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Theory of Continuum Damping of Toroidal

Alfvén Eigenmodes in finite-3 Tokamaks
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Abstract

We have formulated a general theoretical approach for analyzing two-
dimensional structures of high-n Toroidal Alfvén Eigenmodes (TAE) in large aspect-
ratio, finite-G tokamaks. Here, n is the toroidal wave number and 3 is the ratio

between plasma and magnetic pressures. The present approach generalizes the
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standard ballooning-mode formalism and is capable of treating eigenmodes with
extended global radial structures as well as finite coupling between discrete and
continuous spectra. Employing the well-known (s, «) model equilibrium and as-
suming a linear equilibrium profile, we have applied the present approach and cal-
culated the corresponding resonant continuum damping rate of TAE modes. Here,
s and a denote, respectively, the strengths of magnetic shear and pressure gradi-
ents. In particular, it is found that there exists a critical a value, a.(s), such that,
as @ — «., the continuum damping rate is significantly enhanced and, thus, could

suppress the potential TAE instability.

PACS numbers: 52.35.Bj; 52.55.Dy; 52.55.Fa



I. Introduction

The confinement properties of energetic particles in fusion plasmas are of ma-
jor importance in determining the performance of current and future generations
of machines operating near or at reactor relevant regimes. For example, the good
confinement of alpha particles produced in the DT fusion reactions is necessary to
ignite the DT plasma. Similarly, energetic ions produced in RF or neutral beam
injection experiments must be well confined in order to successfully achieve plasma
heating and/or current drive. While the theoretically predicted confinement prop-
erties of energetic particles based on Coulomb collisions are sufficiently adequate,
there remain serious concerns over “anomalous” losses induced by collective oscil-

lations spontaneously excited by the energetic particles.

Since the fusion alphas are born at 3.52MeV mainly in the plasma center, the
corresponding pressure profile is peaked. As a consequence, the energetic-particle
pressure gradient is a free energy source that can destabilize waves which reso-
nantly interact with the periodic motion of the energetic particles.!”® As typically
in the case of pressure-gradient driven modes, the instability growth rates increase
with the energetic-particle diamagnetic drift frequency which is proportional to
the toroidal mode number n. On the other hand, characteristic frequencies of the
energetic-particle motion (e.g., transit and bounce) are estimated to be in the Mhz
range; similar to that of shear Alfvén waves. This observations thus suggest that
high-n (n >> 1) shear Alfvén waves are the prime candidate for the instabilities.

Shear Alfvén waves in a laboratory plasma are, however, difficult to excite, since
energy is needed to bend the magnetic field lines. Morenover, in a sheared magnetic

field, the shear Alfvén waves are characterized by a continuous spectrum.* Thus,



these waves are highly localized around the surface where w = kjva (w is the mode
frequency, ky is the wave vector parallel to the magnetic field and vy = B//mp
the Alfvén speed, o being the plasma mass density), and strongly stabilized because
of phase mixing,.

This situation, strictly valid in a slab, is qualitatively modified in toroidal con-
finement devices due to the poloidal symmetry breaking associated with toroidal
magnetic field inhomogeneities over a magnetic surface. The resultant couplings
between neighbouring poloidal harmonics produces not only frequency gaps® in the
continuous shear Alfvén spectrum, but also discrete Alfvén eigenmodes.

These discrete modes, known as TAE (Toroidal Alfvén Eigenmodes® ™, are lo-
calized in the forbidden frequency window (‘gap’) of the shear Alfvén (shear Alfvén)
continuum. As a consequence, TAE’s are undamped, to the lowest order, due to
their negligible coupling to the continuum.

That TAE’s are marginally stable naturally suggests that energetic particles can
resonantly destabilize these modes. Furthermore, these resonant energetic particles
could also be effectively scattered by the resultant Alfvénic fluctuations. Indeed, it
has been shown that even low-amplitude TAE’s, with §B/B =~ 5x1074, can cause
severe fusion alpha particles losses.® The study of the linear stability of TAE’s
is, therefore, an important issue for tokamak fusion research, and has attracted
increasing theoretical as well as experimental interest.?!°

The linear TAE drive, due to the resonant interaction of the mode with the
periodic transit of the passing energetic particles has been extensively studied.!!~!4
The weakening effect on the linear drive because of resonance detuning due to finite

particle drift orbits has also been considered.!® Recently,'®!7 it has been pointed



thow

out that both passing and trapped particles play important roles in determining
the linear drive.

A number of damping mechanisms have been suggested by various authors to
balance the energetic-particle linear drive and, hence, to determine the marginal
stability threshold for TAE’s. Electron Landau damping!!~!* is typically negligible,
while ion Landau damping'* and trapped electron collisional damping'®? could be
important depending on the plasma parameters.!” Another effective damping mech-
anism, due to the coupling of the TAE mode to the continuous shear Alfvén spec-
trum, was suggested first in Ref. [11] and studied in detail in Ref. [20] and Ref. [21)
for the high-n case, and in Ref. [22] for low-n. In this case, the damping is a con-
sequence of the toroidal mode coupling, which renders the TAE global radial mode
width much broader than the typical radial extent of a single poloidal harmonic.?°
In the present paper, we would like to clarify the details of Ref. [20] and present

important new results wheu a iinite pressure is included in the employed model

equilibrium.?>%4

To delineate the mechanism of TAE'’s coupling to the shear Alfvén continuum,
it is instructive to recall the nature of the continuous shear Alfvén spectrum in
a screw pinch with periodic length 27 R, and an equilibrium magnetic field B =

(0, By(r), B.(r)). Here, (r,8, z) refer to cylindrical coordinates. In this case, shear

Alfvén waves consist of local oscillations with frequency

W) = B(r)ud(r) = (—%(‘(‘)‘)?l” (1)

varying throughout the plasma column. Here, q(r) = rB,(r)/ R, Bs(r) plays the role

of the safety factor in a tokamak, and we have assumed the following dependence:
§4(r,0,2,t) = "*/Ro=mdsg (rt) | (2)
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for the scalar potential perturbation d¢. Thus, shear Alfvén waves are character-
ized by ddma(r,t) = a(r,t)exp(—iw(r)t) with w(r) given by Eq. (1), and a(r,t),
typically, decays time asymptotically as 1/¢ due to phase mizing.*

When the cylindrical equilibrium is bent into a torus, the variation of the Alfvén
speed on a magnetic flux surface causes different poloidal harmonics to be coupled
together. As a consequence,® the cylindrical continuous shear Alfvén spectra of
the m and m + 1 poloidal harmonics couple at r = 7,, where kjjmt1n = —Kjjmn
or, equivalently, where nq(r,) — (m + 1) = —(ng(r,) — m) (i.e. ng(r,) —m =
1/2), and a gap appears in the shear Alfvén continuum as shown in Fig.1. From
Eq. (1), the local oscillation frequency of these coupled harmonics is close to w? =
v4(r5)/4¢*(ro) R?, and the frequency gap width scales linearly with ¢, = O(a/R,),
the strength of the toroidal coupling. Here, a and R, are, respectively, the minor
and the major radii. The discrete mode (the TAE), meanwhile, exists inside the
gap®’ and has a radially localized eigenfunction with a typical radial width €,/nq'.
Note that, in the present analysis, ¢, < 1, i.e., we have in mind tokamaks with large
aspect ratios. The physical origin of the local potential well which allows TAE’s to

exist as discrete modes is discussed in detail in Ref. [24].

Due to toroidicity, each poloidal harmonic is coupled to its neighbour, as
sketched in Fig.2. However, only a finite number of poloidal harmonics will be
coupled to determine the global TAE radial structure. In fact, radial equilibrium
changes will cause a mismatch in the oscillation frequencies of poloidal harmonics
peaked in frequency gaps located at different radial positions. This frequency mis-
match dictates that the local mode structure (and, hence, the local oscillation fre-

quency) of the various poloidal harmonics must readjust in order to constructively



form a global plasma oscillation with a given frequency wrag. This is obviously
possible only for a limited number of harmonics, whose coupling gives rise to the
global TAE width. The amplitudes of the poloidal harmonics outside this global
TAE width decay exponentially fast; since they are no longer effectively excited
(see Fig.3).

The excited frequency of the global TAE mode falls within the frequency gaps
at different radial positions within a region ¢,L 4, with L4 being the scale length of
the Alfvén frequency wa = va/q(r)R,. Outside this region, harmonics of the shear
Alfvén continuous spectrum are resonantly excited, but usually have a small am-
plitude (exponentially small) because of the frequency mismatch mentioned above.
The resultant coupling of the TAE modes to the shear Alfvén continuum is, thus,
also expected to be small; indicating, consequently, a small damping coefficient.

Figure 3 allows us to make some general remarks on TAE modes. First, the
number of poloidal harmonics coupled to form the global TAE radial structure is
|Am| = [nAq| = neo|q’La|. Thus, many harmonics are coupled together if ne, >>
1; suggesting ne, is an important asymptotic parameter. Moreover, |[Am/m| =
|Aq/q| = €]¢'Lal << 1, indicating that the spread Am is small compared to the
central mode number m, if the toroidal coupling effects are weak. Second, the global
TAE radial width Arr4g = €,L4 is small compared to the equilibrium scales, but
still rather broad, since it does not decrease with n. Finally, the radial structure of
the TAE mode (i.e., the two-dimensional TAE structure) is of crucial importance
to determine its coupling to the continuous spectrum and, hence, its continuum
damping. In particular, it is important to determine where the TAE is localized

within the gap region, the distances from the accumulation points of the continua,



and how fast the radial envelope of the global mode decays away from the TAE
localization region.

For pressureless equilibria with circular magnetic flux surfaces?®?! it has been
demonstrated that TAE modes are always well localized within the gap region. In
the present work, we will show that finite pressure shifts the global TAE structure
toward the accumulation point of the lower continuum; leading, thus, to greatly
enhanced continuum damping rates. This may be expected from Fig.3, since the
amplitudes of the poloidal harmonics resonantly excited in the continuum would
be of the same order of those forming the global mode structure. The expected
damping rate is then typically of O(e,w,).

In Section II, the theoretical formulation for the two-dimensional TAE eigen-
mode analysis is presented. In general, this problem can be reduced to the solution
of two nested one-dimensional ordinary differential equations: the first one solves
for the mode structure along the field lines on a local flux surface. The second one
correlates the local solutions and prescribes how, starting from them, the global
two-dimensional eigenmode can be constructed. This procedure is conceptually
similar to that of the well-known ballooning formalism,?>-?" but, as will be shown
later, it has some important qualitative differences. Furthermore, it may be ap-
plied to the analysis of various high-n two-dimensional perturbations other than
TAE modes.

In Section III, we will use the well known (s,a) model equilibrium®?® (s =
rq'/q is the magnetic shear and a = ~R,q*@ is the normalized pressure gradient,
B = plasma pressure/magnetic pressure) to derive the relevant equations for high-

n TAE modes in axisymmetric tokamak equilibria with shifted circular magnetic



surfaces and 8 = O(a/R,). The motivation of this choice is that, for weakly
shaped equilibria, such a model is sufficiently general and still simple enough to
allow substantial analytical progress. However, it needs to be emphasized that
similar analyses could also be carried out for general equilibria; except in such
cases extensive numerical solutions will be required.

Since, for the practical purpose, the continuum damping rate is expected to
be small compared to the frequency gap width e,w4/2, we will obtain its general
analytic expression using a perturbative approach, which is naturally formulated as
a variational principle. Hence, in Section IV, the two-dimensional TAE eigenmode
structure is obtained, to the lowest order, neglecting the coupling to the shear

Alfvén continuous spectrum.

The general expression for the Alfvén continuum damping rate is derived in
Section V. To show in detail how the damping rate may be computed; in Section
VI a model linear equilibrium profile is assumed to further reduce the continuum
damping to a readily usable expression. The corresponding results are analyzed in
Section VII. In particular, as discussed earlier, it is shown that, near the Troyon

B-limit,* the TAE suffers a greatly enhanced damping.

