JAN 112000

SANDIA REPORT

1 SAND99 -3142- . -

5\J ~ Unfimitéd Rel

27? [g Prlnteld Dechi?JSe?1999 - QS rl
T Re A
L Ny C =\

Z\ Spatlal Parallellsm of a 3D Finite

Qi/fference Velomty-Stress Elastic Wave

N\

Prepagatlon ‘Code

T

Susan E,/Minkoff

Prepared by
Sandia National Laboratories
Albuquerqt/e. New Mexico 87185 and Livermore, California 94550

Sandia)'s a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
E7gy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories |

¢
4
i

RS TIRIOIS T DI I U N SR S S

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http:/ /www.ntis.gov/ordering.htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

DISCLAIMER

Portions of this document.may be illegible
in electronic image products. Images are
produced from the best available original

document.

SAND99-3142
Unlimited Release
Printed December 1999

SPATIAL PARALLELISM OF A 3D FINITE DIFFERENCE,
VELOCITY-STRESS ELASTIC WAVE PROPAGATION CODE

Susan E. Minkoff
Applied Mathematics Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-1110

Abstract

Finite difference methods for solving the wave equation more accurately capture the physics
of waves propagating through the earth than asymptotic solution methods. Unfortunately,
finite difference simulations for 3D elastic wave propagation are expensive. We model waves
in a 3D isotropic elastic earth. The wave equation solution consists of three velocity com-
ponents and six stresses. The partial derivatives are discretized using 2nd-order in fime
and 4th-order in space staggered finite difference operators. Staggered schemes allow one
to obtain additional accuracy (via centered finite differences) without requiring additional
storage. The serial code is most unique in its ability to model a number of different types
of seismic sources. The parallel implementation uses the MPI library, thus allowing for
portability between platforms. Spatial parallelism provides a highly efficient strategy for
parallelizing finite difference simulations. In this implementation, one can decompose the
global problem domain into one-, two-, and three- dimensional processor decompositions
with 3D decompositions generally producing the best parallel speedup. Because i/o is han-
dled largely outside of the time-step loop (the most expensive part of the simulation) we
have opted for straight-forward broadcast and reduce operations to handle i/o. The ma-
jority of the communication in the code consists of passing subdomain face information
to neighboring processors for use as “ghost cells”. When this communication is balanced
against computation by allocating subdomains of reasonable size, we observe excellent scaled
speedup. Allocating subdomains of size 25x25x25 on each node, we achieve efficiencies of
94% on 128 processors. Numerical examples for both a layered earth model and a homoge-
neous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel
code.

Acknowledgements

I thank David Aldridge in the Geophysics Dept. at Sandia National Labs who wrote the
serial code and advised me on its use. I would also like to thank both David Aldridge and
Marianne Walck of the Geophysics Dept. for funding this work. Neill Symons and Rory
O’Connor helped me run the code on the linux cluster and understand its performance
on that machine. Thanks to Bill Symes of Rice University for preliminary readings of this
paper. Finally, Steve Plimpton of the Parallel Computer Science Dept. at SNL provided me
with some very helpful simplifying suggestions for the parallel implementation. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract DE-AC04-94AL85000.

T SR AT T T AT T T TR O, P AT M N SO A A SO K 1D Y T S NS TR LI PR TR T TR o

1 Introduction

Realistic-sized elastic wave propagation simulations in 3D are extremely computationally
intensive. Even assuming an isotropic elastic earth (which reduces the number of unknowns
and equations to nine), reasonable-sized simulations require too much memory and too
much time to run on a single-processor machine. Further, finite difference schemes for
solving the wave equation, although very expensive, are able to model more of the physics
of wave propagation than can be achieved using approximate (e.g., asymptotic) schemes.
Attempts to improve on memory management include such finite difference variants as
staggered schemes. However, ultimately, parallel computation is the only effective solution
for running finite difference simulations in 3D.

Much work has gone into finite difference schemes for elastic wave propagation. The
original papers on explicit staggered finite difference schemes were written by Madariaga
(1976), and Virieux (1984), (1986). Emerman et al. (1982) give an interesting discussion
of using an implicit scheme to solve these equations. Their work indicates that explicit
schemes are preferable for the wave equation. More recently, a number of papers have
appeared which attempt to improve on or analyze aspects of the staggered algorithm. Some
examples include the work of Bayliss (1986), Levander (1988), Luo and Schuster (1990),
and Graves (1996). A dispersion analysis of a staggered displacement-stress formulation is
given by Sei (1995). Work on parallel, staggered finite difference schemes for the elastic
wave equation include the earthquake modeling paper of Olsen et al. (1995) and work of
Hestholm (1998), (1999) which makes use of higher-order differencing and covers research
into coordinate change of variables for uneven surface topography.

In this work we apply spatial (or data) parallelism (via MPI) to the 3D isotropic elastic
wave equations which have been discretized via 2nd-order in time and 4th-order in space
staggered finite difference operators. The serial code is perhaps most unusual in its accurate
modeling of multiple types of seismic sources. Data parallelism is the most efficient way
to parallelize finite difference simulations. Our code is able to achieve a scaled speedup of
94% on 128 nodes where (for example) each processor solves a small subproblem of size
25%25%25. Because the bulk of the cost of this simulation occurs in the time-step loop, the
one-time reads of the earth model and writes of seismograms and plane slices are handled by
processor 0 issuing broadcasts and reduces for data transmission. To allow the user to place
sources, receivers and requests for slice output anywhere in the physical domain (rather
than only at grid point locations), cubic extrapolation is used extensively in the serial code.
In the parallel code, each processor accurately computes its finite difference updates, as
well as these extrapolated values, by ensuring its neighboring processors have four planes
of up-to-date ghost-cell information for each subdomain face. Within the time-step loop all
communication is accomplished via basic (linear-cost) sends and receives. The parallel code
runs on 1-, 2-, or 3-D processor decompositions (with varying levels of efficiency).

