

Conf-8210125  
UC66, UC66a through  
UC66j

CONF-8210125-Suppl.-13

CONF-8210125--Suppl.

DE83 009736

# **GEOTHERMAL PROGRESS MONITOR**

## **Special Supplement**

**Proceedings of the Geothermal Program Review**  
**October 25-26, 1982**  
**Washington, D.C.**

**NOTICE**  
**PORTIONS OF THIS REPORT ARE ILLEGIBLE.**  
**It has been reproduced from the best**  
**available copy to permit the broadest**  
**possible availability.**

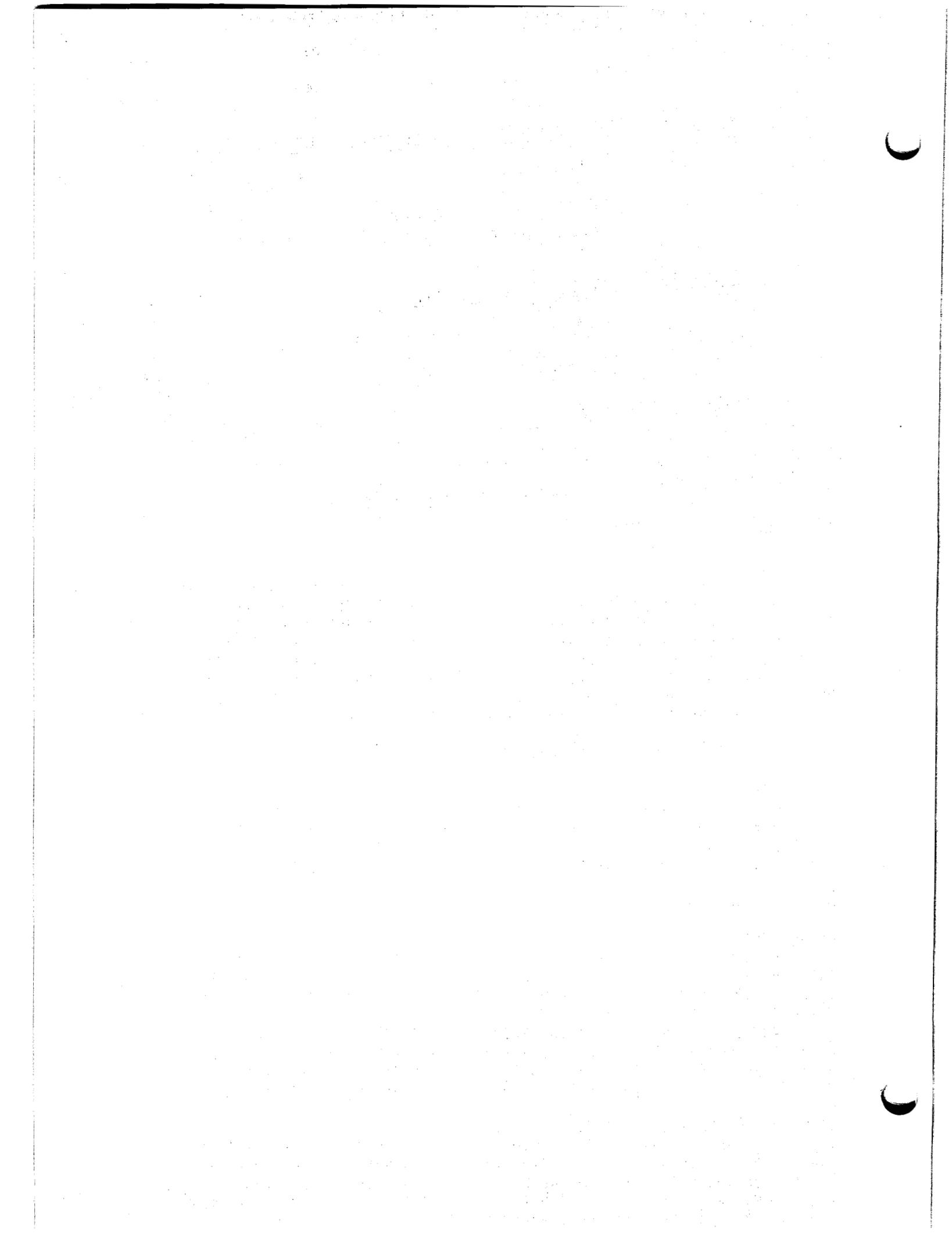
**U.S. Department of Energy**  
**Assistant Secretary for Conservation and Renewable Energy**  
**Division of Geothermal and Hydropower Technologies**  
**Washington, D.C. 20585**