Finally, Section VIII contains a summary and discussions. In order to present
the physics more clearly, we have chosen to keep the mathematical details to a
minimum in the main text. Detailed derivations can be found either in Ref. [24]

or in the two Appendices, in which some relevant technical details are treated in

depth.



II. Theoretical Formulation

In this Section, we present a systematic analysis of high-n two-dimensional
eigenmode structures in axisymmetric toroidal equilibria. In developing this ap-
proach, we have been strongly motivated by the original works of Connor, Hastie
and Taylor?® as well as Dewar and coworkers,?® who have developed complementary
formalisms for the study of two-dimensional high-n ideal magnetohydrodynamic
ballooning modes in tokamaks. All these analyses employ the WKB approximation
along with 1/n expansions to reduce the starting two-dimensional equations to two
nested one-dimensional problems. While our apprnach shares the same conceptual
foundation with that of the previous papers,?®?® there are, as it will be discussed

later, important qualitative differences.

Let us consider the solution of the following high-n eigenmode equation
D (w;r,d,0.,0¢) §d(w;r,¥) = 0 . (3)

Here, we assume that D is a partial differentfal operator defined on a domain

T € R? and that the boundary conditions on §¢ are such that
/ ]E 6(w; 7, 9)[2I (r, 9)drdd = E(w) < oo ; (4)

where J(r,9) = |[Vr x V9|~ is the Jacobian and £(w) is related to the wave energy.
Thus, Eq. (4) requires that wave energy be finite. To be more specific, in Eq. (3), 7
and 1 are, respectively, a radial-like flux coordinate and a poloidal-like angle, and
perturbations have ~ exp(iny) dependence in the toroidal angle . For simplicity,

we also assume that r and 9 are chosen such that equilibrium magnetic field lines

are straight on a given flux surface.
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In the following, we demonstrate that one can construct eigenmode solutions
of Eq. (3) by solving two nested one-dimensional ordinary differential equations
rather than Eq. (3) itself. The advantage of this approach is obvious, since solving
an ordinary differential equation is much simpler than tackling a par%&al differential
problem and, perhaps more importantly, the underlying physics also emerges more
clearly. Qualitatively, the soiution of the two nested one-dimensional differential
equations is equivalent to first solving for the mode structure along the field lines
locally and then constructing the two-dimensional global mode structure through a
superposition of local solutions. Since the procedure outlined below is quite general,
we consider a wide class of operators that can lead to Eq. (3).

Since the toroidal equilibrium is periodic in the poloidal angle ¥, the solution

d¢ and the operator D of Eq. (3) must also be periodic, i.e.,
dp(w;r, 9+ 27) = dp(w; T, V) ,
D(w;r, 9 +2m,0,,0s) = D (w;r,¥,0,,0;) .

Thus, we can represent the perturbation &¢(w;r,9) and the operator

D (w;r,¥,0:,0y) as Fourier series

Sp(w;r,¥) = Z €™ §pm(w;ir) |

m

D (w;r,9,0,,09) = Y e“*Dy(w;r,0,,05) .
¢

Equation (3) can then be rewritten as

Y3 € Dy (wir, B, —i(j + £) Giae(wiT) = 0,

t

where j = m — {, or, equivalently, as
3 De(wir, 8e, =il + 0) $iselwir) = 0 . (5)
¢

11



Equation (5) has transformed the original two-dimensional eigenvalue problem,
Eq. (3), into an infinite set of coupled one-dimensional differential equations.

In the high-n limit, each Fourier harmonic ¢,, tends to have a highly localized
structure around the surface r{™), where ng(r{™) = m. This is because the most
important perturbations have parallel (to the ambient magnetic field) wavelengths
~ qR; which are much larger than perpendicular ones =~ O(a/n). Furthermore,
the equilibrium properties do not appreciably change from a rational surface r{™
to the next r{™+!). As a consequence, the Fourier harmonics §¢,, are expected
to have similar shapes, slowly changing throughout the plasma column along with

their amplitude A,,. In other words, the d¢,'s can be assumed to have the form
Spm(wir) = Amé(m,ng—m) = A(nq)¢(ng,ng—m) , (6)

where the fast variable ng — m accounts for the rapid radial variations, which
determine the localized self-similar shape of the poloidal harmonics 6¢,,, while
the slow variable nq describes the changes in the shape functions ¢(nq,nq — m)
and in the amplitudes A(nq) on a scale determined by equilibrium nonuniformities.
Typically, |01n ¢(ng,ng—m)/d(nq—m)| = O(1), while |01n ¢(nq,ng—m)/d(nq)| =
{01n A(nq)/0(nq)| = O(1/né), where ¢ is a parameter depending on the particular
wave mode to be studied and on the details of the chosen plasma equilibrium. This
separation of scales is crucial to treating the two-dimensional problem with a WKB
approach; as suggested first in Ref. [25] and Ref. [26].

The dependence of the operators D, (w;r,d,, —i(j + £)) in Eq. (5) on the radial
coordinate r is reflected in dependences on both fast ng—m and slow ng normalized
radial variables. In general, the dependence on nqg — m enters to account for par-

allel variations (kjm.n» = (nq — m)/qR), while nq describes other radial equilibrium

12



nonuniformities. Thus
D¢ (w; Ty 0y —i(J +€)) = De(wing,ng—j —¢€,0,,—i(j +¢)) .

Furthermore, ' he localization of the various poloidal harmonics implies j + ¢ ~ ngq;

le.,

~

D¢ (wing,ng —j —£,0,,—i(j +¢)) = D¢(wsnq,nq—j—4£,0,) . (7)

For convenience, we also assume that it is possible to write

ﬁt(“’;nq’nq—j“lvar) = Zﬁl.p(w;n%nq_j_e)ar )
P

Equation (5) then becomes
- Dep (wing,ng — j = £) Bjpe(wir) = 0 . (8)
Lp
The existence of two separate scales allows us to write the shape function

qS(qu, nq — m) as

dlng,ng—m) = g(t,ng-m) = [ " it g1 g)dp | (9)

-0
where ¢t = nq has been used as a short notation for the slow normalized radial
variable. The condition Eq. (4) legislates that ®(¢,8) be square integrable, such
that the integral in Eq. (9) is well defined. This constraint has frequently led to
the remark that the description of the local radial shape of the single Fourier har-
monics by means of the dual variable 8 (also referred to as the extended poloidal
angle, or ballooning coordi .ate*) were inadequate in the case of singular eigen-
functions, typical of a continuous spectrum. This observation appears to be further
confirmed by the breakdown of the translational invariance of the shape functions

#(t,nqg — m) in the transition from regular harmonics of a discrete spectrum to

13



singular harmonics of a continuum. This, however, is not the case. The only basic
assumption underlying Eq. (9) is the existence of two characteristic scale lengths.
In fact, employing the causality constraint and the proper analytic continuation,
Eq. (9) can represent both regular as well as “singular” pol~idal harmonics. This
point will be explicitly shown in Section IV.A for the case of TAE modes. This
result, however, is very general and indicates that the “ballooning transform” of

Eq. (9) can be used to analyze the coupling between high-n discrete and continuous

spectra.

As to the amplitudes A(nq) = A(t), we adopt the following eikonal representa-
tion
¢
A(t) = exp (i / Gk(t’)dt’) . (10)
Here, the notation 6 (t) was originally proposed in Ref. [26] for the local normalized

radial wave vector —(i/n)0/0q. Equations (9) and (10), along with Eq. (6), allow

us to rewrite 0@, (w; ) as

. e N [ .
Sm(wir) = e it / e=ina-m¥(¢ 0)df | (11)

which is the form used in Ref. [20]. Substituting Eq. (11) into Eq. (8), we have
3 9Dy, (wit, —10p) 1P [ng'(Bk(t) — 8 — iB)° ®(,0) = 0 . (12)
tLr
In Eq. (12), |0k(t)| = |8] = 1 reflects the rapidly varying local structure of the shape
functions ¢(t,ng—m) on the scale ~ 1/nq/, while |3; In 0x(t)| ~ |8 In (¢, 0)| ~ 1/né
account for the changes of the shape function and of the amplitude A(¢) on a scale
~ &/q =~ da. Here, we have assumed that the local flux surface averaged magnetic
shear s = rq'/q is an O(1) quantity. The case of vanishing shear must be handled

with some care, since g can not be used as a radial variable in this case.

14



Equation (12) can be solved by asymptotically expanding the various quantities
in the smallness parameter 1/nd; e.g., 0k(t) = 0£°)(t) + 0£l)(t) + ... . To the lowest
order, assume we can solve the one-dimensional boundary value problem in the
variable 6

5= €Dy, (wit, —id) i* [ng’ (8(t) - )] @O(1,8) = 0, (13)
tp

with boundary conditions |®()(¢,8)| — 0 as |§] — oo, leading to the constraint
L (w;e,60(t)) = 0 . (14)

This local constraint is a local dispersion relation, which gives the implicit form
of the lowest order WKB phase Oﬁo)(t), or, equivalently, establishes a relationship
between the normalized local wave vector Hio) and the mode frequency w. Note
that, because of Eq. (13), L (w;t,OﬁD)(t)) is a periodic function of 9,20) of period
2m. This fact is naturally demonstrated using ' = 6 — 0&0)(13) as a new ballooning
coordinate and noting that the dependences on 0,(‘0)(15) in Eq. (13) would be then

only in the terms el 1),

In the following, we will restrict our analysis to differential operators satisfying
the symmetry property
+oo g A
/ o (t,8) " Dy, (w;t, —ids) i* [ng (Ox(t) — O)F B(t,8) =
- Q0 t'p

= /_ :o d8%(t,0) Y Dy, (w;t, —ids)i” [nq’ (B:(t) — B)° (¢, 6) . (15)

4p

From Eq. (13), we can construct the following quadratic form

F (w;t,ol(‘t))) - [.+°° d6 <I>(°)(t,9) Z &'

*® tp

Deyp (wit, —is) i* [ng (8(t) - 6)]” #9(t,8) = 0 . (16)

15



Note that, in constructing Eq. (16), one needs to integrate in § by parts and apply

the proper boundary conditions.

Clearly, Eq. (16) is equivalent to Eq. (14), i.e.,
L (wit,60()) ~ F (w;t,60()) = 0, (17)

when the differential operator of Eq. (13) is symmetric. In this case, in fact, it is
possible to show that the differential equation Eq. (13) admits a variational princi-
ple in the form of Eq. (16).3! Note that symmetry is much weaker than hermiticity
and, in particular, it does not require that the considered system is non-dissipative.

The relation of the phase trajectories 9£°)(t) to the radial profile of the local
dispersion function is shown in Fig.4. There, a phase space “libration”? around an
O-point corresponds to a local minimum of F(Oio), 2, qa,s): this is because, for the
reference case of TAE’s, 8F/86\" > 0 for 0 < 00 < m; aF/96%) < 0 would yield
the opposite. Phase space “rotations”? (open trajectories), in general, correspond

to the monotonic branches of F(Gﬁo),ﬂg, a,s).

To the next order in the 1/né expansion, the corresponding quadratic form

becomes

+00 +o00 . " a . L)
/ dé / / dede' eSO (g 0) S 3Py, , (w; t, —i0p)
o — tp

{- [ng (6~ )] g EEE - 2L g (690) - ) [nar2()+

+ nq" (6 — €)] + [nq’ (6(2) - 0)]”"nq'o§,”(t)} $©(£,0) = 0 ; (18)

where, for convenience, we have used the Fourier representation of the function

)¢, 9)
+0oo A
20t 0) = [ e b0 ¢, 0)de

16



and the symmetry property of Eq. (15) has been used to replace £ — (€ +¢)/2 in
the first term in the curly brackets and to eliminate ®1!)(w;¢,8). From Eq. (18),

one finds

(1) _ 1 d 3 R (0) :
Ok = 5:{{1[1 WF (‘-‘J)tiek (t)) ’ (19)

where the a,ﬁe,p (w;t,--105) have been neglected because of the slow equilibrium

variations. The general WKB expression of the radial envelope function is thus

t
A(t) ~ 208t epi G (20)

VoF/08®

Moreover, note that 8¢9£0) tends to become singular at a WKB turning point po-

sition (tT,G,(c%z), where OF /60£0) = 0. Locally, one therefore needs to solve the

following differential equation
1 9%F
2 90"

to derive the corresponding WKB connection formulae. In Eq. (21)

(tr .9,29,)‘)

(~id. -9{_"})2 + F(wt,6) - F(w; tT,eﬁf’T’)} Alt) =0,

(21)

0*F/ 60£°)2|( 0 # 0 is assumed. Equation (21) can be readily obtained by con-
kT
structing from Eq. (12) a “quadratic form” and then Taylor expanding around the

turning point position.

