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GASINITIATED CRACK PROPAGATION IN A FOROUS SOLID

Abstract

The propagation of a crack in
purvus earvth tormations following an
experinents! onderground fuclear ex-

plosion is analyeed,  The three-

dimenyional analysis includes inter-

action of pas pressure within the

crack, pertmeation of gas into the

porous earth fopmation, Jetlection

ot the crack walls, and crack

permeats llity,

» 3

ltam) ™ =

propagation.  Effects of

Rk, from lO-u Lo 0.1 (.m}
tnitiag)

1 barevi, crack length and

width up to 110 and 170 @, and ratio
of maximum earth formation resistive
pressure to dnitial driving pressure,

Pyy from 0,1 to 0.% are
faax 1

delincated, Propagation of a

crace. to the carth's surface
following a tvpical experinmental
underground nuclear exnlosion vuried
at a depth of 300 m occurs only
under unlikely conditions, such as

P U '
and l"mu.\: ! 1

-

5
when k 10 Cm) ™

U.75,

Introduction

Savetry and environmental
considerations require that radio-
active coataminants be contained
below the carth’s surface following
an experimental gaderground nuelear
explosion, or Tollowiog proposed
nuclear stimulatvion of tight subter-

vanean pas reservoirs.,  To insure that
nuclear testim, and stivulation can
be carried out safely, rcthoos need

to be available ro determine the

flow of radivactive pases thr uph the
interstices and cracks ot Ut

carth formations, This paper describes
one potential release mechanism

which involves propagation of a

crack in an earth formation through
whicti radicactive gases might vent
to the atrosphere,

Consider the experimental under-
prount nuclear explosion shown at
the top of Fipg, 1. A large amount
of energy is released almost
instantaneously at the rime of the
explosion and all matter in the
immediate vicinity of the explosion
is vaparized. Within a second or
two an underground cavity is formed
which &s filled with radioactive
gases at, or slightly above, the
earth formation overburden pressure.

These radivactive gases permeate the
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r Ground surface
t % ¥ ¥ Propagating crack in an earth formation

Cavity containing radioactive gos at or
slightly above the earth formation
overburden pressure, 4-14 MPa

Ground surface
*
#

] Pressurized cavity produced following
300-5000 m a nucleor detonation
‘ # e N —Propagating cracks

a M N\\’{F}: :;\) ) % Natural gas bearing formation
; kY uw; %

—Reactor containment shell pressurized
with radiocactive gases

Ground surface

Prepogating cracks in an earth
formation

{ « [

Fig. 1. Three examples of pas-initlated crack propagation.

earth formatioa and also flow into which radioactive contaminants could
cracks formed during the same time reach the atmosphere.

period as the formation of the under- A second example of a potential
ground cavity. Forces due to gas vent to the atmosphere is shown in
pressure within the cracks may the middle portion of Fig. 1 where a
cause the cracks to be enlarged. gas bearing formation is fractured by
Should the enlarged cracks propagate detonating a nuclear charge. Nuclear
to the surface of the earth, they fracturing has been carried out on an
would form open passages through experimental basis and is being

-2~



considered for use with tight and deep
formations where it might not be eco-
nomical to produce natural gas by
other meansl'z. Although we wish to
form many large fractures in the

gas bearing formation, we need to
insure that the fractures do not
extend to the surface of the earth
and vent radioactive material.

Hence, before pgas stimulation can

be performed safely, the growth
pattern of fractures leading to

the surface needs to be computed.

A third application involves
the analysis of a hypothetical
accidant in a nuclear power generating
station. Should a loss-of-coolant
accident ever occur, with subsequent
core meltdown, the flooy of the
contalnment shelt (below the earth's
surface) could be cracked by easuing
thermal stresses as shown schemati-
cally in the bottom portion of Fig. 1.
Radioactive gases from the reactor
couid be released into the surrounding
earth formation through this break
in the containment shell. Any cracks
present in the earth formation
could then be extended to the
surface of the earth and form passages
through which radioactive pases might
reach tiie atmosphere.

Our objective is to determine the
conditions under which a pre-existing
crack in a porous earth formatiom
will propagate when exposed to high

pressure gas. This apparently is

-3

the first study that shows the inter-
action of gas pressure witnin the
crack, permeation of the gas into the
earth formation, deflection of the
crack wall, and the phenomenon of

crack propagation,

Although three applications have
been indicated, our main interest is
in containing radioactive contaminants
below the eovth's surface following
an experimental underground nuclear

exvlosion.

At the Nevada Test Site (NTS)

of the Lawrence Livermore Laboratory,
the most comron carth formation in
which experinental underground nucleav
tests are conducted, is alluvium. This
alluvium has a permeability ranging
from 1077 to 1(.-m)2 ll(um)l 1
Darcy]3 and has a negligible tensile
strength when compared to the pres-
sures involved in this studyi’s. The
nuclear explosive charge is buried
typically betwecn 200 and 600 m below
the surface of the earth. Initial
temperature variation in the earth
formation to this depth is only a

few degrees which we neglected. The
initial crack thickness is generally
on the order of the average grain
size of the alluvium formation, which
at NTS is about 1 mm. This crack
thickness enlarges up to about 150
mn s deflection of the crack walls
occurs. Cracks present in the allu-

vium have lengths4 of over 40 m.



The literature indicates that
relatively little wurk has been done
in the field of gas-initiated crack
prnpagasion. ¥eller, bhavis, and
Stewnrtn analvzed propagation of
small cracks ranging up to a maximum

length of 2 or

3 m.  They considered
4 mixture of condensing steam and

water and predicted whether a crack
would inftially grow. Thelr study
did not determine if the crack
wouid reach the surface of the
earth and result ia the release of

rajicactive contaminants., Rather,
they were able to place a bound on
condltions necessary for Initia:
crack growth which could lead to
eventual propagation of cracks to
the earth.

the surface of

Literature is available on
hvdraalic fracturing as applied to
the petroleum industfy, e.g. Howard
and Fas:1 and Clcary'. Hydraulic
fracturing involves pressurizing

fow permeabilicy, petroleum producing
formations next tuv o section of well
bore. Hydraulic fracturing differs
from nuclear fracturing in that 2
liquid rather than a gas is used to
fracture the formation. Furthermore,
in the hydraulic {racturing licerature,
the complete interaction of pressures
within the crack, the flow of flulds,
deformation of the earth formation,

and extension of the crack has not

been included. Therefore, this study

also is of interest to the petroleim

-l

industry. By changing the equation
of state from a gas to a liquid, the
propagation of a hvdraulic fracture
could be predicted.
In the presest analvsis we

couts ider a purvus carth formatlon,
as shown In Fig., 2, wherce a crack
is seen along the left side. The
top vf the volume is subjected to
acmospheric pressure at the ground
surf{ace. The botrom of the volume
is at the zlevarion of the under-
ground ndaclear explosion. The orlgin

of the roaordinate svstem (s {n the

left front with the axls vertical,
tias generated by the exploasion exerts
a driving pressure over a portion of
the Z=0 plane bhounded by the «ashed

lines andg the "X" and "Y"

axes.
The X=0 and Y=0 surfaces are planes
of svmmetry. Other surfaces are
positioned at remote distances

from the orfpin so that th. pressure

gradient perpendicular te these
surfaces is zevo.
Gas from the explosion permeates
the eurth tormation and simultaneously
flows upward in the crack from the

Z=0 plane. The resistance to flow

in the crack is less than that in the
formation. This results in pressures
in the crack that are greater than
those in the pores of the sclid at
the same elevation. Thus, gas flows
out of the sides of the crack and
into the formation from the X=0

plane,
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Fig. 2. Model of a propagating crack in a porous earth formation.

The sides of the crack deflect

in the "X" direction and extend in

the "Y" and "Z" directions.

These

deflections are produced when the

forces due to gas pressure, Which

tend to open the crack, exceed the

resistive pressure forces in the earth

formation, which tend to keep the

crack closed.

The resistive pressure

-5-

forces, due to the weight of material
present above, are transmitted through
the solid matrix of the earth forma-
tion.

The problem 1s analyzed in three
parts, consisting of deflection of
the crack wall, flow of gas in the
solid, and flow of gas in the

crack. The extent of the crack in



the X=0 plane beyond its initial

value consists of the region where
the deflection is >0. Deflection
of the crack wall is calculated by
congidering the plane of the crack
(X=0) to be the surface o. a semi-
infinite solid.

surface deflections caused by a unit

We find elemental

load applied in the "X" direction on
an elemental area. Total surface
deflection is found using superposi-
tion. The data of Gerrard and

Morgan8 are used to establish elemental
surface deflection away from the area
where a unit load is applied. Gerrard
and Morgan's data establish a multi-
plier to reduce the elemental surface
deflection with distance away from the
loading area. A circle of influence
exists beyond which the loads have

no effect.

The analysis for gas flow in the
porous earth formation follows that
of Morrisong. The conservation
equations are combined with an ideal
gas equation of state and placed in
dimensionless form. Experimental
data are included that verify this
portion of the analysis.

The gas flow in the formation
is considered isothermal for two
reasons. First, in spite of the
fact that the initial gas temperature
is high, the energy carried by the
gas is small in comparison with the

heat capacity of the earth formatiom.

-h—

Second, the ! mm average prain size

of the alluvium results in a large
surface-to~volume ratlo which offers
rapid heat transfcr rfrom the gas to the
formation. Consequently, the gas
reaches the formation temperature
after traveling no mor» ithan a few
matres,

Gag flow in the crack is calcu-
lated by consideri~ fully developed
internal flow be en clesely spaced
parallel wall sebmentsln. The crack
is thickest at the origin and is
tapered toward the edges. Up to 200
segments ar? used to represent che
tanered edge of the crack. Changes Ir
crack thickness are gradual so that
use of parallel wall segments in the
calculation is a good approximaticn.
Transient and acceleration terms
present in the complete momentum
equations for flow in the crack are
neglected., Experimental frictional
coefficients dependent on Revnolds
number and relative roughness are
incorporated.

A solution of the entire prcblem
is obtained by combining the three
parts of the analysis into a single,
implicit finite~difference iteration
procedure. Scarting with given crack
dimensions and pressures, we calcu-~
late a revised crack wall deflection.
This calculation also establishes
the extent of the crack in the "Y"

and "Z" directions. Next we find a



frictional coefficient using the newly
calculated dimenslions of the crack

and known values of pressure. We

then determine the gas flow hoth In

the porous earth formstion and in the

crack. The {low calculations result
in pressures at a new time which

can be used In the next time iteration
to calculate a new crack wall

deflection,

Analysis

This section discusses the
analvsis for deflection of the crack
wall, gas flow ln the carth formation
and pas flow in the crack. The
development of equations for the
frictional coefficlent are Included
in the anaivsls for gas ¢low in the

crack.,

DEFLECTION OF THE CRACK WALL

The analvsis of the "X" direction

deflection considers the crack wall
to be a portion of the surfidce of a
semi-~infinite solid, as shown in
Fig. 3. Two opposing forces ure
present. Forces due to gas pressure
in the crack tend to deflect the
surface and thereby open the crack

vhile the horizontal resistive

pressure forces in the earth formation

tend to prevent deflection and keep
the crack closed., Also present is

a pore pressure equal to the hydro-
static head of fluid in the formation.
Since the porer in alluvium at NTS
are filled with air to the depth of

interest in this study, we take the

-7-

tnitial pore pressure throughout the
solid to be atmospheric,

Cleary7 has suggested that the
resistlive pressure forces are equal
to the overu-—rden. This assumption
is valid {f the earth formation has
little strength and is subject to
creep, since over geological time,
motion would occur in the earth
formation until a hydrostatic stress
state was reached. On the other
hand,

reachea,

if a hydrostatic state is not
then a three-dimensional
stress state would exist where the
resistive pressure forces would be
a fraction of the overburden. At
NTS, where the esrth formation of
interest consist of low-strength
alluvium, we expect the resistive
pressure forces in undisturbed
alluvium to be close to overburden.
Analytical results are included
which show the effect of variations
in resistive pressure forces.

To determine crack deflection,
we first consider the effect of
a force acting on an elemental

surface area of a semi-infinite



/

-Crack wall

_——Horizontal earth
formation resistive
pressure forces tending
to prevent deflection
and keep the crack
closed

# Gas pressure forces within the crack tending to
deflect the surface and thereby to open the crack

Fig. 3.

clastic solid, which is given by

11
Timoshenke and Goodier as
= . (1)
N

vhere /1 is the surface deflection
in the "X" direction; Vv is Poisson's
ratio; E is the modulus of elasticity;

F is the force equal to the gas

N
~8=~

Preossure forces acting on one wall of the crack.

pressure in the crack that is in ex—
cess of the initial pore pressure,
less the earth formation resistive
pressure, an.! times the elemental
area wherve the pressures are applied;
and R is the radius along the crack
wall from the elemental area to the
point where the derlection is being

calculated.



Next, we integrate the force
calculated in Eq. (1) over a finite
surface area to obtain the deflection
due to pressure acting on a portion
of the surface. This problem was
analyzed in detail by anelz. Two
difficulties are that the solution is
singular at R=0 and that a deflection
occurs at any radius however large.
When R0, Timoshenko and Gnodierll
utilized an average deflection under
a small survace area. For a square-

shaped area this deflection 1is

TR0 r

2 .
Pg = BB py (o

where » is the gas pressure in the
crack, Pr is the earth formation
resistive pressure; and A is the
surface area of a single grid where
the pressure is applied. When the
radius becomes large, the data of
Gerrard and Morgans can be used to
obtain a surface deflection profile,
Their data were ohtained experimentally
for a load applied uniformly over

a flonite circular area. Extrapolation
of Gerrard and Movgan's data is in
reasonable agreement with the data

of Campen and Smithlj vhich show a
zero surface deflection beyond a
distance equal to about five radii.
In other words, a circle of influence
exists out to a normalized radius

of about five beyond which P and P
have no influence on the surface

deflection.

We converted Gerrard and Morgan's
data for a circular surface area
loading to an equivalent square sur-
face area loading and obtained
coefficients for use in a formula
for any raaius similar to Eq. (2).
That is, a circle of radius (h/ﬂ)%a
would be equivalent to a square with
a side of 2a., For the finite square
area directly below the load the
coefficient would be 0.95 and for
equivaltent radius ratlos beyond
five the coefficlent would be zero.
We also normalized the deflection
and area using relerence length,

L, equal to the vertical distance
between the Z=0 plane and the ground
surface. Pressure and modulus of
elasticity were normalized to the
difference between the initial gas
driving pressure, Pl, and the initial
earth formation pore pressure, PO'

The initial earth formation pore
pressure is considered constant and
equal to the atmospheric pressure.

Finally, we obtain a relationship
for the total surface deflection at a

point by summing over the entire X=0

plane. This gives
- 1 2 1
5=N ¢, U2 55y @ (3
pa G - r
- E
A

where D is the normalized total sur-
face deflection and CC is the Gerrard
and Morgan deflection coefficient.

The bar above the variables indicates



they are normalized. The summation
may be terminated for equivalent
radius ratios beyond five since Ca
is zero there.

The regilon where D > 0 defiaes
the extent of crack propagation and
the location of the crack tip. No
other criteria are necessary because
by definition a crack exists only if
its thickness is positive,

Utilizatlon of Eq. (3) implies
that the earth formation is elastic
during initial loading and therefore
that superposition is applicable.
Earth formations in general are not
elastic and a more complex soil model
would improve the accuracy of the
calculation. However, the experimen-
tal data of Gerrard and Morgan
indicate that rhe initial load-
defle. tion curve for sand is within
five per cent of elastic. Further,
we were able to make a linear approxi-
mation of the stress-strair data for
alluvium from N’I‘Sl4 between 0 and
12% strain. Actual stress—strain data
deviated a maximum of 25% from
This

deviation of alluvium from & linear

this linear approximation.

approximation was considered accept—
able for the purpose of this study.
Therefore the initial loading of
alluvium was considerad in the analy-
sis to be elastic.

Total deflection, D, 1s permitted
to increase (but not decrease) in

magnitude because in our range of

pressures the initial loading causes
a reduction of pore volume which
does not increase appreciably when
the load is reducedls. In other
words, a reasonable approximation for
alluvium at NTS for the range of
pressures used in this study is
elastic behavior during initial
loading with negligible change in
deflection during unloading.

We considered two other methods
of caleulating crack wall deflection.
One method is based on an analysis by
Sneddan16 which is used by Keller,
Davis, and Stewart6 and which gives
a solution in closed form for
deflection of axisymmetric crack
shapes. In applying Sneddon's
analysis to an underground nuclear
explosion, the axis of symmetry is
horizontal and the crack length along
which propagation would occur is in
This radial
direction includes both vertical and
We find that the

the radial direction.

horizontal rays.
cracks grow more vertically (upward)
than horizontally since the eartch
formation resistive pressure is
proportional to the distance below
Thus the

axisymmetric assumption limits the

the earth's surface.

results to small lengths of crack
propagation. The other method
urilized a finite—element computer
code developed by Wilson, Farhoomand,
17,18 and modified by

We used Wilson's analysis

and Bathe

Tokarzlg-

~-10-



to calculate crack wall deflection in
a two-dimensional problem which we
analyzed earlierzo. We found the
deflection calculation satisfactory
in two dimensions but not readily
extendable to three dimensions with-
out requiring excessive computer
time. Consequently, neither of these
analyses were consldered satisfactory

for this study,

FLOW IN THE POROUS SOLID

The control volume used for
analysis includes both pore space and
solid grains., We write the continuity

equation as

3pu 3pu 3pu
x ¥ z 30 .
3 T ez TR0 W

where X, Y, and Z are spatial coor-
dinates; p 1s the gas density; Uy uy,
and u, are apparent velocitles; € is

the porosity; and t is time.

The apparent velocities equal
the volume flow rate passing through
a face of the control volume divided
by the cross-sectional area of the
face, including both void and solid
portions, These apparent velocities
are different from the actual gas
velocities since only a fraction
of the control volume is available

for occupancy by the gas,

We use Darcy's 1aw21 for the

mementum equations, which are

k
= - X 3E
Ue T u 39X ()
Kk
- - .X 2P
Yy TR 2
k
= --20F
T N

where kx’ ky, and kz rapresent direc-
tional permeabllities that are
normally determined by experiment,
and U is the gas viscosity. Gravity
forces are omitted since they are
negligible in comparison to the
pressure forces.

An ideal gas equation of state
is used since this is a good approxi-
mation for non-condensible gases at
ambient temperature and pressures22
up to 10 MPa, which are the maxima
of interest in this study. The gas

equation of state is written as

p = 8)

where R is the gas constant and

T is the absolute temperature of the

gas which we consider constant.
Combining Eqs. (4) through (8)

gives the equation

(9)

=11-



where the quantities with a bar

represent normalized variables and

= 1
F = (P + ﬁ) (10)
N = Pl(PO (11}
and
ko(P, =Pt
P 12
eyl

Values of Ex’ E&, and Ez are made
dimensionless using a constant
reference permeabllity, ko.

Eq. (9) is differenced using an
implicit method because the spatial
derivatives taken individually with
the time derivative form a parabolic

We use Brian's method23_25

equation.

since this reduces to the alternating-

direction implicit method in two

spatial dimensions identical to the

"y and "Z" directions difference

algorithm used for calculating

flow in the crack. The coefficient on

the right hand side of Eq. (9) is

evaluated using values of F at an

average of the old and new times

until convergenice is obtained.
Increased accuracy for a given

number of grid points is achieved

by using a variable grid spacing

for the "X" direction based on

Blottner's grid~stretching relation-

p26,27.

shi Blottner's relationship

is
(« i/1 -1)

e = i =1,2....I(13)
0 V11

X=X

-12-

where X, is the total length in the

"x" dirgction; « is a variable
normally between 1.5 and 2.718
(i.e. the value of e), and I is the
number of spatial intervals in the

"X" direction.

FLOW IN THE CRACK

The crack is divided into parts
and the analysis considers internal
flow between two parallel porous
wall segments through which the
gas permeates the earth fermation.
The continuity equation may be

written as

E)pux

apu 3pu
¥y z 90
T 5zt 0. (8

We establish a control volume
so that a single finite difference
mesh spans one half the crack
thickness and takes advantage of a
plane of symmetry at the crack center-
line across which there is no mass
flow.

the determination of a velocity

Such a control volume prevents

profile in the "X" direction within
However, this Information

The

the crack.
is not germane to our analysis.
momentum equations take on a

different form in the "X" direction
than in the "Y" and "Z'" directions.
Flow through the walls of the crack
in the "X" direction is governed

by the pressure distribution in the



adjacent earth formation so that
Darcy's law is applicable. Flow in
the "Y" and "Z" directions is
approximated by the momentum equation
for fully developed internal flowlo
that is rearranged for an explicit
sclution of the velocity. The momen-

tum equations used are

K
x P .
u, = - T_ X 15)
adc aP %
u, = IS W (16)
44 ]
= ofl—< 2B
Y, T I\ 5z an

where dC is the erack thickness in
the "X" direction and A is a friction-
al coefficient,

The plus sign in Eqs. (16) and
(17) is used whenr the pressure
gradient is <0 and the minus sign
when the pressure gradient is >0,
The flow may be either laminar or
turbulent. These different fiow
conditlons are accounted for in the
calculation of A which is dependent
on Reynclds number and the relative
roughness of the crack walls.

We took computed results and
used these to determine the magnitude
of the neglected transient and
acceleration terms in the "Y" and "z"
direction momentum equations. The
magnitude of these neglected terms
was then compared with the included

pressure gradient term. This com-
parison shows the neglected terms to
be less than 10% of the included
terms except at times less than about
one eighth of the total problem time.
Even at tnese early times the
neglected terms are probably
negligible since the actual

driving pressure is applied over a
short period of time rather than

the instantaneous fashion we have
used mathematically.

Application to transient
conditions of a frictional coeffi-
cient, A, evaluated under steady
flow conditions, has been used
by several authors. Giﬂzburgz8
assumed that the resistance properties
established for steady flow are pre-

29
Petreva

served for transient flow.
also determined the magnitude of the
frictional coefficient using steady
flow conditions., Yeremenke and
Harkovao used Prandtl's mixing

length hypothesis with a linear
variation in shear stress to obtain
mathematically variations in friction-
al coefficients from their steady
state values., Yeremenko and Markov
expanded the sheai stress of Prandtl's
mixing length hypothesis in the form
of a polynominal based on open channel
flow. They showed quantitative
increases in frictional coefficient
for accelerating flow using an

unsteady flow parameter, &g.
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Unfortunately, no method of deter-
mining 50 is iIndicated without
krowledge of the velocity distribution
in the flow channel. This velocity
distribution has been analyzed in the
laminar flow regime31 but in general
is unknown. Further studies relating
the effects of acceleration on
frictional coefficient are needed
but in their absence we use the
values corresponding to steady flow.
An 1deal gas equatfon of state,

7T (18

o=

is again taken under isothermal
conditions so that Eqs. (15) through
{18) may be combined using normalized

variables and neglecting gravity to

give
_ _ £
o, EL e (1) ) =
X 3% T oY Y2\ oy
3 e\ 2\ . 57
L, (12)7)+ -0
YA 92
19)
where e LKk
- X
Kex =~ (20)
2d LAT
x = ==H < %(21)
cyz (Pl—Po)ko A .

The reference permeability, ko, is
set so that the initial value of

k is unity at the origin.
cyz
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Equation (19) may he placed in
an efficient and convenient form for
numerical solution by aifferentiating
the "Y" and "2" terms which, after

rearranging and using Eq. (10), yilelds

— oF  faF [f aF\ % aEx
k—+| == 2
X \av[ \ o¥ aY
% 2

/2 (1) | A .
Y Y
x fllan) *) Zee
3z 9z 9Z
2

9°F % 3F
T—~ == (22)
822 2 9T

The terms in Eq. (22) containing
3k

[+

akcyz/iﬁ and y2/37 are calculated
explicitly since they vary mainly
with spatial location and are nearly
The terms in
square brackets make Eg. (22)

If the "X" direction

constant with time.

nonlinear.
spatial derivative dominates over the
"Y" and "Z" direction derivatives of
F, the equation becomes hyperbolic in
nature. An explicit differencing
technique would then be necessary
to prevent artificial numerical
damping32. If either the "Y" or
"2" direction derivatives of F
dominate, the equation becomes

parabolic and an implicit solution



is most efficient. Because dominance
by any one spatial derivative may
occur, we use an op:rator splitting
(22). This

3
technique3 to solve Eq.

increases the speed of computation

because the stability inherent with
implicit differencing may be used to
advantage. Eq. (22) 1s broken into

two separate equations

T P _ Lk 2E 2
ex g " 2 Feo5r (23a)

1
o fflae\*) o
9z Y3

(23b)

with Eq. (23a) first solved repeatedly
in an explicit fashion using a small
time step to assure stability. The
resulting new values of F from Eq.
(23a) are used as initial values to
solve Eq. (23b) which is sclved by

the alternating-direction implicit

The total time incremenc in

(23a) and (23b) is

2
method 3.
solving both Eqs.
kept identical,

Calculational Method

The problem posed in this study
is solved numerically using nearly
the entire small core memory of a
Control Data Corporation* 7600

computer. Although use of just the

small core memory results in faster

speed, the calculations are still

*Reference to a company or product
name does not imply approval or
recommendation of the product by the
University of California or the U.S.
Energy Research & Development
Administration to the exclusion of
others that may be suitable.

time consuming. The 65,900 word
capacity of the small core memory
permitted the inclusion of about 3000
spatial nodes. A larger number of
spatial nodes could have been included
but at a sacrifice in the speed of
computation. Typical computer run
times using just the small core
memory range from 15 minutes to one
hour. The total cemputer time to
generate the results for this study
was about 50 hours.

Both the crack wall deflection

and the frictional coefficient are

~15~



found at each node within the crack
from the governing =quations. The
builk of the calculations in ear’)
time step are required to determine
the pressure function, F, in the
porous 30lid and in the crack. At
each node we select the applicable
governing equation, The calculation
of F at the new rime step is per-
formed in three parts. First,
intermediate values of F are found
(23a) 1f the node is within

1f the node is in the

using Eq.
the crack or,
porous solid, by setting up a matrix
with the "X" direction calculations
implicit. These first intermediate
values of F are determined for each
node before the calculations are
continued. Next, we use the first
intermediate valuyes of F to determine
a seconi intermediate value of F at
each node by considering the "Y"
direction calculations to be implicit
Finally, the value of F at the end of
the time step i3 determined at each
ncde using the second intermediate
values of F and by considering the
"2" direction calculations to be
implicit., 1In this fashion, the
calculations for pnodes in the crack
are interspersed with calculations
for nodes in the solid.