### **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

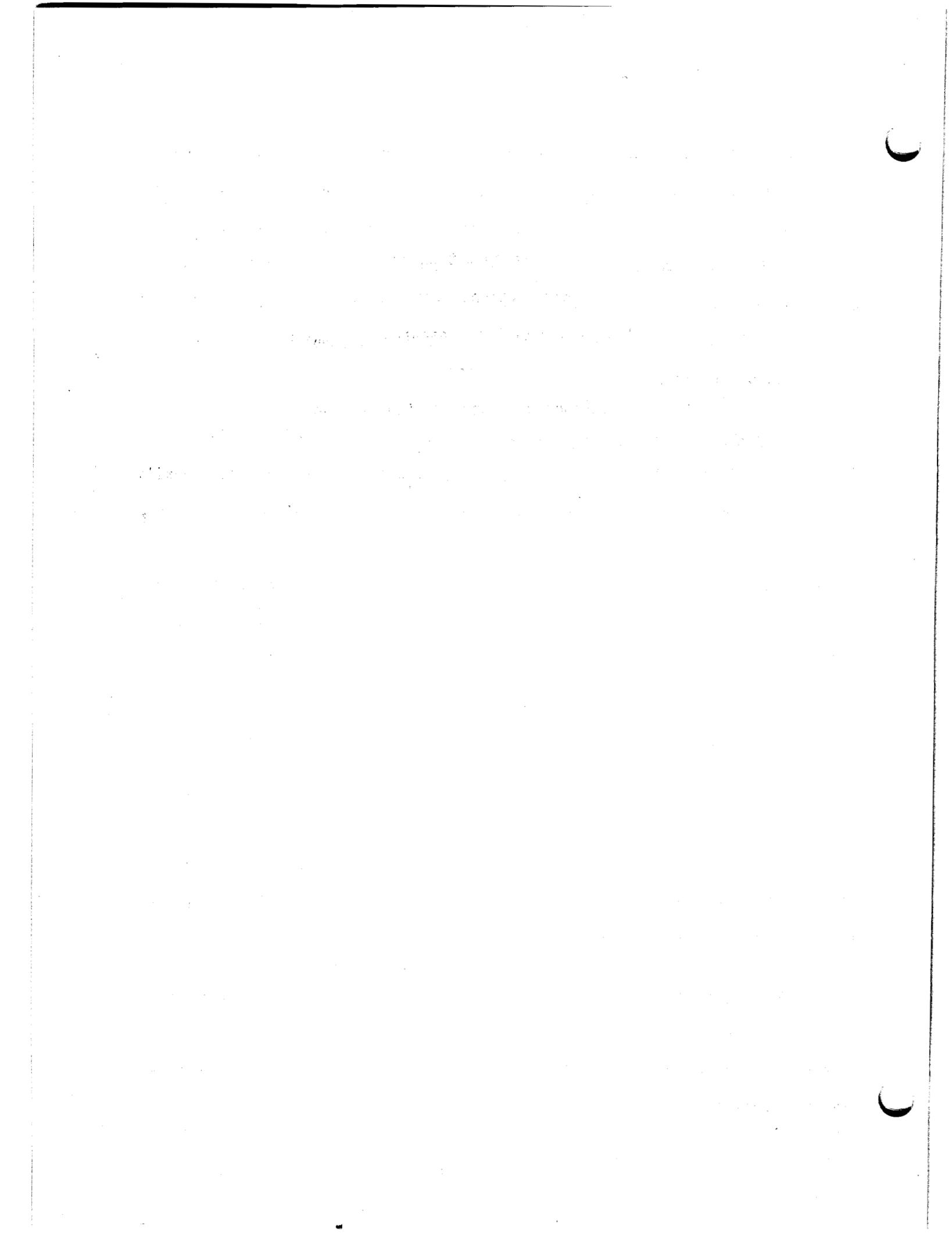
## APPENDIX L - Presentation 13

**Topic: Geoscience Technology**


**Speaker: Mike Wright (UURI)**

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**


## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**



Presentation by  
Earth Science Laboratory  
University of Utah Research Institute  
for  
Geothermal Status Review Meeting  
25 Oct. 1982  
Washington, D.C.

L-3, L-4



The Earth Science Laboratory of UURI has contributed substantially to development of new techniques and testing of available techniques for geothermal exploration and resource evaluation. In addition, UURI has provided technical management assistance to DOE/ID, DOE/NV and DOE/SAN for about \$45 million in DOE geothermal programs and has been an active participant in numerous DOE planning efforts. These accomplishments are summarized on the first three figures.

The Industry Coupled Program provides cost sharing to industry for geothermal exploration. Projects have been funded in Utah and Nevada. UURI's role is to interpret data generated by these projects, to publish reports on the interpretations and to open file the data. The next three figures summarize results from this program. Successful wells were drilled at Beowawe and Dixie Valley under this program for a success ratio of 13%, which probably represents an industry average for wildcat drilling in fairly well known geothermal environments.

The State Coupled Program provides funding for teams of geoscientists in 18 western states to assess their low- and moderate-temperature geothermal resource base and to publish maps. UURI's role is in coordination of the state teams to ensure work along programmatic lines and cooperation among the state teams, NOAA (who publishes most of the maps) and the USGS (who receives data generated). The figure gives the current status of map publication.

In the Exploration and Assessment Technology Program, UURI has provided technical assistance to DOE/ID in managing contract research and, more importantly, has conducted research of its own. The figures show the outside research contacts funded under this program.

UURI research has concentrated mostly on geochemical and geophysical topics with a similar but smaller program in geological research. In geophysics UURI has developed highly successful computer-based interpretation techniques for application to the electrical methods commonly used in geothermal work, namely galvanic resistivity, magnetotellurics (MT) and audiomagnetotellurics (AMT). UURI has published catalogs of models for use by geophysicists interpreting such data and have also published entire computer programs that others can use in data interpretation. A summary is given in the figures.

UURI's geochemical research has been highly successful. Techniques for using the measured distribution of trace elements to construct a picture of zoning around a geothermal heat source have been developed and are now being adapted by industry. One figure shows how the distribution of mercury in drill holes mimics the observed temperature distribution. Observation of mercury distributions in holes in real time while drilling can help determine whether one is approaching a higher temperature resource.

UURI has also worked on modeling of fluid/rock interaction in a geothermal reservoir. This assists in predicting mineral distribution expected in fractures so that identification of these minerals in drill cuttings can be used to help locate fractures. In addition, UURI has developed methods of determining actual reservoir fluid chemistry from observation of the compositions of the fluids and gasses at the well head. This is important because good down-hole samples are very difficult to obtain. A figure shows the calculated reservoir composition for well 14-2 at Roosevelt Hot Springs and the following figure shows the percentage of dilution by meteoric water for several wells at Roosevelt. The next figure

shows calculated mineral equilibria as a function of temperature. This type of modeling can be useful in interpreting observed mineral assemblage such as the work done by Wilf Elders at UC-Riverside.

