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Abstract

We have formulated a general theoretical approach for analyzing two-

dimensional structures of high-n Toroidal Alfv6n Eigenmodes (TAE) in large aspect-

ratio, finite-/3 tokamaks. Here, n is the toroidal wave number and/3 is the ratio

between plasma and magnetic pressures. The present approach generalizes the
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_...vdard ballooning-mode formalism and is capable of treating eigenmodes with

extended global radial structures as well as finite coupling between discrete and

continuous spectra. Employing the well-known (s,a) model equilibrium and as-

suming a linear equilibrium profile, we have applied the present approach and cal-

culated the corresponding resonant continuum damping rate of TAE modes. Here,

s and a denote, respectively, the strengths of magnetic shear and pressure gradi-

ents. In particular, it is found that there exists a critical a value, ac(s), such that,

as a _ aC, the continuum damping rate is significantly enhanced and, thus, could

suppress the potential TAE instability.

PACS numbers: 52.35.Bj; 52.55.Dy; 52.55.Fa



I. Introduction

The confinement properties of energetic particles in fusion plasmas are of ma-

jor importance in determining the performance of current and future generations

of machines operating near or at reactor relevant regimes. For example, the good

confinement of alpha particles produced in the DT fusion reactions is necessary to

ignite the DT plasma. Similarly, energetic ions produced in RF or neutral beam

injection experiments must be well confined in order to successfully achieve plasma

heating and/or current drive. While the theoretically predicted confinement prop-

erties of energetic particles based on Coulomb collisions are sufficiently adequate,

there remain serious concerns over "anomalous" losses induced by collective oscil-

lations spontaneously excited by the energetic particles.

Since the fusion alphas are born at 3.52MEV mainly in the plasma center, the

., corresponding pressure profile is peaked. As a consequence, the energetic-particle

pressure gradient is a free energy source that can destabilize waves which reso-

nantly interact with the periodic motion of the energetic particles. 1-3 As typically

in the cue of pressure-gradient driven modes, the instability growth rates increase

with the energetic-particle diamagnetic drift frequency which is proportional to

the toroidal mode number n. On the other hand, characteristic frequencies of the

energetic-particle motion (e.g., transit and bounce) are estimated to be in the Mhz

range; similar to that of shear Alfv6n waves. This observations thus suggest that

high-n (n >> 1) shear Alfv6n waves are the prime candidate for the instabilities.
q

Shear Alfv6n waves in a laboratory plasma are, however, difficult to excite, since

energy is needed to bend the magnetic field lines. Moreover, in a sheared magnetic,w

field, the shear Alfv6n waves are characterized by a continuous spectrum. 4 Thus,
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these waves are highly localized around the surface where w = kllva (w is the mode

frequency, hl1 is the wave vector parallel to the magnetic field and Va = Bl 4x/4-_o
m

the Alfv4n speed, _obeing the plasma mass density), and strongly stabilized because

of phase mixing.

This situation, strictly valid in a slab, is qualitatively modified in toroidal con-

finement devices due to the poloidal symmetry breaking associated with toroidal

magnetic field inhomogeneities over a magnetic surface. The resultant couplings

between neighbouring poloidal harmonics produces not only frequency gaps 5 in the

continuous shear Alfv4n spect'rum, but also discrete Alfv4n eigenmodes.

These discrete modes, known as TAg (Toroidal Alfv4n Eigenmodes6'r_, are lo-

calized in the forbidden frequency window ('gap') of the shear Alfv4n (shear Alfv4n)

continuum. As a consequence, TAg's are undamped, to the lowest order, due to

their negligible coupling to the continuum.

That TAE's are marginally stable naturally suggests that energetic particles can

resonantly destabilize these modes. Furthermore, these resonant energetic particles

could also be effectively scattered by the resultant Alfv_nic fluctuations. Indeed, it

has been shown that even low-amplitude TAE's, with _SB/B _ 5X10-4, can cause

severe fusion alpha particles losses.8 The study of the linear stability of TAg's

is, therefore, an important issue for tokamak fusion research, and has attracted

increasing theoretical as well as experimental interest. 9,1°

The linear TAg drive, due to the resonant interaction of the mode with the

periodic transit of the passing energetic particles has been extensively studied, tl-14

The weakening effect on the linear drive because of resonance detuning due to finite e

particle drift orbits has also been considered. 15 Recently, 16,lr it has been pointed



|Jl_ ,J,

. out that both passing and trapped particles play important roles in determining

the linear drive.

A number of damping mechanisms have been suggested by various authors to

balance the energetic-particle linear drive and, hence, to determine the marginal

stability threshold for TAE's. Electron Landau damping 11-14is typically negligible,

while ion Landau damping 14and trapped electron collisional damping ls,19 could be

important depending on the plasma parameters, lr Another effective damping mech-

anism, due to the coupling of the TAE mode to the continuous shear Alfv6n spec-

trum, was suggested first in Ref. [11] and studied in detail in Ref. [20]and R.ef. [21]

for the high-n case, and in Ref. [22] for low-n. Ir_ this case, the damping is a con-

sequence of the toroidal mode coupling, which renders the TAE global radial mode

" width much broader than the typical radial extent of a single poloidal harmonic. 2°

In the present paper, we would like to clarify the details of Ref. [20] and present
w

important new results when a finite pressure is included in the employed model

equilibrium. 23,24

To delineate the mechanism of TAE's coupling to the shear Alfv6n continuum,

it is instructive to recall the nature of the continuous shear Alfv6n spectrum in

a screw pinch with periodic length 2_rRo and an equilibrium magnetic field/_ -=

(O, Be(r),B,(r)). Here, (r,O,z)refer to cylindrical coordinates. In this case, shear

Alfv4n waves consist of local oscillations with frequency

(1)
w2(r) = k_(r)v,_(r) = q2(r)Ro2

e

varying throughout the plasma column. Here, q(r) = rB,(r)/RoBo(r) plays the role

of the safety factor in a tokamak, and we have assumed the following dependence:

0,z,t) = , (2)
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for the scalar potential perturbation 8¢. Thus, shear Alfven waves are character-

ized by 8¢m,,(r,t)_ a(r,t)exp(-iw(r)t) with w(r) given by Eq. (1), and a(r,t),

typically, decays time asymptotically as 1/t due to phase rnizing. 4

When the cylindrical equilibrium is bent into a torus, the variation of the Alfven

speed on a magnetic flux surface causes different poloidal harmonics to be coupled

together. As a consequence, s the cylindrical continuous shear Alfven spectra of

the m and m + 1 poloidal harmonics couple at r = ro, where kilm+l,, = -kllm,,,

or, equivalently, where nq(ro)- (m + 1) = -(nq(ro)- m) (i.e. nq(ro)- m =

1/2), and a gap appears in the shear Alfv6n continuum as shown in Fig.1. From

2
Eq. (1), the local oscillation frequency of these coupled harmonics is close to Wo =

V2A(ro)/4q2(ro)R2o, and the frequency gap width scales linearly with eo = O(a/Ro),
,o

the strength of the toroidal coupling. Here, a and Ro are, respectively, the minor

and the major radii. The discrete mode (the TAE), meanwhile, exists inside the

gap 6'T and has a radially localized eigenfunction with a typical radial width eo/nq'.

Note that, in the present analysis, eo < 1, i.e., we have in mind tokamaks with large

aspect ratios. The physical origin of the local potential well which allows TAE's to

exist as discrete modes is discussed in detail in Ref. [24].

Due to toroidicity, each poloidal harmonic is coupled to its neighbour, as

sketched in Fig.2. However, only a finite number of poloidal harmonics will be

coupled to determine the global TAE radial structure. In fact, radial equilibrium

changes will cause a mismatch in the oscillation frequencies of poloidal harmonics

peaked in frequency gaps located at different radial positions. This frequency mis-

match dictates that the local mode structure (and, hence, the local oscillation fre-

quency) of the various poloidal harmonics must readjust in order to constructively



. form a global plasma oscillation with a given frequency OJTAE. This is obviously

possible only for a limited number of harmonics, whose coupling gives rise to the

" global TAE width. The amplitudes of the poloidal harmonics outside this global
-, ,.

TAE width decay exponentially fast; since they are no longer effectively excited

(see Fig.3).

The excited frequency of the global TAE mode falls within the frequency gaps

at different radial positions within a region eoLA, with La being the scale length of

the Alfven frequency wA = vA/q(r)Ro. Outside this region, harmonics of the shear

Alfven continuous spectrum a'ce resonantly excited, but usually have a small am-

plitude (exponentially small) bee=rose of the frequency mismatch mentioned above.

The resultant coupling of the TAE modes to the shear Alfven continuum is, thus,

" also expected to be small; indicating, consequently, a small damping coefficient.

Figure 3 allows us to make some general remarks on TAE modes. First, the
w

number of poloidal harmonics coupled to form the global TAE radial structure is

]Aml _ InAql _ neo[q'LAI. Thus, many harmonics are coupled together if neo >>

1; suggesting neo is an important asymptotic parameter. Moreover, IAm/ml

]Aq/ql "_ eolq'LA] << 1, indicating that the spread Am is small compared to the

central mode number mo if the toroidal coupling effects are weak. Second, the global

TAE radial width ArTAE '_ %LA is small compared to the equilibrium scales, but

still rather broad, since it does not decrease with n. Finally, the radial structure of

the TAE mode (i.e., the two-dimensional TAE structure) is of crucial importance

. to determine its coupling to the continuous spectrum and, hence, its continuum

damping. In particular, it is important to determine where the TAE is localized

within the gap region, the distances from the accumulation points of the continua,



and how fast the radial envelope of the global mode decays aw_,y from the TAE

localization region.
,,p

For pressureless equilibria with circular magnetic flux surfaces 2°'21 it has been

demonstrated that TAE modes are always well localized within the gap region. In

the present work, we will show that finite pressure shifts the global TAE structure

toward the accumulation point of the lower continuum; leading, thus, to greatly

enhanced continuum damping rates. This may be expected from Fig.3, since the

amplitudes of the poloidal harmonics resonantly excited in the continuum would

be of the same order of those forming the global mode structure. The expected

damping rate is then typically of O(eoWA).

In Section II, the theoretical formulation for the two-dimensional TAE eigen-

mode analysis is presented. In general, this problem can be reduced to the solution

of two nested one-dimensional ordinary differential equations: the first one solves ,'

for the mode structure along the field lines on a local flux surface. The second one

correlates the local solutions and prescribes how, starting from them, the global

two-dimensional eigenmode can be constructed. This procedure is conceptually

similar to that of the well-known ballooning formalism, 25-2_but, as will be shown

later, it has some important qualitative differences. Furthermore, it may be ap-

plied to the analysis of various high-n two-dimensional perturbations other than

TAE modes.

In Section III, we will use the well known (s,a) model equilibrium 2s'29 (s =

rq'/q is the magnetic shear and a =_-Roq2_ ' is the normalized pressure gradient,

/3 - plasma pressure/magnetic pressure) to derive the relevant equations for high-

n TAE modes in axisymmetric tokamak equilibria with shifted circular magnetic



• surfaces and /3 = O(a/Ro). The motivation of this choice is that, for weakly

shaped equilibria, such a model is sufficiently general and still simple enough to
,m

allow substantial analytical progress. However, it needs to be emphasized that

similar analyses could also be carried out for general equilibria; except in such

cases extensive numerical solutions will be required.

Since, for the practical purpose, the continuum damping rate is expected to

be small compared to the frequency gap width eoWA/2, we will obtain its general

analytic expression using a perturbative approach, which is naturally formulated as

a variational principle. Hence, in Section IV, the two-dimensional TAE eigenmode

structure is obtained, to the lowest order, neglecting the coupling to the shear

Alfv6n continuous spectrum.

" The general expression for the Alfv6n continuum damping rate is derived in

Section V. To show in detail how the damping rate may be computed; in Section

VI a model linear equilibrium profile is assumed to further reduce the continuum

damping to a readily usable expression. The corresponding results are analyzed in

Section VII. In particular, as discussed earlier, it is shown that, near the Troyon

ft-limit, 3° the TAE suffers a greatly enhanced damping.

Finally, Section VIII contains a summary and discussions. In order to present

the physics more clearly, we have chosen to keep the mathematical details to a

minimum in the main text. Detailed derivations can be found either in Ref. [24]

or in the two Appendices, in which some relevant technical details are treated in

- depth.