The governing equations are
nonlincar so that stability is not

assured even though the differencing
is fmplicit unless the time step is

kept below an upper bound. This

=16~

upper bound was determined by trial
calvulations. Values of pressure
need only be determined for calculation
of the crack wall deflection and for
printout of the results, We find that
results are independent of

variatlons in the time step over a
factor of one hundred as long as
stability 1s malntained, This is an
indication that writing the govern-
ing equations in terms of F was a
Judicious cholce.

Up to a point, resylts are also
independent of changes in the "Y"
and "2" direction spatial mesh
size. However, a decrease of the
"X" direction spatial mesh size by
a factor of 100 typically was found
to increase the time for crack
propagation to the surface of the
earth by 207.

dependence of gas permeation into

This is due tc the

the porous solid from the crack on the
pressure function derivative, the
approximation of which improves as

the mesh size 1s reduced, Because
our interest is in prevention of
crack propapation, selection of a
glven "X" direction spatial mesh
size acts as a conservarive bound
on the time required for crack
propagation. That is, i{nclusion of
a finer grid spacing has the effect
of increasing crack propagation
time. Tf no propagation occurs
under the selected "X" direction

mesh size, then a reduction in



mesh size would only confirm that
the crack will not propagate.
Although it might appear desirable
to continually decrease the "X"
direction grid size, a limit is
reached where the CDC 7600 small
core memory is exceeded if the
necessary spatial distances are
maintained. Computer run time

would then increase beyond our

allowable budget. The computer
program consists of a main portion
used for input and output and

which updates necessary variables
prior to calling three calculational
subroutines. These three subroutines
determine the crack wall deflection,
rictional coefficient, and flow both
in the crack and in the porous solid.

A typlcal real~time step was 0.005s,

Experimental Verification

The primary application of
this study is to assure the safety
of underground nuclear explosions.
Experimental verification by means
of a underground nuclear explosion
with subsequent release of con-
taminants to the atmosphere is in
conflict with this study's basic
purpose of preventing the release
of contaminants. Full scale tests
using high explosives are costly
since enough oxplosive must be
used to propagate the crack a
significant distance. Perhaps some
laboratory scale model of the com-
plete analysis is nossible; however,
one is con:erned about the accuracy
of measuring the location of a
propagating crack in an earth
formation on a reduced scale.
Consequencly, experimental veri-
fication of the complete anaiysis

does not appear feasible.
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We found experimental data in
the literature for the frictional
coefficient used to calculate flow
in the crack. We also found experi-
mental data in the literature
relating load, surface deflection,
and distance away from the point of
load application which could be used
to determine deflection of the
crack wall., Data necessary to
adequately verify the nonlinear,
transient gas flow in the solid was
not found in the literature so we
constructed an experimental facility
and penerated the required information,
Each portion of this analysis then
is either experimentally verified
or based on experimental results
from the literature,

The experimental test apparatus
constructed to obtain data for

transient gas flow in a porous

solid consisted of a 0.3 m diameter,



4.6 m long steel pipe filled with
Overton sand as shown schematically
in Fig. 4. Overton sand has a
permeability of 20 (um)z, which is
within the raage of perne.bility

for alluvium at NTS, and was selected
rather than alluvium formation
because of the ease in installation
and because no economical means
exlsts to obtain samples of

alluvium formation at depths over

a hundred meters of the size necessary
for our tests without significantly
changing its permeability anl other
flow properties. Dry nitrogen was
forced through the column of sand

by using a pneumatically operated
valve controlled by an analog compu-
ter. Flow rate was determined by
measuring the gas pressure on each
side of sharp edged orifices placed
in the inlet line. Measurements of
gas pressure in the column of sand
were made as a function of time

at eight axial locations.

Pressure was obtained with
strain-gage type pressure transducers
having an accuracy of 0.1% of full
scale. Readout of pressure was
performed on strip chart recorders
capable of resolving pressures to
2% of the 3.5 bar inlet pressure.
The facility was designed to permit

use of a mixture of steam and
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nitrogen; however, these data are not
applicable to the present study.

Each test was conducted by
first establishing the approximate
initial flowrate using a bypass line.
An orifice was installed in the
bypass line to simulate the initial
resistance of the column of sand.
At the appropriate time a three-way,
full-flow valve was actuated that
switched flow from the bypass line
to the line leading to the column
of sand. A zero time was established
when the pressure trandycer at the
inlet to the column of sand recorded
the resulting step change in pressure.

A comparison of thege data with
the theoretical results which are
used to predict the non-linsar
transient gas flow in the porous
solid is shown in Fig. 5, The
theoretical results for gelected
times are indicated as solid lines
with the experimental data points
related by the various symbols.
Agreement is felt to be excellent
thereby confirming the accuracy of
the analysis for gas flow in the
porous solid. The analysis for the
X" direction gas flow out of the
sides of the crack has the same
form as gas flow in the porous solid
since it is governed by the pressure

distribution in the porgus solid.



U M
) ; o Pressure transducers
|
; 0.3m
|
|
o—{— Strip chart
p—————=] pressure
Test | recorders
section ]
4,6m |
|
!
i
Exhaust o 1 N2 supply
!
|
4
[ ! Pneumatic Anal ,
l operated nalog computer
| contiol to regulate
4 valve inlet pressure
Bypass |
line | ;
| Shutoff |
1 valves |
.l Ofifices |
| to measure .
B flow rate i
' |
‘ |
1 |
1 |
Orifice #w } ' |
restriction [ _ |
|
]
|
Steam supplg___ _" J| |
!

(nat used

Fig. 4. Test apparatus for measuring transient gas flow in a porous solid.
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Comparison between theoretical and experimental results for nitrogen
flow through a column of 20 (um)2 permeability Overton sand.
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Results

Results were generated using
the parameters shown in Table 1 for
a proposed underground nuclear test.
A hypothetical crack with initial
length and width up to their maximnm
feasible values of 110m and 170m,
respectively, was incorporated since
this presented an upper bound on
possible propagation of the crack.
An exponential decay of the driving
pressure was Included to approximate
the expected conditions of the
proposed test. This reduces the
driving pressure to about 957 of its
initial valwe in 60 seconds. The
exponential decay continues for
perhaps 10 minutes, after which the
pressure decreases abruptly. This
abrupt decrease 1ln pressure occurs
as the formation starcs to fall
into the cavity vrid space and
rapidly cools the gases present
there.

A parametric study was completed
to assure that radioactive contami-
nants would be contained below the
surface of the earth if the proposed
test were actually conducted. Figure
6 shows results for maximum feasible
values of initial crack length and
width. Time for crack propagation
to the surface of the earth is seen
to increase as permeability and

the ratio of maximum resistive

Table 1

Parameters from a Proposed Underground
Nuclear Test Use for Generating

Results

Distance to surface
of the earth -530m

Initial crack length - 30 to 110 m
Initial crack width = 60 to 170 m

Mawimam initial
crack thickness - 10 to 50 mm
Permeability of the -6 5
formation - 10 "o l(um) "
Porosity of the
formation - 0.3
Poisson's ratio of
the formation - 0.25
Modulus of elasticity
of the formation - 3.5 GPa
Initial driving
pressure - 10 MPa
Gas viscosity - 2.4 ><10_5 Pa*s

pressure, P to initial driving

Tmax®
£as pressure, Pl’ increases. Because
the driving pressure decays with time,
each curve approaches an asymptote.
That 1s, propagation will occur in
the first few minutes if it occurs

at all, Maximur penetration of
cavity gases into the formation
beyond the crack tip was found

to be less than 1% of the distance
to the surface of the earth. For

the proposed test, the permeability
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Fig. 6. Crack propagation time vs permeability for various ratios of maximum
resistive pressure to initial driving pressure.

B

of the earth formation ranges
between 10-2 and 1 (Um)z- The
expected ratio of Prmax/Pl is close
to unity with the lowest feasible
value equal to 1/3. Under these
conditions we find that a crack
would not propagate to the surface
of the earth and therefore no

radioactive material would be

released into the atmosphere should
the proposed test be conducted.

For any given set of parameters,
there is a permeability large enough
to prevent crack propagation., That
is, gas flowing into the crack from
the source permeates the earth
formation so rapidly that pressures

inside the crack do not exceed the
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resistive pressure forces of the

earth formation which tend to prevent

crack propagation. As the permeabi-
lity is decreased, the crack
propagates a short distance and
stops. This 1s due to a reduction
in gas pressure Inside the crack as
Initially the

gas flowing into the crack from the

propagation occurs,

source cannot be dissipated into
the earth format!on fast enough

to prevent propagation. As the
crack grows, the area of the crack
walls through which gas permeates
the earth formation increases
thereby decreasing the resistance
to gas flow out of the crack. The
resistance to gas flow inside the
crack remains move nearly constant,
increasing as the length of the
crack increases and decreasing as
the flow area inside the crack
increases. The net effect is to
reduce gas pressure inside the
crack.

With additional decreases in
permeability, the crack propagates
farther until a magnitude of
permeability is reached where the
crack just propagates to the surface
of the earth. Further decreases in
permeability shorten the time

near that which causes the crack
to just reach the surface of the
earth, The slope of the curves
represent the speed of propagation
which is rapid at first decreasing
with time as the resistance for
gas to permeate the earth formation
decreases. Near the surface of the
earth the resistive pressure forces
of the formation, which are propor-
tional to the depth below the
surface, decrease faster than the
pressure near the tip of the crack.
Hence, for those cases where the
crack reaches the surface of the
earth, the speed of propagation
increases at late times. For the
middle curve on Fig. 7, the minimum
speed is about 15% of the maximum
speed.

Figure 8 shows the variation of
crack tip location on the "Z" axis
vs time for several initial crack
sizes., The length and width values
selected correspond to multiples of
the spatial zone size. A crack with
initial length and width of 30 m by
30 m travels rapldly untll it reaches
the length and width of an initially
larger crack. Beyond this time the
speed of crack propagation for both

cracks is nearly the same. Hence a

necessary for crack propagation. This variation in crack length and width

is seen in Fig. 7 where the normalized by a factor of four results in a
change in propagation time of
only 157%.

crack thickness chosen at the origin

crack tip location along the "Z" axis
is presented as a function of time The maximum initial

for three values of permeability
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Fig. 7. Crack-tip locaticn on the "Z'" axis vs time for three magnitudes of

permeability near that required for the crack to just reach the

surface of the earth.

is less than 10% of the crack thick-
ness at the origin after deflection
occurs so that changes in initial

crack thickness by a factor of four
affect the crack propagation time by

less than 257.

The initial shape of the crack
in the "Y" and "Z" directions was
chosen to be rectangular. Figure 9
indicates that the crack becomes
fan shaped as propagation occurs.

The crack grows more vertically than
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Fig. 8. Crack-tip location on the "Z" axis vs time for several initial crack

sizes.

horizontally because the earth
formation resistive pressure, Pr’
which tends to wvrevent crack
deflection, is proportional to
depth below the surface.

Because gas pressure at the

crack tip in the region near the

horizontal depends mainly on the
distance ficin the pressure source to
the crack tip, equal crack wall
deflection, or crack thickness, occurs
at a larger distance from the

pressure source above the horizontal

where | is less than its value on
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Fig. 9. Crack length vs width at various times.

the horizontal. Hence, the locus of
the crack tip is convex to the right.
The cross hatched areas in Fig. 9
show profiles of crack thickness

for constant values of "Y" and “2"
at 8 seconds. The scale of the

cross hatched areas is different
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Also shown are profiles of
crack thickness at 8 seconds for Y = 0.42 and Z = 0.42.

to 20 mm and for Z = 0.42 equal to

Figs. 10 and 11 show the
variation of crack thickness and

normalized pressure as a function

than the rest of the graph with the
maximum thickness for Y = 0.42 equal
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Fig. 10. Crack thickness vs normalized distance along "Z" axis for various

times.

of distance along the "2" axis for
various times. Both graphs are
interrelated. Initial crack
thickness was taken as linear with
distance as shown by the lower left
curve of Fig. 10. As gas flows into

the crack, the crack thickness and

pressure increase. The increased
crack thickness reduces the resis-
tance to gas flow and allows for
further increase in pressure within
the crack. A complex vartation of
crack thickness and pressure with

distance along the "Z" axis develops
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as time elapses. The concave upward
shape near the left side of the
curves in both graphs 1s characteris-
tic of a channel with porous walls.
The crack thickness and pressure are
depressed due to loss of gas through
the walls of the crack into the

earth formation. Near the crack tip

—25-

the curves become concave downward.
Here the crack thickness becomes small
and the resistance to gas flow inside
the crack increases. Consequently,
gas flow into the formation is less
important in comparison to gas flow
inside the crack near the crack tip

than it is near the "Z" axis.



Conclusion

To our knowledge, this is the
first study that shows the interaction
of gas pressure within a crack,
permeation of gas into a porous earth
formation, deflection of the crack
wall, and the phenomenon of crack
propagation. One other analysis by
Keller, Davis, and Stewart6 deter-
mined if a small crack of length up
to 75 mm would iritially grow but
not if propagation would continue.
Although conditions vere difterent,
results that can be compared are in
reasonable agreement,

Crack propagation to the surface
of the earth following an underground
explosion occurs as shown in Fig. 6
and the parameters of Table 1 only
under unlikely conditions. For
example, if the permeability is
3% 107 (um)? and the ratio of

maximum varth formation resistive
pressure due to overburden to
initial driving pressure is 0.7, the
crack would reach the surface of the
earth in 50 to 60 seconds,

Normally, the permeability of
the earth formation at the Nevada
Test Site where experimencal! under-
ground nuclear explosions are con-
and 1

2
{um) « The corresponding value of

ducted ranges between 10-h2

maximum earth formation resistive
pressure is close to the initial
driving pressure so that crack
propagation to the surface of the
earth is not anticipated. Conditions
of each test may be checked with this
analysis to assure radioactive
contaminants are contained below the
surface of the earth following an

undetground nuclear explosion.
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Nomenclature

Surface area of pressure
application

Normalized area equal
to A/L2

Equivalent radfus of a
square area of sides 2a
Dimensionleds constant
used in deriving Darcy's
faw

Gerrard and Morgan de-
flection coefficient
Characteristic length
approximating the grain
size

Crack thickness in "X"
direction which is half
of the hydraulic diame-
ter, dh

Hydraulic diameter equal
to four times the flow
area divided by the
wetted perimeter
Average particle size
of grains in the earth
formation

Deflection of the crack
boundary in the "X"
direction due to a
point force or pressure
acting on a small area
Total deflection of the
crack boundary in the

"X" direction

D

dX,dY,dZ

kx’ky’kz

=30~

- Normalized total surface

doflection equal ta D/

Elemental distances in

the I"" l!\-tl & "7“
X", R A
directions

= Elemental distance In
the direction of the
total velocity veetor

within the crack

Modulus of elasticity

of the varch formation

- Normalized modulus of
elasticity equal to
E/(PI-PO)

- Pressure function
equal to (F + E%I

- Force equal to gas

pressure in the crack

less the resistive

pressure, times the

area of application

~ Accelerztion of gravity

- Spatial indices

~ Number of spatial
intervals in the "X"
direction used in
Blottner's grid
stretching relationship

- Directional permeabil-
ities for gas in the
g, ™YY, & "z

directions



=}

cX

=4

cya

NTS

~ Dimensionless per-

meabllities equal ro
k k

P S A
kx -ko, ky ko, kz

k

2

kO

Normalized effective
permeabilicy for "X
direction gas flow in
the crack defined by
Eq. (20)

Normialized effective
permeability for the
"W and “2" dlrection
gas flow in the crack
defined by Eg. (21)
Average galn slze
(dlameter) of particles
in the crack wall

Reference permeability

set equal to the initial

equ.valent permeability
in the crack at the
origin and calculated
(21).

Vertical distance be-

using Eq.

tween the 2=0 plane and
the ground surface
Pressure ratio, equal
to PllPO

Nevada Test Site near
Las Vegas, Nevada

Gas pressure

Earth formation resis—~
tive pressure

Initial earth formation

pore pressure

31~

kA

u
ux,

y

u
L 1

~ Initial gas driving

pressure

- Normalized gas pressure

equal to (P-PO)/(Fl-PO)

1]

Normaiized resistive
pressure equal to
(Pr—Pa)/(Pl-PO)
Volume flow rate
Radfus from load area
used in calculating the
serrard and Morgan
deflection coefficlent,
CG'

Radius measured along
the crack wali from
the elemental area of
force application to
the point where the
deflection is being
calculated

Gas constant

Reynolds number,

Re = V d o/ug.

Time variable
Absolute temperature

of the gas

- Apparent velocities in

IV‘" IIYH & llzll

R ] )

directions equal to
volume flow rate per
unit cross-sectional

area

Magnitude of the total

apparent velocity
2, .2

vector, u={u. +u_ +
2\ % x ¥
Uz

;



U, v, W - Actual velocities [ - Variable iu Blottuner's
equal to u = uxlc. grid stretvhing rela-
v o= uv/E. w = uz/e tionship normally

ranging from 1.5 to
\ Total velocity vector
e = 2,718

in the crack i = Frivtional

Spatfal coordinates coeltjeient

-~
-
-
-
N
1

§,?.E - Normalized spatial ‘._ - Laminar flow frictional

coordinates equal to coefficient

=/, ¥ = v/, Ct - ! ow% constant In the

Z = 2/L earth formatiun
. A It - Turbulent flow
Xy Y, 2 ~ Terms due to body forces
frictlonal coefficient
acting on an elemental
i - Gas viscosity
volume which are used L. .
RN - ¢ constant in the
in deriving Darcy's law e
earth formation
xo - Total length in the - Poisson's ratie of
"X" direction the earth formation
‘o - Yeremenko and Markov's n - Gas density
unsteady flow parameter Py - Bulk density of the
dxz'SyZ’SzZ - Finite difference forms earth formation
of the second deriva- T - Dimensionless time
tive equalzto kO(Pl-Po)t/
E u L
: - Porosity of the T, ~ Laminar shear stress
earth formation T, - Turbulent shear stress
et ~ Turbulent eddy viscosity Ty - Wall shear stress
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Appendix A - Derivation of the Governing Equations

Included are the detailed analyses for determining crack wall deflection
and gas flow ' .ch in a porous solid such as an earth formation and in the
crack. Gas flow in the crack uses a correlation for frictional cocfficient,
vy which is also discussed. 1In the appropriate portions of this appendix,
alternate methods of solution are mentioned along with the reasons for using

thwe particular method selected.

DEFLECTLION OF THE CRACK WALL

lotal deflection of tihe crack wall in the "X" direction will normally
exceed the initial crack thicrness, We must account for this deflection to
predict the "Y" and "Z" direction flow of gas in the crack accurately since
the governing equation (Eq. 19) is dependent on crack thickness.

Referring to Fig. 3, consider the vight hand crack wall to be a portion
of the surface of a semi-infinite solid. Deflection of the crack wall in the
"X" direction results from two opposiag forces as explained in the analysis
section.  The gas pressure in the crack exerts a force that tends to deflect
the crack wall in the "X" direction. The horizontal earth formation resistive
pressure results in a force which tends to prevent deflection and keep the
crack closed.  Any deflection of the crack wall beyond its initial position is
thea the resultant of these two elfects.

In calculating the deflection of the crack wall, the magnitude of the
gas pressure in the crack is taken to be tnat in excess of the initial pore
pressure in the earth formation. At NT3, the pores of the earth formation are
filled with air to the depths of interest of this study so that the inftial
pore pressure is atmospheric.

The horizontal carth formation resistive pressure is due to the over-
burden, or weight of material above, and is transmitted through the solid
grains of the earth formation. 1f the earth formation has little strength
and is subject to creep over geolugical times, then the horizontal resistive
pressure will be close in magnitude to the overburden which is about 20 kPa/m
ot depth. Alluvium soil at the Nevada Test Site falls near to this category.
Alternately, il a hydrostatie state is not reached, then a three-dimensional

stress stdate would exist where resistive pressure forces are a fraction of the

=30~



overburden. For example, if there has been no horizontal strain, the magnitude
of this fraction is determined from Hooke's law to be 1l-v/v.

Total deflection in the "X" direction is found by applying the techanique
of superposition. We first determine deflection due to force applied at a
point on the surface of a semi-infinite solid as shown in Fig. A-1 part a.
Following the analysis develeoped by Bousinesq A-1 344 outlined by Timoshenko
and Goodierll, deflection in the "X" dlrection caused by an applied force on

the surface of a semi-infinite solid is

20 ,
DQY,2) = 31:3—%—£—£3' 2! (A-1)

where here the deflection, {7, acts at coordinates (Y,2) and the force !, acts
at coordinates (Y',2').

The applied force 1s considered equal to the Jifference between the gas
pressure in the c¢rack that is in excess of the initial pore pressure, and the
earth formation resistive pressure, times a small area of applicatfon as shown

in Fig, A-1 part b. The calculated deflection of Eq. (A-1) then becomes

i
(1-v7) (p-p )dy'ds!
n ER

D(Y,2) = (A-2)

where Pr is the ecarth formation resistive pressure; and dY', dZ' is the area
over which the pressures are applied. Integrating the deflection calculated

in Eq. (A-2) over a finite area of surface gives a solution for the total
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V Surface representing the plane of the crack

Curve of surface deflection

F(Y'Z') —} Semi=infinite solid

>/ Surface representing the plane of the crack
\
by, 2) Curve of surface deflection
(P-P)dY'dz' = R
- r) =]

/l Semi-infinite solid

/7
/

(b)

Fig. A-1, Part a. Surface deflection due to a force applied to a point on a
semi-infinite sotid. (See Eq. (A-1)). Part b. Surface deflection
due to a pressure applied over a small area of surface. (See Eq.
(a~2)).
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deflection, D, at coordinates (Y,Z) due to pressure acting on a portion of

(P-p ) dy'dz’
D(Y,2) = (1"’ )// e (a-3)

(Y- Y') + (2-2' )

the boundary*

The deflection at the coordinates (Y',Z') as calculated by Eq. (A-3) i1s
singular, At this position, the average deflection under a small area is used
since in reality the pressures are applied not at a point but over a small
area. Timoshenko and Goodierll have calculated average surface deflections
for various rectangles subjected to a uniform pressure. In the special case

of a square, which is convenient for our coordinate mesh spacing,

-2 k4
D2 g rage = o () @) (a-4)

Total deflection at any point (Y,Z) due to pressure applied over part of the
boundary of a semi-infinite solid may be calculated by using Eqs. (A-3) and

(a-4).

*The form of Eq. (A-3) may be placed into that derived by Love12 if relation-

ships between E and v and the Lamé constants Hyomd and AZamE are used.
Taking

E=2 “Zamé 1+ v)

AZamE
VEIOL o+, )
Zame Lame
gives
1oV _a-wa+y __ Mame t 2 Vi
E 2 Yiamé @+v) 4 Yiamé (Alwne + uZame)

The right hand side of the above equation is the form used by Love.
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The nature of the calculated deflection is such that a pressure applied
over one reglon of the surface results in deflections over all areas of the
surface. Deflections approach zero only as the radius approaches infinity.
This is a result of the assumption that the medium 1s elastic. Actual data
shows that an elastic analysis glves reasonable results for initial loading
near the point of load application but over-predicts the surface deflections
as the distance away from the load increases,

Fig. A-2 indicates the variation of surface deflection with distance from
the point of load application. The theoretical curve is shown for an elastic

1 analysis for a circular

material calculated using Timoshenko and Goodier's
loading area. It may be seen to give deflections larger than the experimental
data of Gerrard and Morgan8 away from where the load is applied. CGerrard and
Morgan have developed more accurate theoretical solutions however these
solutions still overpredict the data away from the area of load application,

The data of Gerrard and Morgan 1is extrapolated'to zero at a radius of five
in conformance with data of Campen and Smith.13 The magnitude of deflection
at the centerline of the uniform pressure loading area predicted by Timoshenko
and Goodier agrees with Gerrard and Morgan's experimental data i1f an elastic
modulus of about 6.7 MPa is incorporated. Gerrard and Morgan reference data
from triaxial tests by !-loldenA—2 for their soil where the elastic modulus
ranges from 3.4 to 10.3 MPa. Holden's data confirms that the experimental
deflections near the uniform pressure loading area agree with the theory and
only differ at locations away from the loading area.

Waterways Experiment Stat‘.‘ionA-3 reports other data below the surface but
off the axis of the point of load application. Extrapolation of this data to
the surface gives a result that is also overpredicted by theory.

We felt the more accurate and easier method of determining surface
deflection was to utilize Gerrard and Morgan's data directly. The computer
program used for this dissertation incorporates a square grid in the Y-Z plane.
We converted these squares to equivalent circles by equating areas. This is,

a square with sides of 2a would be considered equivalent to a circle of radius
(4/W)%a. Deflection at coordinates (Y,Z) due to a uniform pressure applied

over an elemental area at coordinates (Y',Z') 1s found using the formula

2
a-v) (e-p) (av' azhy:, (a-5)

D(Y,Z) = CG E
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The Gerrard and Morgan deflection coefficient, CG, is set equal to 0,95 if

the point where the deflection is calculated is below the loading area in
conformance with Eq. (A-4). The coefficient would be zero for normalized
radil beyond five. Table A-1 shows these coefficients for a square coordinate
grid. The coefficients define a circle of influence around the location of

uniform pressure load application beyond which the load has no effect on

deflection.

Table A-1 - Gerrard and Morgan Deflection Coefficients for Uniform Pressure
Loading of a Square Area with Sides Equal to 2a.

"Y" Direction

Mesh No., 1 2 3
1 rfa =20 1.77 3.55
eq
Cg = 0.95 0.30 0.05
=
(=]
b rfa_ = 1.77 ~.51 3.96
Q
Q
b C. = 0.30 0.10 0.02
a G
)
= r/a - 3.55 3,96 5.01
Cg = 0.05 0.02 0.002

r/aeq - normalized distance from the center of the mesh indicated, to
the center of mesh (1,1). Mesh (1,1) is the area subjected to
uniform pressure loading.
1
- (&Y
aeq T .
CG - Gerrard and Morgan Deflection Coefficient for use in Eq.

(A-5 to A-/).
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The total deflection, D, at a point is found using superposition by
summing the component deflections for all non-zero CG using the following

equation.

2
= Q=-v) o 1az 1y
D(Y,Z)total = jz CG B (P Pr) (AY'AzZ') (A-6)
Equation (A-6) is put in dimensionless form

Q- vz)

¢ E

BT =) ®-F) (72" (4-7)
by dividing D, Y, and Z by a reference length and, (P_Pr) and E by a reference
pressure. We use the length of the "Z" axis and the initial driving pressure
less the initial pore pressure as reference values. The bars above the
variables indicate they are normalized. The crack includes all nodes where
tne total deflection is positive. The extent of crack propagation is
determined automatically by examining the region of pusitive total deflection.