# **EARTH SCIENCE LABORATORY**



1-8

## **UNIVERSITY of UTAH RESEARCH INSTITUTE**

### **SALT LAKE CITY, UTAH**

## MAJOR ACCOMPLISHMENTS ESL AND UU



- ★ HIGH QUALITY GEOLOGIC MAPPING IN 10 HIGH TEMPERATURE AREAS
  - LITHOLOGY, STRUCTURE, HYDROTHERMAL ALTERATION
  - CONCEPTUAL MODELS/EXPLORATION STRATEGY
- ★ TRACE ELEMENT GEOCHEMICAL TECHNIQUES DEVELOPED AND TESTED
  - SYSTEM-SCALE ZONING - SITING DRILL HOLES
  - SMALL-SCALE ZONING - FRACTURES/FLUID ENTRIES: COMPLETION DECISIONS
  - DISTRIBUTION OF PERMEABLE FAULTS & AQUIFERS
  - TECHNIQUES NOW IN USE BY INDUSTRY
- ★ GEOCHEMICAL MODELING PROGRAMS IMPLEMENTED FOR FLUID/ROCK INTERACTION
  - PREDICT DISTRIBUTION OF HYDROTHERMAL MINERALS
  - USE IN EXPLORATION, RESERVOIR STUDIES, WELL COMPLETION DECISIONS
- ★ UNIQUE GEOPHYSICAL MODELING TECHNIQUES DEVELOPED
  - 3D RESISTIVITY, MAGNETOTELLURICS, EM
  - SELF POTENTIAL INTERPRETATION
  - BOREHOLE GEOPHYSICS INTERPRETATION
  - NOISE ANALYSIS AND SIMULATION
  - COMPUTER PROGRAMS PUBLISHED FOR 10 INTERPRETATION METHODS - 312 COPIES DISTRIBUTED
- ★ ROOSEVELT HOT SPRINGS ESTABLISHED AS VALUABLE TEST AREA FOR EXPLORATION AND RESERVOIR EVALUATION TECHNIQUES
- ★ COST EFFECTIVE EXPLORATION ARCHITECTURE DEFINED FOR BASIN AND RANGE
  - EXPLORATION AND RESOURCE ASSESSMENT TECHNIQUES EVALUATED

## **MAJOR ACCOMPLISHMENTS**

### **ESL**

#### **★ USER COUPLED CONFIRMATION DRILLING PROGRAM**

- CONCEIVED, PROPOSED, IMPLEMENTED
- TECHNICAL ASSISTANCE TO DOE (WITH EG&G)

#### **★ MICROEARTHQUAKE NET INSTALLED AND OPERATED AT ROOSEVELT AND RAFT RIVER**

- MAJOR EARTHQUAKE SWARM AT ROOSEVELT

#### **★ TECHNOLOGY TRANSFER PROGRAM**

- 200 TOTAL REQUESTS FULFILLED
- INJECTION RESEARCH INITIATED AT RAFT RIVER IN  
COOPERATION WITH EG&G

#### **★ GEOTHERMAL SAMPLE LIBRARY OPERATIONAL**

- 2,100m CORE
- 80,000m CUTTINGS
- 22 GEOTHERMAL AREAS

#### **★ MAJOR CONTRIBUTIONS TO GEOTHERMAL GEOSCIENCE**

- 66 REPORTS
- 63 PAPERS AT PROFESSIONAL MEETINGS
- 54 JOURNAL PUBLICATIONS
- 5 WORKSHOPS

## MAJOR ACCOMPLISHMENTS

### ESL

- ★ MANAGEMENT AND TECHNICAL ASSISTANCE FOR \$45M IN DOE-FUNDED PROGRAMS (TO FY82)
- ★ MOST SIGNIFICANT COOPERATIVE EFFORT EVER BETWEEN GOVERNMENT & INDUSTRY FOR U.S. RESOURCE EVALUATION
  - INDUSTRY COUPLED PROGRAM
  - \$32M OF PROSPECT DATA IN PUBLIC DOMAIN
  - GEOSCIENCE WORK AND REPORTS IN 13 MAJOR GEOTHERMAL AREAS
- ★ MANAGEMENT & TECHNICAL ASSISTANCE TO DOE & USGS IN LOW- & MOD- TEMP RESOURCE ASSESSMENT
  - STATE COUPLED PROGRAM IN 17 WESTERN STATES
  - ASSISTANCE IN USGS CIRC 790 AND FORTHCOMING UPDATE
- ★ PLANNING CONTRIBUTIONS
  - EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM
  - USER COUPLED DRILLING PROGRAM PLAN
  - M-X/RES GEOTHERMAL PLAN
  - INPUT TO:
    - ✓ RMB & R Commercialization Plan
    - ✓ RMB & R Market Penetration Plan
    - ✓ Market Shares Estimates Studies
    - ✓ Natural Direct Heat Program Plan
    - ✓ ERAB Panel
    - ✓ USFS RARE II Studies
    - ✓ BLM Wilderness Studies
    - ✓ National Geothermal Progress Monitor

# INDUSTRY COUPLED PROGRAM

- OPERATED BETWEEN FY-78 and FY-82
- TOTAL PROGRAM COST \$34M
- SUPPORTED INDUSTRY EXPLORATION IN:

## NEVADA

*Baltazor*  
*Beowawe*  
*Colado*  
*Desert Peak*  
*Dixie Valley*  
*Humboldt House*  
*Leach Hot Springs*  
*McCoy*  
*San Emidio*  
*Soda Lake*  
*Tuscarora*