In the remainder of the paper we describe the elastic wave equations we solve and the
staggered finite difference scheme. We give a description of spatial parallelism in general
and its use in this code. We also describe how i/o is handled and present theoretical cost
estimates for the finite difference update algorithm and numerical timing studies for both
fixed- and scaled-size problems. Finally we describe two numerical examples. The first
example simulates waves in a simple layered-earth model. The parallel code results match
single-node results to full accuracy as illustrated in this paper with plane-slice output. The

second example is larger and consists of a homogeneous earth model with a high-velocity
blocky inclusion in the top corner of the domain. This example indicates that the parallel
code is indeed capable of capturing 3D wave propagation in a heterogeneous earth.

2 The Serial Algorithm

2.1 Governing Equations

The serial algorithm description in this section is taken in abbreviated form from Chapter
4 of the technical report by Sleefe et al., (1998). For a more classical reference to elastic
wave propagation see Aki and Richards (1980). We solve the elastic wave equation in a 3D
medium occupying a volume V and with boundary S. The medium may be described by
Lamé parameters A(Z) and p(Z) and mass density p(Z) where £ € R3. If (), B(Z) are
the compressional (P) and shear (S) wave speeds, respectively, then we can relate the wave
speeds and Lamé parameters via

XNZ) = p(®)[e(Z)® ~ 28(%)%), and p(Z) = p(£)B(Z)".

The velocity-stress form of the elastic wave equation consists of nine coupled, first-order
partial differential equations for the three particle velocity vector components v;(Z,%), and
the six independent stress tensor components o;;(Z,t). Here 7,5 = 1,2,3 and the stress
tensor is isotropic so o;; = 0. The 3D velocity-stress eqns are

30,2:;) b(_,)aam(x) _ — 5@ [f,(:z: 4+ 3m,J(z t)]
001j(Z,1) Our(Z, t) O0vi(£,t) = Ov;(Z,1) om$; (%, t)
B ”[5 T om]— o

Here, b = 1/p, is the mass buoyancy. Sources of seismic waves are denoted by f; (force
source) or m;; (moment source). The symmetric and anti-symmetric parts of the moment
density tensor are denoted (respectively) by

m; (%, t) = 1/2[m;;(Z, 1) + mzu (%, 1)], mE(Z,t) = 1/2[mi;(Z, 1) — my(Z,)]
Stress boundary conditions are written
0ij (:Z-f, t)nj(:z’:') = t,'(f, t)

for £ on S where t;(Z,t) are the components of the time-varying surface traction vector,
and n;(Z) are the components of the outward unit normal to S. Initial conditions on the
dependent variables are specified throughout ¥V and on S at time ¢ = {g via

’Ui(f, to) = v?(:f:'), O'ij(:l-f, to) = g(f)

2.2 Sources and Seismograms

Numerous source types are handled by the code. For instance, a unidirectional point force
acting in a volume V is represented by the force density vector

fi(Z,t) = Fw(t)d:6(Z — <)

where F is a force amplitude scalar, w(t) is a dimensionless source waveform, and d; are
the components of a dimensionless unit vector giving the orientation of the applied force.

As a second example, a point moment acting within V is described by the moment
density tensor

my;(Z,t) = —Muw(t)di;6(Z — 73)

with M a moment amplitude scalar, w(t) a dimensionless source waveform, and d;; are
the components of a second-rank tensor giving the orientation of the applied moment.
Seismic sources involving force dipoles, force couples, torques, and explosions/implosions
are represented by a moment density tensor.

Finally, a point surface traction acting on S is described by the stress tensor

£:(3,1) = Fuw(t)did(% — £3).

Here the spatial delta function lives in 2D rather than 3D (as is the case for a point force)
because T is restricted to the boundary S.

On output, the code produces both seismograms and 2D plane-slices. The seismic
traces represent particle velocity or acoustic pressure. If the orientation of the transducer
sensitivity axis is defined by the dimensionless unit vector b, then the particle velocity
seismogram is

Ub (2)-;-, t) = brvg (Z—;, t) = by (27-;-, t) + bov (113-;-, t) + b3vs ((C-;-, t)

and the acoustic pressure seismogram is
- 1 - 1 - " "
p(xﬁ t) = —gakk(mr’ t) = _'?;'[011 (zrs t) + 022($r1 t) + 0’33(3),-, t)]'

2.3 Staggered Finite Difference Scheme

The finite difference algorithm is an explicit scheme which is second-order accurate in time
and fourth-order accurate in space. Staggered grid storage allows the partial derivatives to
be approximated by centered finite-differences without doubling the spatial extent of the
operators, thus providing more accuracy (see Levander (1988)). Here we apply the finite
difference scheme to the above equations after they have been non-dimensionalized. For a
discussion of the motivation and manner of equation non-dimensionalization see Chapter 4
of Sleefe et al. (1998).