II. Theoretical Formulation

In this Section, we present a systematic analysis of high-n two-dimensional

eigenmode structures in axisymmetric toroidal equilibria. In developing this ap-

proach, we have been strongly motivated by the original works of Connor, Hastie

and Taylor 2s as well as Dewar and coworkers, 2s who have developed complementary

formalisms for the study of two-dimensional high-n ideal magnetohydrodynamic

ballooning modes in tokamaks. All these analyses employ the WKB approximation

along with 1/n expansions to reduce the starting two-dimensional equations to two

nested one-dimensional problems. While our appr'_ach shares the same conceptual

foundation with that of the previous papers, 2s'26there are, as it will be discussed

later, important qualitative differences. w

Let us consider the solution of the following high-n eigenmode equation

v (_;_,0,0_,0,;)_¢(_;_,0) = 0. (3)

Here, we assume that Z) is a partial differential operator defined on a domain

E E R2, and that the boundary conditions on _¢ are such that

where J(r, v_)= lvr x _'01-_ is the Jacobian and £(_o) is related to the wave energy.

Thus, Eq. (4) requires that wave energy be finite. To be more specific, in Eq. (3), r

and v_are, respectively, a radial-like flux coordinate and a poloidal-like angle, and

perturbations have _ exp(in_o) dependence in the toroidal angle q0. For simplicity,

we also assume that r and v_are chosen such that equilibrium magnetic field lines

axe straight on a given flux surface.

10



In the following, we demonstrate that one can construct eigenmode solutionsq,

of Eq. (3) by solving two nested one-dimensional ordinary differential equations

" rather than Eq. (3) itself. The advantage of this approach is obvious, since solving

an ordinary differential equation is much simpler than tackling a par_ul differential

problem and, perhaps more importantly, the underlying physics also emerges more

clearly. Qualitatively, the soiution of the two nested one-dimensional differential

equations is equivalent to first solving for the mode structure along the field lines

locally and then constructing the tw(>dimensional global mode structure through a

superposition of local solutions. Since the procedure outlined below is quite general,

we consider a wide class of operators that can lead to Eq. (3).

Since the toroidal equilibrium is periodic in the poloidal angle 0, the solution

- 5¢ and the operator 7) of Eq. (3) must also be periodic, i.e.,

. $¢(w; r, 0 + 2zr) = (f¢(w; r, 0) ,

z)(_;_,0+2,_,0_,&)= z)(_;_,_,0_,&)

Thus, we can represent the perturbation $¢(w;r, 0) and the operator

D (w; r, 0, Or, O_) as Fourier series

_¢(_;_,0)= _ _-_¢.,(_;_) ,

l

Equation (3) can then be rewritten as

. }: _ _-'J_z)_(_;,.,or,-i(j + t))Cj+_(_;.)= 0,
t j

where j = m - £, or, equivalently, as
,w

7)t (w; r, 0,,-i(j + t)) Cj+t(w; r) = 0 . (5)
t

11



Equation (5) has transformed the original two-dimensional eigenvalue problem,

Eq. (3), into an infinite set of coupled one-dimensional differential equations.

In the high-n limit, each Fourier harmonic _¢,_ tends to have a highly localized

structure around the surface r!"), where nq(r(om)) = m. This is because the most

important perturbations have parallel (to the ambient magnetic field) wavelengths

._ qR; which are much larger than perpendicular ones _ O(a/n). Furthermore,

the equilibrium properties do not appreciably change from a rational surface r(o")

to the next r(o_+1). As a consequence, the Fourier harmonics _¢,_ are expected

to have similar shapes, slowly changing throughout the plasma column along with

their amplitude A,_. In other words, the _¢,_'s can be assumed to have the form

_¢_(w;r) -- A,_¢(m, nq- m) -- A(nq)¢(nq, nq- m) , (6)

where the fast variable nq- m accounts for the rapid radial variations, which v

determine the localized self-similar shape of the poloidal harmonics 8¢m, while

the slow variable nq describes the changes in the shape functions ¢(nq, nq- m)

and in the amplitudes A(nq) on a scale determined by equilibrium nonuniformities.

Typically, [01n ¢(nq, nq-rn)/O(nq-m)[ = O(1), while [01n ¢(nq, nq-m)/O(nq)[ ._

[OlnA(nq)/O(nq)[ = O(1/n$), where _ is a parameter depending on the particular

wave mode to be studied and on the details of the chosen plasma equilibrium. This

separation of scales is crucial to treating the two-dimensional problem with a WKB

approach; as suggested first in Ref. [25] and Ref. [26].

The dependence of the operators Dt (w; r, 0_,-i(j + g)) in Eq. (5) on the radial

coordinate r is reflected in dependences on both fast nq-m and slow nq normalized

radial variables. In general, the dependence on nq - m enters to account for par-

allel variations (kll,_.,, = (nq- m)/qR), while nq describes other radial equilibrium

i2



nonuniformities. Thus
b

79t (w; r, 0,, -i(j + _)) --, De (¢0;nq, nq - j - _, 0,, -i(j + 2)) .

Furthermore, ;he localization of the various poloidal harmonics implies j + _ __ nq;

i.e.,

Z)e(o;nq,nq-j-e,O,,-i(j+¢))--, _t(w;nq, nq-j-g,O,) . (7)

For convenience, we also assume that it is possible to write

7_t (w; nq, nq - j - f, 0r) = _ _t,, (w; nq, nq - j - 2) O_ ;
P

Equation (5) then becomes

7_t.p(w; nq, nq - j - f,)0_¢j+t(w; r) = 0 . (8)
" t,p

The existence of two separate scales allows us to write the shape function

¢(nq, nq - m) as

¢(nq, nq- m) = ¢(t, nq- rn) = e-i(nq-r")°_(t,O)dO , (9)
O0

where t = nq has been used as a short notation for the slow normalized radial

variable. The condition Eq. (4) legislates that e_(t,O) be square integrable, such

that the integral in Eq. (9) is well defined. This constraint has frequently led to

the remark that the description of the local radial shape of the single Fourier har-

monics by means of the dual variable 0 (also referred to as the extended poloidal

. angle, or ballooning coordJ .ate 2s) were inadequate in the case of singular eigen-

functions, typical of a continuous spectrum. This observation appears to be further

" confirmed by the breakdown of the translational invariance of the shape functions

¢(t, nq- m) in the transition from regular harmonics of a discrete spectrum to

13



singular harmonics of a continuum. This, however, is not the case. The only basic

assumption underlying Eq. (9) is tbe existence of two characteristic scale lengths.

In fact, employing the causality constraint and the proper analytic continuation,

Eq. (9) can represent both regular as well as "singular" po!_idal harmonics. This

point will be explicitly shown in Section IV.A for the case of TAE modes. This

result, however, is very general and indicates that the "ballooning transform" of

Eq. (9) can be used to analyze the coupling between high-n discrete and continuous

spectra.
I

As to the amplitudes A(nq) =_A(t), we adopt the following eikonal representa-

tion

Here, the notation 0k(t) was originally proposed in Ref. [26] for the local normalized

radiM wave vector -(i/n)O/Oq. Equations (9) and (10), along with Eq. (6), allow

us to rewrite _¢m(w; r) as

6¢,,,(w; r) = eif' Oh(,')dt'/;2 e-i("q-')°¢(t'O)dO ' (11)

which is the form used in Ref. [20]. Substituting Eq. (11) into Eq. (S), we have

y_ _i_o.h ip _ _,..t,,(_o;t,-iOo) [nq'(Ok(t) 0 i0,)]'¢(t,0) = 0 . (12)
¢,p

In Eq. (12), 10k(t)l_. 101-_ 1 reflects the rapidly varying local structure of the shape

functions ¢(t, nq-m) on the scale ._ 1/nq', while 10,In 0k(t)l ._ 10, In ¢(t, 0)1 _ 1/na

account for the changes of the shape function and of the amplitude A(*) on a scale

_5/q' _ aa. Here, we have assumed that the local flux surface averaged magnetic

shear s = rq'/q is an O(1)quantity. The case of vanishing shear must be handled

with some care, since q can not be used as a radial variable in this case.

14
_



. Equation (12) can be solved by asymptotically expanding the various quantities

in the smallness parameter 1/n_; e.g., Ok(t) = O(fl)(t)+ O{kl)(t)+ .... To the lowest

" order, assume we can solve the one-dimensional boundary value problem in the

variable 0

E eit°_',p (w; t,-iOo) ip [nq' (O_°)(t) - O)]P_(°)(t, 8) =0, (13)
l,p

with boundary conditions l¢(°)(t, 0)! + 0 as 101--, oo, leading to the constraint

( , _o) ))L w;_,v k (t = 0. (14)

This local constraint is a local dispersion relation, which gives the implicit form

of the lowest order WKB phase O_°)(t), or, equivalently, establishes a relationship

. between the normalized local wave vector 0_°) and the mode frequency w. Note

that, because of Eq. (13), L (w;t,O_°)(t)) is a periodic function of 0_°) of period

21r. This fact is naturally demonstrated using 0' = 0 - 0_°)(t) as a new ballooning

coordinate and noting that the dependences on O_°)(t) in Eq. (13) would be then

only in the terms eit°_°l(t).

In the following, we will restrict our analysis to differential operators satisfying

the symmetry property

e_ito&--t,p (w;t,-iOo) i'[nq' (Ok(t) - 0)1p _(t,O) =
t,p

= f__dOO(t,O)_ eit°_t,,(w;t,-i&)i'[nq'(Ok(t)- 0)]p @(t,O) . (15)
oo t,p

. From gq. (13), we can construct the following quadratic form

. r o':')= o/Z
t,p

#,,_,(w;t,-iOo) i" [nq' (O_°'(t)-O)] p _{°/(t,O) = O. (16)

15



Note that, in constructing Eq. (16), one needs to integrate in 0 by parts and apply

the proper boundary conditions.

Clearly, Eq. (16) is equivalent to Eq. (14), i.e.,

when the differential operator of Eq. (13) is symmetric. In this case, in fact, it is

possible to show that the differential equation Eq. (13) admits a variational princi-

ple in the form of Eq. (16). 31 Note that symmetry is much weaker than hermiticity

and, in particular, it does not require that the considered system is non-dissipative.

The relation of the phase trajectories O_°)(t) to the radial profile of the local

dispersion function is shown in Fig.4. There, a phase space "libration ''32 around an
t

O-point corresponds to a local minimum of F(O_°),fl_,a,s): this is because, for the

reference case of TAE's, OF/O0_°_ > 0 for 0 < 0_°) < Tr;or/06_ °) < 0 would yield .,

the opposite. Phase space "rotations "32 (open trajectories), in general, correspond

toth_mo_oto_i_b_he_ ofF(O_°_,_,_,_)._

To the next order in the 1/n_ expansion, the corresponding quadratic form

becomes

t,p

{- [nq' (O_°)(t,)- O)lP-' nq' , 0)1,

where, for convenience, we have used the Fourier representation of the function

,_co_(t,o)

¢(°)(t, _) = ];5 e-i'_¢(°)(_'O)d_ '

16



. and the symmetry property of Eq. (15) has been used to replace _ --, (( + _')/2 in

the first term in the curly brackets and to eliminate @(1)(w;t, /9). From Eq. (18),

one finds

- aln
where the 0t_e,p (w; t,-.iOo) have been neglected because of the slow equilibrium

variations. The general WKB expression of the radial envelope function is thus

const ft
A(t) .._ %/OF]Oo_O)expi O_°)(t')dt' . (20)

Moreover, note that 0t0_°) tends to become singular at a WKB turning point po-

sition (tT, O_°)T), where OF/OO_°) = 0. Locally, one therefore needs to solve the

following differential equation

2 0O(_°'= (,r.e_) - + F (w;t,O_°}T) -- F (w;tr, O_°)T) A(t) 0
- (21)

to derive the corresponding WKB connection formulae. In Eq. (21)

02F/OS_°)2[(,r,e_ ) _ 0 is assumed. Equation (21) can be readily obtained by con-

structing from Eq. (12) a "quadratic form" and then Taylor expanding around the

turning point position.

We remark that Eq. (20) has a clear physical interpretation for the case of a

dissipationless system, where the maximum order of the 25t.p(w; t,-i&) operators

is g = p = 2. Then, OwF ,,, U(w;t), the wave energy density, aa In the absence of

dissipation, the energy flux is constant, i.e.,

== OF/Oe °OF I:
OF/aw 0--'_lA(t) ,-_ const , (22)

" where vg(w; t) is the normalized group velocity of the wave. Equation (22) is con-

sistent with Eq. (20).

17



Applying the connection formulae to the WKB solutions given by Eq. (20) along

with the proper boundary conditions, the WKB global dispersion relation for the

eigenmode frequency is obtained in terms of quantization conditions (cf. Section

IV.B).