## UTAH

*Cove Fort - Sulphurdale*  
*Roosevelt Hot Springs*

## - COMPANIES INVOLVED

**AMAX**  
**AMINOIL**  
**CHEVRON**  
**EARTH POWER PRODUCTION**  
**GEOTHERMAL POWER**

**GETTY**  
**PHILLIPS**  
**SOUTHLAND ROYALTY**  
**THERMAL POWER**  
**UNION**



## **SUMMARY OF TECHNIQUES USED BY INDUSTRY DOE / DGE CASE STUDY PROGRAM**

| <b><u>METHOD</u></b>                   | <b><u>PERCENT OF CASES EMPLOYED</u></b> | <b><u>PRIORITY</u></b> |
|----------------------------------------|-----------------------------------------|------------------------|
| <b>SHALLOW THERMAL GRADIENT (100m)</b> | <b>71</b>                               | <b>1</b>               |
| <b>DEEP THERMAL GRADIENT (600m)</b>    | <b>71</b>                               | <b>1</b>               |
| <b>MAGNETOTELLURIC (MT)</b>            | <b>71</b>                               | <b>1</b>               |
| <b>GRAVITY</b>                         | <b>71</b>                               | <b>1</b>               |
| <b>MAGNETICS</b>                       | <b>57</b>                               | <b>2</b>               |
| <b>GEOLOGIC MAPPING</b>                | <b>50</b>                               | <b>3</b>               |
| <b>ELECTRICAL RESISTIVITY</b>          | <b>50</b>                               | <b>3</b>               |
| <b>PASSIVE SEISMIC</b>                 | <b>43</b>                               | <b>4</b>               |
| <b>ACTIVE SEISMIC</b>                  | <b>43</b>                               | <b>4</b>               |
| <b>GEOCHEMISTRY</b>                    | <b>29</b>                               | <b>5</b>               |
| <b>SELF POTENTIAL</b>                  | <b>29</b>                               | <b>5</b>               |

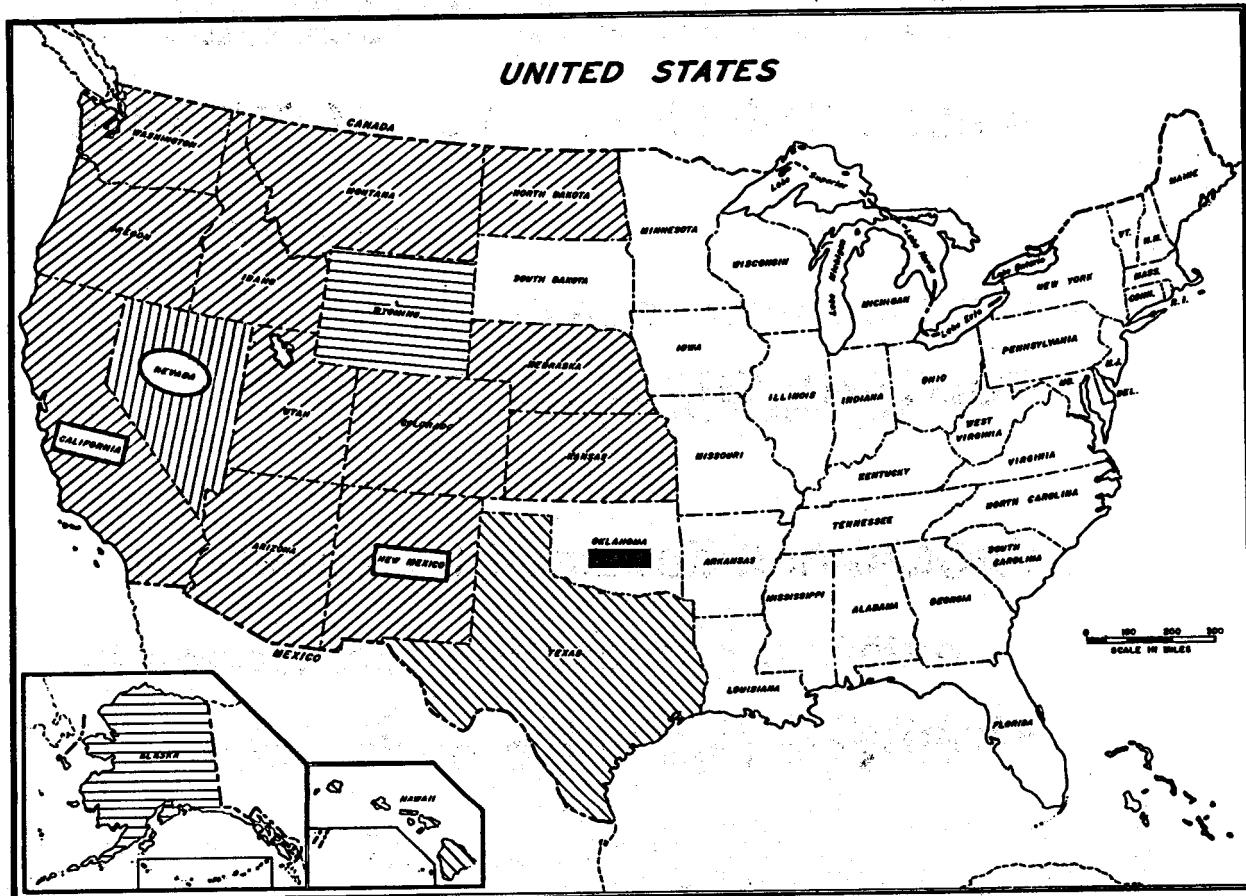
## **INDUSTRY COUPLED PROGRAM**

**WELLS DRILLED      15 PRODUCTION**

**5 DEEP ΔT**

**FOOTAGE DRILLED 125,000**

**PROGRAM COST      \$34,000K**


**PRODUCTIVE WELLS      2**

**SUCCESS RATIO      0.13**



# STATE COUPLED PROGRAM MAP STATUS

SEPTEMBER 1982



■ User Map Published or in press (NOAA)