We choose a discretization of the 3D spatia.l grid so that z; = zo+(¢—1)hs, ¥; = Yo+ (7 —
1)hy, and zx = 20 + (k — 1)h; for i = 1,2,3,...,1,=1,2,3,...,J,and £ =1,2,3,..., K
respectively. Here 2o, Yo, 20 are the minimum grld values and hz, hy, b, give the dlstance
between grid points in the three coordinate directions. Values of the 2 Lamé parameters

7

and mass buoyancy at a node are given by A(z;,y;, 2), #(2i, ¥, 2x), and b(z;, ¥, 2). The
time discretization is defined by ¢ = to + (I — 1)k for | = 1,2,3,...,L. Here g is the
minimum time and h; is the time increment.

Subsets of the dependent variables are stored on different spatial and temporal grids.
Specifically, the diagonal components of the stress tensor are stored on the gridpoints defined
above:

sz(ziv Y5 2k, t]), ayy(zi: Y5y 2k tl)a Ozz (xi, Y5y 2k, tl)-

The off-diagonal stress tensor components are shifted in space by one-half grid interval along
two coordinate axes:

Ozy ($i+hx/2a yj+hy/2: Zky tl)a Oyz (:Z:,', yj+hy/27 Zk+hz/27 tl)’ Ozz ($i+h:z:/2, Yj, zk+h2/21 tl)'

Finally, the three velocity vector components are stored at gridpoints that are shifted in
both space and time by one-half grid interval:

vz (@i + ha/2, Yjy 2k, B+ ha/2), vy (i, Y5+ By /2, 2k, 61+ he[2), 02 (20, Y0 2k + B2 /2,004 By /2).
If we define the following oft-used (dimensionless) quantities:

ClhtSw clhtS'w - clhtSw . Czhtsw . Czhtsw _ Cghtsw

Pz = by y Py = hy y Dz k. y Gz = he y Qy hy y @z = B,

where S,, and .S, are characteristic units of measure for wavespeed and mass density, and S,,
S, are characteristic units of measure for the velocity vector and stress tensor components
respectively. As an example, one might choose S, = 10% m/s and S, = 10% kg/m? as
appropriate normalizing values. We generally choose ¢; = 9/8 and ¢; = —1/24 as coefficients
in the fourth-order finite-difference operator.

Then the time update formulas for the three representative unknowns (velocity, diagonal
stress component, and off-diagonal stress component) are given in Equations 1, 2, 3. The
other two velocity and four stress unknowns are similar in form to these examples. We solve
the following finite difference equation for the x-component of the particle velocity vector:

’U_-,;(:L',' + hz/zy Y5, 2k b1+ ht/z) = v:x:(xi + h$/2, Yis 2y b1 — ht/2)

+b($i + ha:/2, Y5, zk) {P:t: [a'a:x(zi + hy, Yis 2k, tl) - a':::z(zi: Yjs 2k, tl)]

+qz [O'zz(xi + 2hza Yis 2k, tl) - azx(zi - hza Y5, 2k, tl)]

+py [Uzy (xi + hz/27 Y; + hy/2’ 2k, tl) - Uzy(zi + hz/2, Y; — hy/2’ 2l tl)]

+y [02y (% + Bz /2,Y; + 3hy /2, 2k, 1) — Ozy (i + Az /2, Y5 — 8hy/2, 2k, 11)]
+p. [O'zz (22{ + hz/2, Yi 2k + hz/2’ tl) - a:cz(zi + h:z:/21 Y5, 2k — hz/za tl)]

+ g [axz (mi -+ h:c/21 Ys: 2k + 3hz/2y tl) — Ozz (xi + hz/21 Y52 — 3hy/2, tl)]} (1)
+b($i + h:l:/27 Yis Zk) {%:fz(zz + hz/21 Ysis 2k, tl)

+Py mgy (.’2:,' + hz/21 Y; + hy/21 2k tl) - mgy(xi + h:z:/2s Y; — hy/2, 2k tl)]

+qy m;y(:l:,‘ + h/2, y; + 3hy/2, Zp, b)) — mgy(a:,- + hz/2,y; — 3hy/2, 2k, tz)]
+p2 [m?:z (mi + hx/2, Yi: 2k + h2/2a tl) - mg:z(mi + hz/21 Yi 2k — h2/2’ tl)]

+ gz [m (i + he /2, Yi» 2k + 3hz /2, 11) — mg,(z: + ks /2, Yj» 2k — 3hz/2,)]}

In the formula above, the buoyancy (b) between grid nodes is derived from an appropriate
order of interpolation. The xx-component of the stress tensor may be solved for from the
following equation:

Uzz(mia Y5, Zg, bt + ht) = O'zx(zh yj1zk,tl)

+ [)\((L‘,', Yis Zk) + 2“(371'1 Yis zk)] X

{Pz [vo(2i + ha/2, Y5, 2k, 11 + Rt /2) — V(i = ha/2, Yjy 2001 + B /2)]

+ gz ['U:c(xi + 3hz/21 Yjs 2k i+ ht/z) - ’Uz(.’Bi - 3h$/21 Yis 2k i+ ht/z)]}

+/\(xi1 Yis Zk)X (2)
{py [’Uy (zi, yi + hy/21 Zrt + ht/2) - vy(xh Yi— hy/27 Zg, b+ ht/2)]

+ay [0y (i, Yj + 8hy/2, 2k, 1 + 1 /2) — vy (24, 5 — 3hy/2, 2k, 11 + Pe/2)]

+pz [vz(mi) Yis 2k + hz/2, t[-+ ht/2) - 'uz(:z:,-, Yi, 2k — hz/2, t[+ ht/2)]

+ gz ['Uz (xi, Yis 2k + 3hz/2, tr+ ht/?‘) =V (xia Yiy 2k — 3h2/2a u+ hf/2)]}

+ [m::z(ziv Yis 2k, 01 + ht) - m:,-x(mia Yiy 2k tl)] .

