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(;,\s-i.Mn,\!i:i> CKACK PROIVU;ANON IN A VOROIS SOLID 

Abstract 

Iliv propagation of a crack in 
porous earth iormations f.>l lowlni1, an 
experimentcl underground i-jmli-ar ex­
plosion is analysed, Ihc thrvo-
dlncusional analysis includes Inter­
action ol r.as pressure within the 
crack, permeation of Raw into the 
porous earth : ormat ion, deflection 
ol thi- crack walls, and crack 
l>rop.i)M( ion. Kffi'ds of pernoai/l! it y, 
k, frois 1()"° to . ) . ! (..in)"' IK-ir.;*; 
1 D.ircyj, initial crack leiic.th and 

width up to 110 and 170 m, and ratio 
ui maximum earth formation resistive 
pressure to initial driving pressure, 
I' 'I' , I"ron 0. 1 to 0.'* are 
'max i 

delineated. Propagation of a 
i-rack to the earth's surface 
following a typical experimental 
underground nuclear exnloston buried 
at a depth of 500 m occurs only 
under unlikely conditions, such as 
when k 10~~ (-")" and !',. '}', 'max 1 
• U.7r>. 

crack in an earth fornatton through 
which radl -active gases mi Kht vent 
to the atmosphere. 

Consider the experimental under-
cromi.! nuclear explosion shown at 
the top of n>;. 1. A lar^e amount 
^i enore,v is released almost 
Instantaneously at the- time of the 
explosion and all matter in the 
immediate vicinity of the explosion 
is vaporized. Within a second or 
two an underground cavity is formed 
which is filled with radioactive 
Rases at, or slightly above, the 
earth formation overburden pressure. 
These radioactive gases permeate the 

Introdtic 

S.is'ety and environmental 
considerations require that radio-
•i. tivc . ontamiuants he cuntained 
below the earth's surface following 
an experimental underground nuclear 
explosion, or following proposed 
nuclear stimulation of tii:ht suhter-
ranoan e,as reservoirs. To insure that 
nuclear testini, and si i: ul.1t ion can 
lie carried out safely, r-ethoos need 
to he available to determine the 
flow of radioactive Rases ! hi •<!>;!: the 
interstices and cracks ol I ;. 
earth formations. This pap-M* describes 
one potential release mechanism 
whtch involves propagation o( a 

introduction 
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Ground surface 

Propagating crack in an earth formation 

Cavity containing radioactive gas at or 
slightly above trie earth formation 
overburden pressure, 4-14 MPa 

300-5000 m 

^ m^ 
Ground surface 

Pressurized cavity produced following 
a nuclear detonation 

Propagating cracks 

Natural gas bearing formation 

/-Reactor containment shell pressurized 
ij^yh x\J with radioactive gases 

Ground surface 

Propagating cracks in an earth 
formation 

Fig. 1. Three examples of gas - in i t i a t ed crack propagation. 

earth formatio.i and also flow into 
cracks formed during the same time 
period as the formation of the under­
ground cavi ty . Forces due to gas 
pressure within the cracks may 
cause the cracks to be enlarged. 
Should the enlarged cracks propagate 
to the surface of the ea r th , ;hey 
would form open passages through 

which radioactive contaminants could 
reach the atmosphere. 

A second example of a po ten t ia l 
vent to the atmosphere i s shown in 
the middle portion of Fig. 1 where a 
gas bearing formation is fractured by 
detonating a nuclear charge. Nuclear 
fracturing has been carried out on an 
experimental basis and i s being 



considered for use with tight and deep 
formations where It might not be eco­
nomical to produce natural gas by 

1 2 other means * . Although we wish to 
form many large fractures in the 
gas bearing formation, we need to 
insure that the fractures do not 
extend to the surface of the earth 
and vent radioactive material. 
Hence, before gas stimulation can 
be performed safely, the growth 
pattern of fractures leading to 
the surface needs to be computed. 

A third application involves 
the analysis of a hypothetical 
accident in a nuclear power generating 
station. Should a loss-of-coolant 
accident ever occur, with subsequent 
core meltdown, the floor of the 
containment shell (below the earth1s 
surface) could be cracked by ensuing 
thermal stresses as shown schemati­
cally in the botlom portion of Fig. 1. 
Radioactive gases from the reactor 
couid be released into the surrounding 
earth formation through this break 
in the containment shell. Any cracks 
present in the earth formation 
could then be extended to the 
surface of the earth and form passages 
through which radioactive (.ases might 
reach the atmosphere. 

