND gates and inverters can be
combined to form NAND gates. The worst case delay is approximately equal to the delay through
one inverter, one AND gate, two OR gates, one XOR gate, two HAs, and (2n – 4) FAs.

Figure 6b shows an 8-bit two’s complement array multiplier that uses the conventional method
for saturation. It is similar to the multiplier shown in Figure 7b, except it has an n-bit 2-to-1
multiplexer that saturates the product when overflow occurs. Also, the AND gate in the bottom
left corner of the array is changed to an XAND cell. The XAND cell produces the partial product
bit a._lb._l and the signal t = am-l@ b.-l, which is used to set the product bits when saturation
occurs.

Figure 6Cshows an 8-bit two’s complement array multiplier that uses our method for overflow
detection. The core of the array multiplier computes I P ]=] A I - I 1? 1, as shown in Figure 5.
Each XAND cell in the top row consist of an XOR gate, which produces iii = a._l @ai, and an
AND gate, which produces b._l@. Similarly, the XAND, YMHA, and XA20 cells on the left side
of the array each consist of an XOR gate that computes bi = b._l @bi, and an AND gate, MHA
cell, or A20 cell. On the right side of the array, n XHA cells produce the two’s complement of
I P 1,when t= a.-l@b._l = 1. Each XHA cell consists of an XOR gate and a HA. When t = 1,
the XOR gates invert the bits of I P I and the half adders add one to the inverted bits of I P 1.

The test for overflow for two’s complement multiplication is more complicated than for un-
signed multiplication, because of asymmetry in the two’s complement number system (i.e., the
magnitude of the most negative number is one greater than the most positive number), and the
need to correctly handle zero times a negative number. Overflow occurs when any of the partial
product bits in columns n to 2n – 4 are one, any carries into column n are one, or pp.--l . . .p.
cannot be represented as an n-bit two’s complement number. This last condition is detected by
examining t, pn, and p~.-l. Overflow occurs when t = Oand p. = 1 (i.e., P 2 2“-1), or when t = 1
and p~ = ‘Oand p~_l = O (i.e., P s –2-’-1 – 1). Thusj the overflow detection logic computes

v=zpn_l+tpnpn_l+v’——

where V’ is the OR of the partial product bits in columns n to 2n -4 and the carries into column
n, as shown in Figure 6c. An n-bit array multiplier that implements overflow detection using
our method has three inverters, (n2 +3) AND gates, (n2 – 7n + 20)/2 2-input OR gates, (n – 4)
3-input OR gates, (3n – 1) XOR gates, 2n HAs, and (n2 + n – 6)/2 FAs. The worst case delay
is equivalent to the delay through one inverterj three AND gates, two OR gates, two XOR gates,
two HAs, and (n – 1) FAs.

With our method, saturation detection is simpler than overflow detection for two’s complement
multiplication. When the actual product is the most negative representable number (i.e., –2n-1),
saturating the product to the most negative number produces the correct result. Thus, the final
product product is saturated whenever I P IZ 2“-1, or equivalently, whenever any partial product
bit in columns (n – 1) to (2n – 4) or any carry into column (n – 1) is one. Consequently, only the
(n – 1) least significant bits of I I’ ] need to be calculated. This allows the adders that sum the

11



● P,

v

(a) Conventional Overflow Detection

%%%% %4% %

PI

b,

b,
pm

b,

b, -

b, -

b, -

b, \

.TK!

b, <P.>

b, <P,>

b, <P*>

b, -@,>

b, 44>

b, 4,>

b6 <P6>

b, <P,>

(b)ProposedOvefflowDetection

Figure 6: Two’s

v

b,

b,

b,

b,

b,

b,

b,

b,

Complement

12

- <P. >

-<P, >

-c?+

- <P, >

- <P, >

— <P+

-q>

- <P, >..-

‘i+PJf
(d)ProposedSaturation

8-Bit Array Multipliers

-, ...---?-r. . ,., -!.-, ,4.. .. ., ,> . . .. . . .-?!rx7”.mz- . . . . . . . . . ,. ~. —— ,,.,? .. +>., . . ..-. ...- .. . ......,,..-
—.—-

1



.

1514131211109 87 65432 1 0
17 . . . . . . .

. . . . . . . .
. . . . . . . .

. . . . . . . .
. . . . . . . .

. . . . . . . .
. . . . . . . .