We note that the present formalism differs from the previous well-known ap-

proaches of Refs. [25-27] in that our treatment of the local mode structure along

the magnetic field lines allows us to handle singular eigenfunctions of the contin-

uum. That is, the translational invariance of the shape functions ¢(t, nq - m) can

now be extended into the continuous spectrum by means of analytic continuation.

A second important difference is in the analysis of the radial eigenmode structure.

The standard ballooning approach 2s,34,35assumes closely spaced turning points.

Equation (21) is then solved near an extremum OF/Or = 0 for localized solutions

corresponding to the phase space librations of Fig.4. The eigenmodes have typical

radial extent Ar _ a/n 1/2 and the global mode frequency differs from the local one

by an O(1/n) term. 25 Meanwhile, the present interpretation of/gk as a normalized

local radial wave-vector treats also the eigenmodes corresponding to phase space

rotations (open trajectories of Fig.4). In general, these eigenmodes have rather

extended radial mode structures and are characterized by well separated turning

point pairs. In fact, Ar _ _a with ¢f being independent of n. The existence of

eigenmodes with spaced turning points is also emphasized in Ref. [26] and Ref. [36]

but not treated in detail; the attention there being rather focused on the case of

closely spaced turning points due to the nature of the ideal ballooning instabilities.

Briefly summarizing this Section, we have formulated a theoretical approach for

analyzing two-dimensional eigenmode structures of high-n modes in axisymmetric

18



. toroidal equilibria. The wave-operators/)(w; r, _, 0r, _#) of Eq. (3) are general and

are required to satisfy only the symmetry property of Eq. (15). In Ref. [36], it

" is pointed out that operators obtained in the analysis of kinetic ballooning modes

are symmetric. The present approach is then amenable not only to analyses of

the coupling between discrete and continuous spectra, but also of other non-ideal

and kinetic effects. Other interesting applications could be the in the extension of

previous studies of high-n toroidal drift waves _'3s to the radially extended modes

with well-spaced turning points mentioned above. 37'3sFinally, it may be interesting

to extend the validity of the present formalism to Iow-n perturbations. In this

case, we may adopt a procedure essentially equivalent to the formal construction of

a Fourier Integral Operator for the radial eigenmode structure. 39 Work along this

- direction will be reported in a future publication.

In the next Sections, we will apply the theoretical formalism presented here

to the particular case of TAE modes. We will also use the fact that the wave

absorption rate is expected to be small compared to the frequency gap width, i.e.

Iw_l << eoWA/2, to perturbatively compute the TAE continuum damping. While

formally not necessary, the perturbative calculation does reduce some mathematical

complexities and, thus, make the physical picture more transparent. In addition,

for practical purposes the small damping rate limit is also the relevant case to

study.

19



III. Eigenmode Equations

The governing equations for TAE's can be derived from the quasi-neutrality

condition V. 6f = 0; i.e.,

where ([f is the perturbed current, and ± and [[ refer, respectively, to the perpen-

dicular and parallel directions with respect to the equilibrium magnetic field vector

=_ /_/B. The expression for ([Jll is given by the parallel Amp_re's law

4_J,=_. _ ×(_×_ ,

6,4 being the perturbed vector potential. Thus, in an axisymmetric toroidal equi-

librium,

¢,

+o([Jil = -4--_ . (24)

Here, n is the toroidal mode number. 6Ali can be further expressed in terms of the

electrostatic potential perturbation 6¢ via the parallel Ohm's law (fEll = 0; i.e.,

-b. V([¢+ iW-6All= 0 .
C

Note that time dependence of the form _. exp(-iwt) has been assumed.

The perpendicular current perturbation is obtained from the perpendicular force

balance; i.e.,

c 0 .. c

11'

B B 2
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• Here, P is the equilibrium pressure and/3 - 87rP/B 2 = O(eo). In Eq. (25), the

perpendicular velocity 5rfx, meanwhile, is given by the Ohm's law

/_ × 5_, = -c¢_ 5¢ ; (26)

and the pressure perturbation 5p by the equation of state

-iwSp + 5rf±. VP " 0 , (27)

or

where k. is the wave vector component orthogonal to b and the magnetic flux

. surface labeled by _. In Eq. (27), the 7P(V. 56) compression term can be shown

to give negligible O(eo) and O(eo/3) corrections. From Eq. (25), we then find

+ o ¢. _J_ = i¢. _v_ - 2_ × _. v_v -

/_ x QP. _j. (4zrSp + BSB, I)-- c B4

where g -/_. Vb is the magnetic field curvature.

For n >> 1 the fluctuations are localized in the radial direction, i.e. their

typical width is much smaller than the minor radius of the torus. Moreover the

modes considered here are characterized by the shear Alfven time scale; which is

much longer (an order O(nRo/a)) than that of the compressional Alfven wave. As

a consequence,

4_5p+ BSBII = 0 (29)
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to the lowest order in n, which expresses the perpendicular pressure balance. This

allows us to further simplify the expression of V • 8J_.

Combining Eqs. (24) through (29), Eq. (23) can be cast into the form of the

following vorticity equation

• . . _Bb V[BV_b _5¢] + _' LB 2

, _. ]-8rr_ x B---_ • Va. B2 • Vj.$¢ = 0 . (30)

Equation (30) can be also derived as the Euler-Lagraage equation from the following

Lagrangian

u,/2

+8,rz x #-_. _¢" B2 •V_¢ . (31)
)

Here, only internal modes are considered. Equations (30) and (31) are, of course,

completely equivalent.

In axisymmetric tokamaks, Eq. (30) is a two-dimensional partial differential

equation; which can be solved, with the proper boundary conditions, as an eigen-

value problem for the complex frequency w using the approach outlined in Sec-

tion II. The damping rate wi due to the mode coupling to the continuous shear

Alfven spectrum and the TAE radial eigenmode structure are, thus, completely

determined.

We can, nevertheless, use additional information to further simplify the problem.

The fact that the damping rate is expected to be small, i.e., Iwil << _oWA/2,
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. suggests using perturbation techniques to compute the wave absorption rate. This

can be readily done using a variational principle, which is the approach adopted in

this work. Thus, for the practical purpose, we can use the theoretical formulation

of Section II for the two-dimensional eigenmode analysis of TAE modes neglecting

the coupling to the shear Alfven continuous spectrum (cf. Section IV) and then,

to the next order in the perturbative expansion, use Eq. (31) to derive a general

expression for the continuum damping rate (of. Section V).

Our aim is to solve Eq. (30) in the high-n limit, using a local finite-/3 axisym-

metric equilibrium for a large aspect ratio tokamak with shifted circular magnetic

flux surfaces. 28 This represents a simplified and yet relevant case to study for TAE

modes when the magnetic flux surfaces are weakly shaped. Thus, for simplicity, we

• shall consider such a model equilibrium, even though our approach can be readily

extended to include effects due to non-circularity of the magnetic flux surfaces, like

ellipticity, triangularity etc..29

For convenience, we work with flux coordinates in which the equilibrium mag-

netic field lines are straight. Specifically, we choose the curvilinear coordinate

system (r, _, _), where r is a radial-like flux function, _ is the toroidal angle, and

t9 is a poloidal-like angle, chosen such that the Jacobian J = (Vt9 x Vr. V_o)-' --

R2r/Ro. 24 Because of the shift of the circular magnetic surfaces, r = ro + d(1 +

A' cos v_) + ..., A' being the derivative of the Shafranov shift, ro being defined by

nq(ro) = mo, the central poloidal mode number, and d being the distance from the

- reference flux surface at ro.

The perturbation d_¢can be written in the form 2aa4

acb = exp{ i[nqo+ mo(r - ro)a sintg/ro]} e-i''°° y_ dicbj(r) e -O° , (32)
J
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where, we recall, a = -Roq2_ '. In Section I, we already emphasized that,

even though TAE modes are expected to have rather extended radial structures

ArT"AE ,_ cola, they are carachterized by a small spread in the excited poloidal

mode numbers; i.e., IJl= O(_olmol)inEq. (32), so that mo may be regarded as the

"central" mode number. We can then define the slow normalized radial coordinate

t, introduced in Section II, as t = (r- ro)/A r,, A r, being the distance between

two neighbouring rational surfaces, i.e., Ar, = 1/nq'(ro). The fast normalized

radial variable nq - m, thus, becomes nq- m = t - j. With _¢ expressed as in

Eq. (32), the gradient operator along the equilibrium magnetic field lines varies

only on the connection length scale:

i [n(q- qo)- Jl i/_._ = q--g = _ (t- j) (33)
i¢

The eigenmode equations are obtained by substituting Eq. (32)into the vorticity

equation, Eq. (30). After some tedious algebra, 24 it is possible to show that the

TAE eigenmode equations are given by

s__°lit-_/_-_]o_j- lit-_/_-_]_j.
+ so(t-j) -_ (t-j-1)(fCj+,-(t-j+l)cfCj_, +

+ --_--(t- j) (t - j - 2)8¢j+2 - 2(t - j)8¢j + (t - j + 2)(f¢j..2 -

- _,m2° (_¢j+,- _¢j_,)- _a _(_¢;+_- 2_¢_+_¢___)+4

°[ 0 ]+ 9: _¢J+_+ _¢J-' + sN (_¢j+t- _¢j-_) +
C_2

+ T (_¢j+2- 2_¢j+ _¢_-2)=

24



[(a2)s_ 1
" + T (_¢_+3 - £¢j+_ - $¢j-, + _¢y-a) • (34)

Here, eo - 2(roRo + Pa') is the strength of _oroidal coupling and fl = qR2ow/VAR

is the mode frequency normalized to the local Alfv6n frequency.

Similarly: employing Eq. (32), the Lagrangian of Eq. (31) can be rewritten as'

27ri_o q2R2o J
_2

- sa(t-j) _;-_((t-j-1)_¢i+l)+c.c. +
pp

., (22 ,,

- T[(_-5)(_-_-_,)-_ +_](_,_+_+_._.)-
- {oF):[,_ 0 .c3

I.

4 "

Here, ko - moro is the central poloidal wave vector of the excited mode. In

Eqs. (34) and (35), f_2 a and s are functions of the slow radial variable t due to

equilibrium inhomogeneities. Such a dependence can be more explicitly displayed

by introducing profile functions for f_2, a and s; i.e., by letting f_2 _ D2 f(t),

a = 5g(t) and s = gh(t), with f(0) = g(6) = h(0) = 1. Alao Co,in geDeral, can

be a function of t. In the following it will be assumed constant in order to reduce

. the algebra, but the approach presented here is s,_._ciently general such that this

assumption could be relaxed straightforwardly.

: 25



IV. Two-Dimensional Eigenmode Analysis

In this Section, we will use the approach outlined in Section II to explicitly

compute the lowest order two-dimensional eigenmode structure of TAE modes.

That is, we shall neglect the coupling to the continuous shear Alfven spectrum and

assume undamped TAE modes (ft = _o + i-), =_ fto).

The existence of the fast and slow radial scales, t- j and t, suggests that the

poloidal harmonics _¢j be expressed as, cf. Eqs. (6) and (11),

_¢j(t) = A(t)¢(t,t-j)=

= e_f '°_(t')at' f;_ doe -_('-j)° _(t,O) . (36)

p

A. TALE Local Dispersion Relation

Substituting Eq. (36) into Eq. (34), the Lowest-order one-dimensional eigenmode

equation in 0 is then given by

[o + +r:)i1+2,oCOSO/+
+ a(cos8 +/,,sin8)] _(t,O) = 0 , (37)

with

Io = s (e- O_°)) - a sine. (38)

Letting _¢ = _/i+ Io2 _(°)(t,0), Eq. (37) can be rewritten az

o_ /_-_,:o_0/_,_zo_0]O-fi + f12o(l+2eoCOS0)- (1+Io 2)_ + l+I_J _¢ = 0. (39)
p

The solution of Eq. (39) with boundary conditions Idle[ --, 0 as 1/91--, oo leads to

the local dispersion rela_xon for TAE modes.
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• For convenience, let 8' be the shifted variable 0' - 8 - 8_°). In the 'External

Region' Is0'[ >>Max(l, a), Eq. (39) becomes a Mathieu equation

b-_+ a_°(_+2_o¢OS(0+0_°)) _¢_ 0, (40)

where, from now on, the prime in 8' will be dropped. From the general solution of

the Mathieu equation, it is weil known that curves exist in the (_o,fi2o)plane, which

separate regions in which the asymptotic behaviour of the solutions is exponentially

increasing or decreasing, from regions in which the asymptotic behaviour is oscil-

latory. In the eo << 1 limit, these critical curves are given by fl_ = (1 4- Co)/4.