■ State Printed Map

■ User Proof in Review

■ User Map in preparation

○ Update in preparation

■ Technical Map in Production

■ Other Map Through State Program



# **EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM**

- **Develop new techniques for exploring  
geothermal systems**
- **Assess and document the utility of  
existing exploration techniques in  
different geologic environments**
- **Transfer this knowledge to the  
geothermal industry**



GEOOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM

OUTSIDE CONTRACTS: FY 1979

|                                                     |                                       |           |
|-----------------------------------------------------|---------------------------------------|-----------|
| 1. Borehole Geophysics                              | Univ. Southern Cal.                   | \$87,868  |
| 2. Multiple Geophysical<br>Data Set Analysis        | S <sup>3</sup>                        | \$89,450  |
|                                                     | ERIM                                  | \$94,288  |
| 3. Geothermal Earth<br>System Models                | International<br>Engineering Co.      | \$75,500  |
| 4. Geochemical Detection<br>of Hydrothermal Systems | Barringer Research                    | \$94,430  |
| 5. 3-D Inverse<br>Electrical Methods                | Earth Sciences Inc.                   | \$70,475  |
| 6. 3-D Topographic<br>Effects                       | LuTech Inc.                           | \$64,528  |
| 7. Enhancement of Signal<br>to Noise Ratio          | Univ. New Mexico                      | \$54,970  |
|                                                     | Electro Magnetic<br>Applications Inc. | \$39,715  |
|                                                     |                                       | <hr/>     |
|                                                     |                                       | \$671,224 |

EAT/M-024



# GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM

## OUTSIDE CONTRACTS: FY-1980

Investigation of Water-Rock Reaction  
at Cerro Prieto

Elders-UCR **\$ 99,991**

Investigation of Water-Rock Reaction  
in Japan and Taiwan

Liou-Stanford **96,717**

Evaluation of Na-K-Ca Geothermometer

Nur/Parks-Stanford **98,815**

Microearthquake Survey and Analysis

Cramer/Stierman-  
CA.D MG **100,000**

**TOTAL \$395,523**

**GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM**

# **ESL/UURI IN-HOUSE PROGRAM**

**BASED ON**

- **Adaptation of mining techniques**
- **Development of new techniques**
- **Work on topics of specific expertise**

**GEOLOGICAL TECHNIQUE DEVELOPMENT**

**GEOCHEMICAL TECHNIQUE DEVELOPMENT**

**GEOPHYSICAL TECHNIQUE DEVELOPMENT**

**EXPLORATION STRATEGIES**



# **GEOPHYSICAL TECHNIQUE DEVELOPMENT**

## **COMPUTER ALGORITHMS**

**Mathematical development and computer implementation  
of 2D and 3D interpretation techniques for exploration,  
well siting & drilling**

## **TECHNIQUE EVALUATION**

**Improve and adopt field techniques to geothermal  
environment for exploration & well siting**

## **TECHNIQUES STUDIED**

**Resistivity**

**Induced polarization (IP)**

**Magnetotellurics (MT)**

**Audiomagnetotellurics (AMT)**

**Electromagnetics (EM)**

**Controlled source AMT (CSAMT)**

**Self potential (SP)**

**Shallow (3 meter) temperature measurements**

# COMPUTER PROGRAMS AND MODEL CATALOGS

## OBJECTIVE

**Make interpretation aids available to industry**

## JUSTIFICATION

**Better interpretation should lead to more geothermal discoveries**

**Most companies do not have resources to develop numerical solutions**

## APPROACH

**Publish documented computer programs**

**Publish catalogs of interpretation models**



# COMPUTER PROGRAMS PUBLISHED

| <u>PROGRAM</u>             | <u>NO. DISTRIBUTED</u> |
|----------------------------|------------------------|
| 2D RESISTIVITY             | 160                    |
| 2D RESISTIVITY INVERSION   | 7                      |
| 2D MAGNETOTELLURIC         | 35                     |
| 3D MAGNETOTELLURIC         | 10                     |
| SCHLUMBERGER INVERSION     | 31                     |
| 2 1/2 D GRAVITY            | 20                     |
| 2 1/2 D MAGNETICS          | 7                      |
| 3D GRAVITY & MAGNETICS     | 19                     |
| WELL LOG ANALYSIS          | 17                     |
| GRAVITY TERRAIN CORRECTION | 6                      |