Our objective is to determine the 
conditions under which a pre-existing 
crack in a porous earth formation 
will propagate when exposed to high 
pressure gas. This apparently is 

the first study that shows the inter­
action of gas pressure within the 
crack, permeation of the gas into the 
earth formation, deflection of the 
crack wall, and the phenomenon of 
crack propagation. 

Although three applications have 
been indicated, our main interest is 
in containing radioactive contaminants 
below the earth's surface following 
an experimental underground nuclear 
explosion. 

At the Nevada Test Site (S'I'S) 
of the Lawrence Livermore Laboratory, 
the most conuton earth formation in 
which experimental underground nuclear 
tests are conducted, is alluvium. This 
alluvium has a permeability ranging 
from 10 " to l(..m)" |l(..m)~ 1 
DarcyJ' and has a negligible tensile 
strength when compared to the pres­
sures involved in this study * . The 
nuclear explosive charge is buried 
typically between 200 and 600 m below 
the surface of the earth. Initial 
temperature variation in the earth 
formation to this depth is only a 
few degrees which we neglected. The 
initial crack thickness is generally 
on the order of the average grain 
size of the alluvium formation, which 
at NTS is about 1 mm. This crack 
thickness enlarges up to about 150 
mm as deflection of the crack walls 

occurs. Cracks present in the allu-
4 vium have lengths of over 40 a. 



The literature indicates that 
relatively little work has been done 
in the field of gas-initiated crack 
propagation. Keller, Davis, and 
Stewart analyzed propagation of 
small cracks ranging up to a maximum 
length of .1 or ) m. They considered 
a mixture of condensing steam and 
water and predicted whether a crack 
would initially grow. Their study 
did not determine if the crack 
would reach the surface of the 
earth and result in th-- release of 
r.i jioact iv<? contaminants. Rather, 
they were able to place a bound on 
conditions necessary for initial 
crack growth which could lead to 
eventual propagation of cracks to 
the surface of the earth. 

Literature is available on 
hydraulic fracturing as applied to 
the petroleum industrv, e.g. Howard 

1 ;" and Fast and Cleary . Hydraulic 
fracturing involves pressurizing 
low permeability, petroleum producing 
formations next to r, section of well 
bore. Hydraulic fracturing differs 
from nuclea.' fracturing in that a 
liquid rather than a gas is used to 
fracture the formation. Furthermore, 
in the hydraulic fracturing literature, 
the complete interaction of pressures 
within the crack, the flow of fluids, 
deformation of the earth formation, 
and extension of the crack has not 
been included. Therefore, this study 
also is of interest to the petrolei.m 

-4-

industry. Hy changing the equation 
of state from a gas to a liquid, the 
propagation of a hydraulic fracture 
could be predicted. 

In the present analvsis we 
consider a porous earth formation, 
as shown in i'ig. -, where a crack 
is seen along the left side. The 
top of the volume is subjected to 
atmospheric pressure at the ground 
surface. The bottom of the volume 
is at the elevation of the under­
ground nuclear explosion. The origin 
of the coordinate system is in the-
left front with the "7." axis vertical. 
(las generated hy the explosion exerts 
a driving pressure over a portion of 
the 7.=0 plane bounded by the (..shed 
lines and the "X" and "Y" axes. 
The X=0 and V=0 surfaces are planes 
of symmetry, other surfaces are 
positioned at remote distances 
from the origin so that ch. pressure 
gradient perpendicular tc these 
surfaces is zero, 

(las frotn the explosion permeates 
the earth lormation and simultaneously 
flows upward In the crack from the 
Z=0 plane. The resistance to flow 
in the crack is less than that in the 
formation. This results in pressures 
in the crack that are greater than 
those in the pores of the solid at 
the same elevation. Thus, gas flows 
out of the sides of the crack and 
into Che formation from the X=0 
plane. 



Atmospheric pressure 
ot the ground surface 

Crock 

Crack 
thickness Gas flow in the crack 

Fig. 2. Model of a propagating crack in a porous earth formation 

The sides of the crack deflect 
in the "X" direction and extend in 
the "Y" and "Z" directions. These 
deflections are produced when the 
forces due to gas pressure, which 
tend to open the crack, exceed the 

forces, due to the weight of material 
present above, are transmitted through 
the solid matriy of the earth forma­
tion. 