Using the ordering [fl_ - 1/4[ _ eo, Eq. (40) can be solved perturbatively 6 as

6¢E = A(O) cos + B(O) sin 2 ' (41)

•, where A(O) and B(O) vary on the slow scale 0 _ l/co. Substituting Eq. (41) into

Eq. (40), and averaging over the 0 ,_ O(1) fast scale, 6 one derives the following

coupled equations

B(O)' + ['+A(O) = O,

-A(8)' + F_ B(0) = 0;

where

• Then, we have

. A(8)(±) = a(+)(_[,_)l/2e_0 ,

B(O)(*) = + a(_)(r+)_/2e_0 .
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Here, the + sign refers, respectively, to positive and negative values of 0, aI±) are

arbitrary constants, and

"_ = (-F_ F+) _/2 = o2a4 - Ft]- (43)

From Eq. (43), we see that, for ]f_o2 - 1/4[ < eoflo2, the asymptotic behaviour of

5¢(E+) is exponentially decaying, which means that the Fourier Transform of Eq. (36)

is well defined. For [fl_ - 1/4[ E Cofl2o,the expression for + must be analytically

continued, such that unstable modes decay in 0 fast enough, and Eq. (36) remains

well defined. This leads to

no r_o_-1/4 for Ir_o-1/41> _or_. (44),__ -i 14'1Ino----[I_o_- 1/41 '

In real space, the [9t2o- 1/4[ < eofl2ocondition corresponds to the regular poloidal

harmonics of the discrete spectrum, while the singular structure, which appears for

19t2o- 1/41 >_Coli, is that of the poloidal harmonics of the continuous spectrum (ct'.

Appendix A). The expression of 5¢E, thus, becomes

[j - e_:_° (45)5_(+) - a (+) F cos =t=V_ + sin 2

That the expression given by Eq. (45)is valid for If_o2 - 1/41 >_coli, i.e. inside

the continuous spectrum, is of crucial importance. In fact, using arguments based

on causality constraints, the ballooning approach can be generalized to handle both

regular and singular (unnormalizable) poloidal harmonics; i.e., to simultaneously

describe discrete and continuous MHD spectra. Although only the lowest-order
i,

two-dimensional eigenvalue problem for the undamped TAE is analyzed here, this

fact is important since it allows us to derive the eigenmode structure and the local
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• dispersion relation at the continuum resonances. In this respect, by means of the

Fourier Transform of the Ballooning Eigenfunction (see Appendix B), we will be

able to find the singular behaviour of the p'oloidal harmonics of the continuous

spectrum at the resonances (see Appendix A). This is achieved, of course, with the

proper analytic continuation of "_based on causality arguments.

In the 'Internal Region' 1%01 << 1, 0(%) terms in Eq. (39) are negligible.

Equation (39) then reduces to

+ (,-   os(O+ =
_" + 4 + 1 + p= - (1 + p2)2 6_'I = 0 , (46)

where

v = sO - asin(0 +0[ I) . (47)
,e

Assume now that we can find the independent solutions of Eq. (46). This

can be done analytically for asymptotic values of "the parameters and in gen-

eral, numerically. 24 In the overlapping region between 'Internal' and 'External'

regions, Max(1,a)/s << [0[ << l/co, the asymptotic behaviour of the indepen-

dent solutions of Eq. (46) is cos(0/2) or sin(0/2). At 0 = 0, the values of the

asymptotic solution _ cos(0/2) and of its first derivative are 3 7/.,_+)(O_°),s,a) and

6_b_±)'(O_°),s,a). Because of the symmetry of Eq. (46) under the parity transfor-

mation (O _ -O; O_°)+ -0_°)), we have
t

.,

• _+_(0_0_,_,_)= _,/,_,
_. /..,

_-_(o_°_,_,_) = _?_(-o_°_,_,_)= _ ,
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5 ,/,(+),(#o)

_,,,_-)'_e(°) ,_) -6¢,_+_'(-e_°) _,o)- -6_; (4s)Wc k k _3 -" _ ' *

Analogously, for the asymptotic solution .._sin(0/2), we find

_+_(0_,s,_,) - _,,

_-_c0_°_,.,, _ ,_,_) = -_¢_+_(-0_,_,,,)--_,,

6tb(+),(8(o)• _ k ,s,a) - SW,,

6tb_-)'(O_°),s,a) = 8d,.,_+)'(-O(2),s,a) =_5rb;. (49)

The 27r periodicity in 0_°) of Eq. (46) gives the same periodicity to the functions

defined in Eqs. (48) and (49). Using these results, the solutions of Eq. (.16), which

asymptotically match 6 _(s+) of Eq. (45), assume the following expressions at 0 = 0:

¢_+)(o)6 = a_+_ Wo+ _, _os +

(o,o,)}
(50)

,,_+,,(o_: a'+'[-¢2-:_,,,:+_,,_:]co.v/+
(°,°4)}
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0(°) }
(51)

= +

0(°) }

The 'Internal Solutions' of Eq. (46), given by Eqs. (50) and (51), must match

at 0 = 0. This leads to the following local dispersion relation

F(o_°),r_o,o,_)- z(o_°),_,_)_+2a(o_°),_,o)(a:o-_/4)+ (52)

+'2eoao2 (H(0_°),s,c_)cos 0_°) + L(O_°),s,o_)sin 0_°,) = 0"

where

z = (,s_,o_,_',+_, _,_,_+_v.,',_ + ,sv.,'o_,_,),
1

c = _(_v.,,_,_',- _v.,_,_'_+_¢',_,_,- _,'_,_o),
1

t = -_(6#,,,_6_b;- &b, 6¢'_ - &g,;6_ + 6e'_6¢,) , (53)

and Z 2 = 1 + 4(H 2 -G 2 + L2). Equation (52) and (53) indicate that to determine

_hee×p_icitdepenae_ofF(O_°_,fl_o,o,_)o. _,_ _na0_°_,oneneea_onlyto_olve

Eq. (46). This task is considerably simpler than the original problem given by

- Eq. (39) and, furthermore, can be solved numerically. Finally, noting that Z, G, H

are even and L is odd in 0_°}, Eq. (52), the local dispersion relation, is then even

" in 0_°), reflecting the up-down symmetry of the equilibrium.
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B. The Global Radial Eigenvalue Problem

Here, we shall employ the WKB technique to analyze the next-order global ra-

dial eigenmode problem. In the case of F(O_°), f_2o, a,s) being a monotonic function

of t, one can show that there are two turning points, t = t_]) and t = t(_), in-

side the frequency gap. TM The envelope function decays exponentially outside the

turning points. This makes A(t) itself exponentially small for the poloidal harmon-

ics of the continuous spectrum. As a consequence, the resonant damping of the

mode is small; justifies, thus, a perturbative calculation. Defining z = alt with

a_ - -[(OF/Ot)/(O_'F/OO_°)2)],=t_,, we find, 24 for z < z(_),

-i V' ,
N being an arbitrary constant, and k the radial quantum number. For z_ ) < ,r <

w

X7 ),

A(°I(x,)- qOF/O0_o ) sin i --dx + rr ; (5,5)
(2)

and, finally, for x > a:r ,

a_+_(._.)= x/OS_loo{O_exp i 7' lat"--/dm (,56)

tIere, ,'r _ O_°) _ 0 for z(_) 5 a: _<z(_), while O_°) = rr + i_tO_°l for :r < z7 ) and

0_°l= i'30_°) for x > z7 ) (the imaginary part of 0_°), _0_°) > 0in both cases)in

the gap region. The global dispersion relation for f_o is given by 24

lo"t(°[°_'r_°'_,<_)_o_°_= k,_ ke z , (,sr)

32



which is the quantization condition for the area enclosed by the phase trajectory
a

t(0_°)) and the 0_°) axis in the (0_°), t)plane, as shown in Fig.5.

" Equations (5,t) to (57) represent general results in the case of a monotozlic

variation of F(O_°), 9.20,a, s) with t. In principle, we could solve the local dispersion

relation (whicll is a transcendental function) for 0(_°) as a function of t. However. the

phase integrals in the WKB expression of the envelope A(t) and the quantization

condition must, in general, be computed numerically.

The typical global radial width of the envelope function and, therefore, of the

mode is ArTAE _. coL.4. This is consistent with the assumption of radial mode

localization ('--XrrA_ << a) and with the possibility of solving the problem with

a two-scale expansion scheme, since /-_rTA E >> Ats, the typical distance between

• rational surfaces.

The case of a local parabolic profile of F(O_°), al, OF/OtI,=,T= 0 and

02F/OtaJt=tr ¢ 0) can be treated in the same way and gives Ar _ ,-o'1/'I"-o(LA/nro)_/2

It is thus less interesting (and less general) than the case considered here.

It is also worthwhile to note that the presence of mode structures having short

poloidal wavelength patterns (k,) ,,, moro) with, however, a rather extended global

radial width Xr _ CoLa may have interesting implications for transport issues, ar'_s
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V. Variational Formulation and Resonant Damping

Substituting the poloidal harmonics 6¢j expressed in Eq. (36) into the La-

grangian of Eq. (35), the variational formulation of the TAE eigenvalue problem

reduces to

(_LNR + i(_La = 0 .

Here, (_LNR is the nonresonant component of the Lagrangian, due to the contri-

bution of the regular Fourier harmonics excited within the gap region (cf. Fig.3);

while the imaginary term, the resonant Lagrangian (SLR, comes from the contri-

bution to Eq. (35) due to the singular poloidal harmonics excited in the continu-

ous shear Alfv4n spectrum. The lowest order real eigenfrequency flo clearly gives

LNR(_o) -- O, identically. The nonresonant Lagrangian can be written as
4"

21rrodxrs /__-_ 12n,vn = k_ 2n dtlA(t) 6 LNR ; (58)
27rRo q2R] oo

where A(t) is the envelope function given by Eqs. (54) through (56), and

- (I+ p,)2 + (I+ p2)

In the next order, we calculate the resonant Lagrangian _ LR to derive the

general expression for the TAE continuum damping
t

7 6LR

fl--_o= - 2n_oOCNR/On2o" (59)
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, It is interesting to note that Eq. (59) can be also derived from energy conservation, a'i

Because of the singular layer ordering (cf. Appendix A), O/Ot ,_ l/co, only
t

quadratic terms in the radial derivatives need to be kept to evaluate the leading-

order 6Lh; i.e.,

i6 Ln 22zrr°Ar' s"

+ ((_-_)_--a_o)lo._,+,i_-

- _oa_o(o__ o,__,+,+c._.1]. (6o1

In Eq. (60) z - (t- e), and the sun1 is over ali resonances, and the 'frh' resonance

consists of contributions due to the poloidal harmonics g and g + 1 (cf. Fig.2). The

expressions for 0=6¢_°) and 0 6zJ°)v'e+l can be obtained solving the truncated two-mode

Eq. (34) for z ---,1/2. We then find (see Appendix A)

- o _¢_o__ B,((x- _)_- _o)+ _on_oc,o--; - De ' (.4.4)

o 5._c0_ Ce(x_- n_o)+ _on_Be
0-'_ _'e+_= De ' (,4.5)

_ _ 2 .t (A.6)o,: (_ _0)((_-_)'-_o)-_o_o.
By substitution of Eqs. (A.4) to (A.6) into Eq. (60), the integrand there becomes

I' )' n_]'+ I(,' n,o)+[] = v-5{IB,[(_-_ - !c,' -- "
• + (eoFt_o)"(BeC;+ B;Ce)} . (61)

Note that in Eq. (61) correct complex conjugate operations have been explicitly

carried out in order to satisfy the causality constraint and properly define analytic
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continuation in the complex 9/o plane. Thus, letting f_o _ flo + iA with f_o real

and A > 0, we have

X O _2r_2] .

For f_o = 4-1/2 + 3f_o and x = 1/2 + 6x, we have

D_ = (6ft_o-6X_- _j-_°6)-2iA6f_o.

Outside the 'gap region', where the resonances with the continuous shear Alfven

spectrum occur, 6f_ > %2/16 and the equation Di = 0 can be solved for 6x =

6zr + i6xi, with u

6x = +Ac _: i& &_°
Ae

Aebeing given by the expression

A,= _ - 1-_= _ - d_. (6o.)

Thus, we can write

Due to the resonant structure of the denominator in the integrand of Eq. (60), the

integral picks up an imaginary part coming from the residues of the simple poles.