We remark that Eq. (20) has a clear physical interpretation for the case of a
dissipationless system, where the maximum order of the ﬁg,p (w; t, —10y) operators
is { = p = 2. Then, 0,F ~ U(w;t), the wave energy density.*® In the absence of

dissipation, the energy flux is constant, i.e.,

_OF/o8" oF
0F /0w 0w

where vg(w; t) is the normalized group velocity of the wave. Equation (22) is con-

vg(w; YU (w; )| A(E)]* = |A(t)]* ~ const , (22)

sistent with Eq. (20).

17



Applying the connection formulae to the WKB solutions given by Eq. (20) along
with the proper boundary conditions, the WKB global dispersion relation for the
eigenmode frequency is obtained in terms of quantization conditions (cf. Section
IV.B).

We note that the present formalism differs from the previous well-known ap-
proaches of Refs. [25-27] in that our treatment of the local mode structure along
the magnetic field lines allows us to handle singular eigenfunctions of the contin-
uum. That is, the translational invariance of the shape functions ¢(t,nq — m) can
now be extended into the continuous spectrum by means of analytic continuation.
A second important difference is in the analysis of the radial eigenmode structure.
The standard ballooning approach?34% assumes closely spaced turning points.
Equation (21) is then solved near an extremum 9F/dt = 0 for localized solutions
corresponding to the phase space librations of Fig.4. The eigenmodes have typical
radial extent Ar & a/n'/? and the global mode frequency differs from the local one
by an O(1/n) term.?®* Meanwhile, the present interpretation of 8y as a normalized
local radial wave-vector trewts also the eigenmodes corresponding to phase space
rotations (open trajectories of Fig.4). In general, these eigenmodes have rather
extended radial mode structures and are characterized by well separated turning
point pairs. In fact, Ar = §a with § being independent of n. The existence of
eigenmodes with spaced turning points is also emphasized in Ref. [26] and Ref. [36)
but not treated in detail; the attention there being rather focused on the case of
closely spaced turning points due to the nature of the ideal ballooning instabilities.

Briefly summarizing this Section, we have formulated a theoretical approach for

analyzing two-dimensional eigenmode structures of high-n modes in axisymmetric
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toroidal equilibria. The wave-operators D(w;r,, 0;,0s) of Eq. (3) are general and
are required to satisfy only the symmetry property of Eq. (15). In Ref. [36], it
is pointed out that operators obtained in the analysis of kinetic ballooning modes
are symmetric. The present approach is then amenable not only to analyses of
the coupling between discrete and continuous spectra, but also of other non-ideal
and kinetic effects. Other interesting applications could be the in the extension of
previous studies of high-n toroidal drift waves®3® to the radially extended modes
with well-spaced turning points mentioned above.3?*® Finally, it may be interesting
to extend the validity of the present formalism to low-n perturbations. In this
case, we may adopt a procedure essentially equivalent to the formal construction of
a Fourier Integral Operator for the radial eigenmode structure.*® Work along this

direction will be reported in a future publication.

In the next Sections, we will apply the theoretical formalism presented here
to the particular case of TAE modes. We will also use the fact that the wave
absorption rate is expected to be small compared to the frequency gap width, i.e.
lwi] << €,wa/2, to perturbatively compute the TAE continuum damping. While
formally not necessary, the perturbative calculation does reduce some mathematical
complexities and, thus, make the physical picture more transparent. In addition,

for practical purposes the small damping rate limit is also the relevant case to

study.
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III. Eigenmode Equations

The governing equations for TAE’s can be derived from the quasi-neutrality

condition V - §J = 0; ie.,

= o = = (4
V-6JL+B-V(—§—I)=0, (23)
where § J is the perturbed current, and L and || refer, respectively, to the perpen-

dicular and parallel directions with respect to the equilibrium magnetic field vector

b= B/B. The expression for §J) is given by the parallel Ampére’s law
4ndJy = cb-V x (6 x&A) ,

§A being the perturbed vector potential. Thus, in an axisymmetric toroidal equi-

librium,

Sy = == VL84 (1+o(n;°)) . (24)

Here, n is the toroidal mode number. § Ay can be further expressed in terms of the

electrostatic potential perturbation d¢ via the parallel Ohm’s law §E = 0; i.e.,
-b- Vg + i=d4 = 0.

Note that time dependence of the form ~ exp(—iwt) has been assumed.

The perpendicular current perturbation is obtained from the perpendicular force

balance; i.e.,

C - a - C - -
(SJL = ﬁBXQEt-J’UL-}-—E:‘;BXV(sp-f-
Nsg, — BLC 5.9
+50BL - Sl 5 BxVP. (25)
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Here, P is the equilibrium pressure and 3 = 87 P/B? = O(¢,). In Eq. (25), the

perpendicular velocity 67, meanwhile, is given by the Ohm's law

B xé5, = -cV, 6 ; ‘ (26)

and the pressure perturbation dp by the equation of state

—iwlp + 85, - VP ~ 0, (27)

or
_c §X§L6¢ = ~ Ck_L oP ’ 9
=T VP = (Zﬁ)b‘i‘p‘s"s’ (28)

where k; is the wave vector component orthogonal to b and the magnetic flux
surface labeled by ¥. In Eq. (27), the ~/P(§ - §U) compression term can be shown

to give negligible O(¢,) and O(e,3) corrections. From Eq. (25), we then find

1 PR e [ = . B =
(1+0(;>)V6JJ_ = zV[E,‘;ngJ_éqb] —2CI€XEZ'-VJ_CSP-
BxVP
B4

—C

V1 (4ndp+ BSBy)

where & = b- Vb is the magnetic field curvature.

For n >> 1 the fluctuations are localized in the radial direction, i.e. their
typical width is much smaller than the minor radius of the torus. Moreover the
modes considered here are characterized by the shear Alfvén time scale; which is

much longer (an order O(nR,/a)) than that of the compressional Alfvén wave. As

a consequence,

4mép+ BSBy = 0 (29)
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to the lowest order in n, which expresses the perpendicular pressure balance. This
allows us to further simplify the expression of V - §J.

Combining Eqs. (24) through (29), Eq. (23) can be cast into the form of the

following vorticity equation

RS S . T4 -
Bb-V{EVib-VM] + v-{vg’%w’vlw]-

BxVP -
(————32 )'VJ.5¢

Equation (30) can be also derived as the Euler-Lagrange equation from the following

—smzx-g%-m =0. (30)

Lagrangian

2

§L = /df{]%éﬁwf - %WL&;S{ +
+87R x — -V, 8¢ E-igf.ﬁl5¢}.

B? B (31)

Here, only internal modes are considered. Equations (30) and (31) are, of course,

completely equivalent.

In axisymmetric tokamaks, Eq. (30) is a two-dimensional partial differential
equation; which can be solved, with the proper boundary conditions, as an eigen-
value problem for the complex frequency w using the approach outlined in Sec-
tion II. The damping rate w; due to the mode coupling to the continuous shear
Alfvén spectrum and the TAE radial eigenmode structure are, thus, completely
determined.

We can, nevertheless, use additional information to further simplify the problem.

The fact that the damping rate is expected to be small, i.e., |wi| << €wa/2,
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suggests using perturbation techniques to compute the wave absorption rate. This
can be readily done using a variational principle, which is the approach adopted in
this work. Thus, for the practical purpose, we can use the theoretical formulation
of Section II for the two-dimensional eigenmode analysis of TAE modes neglecting
the coupling to the shear Alfvén continuous spectrum (cf. Section IV) and then,
to the next order in the perturbative expansion, use Eq. (31) to derive a general
expression for the continuum damping rate (cf. Section V).

Our aim is to solve Eq. (30) in the high-n limit, using a local finite-3 axisym-
metric equilibrium for a large aspect ratio tokamak with shifted circular magnetic
flux surfaces.” This represents a simplified and yet relevant case to study for TAE
modes when the magnetic flux surfaces are weakly shaped. Thus, for simplicity, we
shall consider such a model equilibrium, even though our approach can be readily
extended to include effects due to non-circularity of the magnetic flux surfaces, like
ellipticity, triangularity etc. .%°

For convenience, we work with flux coordinates in which the equilibrium mag-
netic field lines are straight. Specifically, we choose the curvilinear coordinate
system (r,,7), where r is a radial-like flux function, ¢ is the toroidal angle, and
J is a poloidal-like angle, chosen such that the Jacobian J = (619 x Vr - V7<,o)~l =
R*r/R,.** Because of the shift of the circular magnetic surfaces, r = r, + d(1 +
A'cosd) + ..., A’ being the derivative of the Shafranov shift, r, being defined by
ng(r,) = m,, the central poloidal mode number, and d being the distance from the

reference flux surface at r,.

The perturbation d¢ can be written in the form?®2

§b = exp{i[np+ m,(r —ro)asind/ro]} e 3" §g(r) e | (32)
J
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where, we recall, @ = —R,¢’0’. In Section I, we already emphasized that,
even though TAE modes are expected to have rather extended radial structures
Arrag = €,L4, they are carachterized by a small spread in the excited poloidal
mode numbers; i.e., |j] = O(e,|m,|) in Eq. (32), so that m, may be regarded as the
“central” mode number. We can then define the slow normalized radial coordinate
t, introduced in Section II, as t = (r —r,)/Ar,, Ar, being the distance between
two neighbouring rational surfaces, i.e., Ar, = 1/n¢/(r,). The fast normalized
radial variable nq — m, thus, becomes nq — m =t — j. With §¢ expressed as in

Eq. (32), the gradient operator along the equilibrium magnetic field lines varies

only on the connection length scale:

6-6=3%[n(q—qo)—jl=fé<t—j)- (33)

The eigenmode equations are obtained by substituting Eq. (32) into the vorticity

equation, Eq. (30). After some tedious algebra,?* it is possible to show that the

TAE eigenmode equations are given by

o[-0~ ) Do, — 1= 57 - 0] o, +

[ ]

+ saft - j) %[(t — = Do~ (t=j + 1)696,-_1} ¥

a2

b =0 (1=5 = Dbyaa = 2e = )08 (¢ 4 2)56,-1] -
2 0 o?

= saflo (8in1 = 88i-1) = 0 (86540 — 2085 + 8j2) +

+ g— [5¢j+1 +d¢jy + 8% (8¢pj1 — 5¢j—1)] +

2
+ (8652~ 206, +86,0) =
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0
= ¢,(i° [( 5 1) (0djpr 4 8;-1) + sas (6@j42 — 0j2) +
(5¢ +3 = CPj41 — O¢j—1 + 0¢;-3)| . (34)

Here, €, = 2(r,/R, + A') is the strength of toroidal coupling and Q = qR*w/v4R
is the mode frequency normalized to the local Alfvén frequency.