The problem is analyzed in three 
parts, consisting of deflection of 

resistive pressure forces in the earth the crack wall, flow of gas in the 
formation, which tend to keep the solid, and flow of gas in the 
crack closed. The resistive pressure crack. The extent of the crack in 
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the X=0 plane beyond its initial 
value consists of the region where 
the deflection is >0. Deflection 
of the crack wall is calculated by 
considering the plane of the crack 
(X=0) to be the surface o. a semi-
infinite solid. We find elemental 
surface deflections caused by a unit 
load applied In the "X" direction op 
an elemental area. Total surface 
deflection is found using superposi­
tion. The data of Gerrard and 

u 
Morgan are U3ed to establish elemenral 
surface deflection away from the area 
where a unit load is applied. i-Jerrard 
and Morgan's data establish a multi­
plier to reduce the elemental surface 
deflection with distance away from the 
loading area. A circle of influence 
exists beyond which the loads have 
no effect. 

The analysis for gas flow in the 
porous earth formation follows that 

9 of Morrison . The conservation 
equations are combined with an ideal 
gas equation of state and placed in 
dimensionless form. Experimental 
data are included that verify this 
portion of the analysis. 

The gas flow in the formation 
is considered isothermal for two 
reasons. First, in spite of the 
fact that the initial gas temperature 
is high, the energy carried by the 
gas is small in comparison with the 
heat capacity of the earth formation. 

Second, the 1 mm average era In size 
of the alluvium results In a largo 
surface-to-volume ratio which offers 
rapid heat transfer from the 8 a K to the 
formation. Consequently, the gas 
reaches the formation temperature 
after traveling no mo,-' than a few 
me t res. 

Gaa flow in the crack is calcu­
lated by consider) fully developed 
internal flow bt ua clcse'.y spaced 
parallel wall sclents . The crack 
is thickest at the origin and is 
tapered toward the edges. Up to 200 
segments ar; used to represent the 
tepered edge of the crack. Changes ip 
crack Thickness are gradual so that 
use of parallel wall segments in th_ 
calculation is a good approximation. 
Transient and acceleration terms 
present in the complete momentum 
equations for flow in the crack are 
neglected. Experimental frictional 
coefficients dependent on Reynolds 
number and relative roughness are 
incorporated. 

A solution of the entire problem 
is obtained by combining the three 
parts of the analysis into a single, 
implicit finite-difference iteration 
procedure. Starting with given crack 
dimensions and pressures, we calcu­
late a revised crack wall deflection. 
This calculation also establishes 
the extent of the crack in the "Y" 
and "Z" directions. Next we find a 
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frictionai coefficient using the newly 
calculated dimensions of the crack 
and known values of pressure. We 
then determine the gas flow both in 
the porous earth formation and in the 

This section discusses the 
analysis for deflection of the crack 
wall, gas flow in the earth formation 
and gas flow in the crack. The 
development of equations for the 
frictional coefficient are Included 
in the analysis for gas flow in the 
crack. 

DEFLECTION OF THE CRACK KALI. 

crack. The flow calculations result 
in pressures at a new time which 
can be used in the next time iteration 
to calculate a new crack wall 
deflection. 

initial pore pressure throughout the 
solid to be atmospheric. 

Cleary has suggested that the 
resistive pressure forces are equal 
to the overt:•Tden. This assumption 
is valid if the earth formation has 
little strength and is subject to 
creep, since over geological time, 
motion would occur in the earth 
formation until a hydrostatic stress 
state was reached. On the other 
hand, if a hydrostatic state is not 
reached, then a three-dimensional 
stress state would exist where the 
resistive pressure forces would be 
a fraction of the overburden. At 
NTS, where the eprth formation of 
interest consist of low-strength 
alluvium, we expect the resistive 
pressure forces in undisturbed 
alluvium to be close to overburden. 
Analytical results are included 
which show the effect of variations 
in resistive pressure forces. 