EAT/GP-011

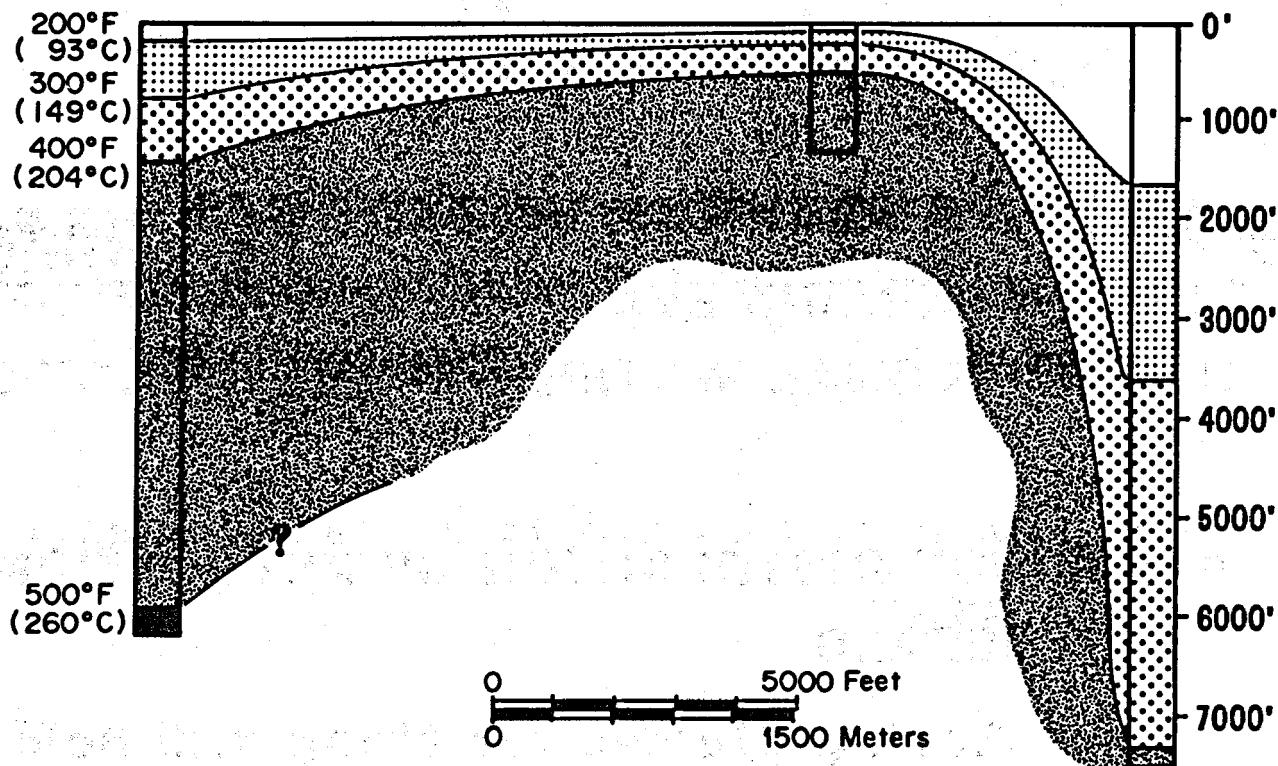
# **GEOCHEMICAL TECHNIQUE DEVELOPMENT**

## **MAJOR ACCOMPLISHMENTS**

- 1. DEVELOPMENT OF SUBSURFACE TRACE ELEMENT ZONING MODELS FOR GEOTHERMAL EXPLORATION**
- 2. DEVELOPMENT OF SOIL TRACE ELEMENT ZONING MODELS FOR GEOTHERMAL EXPLORATION**
- 3. PREDICTION OF SUBSURFACE TEMPERATURES, FLUID COMPOSITIONS, AND ALTERATION MINERALOGY OF HIGH TEMPERATURE THERMAL SYSTEMS**
- 4. REFINEMENT OF MATHEMATICAL MODELS FOR ESTIMATING WATER/ROCK RATIOS AND FLUID RESIDENCE TIMES**
- 5. PREPARATION OF 22 REPORTS AND ABSTRACTS**

## **SUBSURFACE TRACE ELEMENT STUDIES**

- **DEFINE SIZE AND SHAPE OF GEOTHERMAL SYSTEM**
- **DISTINGUISH PERMEABLE FROM IMPERMEABLE ZONES**
- **LOCATE AREAS OF HIGH PERMEABILITY**
- **DETERMINE SUBSURFACE TEMPERATURES**