The use of superposition is justified by examination of experimental data
as indicated in the analysis section. Because alluvium at N1S has negligible
strength in tension when compared to the gas pressures present,4 the crack is
actually formed more by parting of the surfaces along the plane of the crack
rather than failure of the alluvium material., Even if the alluvium had
appreciable strength, the crack could propagate along microfissures developed
during the explosion so that formation of the crack would still be by parting
of the surfaces., The application of superposition to our study is appropriate
since the parting of the crack surfaces is similar to initial deflection of
the earth materials which have experimentally exhibited elastic behavior.

An alternate means of predicting deflection for axisymmetric crack shapes
was developed by Sneddon.16 Sneddon incorporates a radially varying pressure
within the crack with zero deflection beyond the crack as a boundary condition.
A solution involving integration over the crack is developed for an elastic
solid. In applying the solution, the axis of symmetry is horizontal and the
length of the crack is in the radial direction. The crack contains both

vertical and horizontal rays.
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Unfortunately, the solution has several drawbacks for our particular
application. First, cracks grow more vertically than horizontally since the
overburden pressure decreases with depth. Hence, the axisymmetric assumption
limits the use of results to small lengths of crack propagatlion. Second, the
boundary condition of zero deflection at and beyond the crack tip is imposed
in such a fashion that a separate criteria Is required to determine propagation.
In the method we utilize, deflection is based on pressures within a circle of
influence and the extent of the crack is determined automatically. Third, the
form of the integral 1s inconvenient for incorporation experimental data such
as Gerrard and Morgan's8 and as such 1is difficult to improve based on actual
observation.

Another means of predicting deflection is with the use of a finite
element analysis using a computer code such as that developed by Wilson,
Farhoomand, and Ban:he.”-19 We used a modification of this code for the
solution to a two-dimensional problem20 analyzed earlier where the crack grew
only in the "2" direction and contalned a cross section independent of "Y",
Extension of the analysis to three dimensions was possible but prediction of
the deflection would be time consuming, Since the deflection is calculated
repeatedly along with flow in the crack and in the porous solid, limications
on computer time appear to make this method unfeasible for a three-dimensional

analysis.

FLOW IN THE POROUS SOLID

We consider a porous solid such as an earth formation on a macroscopic
basis and establish a control volume for analysis that contains both pore
space and solid grains as shown in Fig. A~3. A continuity equation is developed
by equating the net influx of mass to the time change of mass within the
control volume. Apparent velocities U, uy, and u, are defined as the volume
flow rate across a face of the control volume divided by the total cross-
sectional area, including both voids and solid. These apparent velocities
are different from the actual velocities since a portion of the control volume
is occupied by solid grains. Conversion to the actual velocities may be made
by dividing the apparent velocities by the porosity. The continuity equation

is written as

bb=



)
Pu, +a—x<pux)dx

{similar terms
in the Y and Z
directions)
Porosity, and
pore volume, € d)(deZ7

f

) S R

u, (similar terms in the Y and Z

directions)

Fig. A-3. Control volume used for derivation of flow through the porous solid.

[Du + =5 (pu )dX] dYdz - pu dydz
[pu + 57 () dY] dxdz - pu dXdz

9
+ [pu + = 3z (puz) dZ] dxdy - pu, dxdy

+e gp dxdydz = 0 (4-8)
or
2
= ou) + 2 (e + o (o) +e =0 (4-9)
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We may aspply a similar control volume and develop the Navier-Stokes
equations using the actual gas velocities u, v, and w. Full development of
the Navier-Stokes equations are shown by Schlichting (Ref. 10, Chapt. 3).

For brevity, only the "2" direction equation with constant viscosity 1s shown

below where 2 is a term due to the net body force acting on the elemental

volume.
ow 3w 3w o} 3P
puSE kv St v so o Bt =2 - 37
2 2 2 2 2
+ou 3_‘24+3_¥+32+1/3 gxlajz+_a“\a,7+ﬂ> : (410
X 3y YA 3z

Velocities of interest in flow through porous solids are very slow so that
Stoke's approximation may be applied (Ref. 10, p 104ff), That is, we can
neglect inertia terms which contain multiples of two velocities, in comparison
with those which contain a single velocity. Since the time variable is on the
order of Z/w, the last term on the left of Eq. (A-10) contains an equivalent
of a multiple of two velocities also. Under Stoke's approximation, then, the

left side of Eq. (A-10) is zero. 1In terms of the apparent velocities, this

gives
~ P azuz Bzuz Bzuz 32ux 32uv Bzuz
L G e e + U3\ b et + =0 (a-11)
92 ? axz 3Y2 a22 IRAZ Yoz 322

Exact representation of the fluld passing through the solid is not
practical because of the multitude of tortuous flow paths which exist. Instead,
we view the problem on a macroscopic basis, treating the statistical nature of

flow. We assume that

azuz Bzuz 32uz Bzux Szu Bzuz u,
+ + s/l =FEr L+ —EF)=-c-% (A-12)
) a2 322 aXez =~ avdz = .2 &2

where d is a characteristic length approximating the grain size and C is a
dimensionless constant., This approximation has been used by other
investigators,ZI’A_A has been verified experiwentally, and is dimensionally

correct. If we define a permeabilicy

.



k =-— (A-13)

and set che body force term equal to that due to gravity (Z = ~ pg)*, then
substituting Eq. (A=~12) and (A-13) into (A-11) results in

k
z (3P
u, == (32 + pg> . (A-14)

The value of permeability, kz, is determined for each formation normally by
experiment and in addition to the above effects contains such items as
tortuosity, surface roughness, etc., FEquation (A-14) is Darcy's law. For
conditions at the Nevada Test Site the value of pg is negligible with respect

to the minimum expected "Z' direction pressure gradient, leaving™*

k

2
u ==
2z H

. {4-15)

N

We can obtain similar expressions for the "X" and "Y" directions, but in these

cases the values of body forces X and ¥ are identically equal to zero leaving

k

3P
u = - ’55 = (A-16)
k
P
u, = - —h’-g—y . (A-17)

*In the appendices of this report we include the acceleration of gravity, g,
along with the density so that the equations are similar to those used in the
computer program, CHASM, where g is required for consistency of units.

**The driving pressure is on the order of the overburden of the zarth
formation, so the pressure gradient is approximately equal to the specific
weight of the earth formation. That is, dP/3Z = Pgg where pg is the density
of the earth formation. dP/3Z ranges between 1.7 and 1.9 g/cc for soils of
interest. The value of pg used in Eq. (A-14) for air is ~.13 g/cc, a
negligible value compared to 3P/3Z.
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Darcy's Law is verified experimentally for Reynolds number,® Re, less
than unity but data deviate from this relation as fluid velocity increases.
A modification called Forchheimer's relation, which includes a velocity
squared term, adequately predicts experimental data up to Re > 1000.4‘\_5"@_6
This added complication is not :itecessary for the present investigation
because flow in the earth formation is within the regime of Darcy's law.

The equation of state used with the analysis is that of an ideal gas

at constant temperature
(A-18)

The constant temperature . ssumption circumveants the need for an energy
equation and is valid since the gas reaches the temperature of the earth
formation after having traveled normally less than one per cent of he "2"
direction total length into the earth formation. This rapid change L1 a
constant temperature occurs be.ause the heat capacity of the earth for.ation
is large in comparison to the amount of emnergy transported into the eart:
formation by the gas and becau:e the average grain size of alluvium soil at
NIS is small (about 1 mm). A -mall average grain size ra=ults in a large
surface area to volume ratio of the particles that erhances heat transfer.

The viscosity of the gas is a strong function of temperature and only a
weak function of pressure so that it is appropriate to consider viscosity

constant also. Substituting Eqs, (A-15)-(A-18) into Eq. (A-9) gives

: _E_
3 _r;k_x_a_P caf2 SN o S\ PET 0,
A\RT u ox Y\ T u av 32 \A2 T p az at

which for constant temperature and viscosity becomes

= (k P ——) ( ) ;—(kz P ag) e 2, (a-20)

*Here Reynolds number is defined as, Re = u4d_p/ug where G is the magnitude
of the total apparent velocity vector and d° is the average particle size of
the grains in the earth formatiom. P
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Puy+ v (Puy]dY

-

by, — I _JI__._.pux+aflx(pux)dx
|
I
I

p”y/ dX =d_ /2 (1/2 the crack thickness)

dX Pu
4

Fig, A-4. Control volume used to derive equations governing gas flow inside
the crack.

1f we consider PO, the initial pore gas pressure, and Pl’ the initial
driving pressure at time zero, we may define a dimensionless pressure

P-P
(A-21)



so that

. (A-22)

Eq. (A-20) then becomes

(A-23)

We use a reference length, L, equal to the length of the "Z" axis and a
constant reference permeability, ko, equal to an equivalent crack permeability,

discussed later, to make the following definitions

¥ =X

X=7 (a-24a)
- Y

Y = L (A-24b)
- Z

zZ = T (A-24c)
K, = ) (A-25a)
T .y

kK, = 0 (a-25b)
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_ k
k = -2 (A-25¢)
z k
0
k_ (P,-P)t
T = -—"——l——g—- . (A-26)
e ul

The variables with hars then are normalized and T is a dimensionless time,

Combining these definitions with the constant
N (a-27)
0

in Eq. (A-23) gives

3 P+ Ei_ll
T (A-28)

If Ex’ Ey’ and Ez are considered independent of their associated spatial

conrdinate, then Eq. (A-28) may be simplified to

k. o2 J k .2 2
7’5'3_—2 [(F“ﬁ)] s (?+-‘ET)]
5% oF N

I b 1
] = ﬁ [P + 'ﬁ_—].] . (4-29)



This development follows the arguments of Morrison9 who reasoned that we
could reduce the error involved in approximating the derivatives by finite

differences if we take the function

F=\P+{3 (A-30)

as the dependent variables for differentiation. Realizing that N is a
constant and using the definition for F, Eq. (A-29) becomes

k_xﬁ+£‘1§_z_§+k_23 F_2° (A-31)
2 2 T g T

Eq. (A-31; is the governing equation for flow in the solid if the normalized
permeabilities are constant. If the normalized permeabllities vary

spatially, then the governing equation is

af % or\, o /% aF\, 3 (% aF\ _oF
=3 = + = > = + = > =) % (A-32)
90X ) 4 oY Y 3z 9z

FLOW IN THE CRACK

Flow in the crack is similar to flow within a pipe with porous walls.
Consider a control volume which extends from the centerline of the crack to
the boundary of the porous solid as shown in Fig. A-4. The total dimensions
of the crack in the "Y" and "Z" directlons are considerably larger than those
of the control volume. A continuity equation is written by equating the net
influx of mass to the time change of mass within the control volume and

becomes

[pu + (pu ) dx] dydz - pudedZ + [pu + 5= (pu )dY | dxdz —_puydxdz

[pu + = (pu )dZ] dxdY - pu, dxdy + —g—s— dXdydZz = 0 (A-33)
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or
3 5 » W _ -
7 (Pu) + gy () + 5z (pu) + 52 =0 . (a-34)

The porosity does not enter the crack flow equation as was the case in
the porous solid because it is unity. The centerline of the crack is a line
of symmetry and as such, no flow crosses the left hand boundary. Flow across
the right hand boundary is dependent on the pressure gradiené in the porous
solid to the right. Since the distance, dX, is equal to one-half the crack
thickness and since the velocity is zero across the left face we rewrite
Eq. (A-34) as

2 2 3 -
a7z ey Pyt ety =0 (4-33)

The velocity U, is identical to the apparent velocity defined when
deriving the equations for flow in the porous solid. This velocity may be

equated, using Darcy's law, to the pressure in the porous solid.

u o= === (A-36)

We use the fully developed internal flow momentum equation (Ref. 10,
Chapter 20) in the "Y" and "2" directions. The shear forces along the sides
of the channel are equated to the difference of normal pressure forces
between the ends of the control volume as shown in Fig. A-5. The value dh is
the hydraulic diameter with dN equal to an elemental length in the direction
of the total velocity vector. That 1s, the velocity in the crack normally has
components in both the "Y'" and "Z" directions. The total velocity vectar is
the sum of these two components. Using a frictional coefficient, A, defined

with a total velocity vector, V, and wall shear stress, Tw’ as

(a-37)

® 2l

then a force balance gives

2
dp . _ Apv
l (p + 4 dN)] a =t av=20C ay (a-38)
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Fig. A-5. Equivalent control volume for determining a force balance in the
crack.
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or

dp_ 2 oV | (a-39)

The crack geometry approximates two parallel plates separated by a small
distance. The hydraulic diameter* for this geometry 1s twice the separation

or twice the crack width, That 1is

d =2d . (4-40)

Eq., (A-39) is broken intc the following two component equations using

velocities parallel to the "Y" and "Z'" directions.

Pu 2
o__ 2 Ty -
3y 4, Zg (A-41)
2
Pu
2 __ ) _
3z =~ 74 7e (A-42)
c
Combining the continuity and momentum equations for flow within the
crack with the ideal gas equation of state, (Eq. A-18) gives
1
2o o o (e ‘ig_d_c_ﬁ_raz *
dC RT n 39X —9Y \RT AP 3y
) P
(e ﬁ_’ﬁ£| LORT (4e43)
- 9z RT AP 9Z ot '

*
The hydraulic diameter used is equal to four times the flow area divided by
the wetted perimeter. Different definitions are used by different authors.
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The plus sign on the "Y" and "Z" terms is used if the pressure gradient is
<0 and the minus sign if the pressure gradient is >0, As before we take the

flow to be isothermal which gives

1
s
% a0h , 2 (Ezﬁdc Rt a(vz)D
* X oy

i
2gd RT 2.\
> ¢ BT a0? 3 _
t3z (I 3 32 > -0 (A-44)

If we use the definition of the normalized variables for P, E, Y, Z, T, and F

we find
2. (p,-p)?
F
_.(_138}1: - ___1L o & (a-45a)
3%
2, (p,-P )2
a(P%) 170 aF
=2 (A-45b)
oY L 47
3(p2) ?-p)®
—— = T = (A-45¢)
3z oz
k (P,-P)° =
.21t ¥ (A-46)
ot € n L2 9T
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so that Eq. (A-44) becomes

- %
ke P1Pe) ap 1 5 |89 ERT o

-4 =*r= =
L X Y oY

% _
13 fi28d. LRT 4 k(P -Pod 35 _
e () TR0 (a-47)
3z 9z H

Finally we simplify Eq. (A-47) by defining effective crack permeabilities in
the "X" direction and the "Y" or "Z" direction as

_ €L kx
kex = 0w (a-48)
c 0
2g d RT &
g L
€ U c
k = ( ) (A-49)
cyz (Pl Po)k0 A
to give the governing equation for flow inside the crack as
— - k) - oo
S EL e (EN 2k, if-, +2-0. s
ox — ot \ V% \|ay 3z \ V% \laz

The value of reference permeability, ko. may be taken as any
representative quantity.

We set k

o S° that all values of kcyz are initially
less than or equal to unity. That is

2gd,  LRT %
k. = € Y max
0" @ -E) \ )

(a-51)
where d

is evaluated as its maximum initial value.
max

This reference
permeability is a constant for each problem.
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The value of frictional coefficient, A, depends on Reynolds number and
relative roughness. Both laminar and turbulent frictional coefficients are
calculated at each node withi: the crack based on the Reynolds number and
relative roughness present. The larger of the frictional coefficient values
is used since in accordance with reported data (Ref. 10, Fig. 20.18) the
laminar frictional coefficient will be greater only 1f the flow is laminar.
This is explained. graphically in Fig. (A-6).

The fricticnal coefficient for turbulent flow is based on the
completely rough regime with one of the turbulent curves selected based on
relative roughness. Even though the crack wall is considered to have a
uniform absolute roughness, the relative roughness will be different for
each node in the crack because of a varying crack thickness. The transition
flow regime is omitted with the completely rough turbulent frictional

coefficient used for all Reynolds tumbers unless the flow is laminar.

CALCULATION OF THE FRICTIONAL COEFFICIENTS

In calculating the laminar frictional coefficient, we find that the
shape of the flow channel is important. For the case of parallel plates (or
an annular region with small separation between the walls), the experimental

data correlates with (Ref. 10, Fig. 20.12)

96
AQ * Te (A-52)
where the subscript £ represents laminar. The value of Reynolds number is
based on the total velocity vector, V, and the hydraulic diameter, dh' which
for the case of parallel plates is twice the crack thickness, dc' The

Reynolds number then is

vd

A e, (A-53)
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Laminar (X = 96/Re)

\ Turbulent values for different
\ relative roughness, ks/dh

\

The greater of the laminar or
turbulent value is used

Re

Fig. A-6. Variation of frictional coefficient with Reynolds number and
relative roughness.

A comparison may be made between the experimental values which yield
Eq. (A-52) and the theory of steady laminar flow through a straight channel
(Ref. 10, p 77). Referring to Fig. A-7 the velocity distribution and

volumetric flow rate, Q, are

=L dr 2,2 -
us-gmx YY) (a-54)
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2b /;' Yt__.)(E§§ u

1 2¢

Fig. A-7. Parallel-flow channel used to develop a theoretical laminar flow
frictional coefficient,

d
where E% is a constant and

=-8bcgacr | (A-55)

Q is also related to an average velocity across the channel which is set
equal to the total velocity vector, V, which is the sum of the "Y" and "2"

direction components of velocity

Q=4bc V., (A-56)
Equating Eqs. (A~55) and A~56)
3uv \A
b (dh/4) dh

-6



The pressure gradient is related by Ref. 10, p 561ff:

de ‘% oV -
T4 2g (4-58)
h
Combining Eqs. (A-57) and A-58)
- %6 gu__ 96 -
Ay 0d vV Re (A~59)

which gives an identical result to experimental data of Eq. (A-52). We note
that for Hagen-Poiseuille flow through a circular pipe the value of the
constant would be 64 rather than 96.

The hydrodynamic theory of lubrication (Ref. 10, p 108 ff) is an extension
to the above analysis for the case when the plates are not parallel. If the
angle between the two plates is significant, then the acceleration term in
the Navier Stokes equation, u %% , becomes important and must be compared to
the viscous ternm, u32u/8y2, even though the velocity is small. In our case,
this angle is negligible throughout the entire crack and the case of parallel
plates applies.

For the turbulent frictional coefficient, Xt, we utilize the extensive
experimental results for fully developed turbulent flow (Ref. 10, Eq. 20.35)

which relates At with relative roughness as

1

t dh
2 log K + 1,74

The value of relative roughness, ks/dh, is the average grain size of

(A-60)

particles composing the crack boundary divided by the hydraulic diameter.

ALTERNATE MEANS OF CALCULATING THE "Y" AND "2" DIRECTION
MOMENTUM EQUATIONS IN THE CRACK

The momentum equations utilized for the "Y" and "2" direction within
the crack should include acceleration and transient terms to be complete.

The method outlined below adds substantial complication to the analysis but
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does include these additional terms which were neglected earlier. Use of steady
flow momentum equations in the "Y" and "Z" direction: appears intuitively
justified since the transit time in the c¢rack is much less than for gas
permeation in the solid.

Let us consider that the total velocity in the crack is nearly parallel
to the "z" axis. This will simplify the analysis since u_ = 0. Extension to
the more general case would follow the same outline. Neglecting body forces,

the "Z" direction momentum equation is (Ref. 10, Chapter 3)

} 2
du du 3"u
z Py ar z
Mo YPE T Tu TV E (A-61)

The terms 8 u, /BY and B u, /az are omitted since they are negligible when
compared to azu /BX

There is some gquestion as to the form in which the last term of Eq. (A-61)
may be written for transient flow. This term relates to the viscous forces
present and for steady flows is equated to a frictional coefficient, A,

(Ref. 10, Chapters 19 and 20) as follows.

Bzuz 3 [ Buz]
U—=> =5 + pe) 55
) X t’ 9x

(A-62)

Here Tl and Tt are the laminar and turbulent shear stresses and et is the

turbulent eddy viscosity.
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As explained in the main body of the report, Ginzberg28 and Petrova29
both assume that the resistance properties established f{or steady flow apply
for transient conditions. Yeremenko and Markov30 develop a relationship
between increases in frictional coefficient for accelerating flow and an
unsteady flow parameter, 60, but do notf indicate hew to obtain 60 without
knowing the velocity distribution. Although this velocity distribution has
been analyzed for laminar flow by DoughtySl, it is uninown in general.
Therefore we have used the frictional coefficient based on steady flow.

Combining Eqs. (A-61) and (A~62) with the gas equation of state
(Eq. A-18) gives

Buz Buz 3P )\Puz2
PUZW‘FPW:—RTEE.}FZE_C[:' (A-63)

We cannot use Eq. (A-63) to eliminate u, in the continuity equation for
flow in the crack (Eq. A-28) as we had done previously. Instead, Eq. (A-63)
is used as one equation in a set of coupled equations which could be solved
numerically to obtain values of u, and P.

The second of the coupled equations is developed for the case when
uy = 0 by combining the continuity equation, Eq. (A~35), with the "X" direction
momentum equation, Eq. (A-36), and the ideal gas equation of state, Eq.

(A-18). This gives

2P k 3(Pu_)
x OP 2 9P _ _
a7 xt 5z t5c=0- (A-64)

It is needless to say that the coupling between Eqs. (A-63) and (A-64)
results in substantial complication in obtaining a solution. Rather than
attempt this form of solution we choose to use the simpler formulation that
includes the momentum equations for fully developed flow in the "Y" and "Z"
directions. We then checked the magnitude of the neglected transient and
acceleration terms using results of the calculations with the momentum
equations for fully developed flow. Fortunately we found that the transient
and acceleration terms were less than 10% of the included terms in the

momentum equations exc-pt at times less than one eighth the total problem time.
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does include these additional terms which were neglected earlier. Use of steady
flow momentum equations in the "Y' and "Z" directions appears intuitively
justified since the transit time in the crack is much less than for gas
permeation in the solid.

Let us consider that the total velocity in the crack is nearly parallel
to the "Z" axis. This will simplify the analysis since uy = Q0. Extension to
the more general case would follow the same outline. Neglecting body forces,

the "2" direction momentum equation is (Ref. 10, Chapter 3)

auz Buz 3P azuz
PTE tPE T YT (a-62)

The terms BzuzlaY2 and azuz/BZ2 are omitted since they are negligible when
compared to szuz/axz.

There is some question as to the form in which the last term of Eq. (A-61)
may be written for transient flow. This term relates to the viscous forces
present and for steady flows is equated to a frictional coefficient, A,

(Ref. 10, Chapters 19 and 20) as follows.

Bzu? 3 [ Buz
N A
ax2 £33 t’ 9X
-2
_ax[TR+Tc]
)\puz2
s dc (A-62)

Here TR and Tt are the laminar and turbulent shear stresses and Et is the

turbulent eddy viscosity.
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As explained in the main body of the report, Ginzberg28 and Petrova29
both assume that the resistance properties established for steady flow apply
for transient conditioms. Yeremenko and Markov30 develop a relationship
between increases in frictional coefficient for accelerating flow and an
unsteady flow parameter, 60, but do not indicate how to obtain 50 without
knowing the velocity dlstribution. Although this velocity distribution has
been analyzed for laminar flow by Doughty3l, it is unknown in general.
Therefore we have used the frictional coefficient based on steady flow.

Combining Eqs. (A-61) and (A-62) with the gas equation of state
(Eq. A-18) gives

. du o MPu’
Puz‘§2—+PT=_RT-B—Z+4gdC' (A-63)

We cannot use Eq. (A-63) to eliminate u, in the continuity equation for
flow in the crack (Eq. A-2B) as we had done previously. Instead, Eq. (A-63)
is used as one equation in a set of coupled equations which could be solved
numerically to obtain values of u, and P,

The second of the coupled equations 1s developed for the case when
uy =% 0 by combining the continuity equation, Eq. (A-35), with the "X" direction
momentum equation, Eq. (A-36), and the ideal gas equation of state, Eq.

(A-18). This gives

2P k 3(Pu )
x OP 2 :) _
dcu % + 57 + FT 0. (A-64)

It is needless to say that the coupling between Eqs. (A-63) and (A-64)
results in substantial complication in obtaining a solution. Rather than
attempt this form of solution we choose to use the simpler formulation that
includes the momentum equations for fully developed flow in the "Y" and "2"
directions. We then checked the magnitude of the neglected transient and
acceleration terms using results of the calculations with the momentum
equations for fully developed flow. Fortunately we found that the tramsient
and acceleration terms were less than 10% of the included terms in the

momentum equatiocns except at times less than one eighth the total problem time.
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Even at these early times we felt the transient and acceleration terms
could be neglected for two reasons, First, the actual application of applied
pressure appears over a short period of time rather than the mathematical step
change we had used in the analysis. Second, the effect of any error included
by neglecting the transient and acceleration terms at early times has little
effect on the overall solution since most changes in gas pressure occurred

after the time when the transient and acceleratlion terms were important.
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Appendix B - Development of the Equations Used for Computation

This appendix converts the governing equations into the difference
equations used for numerical computation in the computer code CHASM. If
feasible, the difference equations also are written in terms of the variables
used in the computer code,

The arrangement of thils appendix follows the logic of the computations
which is shown on the flow chart of Fig. B-1. After input, calculation of
constants, and initialization, we iterate with time through a main computa-
tional loop. Within the main computational loop we first calculate the crack
wall deflection based on the known values of pressure at time, n. We next
calculate the frictional coefficient and values of the coefficients used in
the crack-flow equations., Lastly we simultaneously calculate the pressures
at a new time, n+l, throughout the solid and crack, If desired, we print out
results before repeating the calculations in the main computational loop for
the next time step.

The problem is considered complete if the tip of the crack reaches the
maximum node in the "Z" direction which normally represents the surface of the
earth or if it reaches the maximum node in the "Y" direction which indicates
additional nodes need to be added to obtain a proper solution.

Superscripts are used for time variations and subscripts are used for

spatial variations as indicated in Table B-1.

Table B-1 - Subscripts and Superscripts used in the Difference Equations

Subscript or superscript Meaning
n old time value when conditions are known
nt+l new time value when conditions are unknown
* Rk intermediate time values
ceayi-l,1i,i+1,... "X" direction spatial nodes with node i

located where values are being calculated

sensd~1,Jsssak,ktl,. .. "Y" and "Z" direction spatial nodes
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I START

INPUT

1

CALCULATE
CONSTANTS

INITIALIZE
crack dimensions,
pressures, etc,

CALCULATE
DEFLECTION
of crack walls
bosed on pressure
at old time,
n

CALCULATE
FRICTIONAL
COEFFICIENT
based on pressure
at oid time, n

1

CALCULATE
COEFFICIENTS
in crack flow
equations

CALCULATE
PRESSURES
at new fime,
n+l

PRINTOUT

Fig. B-1. Flow chart of computations in the CHASM computer code.
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CRACK WALL DEFLECTIONS

Deflections are calculated in dimensional form using Eq. (A-7) multiplied

by the reference length, L.