1 . . . . . . . .---- ---

“::: Y//A:::::”
“:: E$? ::::”

. . . . . . .

. . . . . .

1211109876543210
. . . . . . . .
. . . . . . .0

:“”””” ● “. . . . . . . . .
.:. . . . . .

. .;. . . . .
. . .:. . . .

. . . .:. . .
. . . . .;. .

+x::::
““TX:::::

y:::”

1211109876543210
~..o..o ●

. . . . . . . .

. . . . . . . .

.:. . . . . . .

. .:. . . . .
. . .:. . . .

. . . .:. . .

. . . . .;. .
. . . . . .:.

W&x:::
““yA: ::::

*:::”

1“: Z44W’A ::: “

. . . . . . . . . . . . .~. . . . . . . . . .:. . . . . . .

(a) Conventional Ovefflow Detection (b) Proposed Overflow Detection (c) Proposed Saturation Detection

Figure7: Two’s Complement 8-Bit Dadda Tree Multipliers

partial product bits incolumnn to be replacedby OR gates zmd simplifies the overflow detection
logic.

Figure 7d showsan 8-bit two’s complement array multiplier that uses ourrnethod forsatura-
tion. Since the product saturates whenever, I P lz2n-1, I P ] only requires (n–l) bits. The
n–l XHA cells andthe XORgate onthe right side ofthe array produce the two’s complement
ofl~lwhent= 1. This multiplier requires (n2 +3) AND gates, (TZ2– 7n + 20)/2 2-input OR
gates, (n – 4) 3-input OR gates, (3n – 1) XORgatesj 2nHAs, (n2+n–6)/2FAs, amd an-bit
2-to-l multiplexer. Theworst cmedelay through this multiplier isequdto thedelay through one
AND gates, three XOR gates, two HAs, (n – 1) FAs, andan n-bit 2-to-l multiplexer.

3.2 Two>s complement tree multipliers

Figure 7a shows the dot diagram of a 8-bit two’s complement tree multiplier that uses the Com-
plemented Partial Product Word Correction algorithm [23] to generate the partial products (see
Figure 4b) and Dadda’s technique [6] to reduce the partial products to sum and carry vectors.
In this diagram, a line over a partial product bit indicates that the partial product bit is in-
verted. The circled half adder in column n corresponds to a specialized half adder (SHA). The
one in column (2n – 1) is added by inverting the most significant bit of the product [7]. An
n-bit two’s complement Dadda tree multiplier has (2n – 1) inverters, n2 AND gates, (n – 1) HAs,
(n2 – 4n + 3) FAs, and a (2n – 2)-bit CPA [6], [7]. Implementing overflow detection using the
conventional method requires n XOR gates and (n – 1) OR gates. The delay of the conventional
tree multiplier with overflow detection is the same as for the unsigned case, except for an extra
XOR delay from XORing p.-l with p. to p2._l.

For array multipliers that use our methods for overflow detection or saturation, the two’s
complement of the product is computed by conditionally inverting the bits of the product and

13

.“--,.7 . . ,—,.,, -.. . . . *, -. .,,.,.. ~,-~, -

.,- ./..,’. -.. .,> 1.. ..,. .-,, .-* ...,<. .. . . . . . . . . . .. . .. .. . . ..
.—. -. ._. _ ._ —____ . ..-

-.,



(a) OverflowDetection/Correction

[

Li

v

hl-l-’’”w-’”w<~,><Qz> <~3> <w- <~> <~>
~) SaturationDetection/Correction

t

Figure 8: Two’s Complement Overflow and Saturation Detection/Correction

adding one when t = 1. For tree multipliers, however, this approach requires two carry propagate
additions; one adds S and C to produce I P ] and the second conditionally adds one to I P I
after its bits have been inverted. Instead, our method for tree multipliers uses an n-bit carry-save
adder to conditionally add 2n – 1 (i.e., n consecutive ones) to S and C’,uses an (n+ I)-bit CPA to
compute the product, and then uses n XOR gates to conditionally invert the product bits. This
approach is shown in Figure 8a, where 2n – 1 is added and the product bits are inverted if t = 1.
The n-bit carry-save adder is implemented using n full adders and has a delay equivalent to one
full adder.