Similarly, employing Eq. (32), the Lagrangian of En. (31) can be rewritten as:

6¢J +

gif:zo _ sz;‘ﬁzr’fdtz {32[ ]

aZ

+ [ =37 =2 165 + S [t -2 - 02+ 1] 18, -

N

- sa(t —j) [Jg);a—’t((t-j—1)6¢J~+1)+c.c.] +

+ (Qz - —) {: ¢J at6¢J+] +c C] - % (6¢;6¢J+1 + C.C.) -
2

- 94— [(t =)t —j~2) =02 +1] (5(15’-5¢,-+2+c.c.) -

- 6002 [ (S(b] até(ﬁ +1 + (5¢ 5¢J.41 Sa(s(,b 5¢J+2 -
- E} (6676045 — 5¢;80i4) + c.c.” . (35)

Here, ky = m,/r, is the central poloidal wave vector of the excited mode. In
Eqs. (34) and (35), Q% o and s are functions of the slow radial variable ¢ due to
equilibrium inhomogeneities. Such a dependence can be more explicitly displayed
by introducing profile functions for Q?, a and s; i.e., by letting Q2 = 02 f(¢),
a = ag(t) and s = 5h(t), with f(0) = g(6) = R(0) = 1. Also ¢,, in general, can
be a function of t. In the following it will be assumed constant in order to reduce

. the algebra, but the approach presented here is s..ficiently general such that this

assumption could be relaxed straightforwardly.
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IV. Two-Dimensional Eigenmode Analysis

In this Section, we will use the approach outlined in Section II to explicitly
compute the lowest order two-dimensional eigenmode structure of TAE modes.
That is, we shall neglect the coupling to the continuous shear Alfvén spectrum and

assume undamped TAE modes (2 = Q, + 1y = Q,).

The existence of the fast and slow radial scales, t — j and t, suggests that the

poloidal harmonics d¢; be expressed as, cf. Eqgs. (6) and (11),

§¢;i(t) = A()g(t,t—j) =

.t Ny [T . .
= [ [T gpemit- g1,0) (36)

-0

A. TAE Local Dispersion Relation

Substituting Eq. (36) into Eq. (34), the lowest-order one-dimensional eigenmode

equation in @ is then given by

[%-(1+13)§5 + 02 (14 1) (14 2,con6) +

+ a(cosd + I,sinf)] (¢,0) = 0, (37)
with
I, = s(6-6) - asind . (38)

Letting §¢ = /1 + 2 ®(%(¢,8), Eq. (37) can be rewritten as

[ d? (s ~acosh)?  acosd

=— + 02 (14 2¢,cos6) - WAL +l+]§ S =0. (39

a6?

The solution of Eq. (39) with boundary conditions |6¢| — 0 as || — oo leads to

the local dispersion relauon for TAE modes.
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For convenience, let 8’ be the shifted variable ¢ = 6 — 9&0). In the ‘External

Region’ |s6'| >>Max(1, a), Eq. (39) becomes a Mathieu equation

{5%22- + 02 (1 + 2¢, cos(8 + 9&0)))] Y =0, (40)
where, from now on, the prime in 6’ will be dropped. From the general solution of
the Mathieu equation, it is well known that curves exist in the (¢,, %) plane, which
separate regions in which the asymptotic behaviour of the solutions is exponentially
increasing or decreasing, from regions in which the asymptotic behaviour is oscil-
latory. In the ¢, << 1 limit, these critical curves are given by Q2 = (1 * ¢,)/4.

Using the ordering |22 — 1/4| = ¢,, Eq. (40) can be solved perturbatively® as

(0) (0)
§hg = A(8) cos (“;k ) + B(8) sin (“29" ) : (41)

where A(f) and B(f) vary on the slow scale § & 1/e,. Substituting Eq. (41) into

Eq. (40), and averaging over the § ~ O(1) fast scale,® one derives the following

coupled equations
B(8) + T, A(8) = 0,
- A +T_-B() = 0;

where

[y = (Qj._ -) t €02 . (42)
Then, we have
A(9)E) = gl¥) (—P_)M/2eFH0
B(6)®) = +al®) (I, ) 2eF4
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Here, the + sign refers, respectively, to positive and negative values of 6, a*) are

arbitrary constants, and

2
5 = (=T = \/:gng - (Qg-%) . (43)

From Eq. (43), we see that, for |Q% — 1/4| < €,02?, the asymptotic behaviour of

61,b1(§t) is exponentially decaying, which means that the Fourier Transform of Eq. (36)
is well defined. For |Q2 — 1/4] > ¢,022, the expression for 4 must be analytically
continued, such that unstable modes decay in 6 fast enough, and Eq. (36) remains

well defined. This leads to

02— 1/4
02 —1/4]

In real space, the |Q2 — 1/4] < ¢,92 condition corresponds to the regular poloidal

a .

. S

for |Q2—~1/4] > 0% . (44)

harmonics of the discrete spectrum, while the singular structure, which appears for
|QZ — 1/4] > €,02, is that of the poloidal harmonics of the continuous spectrum (cf.

Appendix A). The expression of §3g, thus, becomes

0 (0) (0) .
éwg) = g(#) [q/—[‘_ cos( +29'° ) + /Ty sin (0+20" e¥V | (45)

That the expression given by Eq. (45) is valid for |Q2 — 1/4| > ¢,0Q?, i.e. inside
the continuous spectrum, is of crucial importance. In fact, using arguments based
on causality constraints, the ballooning approach can be generalized to handle both
regular and singular (unnormalizable) poloidal harmonics; i.e., to simultaneously
describe discrete and continuous MHD spectra. Although only the lowest-order

two-dimensional eigenvalue problem for the undamped TAE is analyzed here, this

fact is important since it allows us to derive the eigenmode structure and the local
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dispersion relation at the continuum resonances. In this respect, by means of the
Fourier Transform of the Ballooning Eigenfunction (see Appendix B), we will be
able to find the singular behaviour of the poloidal harmonics of the continuous
spectrum at the resonances (see Appendix A). This is achieved, of course, with the
proper analytic continuation of 4 based on causality arguments.

In the ‘Internal Region’ |¢, 0] << 1, O(e,) terms in Eq. (39) are negligible.

Equation (39) then reduces to

2
02 . 1 . QCOS(0+0](¢D)) 3 (S'—QCOS(6+0£0))) Sy =0 (46)
56z " 1 1+ p? (1+p?)° e
where
— o6 — asin(@+ 60 ,
p = s8 — asin(f +6)) . (47)

Assume now that we can find the independent solutions of Eq. (46). This
can be done analytically for asymptotic values of the parameters and, in gen-
eral, numerically.?* In the overlapping region between ‘Internal’ and ‘External’
regions, Max(1,a)/s << |8] << 1/¢,, the asymptotic behaviour of the indepen-
dent solutions of Eq. (46) is cos(6/2) or sin(f/2). At 8 = 0, the values of the
asymptotic solution = cos(0/2) and of its first derivative are 57&&*)(0?),5@) and
Jwgi)’(Gio),s,a). Because of the symmetry of Eq. (46) under the parity transfor-

mation (8 — —6; 0£0) — —0{”), we have

S s, a) § 1. |

900, 5,0) = §3M(=0",5,0) = 8P ,
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4ok -

P60 s a) = sy,

(Slb((;-)l(oimus‘a) = —6¢'£+ ( 6£0)7‘~, ) = "‘Sl])é : (48)

Analogously, for the asymptotic solution ~ sin(8/2), we find

SO0, s,0) = S, ,
SN0 s 0) = —8¢H(=00 sa) = —59, ,

S0 s,a) = 6y,

6‘1)&')'(95:]), St,a) = 511['_{,'*')’(—0)(‘0),5,&) = 512): : (49)

The 27 periodicity in 9&0) of Eq. (46) gives the same periodicity to the functions
defined in Eqs. (48) and (49). Using these results, the solutions of Eq. (46), which

asymptotically match § ¢£§” of Eq. (45), assume the following expressions at § = 0:

sty = o {[\/—r §v. + \/17;61/;, cos (—ﬁ—)
0)
+ [\/E.-Jxlzc \/_Jw,] sm( )} ,

(50)

§¢i0) = {[\/——F—M s \/_1“:61/» COS( (0))
+ [VTsut - ooy Sm( )} ;

I

5§70

{[\/T&‘/}c + \/1::61/),] cos (-f;—)
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(©)
+ [-\/F:5J:c + \/—F-éz/'),] sin (9—’{:—)} ,

(51)

Y - - 9(.0)
sl = o) {— [\/—F_Jwé + \/I‘+<Sw;] cos (v%-) +

(
+ [TSsd, - \~T_65) sin (9"70))} .

The ‘Internal Solutions’ of Eq. (46), given by Eqs. (50) and (51), must match

at § = 0. This leads to the following local dispersion relation

F (09,0 as) =

where

T QN
o

h
I

and Z%? = | + 4(H?

2(00,5,0)7 +2G(6,5,0) (02 — 1/4) + (52)

+2,02 (H(Gﬁo),s,a) cos «9,&0) + L(G,(,O),s,a) sin 9£0)) =0;

Sbe 6, + S, 8PL + 8V, 6. + 6¥. 59, )
(6%, 89, — 6.9, + 60,69, — SYLd0e)
(6w, 09, + 6y 83, + 8%, 6D, + SYL69.)

!
2
!
i
5 (0o, ~ 69,60, ~ 8u 8% + SYL69.) (53)

— G?* + L?). Equation (52) and (53) indicate that to determine

the explicit dependence of F(8{”), 02 a,s) on s, a and 0£°), one needs only to solve

Eq. (46). This task is considerably simpler than the original problem given by

Eq. (39) and. furthermore, can be solved numerically. Finally, noting that Z,G, H

are even and L is odd in 9&0), Eq. (52), the local dispersion relation, is then even

in 920), reflecting the up-down symmetry of the equilibrium.
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B. The Global Radial Eigenvalue Problem

Here, we shall employ the WKB technique to analyze the next-order global ra-
dial eigenmode problem. In the case of F(Ofco), 02, a, s) being a monotonic function
of t, one can show that there are two turning points, t = (1) and t = t(Tz), in-
side the frequency gap.?® The envelope function decays exponentially outside the
turning points. This makes A(t) itself exponentially small for the poloidal harmon-
ics of the continuous spectrum. As a consequence, the resonant damping of the

mode is small; justifies, thus, a perturbative calculation. Defining z = a;t with

~((9F/0t)[(8*F 36, _ 4+ we find M for z < x4,

K cm/4+1k1r—\'1rz:l.’})/|nl| s 0(‘0) A
ALNz) = exp | -1 /(” *_dz| | (34)
NCIIETIR 2! i
I\ being an arbitrary constant, and k the radial quantum number. For zg}) <r<
P,

(o) 2K z!’?) 9&0) ™
A1) = —=———=—== sin / —dz + = | ; (33)
oF26® s ol 4

and, finally, for z > a:( )

K eim/4 z plo)
A(+)('L‘) = ——\.E-.__-__ exp i/(” ?.k_..dx . (56)
\VOF/36Y 2 ]
Here, ™ > 0(.0 > 0 for =y () <z < xm, while 0(0) =7+ zSOk) for z < z( ) and

0&0) = 1\59(0) for z > 1 (the imaginary part of 6’k , 30(0 > 0 in both cases) in

the gap region. The global dispersion relation for £, is given by?!

/” (O, 0 5,0)d0 = kr ke Z, (57)
Q0
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which is the quantization condition for the area enclosed by the phase trajectory
t(0\”) and the 6\ axis in the (6., t) plane, as shown in Fig.5.

Equations (54) to (37) represent general results in the case of a monotouic
variation of F(HLO), 02, a,s) with ¢. In principle, we could solve the local dispersion
relation (which is a transcendental function) for 9?) as a function of t. However. the
phase integrals in the WKB expression of the envelope A(t) and the quantization
condition must, in general, be computed numerically.

The typical global radial width of the envelope function and, therefore, of the
mode is Arrig = €,L4. This is consistent with the assumption of radial mode
localization (Arrag << a) and with the possibility of solving the problem with
a two-scale expansion scheme, since Arrag >> Ar,, the typical distance between
rational surfaces.