T  ,2)-= Z ¢ ““’) -7 ) (8T * (a-7)
2

D ED = Y o L FF) Tz (-1
E r

Values of C are established as input in the main computer program from
Gerrard and Morgan 58 and Campen and Smith's 13 deflection data, These
coefficients account for the effect of distance between the point the deflec-
tion is being calculated and the area subjected to uniform pressure loading as
shown in Table A-1. We sum the component deflections only over those areas
where CG is non zero which in our analysis comprises the region within three
nodes of the area subjected to uniform pressure loading. In the main computer
program we define a term, CDEF, which contains all the constants in Eq. (B-1)

and an array, CSUBG(j,k), of the Gerrard and Morgan deflection coefficlents as

2
coEF = $L (B~2)
B
CSUBG(3,k) = € (AF'4Z")*
=c, /L. (B~3)

Here, NMl is the computer term for the number of "Z" direction nodes minus
one. Our mesh spacing over the X=0 plane is composed of uniform squares and
the values of C_ are calculated for uniform square areas. If a difference mesh

G
spacing such as a rectangle is incorporated, a new set of C, values in Table

G
A-1 would need to be developed.
The summation in Eq. (B-1} is accomplished in three parts in the computer
program. First we sum over all areas which are at the same elevation as the

point where deflection is being calculated. If the point is near a boundary
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and the circle of influence, where CG is greater than zero, extends beyond the
plane Y = 0, we utilize a symmetry condition to account for Y<Q. If the circle
of influence extends beyond the maximu.a "y plane we set those pas pressures
equal to the value at the maximum "Y', This is consistent with the boundary
condition that the pressure gradient perpendicular to and at the maximum "Y"
plane is zero.

Second we calculate the contribution due to nodes below the Z=0 plane 1if
the circle of influence extends that far. If the Y node is within the reglon
of applied pressure at Z=0 we utilize the applied pressure less the appropriate
earth formation resistive pressure due to overburden as the net force tending
to open the crack. 1f the Y node is outside the reglon of applied pressure we
take the pore pressure to be a symmetric image of that above the Z=0 planc.

Finally, we calculate the contribution of all nodes above the Z=0 plane
which have a non-zere CG and which have not been calculated previously. In all
calculations, the approprlate Gerrard and Morgan deflection coefficient is
chosen based on the number of nodes away from the point at which deflection is
being calculated. We then multiply by the difference between the gas pressure
in excess of the atmospheric pressure present at the node and the earth-

formation resistive pressure.

FRICTIQYAL COEFFICIENT
e

The governing equation for a laminar flow frictional coefficient with a

geometry of closely spaced parallel walls is

Aﬂ = 96/Re (A-52)
where
2vd p
Re = ———f— | (a~53)
ug
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We first determine a relationship between the total velocity vector, V, and

the pressure gradients in the "Y' and "2" direction. Recalling that in

the crack
2
pu
°__ Ay -
N - T 2d 7 (A~-41)
2
oP APy -
32 " " 74 Zg (A-42)
c
we may establish the velocity vector relationship as
2 _ 2 2
vV = uy + u,
4gd
R I _
Ry (‘ax‘*‘[az)' (B-4)

The absolute value signs are necessary to assure t :t u 2 and uz2 are positive
for all values of pressure gradient as they must be. We take the values of A
in Eqs. (A-41) and (A-42) to be for lamina. flow since we are calculating

AE. If the flow is actually turbulent, then the calculated value of Al will be
discarded since the corresponding value calculated for At will be greater.

Combining equations we have

2 02 2 .2
P e
4V dcp

962 uz -3 Al -5
= B~

16 dc3 p(%' + |—§—123|)
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Eliminating the density by using the equation of state (Eq. A-18) yields

962 ug RT

16 4> P(%‘Z’-l + |%§—()

- 962 pz g BT ) (B=6)
8d3 _3_1’_2_+_§ﬁ
c Y 9z

We wish to write Eq. (B-6) in terms of the pressure function, F. From the
definitions

P -P
Fag _P° (B-7)
10
Fe= P+ 1 (A-30)
we obtain
2 2 =2 = 2
P" = (P -Po) PT + ZPO (Pl_PO) P+ P0
2
2p P
= @-pp” (1>2+1,‘_’P Fe—0
170 ‘Pl‘Po>/
= (P )% F (B-8)
10
and
2
)
¥ -
LoY
2
P e -9)
L ¥
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Similarly

2
2 e’ o

9z

e

9Z L

Combining Eq. (B-6), (B-9), and (3~10)

962 Lz gLRT

A, = ;
L 2 .3 f{aF| . |3F
B(P,~P))” 4 l-— + I—l

Y 3z

(B-10)

(B-11)

The equation used for computation is written in terms of the crack half

thickness rather than the crack thickness so that

144w g LRT

) % @ /2’ (I—QEI + gz—;) .

Y

Care must be exercised to assure compatibility of units.

all constants once in the first part of the main program as

2
CFRICTL = 2841 LZR 1,
(Pl-PO)

(B-12)

We calculate

(B-13)

The difference equations used along with Eqs. (B-12) and (B~13) are

3F| _ 1.n _ =
EI = Pk Fj-l,k’/2 &

9F) _ 1.0 n =
Ia'z" ol LA Fj,k—ll /2 dz

and

(B~14)

(B-15)

(B-16)



If the location at which the frictional coefficient is being calculated is on
a boundary then the gradients of the pressure function, F, are evaluated with
either forward or backward differences rather than central differences.

The value of the turbulent frictional coefficient is calculated directly

1

)‘t = dh 2
2 logE—+ 1.74

8

(A-60)

where kS/dh is the relative roughness equal to the average diameter of Lhe
solid grains composing the crack wall divided by the hydraulic diameter,
d =2 dc = A(dc/2).

We choose the greater of the laminar or turbulent frictional coefficient

h

for actual use. Because insignificant crack thicknesses can be obtained
mathematically, upper limits to the frictional coefficients are imposed to
assure that reasonable values are not exceeded.

In the computer program, Reynolds number is calculated after the

frictional conefficients. For laminar flow

Re = — . (B~17)

For turbulent flow we use Eq. (A-53), (B-4), (B-9) and (B~10). 1f we
recall that the actual equation used for computation is written in terms of

the crack half thickness, then



[vl 4 e

Re = B
~ 2 dc 4 dc 4 o o P
T ow A 8 Gay' azD

- 1
2 dc (P1 PO) 2 dc |§£' . lézl 's
: A8 LET Alggl - b

8 (d,/2) (B)~Py) d./2) OF) . |3F : (B-18)
" T eLRT I;,; lazl '

Again the constant values are coubined into a single coefficient calculated

in the main program which is

8(P -P,) ]
_ 10 1 _
CFRIC2 = — (——————g 7 'r) (B-19

IMPLICIT DIFFERENCING OF THE POROUS-SOLID FLOW EQUATIONS

Above the crack tip but in the plane of the crack as well as through ut
the rest of the porous solid, the permeabilities in the spatial coordina.es

are considered as constants so that the guverning equation is

2

k k. k. =
aX oY 9Z
where
F=|P+ o1 (B-20)
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We wish to difference Eq. (A-31) in terms of the pressure function, F. Using

Eq. (B-~20) we solve for P and 3P/JT as

I - (B-21)

& _Ex
AT 3F o1
1 _~¥% 3F
=5 F 357 (B~22)
Substituting iito (4-31) we obtain
2 2 2
R ILvy Ly EE. X (B-23)
® 95X Y oy 23z T

The coefficient of the time derivative is always finite since F is
| .unded by O0<F< NZI(N—I)Z. Each spatial term taken separately with the time
derivative forms a parabolic equation. We follow the procedure described by
Carnahan, Luther, and Wilkesz3 which was originally developed by Brian25 since
this reduces to the alternating direccion implicit method in two dimensions

1B-1 method

used in differencing the crack flow equations. Use of Douglas
described by Carnmahan is an extension of the Crank-Nicolson method and as such
would not be as compatible with the differencing chosen for the implicit

solution of gas flow inside the crack in the "Y" and "2Z" directions.
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The major advantage of the solution method chosen is the tri-diagonal
form of the matrix which results. That is, the matrix has non-zero elements
only along the diagonal and immediately zdjacent elements as shown in Fig.
(B-2). A particularly efficient method to solve the matrix is available.

Following Brian'szj method, the solution is broken into three parts as

—~ 2 % = 2 n. = .2 a n,% ~ls F -F"

= ’ -
ke 6 F +ky 60 F 4k 60 (F T3 (B-24)

%% n
= 2 k= 2 kK n n,k% -l F-F .
K G F +k 60 F +k 6 F = (F T3 (B-25)
1w

= 2 % = 2 kk — 2 qn3] _ %k il -k FOO-F
R S F +k 8¢+, 8 F = (F e YF R (B-26)

Here ze, Gyz, and 522 are finite difference forms of the second derivative
acting on the pressure function at the time shown. The double superscripts
indicate a value of F between the times denoted by the superscripts.

The actual equations used for computations are developed following the

solution method for tridiagonal matricies outlined by Roache. We let
o= E; (B-27)
Y=k (8-28)
£=k, (B-29)
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X X
X X x

X

X
| |
O Zero elements

X Nonzero elements

Fig. B-2Z. Form of a tri-diagonal matrix.

and

» (B-30)

-k n -
Y a0 7] D)

The coefficients o, Y, and £ are taken to be independent of time aand space,.
Time superscripts and spatial subscripts could alsc be included for generality

if desired. The correct time value to use when calculating the value of

Fi i,k in che ng i,k coefficient is a matter at some debate. We include a
’ ’ E] 3 *
weighting coefficient 6 in the calculation of n:’j k which may be varied
2Js

depending on the specific problem. The superscript contains the two time

values used in calculating the n coefficient.



We use Blottner's grid stretching method26 Iin the "X" direction to increase
the effectiveness of the number of grid points used. This makes the grid size
variable in the "X" direction. Substituting Eqs. (B-27) through (B-30) intc
(B-24) with the derivatives expanded into differences gives

¥ *
. (Fras ) (Pl ™ Fin k)
AX
( 2+ 1/2 84172 1-1/2
n - n n
.y (Fi,j+1,k gt F;,‘rl.k)
un?
n _ oph n * _gh
(Fi,j,k+l F gkt Fi,j,k—l) ax (Fipe " B kz )
+E s =k (8-31)
(4z2) i At/2
where
Mivrsz %01~ % (8-32)
By 1y =%~ %y - (5-33)

Values of the spatial derivatives at the boundaries would use either the
Dirichlet condition wherg!the boundary value is specified or the Neumann
condition where the spatibl derivative ia equal to zero. Within the crack,
over the portion of the lower surface where the pressure is specified as
input, and over the total upper surface where the normalized pressure is zero,
we use the Dirichlet condition. On all other portions of the boundary we use

the Neumann condition.
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YY" Direction Implicit Differencing

Equation (B~31) is written in the following form for use in the computer
program when considering the “X" direction implicit with the "Y” and "Z"

directions explicit.

* * *
- A F N + B F - F . =D
1,2k Tar0, 3,k T B Ty T G,k Fael,5,k T P,k (B-36)

where

2«
A = (B-35)
L3k A8y 8Ky )
*®
2 o 1 1 s
B, ,, = + 1,1,k
Ldsk (X + 8%y )5) [Axi+1/2 AX;L-1/2] t a2
s
2a 1,1,k
= + hado (B-36)
8541285172 BT/2
2 o
c, = (B-37)
Ldok Xy )R p1a * B4040)
F? - 2F" +
D, Kk =Y ¢ 1,341,k 1’g’k i:J_lyk)
i, (A'i-‘)
n _ n n n,* n
ve Py gl = 2F5 3ok P FL g1 ok FiLgk 18
— 2 AT/Z . (B- )
(42)
In turn we have
F* _ * ~
1,5,k = FiLg,k T g, FaLg ik (B-39)
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where

a, .
L.i.k (8-40)

E =
i,j’k Bitj:k ci’j’k Ei—l’j:k

D

" F
Lk " G0k Tl (B-41)

5 -
By 7 %1,k Bioag

1,3,k

At the left boundary, the subscript i=1, and from Eq. (B-39)

* X ~

F = E F + F . -42
Lk ™ Bk B2, YL,k (8-42)

*
For a Dirichlet boundary condition where the value of Fl 1.k is specified
*J

E, ., =0
1,i,k
Dirichlet

El Gk T specified value condition . (B-43)
» L]

For a Newmann boundary condition where the derivative is zero

E =1
lij,k

Neumann
P =0 condition . (B-44)
1,3,

Using the boundary conditions above and the recursion relationship of
Eqs. (B~40) and (B-4l) we may calculate all the values of Ei,j,k and Ei,j,k'
At the right hand boundary, where the subscript, i, has its maximum value
we use either the Dirichlet condition to specify the value of F:,j,k or the

Neumann condition which gives from Eq. (B-39) that

F
F* = L-luink (B~45)
L,j,k l_EL—l,j,k
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where the subscript, L, indicates the maximum "X" direction node. We may then

use the recursion relation, Egq. (B-39) to calculate all other values of

* pa—
Fi i,k starting with the maximum "X" direction node.
"

YY" pirection Implicit Differencing

Working with the "Y' direction implicit portion of the calculation, we

have from Eq. (B-25)

P *yoE F )
2 Q I- i"‘l,j,k 3 Fi’jak - ( i,i.k - i"l’j)k
(BXyp172 + 4172 l &Xyiv1/2 8X5.172

Rk hk *k
.y etk = 250 Y Frgo1e)
5?2
n _ opD n
ikt ~ %P3 5t Fy i)
+E L
(42)
Kk n
- et Fy i~ Fig0d
i,j,k At/2
or
P +B £ c e =D
- Ai,j-k i,j+1,k i!j!k in’k - iajsk i;j"lﬁk a injak
with

4,5, 7Y

(4D2 o,
77 Mi,9.k

B, . =2y +
i,i,k Y

1,5,k Y

-37.-

(B-46)

(B-47)

(B-48)

(B-49)

(B-50)



and

*

* F )
i,j,k 1-19j,k

* F*
o 2a Fian,gae ™ Fag00
1,j,k v T3 3
(BRypa72 * 8% 079 &Xi41/2
n _ 9pD n
ve g 2Fi 3k Y Py ken)
%

n,%k

n F?
1k T3,k |32
NI @ .

Rewriting Eq. (B-46)

*k Yok

T = . P +
1,36 T B gk Tk R gk

with
A
£ _ 1,1k
BB kT Gk B ek
D, ., +C F, .
;‘ - ij.k i,j,k_1,j-1,k .
i’j,k Bi:jrk h Cisjlk Ei:j‘l!k

&Xi172

(B-51)

(B~52)

(B-53)

(B-54)

As before we use both Dirichlet and Neumann boundary conditions as appropriate

R
i,j,k

81~

for calculating first the vulues of E, , and F . ,» and then the values of
i, i,k 1,3,k



“Z" pirection Implicit Differencing

For the “Z" direction implicit portion, the difference equations used are

developed from Eq. (B-26) as

l— * * ) (F* F* )
2.a T R T R A T B S R
(BRypy2 * BXyyy9) BKiv1/2 M1
(F** 5™ . ;

+ ¥ iJ_1+1’k ilj!k i)j—ltk
(5
n+1 n+l n+l
,e By ket ~ 285 g P By )
wn?
n+l ok
et B g
N4,k At/2
or
n+l n+l n+1 _
S ALk B e Bk T ik T Cagk FiLgiken T PaLgk
with

A, . =
:1,J:k

(4Z)% o+l

= 72
28+ 37 Ni,3.k

B, .
1,3,k

C, .
i,i5k
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¥ * ® *

.. 2a Fiange ™ P50 - Fioge Faoygd
1,3,k - = = =
(B 41y0 ¥ Xy 1y9) ey X172
*k *k *ok Kk 4l Kk
(F, . - 2F + F, ) : ..
i,J+1,k i,i,k iyJ:l’k i:J)k 1 Jsk 7y 2 -
+y ady + Al lan? L a0
(4Y)
In turn,
n+l n+l jod
= F +F B-61
gk = By FiL et Pk (8-61)
with
A
i’j’k
E = — (B-62)
SR TR O 1 S OF R
P - Dinj_)k * Ci’j’k Fi:j )k‘l
Figk =B - ¢ E (8-63)
* i:j)k i)j;k i’jsk‘l

Maps outlining the calculations for all the spatial locatiomns in each step
are shown in Figs. B-3 through B-3 since there are a number of regions with
different boundary conditions. The circled numbers outline the sequence of

steps in the computer program.

IMPLICIT DIFFERENCING OF THE CRACK-FLOW EQUATIONS

We explored two ways of differencing the crack flow equations both of
which are related here., Each method of differencing is satisfactory and result
in nearly identical answers when compared in a sample problem. The method
described first was used for all the calculations documented because there
appears to be an advantage in stability. The alternate method has the

possible advantage of being more accurate for the same spatial grid size.
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of time by input
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Calculational steps for the F-direction implicit calculations for
the porous solid.
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Fig. B-4. Calculational steps for the Y-direction implicit calculations for
the porous solid.
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~
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Fig. B-5. Calculational steps for the —Z_-direction implicit calculations for
the porous solid.

The governing equation for flow within the crack is

— — ; !i T !2 P
N 3—f| s 2 K, ,i’g' + &0 (450
oX 9x oY\ Y% \ley s\ % \oz

We replace the temporal derivative of pressure with a derivative of the

pressure function using Eq. (B~22) which results in

+
f

i
|
1

<)

(B-64)
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In the first method of differencing, we differentiate the second and third

terms from the left in closed form to obtain

1, m X
- E, (,ED"’“Qh “eya ﬁ_lﬂl
X

X o7 rl k) v v
3 Y Y ) légl % 3y fay
oY

53k k
s (|1EN " ——eyz , _oyz i-a-F|+lF‘L’£-o (B-65)
3z szl 2 o

— !i -_—
Y3 2 I_ag 92
3z

The value of F is bounded by 0 < F < NZ/(N-.I)2 so that the coefficient of the
right hand term is always finite., On the other hand, it is possible for

singularities to occur numerically in the third or fifth term from the left
if 3F/3Y or 9F/JZ approach zero. One means of avoiding such difficulties is
to multiply through by these values. However; this yields an equation which
in the limit does not conform to the physics of the problem. For example, if
9F/3Y » 0, only the second and third terms from the left in Eq. (B~65) should
approach zero. Yet if we multiply Eq. (B-65) by (8!?/3?)!i we find that all
terms approach zero as 9F/3Y ~ 0 leaving us with a trivial result., A better
way of eliminating the possible singularity is to set the second and third
terms from the right equal to ~eroc if ]3F/5§| is less than some small value.
Similarly, we would set the fourth and fifth terms from the right equal to
zero if |8F/BE| is less than some small value.

The plus signs in the second and third terms from the ieft in Eq. (B-65)
are used if 3F/3Y < 0 and the minus signs are used 1f JF/3Y > 0. If we
multiply the numerator and denominator of the second term by (|3F/BY|)LE and
remove the absolute value sigrs in the numerator, then the minus sign should

be used regardless of the magnitude of 3F/3Y. Im the third term we may
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eliminate the absolute value signs in the numerator if the minus sign is used.
Similar arguments may be made for the fourth and fifth terms from the left.

This gives, after rearranging,

3xX b oY oY oY Y

<

_ 3k _ B\ .2
g 9E, far GED% SR i B QED £
cX T - = cyz =2

PANERY _ 5\ .2
ZI0E) ) ===+ 7 /2 (5) ) 2
9z 3z 3z cyz 9z 9z
ol S
- .;_F E%TE (B-66)

In Eq. (B-66), the teims containing 3F/3Y are set equal to zero in the computer
program, CHASM, if IBF/aﬂ 1s less than 10_25. Similarly, terms
containing JF/3Z are set equal to zero if |9F/3Z| < 10723,

The "X" direction term taken separately with the temporal term forms a
hyperbolic equation whereas either the YY" or "Z" direction second derivative
terms taken individually with the temporal term form parabolic equations.
sccordingly, we retain an explicit differencing scheme in the "X" direction to
prevent artificial numerical damping. 1In the "Y" and "Z" directions we retain
an implicit differencing scheme because of its inherently better stability.

We use an operator splitting technique (Ref. 33 and B-2) where Eq. (B-66) is

broken into two parts which are

kex oX T2 T (8-67)



and

_ 2
x e N, (¢ /[ = o\
st/ \loy ¥ ez T ot

b

N

3\ ok _ Y
H(Z /N =2 (v 2 (1))
3z ozl Y2 cyz 3z oz

. L% 0F .
= 3 F = . (B-58)

In using Eqs. (B-67) and (B-68) as an alternate to Eq. (B~66) we are
determining first the effect of the "X" direction spatial component throughout
a glven time vo find a hypothetical value of the pressvce function from Eq.
(B~67)., Then we use this hypothetical pressure function over the same time
period to calculate the actual pressure function at the new time using Eq.
(B-68) .

Since we explicitly difference Eq. (B-67), the value of the time step must
be less than the "X" direction spatial step size divided by the equivalent

velocity if stability is to exist. This time step would be

ar< —&% (B-69)

We repeat the explicit "X" direction calculation using Eq. (B-67) a number of
times until we have advanced from time T" totime T . The time T* is a hypothetical
time value which occurs after completion of the "X" direction calculations.

Next we use an alceraating direction implicit scheme23’24 for the "Y" and

1 : . : n : n+l
YZ" directions in two vime steps from time T to time T . In the first step



the "Y" direction spatial second derivative is differenced implicitly and in
the second time step the "Z" direction spatiai second derivative is differenced
implicitly. In the alternating direction implicit calculations, all
coefficients are evaluated using some average value of the pressure function,
F, between the hypothetical time, T*, and the new time tn+l. The total time
differepce in the explicit calculation, T*-Tn, must be identical to the total

+ n .
w l-T , 1f the solution we

time difference in‘the implicit calculations, T
obtain from Eqs. (B-67 and B-68) is to be equivalent tn a solution to Eq.
(B-66) .

Use of an alternating direction implicit scheme is unconditionally stable
for any time step if Eq. (B-68) is linear. Because Eq. (B-68) is nonlinear,
stability must still be considered in selecting a time step. We approached
the time step selecticn on a trial basis. We found the results were
independent of variations in time step by over a factor >f 100 as long as
stability was maintained.

The best means of differencing the coefficients of Eqs. (B-67) and (B-68)
depend on the problem and it is not clear which values of time should be used
in evaluating the pressure function, F. We use a weighting factor, 0, for all
implicit calculations which may be varied and which is a fraction used to
multiply the new time value of F. The following coefficients are defined for

use in the "Y" direction implicit portion of the calculation:

o ., =k (B-70)
1,5,k cxj,k

B*’** =8 F** _ F** 2 AY ,F** _ F** I %
Lk - \1,541,k 1,j-1,k) IF1,341,k 7 "1,5-1,k

o (r F 2 Y (|F B | ,
+ (-9 (l,j+1,k l,j—l,k) (IFl,j+l,k l,j—l,k) (8-71)
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*,*f: - F** ' / A-YT 1/2
1,5,k ey x ,J+1 k T F1,j-1,K

(-9 /|2 'F* . - . ) /7 &Y % (B-72)
‘ 1,j+l,k 1,j-1,k /

+

* % Hk % — ( Rk e ) L
= - F -
S5,k = ® (Fl,j.ku 1,j.k—1) 282 {JF) 5 a1 ™ P15, ket
% F* 2 87 F* : *x ) 1 .
+ (-8 \Fy g,001 ™ F1,5,k-1 Z (| Lt~ 1,4,k (8-73)

KRR . 0 A |F** F** — %
*1,j,k cyzj k 1,j,k+1 l,j,k-ll [ AZ
s

1-6 = P A
8 {2 Py T l,j,k—l) (B-74)
B2 0.5 /(F** %4 (1-8) /(F )Li (8-75)
nl,J; j 1,j,k
with
L N 0 if F* . F*
T 0 R W 1 R (8-76)
6*’** _ g*'** -0 if F* . F* =77
1J!k )lsj>k 1’j’k-"1 lsj)k"l
*%
Similar values of the coefficients are defined between the times, T and
Tn+l for use during the “Z"-direction-implcit portion of the calculations.
The values of E;x are considered to be time independent.
1ak
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In the first step of the operator splitting scheme the difference equation

for the "X" direction is ntilized.

n n * n
F - ("- P
(72,1, Likl oot NLdsk — LGk g

*1,3,k 5 1,3,k &t

The difference equations for the second step uses an alternating direction

implicit scheme for the "Y" and "Z" directions.

(E - % ) e ZF** N Ffr-.": )
PR i 2 W S 5 WY SV M (FL gt = 2P0 Lo
ltjlk v 1’jsk 2

2 AY (AY)

(E -k ) B 28" +Fr
sex \ Ve TVEe1) ke (Fy, s = 270, 1t en)
1,5,k 2 AT 1,3,k (A‘Z—)Z

+ &

=n Ald.k  L,i,k/ (B-79)

<E -k ) (F** ZF** T )
g** it Y241,k Y%5-1,k byt VLK L k0 1,510k

1,j.k ZAY 1,j sk (A?)Z
k - n+l n+l nt+l )
- +
+ gl ( CYZ5 kel cyzj,k-l) b g¥Fantl (Fl,j,k+1 2F) 5T, kel
Lk 287 L.i.k %

n+-1 Li3

F -F
_ %k nd] (1,j,k 121‘,k) -
= M1,5,k 2172 (8-80)

Eq. (B-78) is solved for each new value of pressure function directly
withcut iteration and the process is repeated until the total time difference

+1

equal to Tn - is reached. We rewrite Eq. (B-79) to obtain a standard

algorithm form for solving a tri-diagonal matrix as follows:

P +B P c £y =D
AL gake Fay ik T Pk L3k T Sk T T VL, 0k (B-81)
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where

&k
=7, B-92
Atk T 1,34k (B-52)
LR (ﬁ?)z R 3-83
Bl!j'k Zfl']'k + fTf2 1,1,k ( )
LI 524
=1y’ B-84
CLgak T TLiink (B-54)
and
(Ec z - EC)" ) ( cvz . ]"'c\'z )
D = E*'M Y J+1,k “i=Lk + "" Lty j,k+l T iak-1/
1,J,k 1,k 2 5Y 1,1,k 217
ot ?Fﬁ + l-* L1 ] F‘t
+ g fflfi-k+l 2050 FLpen) | Mnk Pl ¢H? -s3)
"1,5,k =2 772 "
,J' (‘,‘2)

in turn, for the “¥" direction we write

3 X -

> = (B-86
Pk = Bk Frgene P gk )

with
A
1,5,k
E - (B-87)
Lodok By 5k 7 L5,k Pl 5oLk
) +C F

v 1!jlk lvj,k l.j‘l,k
F @ (B-88
1,5,k )

- r
IR WL TR Y
At the boundaries we use conditions idemtical with those mentioned previously
for flow in the porous solid. That is

pirichlet Condition: E = 0 and E
’
(boundary value
specified)
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El.j.k = 1 and Pl.}.k = ¢

(boundary derivative

Neumann Condition:

equal to zero)
for the “Z" direction we write Eq. (B-80) as

n+l 0+l e+l
- ¥ - ¥ + 1N
Atk Pkt Y Rk Py T Sk Tkl T 00k

where
rﬁfl'n+l
Ak T gLk
ar el ('7)2 LU
o ar n+ RYS ML . 4
ST T U Iy i T
c - phentl
1,5,k “L,3,k
and
(E - ic 2 )
D - Sﬁ*-“"‘l cyzj"'lik Y gzl
1,5,k L.k 2
(Faa ’F*Q . F** )
bt UL Pk T Tk > 1, )m00k
1,40k (A?)z
(: - ;;vz ) (ﬁ*.'n+1 F*‘ )
R C¥25 wtl W L5 VA W V5 PLINS V5 F 1 4l OV
1.5k At/2

2487

In turn, for the "Z" direction

n+l n+l

- +F
Frlaek " ELgk Frgeer T Ry

-9

(B-49)

(8-90)

(5-91)

(B=-92)

(B-93)

(8-94)



where

A
£ = e (B-95)
1,34k 1,3,k "1,j,k-1

) +C F

1,J.k 1,5,k 1,j,k-1
B -C E

1,j,k 1L,k "1,3,k-1

1.4.k (B-96)

In all implficit calculations we iterate to update those coefficients which
vary with time. The equations for the flow tnside the crack are coupled with
the equations for the porous solid in the Y and 7 directions so that a single
matrix is formed that covers all nodes in the problem. That is we calculate
changes {n the X direction for all nodes either within the crack or in the
solid iterating as necessary for the implicit calculations. Then we calculate
changes and f[terate in the Y direction for all nodes. The Z direction
calculatfons and iterations for all nodes are performed rext. A final iteration
loop over the total implicit calculatfions in rh= i. ?, plus Z directions is

included to assure convergence.