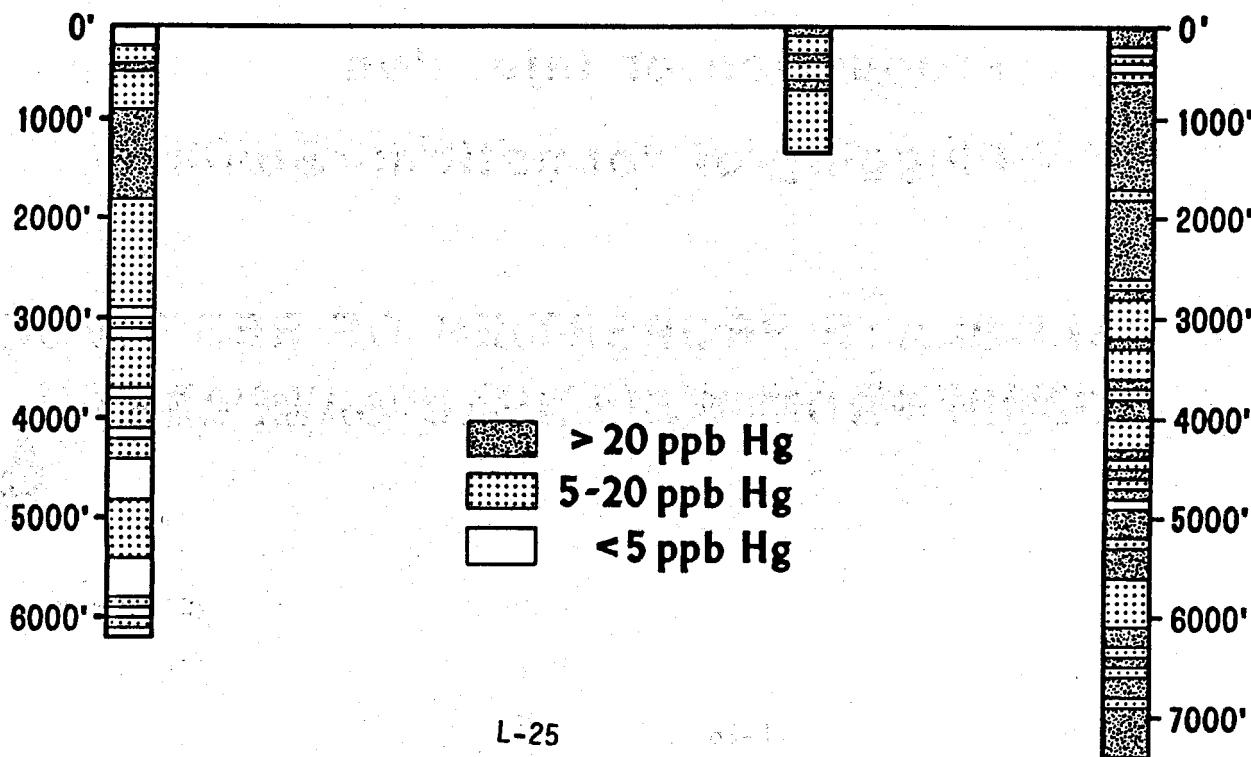



## TEMPERATURE

NORTH  
14-2

72-16

SOUTH  
52-21




## MERCURY

NORTH  
14-2

72-16

SOUTH  
52-21



# **GEOCHEMICAL MODELING**

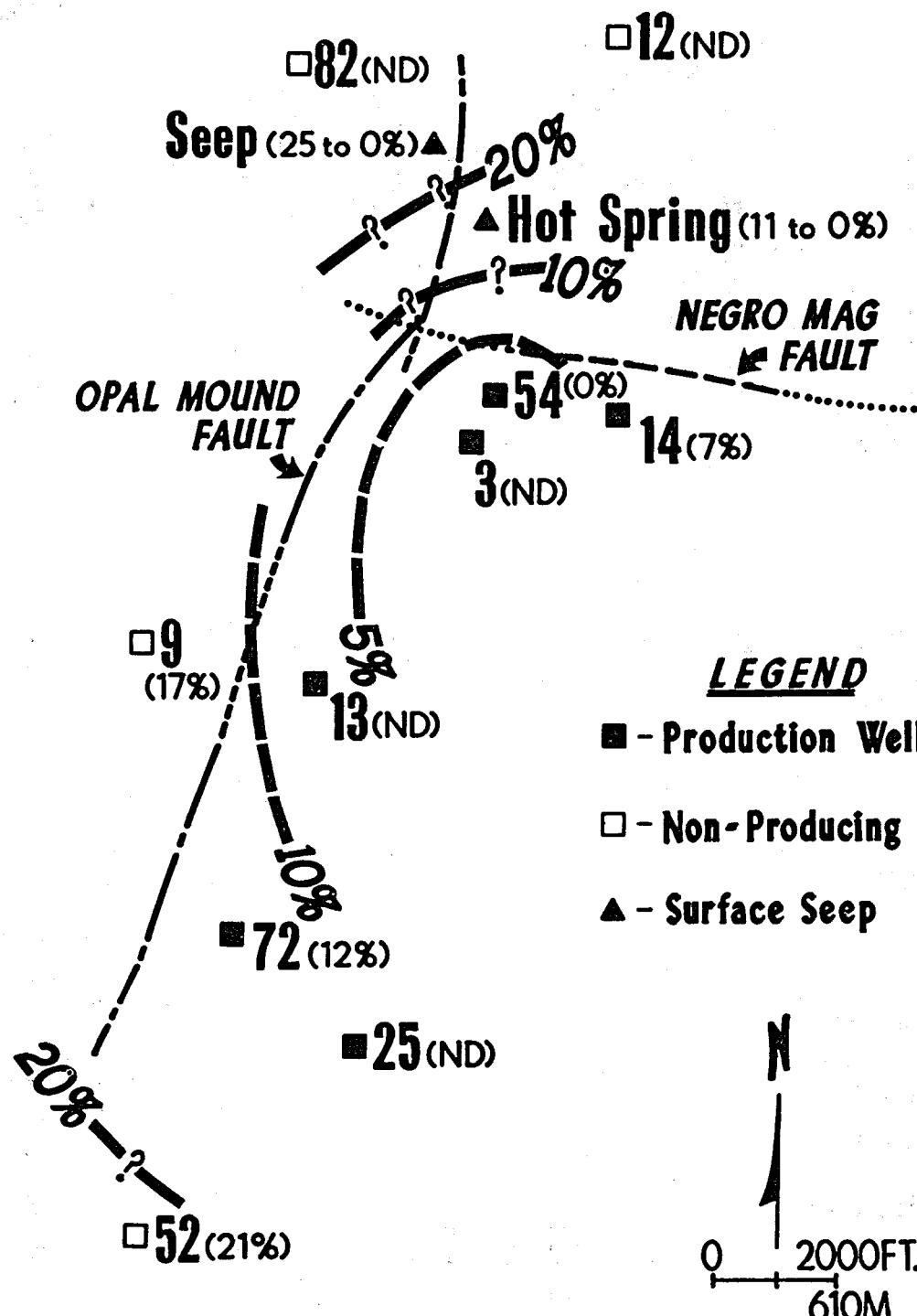
**★ EXTENSIVE SET OF OPERATING PROGRAMS FOR  
PREDICTING AND EVALUATING EFFECTS OF  
HYDROTHERMAL WATER/ROCK INTERACTION**