In parallel with conditionally inverting the product, the more significant pre-inverted product
bits p~+l, p~, and p~_l, and the the two’s complement signal t are examined to test if overflow
occurs. Overflow occurs if t = land] Pl+(2”–l) ~2n+2n-l, orift=0 and] Pl+O~2n-1.
Simplified logic equations for determining overflow are

where V’ is one if any of the partial product bits in columns n to 2n – 4 are one, or if carries into
column n are one when reducing the partial products to S and C’. The logic for computing V is
implemented using three 2-input AND gates, four 2-input OR gates, and an inverter. From the
time the pre-inverted partial product bits are ready, computing V has a delay equivalent to one
AND gate plus three 2-input OR gates.

Figure 8b illustrates the hardware savings achieved by our method for overflow detection (see
Figure 5) with an 8-bit two’s complement Dadda tree multiplier. In this diagram, partial product
bits in columns n to (2n – 4) are ORed with carries into column n to compute V’, which is used as
an input to the the overflow detection logic, as shown in Figure 8a. The 2n-bits in the bottom two
rows of Figure 8b to the right of the dashed line correspond to S and C’in Figure 6a. Our method
for two’s complement multiplication with overflow detection uses one inverter, n2 + 3 AND gates,
(n2 – 3n + 10)/2 OR gates, (3n – 1) XOR gates, n HAs, (n2 + n – 2)/2 FAs, and an (n+ 1)-bit
CPA. The worst case delay through the multiplier and overflow detection logic is equivalent to
the delay of one inverter, two AND gates, three OR gates, two XOR gates, (s+ 1) FAs, and an
(n+ 1)-bit CPA.

Similar to our method for saturating array multipliers, our method for saturating tree multi-
plier causes saturation whenever ] P 12 2n–1. Thus, I P ] only requires (n – 1) bits. The correct

14

:~..,-7,; -T?-, $4 ,-, ..(4,, - . ,1 .,,...-, ....! .,-. 2<-. .,. --,3. ,,,



product isobtained byadding S+ C=l.Pl andt... t,using a(1) lbitcarryrsavead derandnd
a n-bit CPA. This is shown in Figure 8b, The saturation logic implements

v = p~n.l + zp;_l + fp;_2 + v’

which requires three 2-input AND gates, three 2-input OR gates, and an inverter. An n-bit 2-to-1
multiplexer saturates the product when V = 1.

Figure 7Cillustrates our method for saturating multiplication with an 8-bit two’s complement
Dadda tree multiplier. For an n-bit Dadda tree multiplier, our method requires two inverters,
(n2 + 4) AND gates, (n2 – n + 6)/2 OR gates, (3n – 1) XOR gates, (n – 1) HAs, (n2 – n + 6)/2
FAs, an n-bit 2-to-1 multiplexer, and an (n – 1)-bit CPA. The worst case delay through the
multiplier and saturation logic is equivalent to the delay of one inverter, three AND gates, three
OR gates, two XOR gates, (s+ 1) FAs, an n-bit 2-to-1 multiplexer, and an (n – 1)-bit CPA.

In [26], two’s complement multiplication is also performed by multiplying the magnitudes of the
numbers and correcting the product when the sign bits of the multiplier and multiplicand differ.
Our technique differs from the technique presented in [26], in that our technique does not compute
the most significant bits of the product and our method for correcting the final product does not
require carry propagate addition. In [27], the multiplicand is converted to a sign-magnitude
representation and the multiplier is Booth-encoded. Using the magnitude of the multiplicand
reduces switching activity and power dissipation, since integers with small magnitudes will always
have zeros in their most significant bits [27]. Similar reductions in power dissipation are expected
using our technique.

4 Area and Delay Estimates

Java programs were used to generate gate-level VHDL code for various array and Dadda tree
multipliers with overflow detection. The VHDL code was then synthesized and optimized for
area using LSI Logic’s 0.6 micron LCA300K gate array library and the Leonazdo synthesis tool
from Exemplar Logic. The estimates given assume a nominal operating voltage and temperature
of 5.0 Volts and 25° C, respectively. Area estimates are reported in equivalent gates and delay
estimates are reported in nanoseconds. For each tree multiplier, the final CPA is implemented
using a block carry-lookahead adder (CLA) with a block size of four [9].

Table 2 gives area and delay estimates for unsigned axray multipliers using the conventional
method and our proposed method for overflow detection. 2 Compared to the conventional method,
our method has between 42% and 44% less area and between 39% and 42% less delay. These
reductions in area and delay “occur because the n most significant partial product bits are not
computed and because the adders that compute these bits are replaced by OR gates that detect
overflow.