The case of a local parabolic profile of F(Bio),ﬂg,a,s) (i.e. OF/0t|t=sr = 0 and
0*F[0t?|,=., # 0) can be treated in the same way and gives Ar = ¢}/*r (L 4/nr,)"/2.
It is thus less interesting (and less general) than the case considered here.

It is also worthwhile to note that the presence of mode structures having short
poloidal wavelength patterns (ky ~ mo/r,) with, however, a rather extended global

radial width Ar ~ ¢, L4 may have interesting implications for transport issues.>"
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V. Variational Formulation and Resonant Damping

Substituting the poloidal harmonics § ¢, expressed in Eq. (36) into the La-

grangian of Eq. (33), the variational formulation of the TAE eigenvalue problem

reduces to

0 Lyr +i(5LR =0.

Here, 6 Lyg is the nonresonant component of the Lagrangian, due to the contri-
bution of the regular Fourier harmonics excited within the gap region (cf. Fig.3);
while the imaginary term, the resonant Lagrangian §Lgr, comes from the contri-
bution to Eq. (35) due to the singular poloidal harmonics excited in the continu-
ous shear Alfvén spectrum. The lowest order real eigenfrequency , clearly gives

0 Lxr(f) = 0, identically. The nonresonant Lagrangian can be written as

6Lyr 2 2TT AT, +00 . ]
sor = K [ AW L (5)

where A(t) is the envelope function given by Egs. (54) through (56), and

12

§Llar = f_::o do {l-é% Y| — [03 (1 + 2¢, cos(f + 0£°))) -

ot sl

(1 + p?)? (1+p?)
In the next order, we calculate the resonant Lagrangian 6 Lgp to derive the

general expression for the TAE continuum damping

l _ 5LR 59
0 = T XML/ (59)
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[t is interesting to note that Eq. (59) can be also derived from energy conservation.*!

Because of the singular layer ordering (cf. Appendix A), 8/9t = 1/¢,, only
quadratic terms in the radial derivatives need to be kept to evaluate the leading-

order 6 Lg; i.e.,

18 Lp 2mr,Ary .
ok, = e R [ - esary

+ (=17 -02) 18:88enl” -

~ €02 (0:60; 0: 6 buar + )| (60)

In Eq. (60) £ = (¢t —¢), and the sum is over all resonances, and the ‘¢th’ resonance

consists of contributions due to the pcloidal harmonics £ and ¢+ 1 (cf. Fig.2). The

expressions for 6,,.545(,0) and 8,6(;5&?1 can be obtained solving the truncated two-mode

Eq. (34) for z — 1/2. We then find (see Appendix A)

0 0 _ Belle=172-0%) + ¢, 02C, ,
6.7,' 5¢( - D( ) (‘—14)
0 0y _ C( (132 - QE) + € Qg B( .
amé‘qsﬂ-l - D( 1 (‘4‘0)
D= (2*-02) ((z-1)-02) - &0 . (A.6)

By substitution of Egs. (A.4) to (A.6) into Eq. (60), the integrand there becomes

[.] = 53 {1B® [(z 1) = 2] + Co® (27~ 02) +

+ (£02)" (BCT + BiCy)} (61)

Note that in Eq. (61) correct complex conjugate operations have been explicitly

carried out in order to satisfy the causality constraint and properly define analytic
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continuation in the complex Q, plane. Thus, letting Q, — Q, + 1A with Q, real

and A > 0, we have

D; = (z-12-02) (22-02) - 208 +

+2iQ,A [(27 - 02) + ((z = 1)? - 2) + 2202] |

For Q, = £1/2 +49Q, and = = 1/2 + éz, we have

2

D; = (503 ~ §z? - %) ~ 2A6Q, .

Outside the ‘gap region’, where the resonances with the continuous shear Alfvén
spectrum occur, 622 > ¢2/16 and the equation D; = 0 can be solved for z =
8z, +1dz;, with

6Q,

dx = +A F 1A ,
At

A¢ being given by the expression

€2 1\?
A = \[608 - 2 = (Qg - Z) — e (62)

Thus, we can write

D; = - [(51—/\34-113%) (527-{-/\(—1{36(20)] .
A A¢

Due to the resonant structure of the denominator in the integrand of Eq. (60), the

integral picks up an imaginary part coming from the residues of the simple poles.

The resonant Lagrangian of Eq. (60) becomes thus
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16 Lp _  ,27r,Ar, . g 20, |6 Q,| 2
L -G ) T [

4
OQO - -
(Celt = s5= (B Ce + BeC;)| (63)

Note that the expressions for By and C; can be derived (cf. Appendix B) via
the matching of the solution of the truncated two-mode Euler Lagrange equations,
Ecs. (A.1), with the Fourier Transform of the ballooning eigenfunctions, and are
given by Egs. (B.7). As discussed thereafter, B, and C¢ are independent on the
normalization function N(t) chosen for the ballooning eigenfunction ®(9(¢,8). A

particularly convenient choice for N(t)** allows us to rewrite Eq. (63) as

i6Lp 5, 21mr,Ar, Q, . 2
3R, - N TR A D A (%4

With the same normalization, one can explicitly show that
s — (0) 2
dLyr = - F(6;,,95,a,s) , (65)

where F(Oﬁo),ﬂﬁ,a,s) is the local dispersion function of Eq. (52). This identity

demonstrates the consistency of the two approaches, as it should.

Substituting Egs. (65) and (64), along with Eq. (58), into Eq. (59), we obtain the
following general expression for the TAE mode damping rate due to finite coupling

with the continuous shear Alfvén spectrum

¥ Ae|Adl?
2] T o 0 e | (66)

202 [ 1AW PP, 0%, a,5) d

Here, we note that 9/99? acts only on the F(Gio),Qg,a,s). In the high mode

number limit, ne, >> 1, Eq. (66) is generally valid and requires only knowing
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the envelope function A(t) and the local dispersion function. On the other hand,
Equations (54) through (56) are valid for F(Gﬁo),ﬂg,a,s) varying monotonically
with ¢. Similar analytic expressions can be derived for a local parabolic profile
of the dispersion function. However, in the most general case, the phase integrals
appearing in the WKB expression of the radial envelope, the quantization condition, -

Eq. (57), and the damping rate, Eq.(66), must be computed numerically.
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VI. Resonant Camping for a Linear 2 Profile

In the following, in order to make further analytic progress, we specialize to the

case of a linear Q2 profile; i.e. Q2 = Q2 (1 + at), where

AL 1 _ To (67)
¢ = Lia ng'(ro)La - nq(ro)sLa ’

0 o \|”
o (32)(2)

with a a7 s constant. In particular, employing for A(¢) the WKB expression of

La

; (68)

Eq. (55), the denominator of Eq. (66) becomes

t 2 =2 (0)
1(025,0) = [ 80z i SO e ([ a4 S
t< |oF /06" : il 4

Here, t< and t, refer to the two turning points coordinates and exponentially small
contributions outside the turning points have been neglected. Due to the fast
(relative to the scale length of F(@,(co‘,ﬂz,a,s), i.e., of the equilibrium) oscillations
of the phase integral appearing in the previous expression, we can replace the
sinusoidal function with its average value, i.e., sin?(...) = 1/2. Moreover, from the

local dispersion relation, we have

doe _ _ a |d8
dt — a|| dt |’
and
OF _ a |OF
ot ~ la| | Bt
Noting that
oY) 9F/ot
dt aF 5"
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and changing the integration variable from ¢ to 9£°), we have

(0)
[(@25,0) = 4 17 [T T 4||| (69)

that is, Eq. (66) becomes

v la| 2 -
—_ = - A . 0
TN K] Ee ¢|Ad (70)
To go further, we first note that Z,G, H and L are periodic functions in 0{.0).

The local dispersion relation, Eq. (52), can thus be conveniently expressed as a

Fourier series; i.e.

F (60,02 a,5) = Z(80,s,0)5+2G(80,s,0) (22 - 1/4) + (71)
+2 6,02 ( H(G,(‘o),s,a) cos GLO) + L(Hio),s,a) sin 9{.0) ) =
= Z [Zm(s, @)y + 2Gn(s,a) (Qg - 1/4) + €02 (Hpoi(s,a) +
m=-1

+ Hn1(5,@) + Lt (5,@) = Lm-y(s,@))] cosm8l” = 0 .

Here, the subscript m denotes the mth Fourier component and all quantities are
meant to vanish for negative values of their index.

In the gap region, between the WKB turning points, 0 < 0£°) <m, 9,(,0) =7
corresponding to the turning point t(l) closer to the lower shear Alfvén continuous
spectrum (Q%(1+¢,) < 1/4); and 9( V=0 corresponding to t ) closer to the upper
continuum (Q3(1 — ¢,) > 1/4). In the exponentially decaying regions outside tT”
and t(T?’ but inside the gap, 6{0) has constant real part and picks up a positive

V

imaginary part. Finally, in the upper continuum, we have Gf:"‘ = ﬁ(”,—ﬂT + "Ik
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and, in the lower continuum, 05‘0) =7 - 51(¢ gt mk . Here, B(i) and n(i)
positive definite phases which can be calculated from the local dispersion relation

Eq. (52). The resonance with the continuum occurs at at > atg(4) (upper) and

at < atp(-) (lower), with

1

alpix) = =1 £ ¢ + Zﬁ; .
o

The summation in Eq. (70) can be further approximated as (let y = at)

at ,\( ) 2
>oaclal = [0 2 a0 ay +
o AH(y) 2
= AW ()| dy ; 72
+‘/ata(+) |al ‘ (y)l ! (72)
where
AF)(y) = \/Qg (y--yn(i))2 + 26,08 (y - yr) » (73)

and A(®) are given by the WKB expressions of Eq. (56) and Eq. (54). In the present
form, Eq. (72) is still analytically intractable. To approximate it further, we note
that the envelope function is exponentially decaying and, thus, the dominant wave

absorption occurs near yp+). We can then approximate

K eim/4+ikn—iny/la| 9\
AF)(y) ~ exp T+ 22 Y — YR(- ) 74
( \/6F/39(°)‘ |a| ( R( )) (74)
YR(-)
I{eiw/ai 05‘0)
AM(y) =~ exp | —R— =% (y—y , (75
(v) \/817/60(0)[ ( |a| ( R(+)) )
YR(+)
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and

A (y) ~ Q:\/:t2eo (v - vrw) - (76)

Here, Gk(i (s, @) are the values of the imaginary part of 9£°) at the resonance points

tR(+), i-e. they are solutions of

(=]

ST (D" [ £2Gm + (Hmot + Hmr) +

m=-~1

4+ (Lm41 = L;m—1) ] cosh mﬂk(i) 0.