No interpolation for Lamé parameters is needed in the formula above. Finally, one solves
for the xy-component of the stress tensor via

Ozy (mi + hz/21 Yi + h’y/2, Zg, 0+ ht) = O':cy(zi + hz/21 y; + hy/?—-a 2Ly tl)

+p(zi + ko /2, y; + by /2, 2) X

{pz [vy(x'i + h.‘l:7 Yi + hy/2, Zg, b1+ ht/2) - vy(xiv Y; + hy/21 Zr, U1+ ht/2)]

+q$ ['Uy(mi + 2h$7 Y; + hy/2’ Zky i+ ht/z)

—vy (2 = gy U + by /2, 2k tr + he/2)] (3)
+Dy [V2(zi + Ra /2, Ys + By, 28, t1 + Rt [2) — v (25 + b /2, Y5, 20y T + Pt /2)]

+ ¢y [Vo(%: + he/2, Y+ 2hy, 2ky b1+ he[2) — v2(@i + Pz /2, Y5 — By, 28,2+ 7t /2)]}

+ [mi‘y(mi + hz/27 Y; + hy/27 Zg, b+ ht) - mj:y(mi + h.'L‘/27 Y; + hy/w1 2k tl)] .

The shear modulus (z) between grid nodes is again obtained by interpolation.

3 Spatial Parallelism

The most efficient parallel programs are ones which attempt to minimize the communication
between processors while still requiring each processor to accomplish basically the same
amount of work. This trade-off between load balancing and the cost of communication is
best achieved for an explicit finite difference scheme via spatial (data) parallelism. Spatial
parallelism also tends to scale well (see Pacheco (1997), Ch.10). In this case, the original
serial algorithm was not modified to improve parallel efficiency although quite good scaled
speedup is achieved on mp machines.

In spatial parallelism, the physical problem domain is split among the processors so
that each processor solves its own subdomain problem. In our implementation, the user
may specify processor decompositions in one, two, or three dimensions although generally,
a more balanced division (3D decomposition) is the most efficient. Further, there is no
requirement that the number of processors in any one direction must evenly divide the
number of grid points. Divisions with remainders are allowed and are transparent to the

Figure 1: One-dimensional processor decomposition (in the z direction) for spatial paral-
lelism.

Figure 2: Two-dimensional processor decomposition (in the = and y directions) for spatial
parallelism.

user. A typical 1D decomposition is illustrated in Figure 1, a 2D decomposition in Figure
2, and a 3D decomposition in Figure 3.

In order for each processor to completely calculate its finite difference solutions indepen-
dently of the other processors, we allocate padded subdomains (ghost cells) of memory (see
Figure 4 for an illustration of a processor subdomain). For a typical fourth-order spatial
finite difference scheme, two extra planes of memory need to be allocated on each face of the
subdomain cube. Because the serial algorithm allows the user the flexibility of specifying
sources, receivers, and plane-slice output anywhere in the domain (not necessarily on a grid
node), cubic extrapolation is used extensively throughout the code. Therefore, we allocated
4 planes of ghost cells for each face of the subdomain cube to ensure the extrapolation
had the correct data values at each time step. Most of the subroutines do not need to
communicate all 4 planes of data from processor to processor, however.

After establishing the correct Cartesian communicator for the processor decomposition,

10

Z
i /// ///
1 e
Y 9= ///
L 1
L/ Y/
(L/
// L/
X

Figure 3: Three-dimensional processor decomposition for spatial parallelism.

we use the MPI shift commands to ensure that every processor sends edge information to its
neighboring processors (up, down, right, left, front, back). Every subroutine which updates
grid values of velocity or stress must send this information at the start of the routine. The
affected routines include those which do the actual finite difference updates, ones which
calculate the absorbing boundary conditions or insert sources, and all the extrapolation
routines (including the output seismogram and plane slice routines). This rather sizeable
amount of communication negatively impacts parallel efficiency when the size of the sub-
domain problems is small. However, for reasonable-sized subdomain problems, the scaled
speedup is still quite good (see Figure 7 and Table 1).

4 I/0 Issues

For realistic-sized domains, the majority of the time spent in this algorithm will occur in
the time-step loop. Therefore, I did not focus on researching optimal parallel i/o strategies.
Nonetheless, some simple measures were taken to improve efficiency. The algorithm reads
input information from at least four different files. Most of the recording geometry data and
basic run parameters are scalars which processor 0 reads in and then broadcasts to all other
processors. These scalar values are packaged and broadcast with a single call. Reading the
earth model information (velocities and density at each grid point) is the most costly of
the i/o operations. Processor 0 reads in a line (set of records) from the external file, and
broadcasts this information to all processors. Each processor then determines whether its
subdomain uses that section of the earth model and unpacks and stores the data it requires.
This technique prevents processors (other than 0) from sitting idle during the initial reading
of input data. Although this information is only read once, improvements to reading the
earth model could undoubtedly be made.