Table 3 gives area and delay estimates for unsigned Dadda tree multipliers using the conven-
tional method and our proposed method for overflow detection. Compared to the conventional

2We plan to include area and delay estimates for two’s complement array multipliers with ovefiow detection in
the final version of the paper. We anticipate that two’s complement array multipliers that implement our method
will greater area and delay than unsigned array multipliers of the same size, due to the overhead of conditionally 0
complementing the input and output operands.

15



Conventional Method Proposed Method I Percent Reduction I
n Area (gates) Delay (ns) Area (gates) Delay (ns) Area Delay
8 662 10.70 372 6.34 44% 41%

16 2862 23.02 1644 13.93 43% 39%
24 6598 35.34 3793 21.30 43% 40%
32 11870 47.66 6845 28.99 42% 42%

Table2: Estimates for UnsiWed Array Multipliers tith Overflow Detection.

method, our method has about 47% less area and has between 23% and 28% less delay. As
described in Section 2.2, the reduction in area is due to replacing (V2– 3n + 2)/2 adders with
(n2 + n – 4)/2 OR gates, and reducing the size of the CLA from (2n – 2) bits to (n – 1) bits. The
reduction in delay is due to using a smaller CLA and performing most of the overflow detection
in parallel with the partial product reduction and carry-lookahead addition. .

Conventional Method Proposed Method Percent Reduction
n Area (gates) Delay (ns) Area (gates) Delay (ns) Area Delay
8 821 8.07 434 6.21 47% 23%

16 2905 10.53 1546 7.85 47% 25%
24 ~6270 13.57 3344 9.71 47% 28%
32 10918 14.98 5818 11.17 47% 25%

Table 3: Estimates for Unsigned Dadda Tree Multipliers with Overflow Detection.

Table 4 gives area and delay estimates for two’s complement Dadda tree multipliers using
the conventional method and our proposed method for overflow detection. Compared to the
conventional method, our method requires between 14% and 37% less area and has between l%
and 7% less delay. The percent reductions in area and delay are less than the percent reductions
for the unsigned tree multipliers, due to the overhead of conditionally complementing the input
and output operands. As the multiplier size increases, the percent reduction in area due to using
our proposed method also increases. This is because the overhead to conditionally complement
the operands increases linearly with multiplier size, while the savings from replacing adders by OR
gates increases quadratically. Our method for two’s complement tree multipliers provides only a
small reduction in delay, since the reduction in the delay of the CLA and overflow detection is
offset by the increase in delay from conditionally complementing the operands.

Conventional Method Proposed Method Percent Reduction
n Area (gates) Delay (ns) Area (gates) Delay (ns) Area Delay
8 837 8.59 723 8.29 14% 3%

16 2925 11.12 2141 11.02 27% 1%
24 6298 13.81 4163 13.22 34% 4%
32 10948 15.24 6950 14.19 37% 7%

Table 4: Estimates for Two’s

$, ,.J... ..,,-7+!

Complement Dadda Tree Multipliers with Overflow Detection.

16

.-—.. ... :.,--,., ,: - ,. . .--—- -.—-



5 Conclusions,

The methods for multiplication with overflow detection and saturation presented in this paper
are applicable to array multipliers or tree multipliers for unsigned or two’s complement numbers.
Compared to conventional methods, they have significantly less area and delay. These methods
should also reduce power dissipation, due to decreased hardware requirements. They can be
used in VLSI or reconfigurable computing systems for applications that do not require the most
significant product bits, but that require overflow detection or saturation.

Acknowledgments

This material is based upon work supported by Sandia National Laboratories under Grant No.
BF-1029 and the National Science Foundation under Grant No. MIP-9703421. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of Sandia National< Laboratories or the National Science
Foundation. Sandia is a multiprogramlaboratory

operated by Sandia Corporation,a
Lo@heed Martin Company,for the

References
United States Departmentof Energy
under contract DE-ACM-94AL850W.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

D. Tabak, RISC Systems and Applications. John Wiley& Sons, 1996.

J. C. Hoffman and R. Kitai, “Parallel Multiplier Circuit,” Electronic Letters, vol. 4, p. 178,
May 1968.

S. D. Pezaris, “A 40 ns 17-bit Array Multiplier,” IEEE Transactions on Computers, vol. 20,
pp. 442-447, April 1971.

K. Z. Pekmestzi, “Multiplexer-Based Array Multipliers: IEEE Transactions on Computers,
vol. C-48, pp. 15–23; January 1999.