ALTERNATE METHOD FOR DIFFERENCING THE CRACK-FLOW EQUATTONS

We again start with the governing equaction for flow inside the crack,
which is

= ¥, f- 3F =5 OF
- L. L F iz = B-64
Yoy T (k“‘ ( i)> 3 ( cyz (l l) )T E T el

Rather than differentiating in closed form, Hinsloun-3 has suggested
incorporating into the coefficient E;vz the necessary multiple of 3F/3Y or
JE/3Z to eliminate the square roots. That is, since the coefficients ﬂ;yz are
varjable we could add such a mulctiple to the coefficients wirhout appreciable
complicatisn and obtain a form of Eq. (B-64) that may be directly applied to
the tri~diagonal matrix solution algorithm. We obtain the following form of

the equation:
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k

- 3F .3 yz 3F -t
K, =4 -,%"F-’%-a: v feE EN L %—Flig—l:. (B-97)
X 9 (—_ [) ay G---_-I) *az T
W Ry

In differencing Eq. (B-97) we define the following.

0‘1,_1,k = Ecx_ (B-98)
'l‘r,** -7 ok ) . - ;ﬁ
Y1,541/2,% l\-cyzj_'_llz,k 8 ((lFl,jﬂ.,k rl'j’k[)/ ...Y)
& * —\ i
+ (-9 <(“1.j+1,k - Fl,j,kl)/ M) (B-99)

* ke - *% *k -\t
£, =k B(IF AN ])/Az)”“
1,j,k+1/2 chj+1/2,k ( 1,j,k+2 1,j,k

\
L] * —_ !i
+ (1-8) ((| Fose ™ Fl,j,kl)/ Az/l (B-100)
i‘:,** _ *k li * !i] _
nly = 03 [e/ (Fl o)+ (1—0)/ (F1, 50 (B-101)
where
Ec . = EC . * Ic . 2 . (B-102)
Y2541/2,k Y25,k 2541,k

We retain the operator splitting technique using the "X" direction as explicit

and an alternating direction implicit scheme in the “Y” and "Z" directions.
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In the "X" direction the difference equation is

138 - E -
a . 2,J5k 1,k _ nl'l,’.‘ l!j,k‘ 1,j,k . (B-103)
1.5,k Ai 1,j,k 4at

In the "¥" and "Z" directions the difference equations are

1 * Kk F** Y** * ok F** F**
@n? | itz ik T L5k ) T Y2k Tk T TRk

!

" 1 I’*’** F* F* *,** F* F*
(Az)zrl,j.m/z R T e A G I

F** F*

*_kk i - 3

_ o, 1,9k~ P15k Y
M.k IX7p) (B-104)

and

1 *k n+l F** _ F** _ Y**,n+l F** - F**
X Y1,54172,k T 1,541,k ~ T1,3,k 1,j—1/2,k\1.j.k 1,j-1,k

I B LN gt ! _ %k ontl gt _ ol
Gl [TLk /2 ULk T 1Lk *1,4.k=1/2 \*1,3,k ~ "1,3,k-1

+ *k
L (i,l_k__fl_u) (8-105)
ML,k at/2 :

This alternate formulation of the difference equations contains less terms
and conservation of the pressure function flux across an elemeatal control
volume is more apparent than in the method we used to obtain results. However,
the alternate formulation was discarded because we found the stability limits

to be more severe. Both formulations gave the same results on sample problems.
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If the alternate method were to be utilized we would write Eq. (B-104) for

the '"Y" direction as

A F** *k C F** =D (B 106)
1,3k T334,k Y By Pk T 1,00k FrLy-,k T Pk
where
_ * ** 107
L3k T Y10541/2,k (B-107)
B *_kk * hk . * SRk AT 2
1,3,k (1 472,k T V1,5-172,0 Y L5,k A1/2
C - k'*k (B 09
L.k = Y1.4-1/2,k 109}
D - 1 k ki F* —F* Rk ( ® _F )
1.3,k w1 T§ k+1/2 (1,j,k+1 l,j,k) 5105,k-1/2\F1, 5,k 13,k-1/f
*’**
1,i,k * (-— 2 "
oz i,k ) (B~110)
This gives
%
** * P (B~111)

F = E + .
1i,k = Er g Fr ek YR gk

vhere E; Jiok and F 1,35k are defined by Eqs. (B-87) and (B-88). We write

Eq. (B-105) for the "Z" direction as

“”‘l n+l n+l
1,3k Tkl Y8500 Pk T G0,k Pl g1 T 0,50k (B-112)
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where

_ Mol _
AlLiod = %1,5,ke1/2 (8-113)
n ** n+l _

(a1 _wk, ntl 1,j.k _ (AZ) _
Bk (”lxj,k+l/2 * g1,j,k-1/2)+ &2 at/2 (B-114)
- ** n+l

- -11
€1k = B1,3,k-1/2 (B-115)
b 1 | xen R P w4l (F** "

Lik = |52 11,5+1/2,k (1,j+l,k 1,3,k) 7 Y1,i-172,k F1,5,K l,j—l,k)
n**’n+1
M5,k o* =2 )
PR ] @D (B-106)
which in turn we write as
n+l n+l
=g ., T +F B-107
Lok = Bk T, * Py (8-107)
We use the definition of El,j,k znd Pl,j,k in Eqs. (B-95) and (B-96) for use

2" direction. Boundary conditions are identical to those described earlier.

EVALUATION OF AN EFFECTIVE ZRACK THICKNESS AT THE TIP OF THE CRACK

4t the crack tip there is a control volume which is represented half as a
c:ack and half as a porous solid as shown in Fig. B-6. The crack thickness
diminishes to zero at the central node location so that flow in the lower half
of the control volume is governed by the crack-flow equations. In the upper
half the porous solid flow equations apply. Our calculations consider that
the control volume has a single gas pressure and a single effective crack

thickness.
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Piane of the crack
centerline
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le—~—— Control volume boundary

«at——— Perous solid material
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/- Boundary of linearly varying crack
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T a/21 X

)
Adjacent node below
4

Fig. B-6. Crack-tip control volume at a region on top of the crack where no
Y-direction variatior exists.
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1f the crack boundary varies in a linear fashion aver the localized
region, then the crack thickness at the lowar surtace cf the contrcl volume
would be one half the value at the adjacent node below. The average
thickness of the crack in the lower half of control voiume would be one
fourth that of the adjacent node below.

Since the resistance to flow in the porous solid is generally much
greater than that the resistance to flow inside the crack, the pressure at the
node of interest would be approximately equal to that determined by the gas
flow in the crack portion of the control volume. It could be argued cthat the
average crack thickness represents an effective value to be used for
calculating the average pressure over the control volume.

Normally the shape of the crack wall is convex outward so that the
thickness rewains large over most of its length and diminishes rapidly near
the tip. This characteristic suggests that the effective crack thickness
would be more than 1/4 that of the adjacent node below. On the other hand,
any pressures calculated using the crack-flow equations apply only to the
lower portion of the control volume so tlat the average pressure over the
entire control volume would be less. We have varied the effective thickness
between 1/4 and 1/2 that ~f the adjacent ncde below and find less than 5%
difference in the results of sample problems. This effective thickness is
l<ft as an input variable with the recommendation that o value equal to

about 1/4 that of the adjacent ncde below be utilized.
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Appendix C - The Computer Code CHASM

Included in this appendix is a listing of the computer code, CHASM, which
was used to generate all results of this research on a CDC 7600 computer, a
sample input for one of the problems, and a portion of the output.

The computer code consists of a main program and three subroutines. The
main program is used to calculate constants, initialize variables, call the
subroutines during each time iteration, and priatout the results. The first
subroutine, DEFL, determines the deflection of the crack walls due to gas
pressure inside the crack. The second subroutine, FRICT, calculates frictional
coefficients for use in the last subroutine, FLOW. All calculations for gas
flow in the crack and in the porous solid are performed within subroutine
FLOW. Comment cards are included to describe each set of calculations. Also
included is a listing of the nomenclature, The definition of the pressure
function, F, in this report is revised from that used in the computer program.
This revision results in simplification of some equations in the report. The
definition in the computer program differs by a constant factor (1/N-1)2 and
is consistent with all calculations performed.

The sample input shows the format for those variables called for on Iines
198 to 200 and line 423 of the computer code. Although results are presented
in metric units in the body of this report, English units were used for the
computer input and output.

The output shown includes only th~ first portion and a representative
portion teward the end of the problem. The first portion lists the input
variables and some calculated constants. The representative portion gives the
output at one specific time in the problem. Similar portions for all other

printout times are found in a complete output.
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CODNONFWN~
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OOO0O000O0OA0OO000O0N0000CON00N0N0000O000O0O00000N

LISTING OF COMPUTER CODE, CHASM

PRUGRAM CHASM(TARPESS, INPUT, TAPED=INPUT ,ANSHER, TAPEZ ANSKHER)

G:S~INITIATED CRACK PROPAGATION IN A POROUS SOL1D--A COMPUTER CODE
IN THREE DIMENSIONS WHICH USES AN IDEAL GAS AS A FLUID. THE
PROGRAM CALCULATES THE CRACK WALL DEFLECTION, FRICTIONAL
COEFFICIENTS, AND GAS FLOW BOTH [N THE CRACK AND [N THE POROUS
SOLID. THE FORTRAN PROGRAMMING USES MIXED MODE ARITHMETIC.
INITIALIZATION OF ALL VARIABLES TO ZERO BY THE COMPILER IS
REQUIRED.

COMMON /CRACK/ AF(1D,15,20),AFF(10,15,20),88(10,15,20) ,BETA(]1,15,2
10) ,COEF ,CFRIC],CFRICe,CKX{15,20),CKYZ(15,20),C5UBG(3,3),D(15,20!,D
20ct0,15,20) ,DELTAC],!15,20),DT,DTOT(15,20),DT2,DX¢10),DY.DY2,D0Z,D22
3,EE(10,15,20) ,EFFTIP,ETA(10,15.,203,F(10,15.20),FF(10,15,20} ,FMA,F
4STAR(10,:5,20) ,FSSTAR(10,15,20) ,GAMMA(!,15,20),10,JSTOP(203,L,.LM1,
5LM2.L2,M,MM1 ,MM2 M2 N ,NM] ,NM2 ,NTTOT ,NYTIP(15) ,P(10,15,20) ,PR,PRFUN
6,PS(60}) ,REYNC(15,20) ,S1ZE,SPACE(15.20) ,THETA,THETA1 ,X{10) ,XKX, XLAM
7B(20,30) ,YKY,ZETA(1,15,20),2KZ

CALL DEVICE (BHCREATE,BHANSWER,110000)

NOMENCLATURE

AAF--PREVIOUS VALUE OF THE PRESSURE FUNCTION AF(1,J.K) USED IN oZm
DIRECTION FLOW CALCULATION ITERATION

AF (1 ,J,K)-~VALUE OF THE PRESSURE FUNCTION Fil,J,K) AT ADVANCED
TIME AFTER COMPLETION OF oZo DIRECTION FLOW CALCULATIONS

AFF L] ,J,K)~-VALUE OF THE PRESSURE FUNCTION F(],J,K) AFTER aXam,avm,
AND oZo DIRECTION FLOW CALCULATION [TERATIONS

AJ,AK--VARIABLES USED [N CALCULATING THE INITIAL CRACK THICKNESS

ARG~--ARGUMENT [N LOG BASE 10 FUNCTION FOR CALCULATING TURBULENT
FRICTION FACTOR, SUBROUTINE FRICT

8B(1,J,K)-~VARIABLE USED FOR INVERSION OF THE TRI-DIAGOMAL MATRIX,
SUBROUTINE FLOW

BETA(],J,K)~~VARIABLE COEFFICIENT [N THE CRACK FLOW CALCULATIONS

BLOTK--VALUE OF KAPPA [N BLOTTNER'S GRID STRETCHING METHCD

BLOTN~~VARIABLE IN THE EXPONENT GF BLOTTNER'S GRID STRETCHING
METHOD (EQUATION |3)

B81,82--VARIABLES USED IN CALCULATING BETA(1,J,K) WITHIN
SUBROUTINE FLOW

CDEF--CONSTANT USED IN SUBROUTINE DEFL (EQUATION B-2)

CFRICI--CONSTANT USED TO CALCULATE XLLAM [N SUBROUTINE FRICT
(EQUATION B~13)

CFR1IC2-~CONSTANT USED TO CALCULATE TURBULENT REYNC(J,K) IN
SUBROUTINE FRICT (EQUATICN B-18)

CKX(J,K)~-~NORMAL1ZED oXo DIRECTION PERMEABILITY THROUGH THE CRACK
WALL

CKYZ(J,K)~~NORMALIZED EFFECTIVE PERMEABILITY IN THE mYo & nZo
DIRECTIONS WITHIN THE CRACK

COMPARE--DIFFERENCE BETWEEN OLD AND NEW VALUES OF FSTAR(I,J,K),
FSSTAR(],J,K), AF(I,J,K), OR AFF(],J,K) USED TO CHECK
CONVERGENCE IN SUBROUTINE FLOW

CONCKX~-CONSTANT USED IN CALCULATING CKX(J,K)

CSUBG(J,.K)~~GERRARD AND MORGAN DEFLECTION COEFFICIENT ACCOUNTING
FOR THE DISTANCE AWAY FROM THE POINT OF PRESSURE APPLICATION
DURING THE CALCULATION OF THE DEFLECTION OF THE CRACK WALL

D(J.K)--DEFLECTION OF THE CRACK WALL IN oXa DIRECTION (FEET)

DBLOTN--DIFFERENTIAL SPACING [N BLOTTNER'S GRID STRETCHING METHCD
(EQUATION 13}

DD(],J,K)--VARIABLE USED FOR JNVERSION OF THE TRI-D]AGONAL MATRIX,
SUBROUT INE FLOW
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DEFLCT- TEMPORARY VALUE OF D(J,K)

DEFTOT--TEMPORARY VALUE OF DTOT(J,K)

DELTA(L,J.,K)--VARIABLE COEFFICIENT USED IN CRACK FLOW CALCULAT;ONS

DEN--VALUE OF THE DENOMINATOR USED IN CALCULATING EE(I,J,K) AND
FFU],J,K) IN SUBROUTINE FLOW

OF--TOTAL DERIVATIVE OF THE FUNCTION, F(l,J.K1

DFY-~oYa DIRECTION DERIVATIVE OF THE PRESSURE FUNCTION, F(I,J,K)

DFZ--oZo DIRECTION DERIVATIVE OF THE PRESSURE FUNCTION, F(I,J,K:

DT--DIMENSIONLESS TIME STEP

DTDX--VALUE EQUAL TO DT/DX USED IN SUBROUTINE FLOW FOR THE mXnm
DIRECTION EXPLICIT CALCULATIONS

DTOT(J,K)~~-CRACK HALF THICKNESS IN aoxo DIRECTION (FEET)

DT2-~HALF OF DT

DX (1) --NORMAL1ZED axa D!IRECT]ON SPATIAL MESH SIZE

DY--NORMAL IZED ava DIRECTION SPATIAL MESH SI1ZE

DY2~~DY SQUARED

DZ--NORMAL I ZED aza DIRECTION SPAT!AL MESH SI!ZE

DZ2--DZ SQUARED

D1.,D2--VARIABLES USED IN CALCULATING DELTA(!,J,K) WITHIN
SUBROUTINE FLOW

E~~MODULUS OF ELASTICITY OF SOLID NORMALIZED TO PIMPO

EE(1.J,K)-~VARIABLE USED FOR INVERSION OF THE TRI-DIAGONAL MATRIX,
SUBROUTINE FLIW

EFFTIP~-~EFFECTIVE CRACK TIP THICKNESS FRACTION

EMOD~~MODULUS OF ELASTICITY OF THE SOLID (PSI)

ENU--POJSSONS RA110 IN THE SOLID

EPS--POROSITY OF THE SOLIQ

ETA(},J,K}--VARIABLE COEFFICIENT IN THE CRACK FLOW AND POROUS SOL!D
CALCULATIONS (NOTE THERE IS A DIFFERENT DEFINITION IN EACH)

Fel,J,K)~-PRESSURE FUNCTION IN THE SOLID AND CRACK EQUAL TO
P*P+2 . *P/(N-1.).

FFU],J,K)--VARIABLE USED FOR INVERSION OF THE TRI~DIAGCONAL MATRIX,
SUBROUTINE FLOW

FMAX--MAXIMUM POSSIBLE VALUE OF THE PRESSURE FUNCTION, F(],J,K)
EQUAL TO (PR+1.)/(PR-1.)

FRACT--VALUE USED IN DEFLECTION CRITERION EQUAL TO THE LI]THOSTATIC
PRESSURE AT THE LOWER BOUNDARY OF THE PROBLEM DIVIDED BY THE
INITIAL GAS PRESSURE APPLIED TO THE LOWER BOUNDARY

FSIZE-~MULTIPLIER OF THE AVERAGE GRAIN SIZE USED IN CALCULATING
THE CRACK HALF THICKNESS

FSSTAR([ ,J,K)--INTERMEDIATE VALUE OF PRESSURE FUNCTION F(1,J,K)
AFTER aYo DIRECTION CALCULATIONS

FSTAR([,J,K)--INTERMEDIATE VALUE OF PRESSURE FUNCTION F(],J,K}
AFTER mxXo DIRECTION CALCULATIONS

GAMMA(1,J,K)--VARTABLE COEFF [CIENT USED IN CRACK FLOW CALCULATIONS

Gl,G2--VARIABLES USED IN CALCULATING GAMMA(1,J,K) WITHIN
SUBROUTINE FLOW

1-~INDEX FOR oXo DIRECTION

1K, IKK, IKKK,& IKS--INDICIES USED TO CALCULATE DEFLECTION I[N
SUBROUTINE DEFL

10--INPUT-QUTPUT FLAG FOR PRINTOUTS

IX, 1V, 1Z,8 IT--NUMBER OF NODES EXCEEDING THE CONVERGENCE CRITERION
IN SUBROUTINE FLOW FOR THE oxo,oyo,nZa DIRECTION AND TOTAL
SPACE LOOPS

ITERX, ITERXX,ITERY,1TERZ, & ITERT--NUMBER Of [TERATIONS THROUGH
oxo,aYo,o0Zo DIRECTION AND TOTAL SPACE LOOPS, SUEBROUTINE FLOW

J,JJ,JJJ--INDICIES FOR oYo DIRECTION

JDEF -~ 1INDEX FOR CSUBG(JDEF ,KDEF} 1IN SUBROUTINE DEFL

JKMAX-~INDEX USED FOR CALCULATING CRACK DEFLECTION.

JSTOP{K}~-~-ARRAY DEF INING APPROXIMATE CIRCLE OF INFLUENCE IN

~105-



121
1ee
123
124
125
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127
128
129
130
131
132
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135
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137
138
139
140
141
142
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146
147
148
148
150
151
152
153
154
155
156
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158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
7
175
176
177
178
179
180

OO0 000O0000000000GaAN000000000000000000000000000000000000000

SUBROUTINE DEFL (NUMBER OF NON-ZERO ELEMENTS MUST EQUAL
JSTOP(K)+1. ALSO, KMINUS MUST BE GREATER THAN OR EQUAL TO
JSTOP(1))

K,KK,KKK,--INDICIES FOR BZo DIRECTION

KDEF--INDEX FOR CSUBG{JDEF ,KDEF) IN SUSROUTINE DEFL

KMINUS~-NUMBER OF NODES BELOW THE LOWER BOUNDARY USED IN
SUBROUTINE DEFL FOR CALCULATING DEFLECTIONS. MUST BE
GREATER THAN OR EQUAL TO JSTOP(1).

L--NUMBER OF oXxo D[RECTION NODES

LB--BACKKWARS INDEX OF oXo DIRECTION NODES

Lt BER EQUAL TO L-1

LM2~-~NUMBER EQUAL TO L-2

L@-~MAXIMUM oxo DIRECTION NODE OVER WHICH THE DORIVING PRESSURE IS
APPLIED ON THE LOWER BOUNDARY (mZo NODE EQUAL TO ONE)

M--NUMBER OF nYua DIRECTION NODES

MB--BACKWARD INDEX OF oYo DIRECTION NODES

MM]--NUMBER EQUAL TO M-I

MM2--NUMBER CQUAL TO M-2

M2--MAXIMUM oya DIRECTION NODE OVER WMICH THE DRIVING PRESSURE IS
APPLIED ON THE LOWER BOUNDARY (oZo NODE EQUAL TO ONE)

N--NUMBER OF oZa DIRECTION NODES

NB--BACKWARD INDEX OF nZo DIRECTION NODES

NMTIP-~INTEGER VALUE EQUAL TO NYTIP(J)-1

NM{--NUMBER EQUAL TO N-1

NM2--NUMBER EQUAL TO N-2.

NNTIP--PAST VALUE OF NYTIP{}]) USED AS FLAG FOR WRITE STATEMENT

NTIP--INTEGER VALUE OF NYTIP(J)

NTTOT--NUMBER OF [TERATIONS OF EXPLICIT oxo DIRECTION PRESSURE
CALCULATIONS [N THE CRACK FOR EACH IMPLICIT PRESSURE
CALCULATION IN THE SOLID OR IN THE CRACK

NYTIP(J)-~CRACK TIP oZo NODE LOCATION WHICH IS A FUNCTION OF avan

NYTIP]--INITIAL VALUE OF CRACK TIP oYo DIRECTION NODE LOCATION

NYTIPM-~VALUE OF NYTI{PI MINUS ONE

NZTIPI~--INITIAL VALUE OF CRACK TIP oZo DIRECTION NODE LOCATION

NZTIPM--VALUE OF NZTIPI MINUS ONE

P(I,J,KV--PRESSURE IN SOLID AND CRACK NORMALIZED TO THE INITIAL
DRIVING PRESSURE

PDOWNH--INITIAL PORE PRESSURE [N THE SOLID (PSI)

PERM--PERMEABILITY OF THE SOLID (DARCYS)

PFSSTAR,.PFSTAR--PAST VALUES OF FSSTAR(I.J.K1 AND FSTARC1.J.K) USED
FOR CHECKING CONVERGENCE IN SUBROUTINE FLOW

PR--RAT]O OF THE INITIAL DRIVING PRESSURE TO AMBIENT PRESSURE

PRFUN=-~FUNCTION OF PRESSURE RATIO USED IN SUBROUTINE FLOW

PRINT--PRINTOUT INTERVAL

PS(K)--RESISTIVE PRESSURE IN THE SOLID NORMALIZED TO THE INITIAL
DRIVING PRESSURE AND USED IN DETERMINING CRACK PROPAGAT!ON

PIMPQ--{N]TIAL oZo DIRECTION PRESSURE DIFFERENCE ACROSS THE POROUS
SOLID (PSI)

R--GAS CONSTANT IN UNITS OF FEET/DEGREE RANKINE

REYNC(J,K)--REYNOLDS NUMBER IN CRACK

SIZE~~AVERAGE GRAIN SIZE (DIAMETER) OF SOLID MATERIAL (FEET)

SPACE(J,K)=-INITIAL CRACK HALF THICKNESS IN oxa DIRECTION (FEET)

TEMP--TEMPERATURE IN DEGREES RANKINE

TERM!-~-CONTRIBUTICN TQ THE CRACK WALL DEFLECTION 8Y NODES AT THE
SAME ELEVATION AS THE POINT DEFLECTION IS BEING CALCULATED.

TERM2--CONTRIBUTION BY NODES BELOW nZa=0.

TERM3--CONTRIBUTION BY NODES ABOVE THE PLANE 8Zas=0.

TFIN~-MAXIMUM DIMENSIONLESS TIME BEFORE PROBLEM STOPS

THETA,THETAL1-~WE |GHTING FACTORS ON NONLINEAR COEFFICIENTS
EVALUATED AT THE NEW AND OLD TIMES IN SUBROUTINE FLOW
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181

182
183
184
185
186
187
188
189
190
191

i92
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
2li

c2le
213
24
215
216
217
218
219
220
22l

2a2
223
224
225
225
227
aae
229
230
231

232
233
234
235
236
237
238
239
cwo

ODOO0OOO00OO000000O000

[xX2X3)

000

TIME--DIMENSIONLESS TIME

TPRINT--TIME FOR NEXT PRINTOUT

X{1)--axo DIRECTION SPATIAL GRID LOCATION (FEET)
XKX~-~NORMAL 1ZED oXo DIRECTION PERMEABILITY IN THE POROUS SOLID
XKZERD-~-NORMALIZING VALUE FOR PERMEABIL]TY (DARCYS)
XLAMB(_,K)--FRICTIONAL COETFICIENT OF GAS FLOW IN THE CRACK
XLLAM--LAMINAR FRICTIONAL COEFFICIENT OF GAS FLOW IN THE CRACK
XL TURB--TURBULENT FRICTIONAL COEFFICIENT OF GAS FLOW IN THE CRACK
XMAX~--LENGTH OF SOLID IN oxn DJRECTION (FEET)

XMU-~GAS VISCOSITY (LB-SEC/SQ.FT.)