The output routines (seismogram and plane slice) use MPI operators that are the inverse
of the input routines. The plane slice routine currently requires every processor to allocate
the total slice plane memory. The processors fill out their portion of that plane and then

11

VA
L
/_/./ //
| L1
Y L
/// //
» 11
L L
4 e
4 e
X
3 thipiaininisiisiiiniiniisiy ey
’ 1 " H
ik inledsiniuinisiniaiaied Tl
Cl vl
e iR
:] I
] 1 ’
I'/ |’/
U e e r o m———— -~ - v

Figure 4: Single processor subdomain (with ghost cells shown as dashed lines) taken from
global grid domain.

a global sum over each point in the plane (reduce operation) is performed before processor
0 writes the output to an external file. If the user specifies a receiver or slice plane not
on a grid node, cubic extrapolation is used. Therefore, it is possible that (even at a single
grid point in the plane slice) only part of the weighted combination of output values will be
stored on a certain processor. The remainder of values needed for the extrapolation might
be on a neighboring processor. The reduce operation correctly handles receivers or slice
planes which occur in the physical domain on boundaries between processor subgrids. (See
Figure 5 for an illustration.)

The collective communication calls broadcast and reduce are more expensive than sim-
ple sends and receives, but these commands are only used in the i/o routines. All mes-
sage passing used in the finite difference computation is accomplished with (linear cost)
sends/recetves.

5 Timing Studies

5.1 Background

Two of the most important concepts in parallel programming are computational speedup
and parallel efficiency. Speedup is loosely defined by how much faster a program will run on
n processors than on a single processor. This quantity can be measured in two basic ways.
The first way is to fix the size of the problem solved and vary the number of processors (fixed-
size problem). The second is to allow the number of processors used to solve the problem
to grow commensurate with the growth in the problem size (scaled-size problem). Both

12

~ oy -

e N -mmmmmdemmmm——-
w

R R

R I
~

e IR S SEEERRENE

e

X=0 X=50 X=100

Location of both slice plane and division
of grids among 2 processors.

Figure 5: Example in which slice plane requested lies at the same point as the division of
the grid between processors 0 and 1.

metrics are important to consider although scaled speedup appears to be more appropriate
for the elastic wave propagation code as large problems (too big to fit on a single processor)
were the initial motivation behind the parallelization effort.

For a fixéd-size problem, speedup is defined by

S =Ty(m)/Ty(n) < p.

Where p = “ideal speedup” (see Amdahl (1967)), and T3 (n), Tp(n) are the times for running
a problem of size n on 1 and p processors respectively. Efficiency is defined

E=Ti(n)/pTp(n), 0 < EL 1.

For a scaled-size problem, one generally must estimate the run time on a single processor.
Speedup and efficiency are defined as follows:

S = pTi(n/p)/Tp(n), E =Ti(n/p)/Tp(n). (4)

5.2 Theoretical Cost

The cost estimate for this parallel algorithm is straight-forward. I chose not to consider
the cost of i/o in either the analysis or the numerical timing studies since the bulk of the
work in this algorithm occurs in the propagation of waves (the wave equation update) not
in reading the earth model or writing out seismograms. Thus, we must estimate the terms
for computation and communication. Let T'(n,p) = Tp(n). Then

T(na p) = Tcomp (na .'P) + Teomm (n, P) (5)

13

IR A D24 PR A RN 0 At 3 - o,

There are two important machine constants which impact the speed of message commu-
nication. The first is lafency — the startup cost of sending a message (which is independent
of message size). The second is bandwidth (message dependent) which is the (reciprocal of)
transmission time/byte. Thus, if we denote machine latency by o and 1/bandwidth as 3,
the cost to send a single message with & units of data is @ + k6. On the Sandia Terraflops
machine (an Intel Paragon), the following values are approximately correct (in seconds),
a=2x10"% B =3x10"° Let 7 denote the computation time per flop. On the Tflops
machine, 7 = 1 x 1078, (These timing constants are independently confirmed as reasonable
for the Paragon in Pacheco (1997), pp. 251-252.)

If, for simplicity, we assume a uniform number of grid points in each direction, then the
cost of performing a finite difference calculation on a grid of size N X N x N on P processors
is CTN3/P where the factor C takes into account the number of floating point operations
in the finite difference stencil as well as the fact that there are 9 output quantities to update
(six stresses and three velocities). Since one plane face of data is communicated to each
neighbor in the 3D cube, communication costs for a 1D decomposition are 2(« + 88N?).
(Here the factor of 8 comes from assuming each data point uses 8 bytes of memory.) For
a 2D decomposition the cost of communication is 4(a + 88N2/+/P). Finally, for a 3D
decomposition we get 6(a+ 88N2/¥/P). So, for a 3D decomposition,

T(N,P)=CrN%/P + 6(a+ 88N?/V/P),
and speedup defined by T'(N,1)/T(N, P) is
CTN3/{CTN3/P + 62+ 483N?/¥/P}.

Note, that in our algorithm, we do multiple transmissions of ghost cell plane information
not only during finite difference update but also for insertion of sources at non-grid point
locations, etc. So, another constant could be inserted in front of the communication cost
estimate for our algorithm (which would be problem dependent).

5.3 Numerical Timing Studies

Three timing studies will be discussed in this paper. The first is for a fixed-size problem
with a total of 48x48x48 grid points run on the Intel Paragon. This problem was run on
different numbers and configurations of processors ranging from 1x1x1 to 4x4x4 (total of
64 processors). One-dimensional, two-dimensional, and three-dimensional decompositions
were tested. In this case, communication costs were too high relative to the amount of
computation performed, and efficiency dropped off rapidly (see Figure 6). A problem larger
than about 50x50x50 would not fit on a single node of our Intel Paragon.

