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CHEMICAL AND ISOTOPIC STUDIES OF THE COS0 GEOTHERMAL AREA 

R. 0. Fournier and J. M. Thompson 

ABSTRACT 

Wellhead and downhole water samples were 
co l lec ted  and analyzed from a 114.3-m~well 
a t  Cos0 Hot Springs (Coso No. 1) and a 
1477-111 we l l  (CGEH No. 1) 3.2 km t o  the  
west. The same ch lo r ide  concentrat ion i s  
present i n  hot waters enter ing both wel ls 
(about 2350 mg/kg), i nd i ca t i ng  t h a t  a 
hot-water-domi nated geothermal system i s  
present: The maximum measured temperatures 
are 142 C i n  the  Cos0 No. 1 we l l  and 195'C 
i n  the CGEH No. 1 well .  Cation and su l fa te  
isotope geothermometers ind ica te  tha t  the  
reservo i r  feeding water t o  the  Cos0 Hot 
Spring we l l  has a temperature o f  about 
240-250'C, and the reservo i r  feeding the. 
CGEH we l l  has a temperature o f  about 205 C. 
The va r ia t i on  i n  the  chemical composition o f  
water from the  two we l ls  suggests a model i n  
which water-rock chemical equi l ibr ium i s  
maintained as a convecting so lu t ion  cools 
from about 245' t o  205'C by conductive heat 
loss. 

A t o t a l  o f  39 water samples co l lec ted  from 
the  Cos0 geothermal area and v i c i n i t y  and 
were analyzed f o r  major chemical 
consti tuents, 6D and 6180. Nonthermal 
ground waters from the  Cos0 Range were found 
t o  be i so top ica l l y  heavier than those from 
the  S ie r ra  Nevada t o  the west. ,The 
s i m i l a r i t y  o f  the 6D value f o r  the  deep 
thermal water a t  Cos0 t o  tha t  o f  the  S ie r ra  
water suggests tha t  the major recharge f o r  
the hydrothermal system comes from the 
S ier ra  Nevada ra the r  than from loca l  
p rec ip i t a t i on  on the  Cos0 Range. The 6)80 
values o f  the thermal water are about 7 loo 
heavier than t h  e of t he  S ie r ra  water. 

water-rock reac t ion  a t  h igh temperatures, 
and the  magnitude o f  the s h i f t  indicates 
tha t  the r a t i o  o f  rock t o  t o t a l  water has 
been large f o r  the  system up t o  i t s  present 
stage o f  development. The iso top ic  data are 
compatible w i t h  the chemical model. 

This s h i f t  i n  6 i8 0 i s  the r e s u l t  of 
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INTRODUCTION 

The Cos0 Geothermal Area i s  located i n  east 
cen t ra l  Ca l i f o rn ia  on land included i n  the  
U. S. Naval Weapons Center, China Lake. The 
surface expression o f  hydrothermal a c t i v i t y  

a t  Cos0 i s  hot ground, fumaroles, and 
acid-sulfate springs with low rates o f  
discharge. No chlor ide-r ich springs are 
present. This type o f  surface expression i s  
t yp i ca l  o f  vapor-dominated systems, but i s  
not diagnostic. 