The tunneling factors T and R, meanwhile, determine the strength of the mode

coupling to the continuous shear Alfvén spectrum, and are given by

() «p(0) (0 )
T /yr {0 dy and R = /vnm RN (77)
)

R(-) |a| @

Noting Eq. (71), we can also write

oF =
Eaﬁﬁ =:COQ§}%i),
k lyneg)
with
Pay = | 3 (£1)"m [£2Gm + (Hmor + Hnpr)+
m=-1

+ (Lmt1 — Lim—1)] sinh mB,‘(t)

The resonant damping rate, Eq. (59), can then be approximated as

vl fexp(=2T)  exp(-2R) )
12| 16 wi/2¢l/? P(_)Gi?)f)/z P(+)9£(:)+3)/2
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Explicit expressions of T and R can be obtained from Eq. (77), changing the inte-
gration variable from y to 9&0), along with the local dispersion relation, Eq. (52),%

and the results are

(0) (o
T - € ko) / HcosB + Lsin, ) N (19)
la] *=) 7 ]a] (Z* +4G?) o ..
Gk =w+iz
FIC) )
Lo [Tk |Z] 2 2 (0) a0 2]?
+ z | Z2°4+4G* - 4(H cos¥d +Lsm0() }
ol b, “ a0 | (H concl ) e
I 1/2
_ k(-) 2 2 (0) . (0))\2
|a| ./ (22 +4G?) +4G'2) 2 +40G 4(H cosfy” + L sin 6 ) }8‘(‘0)=7r+i1:
€ p G (H cos 8 ) + Lsing”)
R = 09(0) / <+v de
jal 50 ¥ o] (72 +407) o T
9,‘ =41z
g oo g, 2L [Z2+4c:2 4 (H cos6® + L sin®)"] "
ol Jo, “F (27 +4G7) =4 (H cos" + L sin k)}eg)=+;,
gt
€o k(+) Z 1/2
S dr — 2 [ 2 2 (0) (0) ]
+ ial Jo T 7T+ 4G7) Z*+4G 4(H cosf,’ + L sinf; ) 4O i

Here, 5,(:2)*)(5, a) is the solution of the equation

[Zz+4G2—4(Hcos€£o)+Lsin9£°)) ] =0.

o‘°’—;6}“}’i, +(1/2F1/2)x
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VII. Limiting Cases and Numerical Results

A. Zero-Pressure (a = 0) case

With @ = 0, one can show from Eq. (46) that onfy the zeroth Fourier
harmonics of Z,G and H contribute to the local dispersion relation.?®?! One
finds 6,(‘?)5:) = arccosh |G,/ H,|, (;,(:()L) = arccosh(1/k),x* = 4H?/(Z? + 4G?), and
Pi+y = 2|H,|sinh Om:) = 2\/G? — H?. Equations (78) to (80) then reduce to

G -3/2
N a2 [arccosh E‘l]
] T T 327 /e Gl H? (=) (=2 )
T
where
€o Co Go Gg
T = marccosh |a|H -H—2 -1+

€ |Zo| arccosh(1/«x) " oo’
+ o / dz /1 - -
lal \/Z2 + 4G? JarccoshiGa/h| oS

€ Z, /arccosh(l/n) d m (82)
T R e z\1 - k?cosh’z |,
lal /22 + 4G2 Jo

and

0Go 2 |G| .
|a|H" H?

€o IZOI arccosh(1/x) . -
+ = / dz /1 -
|a| /ZZ + 4G? Jarccosh|Go/Ho| wocoshiz +

€ Zo /arccosh(l/n) d \/1—__—2_-},2_
— e T — Kk?cosh’z . 83
lal \/Z2 + 4G2 Jo (83)

These results recover those previously obtained in Ref. [20] and Ref. [21]. All

€
R = ——arccosh
|al

quantities Z,(s), G,(s), and H,(s) are functions of the magnetic shear s only.
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In the s << 1 limit, it can be shown that Z,(s) = 1, G,(s) = sm/4, H,(s) =
—(sm/4)(1 + 1/s)exp(—1/s), T = ¢,sm*/8|a| and R = 2¢,/|als.?*?* Equation (S1),
meanwhile, reduces to Eq. (21) of Ref. [20].

In the s >> 1 limit, one finds Z,(s) = ~ (1 — 7#?/6s — m4/72s%), G,(s) = (s7/2),
H,(s) = =(sm/2)(1 = 1/6s%), T = ¢,/2s°r%|a| and R = €,m2/15 - 35/25!1/2|q| 23 M

For arbitrary shear, the functions appearing in Eq. (81) and the tunneling co-

efficients must be computed numerically. Equation (81) can be rewritten as

77 - - oo () e (i)
which is the form proposed by Rosenbluth and coworkers in Ref. [21]. Further-
more, one can readily employ Table 1 for the case @ = 0 but finite shear. Equa-
tion (84) contains the functions I'(s), T(s) and R(s) directly comparable with those
of Ref. [21]. The agreement between the results obtained with two completely dif-

20,21 ;

ferent techniques is reassuring.

B. Finite-Pressure Case

The most important finite pressure (a # 0) effect on the mode structure involves
the mode localization. In particular, as & increases, the WKB turning points are
found to shift towards the lower continuous shear Alfvén spectrum. At a = a.(s),
the tunneling region on the lower continuum side disappears; that is tg}) = tR(-)
and 02?)_)(3,0:(,) = 0. The TAE mode then strongly couples to the shear Alfvén
continuous spectrum and becomes heavily damped. One can show?*4? that for
s<<1

2

K 1
e 1— - ‘1/’),
« s+1< (1+s>e
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and that, for s >> 1,

a. ~ s+1—-+v2s4+1.

It is interesting to note that, for s >> 1, a. asymptoticaily coincides with the
marginal stability of ideal Ballooning modes.*®*! The values of a.(s), as obtained
from the condition Gk( y(s,ac) = 0, are given in Table 2, where they are compared
with the analytical predictions. The values of a.(s) for s >> 1 obtained in Ref. {40]
from a numerical dispersion relation at 9,&0) = 0 are slightly higher, since the global
threshold coincides with the local result at 8 = r.23.24

To examine the damping near a = a.(s) more carefully, we note that the general
expression of the continuum damping rate given by Eq. (78) can be rewritten, with

explicit parametric dependences on ¢, and |a|, as

32 |, R
|go| = Icii/2T {P( (s, ) exp( IJIT(s,a)> +
( a) exp ( 2%1?(3,&))} , (83)

which reduces to Eq. (84) as a — 0. The definition of the functions (s, a),
T(s,a), [u(s, a) and R(s,a) is evident from a comparison of Eqgs. (78) and (83).
Equation (85), however, diverges as a — a.(s), since the Taylor expansion
of the WKB phase in the expression of the envelope function A(t), as given by
Egs. (74) and (75), as already mentioned, breaks down in this limit. An improved
damping can be derived using the leading order WKB radial envelope as it is given

by Eqs. (54) and (56).2* Equation (85) is then modified to
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5 |a|?/?

o - Civn {W,I'}(s,a) exp (—2-|—°|- (s, )) +
+ W, Tu(s, ) exp (-zlia"-liz(s,a))} : (6)

Here, W, and W, are weighting factors that approach unity as

20 )eo/|a| >>1,

(i.e. ne, >> 1), If we let 0£°) = ,(c )IWLI + in,(c') in the lower continuum,

0(0) ,(c+ I_STLI + zn,c ) in the upper continuum, and let z = |t — tr(x)| - lal/€, then

4 € 32
Wiwo (s 0u6/lal) = Pa 95:?5)/27 (m) /0 dz Vz? + 2z -

exp [~ 2 (eo/la]) J5 nf*de]
P(u,l)( B ’nl(ci))

, (87)

with

i m (£1)™ {Z,,, Vz? + 2z

m=-1

P (2,80, 1)) =

[cos (mﬂ( )) sinh (mn( )) — 1 sin (mﬁ,(f)) cosh (mn,(f))] +
+ [£2Gn (2 +1) + Hner + Hnpt + Lnpt — L]

[sin (mﬁ,(f)) cosh (mn,(f)) + 1 cos (mﬁ,(‘i ) sinh (mn(i))]” .

At the continuum position z = ﬁ(i) = 0, n(*) 9,‘(*) and Py = Fs). In
this respect, Eqs. (85) and (86) may be considered as, respectively, the upper
and lower bounds for the continuum damping as a — a.(s).?* While the precise

determination of the damping in this limit requires a non-perturbative calculation,
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we can, however, estimate it. In fact, note that T(s, ac) =0, ng‘g(s, a) = 0(1-10)
as a — ac(s) (cf. Table 5 and Ref. [24]) and ¢,/|a| = (ne,)sq.La/T,. From Eq. (36)
we then have

¥
12|

. 7 \3/2
~ 0.18 ¢, Wolo(s, @) (ne,)™*? (sjq(,)'a/2 (Z:) . (88)
For the optimal ordering ne, = r,/L4 = sq, = O(1), Eq. (88) gives |v/€,0] =
0(0.1 —1).

In general, the functions ['¢(s, a), T(s,a), f‘u(s,a) and R(s,a) appearing in the
damping expressions Eqs. (85) and (86), along with the weighting factors W, and
W, entering in Eq. (86), must be computed numerically and can be conveniently
expressed in a tabular form. In the following, results are given for increasing values
of a and shear values s = 0.5 and s = 1.0 (cf. Tables 3 to 5), which show how
the damping increases as a approaches a.(s). A complete collection of tabulated
functions is given in Ref. [24], for 0.1 < s <3 and 0 < a < a.(s).

In the s << 1,a << 1 limit, it is possible to give an analytic expression for
the functions of the parameters (s, a) entering in the resonant damping expression.
With the definitions #/ = (1 + 1/s) e™'/* and & = a (1+s)/s? the resonant damping
of Eq. (85) reduces to?4

o lapr exp [~2 (eo/la) T(s, )] N
[N 82 ¢yl [(1 -a&)? - ﬁ2]1/2 [arccosh (11,.,-‘51)]3/2
exp [~2(¢o/la]) A(s, )] }

a7 = 7] Jasccosh (122)

(89)
with

) 2,2 A .2

T(s,a) =~ i—;— arccosh (l___a) [(1 - a)l + 22_] ,
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a

R(s,a) =~ 2arccosh

a
(7+
n
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VIII. Summary and Discussions

In the present work, we have formulated a general theoretical approach for
analyzing the two-dimensional structure of high-n Toroidal Alfvén Eigenmodes in
large-aspect-ratio tokamaks, using the well known (s, a) equilibrium model.?® Such
studies determine the radial envelope of the poloidal harmonics and, thus, are
important in assessing the resonant damping rate due to finite coupling to the

continuous shear Alfvén spectrum.

The present approach naturally treats modes with extended radial structures
characterized by well-spaced WKB turning point pairs (cf. Fig.4), and is also
capable of analyzing the finite coupling between two-dimensional high-n discrete
and continuous spectra as well as other non-ideal effects.3® In this respect, it may
be regarded as a generalized ballooning formalism. The technique employed here
to “generate” a radial eigenvalue problem from the local dispersion relation (see
the discussion given in Section II) is, meanwhile, very general, and can be used for
the solution of any two-dimensional problem characterized by two distinct scales,
e.g. typically for high-n modes.’

In this work, we have further specialized our considerations to the case of linearly
varying equilibrium profiles in order to illustrate the application of this formalism in
sufficient details. In the a = 0 pressureless limit, the previously obtained results?°!
are recovered. The analysis has also been generalized to the case with arbitrary
shear s and dimensionless pressure gradient a. In particular, it is demonstrated that
a critical value a.(s) exists (which asymptotically coincides with the Troyon limit),
at which the tunneling region of the TAE radial envelope towards the lower shear

Alfvén continuum disappears, causing a strong coupling of the mode to the con-
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tinuous spectrum. The corresponding resonant damping ra.te, meanwhile, increases
significantly as a.(s) is approached and is typically ordered as O(0.1 — 1)e,wa.
The damping given by Egs. (78) and (86) must be compared with, e.g., the
electron Landau damping (v/|Q%]|)r & —(Beme/m;)/%. In ITER,*? for example,
the toroidal magnetic field on axis is = 5T, the electron density is n,< 10Mem =3
and the peak electron temperature is T, & 35/KeV. Thus . = 0.05 and (v/|Q0|)r =
-3.7x1073. In the case of TFTR and JET, the electron Landau damping is even
lower, because of the lower T, =~ 5KeV. To get an estimate of the continuum
damping, we need to give an order of magnitude for a and s in these devices. Since
the resonant excitation of TAE’s occurs close to the plasma center, where most
of the fusion alphas are born, s is expected to be small due to the relatively flat
q(r) profile. Similarly, estimating o =< 8 > R,/a, we have a2 0.15 in ITER,
while o =~ 0.03 — 0.05 in TFTR and JET. Taking a common value of s = 0.5
for all these machines, we see that ITER would be above the predicted a, =~ 0.14
threshold for strong continuum TAE damping. Taking ¢, = 0.2 — 0.3, ne, = 1
(ie. n =3-235), |a|] = 1/n and s = 0.5, with the help of Tables 3 and 5, we
have (7/|Q|), = —(1 = 1.5)x1072 for & = 0.05 and (7/|Q|). = —(3 — 5)x10-?
for a = 0.13, the subscript r staying for ‘resonant damping’. In both cases, the
continuum (resonant) damping is much larger (an order 5 to 20) than the electron
Landau damping. Close to a. ~ 0.14 the damping is already of order O(¢,) as
expected for a2 a.. In the presence of circulating beam particles (or fusion alphas),
the linear mode drive is (v/|Q|) ~ Bifakopn Ro/ Lpy,'! with ps being the Larmor
radius of the energetic (‘hot’, subscript h) particles, Lps the scale length of their

pressure profile, fy the fraction of resonant particles, and kgps = €¢,/s.'"!® Thus,
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assuming €, R,/ Lpn = fn = O(1), we have a marginal stability threshold for TAE
modes at Gy ~ O(|7/|Ql|-) = O(10~%,10"),2023 the higher values corresponding
to a2 ac. This values are of the same order of the ones discussed in Ref. [43], but
they are a consequence of the global equilibrium properties of hot plasmas, and
not of a finite plasma conductivity. Looking at the values of (v/|Q,]), obtained
previously, we can conclude that TAE might be difficult to excite close to the
threshold o = a.. It is necessary to remark that our theoretical results only give
approximated estimates of the continuum damping for ne, = 1; appropriate for
the present experiments. We can, nevertheless, conclude that finite pressure effects
will be very important in enhancing the TAE continuum damping, especially in
the central, low shear, plasma region, where a. could be easily exceeded. This
stabilizing effect should be more significant in ITER, where « is larger and medium
to high toroidal mode numbers can be excited. In the present machines, such as
TFTR and JET, n< 3 are more likely dominant and the finite-a continuum damping
enhancement has to be taken as a qualitative indication, since the damping rates
of low-n TAE's, in principle, must be computed numerically.