The scaled-size problem showed much better speedup and efficiency (when also run on
the Paragon). In this case a constant 25x25x25 size problem was run on each node. From
1 to 128 nodes were used where the problem size on 128 nodes (processor decomposition
of 8x4x4) was 200x100x100 grid points. Table 1 and Figure 7 show the timings. Note that
the efficiencies remain high (94%) even for 128 processors. In this study, no slice plane
or seismogram output was produced in order to keep the algorithm simple (linear). More
complicated computational cost is incurred with seismogram or slice output. In this case,
we expect ideal speedup to be the straight line (constant) shown in Figure 7. In fact,

14

Scaled Size Problem Timings (Without Output)

Each Processor Always Solves Problem of Size 25x25x25
ProblemSize | P || P; | P, | P, | Total Run Time | Speedup | Efficiency
25x25x25 1 1 1 |1 |150.56 1.00 1.00
50x25x25 2 2 |1 (1]146.81 2.05 1.03
50x50x25 4 2 |2 |1 |145.16 415 1.04
50x50x50 8 2 {2 |2 |145.63 8.27 1.03
100x50x50 16 4 12 |2 |148.50 16.22 1.01
100x100x50 32 4 (4 |2 |153.38 3141 .98
100x100x100 || 64 4 |4 4 |160.36 60.09 94
200x100x100 || 128 ||l 8 |4 |4 | 160.28 120.24 94

Table 1: Timings for scaled-size problem.

timings were also done for runs which including seismogram and slice-plane output. Very
little additional cost was incurred. However, the calculation of the communication portion
of the theoretical cost function would need to include reduce (O(log(p)) operations).

total cpu limo

10° 1:)‘ 10
number of processors

Figure 6: Timing curves for fixed-size problem (48x48x48) run on the Intel Paragon. The

dashed curve is “ideal” or linear speedup and the solid curve is the speedup exhibited by

the parallel program. Circles further indicate data points.

Finally, for comparison, we show a graph of scaled speedup timings for a homogeneous
medium problem run on a linuz cluster. Since the cost of building clusters is currently so
attractive when compared to the cost of building large mp machines, such a comparison
seems worthwhile. Bandwidth and latency speeds on clusters tend to run 1-3 orders of
magnitude slower than on the Paragon (an mp machine). For example, latency is typically
about 2 x 10~° s on the Paragon but 2 X 10™* s on this linux cluster. (In fact, latencies
often can run to one millisecond for typical optimized clusters.) Reasonable numbers for
reciprocal bandwidth (in seconds) are 3 x 10~ for the Paragon and 1 X 1072 for the cluster.

15

10

total cpu timo

o 1

10 10 10

number of processors

Figure 7: Timing curves for scaled-size problem run on Intel Paragon. Each node always
solves problem of size 25x25x25. Largest problem is size 200x100x100 run on an 8x4x4
processor grid. Dashed curve gives ideal speedup. Solid curve gives actual program speedup.
Circles indicate data points.

(Linux cluster latency and bandwidth numbers are courtesy of O’Connor, pers. comm.) As
expected, the communication costs on the cluster cause a drop in efficiency to 65% when
going from a 50x50x50 sized problem on a single node to running a 100x50x50 sized problem
on two nodes. The largest problem run in this study was size 200x200x100 run on a 4x4x2
processor decomposition. Figure 8 shows a graph of speedup for this problem. As in the
fixed-size problem, the large amount of ghost-cell face communication due to extrapolation
and interpolation of sources, receivers and plane slice output to grid nodes prohibits ideal
speedup when high latency is present. In the absence of restructuring the serial algorithm
(i.e., eliminating the excessive interpolation), such speedup is to be expected on a cluster.

6 Numerical Examples

In this section, I describe two numerical examples to illustrate the parallel elastic wave
propagation code. Example 1 consists of a small domain with 48x48x48 grid points in
(z,y, 2). The grid spacing is 4 m in each direction. In this example the earth is assumed
layered (velocities and density depend only on depth, z). This model has eight layers with
P-wave velocity, S-wave velocity, and density ranging in values as shown in Table 2. The
model is characterized by a shallow low-velocity layer near the top of the model and then
a monotonic increase in velocity and density with depth below the low-velocity zone.

The small problem was run on both a single processor and on a processor decomposition
of size 24 (p; = 2, py = 4, p, = 3) for 400 time steps (or 0.2 seconds total runtime). The
Ricker source wavelet extends from -.04 s to .04 s with peak frequency of 30 Hz. Twenty-
two receivers were located at varying z locations and y = 80 m. Plane slices of acoustic
pressure in both the zy and yz planes (z = 90 m and z = 90 m respectively) are shown

16

10

total cpu timo
-
o

O

1;‘ 106
number of processors
Figure 8: Timing curves for scaled-size problem run on the linux cluster. Each node always
solves problem of size 50x50x50. Largest problem is size 200x200x100 run on an 4x4x2

processor grid. Dashed curve gives ideal speedup. Solid curve gives actual program speedup.
Circles indicate data points.