YKY~-NORMALIZED nyo DIRECTION PERMEABILITY IN SOLID
ZETA(],J,K)~--VARTABLE COEFFICIENT IN CRACK FLOW CALCULATIONS
ZKZ--NORMAL | ZED aZa DIRECTION PERMEABILITY IN S0LID
ZLENG--LENGTH OF SOL!D ALONG CRACK AXIS OR aZn DIRECTION (FEET)

INPUT

READ t2,19) BLOTK,DT,EFFTIP,EMOD,ENU,EPS FRACT,FSIZE,L2,M2 ,NTTOT. N
IYTIPI ,NZTIP! ,PDOWNH,PERM,PRINT ,PIMPO,R,512E, TEMP, TF IN, XMAX , XMU, ZLE
2NG

DATA 10,(JSTOP(1) ,I=1,3) ,KMINUS,L . M,N/3,2,2,2,2.10,15,20/

DATA THETA,TPRINT/0.5,-1.E~10/

CALCULATED CONSTANTS

E=EMOD/PIMPO

CDEF=(}.~ENU®*ENU) *ZLENG/E
CFRICI=(]2.*XMU/ (144 . *PIMP0) ) **2* 32 .2°ZLENG*R*TEMP
CFRIC2=8.*144. *PI1MPO/ (XMU*SART(32.2*ZLENG*R*TEMP))
DTe=0T/s2.

1IF DY 15 NOT EQUAL TO DZ., CHANGES I[N SUBROUTINE OEFL ARE REQUIRED.

DY=1./(nN-1;
Dy2=DY*DY
DZ=1.7(N-1)
022=D0Z2+D2

LMl=L=~1

LM2=L -2

MMl =M-1|

MM2=M-2

NM] =N-1

NM2=N-2
NYTIPM=NYT[P]-~1
NZTIPM=NZTIP[~]
PR=1P1MPO+PDOWNH) /PDOWNH
PRFUN=] ./ (PR~].)ee2
THETAl=], -THETA
CSUBG(1,1)=0.950/NMi
CSuBG(2,11=0.300/NMI
CSUBG(3,11=0.050/NM}
CSUBG(1,21=0.300/NM!
CSuUBGt2,21=0.100/NM1
CSUBG(3,.21=0.020/NM]
CSUBG(1,3)=0,050/NM!
CSuBGi2, 31=0.020/NM}
CSUBG(3,31=0.002/NM!
FMAX=(PR+].)/(PR-1].1}

CALCULATE Xt1) AND OX(1) USING BLOTTNER'S EQUATION NUMBER S, COMP.
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24l C METHODS I[N APP. MECH. & ENGR. (1974}. SEE EQUATION 13 OF THE

242 C PRESENT REPORT.

243 C

244 Xt§)=0.

245 8LOTN=0.

o45 DOBLOTN=1,/LMI

47 Xt1)=0.

a48 00 1 I=2,L

248 ALOTN=BLOTN+DBLOTN

250 XU1)=XMAX®* (BLOTK®* (BLOTN/DBLOTN1-].)/(BLOTK®**(}!./DBLOTN)-1.)
ast 1 CONT INUE

252 DO 2 i=a,L

253 DX ={Xt)~X(1-11)72LENG

254 @2 CONT INUE

255 C

256 C CALCULATE OVERBURDEN PRESSURE, PS(K)

257 C

258 DO 3 K=1,NM]

259 KK=N-K

260 PSIK)=FRACT*KK/NM]

261 3 CONT INUE

262 DO 4 K=1 ,KMINUS

263 KK=N-K

264 KKK=N+K

265 PS(KKK)=PS(1)+PS (KK}

266 4 CONT INUE

267 C

268 C SET UP INITIAL CRACK DIMENSIONS

269 C

270 DO 5 J=1,NYTIPM

271 WYTIP(J)=NZTIPI

272 5 CONT JNUE

273 NNT[P=NYTIP(1)

2™ C

275 C SET UP INITIAL CRACK HALF THICKNESS. THE PRESENT ANALYSIS USES A
276 C L INEAR RELATIONSHIP.

277 ¢

278 DO 7 J=1,NYTIPM

279 Ad=J-1

280 NMT[P=NYTIP(J)-1

281 NTIP=NYTIP(J)

age DO & K=] ,NTIP

283 AK=K-1

2By IF¥ (NMTIP.EQ.0.OR.NYTIPM.EQ.0) GO TO 7

285 SPACE(J,K)=11,-AK/NMTIP)*(1.~AJ/NYTIPM)*FSIZE*SIZE

286 DTOT (J,K)=SPACE(J,K)

287 6 CONT INUE

288 DTOT(J,NTIP)=DTOT(J . NMTIP)/EFFTIP

28 7 CONT INUE

290 DO B K=1,NZTIPM

291 DTOT(NYTIP] ,K})=DTOT(NYTIPM,K)/EFFTIP

292 B CONT INUE

293 C

294 C XKZERO 1S CALCULATED USING EQUATION 21 FOR K BAR SUB CYZ.
295 C K BAR SUB CYZ IS TAKEN TO BE UNITY AT TIME ZERO WHEN BOTH oYm AND
296 C nZa NODES EQUAL ONE. XKZERO IS IN DARCYS. THE VALUE OF A
297 C REPRESENTATIVE LAMBDA 1S TAKEN AS 0.0454%, WHICH CORRESPONDS TO A
298 C REYNOLDS NUMBER OF 2100. 1.06E-11 SQ FT=1 DARCY, IS USEC AS A
299 C CONVERSION CONSTANT.

300 C
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301

302
303
304
305
306
307
308
309
310
311

312
313
314
315
318
317
318
319
320
321

322
323
324
325
326
327
328
329
330
33)

332
333
334
335
336
337
338
339
340
341

342
343
3uy
345
346
347
3ug
343
350
35)
352
353
354
355
356
357
358
359
360

OO0

(X NeKgl

e XaloNel

OO0

XKZERO=EPS*XMU*SQRT(EY . 4*2. *SPACE 1 ,1) *R*TEMP*ZLENG/0.04S4) / (1.0E~
111*PIMPO® 14y .}

SET DIRECTIONAL PERMEABILITIES IN THE €7LID

XKX=PERM/XKZERO
YKY=PERM/XKZERQ
ZKZ=PERM/XKZERO
CONCKX=XKX*EPS*ZLENG/2.

INITYALIZE THE DRIVING PRESSURE OVER THE APPROPRIATE PART OF THE
PLANE WHERE THE nZn NODE EQUALS ONE.

DO 9 I=}.L@
D0 g u=1,M2
PCI,J, 1)=1.
FUl,J,11=FMAX
CONTINUE

WRITE OQUT INPUT VALUES

WRITE (IQ,20) BLOTK,DT,EFFTIP,EMOD,ENU,EPS,FRACT,FSIZE, ]0.KMINUS,L
1 M,N,L2,M2 ,NTTOT NYTIPI NZTIPI ,PDOWNH,PERM,PRINT ,P1MPO,R,S12ZE, TEMP

2, TFIN,XMAX ,XMU,ZLENG,E ,XKX ,XKZERG, (X(1),[=1,10?

GO To 18
MAIN CALCULAT[ONAL LOOPS

UPDATE CRACK HALF THICKNESS AND EFFECTIVE PERMEABILITY [N THE oZo
DIRECTION OUE TO CRACK DIMENSION CHANGES.

CALL DEFL
DO 13 J=1.,M
00 11 K=1,N

CALCULATE FRICTION COEFFICIENTS

IF (DTOT(J,K).LE.O.) GO TO 12
CALL FRICT (J,K)

CALCULATE CRACK EFFECTIVE PERMEABILITIES FROM EQUATIONS 20 AND 21.
NOTE THAT INITIALLY CKYZ(I,1)=1.0

CKX(J,KI=CONCKX/DTOT (J,K)

IF (XLAMB(J,K).LE.0.) GO TO 12

CKYZ (J.K)=SQRT (DTOT(J K1 *0.0454/ (SPACE(].1)*XLAMB(J.K)))
CONT INUE

IF (DTOT(J,1).LE.D.) U=M

CONTINUE

CALL FLOW

TIME=TIME+OT

IF (DTOT(},N).GT.Q..0R.0TOT(M,[}.6T.3.1 GO TO 16

REDUCE THE DRIVING PRESSURE WITH TIME. [NCLUDE A MATHEMATICAL
RELAT[ONSHIP HERE OR DELETE THE LOOP If THE DRIVING PRESSURE [S
CONSTANT .,

00 14 1=1,L2

DO Iy J=1,M2
PO J I1=014%72. 7EXP(0. 034422* TIME) +29.) /1501 .
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362
363
354
365
366
367
368
359
370
371
372
373 C
37w C
375 C
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
wp2
©n3
LY
405
406
407
wgo8
409
wio
411
w2
“]3
iy
415
%16
417
w8
“wig9
420 C

1S
16

FOL U 10=PUL, 0, D)*(P(],0,1)+2.7(PR-1.))
CONT INUE

IF (NNTIP.EQ.NYTIPC(11) GO TO 15

WRITE (10,21) TIME,(NYTIPLJ) ,J=1,15)
NNTIP=NYTIP(])

IF (TIME.GE.TPRINT.OR.TIME.GE.TFIN) GO TO 16
GO TO 10

DO 17 I=1,L

D0 17 U=1.M

D0 17 K=1,NM}
P(1,J,K)=SQRT(F(1,J,K)+PRFUN)I-1./(PR-1.)
CONT INUE

PRINTOUTS

WRITE (10,29)

WRITE (I10,22) (iP(1,J,11,1=1,101,J51,19)
WRITE (10,26)

WRITE (]O0,22) ((P(I,J,2).,1=1,10),9=1,19)
WRITE (10,27

WRITE (10.22) «(tP11,U,3),1=1,10),J=1,.1D)
WRITE (10,28}

WRITE (10,22) C((PLI,J,4),1=1,100,J=1,19)
WRITE (10,29

WRITE ({0,22) ((P(],J.5),1=1,10),J=1,19)
WRITE ([0,30)

WRITE (10,22) ((P(1,0,6),1=1,101,J=1,15)
WRITE (10.3D)

WRITE (10,22 ((PC1,0,7),1=1,10),J=",15)
WRITE (10,32}

WRITE (10,22} ((P([,9.8),1=1,100,J=1,15)
WRITE (10,33)

WRITE (10,22) ((P(]1,9,9),1=1,10),J=1,15)
WRITE (10,3%)

WRITE (10,22) ((P(1,J,100),1=1,10}),J=1.15)
WRITE (10,35

WRITE (l0.22) ((PCL,J,151,1=1,101,J=1,15)
WRITE {(10,36)

WRITE (]O0,22) ((PCI,J4,19),1=1,10).J=1,15)
WRITE (10.37)

WRITE €10,23) ((D(U,K) ,JU=1,15) ,K=},19)
WRITE (10,38}

WRITE (10,23) ((DTOT(U,.K),J=1,15),K=1,19)
WRITE (10,39)

WRITE (10,23) {(CKX(JU,K}),J=1,15),1=1,19)
WRITE (]0,40)

WRITE (10,23) ((CKYZ(J,K),J=],15},K=],19)
WRITE ({Q,u1)

WRITE (10,23) C((XLAMBI(J,K),J=1,15),K=],19)
WRITE (10,42}

WRITE ¢10,23) ({REYNC(J,K) ,J=],15) ,K=1,19)
WRITE (10,43}

WRITE (10,443 (INYTIP(U) ,J=i,15))

WRITE (10,24) TIME,OT

TPRINT=TPRINT+PRINT

CALL EMPTY (3}

IF (TIME.GE.TFIN) CALL EXIT (]2

IF (DTOT¢1,N).GT.0..0R.DTOT(M,11.G7.0.) CALL EXIT
GO 10 10
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uae
ua3
42y
425
426
427
428
429
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w32
433
43y
435
436
437
438
439
440
Yl

yu2
443
Yy
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445
(]
448
449
450
usi

452
453
45y
455
456
457
458
459
450
461

462
463
46k
465
466
467
468
469
470
471

472
473
474
475
476
477
478
479

C

C
19
20

OO0O0OO0O0O00O0OO00O0 OO0

480 C

FORMAT (8F10.5,/.515,/,7F10.5.7 ,4F10.5)

FORMAT (4]1HBLOTK,DT ,EFFTIP,EMOD,ENU,EPS,FRACT ,FSIZE=,/,8E15.5,7/ 4
12HI10,KMINUS,L,M,N,L2,M2 ,NTTOT ,NYTIP! ,N2TIPI=,/,10110,// ,36HPDOWNH,
2PERM,PRINT ,Pi{MPO,R,SIZE,TEMP=,/,7€15.5,//,33HTFIN, XMAX , XMU,ZLENG ,E
3,XKX ,XKZERO=,/,7E15.5,// ,5HX(1)=,7 ,5€15.5./ ,5€15.5.7///)

FORMAT (I4HTIME ,NYTIP(J)=,E15.5,1515,//}

FORMAT {10(F8.5,2X))

FORMAT (SE14.%,/ .5X,7E14.4)

FORMAT (9H TIME,.DT=,E14.3,2X,EiI4.3,///)

FORMAT (SQHP(1,J,1)=)

FORMAT (QHP(I,J,2)=)

FORMAT (9HP(],J,3)=)

FORMAT (SHP(I ,J,4)=)

FORMAT (SHPI([,J,5)=}

FORMAT {(9HP([,J,6)=}

FORMAT (SHP(],J,7)=)

FORMAT (9HP(!,J,8)=)

FORMAT (SHP!1,0,91=)

FORMAT (10HP(i,J,10)=)

FORMAT (10HP(],J,15)=)

FORMAT (10HPC(I,J,19)=}

FORMAT (7HD(J,K) =}

FORMAT (10HOTOT(J,.K)=)

FORMAT (9HCKX(J.,K)=}

FORMAT (10HCKYZ(J,K)=)

FORMAT (11HXLAMBIJ K)=)

FORMAT (1 IHREYNC(J,K}=)

FORMAT (9HNYTIP(J)=)

FORMAT (10(5X,15))

END
ccceeeececeeccceeceecccceccececccecceececcececcccceeccecececccecccecccecccceccc

SUBROUTINE OEFL
€cceeecccceccecececccccercecceeccccceccecceeccecceccceeccecccceccecc

A SUBROUTINE TO CALCULATE THE axXo DIRECTION CEFLEC{ION OF THE
CRACK WALL CAUSED BY PRESSURE WITHIN THE CRACK. THE ANALYSITS
FOLLOWS THAT OF TIMOSHENKO AND GOODIER @THEORY OF ELASTICITva,
SECTION 139, AND OF GERRARD AND MORGAN, GEOTECHNIQUE, VOLUME 22,
1972. A CIRCLE OF INFLUENCE IS DEFINED 8Y THE ARRAY JSTOP(K) WITH
NO EFFECT ON DEFLECTION PRODUCED BY PRESSURES BEYOND THIS CIRCLE.
THE CENTER OF THE CIRCLE IS THE POINT WHERE THE DEFLECT{ON IS
BEING CALCULATED. A COEFFICIENT, CSUBG(J.K), 1S USED TO ACCOUNT
FOR THE EFFECT OF DISTANCE AWAY FROM THE POINT OF PRESSURE
APPLICATION ON THE DEFLECTION.

COMMON /CRACK/ AF(10,15,20),AFF(]0,15,20),BB(10,15,20) ,BETA(],15,2
10) ,COEF ,CFRIC] ,CFRIC2,CKX(]15,20),CKY2(15,20),CSuBG(3,3),0(15,20).0
2D(10,15,20) ,DELTA(],15,20) ,DT,DTOT(15,20},DT2,D0X(101,DY,DY2,02,D0Z2
3.EE110,15,20) EFFTIP,ETA(10,15,201.F(10,15,20) ,FF(10,15,20) ,FMAX.F
4STAR(10,15,20) ,FSSTAR(10,15,20) ,6AMMAC(],15,201,10,JSTOP(20),L, LML,
SLM2,L2 .M. MM] ,MM2,M2 N ,NM] ,NM2 NTTOT ,NYTIP(15),P(10,15,20) ,PR,PRFUN
6.PS(60) ,REYNC(15,20) ,SIZE,SPACE(15,20) ,THETA, THETA] ,X(10) , XKX, XLAM
78(20,30),YKY ,2ETA(],15,20) ,2K2

CALCULATE VALUES OF PRESSURE FROM THE PRESSURE FUNCTION,
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482
483
484
485
485
487
4B8
489
490
491
492
493
%9y
~395
436
497
498
49%
500
501

502
503
504
505
506
507
508
509

a40

DO I K=1,N

Do 1 JU=I,M

P(1,U,K)=SQRTI(F(1,J,K)+PRFUN)-[./(PR-1.)
1 CONT [NUE

c
c CALCULATE CRACK DEFLECTIONS OVER THE oXo=0 PLANE USING EQUATIONS
C 8-1.,B8-2. AND B-3.
c
DO 12 K=1,N
DO 11l J=1,M
TERM1=Q.
JKMAX=2#*JSTOP (i) +]
DO 3 JJ=1,JKMAX
JJIJ=J-1-JSTOR (1 1 +UJ
JDEF =TABS(JSTOP{ 1) -JJ+11+]
IF (JJJ.GE.1) GO TO 2
JJJd=2-duJ
C
C NODES BEYOND J=M ARE CONSIDERED [DENTICAL TO NJDE J=M
C
2 IF (JJJ.GT. M) JJJ=M

TERMI=TERMI+CSUBG (JDEF , 1) *(P (1 ,JJJ,X)I-PS(K))
3 CONTINUE

TEPM2=0.

TERM3=Q.

DO 10 KKK=1,JKMAX

IKK=K=1-JSTOP (1) +KKK

KOEF=1ABS(JSTOP (1) ~KKK+] :+]

C
C NODE K=N HAS A ZERO PRESSURE BOUNDARY CONDITION
C
1F (IKK.EQ.K.OR.IKK.GT.N-1) GO TO 10
IK=TABS( IKK-K) +1
JKMAX=2¢JSTOP( IK) +]
IF (IKK.CGE.1) GO TO 7
C
c CALCULATIONS BELOW NODE K=1
C
[KS=N-[KK+1
TKKK=2- KK

00 6 JJ=1,JKMAX
JJI=J-1-JSTOP( IK) +JJ
JOEF=1ABS (JSTOP(IKI-JJ+11+]
IF (JJUJ.GE.1) GO TO 4
JIJ=2-JuJ

4 IF (JJJ.GT.M2) GO TO S

[

C J NODE WITHIN THE CAVITY

C
TERM2=TERM2+CSUBG { JDEF ,KUEF) * (P (1 ,JJJ, 11 -PSCIKS';
GO T0 6

C

(o4 J NODE BEYOWD THE CAVITY

C

S IF (JJJ.GT.M) JJUJu=M

TERM2=TERM2+CSUBG ( JDEF .KDEF } * (P (1 ,JJJ, IKKKI -PS(IKS))
[} CONT INUE
GO TO 10

c CALCULATIONS ABOVE NOOE K=1
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S4l C

Sue 7 DO 8 JJ=1,UKMAX

Su3 JJIJ=J-1~-USTOP([K) +UJ

Suu JDEF=1ABS{JUSTOPU 1K) -JJ+11+]

545 [F (JJJ.GE. 1) GO TO B

546 JJJ=g-JJJ

547 8 IF (JJJ.GT. M) JuJd=M

5u8 TERM3=TERM3+CSUBG (JOEF ,KDEF 3} * (P (1 ,JJJ, KK} -PS{IKK})

549 9 CONT INUE
550 10 CONT INUE

551 DEFLCT=CDEF* (TERM! + TERM2+TERM3)

552 IF (DEFLCT.GT.D(J,K)} DiJ,K)=DEFLCT

553 DEFTOT=DI{J,K)+SPACE(J,K]

S54% IF (DEFTOT.GT.OTOT(J,K)) DTOT(J,K)=DEFTOT

555 C

556 C STGP oYo DIRECTION CALCULATION IF THE CRACK THICKNESS IS ZERO
557 C

558 If (DTOT(J,K).LE.O.) J=M

559 11 CONTINUE

560 C

561 C STOP mzr DI!RECTION CALCULATION IF THE CRACK THICKNESS IS ZERQ
562 C

563 IF (DTOT(],K).LE.0.) K=N

564 |2 CONT INUE

565 C

566 C CALCULATE THE CRACK T{P BASED ON A POSITIVE CRACK THICKNESS
567 C

568 DO 13 U=1.M

569 K=NYTIP(J)

570 IF (k.LT.1) K=l

571 IF (D(J,K).GT.0.) NYTIP(J)=K+!

572 13 CONTINUE

573 C

574 C SET THE EFFECTIVE CRACK TP THICKNESS

575 C

576 DO 15 u=I,M

577 [F (NYTIP(J).LE.1) GO TO 16

576 K=NYTIP(J)

579 00 14 KK=2.,K

580 IF (DTOT(J,KK) .LE.Q.) DTOT(J,KK}=DTOT(J ,KK~1)/EFFTIP
S8 14 CONT INUE

582 BTOT(J,K)=DTOT(J,K-1}7EFFTIP

583 15 CONT INUE
SB4 6 DO 1B JJ=2,J

585 IF (NYTIP(UJU-1).LE.NYTIP{JJ)) GO TO 18
586 K=NYTIP(US)

587 KK=NYT |P(JJ-11-]

568 DO 17 KKK=K,KK

589 DTOT{JJ.KKKI=DTOT tUJ-1 KKK 7EFFTIP

590 17 CONTINUE
581 18 CONT INUE

592 RETURN

593 END

594 C cceceeeeeeeececeecceececcceecececccccecceecccecececcececeececccecccrcceecce
595 C

596 SUBROUTINE FRICT iJ.K)

597 ¢

588 C cceceeceeecececcccececccececccceccecccecceccccecccccecceccecececceecccce
588 C

600 C CALCULATES FRICTION COEFFICIENTS FOR FLOW WITHIN THE CRACK USING
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60! C 96/RE FOR LAMINAR FLOW OR EQUATION 20.35 IN SCHLICHTING'S

602 C oBOUNDARY LAYE+, THEORYo FOR TURBULENT FLOW, WHICHEVER GIVES THE
603 C LARGER VALUE.

604 C

[shis) COMMON /CRACK’s AF(10,15,20},AFF(10,15,20!,8B(10,15,20),BETA(},15,2
606 10) ,CDEF ,CFRIC1 ,CFRIC2,CKX115,20),CKYZ2(15,20),C5UBG(3,3),0(15,20).D
607 20(10,15,20) ,DELTACt,15,20),DT,BTOT(15,20),DT2,0X(10).DY,DY2.02.042
608 3,EE(10,15,20) ,EFFTIP,ETACI0,15,20) ,F(10,15,”n) FF(10,15,20}) ,FMAX, F
609 4STAR(10,15,20) ,FSSTARCI0D 15.20!) .GAMMA(1,15,20.,10,JSTOP{20) ,L,LM1,
610 5.M2,L2,M,MM] ,MM2 M2, N, NM] ,NM2 ,NTTOT NYTIP(15),P(10,15,20).PR,PRFUN
61! 6.PS(B0 REYNC(15,20),SIZE,SPACE(]15,20) , THETA,THETAL ,X(10) ,XKX,XLAM
6t2 78(20,30) ,YKY ,ZETA(1,15,20),2KZ

613 C

6!% C CALCULATE COEFFICIENT ASSUMING LAMINAR FLOW USING EQUATION B-12.
615 C

616 IF (K.NE.1} GO TO 1

617 DFZ2=ABS(F (], ,J,1)~-F(1,0,2))/DZ

618 GO To 2

619 | DFZ=0.5*ABS(F (1 ,J,K+1)~F (1 ,J,K-1))/DZ

620 @2 IF (U.NE.1) GO TC 3

621 DFY=ABS(F(1,1.K)-F(1,2,K)}/DY

622 GO TO 4

623 3 DFY=0.5*ABS(F (1.J+1 ,K)=F (1,J-1,K]1/DY
624 Y4 DF =DF Y+DF 2

625 IF (DF.EQ.B) GO TO 5

626 XLLAM=CFRIC1/(DTOT(J,K)**3*DF*

627 C

628 C LIMIT XLLAM TO PREVENT [NFINITE VALUES

629 C

630 IF (XLLAM..T.10.) GO TO 6

631 & XLLAM=14.

632 C

653 C CALCULATE COEFFICIENT ASSUMING TURBULENT FLOW USING EQUATION A-EO.
634 C

635 6 ARG=Y4.*DTQT(J,K}/SI1ZE

636 C

637 C LIMIT XLTURB TO A MAXIMUM OF Q.04S4. THIS NUMBER EQUALS THE
638 C LAMINAR FLOW CCFFF:CIENT FOR A REYNOLDS NUMBER OF 2100.

639 C

640 IF (ARG.LE.30.) GO TO 7

641 XLTURB=1.7(2."ALOGI0(ARG) +1 .74} **2

Euc GO TO 8

643 7 XLTURB=0. 0454

644 C

645 C SELECT MAXIMUM OF XLLAM OR XLTURB

646 C

€47 B XLAMB(J,K) =AMAX] (XLLAM,XLTURB)

g48 C

649 C CALCULATE REYNOLDS NUMBER USING EQUATIONS (B-17) AND (B-18)
650 C

651 IF (XLLAM.LT.XLTURB) GO TO 9

652 REYNC(J,K)=96./XLLAM

653 GO TO 10

654 9 REYNC(J,K}=CFRICZ*DTOT(J,K}*SQRT(DTOT (U ,K} *DF /XLTURB}
655 10 RETURN

656 EMD

657 C cccceececceeececcceeccceecceccceeeccecceccccceeccceccecccecceeccecececcecece
658 C

659 SUBROUTINE FLOW

660 C
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THIS SUBROUTINE DETERMINES THE PRESSURE AT EACH NODE IN THE POROUS
SOLID AND WITHIN THE CRACK DUE TO THE GAS FLOW. FIRST FLOW IN

THE oxXo DIRECTION 1S CALCULATED EXPLICITLY WITHIN THE CRACK AND
IMPLICITLY OUTSIDE OF THE CRACK. NEXT THE oYo AND THEN THE oZo
DIRECTION FLOW IS FOUND IMPLICITLY. WITHIN THE CRACK AN QPERATOR
SPLITTING METHOD 1S USED BECAUSE THE GOVERNING EQUATION IS
HYPERBOL IC IN nXm AND FPARABOLIC IN mya AND oZa. AN ALTERNATING
DIRECTION IMPLICIT METHOD 1S USED kHFN THE ROVERNING EQUATICN

1> PARABOLIC.