To determine crack deflection, 
we first consider the effect of 
a force acting on an elemental 
surface area of a semi-infinite 

The analysis of the "X" direction 
deflection considers the crack wall 
to be a portion of the surface of a 
semi-infinite solid, as shown in 
Fig. 3. Two opposing forces are 
present. Forces due to gas pressure 
in the crack tend to deflect the 
surface and thereby open the crack 
while the horizontal resistive 
pressure forces in the earth formation 
tend to prevent deflection and keep 
the crack closed. Also present is 
a pore pressure equal to the hydro­
static head of fluid in the formation. 
Since the porer in alluvium at NTS 
are filled with air to the depth of 
interest in thi.s study, we take the 

Analysis 



z 

Horizontal earth 
formation resistive 
pressure forces tending 
to prevent deflection 
and keep the crack 
closed 

- Gas pressure forces within the crack tending to 
deflect the surface and thereby to open the crack 

Pro forces acting on one wall o( the- crack. 

elastic solid, which is given by 
Timoshenko ami Coodier as 

Q-v") F 
;i E R (1) 

where /' is the surface deflection 
in the "X" direction; V is Poisson's 
ratio; E is the modulus of elasticity; 
F is the force equal to the gas 

pressure in the crack that is in ex­
cess of the initial pore pressure, 
less the earth formation resistive 
pressure, an.' times the elemental 
area where the pressures are applied; 
and R is the radius along the crack 
wall from the elemental area to the 
point where the de.rlectlon is being 
calculated. 



Next, we integrate the force 
calculated in Eq. (1) over a finite 
surface area to obtain the clef 1 ection 
due to pressure acting on a portion 
of the surface. This problem was 
analyzed in detail by Love . 'IVo 
difficulties are that the solution is 
singular at R-0 and that a deflection 
occurs at any radius however large. 
When R-*0, Timoshenko and Goodier 
utilized an average deflection under 
a small surface area. For a square-
shaped area this deflection is 

^ . JLiSikiQ ( P . p ^ ^ ( 2 ) 

where V is the gas pressure in the 
crack. P is the earth formation r 
resistive pressure; and A is the 
surface area of a single grid where 
the pressure is applied. When the 
radius becomes large, the data of 

8 Gerrard and Morgan can be used to 
obtain a surface deflection profile. 
Their data were obtained experimentally 
for a load applied uniformly over 
a finite circular area. Extrapolation 
of Gerrard and Morgan's data is in 
reasonable agreement with the data 
of Campen and Smith which show a 
zero surface deflection beyond a 
distance equal to about five radii. 
In other words, a circle of influence 
exists out to a normalized radius 
of about five beyond which P and P 
have no influence on the surface 
deflection. 

We converted Gerrard and Morgan's 
data for a circular surface area 
loading to an equivalent square sur­
face area loading and obtained 
coefficients for use in a formula 
for any ratiius similar to Eq. (2). 
That is, ii circle of radius (4/TT) a 
would be equivalent to a square with 
a side of 2a. For the finite square 
area directly below the load the 
coefficient would be 0.95 and for 
equivalent radius rat Los beyond 
five the coefficient would be zero. 
We also normalized the deflection 
and area using reference length, 
L, equal to the vertical distance 
between the Z=0 plane and the ground 
surface. Pressure and modulus of 
elasticity were normalized to the 
difference between the initial gas 
driving pressure, P., and the initial 
earth formation pore pressure, P,*. 
The initial earth formation pore 
pressure is considered constant and 
equal to the atmospheric pressure. 

Finally, we obtain a relationship 
for the total surface deflection at a 
point by summing over the entire X=0 
plane. This gives 

D = V C„ ( 1 V } (P -P ) (A)'£ (3) 

where X) is the normalized total sur­
face deflection and C(, is the Gerrard 
and Morgan deflection coefficient. 
The bar above the variables indicates 
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they are normalized. The summation 
may be terminated for equivalent 
radius ratios beyond five since Cg 
is zero there. 

The region where D > 0 defines 
the extent of crack propagation and 
the location of the crack tip. No 
other criteria are necessary because 
by definition a crack exists only il 

its thickness is positive. 
Utilization of Eq. (3) implies 

that the earth formation is elastic 
during initial loading and therefore 
that superposition is applicable. 
Earth formations in general are not 
elastic and a more complex soil model 
would improve the accuracy of the 
calculation. However, the experimen­
tal data of Gerrard and Morgan 
indicate that trhe initial load-
defle> tion curve for sand is within 
five per cent Of elastic. Further, 
we were able to make a linear approxi­
mation of the Stress-strain data for 

14 alluvium from NTS between 0 and 
12% strain. Actual stress-strain data 
deviated a maximum of 25X from 
this linear approximation. This 
deviation of alluvium from a linear 
approximation was considered accept­
able, for the purpose of this study. 
Therefore the initial loading of 
alluvium was considered in the analy­
sis to be elastic. 