One interesting feature of the high-n TAE eigenmode structure is the short
poloidal wavelength of order O(a/m,) and the rather broad extent of the radial
envelope; i.e. O(e,L4) and O(el/*r,(La/nr,)'/?) in the cases of, respectively, linear
and parabolic radial equilibrium profiles. These broad radial structures suggest
that, at least in the linear phase, the plasma may develop vortices with long radial

correlation length, and, therefore, may have significant implications to transport

issues.37:38

Finally we note that, while we have limited our present work to a model equi-
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librium with shifted circular magnetic surfaces, the theoretical approach developed
here could be straightforwardly extended to equilibria with finite ellipticity and
triangularity. In such cases there are additional modes, such as high-n Elliptic-
ity induced Alfvén Eigenmodes* etc.. On the other hand, the physical picture of
continuum damping, as developed here, can be expected to remain about the same.

The present formalism could be also further generalized to include effects such
as equilibria with flow as well as wave-particle resonances to have a more complete

description of instability damping and growth mechanisms.
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Appendix A. Singular Structure of the Resonant Poloidal

Harmonics

Let us consider Eqgs. (34) of Section III. We will focus our attention on a case
in which the resonance involves the ¢ and the ¢ 4 1 poloidal harmonics, i.e., we
will find the behaviour of these solutions, close to the point where the cylindrical
continuous shear Alfvén spectra of the £ and ¢ + 1 modes coalesce. This occurs for

t~{¢+1/2. Let z =(t — ¢). Then we have the Euler-Lagrange equations

15} 2 3 0 o2
325 (z+1)* -] 55001 — eoﬂ§s2a—ﬁ (Sde—z + 6¢¢) + ... = 0,
0 0 52
328_3. (3;2 - Qg] -é;&ﬁe — €,0? 2@3(6@_, +6be41) +...=0, (A.1)
) 6 2 2 3 2 2 82
S B‘; [(Ji -1)" - Qo] &'&blﬂ — €8s 0—1—2(6¢[+(5¢¢+2) +..=0.

Here, only the highest order radial derivatives appearing in Egs. (34) have been in-
cluded explicitly. The dots stay for the remaining terms, which are negligible in the
present analysis. Since Q2 >~ 1/4 and z =~ 1/2, only [z? — Q2] and [(z — 1)? — Q?]
are vanishing in the region of interest. Assume , ~ 1/2 (the case Q, ~ —1/2 is

identically equivalent). Then, given é©, = Q, — 1/2 and §z = z — 1/2, we have

(2% - Q% ~ 6z - 46Q, ,
[(z-1)2-0Q% ~ -6z - 89, .

Equations (A.1) can be treated with a two scale analysis, given the slow scale

z and the fast scale y = §z/¢,Q2. To do so, we expand d¢; as

5¢i = 66O (z,y) + e.0266(2,y) + ... .
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To the lowest order, the first of Eqs. (A.1) is then

9% 1
52 [(IB + 1)2 - Qz] -a—-——-—5¢$c.).)1 =90 ’

from which

56 (z,y) = 862 (2) + yF(z) ,

where F(z) must be set to zero in order to avoid secularities in the fast variable
y. Therefore, §¢¢-; does not have any structure on the fast scale y to the lowest

order. The singular behaviour appears in the next order, driven by the harmonic

5¢£0), ie.,

62
s [(z +1)? —QZ] 6¢“’ = s 5!/75¢$°’ :

but the determination of the first order correction is beyond our need. The same
calculation could be done for d¢e42, which in general proves how, close to a given
resonance, only the two closest neighbouring harmonics (in this case §¢; and d¢ey )
exhibit a singular behaviour to the lowest order in the expansion parameter ¢,02.

Therefore, to the lowest order, Egs. (A.1) reduce to

d N, ] 0
2 _ o 2 £.(0) (0)
s Oy [y eoﬂg} oy ¢ 64)’“ 0,
0 N, 1 0
2 0 (0) (0)
S _—ay [y + CoQZ} _—ay ddey) + 6¢ 0 (A.2)

These equations are equivalent to the system

62
5¢(°> - 6093325;6&331 =0,

, 0
52 7% 5
22 (e - 0d) Zod - oo Tosa =0 (a
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solved as z — 1/2. Equations (A.3) are exactly integrable, and give

d ©) _ B;((m—l)z—ﬂﬁ) +e.,Q§C,
azéd)( = D, - , (A4)
_6_ (0 _ Cg($2 - QZ) + 6093 B,
oz 6¢€+1 - D( ) (’\'5)
D= (22-02) ((e-1)?2-02) - &, (A.6)

where B, and C, are integration constants.

The coefficients B, and C¢ can be expressed in terms of the regular part of the

magnetic field compression at resonance, @“‘, and S’EII.C+1' More precisely, we have

that?*

B = -<gr U

)
(o S

-2 gt
Cc

Ce (A7)

Equations (A.7) along with Eq. (63) demonstrate that the wave absorption at the
resonance with the shear Alfvén continuous spectrum is proportional to the ampli-
tude square of the magnetic field compression, as already emphasized by Chen and

Hasegawa*® for the cylindrical case.
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Appendix B. Fourier Transform of the Ballooning Eigen-

function

From Eq. (36), we know that in order to determine the functional form of the

poloidal harmonics 6 ¢;(t), we need to calculate

$(t,t — ) = (t,z) = /+°° dde= =0 ®(t,0) .

-0

Recall that ®(t,8) = 6 [1 + 127"/ (cf. Section IV.A); thus,

+00 dé

ot z) = /_oo \/1——:[—3'

According to Eqs. (A.4) and (A.5) of Appendix A, we need to determine

§(t,0) e %% . (B.1)

0: 8 #;(t) close to a given ‘resonance’; i.e., for |t — j + 1/2| < €. Since the en-

velope function A(t) is slowly varying, we have

0,6 9i(t) = A(j) 0z 8(J,z) >~ A(t) 0 4(t,z) .
Thus we are left with the calculation of

d +oo 0

"rg(o)__ -
=i = g(t,2) z[_w dem

Now, as in Section IV.A, let us introduce the scale T, such that [sT'| >>

5(t,0) =00

Max(1l,a) and |e,T| << 1. Similarly, we will also use the shifted variable
¢ =0- 9;,0), and, then, omit the prime superscript. The contribution to 9, ¢(t, z),
thus, comes from two distinct regions: |6] < T (Internal Region), and || > T

(External Region); that is,
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8+ 0
1+ [s6 = asin (8 + 0]’

i /T 46 0-—-05:0) . 2 6¢§—)(t’_-9) ei:f) _
° \/1 + [s6 — asin (6 - 6]

]

=2 [T do [5u(,0) 7 - St -0y ) 4
+0(z) +0(7m) + 0 (7)

where the (%) superscript refers to solutions § 4 for positive and negative argu-

ix&io) __a__

Jdz

b(t,z) = —i/OT dé sl (t,0)e " —

ments, respectively. The contribution from the integral of the External Region is

typically of order O(1/¢,) for |z + 1/2| = O(e,), while the contribution from the
Internal Region is of order O(T'). Thus

t

RET)\ = (tz) = = /;°° 40 [511)(;)“,9)6-4:0 — 5, —-8) e""]
+0 (%) +0 (#) + 0(;‘3}-) + 0(e,T) .
In the External Region, the solution 51/)?’ is given by Eq. (45). Thus, defining
Azy = (a) £ af)), we have

0 i —iz6®
o blte) = — 5 (A It + By 1) e7=% (B.2)

with




where the upper sign refers to [, and the lower sign to I3. From these expressions,

we can show that

-tT(z-— /2)

I, = et /2§ [(V‘F —1\/?‘:) -7T’7+zz—1/2)]+

e—'T(z+1/2)
-0 /2 . ( _ T ) -AT
+ e % z%‘[ o 4+3/Ty)e oo eyl I

iT(z-1/2)

= g ( T ) -4T
[2 = ek [ [_ -1 F+ 7+2$—1/9)]+
(z+1/2)
-6 /2 ( _ . ) 4T _€
+e Uk §R|: [ +: F+ (4 ’?-{-l(z‘-{-l/?,)] .

Noting that 0;d ¢; ~ A(t) 9; ¢(t,z) and Eq. (B.2), we have, for |z F1/2| = O(e,),

9 . _eHA(j) . Nt AW | . N(t) A
O e [am (ﬁ——;—iz,/:“r__?_>

~(e%}) (\[—T’-"-@z—‘ﬁ—’ ;iﬁff%ﬂi)] . (B3)

Here, N(t) is the normalization factor introduced in Section V. From the matching

of Eqgs. (50) and (51), we find that A(4) are given by

2 2
e §y F 8, §y. F 81
-+ din (_;__) [,/—__p__w__:;_i_\/[t_‘b_:;_ib_} |

Now, considering that Ajy; = e**®% 4; in the decaying region (i.e., also for the

(0) 7 ;
Nt Aw _ + cos (9k ) [\/Iwciwc + F+5¢,:t5¢,] -

resonant poloidal harmonics), we finally have, for |z — 1/2| = O(e,),



e (-7 (G- + @3- 1/08,) A4

6050 Ajn] = (2~ 1/2) [(35 —.(R2-1/4)a.) 4+

9 .
N(t)s =84,

+eQay Ajn |}, (B.4)
NtYs Dsg,, = 1 4 [ (44 02— 1/4)b_) A,
(s 5786m = m—am {3 [(as + @ - 1/05.) A1+
+eibe A ] - (2-1/2) [(3b- - (03 - 1/4)34) Aj +
+ € QZ&* Aj ]} ) (B.5)
with

6"/’c + 51/1: :}; 61/’: “‘.‘SELS

- 2 T

Equations (B.4) and (B.5) must match the corresponding expressions obtained
by direct solution of the two-mode truncated Eq. (34) of Section III (see Ap-

pendix A); i.e.,

0 o B,‘ ((.’E - 1)2 - QZ) + EoQg CJ'
5o00; = 3} : (4.4)
0 . Ci(z?=0%) + 02 B,
%6¢J+l - DJ ] (As)
D; = (2 - 02) ((z-1)? - 02) - 2! (A.6)

For [z - 1/2| = O(e,) and |Q2 — 1/4| = O(¢,), we have

D; = - ((z~1/2) + 4 .
Thus, we finally obtain
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N(G+1/2)sB; = - (3by = (2 =1/4)a_) A; ~ e.0%a44;41

NG+1/2)sC; = (3b- = (02 = 1/4)a4) Ajnr +.60%-4; . (B.7)

The amplitudes A; are themselves proportional to the normalization function
N(t),** since |A(t)|* ~ (8F/80")~! ~ |N(t)[?. This makes the coefficients B,
and Cj, defined in Eqgs. (B.7), independent on N(¢).
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Table Captions

Table 1: Coefficients Z,(s), G,(s) and H,(s) of the local dispersion relation, and
[(s), T(s) and R(s) appearing in the damping expression Eq. (84), as a function

of the magnetic shear s.