I n  1978 water samples were co l lec ted  and 
analyzed from two wel ls (Fournier and 
others, 1980). The f i r s t  we l l  (Coso No. 1) 
was d r i l l e d  i n  1967, i n  a l te red  al luvium and 
g ran i t i c  rock t o  a depth o f  114.3 m a t  Cos0 
Hot Springs. The second wel l  (CGEH) No. 1) 
i s  located approximately 3.2 km west o f  Cos0 
Hot Springs and 1.9 km north o f  Dev i l ' s  
Kitchen. It was d r i l l e d  i n  1977 t o  a t o t a l  
depth o f  1477 m i n  g r a n i t i c  and metamorphic 
rocks. On the  basis o f  chemical data 
obtained from downhole samples, Fournier and 
others (1980) concluded tha t  a s ingle 
parental water supplies both wel ls and tha t  
the compositional var ia t ions  I n  the waters 
co l lec ted  a t  the wellheads were the r e s u l t  
o f  (1) d i f f e r e n t  amounts o f  b o i l i n g  i n  the  
wel ls during upflow and (2) a higher 
reservo i r  temperature i n  the v i c i n i t y  o f  the  
Cos0 No. 1 wel l  ( 245'C) than i n  the 
v i c i n i t y  o f  the CGEH No. 1 wel l  ( 205'C). 
These reservoirs are places i n  the  rock 
where f rac tu r ing  i s  l o c a l l y  more extensive 
than elsewhere, so t h a t  permeabil i ty and the  
waterlrock r a t i o  are higher there than i n  
the surrounding rock. 

I n  the model o f  Fournier and others (1980). 
the water cannot b o i l  as it moves l a t e r a l l y  
from the 245'C t o  the 205'C reservoir ;  i f  
the water had boiled, then the ch lo r ide  
concentrations i n  the downhole samples from 
the two wel ls would have di f fered. The f a c t  
t ha t  these two ch lo r ide  concentrations are 
near ly i den t i ca l  indicates very slow natural  
f low and conductive cool ing o f  thermal water 
as the water moves from the  v i c i n i t y  o f  the  
Cos0 No. 1 wel l  towards the  CGEH No. 1 
well .  The slowness o f  the  f l ow  could be due 
t o  very low permeabi l i ty  w i th in  the rock 
connecting the  two reservoirs. 
Al ternat ively,  the permeabi l i ty  could be 
high (essent ia l l y  a s ing le  reservo i r  of 
small ve r t i ca l  extent and w i th  a hor izontal  
temperature gradient) and the convective 
f low l im i ted  by low permeabi l i ty  i n  the  
outf low p a r t  o f  the convection system. A 



study was then undertaken t o  determine i f  
the  iso top ic  compositions o f  the  wel l  waters 
were compatible w i th  the  above model, and t o  
determine the recharge area f o r  the  
hydrothermal system. 

Smith and others (1979) measured the  
deuterium concentrations i n  r a i n  and snow 
co l lec ted  a t  26 stat ions i n  Ca l i fo rn ia  and 
Nevada during the except ional ly wet 1968-69 
season. Their  resu l t s  showed tha t  the 
winter p rec ip i t a t i on  upon the Sierra Nevada 
was i so top ica l l y  s l i g h t l y  l i g h t e r  than the  
summer and f a l l  p rec ip i t a t i on  on the nearby 
Mojave Desert; most o f  the S ie r ra  
ground-water recharge comes from winter 
storms moving general ly from west t o  east. 
These w in te r  storms drop most of their 
moisture before reaching the  Cos0 Range, 
which i s  d i r e c t l y  east o f  the S ie r ra  
Nevada. I n  contrast, most of the  Cos0 Range 
recharge i s  f rom la rge  bu t  infrequent 
t rop i ca l  storms moving from south t o  north. 
Therefore, the  iso top ic  composition o f  
normal, nonthermal ground water i n  the  
v i c i n i t y  of the Cos0 geothermal f i e l d  i s  
s l i g h t l y  l i g h t e r  than tha t  of  nearby S ie r ra  
waters. 