Total deflection, D, is permitted 
to increase (but not decrease) in 
magnitude because in our range of 

pressures the initial loading causes 
a reduction of pore volume which 
does not increase appreciably when 
the load is reduced . In other 
words, a reasonable approximation for 
alluvium at NTS for the range of 
pressures used in this study is 
elastic behavior during initial 
loading with negligible change la 
deflection during unloading. 

We considered two other methods 
of calculating crack wall deflection. 
One method is based on an analysis by 
Sneddon which is used by Keller, 
Davis, and Stewart and which gives 
a solution in closed form for 
deflection of axisymmetric crack 
shapes. In applying Sneddon's 
analysis to an underground nuclear 
explosion, the axis of symmetry is 
horizontal and the crack length along 
which propagation would occur is in 
the radial direction. This radial 
direction includes both vertical and 
horizontal rays. We find that the 
cracks grow more vertically (upward) 
than horizontally since the earth 
formation resistive pressure is 
proportional to the distance below 
the earth's surface. Thus the 
axisymmetric assumption limits the 
results to small lengths of crack 
propagation. The other method 
utilized a finite-element computer 

code developed by Wilson, Farhoomand, 
17 18 and Bathe ' and modified by 

19 Tokarz . We used Wilson's analysis 

-10-



to calculate crack wall deflection in 
a two-dimensional problem which we 

20 analyzed earlier . We found the 
deflection calculation satisfactory 
in two dimensions but not readily 
extendable to three dimensions with­
out requiring excessive computer 
time. Consequently, neither of these 
analyses were considered satisfactory 
for this study. 

21 We use Darcy's law for the 
mementuro equations, which are 

X 

u 
3F 

ax 
k 

V 
3P 
3Y 

k z 
u 

3P 
3Z 

(5) 

(6) 

(7) 

FLOW IN THE POROUS SOLID 

The control volume used for 
analysis includes both pore space and 
solid grains. We write the continuity 
equation as 

3pu x 
3X 

3pu 3pu » 

where X, Y, and Z are spatial coor­
dinates; p is the gas density; u , u , 

x y 
and u are apparent velocities; e is 
the porosity; and t is time. 

where k , k , and k represent direc­
tional permeabilities that are 
normally determined by experiment, 
and p is the gas viscosity. Gravity 
forces are omitted since they are 
negligible in comparison to the 
pressure forces. 

An ideal gas equation of state 
is used since this is a good approxi­
mation for non-condensible gases at 

22 ambient temperature and pressures 
up to 10 MPa, which are the maxima 
of interest in this study. The gas 
equation of state is written as 

The apparent velocities equal 
the volume flow rate passing through 
a face of the control volume divided 
by the cross-sectional area of the 
face, including both void and solid 
portions. These apparent velocities 
are different from the actual gas 
velocities since only a fraction 
of the control volume is available 
for occupancy by the gas. 

P = R T (8) 

where R is the gas constant and 
T is the absolute temperature of the 
gas which we consider constant. 

Combining Eqs. (4) through (8) 
gives the equation 

2 2 
k x ~=2 + k y ;=2 + k-3X 3Y' s ' - " I f <•) 
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where the quant i t ies with a bar 
represent normalized var iables and 

and 

( " * ) 

yyy 
T j 

£ 1 1 1 

(10) 

(11) 

(12) 

Values of k , k . and k are made x y z 
dimensionless using a constant 
reference permeability, k_. 

Eq. (9) is differenced using an 
implicit method because the spatial 
derivatives taken individually with 
the time derivative form a parabolic 

23-25 equation. We use Brian's method 
since this reduces to the alternating-
direction implicit method in two 
spatial dimensions identical to the 
"Y" and "Z" directions difference 
algorithm used for calculating 
flow in the crack. The coefficient on 
the right hand side of Eq. (9) is 
evaluated using values of F at an 
average of the old and new times 
until convergence is obtained. 

Increased accuracy for a given 
number of grid points is achieved 
by using a variable grid spacing 
for the "X" direction based on 
Blottner's grid-stretching relation­
ship . Blottner's relationship 
is 

0 (K i n -1) 

where X. is the total length in the 
"X" direction; K is a variable 
normally between 1.5 and 2.718 
(i.e. the value of e), and I is the 
number of spatial intervals in the 
"X" direction. 