Table 2: Values of a.(s) from Gi?)_)(s,ac(s)) = 0, compared with the asymptotic

limits, s << 1 and s >> 1, computed analytically.

Table 3: Values of the functions f‘u(s,a), R(s,a), fg(s,a) and T(s,a) versus o at

s = 0.5.

Table 4: Values of the functions f‘u(s,a), R(s,a), f‘,(s,a) and T'(s, a) versus a at

s = 1.0.

Table 5: Values of the functions W,['¢(s,a) and W,[u(s,a) versus a at s = 0.5

and s = 1.0. The asymptotic parameter is ¢,/|a] = 100 in this case.
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Figure Captions

Figure 1: Continuous spectra for the (m,n) (full circles) and (m + 1,n) (crosses)
cylindrical shear Alfvén modes. When toroidicity effects are included, a frequency
gap appears in the shear Alfvén continuum. Here nq has been used as a radial

variable.

Figure 2: (a) Gap formation and gap structure for the poloidal harmonics m, m+ -
and m + 2. The form of each eigenfunction is given; in (b) for §¢m, in (c) for d@m+1

and in (d) for d@m+2.

Figure 3: (a) TAE eigenmode structure. The gap region [nAq| = ne,|q'L .|
corresponds to the spatial interval in which the TAE frequency is in the for- |
bidden frequency window of the continuous spectrum. The amplitude of the
poloidal harmonics outside the TAE localization region is exponentially small. Here

8¢ = ¥ ,n 6dm exp(—im8b). (b) Resonant excitation of the shear Alfvén continuum

at the TAE frequency.

Figure 4: Relation between the rad'al profile of the dispersion function
P"(H,(‘O):Qg,a,s) and the real WKB phase trajectories in the (0£°),t) plane. Q,

labels different phase trajectories. The structure repeats in 9£0) with period 27, 9,&0)

being a polidromic func.ion of ¢.

Figure 5: The shaded area is quantized according to the global dispersion relation

of TAE modes, Eq. (57).
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Table 1:

.

Zo(s) Golsh |  Hola) | o) | T(a) i __AGs) li

0.1 0.987S4E+00 0.786380E-01 -0.57015E-04 0.56840E-01 0.80080E-01 0.18778E402
0.2 0.94838E+00 0.15889E +00 -0.97%39E.02 0.96736E-01 0.10422E+400 0.83021£401
0.3 0.87971E400 0.24481E400 -0.58349E.01 0.13661E 400 0.95112E.01 0.45152E401
0.4 0.78743E+400 0.34232E+400 -0.14914E400 0.18102E400 0.76062E-01 0.24688E 401
0.5 0.68356E 400 0.45388E+00 -0.26984E 400 0.23368E 400 0.58440E-01 0.12704E 401
0.6 0.57T799E 400 0.57804E+00 -0.40945E+00 0.29666E 400 0.44723E.01 0.62503E +00
0.7 0.47654E 400 0.71244E400 -0.56067E 400 0.37127E400 0.34546E.01 0.30718E+00
0.8 0.38195E+400 0.85468E+00 -0.71897E 400 0.45854E 400 0.27053E-01 0.15604E+00
0.9 0.29517E+400 0.10027E+401 -0.88157TE 400 0.55939E 400 0.21498B.01 0.83195E-01

1.0 0.21621E+400 0.11550E401 -0.10467E 401 0.67469E 400 0.17328E-01 0.46870E.01

1.2 0.79739E-01 0.14881B 401 -0.13809E401 0.95201E 400 0.116908-01 0.16865E.01

1.4 <0.32479E-01 0.17879E 401 -0.17167E401 0.12070E 401 0.82383E-02 0.70882E.02
1.6 -0.12545E400 0.21112E401 -0.20521E401 0.17161E401 0.60167E-02 0.33437E.02

1.8 -0.20328E+400 0.24362E 401 -0.23865E 401 0.22154E+401 0.45256E-02 0.17279E-02
2.0 -0.26909E 400 0.27617E 401 -0.27194E+401 0.28010E+401 0.34889E-02 0.95820E.03
2.2 -0.32%37E400 0.30874E+401 -0.30510B401 0.34787E 401 0.27461E-02 0.56285E£.03

2.4 -0.37393E+400 0.34129E+401 -0.33813E+401 0.42544E401 0.22003E.02 0.34666E-03
2.6 -0.41822E+400 0.37380E4Gi -0.37102E+401 0.51336E+401 0.17901E.02 0.22214E.03
2.8 -0.45333E+400 0.40628E 401 -0.40381E401 0.61220E+401 0.14761E.02 0.14722E-03
3.0 -0.48614E+400 0.43867E401 -0.43649E 401 0.72250E+401 0.12315E-02 0.10042E-03
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Table 2:

[[ s 4[ ae(s) l ac(theory s << 1) l oc('t'heory 1>>1) "
0.1 0.95894E-02 0.90864E.02 —
0.2 0.33586E-01 0.31986E-01
0.3 0.65420E-01 0.58529E-01
0.4 0.10168E400 0.81452E-0!
0.5 0.14132E400 0.98999E-01
0.8 0.18387E+400 0.11167TE+400
0.7 0.22894E 400
0.8 0.27622E+00
0.9 0.32543E+00
1.0 0.37634E+00 0.26795E400
1.2 0.48248E+00 0.35609E+400
1.4 0.59335E+00 0.45084E 400
1.8 0.70806E+00 0.55601E+00
1.8 0.82593E+400 0.65524£ 400
2.0 0.94652E+00 0.76393E+00
2.2 0.10698E401 0.87621E400
2.4 0.11946E 401 0.99168E400
2.6 0.13218E+401 0.11100E401
2.8 0.14509E 401 0.123108+401
3.0 0.15820E 401 0.13542E 401
3.5 0.19179E+01 0.16716E+401
4.0 0.22661E+01 0.20000E 401
4.5 0.26265E+401 0.23377E401
5.0 0.29985E 40! 0.26834E 401
5.5 0.33799E+401 0.30359E+401
8.0 0.37678E+01 0.33944E+01
7.0 0.45461E+0! 0.41270E401
8.0 0.53124E401 0.48769E 401
9.0 0.60592E 401 0.56411E+401
10.0 0.867876E+01 0.64174E401
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Table 3:

[( a l f4(s.a) l T(s,a) L Puls,a) [ R(s, @) 1}
0.00 0.23368E 400 0.58440E-01 0.23368E+400 0.12704E401
Q.01 0.25330E400 0.49498E.01 0.21654E400 0.13458E 401
0.02 0.27604E 400 0.41336E-01 6.20146E+400 0.14292E401
0.03 0.30291E+400 0.33948E-01 0.18797E400 0.15210E+01
0.04 0.33333E+00 0.27330B-01 0.17879E400 0.16221E+01
0.05 0.37802E 400 0.21475E-01 0.16484E 400 0.17320E 401
0.06 0.42852E+400 0.16374E-01 0.15471E400 0.18520E+401
0.07 0.49184E400 0.12014E-01 0.14538E400 0.19826E 40!
0.08 0.58256E+00 0.83815E-02 0.136708+00 0.21230E+01
0.09 0.71415E400 0.54854B-02 0.12865E400 0.22734E+01
0.10 0.92130E+400 0.32090E-02 0.12114E400 0.24338E+401
0.11 0.12900E401 0.16084E-02 C.11404E 400 0.26046E+01
0.12 0.21010E 401 0.39730E-03 0.10733E+400 0.27855E401
0.13 0.49730E 401 0.10608E-03 0.10098£ 400 0.29770E+401

Table 4.

” a l fe(s,a) ] Ps.a) l Pu(s a) l R(s,a) “
0.00 0.67470E400 0.17325B-01 0.674708400 0.46670E-0!1
0.02 0.71296E 400 0.15210B-01 0.63843E400 0.50861E-01
0.04 0.75373E+400 0.13258E-01 0.60382E 400 0.55615E-01
0.06 0.79762E400 0.11462E-01 + 0.57062E+00 0.61686E-01
0.08 0.84858E 400 0.98163E-02 0.53863E 400 0.69172E-01
0.10 0.89872E+00 0.831758-02 0.50779E 400 0.78431E-01
0.12 0.95870E 400 0.69593E-02 0.47797E400 0.89926E-01
0.14 0.10276E 401 0.87375E-02 0.44922E400 0.10426E+00
0.16 0.11088E 401 0.46478E-02 0.42147B400 0.12222E 400
0.18 0.12080E401 0.36360E-02 0.39481E 400 0.14482E400
0.20 0.13263E+401 0.28481E-02 0.36920B4.00 0.17341E400
0.22 0.14798E 401 0.21299E-02 0.34470E400 0.20969E 400
0.24 0.16830E4-01 0.15271B-02 0.32132B+00 0.25587E 400
0.26 0.19653E401 0.10350E-02 0.29908E 400 0.3147T1E400
0.28 0.23833E 401 0.84842R-03 0.27799E 400 0.38981E400
0.30 0.30813E+01 0.36111E-03 0.25806E 400 0.48459E 400
0.32 0.43304E 401 0.16548E-03 0.23926E+400 0.60420E 400
0.34 0.74259E401 0.51541E-04 0.22159E 400 0,75320E 400
0.368 0.22781E402 0.50140E-05 0.20503E400 0.93697E+400
0.37 0.14943E403 0.11033E-06 0.19715E400 0.10433E 401
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Table 5:

T

$=05 9= 1.0 -_I]
I_l a [ Wly(s.a) Wyl'u(s, a) " a ‘L Wile(s,a) Wulu(s, a)

0.00

0.22532E+00

0.22532E+400

0.00

0.57047E400

0.57047E 400

0.01

0.24279E+00

0.20983E400

0.02

0.59332E+00

0.54781E+00

0.02

0.26269E-+00

0.19598E+00

0.04

0.61648E 400

0.52524E+00

0.03

0.28567E 400

0.18347E+00

0.08

0.64013E+00

0.50272E 400

0.04

0.31257E+00

0.17209E+00

0.08

0.66448E+.00

0.48022E 400

0.05

0.34445E+00

0.16169E+00

0.10

0.68980E+00

0.45777E+00

0.08

0.38296E+00

0.15208E+00

0.12

0.71639E 400

0.43541£ 400

9.07

0.43030E+00

0.14317E+400

0.14

0.74462E+400

0.41320E 400

0.08

0.48957E+00

0.13489E+00

0.18

0.77489E4.00

0.39121E400

0.09

0.56528E+00

0.12715E+00

0.18

0.80764E 400

0.36986E+00

Q.10

0.66386E +00

0.11990E+00

0.20

0.84340E 400

0.34832E+00

0.11

0.79418E 400

0.11306E+400

0.22

0.88267E+00

0.32760E 400

0.12

0.96684E 400

0.10861E+00

0.24

0.92597E+4.00

0.30748E 400

0.13

0.11881E+01

0.10050E+400

0.26

0.97375E+400

0.2820SE+400

0.28

0.10263E4.01

0.26937E+400

0.30

0.10834E401

0.25150E 400

0.32

0.11441E401

0.23448E 400

0.34

0.12055E+01

0.21832E+400

0.36

0.12614E401

0.20304E+00
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Figure 1:
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Figure 2:
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