SAMPLES STUDIED 

A t o t a l  o f  39 samples from 37 d i f f e r e n t  
sources were co l lec ted  and analyzed. O f  
these samples 11 were o f  co ld  ground waters 
f lowing from springs and we l ls  i n  the Cos0 
Range, nor th  and east o f  Cos0 Hot Springs 
within the China Cake Naval Weapons Center; 
8 were o f  Sierra Nevada ground water, 
co l lec ted  through a 40-km-long region west 
and northwest o f  t he  Cos0 area; and 5 were 
from wel ls i n  al luvium o f  Rose Valley, 
between the Cos0 Range and the S ie r ra  
Nevada. Fournier and others (1980, tab le  1) 
previously reported on the de ta i l s  o f  the 
co l l ec t i on  and chemical analyses o f  two 
samples of thermal water from the CGEH No. 1 
wel l  (CC77-4 and CF78-1). Two downhole 
samples from the Cos0 No. 1 wel l  (CF79-1 a t  
-50 m and CF79-2 a t  -95 m) were col lected 
fo r  the  present study using a modif ied 
version o f  the Fournier and Morganstern 
(1971) sampling t o o l  designed f o r  use on 
w i re l i ne  equipment. 

RESULTS AND DISCUSSION 

A p l o t  o f  6D versus 6180 (Fig. 1) shows 
tha t  co ld  ground waters f lowing from the 
S ier ra  Nevada and the  we l l  waters from Rose 
Valley a l l  p l o t  near the average meteoric 
water l i n e  of Craig (1961) and have 6D 
values less (more negative) than -1OO'loo. 
The 6D values o f  the  S ie r ra  waters general ly 
become more negative t o  the north (Smith and 
others, 1979). The cold ground waters 
co l lec ted  from springs and wel ls wf th in  the 
Cos0 Range also p l o t  near the meteoric-water 
l i n e  (Fig. 1) but have 6u values larger 
(more pos i t l ve)  than -1OO'/oo, averaging 

B- -94"Ioo. This di f ference i n  iso top ic  
composition between the S ie r ra  ground water 
and tha t  o f  the Cos0 Range r e f l e c t s  the 
d i f f e r e n t  types o f  storm systems 
cont r ibu t ing  the  major recharge i n  these two 
areas, as discussed above. * 

The two water samples from the  CGEH No. 1 
well, CC77-4 and CF78-1, p l o t  far  t o  the  
r i g h t  o f  the meteoric-water l i n e  (Fig. l), 
as do the  thermal waters from most 
geothermal systems throughout the world 
(White, 1970). As meteoric water f lows i n t o  
a geothermal system and becomes heated, i t s  
oxygen exchanges w i t h  the i so top ica l l y  heavy 
oxygen i n  the surrounding rock, so tha t  the 
oxygen i n  the water becomes i so top ica l l y  
heavier and tha t  i n  the  rock becomes 
l igh ter .  Hydrogen reacts s imi la r ly .  However, 
because the  rock contalns abundant oxygen 
and only a small amount o f  hydrogen, the 
oxygen-isotopic composition o f  the water 
changes considerably whi le the  hydrogen 
iso top ic  composition chang s only s l i gh t l y .  
Therefore, the degree o f  fa0 s h i f t  away 
from the meteoric-water l i n e  indicates the  
relatCve amount o f  meteoric water t h a t  has 
reacted wlth rock, whereas the 6D value 
indicates the 6D o f  the meteoric recharge 
water. The very large s h i f t  in ,180 o f  
7'100 f o r  samples CC77-4 and CF78-1 
indicates tha t  r e l a t i v e l y  l i t t l e  water has 
moved through the system (Fig. 1). 

The 6D value o f  the CGEH No. 1 water 
suggests tha t  recharge f o r  the hydrothermal 
system comes predominantly from the S ie r ra  
Nevada t o  the west w i th  l i t t l e  o r  no 
component o f  recharge from the Cos0 Range. 
However, the  data do not r u l e  ou t  the 
p o s s i b i l i t y  t ha t  recharge may be a mixture 
o f  i so top i ca l l y  l i g h t  water from par ts  o f  
the S ie r ra  Nevada nor th  o f  Cos0 and 
i so top ica l l y  heavy l o c a l l y  derived Cos0 
Range water. The iso top ic  data 
unambiguously ind ica te  t h a t  recharge f o r  t he  
CGEH No. 1 theqnal water i s  not e n t i r e l y  
from l o c a l l y  derived ground water, nor could 
recharge be from Owens Lake, which i s  
i so top i ca l l y  very heavy because of extensive 
evaporation (Friedman and others, 1976). 