The resonant Lagrangian of Eq. (60) becomes thus
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2rrRo q2R_o (-iTrs2) y_ ,_et

" eo_o ]ICel=2612oCB;ct + BeC; ) . (63)

Note thattheexpressionsforBe and Ct can be derived(of.AppendixB) via

the matching of the solution of the truncated two-mode Euler Lagrange equations,

Ees. (A.1), with the Fourier Transform of the ballooning eigenfunctions, and are

given by Eqs. (B.7). As discussed thereafter, Be and Ce are independent on the

normalization function N(t) chosen for the ballooning eigenfunction ¢{°)(t,0). A

particularly convenient choice for N(t) 24 allows us to rewrite Eq. (63) as

2_roAr_ f_o
i5 LR = k_ (-2ia') _ ,_eIatl 2 (64)

• 2 Ro qn2o Inol e '

With the same normalization, one can explicitly show that

6 ZNn = - FCO_°l,f_2o,a,s) , (65)

where F(O_°),f_2o,a,s ) is the local dispersion function of aq. (52). This identity

demonstrates the consistency of the two approaches, as it should.

Substituting Eqs. (65) and (64), along with Eq. (hS), into Eq. (59), we obtain the

following general expression for the TAE mode damping rate due to finite coupling

with the continuous shear Alfv4n spectrum

7 Ee &eIAel2
-- = O +oo . (66)

" If't°[ 2ft2°0"_]/-oo IA(t)l' F(O_°),f_2o,a,s)dt

Here, we note that 0/0f'to2 acts only on the F(O_°),lq2o,a,s ). In the high mode

number limit, neo >> 1, Eq. (66) is generally valid and requires only knowing
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the envelope function A(t) and the Local dispersion function. On the other hand,

Equations (54) through (56) are valid for FrO(°) 2k ,f_o,a, s) varying monotonically
g

with t. Similar analytic expressions can be derived for a local parabolic profile

of the dispersion function. However, in the most general case, the phase integrals

appearing in the WKB expression of the radial envelope, the quantization condition,

Eq. (57), and the damping rate, Eq.(66), must be computed numerically.
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VS. Resonant Eamping for a Linear _2 Profile

In the following, in order to make further analytic progress, we specialize to the

case of a linear fl_ profile; i.e. n2o= fl_(1 -t-at), where

mr s 1 r o
n .... ,

a =_ LA -- nq'(ro)nA nq(ro)SLA (67)

()-,0 q2o (68)LA -_: _ In B2X2 ,

with c_ ar.9. s constant. In particular, employing for A(t) the WKB expression of

Eq. (55), the denominator of Eq. (66) becomes

r(_o_,_) i,'> i_OrlO_o -=<_'o_°, .

Here, t< and t> refer to the two turning points coordinates and exponentially' small
4

contributions outside the turning points have been neglected. Due to the fast

(relative to the scale length of F(O_°', £12o,a,s), i.e., of the equilibrium)oscillations

of the phase iategral appearing in the previous expression, we can replace the

sinusoidal function with its average value, i.e., sin2(...) = !/2. Moreover, from the

local dispersion relation, we have

do_°, a I_0_°,
dt = lali--_ '

and

OF a iOr" at -lal _ "

Noting that

: . dO_°) OFlOt
dt - OFIO0_°)
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and changing the integration variable from t to 0_°), we have

[ (f_2o .s,a) =4 [K[2 fo '_ dO_°) 4rr [2' lal - I.I IK ; (69)
that is, Eq. (66) becomes

lal I'
I_o--_-- 4_IKI 2 _ _ IAe • (70)t

To go further, we first note that Z, G, H and L are periodic functions in 0_°).

The local dispersion relation, Eq. (52), can thus be conveniently expressed as a

Fourier series; i.e.

+2eoa] (H(O_°),s,o_) cos O_°) + L(O_°),s, a) sin O_°) ) =

= _ [Z,,,(s,a)_ + 2a,,,(s,a)(fl2o - 1/4) + eofl2o(H,,__(s,a) +
m=-I

+H_+_(_,_)+L._+,(_,_)-L__,(_,_))]_o_m0_°) = 0

Here, the subscript m denotes the ruth Fourier component and ali quantities are

meant to vanish for negative values of their index.

In the gap region, between the WKB turning points, 0 < 0_°) < rr, 0_°) = 7r

corresponding to the turning point tO) closer to the lower shear Alfven continuous

spectrum (_2o(1+ Co) < 1/4); and 0_°)= 0 corresponding to t(_), closer to the upper

continuum (f22o(1- co) > 1/4). In the exponentially decaying regions outside t(_)

and t_ ) but inside the gap, 0_°) has constant real part a_d picks up a positive

imaginary part. Finally, in the upper continuum, we have 0__! - fl_+)[_ + ir/(k+);
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• and, in the lower continuum, O_°l - 7r-/3_-Ilaa-_l + ir#_-}. Here,/3_ +} and q_±l are

positive definite phases which can be calculated from the local dispersion relation

• Eq. (52). The resonance with the continuum occurs at at >_ ata(+) (upper) and

at <_ata(-) (lower), with

1

ata(+) = - 1 4- eo + ;4ft"_ .

The summation in Eq. (70) can be further approximated as (let ;4 = at)

E_ ,XeIA_I2 = .,-_/'<""<-),X(-)(Y)lal[A(-)(Y)[i dy +

/f+ lal dy; (72). tn{+)

where

and A (+) are given by the WKB expressions of Eq. (56) and Eq. (54). In the present

form, Eq. (72) is still analytically intractable. To approximate it further, we note

that the envelope function is exponentially decaying and, thus, the dominant wave

absorption occurs near Ya(_). We can then approximate

I_ei_r/4+ik_r-i_y/lal ( li(O) )
_(-)(_-y,,(_)) (74)

- i exp-T+--_A(-)(y) ~ OFlaO_o)[_.,_,

)"_ I(ei"l' exp -R - _(+___!)(y _ Ya(+)) (75)

i I_1 '• A(+)(y)_ OF/Oo_o)l_.,+,
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and

Here, O(k_k)(s,a) are the values of the imaginary part of 0_°) at the resonance points

tri(+), i.e. they are solutions of

(+1)" [ + 2G,. + (H.._, + H,.+,) +
m=-I

+ (L,_+I - L,,,-1) ]cosh'_a(°).... _C±)= 0 .

The tunneling factors T and R, meanwhile, determine the strength of the mode

coupling to the continuous shear Alfvdn spectrum, and are given by

p

.,,,,,<-,I<,----i-dy _.d Si= aT' lal"dy. (Tr)
Noting Eq. (71), we can also write

k lyn(±)

with

OO

P(_) = E (±i)'_m [+2G., + (H__, + H_+,)+
m:-I

+ (Lrn+l - L,,,-1 )] sinh m a(°)v_(±)I

The resonant damping rate, Eq. (59), can then be approximated as

7 lal3/2 { exp(-2T)exp(-2R) }
- a(o)a/2 + a(o)3/:l . (78)Iflol 16_r'l=eloli P(-) "_.(-) P(+)"k(+)
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Explicit expressions of T and R can be obtained from Eq. (77), changing the inte-

gration variable from y to 0_°), along with the local dispersion relation, Eq. (52), 24

• and the results are

co 9(o) eo f°_)--, 4G (H cos0_°) + L sin0_°)) [ + (79)T "-" _ k(-) I_1Jo dx (Z2+4G2) e_o,:,+,=

+ 7 J°(°' dz +4 -4(Hcos +LsinO_ °)2 '/_,(_) (Z z + 4 G2) a_°l=_+ix

_ ,_.f<>-,_: _ [_.+._._.(.<os,_O>+_..n,<O.)']":lal Jo (Z2+ 4G2) e_°)=,_+_::

.(o) 4G(H cosO_°) + L sin0_°)) Ieo o(O) _o f:*(+l dx, + (80)
R = I<,--I_(+)+ _1_o (Z_+ 4a_) Ioio,:+,:

,<o> [ ,]_o f,<+, Izl z_ a_ (H¢o_
+ -_1 jo,]l+, dx (Z: +4G:) +4 -4 + L sinOi °)) °_°/:+i:

+ 7<0,of<'+'_:(_:+_,_)[_.+._._,(. <o.o<:>+<.,.0_o,)_]',:._o,:+,:
Here, _(o) ts a) is the solution of the equationk(:t:)t ,

[Z 2 +4G 2 -4(Hcos0_°)+ Lsin0_°>) 2] =0.o{°l=i¢_]_1+(_12:t:_12),,
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VII. Limiting Cases and Numerical Results

A. Zero-Pressure (a = 0) case

With a = 0, one can show from Eq. (46) that only the zeroth Fourier

harmonics of Z,G and H contribute to the local dispersion relation. _°'21 One

zco) = _¢¢osh(_/_),_= 4g:/(Z: + 4C_o),_na_nd_e(_)_)=_c_oshlGo/gol,_(_)
#0) ... 2qG_ - H_. Equations (78) to (80) then reduce toP(_:) "--2 [Ho[sinh v_(+)

-y la[3/2 [arccosh [_---_°o]]-3/2
= - [exp(-2T) + exp(-2R)] , (81)

[1"_o[ 32 _ _ Go2 [ 1 H°2
eo_

where

T -- I_1 _ + la[ Ho _ - 1 +

_o IZol /arccosh(,/,,)
+ la--'iqZo2 + 4G2oJarccoshlGo/Holdx qi - x2cosh2x -

eo Zo /arccosh(_/,,)- -- dx ¢1 - _¢2cosh:x , (82)
I_l_z_+4G__0

and

R = I_-/ _ + I_1Ho -_o- 1+

_o IZol farccosh(l/_)
+ 1<,-7qz_+4G_._ar¢_o_],,Oo/,-,.S<t_q_- ,<'_osVx+

eo Zo L arcc°sh(l/_)

These results recover those previously obtained in Ref. [20] and Ref. [21]. AI1

quantities Zo(s), Go(s), and Ho(s) are functions of the magnetic shear s only.
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• In the s << 1 limit, it can be shown that Zo(s) = 1, Go(s) = s7r/4, Ho(s) =

-(sTr/4)(1 + 1/s)exp(-1/s), T = eos_r2/8[a[ and R = 2eo/la[s. 2°,24Equation (81),
1

meanwhile, reduces to Eq. (21) of Ref. [201.

In the s >> 1 limit, one finds Zo(s) = -(1 - _r2/6s- 7r4/72_2), Go(s)= (s,'r/2),

Ho(s) = -(_7_1_.)(1- lie,s3),T = _°12s3,r21aIand R = eoTr2i15 •35/2s"/21al.23,2_

For arbitrary shear, the functions appearing in Eq. (81) and the tunneling co-

efficients must be computed numerically. Equation (81) can be rewritten as

i_1_/_f'(_)I(.o) ( )]-2]-a-][T(s) + exp 2]-_k(s) (84)I_oI- _o'/_ 4v_ _xp - ,

which is the form proposed by Rosenbluth and coworkers in Ref. [21]. Further-

more, one can readily employ Table 1 for the case a = 0 but finite shear. Equa-

tion (84) contains the functions ['(s), T(s) and R(s) directly comparable with those

of Ref. [21]. The agreement between the results obtained with two completely dif-

ferent techniques 2°'21is reassuring.

B. Finite-Pressure Case

The most important finite pressure (a :_ 0) effect on the mode structure involves

the mode localization. In particular, as a increases, the WKB turning points are

found to shift towards the lower continuous shear Alfven spectrum. At a = ac(s),

the tunneling region on the lower continuum side disappears; that is t_ ) = tR(_)

and t_(°) (s, ac) = 0. The TAE mode then strongly couples to the shear Alfvenvk(-)

- continuous spectrum and becomes heavily damped. One can show 24'40 that for

s<<l

.2((!) )ac "" i- i+ e -l/'
s+l
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and that, for s >> 1,

lp

ac _- s+ 1- _/2S + 1 .

lt is interesting to note that, for s >> 1, ac asymptoticaily coincides with the

marginal stability of ideal Ballooning modes. 4°'41The values of ac(s), as obtained

from the condition _(o)vk(_)(s, ac) = 0, are given in Table 2, where they are compared

with the analytical predictions. The values of ac(s) for s >> 1 obtained in Ref. [40]

from a numerical dispersion relation at 0{k°) = 0 are slightly higher, since the global

threshold coincides with the local result at 0[°} = rr.23,24

To examine the damping near a = ac(s) more carefully, we note that the general

expression of the continuum damping rate given by Eq. (78) can be rewritten, with

explicit parametric dependences on eo and laJ, as

1 2ol- 4 2v,Vgo F,(s,a)exp -2[_-_T(s,a) +

which reduces to Eq. (84) as a --_ 0. The definition of the functions Ft(s,c_),

_'(s,c_), [',(s,c_) and/_(s,a) is evident from a comparison of Eqs. (78) and (85).