FLOW IN THE CRACK 

The crack is divided into parts 
and the analysis considers internal 
flow between two parallel porous 
wall segments through which the 
gas permeates the earth formation. 
The continuity equation may be 
written as 

3pu x 
ax 

9puv 3pu 
+ + ^ Y 3Z + H ° (14) 

We establish a control volume 
so that a single finite difference 
mesh spans one half the crack 
thickness and takes advantage of a 
plane of symmetry at the crack center-
line across which there is no mass 
flow. Such a control volume prevents 
the determination of a velocity 
profile in the "X" direction within 
the crack. However, this information 
is not germane to our analysis. The 
momentum equations take on a 
different form in the "X" direction 
than in the "Y" and "z" directions. 
Flow through the walls of the crack 
in the "X" direction is governed 
by the pressure distribution in the 
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adjacent earth formation so that 
Darcy's law is applicable. Flow in 
the "Y" and "Z" directions is 
approximated by the momentum equation 
for fully developed internal flow 
that is rearranged for an explicit 
solution of the velocity. The momen­
tum equations used are 

(J 3X 

* dc 3P 

U

Z ~ ± \ J X P 3 z | / 

<15) 

(16) 

(17) 

where d i s the crack thickness in 
the "X" direction and A is a friction-
al coefficient. 

The plus sign in Eqs. (16) and 
(17) is used whert the pressure 
gradient is <0 arid the minus sign 
when the pressure gradient is >0. 
The flow may be either laminar or 
turbulent. These different fiow 
conditions are accounted for in the 
calculation of A which is dependent 
on Reynolds number and the relative 
roughness of the crack walls. 

We took computed results and 
used these to determine the magnitude 
of the neglected transient and 
acceleration terms in the "Y" and "Z" 

direction momentum equations. The 
magnitude of these neglected terms 
was then compared with the included 

pressure gradient term. This com­
parison shows the neglected terms to 
be less than 10% of the included 
terms except at times less than about 
one eighth of the total problem time. 
Even at Lnese early times the 
neglected terms are probably 
negligible sir.ee the actual 
driving pressure is applied over a 
short period of time rather than 
the instantaneous fashion we have 
used mathematically. 

Application to transient 
conditions of a frictional coeffi­
cient, A, evaluated under steady 
flow conditions, has been used 

28 by several authors. Ginzburg 
assumed that the resistance properties 
established for steady flow are pre-

2 
served for transient flow. Petreva" 
also determined the magnitude of the 
frictional coefficient using steady 
flow conditions. Yeremenko and 

30 Markov used Prandtl's mixing 
length hypothesis with a linear 
variation in shear stress to obtain 
mathematically variations in friction­
al coefficients from their steady 
state values. Yeremenko and Markov 
expanded the sheai stress of Prandtl's 
mixing length hypothesis in the form 
of a polynominal based on open channel 
flow. They showed quantitative 
increases in frictional coefficient 
for accelerating flow using an 
unsteady flow parameter, <$g-

29 
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Unfortunately, no method of deter­
mining <5Q is indicated without 
knowledge of the velocity distribution 
in the flow channel. This velocity 
distribution has been analyzed In the 
laminar flow regime but in general 
is unknown. Further studies relating 
the effects of acceleration on 
frictional coefficient are needed 
but in their absence we use the 
values corresponding to steady flow. 

An Ideal gas equation of state, 

.? T (18) 

is again taken under isothermal 
conditions so that Eqs. (15) through 
(18) may be combined using normalized 
variables and neglecting gravity to 
give 

-k i£ + ^ - k 
ex ^ - ^- 1 cyz 3X 3Y 

Ms)>* 
(19) 

where e L k 
(20) 

cyz 

£ /2d L R t\h 

< prV ko \ ~ x /• 
(21) 

The reference permeability, k , is 
set so that the initial value of 
k is unity at the origin, cyz 

Equation (19) may be placed in 
an efficient and convenient form for 
numerical solution by differentiating 
the "Y" and "Z" terms which, after 
rearranging and using Eq. (10), yields 

k ^ + ' 3 - E 
c x 3X \3Y 

£* W 2(§r 
32 / \ 3Z / I 3Z 

v / 2 ('1') 

3k 

3Y 

Kl-kF-h IE f 2 2 ) 
3Z 2 2 ^ ( " 

_ The terms in Eq. (22) containing 
cyz/3Y and cyz/3Z are calculated 

explicitly since they vary mainly 
with spatial location and are nearly 
constant with time. The terms in 
square brackets make Eq. (22) 
nonlinear. If the "X" direction 
spatial derivative dominates over the 
"Y" and "Z" direction derivatives of 
F, the equation becomes hyperbolic in 
nature. An explicit differencing 
technique would then be necessary 
to prevent artificial numerical 