C. S. Wallace, “Suggestion for a Fast Multiplier,” IEEE Transactions on Electronic G’omput-
ers, vol. EC-13, pp. 14–17, 1964.

L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, pp. 349-356,
1965.

K. Bickerstaff, M. J. Schulte, and E. E. Swartzlander, Jr., “Parallel Reduced Area Multipli-
ers,” Journal of VLSI Signal Processing, vol. 9, pp. 181-192, 1995.

P. J. Song and G. D. Micheli, ‘(Circuit and Architecture Trade-offs for High-Speed Multipli-
cation,” IEEE Journal of SoZid-State Circuits, vol. 26, pp. 1184–1198, September 1991.

I. Koren, Computer Arithmetic and Algorithms. Brookside Court Publishers, 1998.

T. Lindholm and F. Yelinj The Java Virtual Machine Specification. Addison-Wesley, 1996.

-7’?’7 -~ TTTzw77 T
. . . . . .—. — ___ _

. . . . . .



,, <
*

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

,

K. Guttag, “Built-inOverflowD etectionSpeeds 16-bit Microprocessor Arithmetic,” E.DN,
vol. 28, pp. 133–135, January 1983.

J. L. Hennessy and D.A. Pattersonj Computer Architecture a Quantitative Approach, Second
Edition, pp. A-Il. Morgan Kaufmann, 1996.

P. Lapsley, DSP Processor Fundamentals: Architectures and Features. IEEE Pressj 1997.

N. Yadav, J. Glossner, and M. J. Schulte, “Parallel Saturating Fractional Arithmetic Units,”
in Proceedings of the Ninth Great Lakes Symposium on VLSI, pp. 214–217, March 1999.

F. Mi@zer and A. Peled, “A Microprocessor for Signal Processing, the RSP,” IBM Journal
of Research & Development, vol. 26, pp. 413–423, July 1982.

A. Landauro and J. Lienard, “On Overflow Detection and Correction in Digital Filters:
IEEE Transactions on Computers, vol. C-24, pp. 1226-1228, December 1975.

P. D. Pai and A. ‘I!ran, “Overflow Detection in Multioperand Addition,” International Journal
of Electronics, vol. 73, pp. 461–469, September 1992.

D. G. East and J. W. Moore, “Overflow Indication in Two’s Complement Arithmetic: lBM
Technical Disclosure Bulletin, vol. 19, pp. 3135–3136, January 1977.

Z. Wang, G. A. Jullien, and W. C. Millerj “A New Design Technique for Column Compression
Multipliers,” IEEE Transactions on Computers, vol. C-44, pp. 962-970, August 1995.

V. J. Oklobdzija and D. Villeger, “Improving Multiplier Design by Using Improved Column
Compression Tree and Optimized Final Adder in CMOS Technology,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 3, pp. 292–301, June 1995.

C. R. Baugh and B. A. Wooley, “A Two’s Complement Parallel Array Multiplication Algo-
rithm,” IEEE Transactions on Computers, vol. C-22,. pp. 1045–1047, December 1973.

P. E. Blankenship, “Comments on A Two’s Complement Parallel Array Multiplication Algo-
rithm,” IEEE Transactions on Computers, vol. C-23, p. 1327, 1974.

J. A. Gibson and R. W. Gibbard, “Synthesis and Comparison of Two’s Complement Parallel
Multipliers,” IEEE Transactions on Computers, vol. C-24, pp. 1020–1027, October 1975.

A. D. Booth, “A Signed .Binary Multiplication Technique,” Quarteriy Journa/ of Mechanics
and Applied Mathematics, vol. 4, pp. 236–240, 1951.

H. Sam and A. Gupta, “A Generalized Multibit Recoding of Two’s Complement Binary
Numbers and Its Proof with Application in Multiplier Implementations,” IEEE Transactions
on Computers, vol. 39, no. 8, pp. 1006–1015, 1990.

R. De Mori and A. Serra, “A Parallel Structure for Signed-Number Multiplication and Ad-
dition,” IEEE Transactions on Computers, vol. C21, pp. 1453-1454, December 1972.



. . . I

[27] M. Zheng and A. Albicki, “LOWPower and High Speed Multiplication Design through Mixed
Number Representations, 7’in Proceedings of the International Conference on Computer De-
sign, pp. 566–570, 1995.