Equation (85), however, diverges as a _ _(s), since the Taylor expansion

of the WKB phase in the expression of the envelope function A(t), as given by

Eqs. (74) and (75), as already mentioned, breaks down in this limit. An improved

damping can be derived using the leading order WKB radial envelope as it is given

by Eqs. (54) and (56).24 Equation (85) is then modified to
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4°3'2( (,o)• = Wt ['e(s,a)exp -2_-_T(s,a) +

Here, PVcand W_ are weighting factors that approach unity as

(i.e.ne.o>> I). Ifwe let8_°)= 7r--f_-)inn--_ol+/r/_-) inthe lowercontinuum,

8_°)= fl_+)[_l+ ir/_+)intheuppercontinuum,and letx -It- ta(+)l"[a[/eo,then

• 4 ¢o ¢0

w(,,,,)(s,,_,_o/lal)= P(-,-)0_/=_ d_V_=+2x.

• e×p[- 2(,o/lal)fo_r/_±)dx']

• P(-.') (z,/3_±), rli±)) , (87)

with

(:3O

P(u.,, (x,/3_:t:),r/i:1:)) = E m (+l) m {Zm v/x2 -1- 2x
m=--I

[cos (rn/3_e)) sinh (mr/_±)) - /sin (m/3_±)) cosh (mr/_±))] +

+ [:I:2G,,(x+ i)+ Hre_,+ H=+, + 5=+i- i=-1]

[sin (m/_ ±)) cosh (mr/(±)) + i cos (m_ ±)) sinh (mr/_±))] }[

At the continuum position x = 0, /3(±) = 0, rl(±) n(°) and P(,_.t) = P(±) In= v/_(±)

this respect, Eqs. (85) and (86) may be considered as, respectively, the upper

• and lower bounds for the continuum damping as a _ ac(s). 24 While the precise

determination of the damping in this limit requires a non-perturbative calculation,
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we can, however, estimate it. In fact, note that _b(s, ac) = 0, W_['t(s, _) = O( I - 10)

as c__ ac(s) (cf. Table 5 and Ref. [24]) and Cola I - (neo)sqoL,_/ro. From Eq. (86)
t

we then have

I_o-q"_~-o._s_°w,_',(_,_')(r"°)-_"(_q°)-_"(VA"°)_" ' (SS)
For the optimal ordering n_o _ rolLa ,_ Sqo = O(1), Eq. (88) gives I'_/_oflol =

o(0.i- _).

h-,gen_,'_l,therunction_L(_,,_),/'(_,_),b,.(_,,_)_,-,d&(_,.)_ppe_,'ingirlth_

damping expressions Eqs. (85) and (86), along with the weighting factors Wt and

W, entering in Eq. (86), must be computed numerically and can be conveniently

expressed in a tabular form. In the following, results are given for increasing values

of a and shear values s = 0.5 and s = 1.0 (cf. Tables 3 to 5), which show how

the damping increases as a approaches ac(s). A complete collection of tabulated

functions is given in Ref. [24], for 0.1 < s _<3 and 0 _<a < ac(s).

In the s << 1, a << 1 limit, it is possible to give an analytic expression for

the functions of the parameters (s, o) entering in the resonant damping expression.

With the definitions _)= (1 + 1/s)e -II" and & = a(1 + s)/s 2 the resonant damping

of Eq. (85) reduces to 23'24

_, lal3/2 1 { exp[-2(eo/lal)_'(s,o,)]lao: -

(o/1Ol) }
with

¢(s, a) __ arccosh (1 - &)2 +
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VIII. Summary and Discussions

In the present work, we have formulated a general theoretical approach for

analyzing the two-dimensional structure of high-n Toroidal Alfven Eigenmodes in

large-aspect-ratio tokamaks, using the well known (s, c_)equilibrium model. _s Such

studies determine the radial envelope of the poloidal harmonics and, thus, are

important in assessing the resonant damping rate due to finite coupling to the

continuous shear AIN_n spectrum.

The present approach naturally treats inodes with extended radial structures

characterized by well-spaced WKB turning point pairs (ct'. Fig.4), and is also

capable of analyzing the finite coupling between two-dimensional high-n discrete

and continuous spectra as well as other non-ideal effects. 38 In this respect, it may

be regarded as a generalized ballooning formalism. The technique employed here

to "generate" a radial eigenvalue problem from the local dispersion relation (see

the discussion given in Section II) is, meanwhile, very general, and can be used for

the solution of any two-dimensional problem characterized by two distinct scales,

e.g. typically for high-n modes. 3v

In this work, we have further specialized our considerations to the case of linearly

varying equilibrium profiles in order to illustrate the application of this formalism in

sufficient details. In the c_= 0 pressureless limit, the previously obtained results _°'21

are recovered. The analysis has also been generalized to the case with arbitrary

shear s and dimensionless pressure gradient a. In particular, it is demonstrated that

a critical value c_c(s) exists (which asymptotically coincides with the Troyon limit),
t

at which the tunneling region of the TAE radial envelope towards the lower shear

Alfven continuum disappears, causing a strong coupling of the mode to the con-
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. tinuous spectrum. The corresponding resonant damping rate, meanwhile, increases

significantly as ac(s) is approached and is typically ordered as O(0.1 - 1)eoO.,A.
o

The damping given by Eqs. (78) and (86) must be compared with, e.g., the

electron Landau damping (7/If_ol)L_ -(_,m,/mi) al2. In'ITER, 42 for example,

the toroidal magnetic field on axis is _ hT, the electron density is n,< 1014cm -3

and the peak electron temperature is T, ,_ 35KEV. Thus/3, ,_ 0.05 and ('t/IP.ol)L

-3.7x10 -a. In the case of TFTR and JET, the electron Landau damping is even

lower, because of the lower T, _ 5KEV. To get an estimate of the continuum

damping, we need to give an order of magnitude for a and s in these devices. Since

the "resonant excitation of TAE's occurs close to the plasma center, where most

of the fusion alphas are born, s is expected to be small due to the relatively fiat

q(r) profile. Similarly, estimating a _< /3 > Roa, we have a> 0.15 in ITER,

while a _ 0.03 - 0.05 in TFTR and JET. Taking a common value of s = 0.5

for ali these machines, we see that ITER would be above the predicted ac _ 0.14

threshold for strong continuum TAE damping. Taking eo = 0.2- 0.3, n_o ._ 1

(i.e. n = 3-5), Jal _ 1/n and s = 0.5, with the help of Tables 3 and 5, we

have (7/If_oJ)r _ -(1- 1.5)xl0 -2 for c_ = 0.05 and (7/Jf_oJ)r _ -(3- 5)xl0 -2

for a = 0.13, the subscript r staying for 'resonant damping'. In both cases, the

continuum (resonant) damping is much larger (an order 5 to 20) than the electron

Landau damping. Close to ac -_ 0.14 the damping is already of order O(eo) as

expected for a_> ac. In the presence of circulating beam particles (or fusion alphas),

. the linear mode drive is (7/JfloJ) _- J3hfhkophRo/Lph, _ with Ph being the Larmor

radius of the energetic ('hot', subscript h) particles, Lea the scale length of their

pressure profile, fh the fraction of resonant particles, and kdph ,'_ eo/S. TM Thus,
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assuming eoRo/Lph _ )'h _ O(1), we have a marginal stability threshold for TAE

modes at/3h m 0(13'/[12o11.)= 0(10-_, 10-'), 2°':_ the higher values corresponding

to a> ac. This values are of the same order of the ones discussed in Ref. [43], but

they are a consequence of the global equilibrium properties of hot plasmas, and

not of a finite plasma conductivity. Looking at the values of (3'/IFtol)r obtained

previously, we can conclude that TAE might be difflcult to excite close to the

threshold c_ = c_c. It is necessary to remark that our theoretical results only give

approximated estimates of the continuum damping for n_o ._ 1; appropriate for

the present experiments. We can, nevertheless, conclude that finite pressure effects

will be very important in enhancing the TAE continuum damping, especially in

the central, low shear, plasma region, where ac could be easily exceeded. This

stabilizing effect should be more significant in ITER, where c_ is larger and medium

to high toroidal mode numbers can be excited. In the present machines, such as

TFTR and JET, n< 3 are more likely dominant and the finite-a continuum damping

enhancement has to be taken as a qualitative indication, since the damping rates

of low-n TAE's, in principle, must be computed numerically.

One interesting feature of the high-n TAE eigenmode structure is the short

poloidal wavelength of order O(a/mo) and the rather broad extent of the radial

envelope; i.e. O(eoLa) and O(e_o/4ro(La/nro) 1/_) in the cases of, respectively, linear

and parabolic radial equilibrium profiles. These broad radial structures suggest

that, at least in the linear phase, the plasma may develop vortices with long radial

correlation length, and, therefore, may have significant implications to transport

issues.3V,3s

Finally we note that, while we have limited our present work to a model equi-
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• librium with shifted circular magnetic surfaces, the theoretical approach developed

here could be straightforwardly extended to equilibria with finite ellipticity and

• triangularity. In such cases there are additional modes, such as high-n Elliptic-

ity induced Alfv6n Eigenmodes 44 etc.. On the other hand, 1:he physical picture of

continuum damping, as developed here, can be expected to remain about the same.

The present formalism could be also further generalized to include effects such

as equilibria with flow as well as wave-particle resonances to have a more complete

description of instability damping and growth mechanisms.
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Appendix A. Singular Structure of the Resonant Poloidal

Harmonics

Let us consider Eqs. (34) of Section III. We will focus our attention on a case

in which the resonance involves the g and the g + 1 poloidal harmonics, i.e., we

will find the behaviour of these solutions, close to the point where the cylindrical

continuous shear Alfvdn spectra of the g and e + 1 modes coalesce. This occurs for

t _ _ + 1/2. Let z =- (t - e). Then we have the Euler-Lagrange equations

O 02
$2 _ 2 22[(_+_)- _o] _,-, - _o_o_--a_(_¢_-_+_') + ...= o ,

s_ 0 O 02- - _o_oS_ (_¢__,+ _¢_+,)+ ... = 0, (A.Z) .

s2 O 0 02

Here, only the highest order radial derivatives appearing in Eqs. (34) have been in-

cluded explicitly. The dots stay for the remaining terms, which are negligible in the

present analysis. Since ft2o __ 1/4 and z "-' 1/2, only [z 2 - f_o2] and [(z- 1)2 - g/2o]

are vanishing in the region of interest. Assume rio _- 1/2 (the case f/o __ -1/2 is

identically equivalent). Then, given 6_o -=f_o - 1/2 and 6z - z- 1/2, we have

[z2_ _2o]__5z - _flo,

[(_- _)__n_o]____ _ _o.

Equations (A.1) can be treated with a two scale analysis, given the slow scale

x and the fast scale y =_5X/_o_2o. To do so, we expand 6¢j as

_¢, = _¢_o_(_,_)+_o_¢_1_(_,_)+....
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. To the lowest order, the first of Eqs. (A.1) is then

02 1

_ [(_+_/_- _o_]0__o_0__o_ =0,I[w

from which

, = 6_,(o)(x)+ yF(z)

where F(x) must be set to zero in order to avoid secularities in the fast variable

y. Therefore, 6¢e-1 does not have any structure on the fast scale y to the lowest

order. The singular behaviour appears in the next order, driven by the harmonic

_¢_o);i._.,

(92 XA,(1) 02
y

" but the determination of the first order correction is beyond our need. The same

calculation could be done for 6¢t+2, which in general proves how, close to a given

resonance, only the two closest neighbouring harmonics (in this case 6¢t and 6¢e+1)

exhibit a singular behaviour to the lowest order in the expansion parameter eo_.

Therefore, to the lowest order, Eqs. (A.1) reduce to

0
s2 6¢_°) - s_ 6¢(0) = 0N _ _oa_oN _ TM '
s2 0 6flo] 0 xA,(o) s_ 6,_°) = 0 (1.2)

These equations are equivalent to the system

0 02 [ :] _'o_(°) - eo_2oS_-7-_v,_t+_= 0 ,

su 0 [2_] 06¢(o)e+, eo_/o2s256¢_°) (A.3)_(_-_)_-% _ - =o.
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solved as z _ 1/2. Equations (A.3) are exactly integrable, and give

a_ = mt , (A.4)

O5¢(0) C,(=_- no_)+ _oa_oB,
a--_ e+_= De ' (A.5)

2 4
De = (x2-_2o)((x-1)2-_2o)- eo_2o , (A.6)

where Be and Ce are integration constants.