32 damping . If either the "Y" or 
"Z" direction derivatives of F 
dominate, the equation becomes 
parabolic and an implicit solution 
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is most efficient. Because dominance 
by any one spatial derivative may 
occur, we use an operator splitting 

33 technique to solve Eq. (22). This 
increases the speed of computation 
because the stability inherent with 
implicit differencing may be used to 
advantage. Eq. (22) is broken into 
two separate equations 

ex - 2 3T 
(23a) 

9k 
_cyz. 
3Z 

+ 

> 
= 1 

2 F' •h 3F 
3T 

(23b) 

with Eq. t23a) firnt solved repeatedly 
in an explicit fashion using a small 
time step to assure stability. The 
resulting new values of F from Eq. 
(23a) are used as initial values to 
solve Eq. (23b) which is solved by 
the alternating-direction implicit 

23 method . The total time increment in 
solving both Eqs. (23a) and (23b) is 
kept identical. 

Calculational Method 

The problem posed in this study 
is solved numerically using nearly 
the entire small core memory of a 
Control Data Corporation* 7600 
computer. Although use of just the 
small core memory results in faster 
speed, the calculations are still 

*Reference to a company or product 
name does not imply approval or 
recommendation of the product by the 
University of California or the U.S. 
Energy Research & Development 
Administration to the exclusion of 
others that may be suitable. 

time consuming. The 65,000 word 
capacity of the small core memory 
permitted the inclusion of about 3000 
spatial nodes. A larger number of 
spatial nodes could have been included 
but at a sacrifice in the speed of 
computation. Typical computer run 
times using just the small core 
memory range from 15 minutes to one 
hour. The total computer time to 
generate the results for this study 
was about 50 hours. 

Both the crack wall deflection 
and the frictional coefficient are 
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found at each node within the crack 
from the governing -aquations. The 
bulk of the calculations in ear'i 
time step are required to determine 
the pressure function, F, in the 
porous solid and in the crack. At 
each node we select the applicable 
governing equation. The calculation 
of F at the new time step is per­
formed in three parts. First, 
intermediate values of F are found 
using Eq. (23a) if the node is within 
the crack or, if the node is in the 
porous solid, by setting up a matrix 
with the "X" direction calculations 
implicit. These first intermediate 
values of F are determined fir each 
node before the calculations are 
continued. Next > we use the first 
intermediate values of F to determine 
a second intermediate value of F at 
each node by considering the "Y" 
direction calculations to be implicit 
Finally, the value of F at the end of 
the time step is determined at each 
node using the second intermediate 
values of F and by considering the 
"Z" direction calculations to be 
implicit. In thts fashion, the 
calculations for nodes in the crack 
are interspersed with calculations 
for nodes in the solid. 

The governing equations are 
nonlinear so that stability is not 
assured even though the differencing 
is implicit unless the lime step is 
kept below an upper hound. This 

upper bound was dt't crminc-d bv trial 
calculations. Values of pressure 
need only be determined for calculat ion 
of the crack wall deflection and for 
printout of the results. Wc find that 
results are independent of 
variations in the time step over a 
factor of one hundred as long as 
stability is maintained. This is an 
indication that writing the govern­
ing equations in terms of F was a 
judicious choice. 

Up to a point, results are also 
independent of changes in the "Y" 
and "7." direction spatial mesh 
size. However, a decrease of the 
"X" direction spatial mesh size by 
a factor of 100 typically was found 
to increase the time for crack 
propagation to the surface of the 
earth by 20%. This is due to the 
dependence of gas permeation into 
the porous solid from the crack on the 
pressure function derivative, the 
approximation of which improves as 
the mesh size is reduced. Because 
our interest is in prevention of 
crack propagation, selection of a 
given "X" direction spatial mesh 
size acts as a conservative hound 
on the time required for crack 
propagation. That is, inclusion of 
a finer grid spacing has the effect 
of increasing crack propagation 
time. If no propagation occurs 
under the selected "X" direction 
mesh size, then a reduction In 



mesh size would only confirm that 
the crack will not propagate. 
Although it might appear desirable 
to continually decrease the "X" 
direction grid size, a limit is 
reached where the CDC 7600 small 
core memory is exceeded if the 
necessary spatial distances are 
maintained. Computer run time 
would then increase beyond our 