[Layered Earth Example Elastic Properties |

[Layer Depth (m) [[V; (m/s) [Vs (m/s) | p (kg/m°)
12 2500 1500 2000
20 1900 1300 2025
28 2000 1350 2025
40 2700 1600 2100
52 3000 1750 2100
76 3100 1780 2100
108 3300 1900 2227
196 3700 2000 2300

Table 2: Earth model specifications for numerical Example 1.-

17

e T me T L gy

in Figures 9 and 11 for the problem run on a single processor of the Intel Paragon. The
same experiment was run on 24 processors, and the corresponding plane slices are shown
in Figures 10 and 12. The wave field is spherical in the zy slices because the earth model
varies only in the z direction. The yz slices are not spherical due to the velocity variation.
This example illustrates the accuracy of the parallel version of the code. In fact the slices
and seismograms are identical for the serial and parallel runs to full precision.

The second example is a larger case (with 150x150x150 grid points) which demonstrates
using the parallel code for simulating wave propagation in non-layered media. The model’s
physical domain is size (750 m, 750 m, 750 m) with 5 m grid spacing in all directions. The
earth model (shown in Figure 13) has homogeneous background velocities V), = 2500 m/s,
V; = 1500 m/s, and density p = 2000 kg/m3. Located at (z,y, 2) = (200 m, 200 m, 200 m)
(and parallel to the coordinate axes) is a fast (high-velocity) blocky inclusion of size (100
m, 100 m, 100 m). It has elastic properties V, = 4500 m/s, V; = 2500 m/s, and p = 2200
kg/m3.

This larger problem would not fit on a single node of the Intel Paragon. It was run
instead on 125 nodes (processor decomposition of p; = 5, p, = 5, p, = 5,) for 1 second of
simulation time.

Figure 14 shows acoustic pressure snapshots of the yz plane slice through the blocky
inclusion simulation at fixed z location z = 250m and times 0, 0.05, 0.1, 0.15 seconds wave
propagation. The first two snapshots are not affected by the high-velocity zone. The third
and fourth, however, show the effect the inclusion has on the wave propagation.

Figures 15 and 16 give snapshots in the 2y plane at fixed z location z = 250m and times
of 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15 seconds wave propagation. Again, the impact of the
high-velocity zone is clearly seen in the second snapshot.

7 Conclusions

Finite difference solutions of the 3D elastic wave equation are considerably more accurate
than asymptotic methods such as ray tracing. However, they are also much more expen-
sive computationally. Two methods of speeding up the computation are to use staggered
finite differencing (to obtain additional accuracy without additional storage) and spatial
parallelism. In this paper the set of nine isotopic elastic velocity-stress wave equations are
discretized using staggered finite differences which are second-order accurate in time and
fourth-order accurate in space. The simulation code models multiple source/receiver types.
We decompose the physical domain via spatial (or data) parallelism allowing for 1-, 2-, and
3-D processor decompositions of any configuration. Each processor allocates memory for
its subdomain and four plane faces of padding (ghost cells) per cube face to allow passage
of information to neighbors for independent finite difference calculations. The parallel im-
plementation uses the MPI library for portability across platforms with i/o handled via
MPI broadcast and reduce, and the finite difference algorithm using simple sends/receives
for communication. We present three sets of timing studies. The first shows a fixed-sized
problem of size 48x48x48 run on varying numbers of processors of a (massively parallel) Intel
Paragon machine. The second study is of scaled-speedup for a problem which varies in size
depending on the number of processors used. Performance on the mp machine is outstand-
ing — with scaled speedup matching the ideal speedup curve even out to 128 processors.

18

Frame 001 [1 Sep 1999 | Ho Dataset

180:— 180
160 E
140 3
120F .
>_100:- :_
80 2
3 3
60F .
E E
40p 3
20F 3
E 3

PN SFEPEUT TSR RRT I SR Py ST TP TIPS PSS N I

N 50 100 150 50 wg(150 200

Figure 9: Plane slices in zy at depth z = 90 m for a problem of size (48x48x48) run
on a single processor. Figures in upper left, upper right, and lower left correspond to
pressure snapshots at times 0, .0125, .025 seconds wave propagation. This problem assumed
heterogeneous but layered velocity, density model.

19

Frame 001 | 2 Sep 1959 | No Dataset

g

g
2 rreprrreey

180

160

g

VLARS LEREERRS RS RS

8

8

O T I T T T

Y

8 & 8 8

TITrYY

=

Figure 10: Plane slices in zy at depth z = 90 m for a problem of size (48x48x48) run
on a 2x4x3 processor grid. Figures in upper left, upper right, and lower left correspond to
pressure snapshots at times 0, .0125, .025 seconds wave propagation. This problem assumed
heterogeneous but layered velocity, density model.

20

Frame 001 | 1 Sep 1999 | No Dataset

Figure 11: Plane slices in yz at fixed « location z = 90 m for a problem of size (48x48x48)
run on a single processor. Figures in upper left, upper right, and lower left correspond to
pressure snapshots at times 0, .0125, .025 seconds wave propagation. This problem assumed
heterogeneous but layered velocity, density model.

21

Frame 001 | 2 Sep 1999 | No Datsset

Figure 12: Plane slices in yz at fixed z location z = 90 m for a problem of size (48x48x48)
run on a 2x4x3 processor grid. Figures in upper left, upper right, and lower left correspond
to pressure snapshots at times 0, .0125, .025 seconds wave propagation. This problem
assumed heterogeneous but layered velocity, density model.

22

Frame 001 | 1 Sep 1999 | Diocky Earm) Model

Figure 13: Earth model for Experiment 2. Homogeneous medium with high-velocity blocky
inclusion located at (z,y,2) = (200 m, 200 m, 200 m).