COMMON /CRACK/ AF(10,15,20),AFF(10,15,20),B8B(10,15,20),BETA(],15,?
10) ,CDEF ,CFRIC!,CFRIC2,CKX(15,20),C<¥Z(15,20).CSUBG(3,3),0015,201.D
2Dt10.15,20) ,DELTA(1,15,20),DT.DTOT(15,20Q),DT2.DX(101,DY,DY2,DZ,.DZ2
3,EE€10,15,20) ,EFFTIP,ETACIN,15,20),F(10,15..7),FF110,15,20!) ,FMAX.F
4STARC10,15,20) ,FSSTAR(10,15,20) ,GAMMA(1,15,201,10,JSTOP(20),L,LMI,
SLM2,.L2,M,MMI ,MM2,M2 N ,NM] ,NM2 NTTOT NYTIP(1!5;,P(10,15,20) ,PR,PRFUN
6.P5160" ,REYNC{15.20),S1ZE ,SPACE(15,20) ,THETA, THETA] ,X(10Q) ,XKX ,XLAM
78¢(20,30) ,YKY ,2ETA(],15,20),2KZ

INITIALIZE VALUES

ITERX=0

DO 1

FSTARCUI ,J.KI=F (I,J,K)
AFF (1 ,J,K)=F(1,J,K}
CTONTINUE

uxe DIRECTION EXPLIC!T -- USED FOR omxo NODE EQUAL TO ONE AND
INSIDE THE CRACK. AN OPZIRATOR SPLITTING METHOD 1S USED WHERE IN
THE aoxo DIRECTION ONLY TidE Oxa COMPONENT EXPLICIT SPATIAL
OERIVATIVE AND THE TIME DERIVATIVE ARE CONSIDERED IN THE GOVERNING
EQUATION. LATER IN THE ovyo AND oZo DIRECTIONS AN ALTERNATING
DIRECTION IMPLICIT METHOD 1S USED WHERE NO oxn DIRECTION SPATIAL
DERIVATIVES ARE PRESENT [N THE BASIC GOVERNING EQUATION. THE
EXPLICIT TIME STEP ]S SET EQUAL TO THE IMPLICIT TIME STEP DIVIDED
8Y NTTOT.

DTGX=DT/(DX(2) *NTTOY)

80 5 ITIME=],NTTOT

DO 4 X=1,NM]

DO 3 U=I,M

IF (DTOT(J,K).LE.DO.) GO TG 3

IF (J.LE.M2.AND.K.EQ.1) GG TO 3

F(1,J,K)=FSTAR(1],J,K}

ITERXX=0

ETAC] ,J.K)=0.5*{THETA/SQRT(FSTAR(1,J,K}+PRFUN)+THETA!/SQRT(F(1,J,K
1) +PRFUN))

FSTAR(} ,J,K}=CKX{J,K)*DTOX*(F(2,J,K)=-F(1,J,K))/ETA(] ,J,KI+F(],J,K)
ITERXX=ITERXX+1

IF CITERXX.LT.i1) GO TO 2

CONMTINUE

IF (DTOT(1,K).LE.O.) K=N

CONT INUE
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o000 OOO0000OO00O0N0000

[aEaly] NOOCOOO

CONT INUE

ITERATE THROUGH COMPLETE IMPLICIT CALCULATION (X.,Y, AND Z
IRECTIONS) UPDATING THE COEFFICIENTS UNTIL CONVERGENCE [S
REACHED. ALSO [TERATE THROUGH EACH DIRECTION SEPARATELY.

oxao DIRECTION IMPLICIT -~ USED FOR REGIONS QUTSIDE THE CRACK

CALCULATE COEFFICIENTS FOR nZo NODE BETWEEN 2 AND NM| UTILIZING A
WE [GHTED AVERAGE BETWEEN OLD AND NEW VALUES OF F(I1,J,K).

CALCULATE FOR oXao NODES BETWEEN 2 AND LM! WITH oya NODES BETWEEN |
AND M. IN CALCULATING aYa BOUNDARY NODES, USE THE NEUMANN
CONDITION IN THE aYo DIRECTION (DF(I,1,K)/DY=0. OR

DF (] ,M,K)/DY=0.).

DO 8 K=2,NM!
[NTERNAL NODES

DQ 7 J=2,MMI

DO 7 1=2,LMIl

ETA(],J,K)=THETA/SQRT(FSTAR(I ,J,K}+PRFUN)+THETA1/SQRT(F (] ,J,K) +PRF
1UN)

BB(],J,K1=2.#XKX/(DX(]I+]1)*DX([))+ETA(!,J,K)/DT2

DOCI J.KI=(YKY*{F (], J+] , K)=2.9F (]  JKI+F (], J-1 ,K))/DYC+ZKZ* (F(1,J,
IK+1)-2.#F (1 J KI+F (1 ,J,K-1))/DZ2+ETACL] ,J,KI*F ([ ,J,K)/DT2)

CONT INUE

ayo NODE EQUAL TO aMa

DO 8 I=2,LMIl

ETACI M, KI=THETA/SQRT(FSTAR(I[ M, K)+PRFUNJ+THETAl/SQRT(F ([ ,M,KJ+PRF
1UN)

BB M K)=2. . *XKX/ (DX (I+1)*DX([}I+ETACI ,M,K)/DT2

DD¢1 M, Ky=(YKY*2, *(F (] ,M-1,K)-F (] ,M,K)}/DYC+ZKZ*(F (] ,M,K+1)-2.2F (]
1.MKI+F LT M K-1))/DZ2+ETACL M KI*F (] ,M,K)/DT2)

oyao NODE EQUAL TO 1

ETA(],! ,K)=THETA/SQRT(FSTAR(!,] ,K)+PRFUN)+THETA1/SQRT(F ([, ,K)+PRF
1UN)

BB(1.,1,K}=2.*XKX/(DX([+]1)*DX([))+ETACI,],K)/DT2

DD(I, 1 ,KI=(YKY*2. *(F([,2,K)=-F1,1,K))/DY2+2KZ*(FCl,],K+1}1-2.°F(I,1
1LKY+F (D, ,K=-13)1/DZ2+ETALTL, 1 ,KI*F (1,1 ,K)/DT2)

CONT INUE

CONTINUE

CALCULATE COEFFICIENTS FOR oZuo DIRECTION NODE EQUAL TO ONE. USE
THE NEUMANN CONDITION (DF(I,J,1)/DZ=0.) IN oZao DIRECTION OUTSIDE
THE REGION WHERE F(I,J,1) IS SPECIFIED AS INPUT. CALCULATE ONLY
WHERE F(I,J,1) 1S NOT SPECIFIED AS INPUT.

[F (L.EQ.L2.AND.M.EG.M2) GO TO I2
{NTERNAL NODES
DO 10 J=2,MMI

00 10 [=2,LMl
IF (1.LE.L2.AND.J.LE.M2) GO TO 10
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OO0

n

15

ETAU},J.1)=THETA/SQRT(FSTAR(I ,J, 1 )+PRFUN)+THETA1/SQRT(F ([ ,J,1)+PRF

tUN)

BE(],J,1)=2. ¢ XKX/ (DX (1+]13*DX([})+ETA(],J,1)/DT2

DDCL,J. LI=(YKY (R (], J+1,1)-2.*F (1, J,II+F (], J-1.11)/DY2+ZKZ*2.* (F (]
1, J.2)-F(1,J,1))1/D22+ETALL,J, ) *F(],J,1)/DT2)

CONTINUE

aya NODE EQUAL TO oMo

DO 1! =2,LMI

IF (I.LE.L2.AND.M.EQ.M2) GO TO 11

ETAU! ,M,1)=THETA/SQRT(FSTAR(] ,M,1)+PRFUN)+THETAI/SQRT(F (] ,M, |} +PR"
1UN)

BB(I ,M,1}=2, *XKX/ (DXil+1.¥DX(]))+ETACI M, 1)/DT2

DDCI M, 1)=(YKY*2. *(FL] M=-],1)-F(1,M 1))/DY2+2K2*2.*(F (]l M, 2)-FI] M
1,111 /DZ2+ETALI M, 11 *F (1 ,M,1)/DT2)

ayo NODE EQUAL TO !

IF (1.LE.L2) GO TO 1!

ETA(!,),1)=THETA/SQRT(FSTAR(], 1,1 )+PRFUN)J+THETAi/SQRTI(F{]1,1,1)+PRF
1UN}

BBI!,1,1)=2.*XKX/ (DX(1+]1)*DXC(1})+ETACI,1,1)/DT2

DDC1, 1, 1)=dYKY22 *(F (1,2, 1)-F(1,1,1))/DY2+ZKZ*2.*(F(},l.,2)-F(l,1,1
111/DZ2+ETACI, L, 1)*F(1,1,1)/D72)

CONTINUE

CALCULATE EE(1,J,K) AND FF(I,J,K) FOR oxo NODES BETWEEN 1! AND LMI1.
USE THE DIRICHLET CONDITION (FSTAR(!,J,K) 1S OBTAINED FROM THE
EXPLICIT CALCULATIONS) FOR I=1 [|F INSIDE THE CRACK. USE THE
NEUMANN CONDITION FOR I=]1 QUTSIDE THE CRACK (DF(1,J,K)/DX=0.).

USE THE RECURSION RELATIONSHIP FOR ALL OTHER oxXo NCDES. IF THE
nZo NODE EQUALS 1, VALUES ARE CALCULATED ONLY OUTSIDE THE REGION
WHERE F(1,J,1} IS SPECIFIED AS INPUT,

CALCULATIONS FOR oZo NODE BETWEEN 2 AND NM|

DO 16 K=2,NM]
DO 16 J=1,M

INSIDE THE CRACK

IF (DTOT(J,K).LE.D.) GO TO 13
EEC(l,J,K}=0.
FF(1,J,K)=FSTARC(] ,J,K)

GO TO 14

OUTSIDE THE CRACK WITH [=1

EECL,J,K)=1.
FF(1,J,K)=0.

ALL OTHER REGIONS

DO 15 1=2,LM!

DEN=BB(I,J ,K)=2. *XKX*EEtI-1,J.K)/ (DX *(DX(I+1)+DX(1)})

EEC] ,J,K}=2.*XKX/ (DX(1+1)*(DX{]+1)+DX{1))*DEN;

FEOT,J,KY=IDDCT ,J KY+2 . *XKX*FF(]1-1,J, K1/ (DXCI)*(DX(I1+1)+DX(1))))/D
1EN

CONT INUE
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22

CONT INUE

CALCULATIONS FOR unZo NODE EQUAL TO !
DO 21 J=1,M

IF (J.LE.M2) GO TO 18

IF (DTOT(J,1).LE.O0.) GO TO 17

INSIOE THE CRACK

EEC1,J,1)=0.
FF(1,J,11=FSTAR(1,J, |}
GO TO 19

OUTSIDE THE CRACK WITH I=1

EE(1,J,1)=1.
FELL,J,13=0.
GO TO 19

ALL OTHER REGIONS

EE(LE.J,1)=0.

FF(L2,J,1)=F(L2,J,}?

DO 20 I=2,LMl

[F C1.LE.L2.AND.J.LE.M2) GO TO 21
DEN=B8B(1,J,1)~2. *XKX*EE([-[,J, 1}/ (DX(I) *(DX{I+1)1+DX(1)))
EE(],J,1)=2. #XKX/ (DX (I+1)*(DX(1+1)+DX(I})*DEN)
FECD,J,01=0000,J, 11+2. *XKX*FF(I-1,J, 1) /(DX 1) *(OX(1+411+DX(1)1)1/D
1EN

CONT [NUE

CONT INUE

CALCULATE FSTAR(1,J,K} -- AN INTERMEDIATE VALUE OF F([,J,K) AFTER
COMPLETION OF THE mXm DIRECTION IMPLICIT CALCULATIONS. ‘AT oXm
NODE EQUAL TO L USE A NEUMANN CONDITION (DFSTARI(L,J.K}/0X=0.) AND
THEN USE THE RECURSION RELATIONSHIP FOR VALUES TO oXm NODE EQUAL
TO 2. FSTAR WAS SET PREVIOUSLY EQUAL TO THE VALUE CALCULATED
EXPLICITLY IF IN THE CRACK. USE THE NEUMANN CONDITION FOR I=1 [F
QUTSIDE THE CRACK. If THE nZo NODE ]S EQUAL TO 1, SET FSTAR(I,J, 1)
EQUAL TO F(I,J,1) IN THE REGION WHERE F(I1,J,1) IS SPECIFIED AS
INPUT. COMPARE VALUES OF FSTAR(],J,K) WITH PREVIQUS VALUES AND
ITERATE THROUGH THE txo DIRECTION IMPLICIT CALCULATIONS [F
CONVERGENCE IS NOT OBTAINED.

CALCULATIONS FOR oZo NODE BETWEEN 2 AND NM]

IX=0

00 24 K=2,iNM!

DO 24 J=1,M

PFSTAR=FSTAR(L,J,K)

FSTAR(L ,J,K)=FF{LM],J,K}7(1.-EE(LM!,J,K))

COMPARE =ABS (FSTAR(L,J,K)-PFSTAR) /PFSTAR

IF (COMPARE.LT.0.00!.0R.FSTAR(L,J,K).EQ.PFSTAR) GO TQ 22
IX=[X+1

[INTERNAL NODES

00 23 |=1,LM2
Le=L-1
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OO0O0O000OO0OCOO0O00

25

a6

27

n
@

29
30

PFSTAR=FSTAR(LB,J,K)

FSTARILB,J ,KI=EE(LB,J,K)*FSTAR(LB+1,J.K)+FF (LB, J,K)
COMPARE=ABS (FSTARI(LB,J.K}-PFSTAR}/PFSTAR

IF (COMPARE.LT.0.001.0R.FSTAR(LB,J,K).EQ.PFSTAR) GO TO 23
IX=1X+1

CONT INUE

OUTSIDE THE CRACK WITH [=1

IF (DTOT(J,K).LE.0.) FSTAR(],J,K)=FSTAR(2,J,K}
CONT INUE

CALCULATIONS FOR oZo NODE EQUAL TO |

DO 27 JU=1,M

IF (L.EQ.L2.AND.J.LE.M2) GO TO 25

PFSTAR=FSTAR(L ,J, 1)

FSTARCL ,J, 1)=FF (LMl .J, 1)/ (1. -EE(LML,J,1))
COMPARE=ABS(FSTAR(L,J,1)-PFSTAR)/PFSTAR

IF (COMPARE.LT.0.001.0R.FSTAR(L,J,1).EQ.PFSTAR) GO TO 25
IX=1X+1

DO 26 I=1,LM2

LB=L-1

IF (LB.LE.L2.AND.J.LE.M2) GO TO 26

PFSTAR=FSTAR(LB,J, 1}
FSTARILB,J.1)=EE(LB,J,1)*FSTAR(LB+! ,J,1)+FF (LB, J, 1)
COMPARE=ABS (FSTAR(LB,J, 1)-PFSTAR)/PFSTAR

IF (COMPARE.LT.0.00t.0R.FSTAR(LB,J,1).EQ.PFSTAR) GO TO 26
IX=1X+]

CONT INUE

QUTSIDE THE CRACK WITH 1=1

IF (DTOT(J,1).LE.0.) FSTARC(},J,1)=FSTAR(2,J, )
CONT INUE

IF (IX.EQ.0) GO TO 28

ITERX=ITERX +]

IF (ITERX.LT.2) GO TO 6

aYs DIRECTION IMPLICIT -- USED FOR ALL REGIONS

CALCULATE COEFFICIENTS FOR mZo NOOES BETWEEN 2 AND NM! UTILIZING A
WE [CHTED AVERAGE BETWEEN OLD AND NEW VALUES OF F(I,J,K). [NSIDE
THE CRACK THE OLD VALUES ARE FSTAR(!,J,K} AND THE NEW VALUES ARE
FSSTAR(1,J,K). OUTSIDE THE CRACK THE NEW VALUES ARE FSSTAR(1,J,K)
AND THE OLD VALUES ARE F(],u,K). CALCULATE FOR oY NODES BETWEEN
2 AND MM] WITH aXo NODES B8ETWEEN 1| AND L. [N CALCULATING THE oxno
DIRECTION BOUNDARY NODES USZ THE NEUMANN CONDITION OUTSIDE OF THE
CRACK IN THE oxa DIRECTION (DFSTAR(I,J,K)/DX=0. OR
DFSTAR(L,J,K)/DX=0.). [INSIDE THE CRACK THE OPERATOR SPLITTING
TECHNIQUE UTILIZED DOES NOT CONSIDER ANY mxm DIRECTION VARIATION.

00 @29 I=I,L

D0 28 J=1,M

DO 29 K=1,NM!

FSSTARC([ ,J,K)=FSTAR(],J,K)
CONTINUE

00 38 K=2,NM]

DO 38 J=2,MM]
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oXo DIRECTION NODE EQUAL TO ONE
[F (DTOT(J.K}.GT.0.} GO TO 31
QUTSIDE THE CRACK

ETA(!,J,K)=THETA/SQRT(FSSTAR(1,J,KI+PRFUNI+THETAL/SQRT(F (1 ,.J,K) +PR
LFUN?

BB(1,J,K)=2.*YKY+DY2*ETA(),J,K)/DT2

DD(1,J,K)=(2. *XKX* (FSTAR(2,J,K)-FSTAR(] ,J,K) )/ IDX(2)*DX(2) I +ZKZ*(F
101, J K+ =2 *F{1 ,JKY+F (1 ,J,K-111/DZ2+ETA(] ,J. KI*F (1 J.K)/DI2)*DY2
GO TO 36

INSIDE THE CRACK

B1=0.

B82=0.

G1=0.

Ge=0.

01=0.

D2=0.

21=0.

Z2=0.

[F (ABS(FSSTAR{],J+] ,KI-FSSTAR(] ,J-1 . K}).LT.1.E-25) GO TQO 32
Bl=THETA® (FSSTAR(] ,J+i K)-FSSTARI(!,J-1,K))/SART(2. *DY*ABS(FSSTAR! |
L, J+1 ., K}-FSSTAR(] ,u-1.,K) 1)

GI=THETA/SQRT(2.*ABS(FSSTAR(! ,J+1,.K)-FSSTAR(] ,J-1.K))/DY?

IF ¢(ABS{FSTARI(],J+] ,K)~-FSTAR(} ,J-1,K}) . LT.1.E-25) GO TO 33
B2=THETAl *(FSTAR(1,J+1 KI-FSTAR{1,J-1 ,K1)/SQRT(2.*DY*ABS(FSTARt} ,J
1+1 ,K)-FSTAR(]},J-1,K))}

GE8=THETAI/SQRT (2. *ABS(FSTAR{1,J*+1.KI1-FSTAR(] ,J-1.K)} /DY)
BETA(1,J.K1=Bl1+B2

GAMMA (] ,J,K1=CKYZ(J,K)*(G]+G2)

IF (ABS(FSSTAR(! ,J,K+1)-FSSTAR(] ,J,K-1)1.LT.].E-25) GO TO 3u
DI=THETA® (FSSTAR(|,J,K+]11-FSSTARI(]| ,J,K~|1)/SART(2.*DZ*ABS(FSSTAR(]
1. J.K+1)-FSSTAR(],J,K-11))

Z1=THETA/SQRT (2. *ABS{FSSTAR(},J.K+])-FSSTAR(],J.K-1)1)/D2}

IF (ABS(FSTAR(],J K+1)-FSTAR(1,J,K-1)).LT.1.£-25) GO TO 35
D2=THETA1* (FSTAR(] ,J,K+1)~FSTAR(].J,Kk-1})1/SQRT (2. *DZ*ABSIFSTAR(] J
1.K+1)-FSTARL] ,J,K-1)))
22=THETAl/SQRT(2.*ABS{FSTAR(1,J,K+1)-FSTAR(l ,J.K-1))/DZ}
DELTA(],J,K)=Di+D2

ZETACL ,J,KI=CKYZ(J Kr®(21+22)
ETAC],J,K)=0.5*(THETA/SQRT(FSSTAR(1,J,K)+PRFUN)+THETA]/SQRT (FSTAR(
t1,J.K}+PRFUN)}

BB(1,J.K)=2.*GAMMA (] ,J,K)+DY2*ETA(],J,K}/DT2

DD, J.K)I=(D.5°BETAI]),J. KI*(CKYZ(J+] ,K)-CKYZ{J-1,K))/DY+0.5*DELTA(
11, J.KI*(CKYZ (J K+1)-CKYZ(J ,K=-1))/DZ+ZETAC(] ,J,K)*(FSTAR(],J,K+11-2.
2*FSTARI(] ,J,K)+FSTAR(] ,J,K=1))1/DZE+ETA(] ,J,K) *FSTAR(1,J.K}1/DT2)*DY2

INTERNAL NODES

DO 37 §=2,LM]
ETA(!,J,KI=THETA/SART(FSSTAR(,J,K)+PRFUN)+THETAL/SQRT(F (] ,J.K)+PR
1FUN)

BB(l,J,K)=2.*YKY+DY2*ETA(] ,J,K}/DT2
DD(],J,K)=(2.*XKX* ((FSTARC[+| ,J,K)-FSTAR([ ,J,K))/DX{1+1)~(FSTARI(],
1J KI-FSTARUI=1,J,K)I/DXU1) )7 (DXLI+1)+DXC1) ) +2KZoIF 1], U, K+])-C.oF (]
L JWKIHF UL U K=-1))/DZ2+ETACL (U KI*F (] ,J,K)/DT2) *DY2



1021

1022
1023
1024
1025
1026
1627
1028
1029
1039
1C31

1032
1033
103w

1035
1036
1037
1038
1039
1040
104}

1042
i0w3
104y

1045
1046
1047
t0u8
10w9
1050
1051

1052
1053
1054
1055
1056
1057
1058
1058
1060
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1072
1073
1674
1675
1076
1077
1078
1079
1080

C
<
C

[aNaNaleRalyl

[aEaKal

27

38

39

«0

“l

4o

CONT I NUE
oxa NODE EQUAL T0 oLe

ETANL IO KIBTHETASQRYIIFSSTARIL , J. ¥MI1ePRFUNI«THETAI/SORT 7L, J KPR
IFUN:

BBIL ,J. K122 . *¥YKYDYR*ETAIL ,J.Ki/DT2

DOIL I KItXKX*2 *tFSTARILMY, A KIFSTARIL , J M s iDRILseLntL 110207
BOFIL Q. Kol 1-2 . 0F 4L S M eF 1L [ J -1 D220ETa L U 41072, ¢ DIZ;C
eye

CONT INUE

us. TQ ONE.  USE
E ole DIRECTION
INPUT

THE NEUMANN CONDITION (OFSTAR!] .U,
QUISIDE THE REGION WHMERE §11,..19
CALCULATE ONLY WHERE F11.J.1) 1S NO

CALCULATE COEFFICIENTS FOR nZn OiRE
i
i

IF 1L .1Q.L2.AND. M. EG. M2 GO 10 w7
D0 46 J=2 .MMt

axs NODE EGQUAL TC

IF (9.LE.M2) GO TO “u
IF (0T0T10, 1. 67 . 0.0 GG 1C 33

QUTISIDE THE CRACK

EVALL,J,1)aTHETA/SART(FSSTARIL, J, 11 sPRIUNI e THETAI/SQRT(F L) J, ) «PR
IFuUN

BBI1.,J. 1152, *YKYeDY2 ETAL] 4. 1)/0T2

001}, J, 1112 *XKXOUFSTARIZ, U, 11-FSTARL L, J, 1 1) /DX (214DX 1212202
SOUF L], J.2V-F 11,01 11/022ETAL1 U i 1%F (Y, U, 11 /DT31eDY2

GO TO u&

INSIDE THE CRACK

B81x0.

82=0.

Gi=0.

Ge=0.

D1=0.

D2=0.

21=0.

22=0.

IF (ABSIFSSTAR(] U1, 1-FSSTARII U l 11
BlsTHETA®IFSSTAR(] ,Je 1, )1-FSSTAR( U~ ., 1)
J vl 1V -FSSTARIT (U=t ,11133
GI=THETA/SQRT(ABS (2. *FSSTAR(1 U] 11 =FSSTAR(]) ,U-1,111/DY}

IF (ABS(FSTAR(] ,Jel 11 -FSTAR(T1  U-1,11).LT.} . E-25} GO TO 4!
B2=THETAI*(FSTAR(]) ,J¢ ], 1)-FSTARC] ,J-1,1)!/SQART(2.*DY*ABS(FSTAR(!,J
Tel 1V-FSTARII ,J-1.1 1)

G2=THETAL/SQRT (2. *ABSIFSTAR{ ), Js1, 11 -FETAR{1,J-1,113/0Y)
BETA(],J.11=Bl«B2

GAMMA (] ,J, 11=CKYZ1J,117(Gl+G2)

IF (ABS(FSSTAR(],J,2)1-FSSTAR(] . J,11).LT.].E-25) GO TO w2

DI=THETA® (FSSTAR(!,J,2}~FSSTAR(],J,1))/SQRT(DZ*ABS(FSSTAR( !, J,2)~F
1SSTAR(1,J, 110

21=THETA/SQRT(ABS(FSSTARI] ,J, 2} ~FSSTAR(] ,u,111/D2)

IFf (ABS(FSTAR(].J.21-FSTAR(I ,J,11).LT.1.E~29) GO TO 43

D2=THETAl* (FSTARI(1,J,2)~FSTAR(1,J,1))/SQRT(DZ*ABS(FSTAR(! J,2)-FST

LT E-85) GO TO 40
) SQRT(2.+DY*ABS(FSSTAR(!
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T1ARCL,J,. D))
22=THETA1/SQRT(ABS(FSTAR(1,J,2)-FSTAR(],J,11)/D2)
DELTAt1,J,1)=D1+02

2ETA(1,J.17=0.52CKYZ(J,11°(21+22)
ETALL,J,1)=0.5*(THE . A/SQRT(FSSTAR(1,J, 1)+PRFUN)+THETA1/SART(FSTAR(
11,4, 1)+PRFUN))

8B11.,J,11=2.*GAMMA(1,J,1)+0Y2*ETA(] ,J,1)/DT2

D011.,J.11=(0.5¢BETA(] ,J,1)*(CKYZ(J+],]1)~CKYZ(J-1,1))/DY+DELTAC(I,J,
1112 (CKYZ(J,2)-CKYZ(J, 1)} /DZ+2ZETA(L,J,1)*2.*(FSTAR(1,J,2)-FSTARI(] J
2.,111/D22+ETAL] ,J,1}*FSTARC(],J,1)/DT2) *LY2

00 45 §=2.LMI

IF (1.LE.L2.AND.J.LE.M2) GO TO 45

INTERNAL NODES

ETA(],J,1)=THETA/SQRT(FSSTAR(!,J, 1} +PRFUN}+THETA1/SQRT(F{],J, 11 +PR
1FUN}

8B(1,J,1)=2.*YKY+DY2*ETALl,J,1)/DT2

ODC],J. 1)=(2. e XKX* ({FSTAR(I+1,J,1}1-FSTAR(],J,1))1/DX{I+1)-(FSTAR(],
1J.1)=FSTAR(I=1,J,[11/7DXCE)V) /7 (DX([+1)+DX (1)) +2KZ*2.*(F (I ,J,2)-F(],J
2.111/D22+ETA(L U, 11 *F(I,J,1)/DT2)°DY2

CONT [NUE

oXs NODE EQUAL TO oLn

IF (L.EQ.L2.AND.J.LE.M2) GO TO 46

ETA(L,J,1)=THETA/SQRT(FSSTAR(L ,,1)+PRFUN)+THETA1/SQRT(F(L,J.1}+PR
1FUN)

BBI{L,J,11=2.*YKY+DY2*ETA(L ,J.1)/DT2

OD(L,J, 1 )=(XKX*2. *(FSTAR(LM] ,J, 1) ~FSTAR(L ,J, 111/ (DX(L)*DX(L))+ZKZ*
12.24F L, J,2)-FIL ,J, 1)) /DZ22+ETALL  J, 11 2F (L, J,. 1 1/DT2) *DYR

CONT INUE

CALCULATE EE(!,J,K) AND FF(1,J,K) FOR BYn NODES BETWEEN 1 AND MMl.
USE THE NEUMANN CONDITION FOR J=1 (DFSTARC(I,],K)/DY¥=0.). USE THE
RECURSION RELATIONSHIP FOR ALL OTHER oYm NODES. |[F THE oZo NODE
EQUALS 1, VALUES ARE CALCULATED ONLY OUTSIDE THE REGION WHERE
F(1,J,1) IS SPECIFIED AS INPUT. THE DIRICHLET CONDITION [S USED
AT THE BOUNDARY OF THE REGION WHERE THE INPUT 1S SPECIFIED
(FSSTAR(],J,11=FC],J,1)).