The coefficients Be and Ce can be expressed in terms of the regular part of the

magnetic field compression at resonance, 5Bii,e and 5BII,e+L.More precisely, we have

that 24

w 2 25BII,e
Bt = - - qoR o

C 8

Ct w 2 25Bll,t+,= --qoRo . (A.7) .
c 8

Equations (A.7) along with Eq. (63) demonstrate that the wave absorption at the

resonance with the shear Alfv4n continuous spectrum is proportional to the ampli-

tude square of the magnetic field compression, as already emphasized by Chen and

Hasegawa 4s for the cylindrical case.
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. Appendix B. Fourier Transform of the Ballooning Eigen-

function
t

From Eq. (36), we know that in order to determine the.functional form of the

poloidal harmonics 5 Cj(t), we need to calculate

¢(t,t-j) = ¢(t,z) = J-c,,
dS e-i_° ¢(t, 8) .

Recall that ¢(t,0) = _b [1 + I_]-t/2 (cf. Section IV.A); thus,

¢(t, z)= oo l_'_o 5¢(t'o)e- " (B.I)

According to Eqs. (A.4) and (A.5) of Appendix A, we need to determine

Ot_¢j(t) close to a given 'resonance'; i.e., for It - j + 1/21 < Co. Since the en-

. velope function A(t) is slowly varying, we have

0,5¢_(t) = A(j)O_¢(j,z)" A(t)O_¢(t,z).

Thus we are left with the calculation of

e":°[°' c)¢(t'x)0z = -i _ dO l__oS¢(t,O)e

$

Now, as in Section IV.A, let us introduce the scale T, such that [sT I >>

Max(1,a) and leoT[ << 1. Similarly, we will also use the shifted variable

0' = 0- 0_°}, and, then, omit the prime superscript. The contribution to O,¢(t,z),
d

thus, comes from two distinct regions: 101< T (Internal Region), and 101 > T

. (External Region); that is,
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e ix

0-7¢(t,_:) = - i de_i a (t O)_ - .+[,o- o_.(e+o_°')]= '

-, f[ _o_A+[,o-°-o_n0_o,(0- 0_°')1__¢'("-01e.o_
- -_.Tr-=de[6+<;'(,.o).-':'- _+<_-'c,.-o),,:o}+3

+o +O ;

where the (4-) superscript refers to solutions 5¢ for positive and negative argu-

ments, respectively. The contribution from the integral of the External Region is

typically of order O(l/eo) for Ix :i: 1/21 = O(eo), while the contribution from the

Internal Region is of order O(T). Thus

eia_o_Ol 0 i fT °0-7¢(t,z) = ---S dO [_+)(t,O)e -':_ - a,4-)(t,-o)e =°]
C_+o +

In the External Region, the solution 5 ¢(Ee) is given by Eq. (45). Thus, defining

A(e) = (a (+) + a(-)), we have

o i (,,,+>s,+,,<_I_)_-,:o<:>0-7¢(t,_) = - 2-7 _ , (B.2)
with

oo 0 - 0(°)

0 2 0 - 0(°)
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where the upper sign refers to It, and the lower sign to I2. From these expressions,J,

we can show that

t

+ i(_- 1/2) +

xl+i(x+ll2) '

al + i(z - 1/2) +

iO_°)/2 e-arT .
+_- _ _ + i -}+ i(_+ 1/2)

Noting that &aC i __ A(t)O=¢(t,z)and Eq. (B.2), we have, for Iz:t: 1/2[ = O(eo),

• N(t) s-_z _ Cj = 5 2 + (z_112) a q:a/ V/'_+ 2 2

Here, N(t) is the normalization factor introduced in Section V. From the matching

of gqs. (50) and (51), we find that A(:e) are given by

N(t) A(±) = :i: cos + _ qz2 2 2

Now, considering that Aj-_I = e±i°hAi in the decaying region (i.e., also for the

resonant poloidal harmonics), we finally have, for Ix- 1/21 = O(eo),
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0 1

_'/,/__+,: +_+/:-_i_/_{-'_[(_<_-+/r_-_i_/b+)A,+
+¢oa2otJ_As+,] - (x-1/2) [(4,D+-.(rio_- 1/4)a_)A./+

2,,
+_ofloa+As+l ]} , (B.4)

0 1

N(<)__5+;+,: +_+(_-_/2)_(_[(+_++C_o-_/_)_-)A,+,+
+_oa_oi,+Ajl - (=,-_/2)[(,_b_- (a_- l/4)a+) As+,+

+ eofl2oa_A s ]} , (B.5)

with

a± = :t:i
2 2 '

4- i . (B.6) '2 2

Equations (B.4) and (B.5) must match the corresponding expressions obtained

by direct solution of the two-mode truncated Eq. (34) of Section III (see Ap-

pendix A); i.e.,

o B, ((_- _)_-a_) + _oa_c,
0-"_"5 Cs = Ds , (A.4)

0 _¢j+,= cs (_-a_) + _oao_aj
0"_ D+ ' (d.5)

For I_- 1/21= O(_o)and la] - 1/41= O(_o),w_ have

Ds = - ((x- 112)_+ .i_) .

Thus, we finally obtain

6O



• Y(S+1/2)_B_ - - (._i,+- (r_ l/4)a_) Aj 2-- _ ._ eofloa+Aj+l ,

¢. 2N(j + 1/2)sO_ = (_g_ - (f12o_1/4)a+) Ai+, +. o_oa_A_ . (B.7)

The amplitudes Aj are themselves proportional to the normalization function

N(t), 24 since [A(t)[ 2 _ (0F/c38_°)) -' _ IN(t)[ 2. This makes the coefficients B)

and Ci, defined in Eqs. (B.7), independento,, N(t).
e
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Table Captions

Table 1: Coefficients Zo(_), Go(s) and Ho(_) of the local dispersion relation, and

F(s), T(s) and R(s) appearing in the damping expression Eq. (84), as a function

of the magnetic shear s.

Table 9" Values of a_(s) from _(0) (s, ac(s)) = 0 compared with the asymptotic-" "kl-) . ,

limits, s << 1 and s >> 1, computed analytically.

Table 3' Values of the functions _,(s,a),/_(s,a), l_t(s, c_) and :F(s,a) versus a at

s=0.5.

Table 4: Values of the functions F_(s,a),/_(s,a), rt(s,a) and 7'(s,a) versus c__t

S = 1.0.

Table 5: Values of the functions Wtb_(s,c_) and W,,F,,(s,a) versus a _t s = 0.5

and s = 1.0. The asymptotic parameter is eo/[a[ = 100 in this case.
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. Figure Captions

, Figure i"Continuous spectra for the (ro, n) (full circles) and (m + 1,n) (crosses)

cylindrical shear Alfven modes. When toroidicity effects are included, a frequency

gap appears in the shear Alfvdn continuum. Here nq has been used as a radial

variable.

Figure 2: (a) Gap for:nation and gap structure for the poloidal harmonics m, m +"

and m + 2. The form of each eigenfunction is given; in (b) for _¢m, in (c) for _¢,_+1

and in (d) for $¢,,,+2.

Figure 3: (a) TAE eigenmode structure. The gap region [nAql ,_ neolq'LA[

corresponds to the spatial interval in which the TAE frequency is in the for-
J.

bidden frequency window of the continuous spectrum. The amplitude of the

poloidal harmonics outside the TAE localization reg;ion is exponentially small. Here

_¢ = E_ _¢,,, exp(-imO). (b) Resonant excitation of the shear Alfven continuum

at the TAE frequency.

Figure 4" Relation between the rad:al profile of the dispersion function

F(0_°),f_ 2o,a.s) and the real WKB phase trajectories in the (0_°),t) plane, f_o

labels different phase trajectories. The structure repeats in 6_°) with period 2zr, _)_o)

being a polidromic funcoion of t.

Figure 5: The shaded area is quantized according to the global dispersion relation

of TAE modes, Eq. (57).
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Table 1:

O. 1 0.g8754 E +00 0.78680E-01 -0.57015E.04 0.56840E-01 0.80080_-01 O. 18775 E.02

0.2 0.948388-{-00 0.15888 E 4.00 -0.97539£.02 0.967568.01 0. I0422 E 4.00 0.5302184.01
.....

0,3 0.87971 84.00 0.2,14818+00 .0,.58349 F,.01 0. t366 i 8 4.00 0,95112 8-01 0.45152 8-4.01
...........

0.4 0.787438,4-00 0.3423984.00 -0.1491484.00 0,181028,4-00 0.76062 E.01 0.246688.01,.

0 _5 0,8835684.00 0.45388 E 4.00 -0,26984 84.00 0.23388 R4. 00 0.584408-01 0.12704 E4.01

O8 0.57799R4.00 0.57804 i_'4.00 -0.4084584.00 0.29686E4-00 0,447238-01 0,625038.00

0.7 0,4765484.00 0.712448.00 -0.5606784.00 0.371278-4-00 0.345468-01 0.307168-I-00

0.8 0.3819584.00 0.5S46684.00 -0,718978.00 0.45854 E.00 0.270538.01 0.15604 84.00

0.9 0.29517 8-{-00 O. 1002784.01 -0.881578.00 0.559398-1-00 0,214988-0X 0.831958-01
.....

1,0 0.2182184.00 0. 11550E'4-01 -0, I046784.01 0.8746984.00 0,173258-01 0.466708,01 r

1.2 O. 79739 8-01 O. ! 46818 4.01 -0. !38098+01 0.952018 + O0 O. I 1690 B-O I O. 16865 8'01
.,,

1.4 -0.32¢798-01 0.178798.1-01 -0,171678+01 0.129708+01 0.523838-02 0.708828-02
,.

1.8 -0.125458+00 0,21112R+01 -0,2052184-01 0,1716184-01 0.601678-02 0.334578-02
......

1,8 -0.20328 84.00 0.2436284-01 -0,23865 R4.01 0,2215484-01 0.45256 E-02 0.172798-02

2.0 -0.2690984-00 0.2751784-01 -0.2719484-01 0.2501084-01 0.348898-02 0.958208-03
......

2.2 -0.32537 8 4-00 O. 30874 8-l-01 -0.30510 84-0 ! O. 34787 E 4- 01 0.274618-02 O. 56285 E-03
,.,

2.4 -0.37393 84-00 0.34129 84-01 -0.33813 84-01 0,42544 84-01 0.22003 [_-02 0.34688 8-03

2.6 -0.4162284-00 0.3738084-GI -0.3710284-01 0.5133684-0! 0,17901 8.02 0,22214 E-03
..

2.8 .0.45333 8 4- 00 O. 40626 8 4-01 -0.40381 g 4-01 0.51220 8 4-01 0.147618-02 0.14722 8-03
,, ,,,

3,0 -0,486148'4-00 0.435678.4-01 -0.43649E 4.0 L 0,722508-F01 0.123158-02 0.100428-03
....
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T_,bl¢ 2:
I ..' 1 _'_') o¢(_h,o,y,<< l) o,(th,,o,.y,>>1), ,,

0.1 0.95894E-02 0,90664E-02
. , ,

0,2 0.33586E-01 0.31986R-01

0.3 0.65420 E-O I 0.585296-01

0.4 O. 101686+00 0.814521_,-01

0.5 0,141326+00 0.989998-01

0.6 O. 183876+00 O. 111676+00
,

0.7 0.226946+00

0.8 0.276226+00

0.9 0.325436+00
.........

1.0 0.37634 E+O0 0.26795 E+O0

L.2 0.48248 E +00 0.35609 8+00

I.4 0.59335 E+00 0.45064 E+00

1.8 0.70806 E+00 0.55601E+00

1,8 0.825938+00 0.655246+00

2.0 0.946526+00 0.763936+00

2.2 0. I0695E+01 0.87621E+00

2,4 O. 11946 E+O 1 0.991666+00
,,

2.6 O. 13218 E+O 1 O. 1110OB+OI

2,B O. 145098+01 0.12310E+01

3.0 0.158206+01 0.135426+01

3.5 0.191796+01 0,16716E+01

4.0 0.22661 E+01 0.200006+01....

4.5 0,262656+01 0.233776+01

5.0 0.299856+01 0.266346+01

5.5 0.337996+0! 0.30359B+0|
.,,

6,0 0.376758+01 0.33944B+01

7.0 0.45461 E+O I 0.41270E+01

8.0 0.531246+01 0.46769E+01

9.0 0.605926+01 0.5641 lE+OI

I0.0 0.67876 E+01 0.64174E+01
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, Table $:,

...... , ,.

0.00 0.23368 B +00 0.58440 E-O 1 0.233688+00 0.12704 8+O!
....