23

Frame 001 | 1 Sep 1999 | No Dataset

0 100200306Y4W500600 700

Figure 14: Plane slices in yz at fixed £ = 250 m for blocky inclusion problem run on a 5x5x5
processor grid. Figures correspond to pressure snapshots at times 0, 0.05, 0.1, 0.15 seconds.

This problem had a blocky high-velocity cube embedded in a homogeneous background
model.

24

Frame 001 | 1 Sep 1999 | No Dataset

700

400

w
8

»
8

I RS RAREF RERSERAREI RERRE RREED NI

g

IEWE FREEA ERSNE ANENI FEREL INERR ARRNA KR

100200300;00500600700

o
orTTTT

700 700
S0 00
= 400~
>_400:_ 5 4ok
300 s00F
200 200
100 - 100F

0:-11’|’|:Ai-’}hl‘;"-'ﬁn‘. : o:,--,l..'.ln...v...yl.

200 *200 o 200 400 600 800

X X

Figure 15: Plane slices in zy for depth of 2 = 250 m for blocky inclusion problem run on
a 5x5x5 processor grid. Figures correspond to pressure snapshots at times 0, 0.025, 0.05,
0.075 seconds. This problem had a blocky high-velocity cube embedded in a homogeneous
background model.

25

Frame 001 | 2Sep 1599 | No Dataset

Figure 16: Same plane slice in zy as in Figure 15. However, snapshots correspond to later
times of wave propagation (namely, 0.1, 0.125, 0.15 seconds). This problem had a blocky
high-velocity cube embedded in a homogeneous background model.

26

For comparison, we ran a scaled problem (size 50x50x50 on each node) on a linux cluster.
The performance degrades on the cluster due to much higher bandwidth and latency costs
relative to the mp machine. The serial code is flexible in that the user need not place
sources, slice output, etc., at gridpoint locations. However, this flexibility requires extra
communication which seriously impacts efficiency on the cluster. The parallel implementa-
tion is accurate to all decimal digits of precision as illustrated by two numerical experiments
— a layered earth example and a homogeneous medium problem with a high-velocity blocky
inclusion.

8 References

Aki, K., and Richards, P., 1980, Quantitative seismology, theory and methods: W. H.
Freeman and Co., San Francisco, CA.

Amdahl, G., 1967, Validity of the single processor approach to achieving large scale com-
puting capabilities: AFIPS, AFIPS, Conference Proceedings, 483-485.

Bayliss, A., Jordan, K., LeMesurier, B., and Turkel, E., 1986, A fourth-order accurate
finite-difference scheme for the computation of elastic waves: Bulletin of the Seismological
Society of America, 76, 1115-1132.

Emerman, S., Schmidt, W., and Stephen, R., 1982, An implicit finite-difference formulation
of the elastic wave equation: Geophysics, 47, 1521-1526.

Graves, R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-
grid finite differences: Bulletin of the Seismological Society of America, 89, 1091-1106.

Hestholm, S., and Ruud, B., 1998, 3D finite-difference elastic wave modeling including
surface topography: Geophysics, 63, 613-622.

Hestholm, S., 1999, 3D finite-difference viscoelastic wave modeling including surface topog-
raphy: Geophysical Journal International, 139, no. 3, 852-878.

Levander, A., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53, 1425-
1436.

Luo, Y., and Schuster, G., 1990, Parsimonious staggered grid finite-differencing of the wave
equation: Geophysical Research Letters, 17, 155-158.

Madariaga, R., 1976, Dynamics of an expanding circular fault: Bulletin of the Seismological
Society of America, 66, 639-666.

Olsen, K., Archuleta, R., and Matarese, J., 1995, Three-dimensional simulation of a mag-
nitude 7.75 earthquake on the San Andreas Fault: Science, 270, 1628-1632.

Pacheco, P., 1997, Parallel programming with MPI: Morgan Kaufmann Publishers, Inc.,
San Francisco, CA.

Sei, A., 1995, A family of numerical schemes for the computation of elastic waves: SIAM J.
Sci. Comput., 16, no. 4, 898-916.

27

TR NGNS O T AR MR A %o I s A MR o e B AN) Z e e S Sy g PR LIS ST e M QA #9 TP &2 T oy m————

Sleefe, G., Aldridge, D., Elbring, G., Claassen, J., Garbin, H., and Shear, R., Advanced sub-
terranean warfare (ASW) for deep underground structures:, Technical Report SAND98-
0988, Sandia National Labs, Albuquerque, NM, 1998.

Virieux, J., 1984, SH wave propagation in heterogeneous media: velocity-stress finite dif-
ference method: Geophysics, 49, 1933-1957.

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite
difference method: Geophysics, 51, 889-901.

28

,,,,,,,,

Distribution

Attn: Rory O’Connor
Araneae Systems

703 Ridgecrest Drive, SE
Albuquerque, NM 87108

MS-0750 David Aldridge, 6116
Lewis Bartel, 6116
Greg Elbring, 6116
Neill Symons, 6116
Chris Young, 6116
Marianne Walck, 6116

MS-1110 Sue Minkoff, 9222 (10)
David Womble, 9222
MS-1111 Curt Ober, 9221
Steve Plimpton, 9221
MS-9018 Central Technical Files, 8940-2
MS-0899 Technical Library, 4916 (2)
MS-0612 Review & Approval Desk, 4912
For DOE/OSTI

29