DO 48 K=2,NM]

DO 49 I=1,L

EECI.1.K)=1,

FFLI.1.K)=0.

DO 48 J=2,MMI

IF (DTOT(V,K).GT.0..AND.[.EQ.1) GO TO 48

QUTSIDE THE CRACK
DEN=BB(I,J,K)-YKY*EE(] ,J-],K)
EE(],J,K)=YKY/DEN
FF(I,J,K)=(DDCI,J,K)I+YKY*FF (] ,J~-1,K))/DEN
GO TO 48

INSIDE CRACK

DEN=BB(I ,J,K)~GAMMA(1 ,J . K)*EE(],J-1,K)

EE(],J,K)=GAMMA(] ,J,K)/DEN
FF(1,J,K)=(DDC1,J,K)+GAMMAC(L ,J,K)*FF (] ,J-1,K))/DEN
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[o!

o0

OO0

OO0

OCOO0O00O0O0OOO0O000

[eXeXe)

49

50

51

5]
Y]

5]
w

S4

55

CONT INUE
CALCULATICNS FOR nZo NODE EQuAL TO 1

D0 53 I=1,L

IF (1.LE.L2) GO TO S0
EECT, . 1)=1.
FFeI.1.11=0.

GO TO 51

EE(],M2,11=0.

FFel1 ,M2,1)=F (1 M2, 1)

00 53 u=2,MMI

{F (1.LE.L2.AND.J.LE.M2) GO 7Q 53

IF (DTOT(J.!).GT.0..AND.!.EQ.!) GO TO 52

OUTSIDE CRACK

DEN=BB(1,J,1)-YKYeEE(] ,J-1,1)
EEC(,J.1)=YKY/DEN

FF{l,J,1)=(DODCT ,J,1)+YKY*FF(],J-1,1))/DEN
GO T0 53

INSIDE CRACK

DEN=88(1,J,1)-GAMMA(1 ,J, 1) *EE(] ,J-1. 1)
EE(]1.J,1)=GAMMA(],J,1)/DEN
FF(1,J,1)=(DD(1,J,1)+GAMMA (L ,J, 1) *FF (] ,J~1,1)1/DEN
CONT INUE

CALCULATE FSSTAR(I,J,K) -~ THE SECOND INTERMEDIATE VALUE OF
Ftl1,J0,K) AFTER COMPLETION OF oYo DIRECTION IMPLICIT CALCULATIONS.
USE A NEUMANN CONDITION IF THE oya NODE IS EQUAL TO M

(DFSSTAR(] ,M,K)/DY=0.) AND THEN USE THE RECURSION RELATIONSHIP

FOR VALUES TO oYo NODE EQUAL TO 2. [IF oZa NODE EQUALS 1 SET
FSSTAR(],J.1) EQUAL TO F(Il,J,1) IN THE REGION WHERE F(I,J,1) IS
SPECIFIED AS INPUT. COMPARE VALUES OF FSSTAR(I,J,K) WITH PREVIOUS
VALUES AND |TERATE THROUGH THE oYo DIRECTION IMPLICIT CALCULATIONS
IF CONVERGENCE IS NOT OBTAINED.

CALCULATIONS FOR oZo NODE BETWEEN 2 AND NM!

1Y=0
DO 56 K=2,NM]
DO 56 I=1,L

PFSSTAR=FSSTAR(I ,M,K)

FSSTARCI M, K)=FF (] ,MM] ,K)/(1.-EE(] ,MM] ,K))
COMPARE=ABS(FSSTAR(I ,M,K)~PFSSTAR) /PFSSTAR

IFf (COMPARE.LT.0.00!.0R.FSSTAR(],M,K}.EQ.PFSSTAR) GO TO Su4
1Y=1Y+1

INTERNAL NODES

00 55 J=i,MM2

MB=M~-J

PFSSTAR=FSSTAR(] ,MB,K)

FSSTAR(] ,MB,K)=EE (] ,MB,K)*FSSTAR(] ,MB+! ,K)+FF (] ,MB,K)
COMPARE=ABS (FSSTAR(I ,MB,K)~PFSSTAR) /PFSSTAR

IF (COMPARE.LT.0.001.0R.FSSTAR(I ,MB,K).EQ.PFSSTAR) GO TO 55
1¥Y=1Y+]

CONT INUE
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1201 FSSTAR(],1 ,K3=FSSTAR(] ,2.X)
1202 56 CONTINUE

1203 C

teou C CALCULATIONS FOR B8Za NODE EQUAL TO 1

1205 C

1206 DO 58 I=1,L

1207 {F 11.LE.LC.AND.M.EQ.M3) GO TO 59

1208 PFGSTAR=FGSTAR(L M, 1}

1209 FGSTARU] M, 1) =FFCL MM 13708 -EE LT MMT 1 1)

1210 COMPARE =ABS(FSSTAR({ M, 11 -PFSSTARI /PFSSTAR

1211 IF (COMPARE .LT.0.001.0R.FSSTAR(| ,M,i1.EQ.PFSSTAR) GO TO &7
1212 1Y=]Yel

12813 57 00 58 U=t MM

121y MB=M-J

1215 IF ¢(].LE.L2.AND.MB.LE.M2) GO TO 59

1216 PFSSTAR=FSSTAR(! ,MB, )

1217 FSSTAR(] ,MB,1)=EE(] ,MB, 11 *FSSTAR(I MB+] 11+FF (] .M, |

1218 COMPARE =ABS (FSSTAR( [ ,MB, 1) -PFSSTAR) /PFSSTAR

t2'sg IF (COMPARE.LT.0.00!.0R.FSSTAR(! MB,11.EQ.PFSSTAR) GO TO S8
12c'0 1¥=1Y+]

1221 S8 CONT INUE

iee2 IfF (l.LE.L2) GO TO 59

t2e3 FSSTAR(],1.11=FSSTARI!,2,1)

1224 59 CONT INUE

1225 iF tIY.€Q.0) GO TO BO

1226 I TERY=]TERY+|

1227 IF (ITERY.LT.2) GO TO 30

1ee8 C

1e29 C nZa DIRECTION IMPLICIT -- USED FOR ALL REGIONS

1230 C

1231 C

1232 C CALCULATE COEFFICIENTS FOR uZa NODES BETWEEN 2 AND NM! UTILIZING
1233 C WE IGHTED AVERAGE BETWEEN OLD AND NEW VALUES OF F(],J.K). THE OLD
1234 € VALUES ARE FSSTAR(].J.K) AND THE NEW VALUES ARE AF(!,J,K) BOTH
1235 C INSIDE AND OUTSIDE THE CRACK. CALCULATE FOR oYa NODES BETWEEN 1
1236 C AND M WITH oXo NODES BETWEEN | AND L. BOUNDARY NODES USE THE
1237 C NEUMANN CONDITION IN BOTH uXo AND nvo DIRECTIONS.

1238 C

1239 60 DO 61 I=1,L

1240 DO B1 J=1,M

1241 DO 61 K=1,NMi

1242 AFC1,J,KI=FSSTAR(],J,K)

1243 61 CONT INUE
1244 62 DO 78 K=2,NMi

1245 C

1246 C axs O[RECTION NODE EQUAL TO ONE

1247 C

1248 DO 68 J=2,MMI

1249 IF (OTOT(J,K).GT.0.) GO TO B3

1250 C

tes1 C OUTSIDE THE CRACK

1252 ¢

1853 ETA(],J,K)=THETA/SQRT(AF {1 ,J,K}+PRFUN)+THETA1/SQRT{FSSTAR(],J.K)+P
1254 IRFUN)

1255 BB(],J,K)=2.°2KZ+DZ2*ETA(],J,K}/DT2

1256 DD(},J,K)={2.*XKX* (FSTAR(2,J,K)-FSTAR(],J,K))1/7(DX{2)*DX(2))+YKY*(F
1257 1SSTAR(] ,J+] ,K) -2, *FSSTAR(] ,J,K)+FSSTAR(],J-1,K))/DY2+ETA(] ,J.K])*FS
1258 2STAR(1,4,K)/DT2)*DZ2

1258 GO TO 68

1260 C
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C

1262 ¢

1263
1264
1265
1265
1267
1268
1269
1270
1en

1e7e
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
128%
1286
1287
1288
1289
1290
1291

1292
1293
1294

1295
1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306
1307
1308
1309
1310
13114

1312
1313
1314
1315
1316
1317
1318
1319
1320

[aXaXe] o000

63

64

65

66

67

68

INSIDE THE CRACK

81-=0.

B82=0.

G1=0.

Ge=0.

D1=0.

De=0.

Z1=0.

22=0.

IF (ABSC(AF L], Je] KI=&F(],J-1,K}) LT .} . E-25) GO TO 6%

BI=THETA®(AF (] ,Js1 ,KI-AF 1] ,U~1 KI)/SQRT(2 eOYSABSIAF (], e} KI-AF (!
PoJd-1,K3 D))

GI=THETA/SQRT (2. *ABSIAF (] J*| KI-AF (] ,J-1,K:}/DY)

IF (ABSIFSSTARI] U+l KI-FSSTAR(] ,J-} ,Ki} . LT, ].£-25) GO T% 65
Be=THETA]*(FSSTAR(] U+ KI-FSSTARI ] ,J-].K;1/SART 12, *DY*ABSIFSSTAR:
11,J01 ,KI-FSSTAR(] ,JU-1,K) i)

G2=THETA]/SQART (2. ¢ABS(FSSTAR(] , U+ K)~FSSTAR ], JU-1,K)) /DY)
BETAL],J,K)=B1+82

GAMMA(] ,J K1=CKYZ{J . K)*1G]+52)

IF (ABSIAF(] UK+ 1)-AFL] , S K-1)}.LT. 1. E~2%) GO TQO 66

DI=THETA®(AF (} . J,K*1)=AF 1] J.K-11)/SQRT(2, *0Z*ABS(AF (] U, K1) =AF(]
1.J.K-1)1))

Z1=THETA/SQRT (2. *ABSIAF (] ,J, K+ 1) -AF (] ,J,K-111/D2)

IF (ABS(FSSTAR() ,J,K+1)-FSSTAR(] ,J.K-1)).LT.1.E-25! GO TC 67
De=THETA1*(FSSTAR(I ,J,K+1)-FSSTAR(] ,J,K-111/SQRT(2.°DZ+ABSIFSSTAR(
11, J.K+1)-FSSTARI] U, K-13)}

22=THETAL/SQRT (2. *ABS(FSSTAR(1,J.K+1)-FSSTAR(],J.K-1317D2)
DELTAt] . J.K)=Dl+D2

ZETAL] S KI=CKYZIJ , KI®(2]+22)

ETAL] ,J,K)=0.5*(THETA/SQRT(AF (] ,J ,K)+PRFUNI+THETA1/SCRTiFSSTARI(],
1.K}+PRFUN) )

BRI(),J,K)=2.2ETA(]1,J,K)+DZ2*ETA(]1,J,K)/DT2
DD(1,J.K)=t0.9*BETA(],J,K)*(CKYZ(JU+] K}-CKYZ(J-1,K))/DY+GAMMAL] ,J.
1K) *(FSSTAR(] ,J+1 ,K)-2.°FSSTAR(] ,J,K}+FSSTAR(! ,J-1,K))/DY2+0.5*DELT
2AL] ,JKI®(CKYZ(J K+1)-CKYZ(J K=-1))/DZ+ETA(] J.K)*FSSTAR(] ,J.K)/0T2
31+DZ2

CONT INUE

oYo NODE EQUALS oMo

ETACl M K)=THETA/SQRT (AF (] ,M,K)+PRFUN)«THETA1/SQRT(FSSTAR(]1 ,M K}+P
IRFUN}

BBl1,M,K)=2.*ZKZ+DZ2*ETA(] ,M,K)/DT2

DD, M, K1=t2.*XKX* (FSTAR(S .M K}~-FSTAR(] M K}/ (DX(2)*DX(2}I+YKYeZ,
1*(FSSTAR(] ,M-) ,K)-FSSTAR(I ,M,K})/DY2+ETA(] M ,K)*FSSTAR(I M ,K)/DT2
24D22

aYo NQDE EQUALS ONE

[F (DTOT(1,K).GT.0.) GO TO 69

QUTSIDE THE CRACK

ETACL,1,K)=THETA/SQRT(AF (1,1,K)+PRFUN)+THETAL/SQRT (FSSTARC(},1,K)+P
lggl(”:zl.K)=E.'ZKZ+DZE'ETAH.l.K)/DTE

DD(1,1,K)=(2.*XKX* (FSTAR(2,]1,K}-FSTARI(],1,K})/{DX(2)*DX(2))+YKY*2,

1*(FSSTAR(1,2,K)-FSSTAR(I,]1,K))/DY2+ETA(1,]1 ,KI*FSSTAR(]1,1.,K1/DT21*D
2z2
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63

70

71

72

73

4

75

RO TO 74
INSIDE THE CRACK

Bl1=0.

B2=0.

G1=0.

Ge=0.

D1=0.

De=0.

21=0.

22=0.

IF (ABSUAF(1,2.K)-AF (1,1 ,K3}Y.LT.1.£-25) GO T0 70

B)=THETA*(AF (] ,2 K)-AFU1]1,]1 . K))I/SQRTIDY®*ABSI(AF(],2,.K1-AF(},i,K)}}}
Gl1=THETA/SQRT(ABS(AF([,2 ,K)-AF (1,1 ,K11/DY)

IF (ABS{FSSTARI(],2,K)-FSSTAR(],].K}).LT.1.E-25) GO TO 71
Be=THETA] *(FSSTAR(],2,K) -FSSTAR{1,1,K1!'/SQRT(DY*ABS(FSSTAR{1,2 ,K! -
IFSSTAR1, 1 ,K)))
Ge=THETA|/SQRT{ABS(FSSTAR(! ,2 ,K)-FSSTAR(!, | ,K)}/DY!?
BETA(Ll,].,K)=B|+82

GAMMAI],) ,K)=0.5*CKYZ(] K}*(G!+G2)

IF (ABS(AF (1,1 ,K+1)-AF(1,,.K-11).LT.1.£~25) GO TO 72

D1=THETA® (AF (], 1 K+l }-AF (1,1 . K-13)/5QRT(2. *DZ*ABSIAF (], ] ,K+]1)-AF (]
L LUK=1 )

Z1=THETA/SQRT(2.*ABSIAF (1.l . K+1)-AF (], 1 ,K-111/DZ}

IF (ABS(FSSTAR(],1 ,K+11-FSSTAR(1,1,K~11).LT.1.E~-25! GO TQ 73
D2=THETA1* (FSSTARC(],| ,K+1)-FSSTAR(},] ,K-1)}/SQRT(2.*DZ*ABS(FSSTAR!
11,1 ,K+)1-FSSTARt],1.,K-1)))

22=THETA1/SQRT(2.*aBS(FSSTAR(],1 ,K+|)-FSSTARI!,1,K-1)1/D2?

DELTAL] 1 ,KY=Dl+D2
ZETA(],],K)=CKYZ(]l K)*(Z21+22)

ETACLl,],K)=D.5*(THETA/SQRT(AF (1,] ,K)+PRFUN}+THETA|/SQRT(FSSTAR(],1
1. K)+PRFUN) 5
BB(1,1,K1=2.*ZETA(Ll,l ,K)+DZE&*ETAC],1,K)/DT2

DD, ) K)=(BETA(],] KI*{CKYZIR,K)-CKYZ(] K))/DY+GAMMA(] ] K)*2. *(F
ISSTAR(],2,K)-FSSTAR(1,1.K))/DY2+0.5*DELTAC(:,] K)*iCKYZ(] ,K+1)-CKYZ
2(1 ,K-1)11/DZ+ETA(1,1,KI*FSSTAR(!,1,K)/DT2)eD22

axo DIRECTION INTERNAL NODES

DO 75 J=2,MMI
DO 75 I=2,LM]

aya DIRECTION [NTERNAL NODES

ETACl ,J,K)=THETA/SQRT{AF (1 ,J,K)+PRFUN)+THETA1/SQRT(FSSTAR(I ,J,K)+P
1RFUN)

BB(1,J,K)1=2.+2ZKZ+DZ2*ETA(].J,K)/DT2

DD(1,J,K)=(2. oXKX* ([FSTAR(I+],J.K)-FSTAR(],J,K))/DX(I1+])3-(FSTARI(I,

1J,KI=FSTAR(I=1,J,K)1/DX(1))/(DXCL+]}+DXC1))+YKY*(FSSTAR(],J+] ,K) -2
2.*FSSTAR(],J,KI1+FSSTAR(],J~1,K))/DYR+ETA(] ,J,K)*FSSTAR(],J.K)/DT2}
3+D2Z2

CONT INUE

ayo NODE EQUALS oMo

DO 76 [=2,LM!

ETACI ,M . K)=THETA/SQRT (AF (I ,M,K)+PRFUN)+THETA1/SQRT(FSSTAR(I .M K} +P
TRFUN)

BB(] ,M,K)=2.*ZKZ+D22*ETA(] ,M,K)/DT2
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1395
1396
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1398
1399
1400
1401

1402
403
1404
1405
1406
1407
1408
1409
1410
111

1412
413
41y
1415
w16
1417
1418
1419
1420
el

1422
1423
1424
1425
1426
1427
142B
1429
1430
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440

oo

C
c

o060

OOOO0O00

76

77

79
80

DD¢1 . M, K)=(2.*XKX*( (FSTARt[+) M, K)-FSTARI| M, K}}/DXt]+i1-(FSTARC(],
IM,KI=-FSTARCI-1 , M. K)}/DXC1)) /DXL« )+DXI1))+YKY®2 #(FSSTARC([ ,MM] K
21-FSSTAR(]! .M. K1) /DY2+ETALI M K)*FSSTARI! M, K)/0T2)*DZ22

oYn NODE EQUALS 1

ETACI, ! K)=THETA/SQRT(AF ([ ,] ,K)+PRFUN)+THETA]/SQRT(FSSTAR(!,] ,K)+P
IRFUN)

8B(1,1.K)=2.92KZ+DZ2°ETA(],],K)/DT2

DDti,! ,K)=(2.*XKX* ( (FSTAR(]1+1,1 ,KI-FSTAR(] .1 .K1)/DX(I+1}-(FSTAR(I,
11.K)-FSTAR(1-1,1 ,K)I/DXUI1)/(DXUI+1)+DX(1))+YKYe2 o (FSSTARI[,2,K)-
SFSSTARUL L1, K1) /DYR+ETACL 1 ,K)*FSSTAR(] | ,K)/0T2:¢D2Z2

CONT INUL

axa NODE EQUAL TOQ aLm

D0 77 J=2.MM]
ETAIL.J,K)=THETA/SQRT (AF(L.J,KI+PRFUN} +THETA|/SQRT(FSSTAR!IL ,J K1 +P
IRFUN)

BBIL,J.K1=2. *ZKZ+DZE*ETA(L,J,K}/DT2
DD(L,J,KI=(XKX*2.*(FSTAR(LM! ,J,K)-FSTAR(L ,J ,K)}/ ‘DX(L)*DX{L)}+YKY*
J(FSSTARIL ,J+| ., K)-2.*FSSTARI(L ,J,K} +FSSTAR(L ,J-1,K) }1/DYS+ETA(L . J.K}*
2FSSTARIL ,J,K)s/DT2)*02Z2

CONT INUE

oXo NODE EQUAL oLa AND oyo NODE EQUAL BbMno

ETA(L M. K)=THETA/SQRT (AF (L ,M,K)+PRFUN) +THETA1/SQRT(FSSTAR(L ,M,K) +P
IRFUN)

BB(L M ,K)=2_ *ZKZ+DZ2*ETA(L M, K)/DT2

DD(L M K)=(XKX*2.* (FSTAR(LM] ,M,K)~-FSTAR(L M,KJ))/{DX{L)*DX{L))+YKY®*
12.*(FSSTAR(L ,MM] ,K)-FSSTARI(L ,M,K})/DY2+ETA(L ,M,K}*FSSTAR(L ,M,K) /DT
221+DZe

axo NODE EQUALS cLo AND ayo NODE EQUALS ONE

ETA(L,] ,K)=THETA/SQRT(AF (L .] . K)+PRFUN)+THETA1/SQRT(FSSTAR(L, 1 ,K)+P
IRFUN)

BB(L,1.K)=2.°ZKZ+DZ2*ETA(L,!.K)/DT2

OD(L, 1 ,K)=(XKX*2.*(FSTAR(LM],} ,K)-FSTAR(L,1,K))/(DX(L)*DX(L})+YKY*
12. *(FSSTAR(L ,2.K)-FSSTARI(L,1,K))/DY2+ETA(L,] ,K}*FSSTAR(L,!.K)/DT2)
er*nze

CONT INUE

CALCULATE EE(],J,K) AND FF(1,J,K) FOR nZo NODES BETWEEN | AND NM] .
USE NEUMANN CONDITION FOR K=1 (DFSSTAR/DZ=0.) IN REGION WHERE
AFCI,J,1) 1S NOT SPECIFIED AS INPUT AND DIRICHLET CONDITION WHERE
AFCE,J.1) IS SPECIFIED EQUAL TO FSSTAR(!,J,1), USE THE RECURSION
RELATIONSH[P FOR ALL OTHER nZo NODES.

DO 83 JU=1.M

DO 83 j=1,L

IF (I.LE.L2.AND.J.LE.M2) GO TO 79
EECT,J, =1,

FFeL,0,1)=0,

GO 10 BO

EE(],J,1)=0

FF(1,J,1)=FSSTAR(I,J,1)
DO 82 K=2,NMI
IF (DTOT(J.K).GT.0..AND.1.£Q.1} GO TO BI
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(482
1483
1uB4
1485
1486
1487
1488
1489
1+90
1-81

1492
1493
JRR=L]
1485
1+96
1497
1438
i+99
1-.00

[zXnke]

[pXaXs]
w 0 f1+]
wn -

OO0OCGO0OOON0

84

85

OCO00

86

87
88

C
C

QUTSIDE THE CRACK

DEN=881!,J,K)-ZKZ*EE (] ,J,K-1)
EEt],J,K)1=ZKZ/DEN

FELL U KI=(DD!I T D, K)Y+ZKZ*FF (],J,K-1))/DEN
GO TO 82

[INSIDE THE CRACK

DEN=BB(1,J.K}-ZETA(] ,J,KIEE(L U, K-1)
EECE.JU,K)=ZETA(),J ,K)/DEN

FFO),J,KI=(DO(]  JKI+ZETAC! ,J, K ¥FF (], J,K-111/DEN

CONT INUE

CONT INUE

CALCULATE VALUES OF AF(],J,K) =-- THE LAST VALUE OF F(1,J,K) AFTER

COMPLETION OF ALL EXPLICIT AND IMPLICIT CALCULATIONS. THE VALUE
OF FCI,J,NJ IS ALWAYS EQUAL TO ZERO. COMPARE VALUES OF AF(],J,K)
WITH PREVIOUS VALUES AND ITERATE THROUGH nZo DIRECTION
CALCULATIONS F CONVERGENCE NOT OBTAINED.

1Z2=0

DO 85 U=1,M

DO 85 [=1,L

DO 84 K=1,NM2

NB=N-K

AAF=AF{],J.NB)
AF(],J.NB)=EEC] ,J,NB)*AF (] J,NB+]1+FF (1, ,NB}
COMPARE=ABS (AF (| ,J,NB) ~AAF )/ AAF

IF (COMPARE.LT.0.00.0R.AF(],J,NB).EQ.AAF} GO TO B4
1Z=12Z+1

CONTINUE

IF (I.LE.L2.AND.J.LE.M2) GO TO 85

AFCEL,J, D)=AFL], U, @)

CONT [NUE

IF (1Z2.£2.0) GO TO 86

[TERZ=ITERZ+!

[F (ITERZ.LT.2) GO TO &2

COMPARE TOTAL COMBINED oXo, mYo, AND nZo IMPLICIT LOOPS AND
iTERATE THROUGH ALL [MPLICIT CALCULATIONS [F CONVERGENCE IS5 NOT
OBTAINED.

17=0

DO 88 J=1,L

DO 88 J=1,M

D0 88 K=1,N

IF (AF([,J,K).GT.FMAX) GO TO 92
COMPARE=ABS(AFF L] ,J.KI-AF (] ,J,K))/AFF(],J,K)
IF (COMPARE.LT.0.00{.0R.AFF(I,J,K).EQ.AF(I,J,K)) GO TO 87
[T=1T+1

AFF L], J,K1=AF(],J,K)

CONT INUE

IF (IT.E£Q.0) GO TO BS

ITERT=]TERT+1

IF ¢({TERT.LT.2) GO TC 6

UPDATE /JALUES OF F IF CONVERGENCE |S SATISFACTORY
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1501

1502
1503
1504
1505
1506
1507
1508
1508
1510
1511

1512
1513

[=

89

90

91

92

DO 90 J=1.M

D0 90 I=1,L

D0 90 K=1,NM]
Fol,J,K)=AaF(],J,K)
CONT INUE

RETURN

WRITE (59,92) I,J.K

CALL EXIT(1)

FORMAT

1P,
END

IJ.K=

,315)

(BSHCONVERGENCE FAILURE
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