The two samples from the shallow Cos0 No. 1 
wel l  (CF79-1 and CF79-2) also p l o t  f a r  t o  
the r i g h t  o f  the meteoric-water l i n e  (Fig, 
l), but a t  6D values o f  -15 and -99'/00, 
respectively. The sample from near the top 
o f  the water tab le  i n  t h i s  we l l  (CF79-1 a t  
-50 m) contains about twice the  t o t a l  
dissolved so l ids  and i s  i so top i ca l l y  much 
heavier than the sample from near the bottom 
o f  the  wel l  (CF79-2 a t  -95 m). Evaporation 
from the  top of a freestanding column o f  
water iil the wel l  accounts f o r  these 
differences very nicely.  

I f  the model of Fournier and others (1980) 
i s  correct, the iso top lc  composition o f  the  
water enter ing the two wel ls shbuld be about 
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Figure 1, 
from Cos0 geothermal area. 
Sierra Nevada and Rose Valley; solid squares, waters from CGEH 
No. 1 well; squares, waters from Cos0 No. 1 well; crosses, 
other thermal waters and steam condensates.. 

aD versus a180 for thermal and nonthermal waters 
Circles, nonthermal waters from 
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the same before any b o i l i n g  o r  evaporation 
during upward movement a f t e r  leaving the  
respective loca l  reservoirs (if l i t t l e  
water-rock iso top ic  reequ i l ib ra t ion  takes 
place because o f  very slow react ion rates as 
the temperature changes from 245 t o  
205'C). The s l i g h t  d i f ference i n  the 
observed iso top ic  compositions o f  the  
downhole samples from the Cos0 No. 1 wel l  
(CF79-2) and the  CGEH No. 1 wel l  (CF78-1) 
appears t o  r e f l e c t  s l i g h t  contamination by 
evaporated water from the top o f  the  Cos0 
No. 1 wel l  (CF79-1). as shown by the  
s t ra igh t - l ine  r e l a t i o n  i n  Fig. 1 f o r  samples 
from these we1 1 s. 

CONCLUSIONS 

The average meteoric water f a l l i n g  on the  
Cos0 Range i s  i so top i ca l l y  s l i g h t l y  heavier 
than tha t  f a l l i n g  on the  S ie r ra  Nevada t o  
the west. The deuterium concentration i n  
the deep geothermal water is. s im i l a r  t o  tha t  
i n  the S ie r ra  Nevada ground water and i s  
d i f f e r e n t  from tha t  i n  the  Cos0 Range 
water. Therefore, recharge i n t o  the  deep 
pa r t  o f  the  geothermal system probably comes 
predominantly from the S ier ra  Nevada. The 
main upflow i n  the hydrothermal system 
appears t o  be along a 
north-northeast-trending f a u l t  zone along 
which Cos0 Hot S r ings  i s  situated. The 
large s h i f t  i n  180 o f  about 7'100 i n  the  
thermal water indicates tha t  the  rock/water 
r a t i o  i s  large and suggests very slow 
movement o f  new water i n t o  and o f  o ld  water 
out o f  the convection system. The isotopic 
data are compatible w i th  the  eochemical 
model of Fournier and others q1980). i n  
which some of the chlor ide-r ich hot water 
ascending along f a u l t s  tha t  pass through the 
Cos0 Hot Springs area encounters other 
permeable zones and f lows 1 a te ra l  l y  toward 
the CGEH No. 1 well, cool ing conductively 
and react ing chemically with the  surrounding 

rock as i t  travels.  The top o f  the 
chlor ide-r ich water remains below ground, 
and, where underground bo i  1 ing  occurs, 
fumaroles, acid-sulfate pools, and 
acid-altered rock occur a t  the surface. 
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