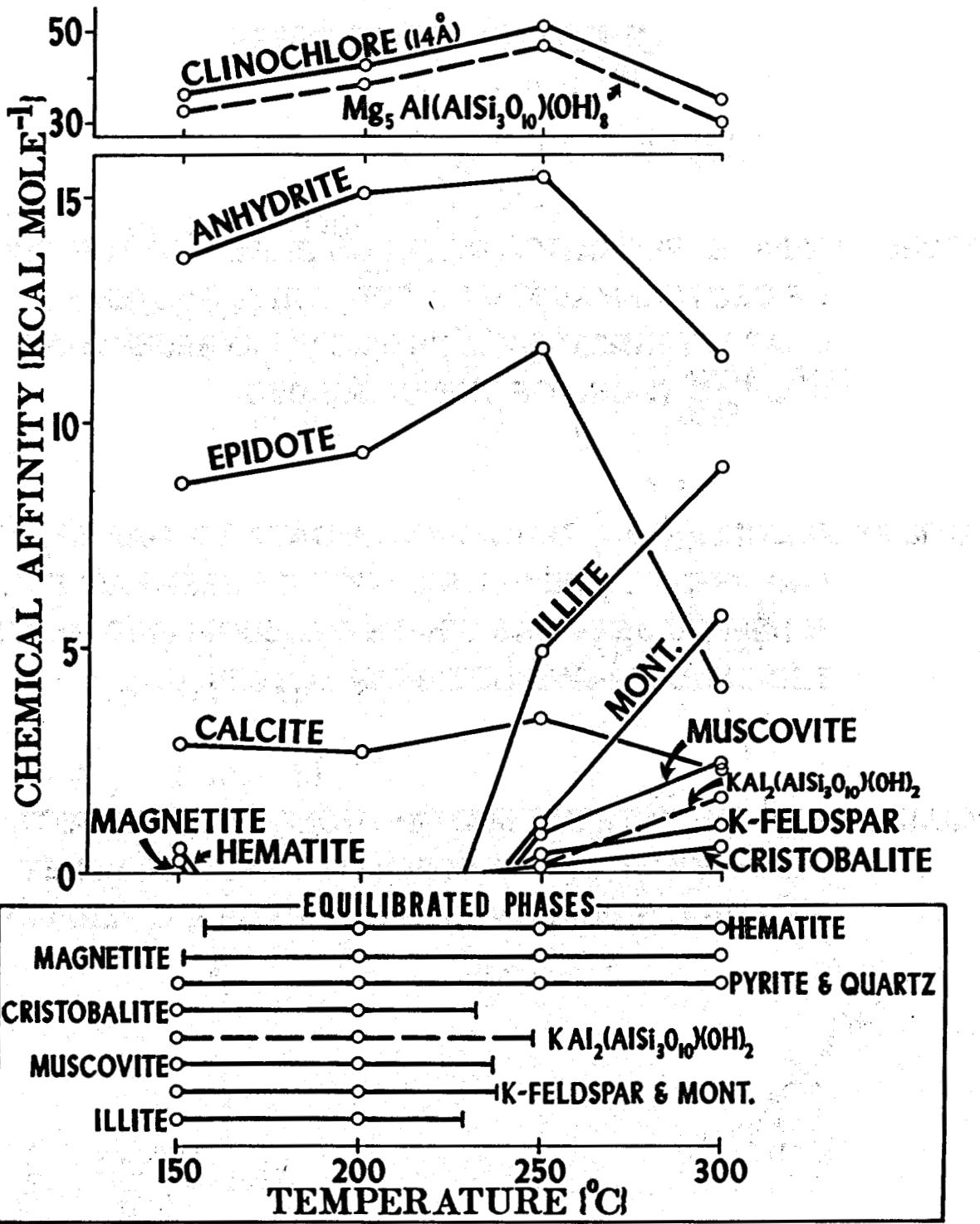
- **PREDICT DISTRIBUTION OF ALTERATION  
MINERALS**

**Zoning Studies for siting drill holes**

**Recognition of fractures in cuttings**

- **PRECIPITATION OF MINERALS DURING  
Production or Injection  
Plugging of formation; Scaling**


- **CALCULATE PROPERTIES OF RESERVOIR  
FLUID FROM WELLHEAD SAMPLES**


**EAT/Gc-63**

# Roosevelt Hot Springs Fluid Analyses

## WELL 14-2

|                   | <u>Brine Sampled<br/>at the Surface</u><br>(ppm) | <u>Calculated Deep<br/>Reservoir Fluid</u><br>(ppm) |
|-------------------|--------------------------------------------------|-----------------------------------------------------|
| Na                | 2190                                             | 1796                                                |
| K                 | 401                                              | 329                                                 |
| Ca                | 8                                                | 12                                                  |
| Si                | 341                                              | 280                                                 |
| Cl                | 3650                                             | 2993                                                |
| C                 | 206                                              | 1793                                                |
| S                 | 69                                               | 138                                                 |
| T.D.S.            | 6680                                             | 9707                                                |
| pH                | 6.1                                              | 5.8                                                 |
| Na-K-Ca (°C)      | 289                                              | 277                                                 |
| Quartz cond. (°C) | 289                                              | 269                                                 |





## **GEOCHEMICAL TECHNIQUE DEVELOPMENT**

### **CURRENT PROGRAMS**

- DEVELOP NEW EXPLORATION METHODS BASED ON THE CHEMISTRY OF GEOTHERMAL FLUIDS FOR USE IN SYSTEMS CHARACTERIZED BY MULTIPLE FLUID RESERVOIRS SUCH AS THOSE OF THE CASCADES.**
- UTILIZE MULTIELEMENT GEOCHEMICAL DATA TO MAP STRATIGRAPHY AND PREDICT THE DISTRIBUTION OF PERMEABLE ZONES IN DEEP RESERVOIRS WHERE GEOLOGIC AND GEOPHYSICAL TECHNIQUES HAVE NOT BEEN SUCCESSFUL.**
- QUANTIFY TRACE ELEMENT DISTRIBUTIONS WITH RESPECT TO TEMPERATURE, FLUID CHEMISTRY , AND COMPLEX GEOLOGIC ENVIRONMENTS (CASCADES, IMPERIAL VALLEY ).**