, 0.0!, 0.253308q-00 0.49498B.01 0.21654 E,.I-00 0.134568+0!

0.02 0.276048+00 0.,13,63-01 0.201466+00 0.142,28+01 ,,

0.03 0._0291m+00 0.33946m..01 0.16707p.+00 0.i6210m+01
0.04 0._3633_+00 0.273306-01 0.175781+00 0.6622_8+01

........ , ,,

0.05 0.375028+00 0.214756-01 O. 16484 E+O0 O. 173208+01
....

0.06 0.,,25523+00 0.1637+8.01 0.15,71s+00 0.165208+01
,,, , ,, , .......

0.07 0.491848+00 0.120148-01 0.145356+00 0.198268+01
.,. ,

O. 08 O.58256 8"4-00 0.838 t $ P.,-02 O. 136708 + O0 O. 21230 8 + 01
,,

0.09 0.714158+00 0,54554 3..02 O. 12865B+00 0.227348+01
,, ., , , . ,,,, ..... ,

O. lO 0.921308+00 0.320908-02 O. 121148+00 0.24338 8+0 I.
,,, ....

O. 11 O, 12900 P.+O I O. 16064 8-02 O. 114048+00 0.260468 +01
..... ,, , ,,,

0.12 0,21010£+01 0.597308-03 O. I0733 F'.-(-O0 0.278558+01
_, ............... r, .......

O. 13 0.49730g +01 O. 106058-03 O. 10098 B+O0 0.297708"1"0 l
................

Table 4:
1 o _(,.o) _(;;oj r.<..o) _(,i_)

.._........ ...

0.00 0.674708+00 O.L7325B.OI 0.674708+00 0,466708-01
• . , , . ,....

0,02 0,712968-1-00 0,152108,,01 0,638438+00 0,5066i8,01
.... t ....... ,

O. 04 O. 75373 E + 00 O, 13258 8-01 0.60382 8 + O0 O. ,556158-01
...... _ ,, ........

0.06 0,797628+00 0.114628o0t , 0.57062B+00 0.616868-01
..................

0,08 0.845583+00 0.98168 8.-02 0.53663 E+O0 0.601728-01....... _

0. I0 0.898728+00 0.831758-02 0,507798.+00 0.784318-01
, ,

O, 12 0.958708+00 0.695938-02 0.477078+00 0,899268-01

O. 14 O, 102768+01 0.573753-02 0.449228+00 O, 104268+00
, , ........

O, 16 O. 110868+01 0.464788-02 0.421478+00 O, 122228+00
, , ,.. ,, .,,,u

0.16 0.120608+01 0.368603.02 0.394818+00 0.1,,462_+00,, ,,

0.20 O. 13263 8-FO 1 0,264818-02 0,36920 B+O0 O. 17341 E;+O0
. . , .......

0,22 O. 147988+01 0.212998-02 0.344708-1-00 0.209698+00
=

0.24 O. 168308+01 O. 15271P--02 0.321328+00 0.255878+00
.

0,26 O, 196538+01 0.103508-02 0.299088+00 0.314718+00
.... . ...... , • .

0,26 0.238338+01 ] 0.648428-03 0.277998+00 0,389618+00 ....

0.30 o.3o6138+oI o.361] 18.,o3 0.256068+00 o.,,6+598+oo

0.32 ' 0.43304 I_..I.01 0.165483-03 0.239268.1.00 0160420 E-l-O0 "

0.3,, 0.74259m+01 0.515,,t8-0,, 0.221598+00 0.7s330£+00-.,

0.36 0.22761 £+02 0.501403-05 0.205038+00 0,936978+00
,

0.37 O. 149438+03 O. 11033P._06 O. 197158+00 O. 104358+01
.... j
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Table 5:

, ---o.5 -_ ,.z.o

0.00 0.22532g+00 0.225328;+00 0.00 I 0.570,17g+00 0.570478+00

i

I
0.01 0.24279 E-I-00 0.20983 F.,-I-00 0.02 0,59332g-{-00 0.54781 R-F00

0.02 0.26269R-F00 0,19598g-l-00 0,04 0,61648 g.4.00 0.52524B-I-00

0.03 0,285678_-1-00 0.18347g-t-00 0,06 0,64013g-l-00 0.502728-1-00

0,04 0.31257P_-00 0.17209 R.t-00 0.08 0,664488;.4.00 0.480228;-1-00
.... • ,. , , ,

0.05 0.344458;-l.00 0,161698;-I-00 O. 10 0.68980 E;-I-00 0.457778-1-00
4 "'

0,06 0.38296 E;-F00 0.152088;-1-00 0.12 0,71639 g-t. 00 0.43541F_-t- 00

0,07 0.43030 R-t-00 0.143178;'t'00 0,14 0,744628;-I-00 0,41320R.1-00
....

0.08 0.48957B.00 0.13489 E;-t-00 0.16 0,77489E;-I-00 0.39121E;-1-00

} 0,09 0.56528 g-4-00 0,127158;.1-00 0,18 0.80764 8-(-00 0.369568-t-00

0.10 0.68386 E;-I'00 0.11990 E;-I-00 0,20 0.84340 E;-t-00 0.348328+00

0,11 0.794 IaE;+00 0,11306g-1-00 0,22 0.882678;-I-00 0.327608;-t-00
......

0.12 0,96684 8"t"00 0.10661E;-t. 00 0.24 0,92597g-l-00 0.30748 E -t'00

0.13 0.11881 E;"1"01 0.10050 E;-4-00 0.26 0.973758+00 0.28805 E;-I-00

0,28 O. 102638-J-01 0,289378;+00
.

0.30 O. 10834E;-0.01 0.251508-4-00

0.32 O. 11441 g-]-O 1 0.23448 g-I- O0

0.34 O. 12085 E;-].O1 0.21832 R-I-O0
.,,

0,36 0,126148-1.01 0,20304l;'.-I-00
. ,,
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Figure i:
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Figure 3:
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EXTERNAL DISTRIBUTION IN ADDITION TO UC-420

Dr. F. Plolonl, Univ.of Wol_, AUSTRALIA F_of.I. Kawakami,Hires/Vmi UnN., JAPAN

Prof. M.H. Brlmnan,Univ.of Sydney, AUSTRALIA Prof. K. Nts_ HiroshimaUniv.,JAPAN
4

Plasma Rluwch Lib.,/kallrlliln NaL Univ., AUSTRALIA DirI¢tl¢, JipIn AWmlc:EnergyRelemrd'l InsL, JAPAN

Prof. I.R. Jones,FEndersUniv, AUSTRALIA Prof.S. Iloh, KyushuUniv.,JAPAN

" Prof. F. Cap, Inst forTheorUlcalPhysics, AUSTRIA Re_ Info.Cb'.,National In#tiLfm' FusionScience,JAPAN

Pmr. M. I'ielndlM, Instilut fOrTtmmlische Physik,AUSTRIA Pmr. S. Tli_ka, KyotoUniv., JAPAN

Prof. M. GOosNns, Astmnomiu:hInsltuut, BELGIUM Library,KyoloUniv.,JAPAN

Eooie Royaie kllit/m, Lab,de Phy. Plasmas, BELGIUM Pmr. N. Inoue,Univ.of Tokyo,JAPAN

Gommisslon-Eumlleen,DG. XII-FuslonProo., BELGIUM Secreqwy,PlasmaSm:Ilmr,Eleclmtichnic_ Lab.,JAPAN

Prof. R. Bout, Ri_lun_maitl_ Gent, BELGIUM S. Mm(, TeahnicalAcbism,JAERI, JAPAN

Dr. P.H. Sakanlim, InstiQumFlak:s, BRAZ1L Dr.O. Mltarai,KummrmmInel of Technology,JAPAN

Inst#urnNadonal De PemluiqmllEII:edaie-INPE, BRAZIL J. Hy_, KoreaAIm_k: EnergyResean:h InsL, KOREA

Documents011_, Almwl¢,Enoqlyo4Canads Ud., CANADA D.I. C,h_, The KomsAdv. Inel of Sd. & Tech., KOREA

Dr. M.P. 8a_, MPB Tedmologies, Inc., CANADA Prof.B.S. L_, Univ. of Waikslo, NEW ZEALAND

Dr. H.M. Ska_ Univ.of Smkal¢ttswan, CANADA InINof Physk:s,Chinesek:ad Sd PEOPLE'S REP. OF CHINA

Prof.J. Telofmmrm,UNv. of Mm_Nai, CANADA I.Jlxary,Inst.of Rssma Physics,PEOPLE'S REP. OF CHINA

Pmr. S.R. 9nm_asn, Univ.ot Caigwy, CANADA TsinghusUniv. Ij_, PEOPLE'S REPUBLICOF CHINA

Prof. T.W. Johnston,INR_ie, CANADA 7..Li,S.W. In=t Phym, PEOPLE'S REPUBUC OF CHINA

• Dr. R. BoRon,Cenml _ do h,monm_nJb_.Je, CANADA Pm4.J.A.C. CadXll, InstiMo _ Te(:nico,PORTUGAL

Dr. C.FLJames,, Univ._ Alberls, CANADA Dr. O. Petue, AL I CUZA Univ., ROMANIA

Dr. P. _ Kamenek4tmUnlvws,_a, CZECHOSLOVAKIA Dr.J. de VIliors, FusionStudies,AEC, S. AFRICA

The Ubnman, _ L,_, ENGLAND Pm4.MA. Heilbeql, Univ.of Nswl, S. AFRICA

_, R81, Rulhmtb_ Ai_ Labonm:W,ENGLAND Prof.D.E. K;m, Pohang Inst.of Sd. & Tech.,SO. KOREA

Mrs. $.A. Hut=Nns(m,JET I.J_, ENGLAND Prof.C.I.E.M.A.T, Fusion_ Ubrmy. SPAIN

Dr. S.C. Shanns, Univ.of Soulh Pm:6:, FIJI ISLANDS Dr. L Stmflo, Univ. of UMEA, SWEDEN

P. MilhOmm,Univ. of Hoisinid,FINLAND L_, Fk)yaiInK of Tedm(doW, SWEOEN

Pmr. M.N. Buasm:,Eoole I:_nique,, FRANCE Prof.H. Wilhelm, ChalmersUniv. of Tech., SWEDEN

C. Mmull_, Lab. de Phym dm Miilaux Ionie4s,FRANCE Cenl'e Phys.Des Plsmrtas,E¢oiePolytech,SWITZERLAND

J. _ CEN/CAOARACHE. Di[!506, FRANCE Bibiioll_uk, Inst. Vmx' Plasms-Fysk:a,THE NETHERLANDS

Pmr. E. Emnm_u, Unw. of C,mm, GREECE Asst. Prof. Dr. S. Caldr,Midch EastTech. Unw., TURKEY

Ms, C. Rinni, Univ.o( leannlmL GREECE Dr. V.A. _,Sd. Ras. InsL F_ys.I Appanltus,USSR

Dr. T. Mud, A_ _ Ser., HONG KONG Dr.D.D, Ryulov,SiberianBranchot Acadm_yo_Sd., USSR

Preprinl L.Jbrafy,I_ Acacbmy of Sd., HUNGARY Dr. G.A. EliNov, I.V. KumhatovInst., U,_._:I

Dr. B.DasGupm, Saha Inst.of Nuctew Physics, INDIA Lilx'af_n,The Ulu'.SSRAcmdemyof Sciences, USSR

,_ Dr. P. Km, Inst. tta' Plasma Ftasun_, INDIA Dr. LM. Kov_dmykh, Inst.of _ Physics,USSR

Dr. P. _, Inmel IneLof TeohnoioW, ISRAEL K,m'nlorKtwngswdagoGrid)H,Zlm_, W. GERMANY

_an, Inllrnallonal Cenllr for Theo Physics, ITALY Biblli_lhek,Inel FOrPlmm_lorschung, W. GERMANY

Miss C. De Palo,Amlocmzio_ EURATOM.ENEA, ITALY Prof.K.Schindm,, Ruhr-Univemt_ Bochum,W. GERMANY

Dr. G. Grom, Islilulodl R_km del P_mm, ITALY Dr. F. Wagner,(ASDEX), M_x-Plan_-Insti'Wt,W. GERMANY

Pmr. G _, IsliluWG_ kmizz_ Del Cnr, ITALY LJlxadm,Mau_.Planck-lnstilut,W. GERMANY

Dr. H. Ym_lo, ToeNbe R_ & Dm_ CAmlBr,JAPAN Pmr. R.K.Jlnev, Inst. _ Physk:s,YUGOSLAVIA



r