Experimental 

The primary application of 
this study is to assure the safety 
of underground nuclear explosions. 
Experimental verification by means 
of a underground nuclear explosion 
with subsequent release of con­
taminants to the atmosphere is in 
conflict with this study's basic 
purpose of preventing the release 
of contaminants. Full scale tests 
using high explosives are costly 
since enough explosive must be 
used to propagate the crack a 
significant distance. Perhaps some 
laboratory scale model of the com­
plete analysis is nossible; however, 
one is concerned about the accuracy 
of measuring the location of a 
propagating crack in an earth 
formation on a reduced scale. 
Consequently, experimental veri­
fication of the complete analysis 
does not appear feasible. 

allowable budget. The computer 
program consists of a main portion 
used for input and output and 
which updates necessary variables 
prior to calling three calculational 
subroutines. These three subroutines 
determine the crack wall deflection, 
frictional coefficient, and flow both 
in the crack and in the porous solid. 
A typical real-time step was 0.005s. 

Verification 

We found experimental data in 
the literature for the frictional 
coefficient used to calculate flow 
in the crack. We also found experi­
mental data in the literature 
relating load, surface deflection, 
and distance away from the point of 
load application which could be used 
to determine deflection of the 
crack wall. Data necessary to 
adequately verify the nonlinear, 
transient gas flow in the solid was 
not found in the literature so we 
constructed an experimental facility 
and generated the required information. 
Each portion of this analysis then 
is either experimentally verified 
or based on experimental results 
from the literature. 

The experimental test apparatus 
constructed to obtain data for 
transient gas flow In a porous 
solid consisted of a 0.3 m diameter, 



4,6 m long steel pipe filled with 
Overton sand as shown schematically 
in Fig. 4. O'-erton sand has a 

2 permeability of 20 (um) , which is 
within the range of perne.ibility 
for alluvium at NTS, anu was selected 
rather than alluvium formation 
because of the ease in installation 
and because no economical means 
exists to obtain samples of 
alluvium formation at depths over 
a hundred meters of the size necessary 
for our tests without significantly 
changing its permeability an! other 
flow properties. Dry nitrogen was 
forced through the column of sand 
by using a pneumatically operated 
valve controlled by an analog compu­
ter. Flow rate was determined by 
measuring the gas pressure on each 
side of sharp edged orifices placed 
in the inlet line. Measurements of 
gas pressure in the column of sand 
were made as a function of time 
at eight axial locations. 

Pressure was obtained with 
strain-gate type pressure transducers 
having an accuracy of 0.1% of full 
scale. Readout of pressure was 
performed on strip chart recorders 
capable of resolving pressures to 
2% of the 3.5 bar inlet pressure. 
The facility was designed to permit 
use of a mixture of steam and 

nitrogen; however, these data are not 
applicable Co the present study. 

Each test was conducted by 
first establishing the approximate 
initial flowrate using a bypass line. 
An orifice was installed in the 
bypass line to simulate the initial 
resistance of the column of sand. 
At the appropriate time a three-way, 
full-flow valve was actuated that 
switched flow from the bypass line 
to the line leading to the column 
of sand. A zero time was established 
when the pressure tranducer at the 
inlet to the column of sand recorded 
the resulting step change in pressure. 

A comparison of these data with 
the theoretical results which are 
used to predict the non-linear 
transient gas flow in the porous 
solid is shown in Fig. 5. The 
theoretical results for selected 
times are indicated as solid lines 
with the experimental data points 
related by the various symbols. 
Agreement is felt to be excellent 
thereby confirming the accuracy of 
the analysis for gas flow in the 
porous solid. The analysis for the 
"X" direction gas flow out 0 f the 
sides of the crack has the same 
form as gas flow in the porous solid 
since it is governed by the pressure 
distribution in the porous solid. 
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rig. 4. Test apparatus Cor measuring transient, gas flow in a porous solid. 

-19-



0 0.2 0.4 0.6 0.8 1.0 
X 

Fig. 5. Comparison between theoretical and experimental results for nitrogen 
flow through a column of 20 (urn)2 permeability Overton sand. 
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Results 

Results were generated using 
the parameters shown in Table 1 for 
a proposed underground nuclear test.. 
A hypothetical crack with initial 
length and width up to their maximum 
feasible values of 110m and 170m, 
respectively, was incorporated since 
this presented an upper bound on 
possible propagation of the crack. 
An exponential decay of the driving 
pressure was included to approximate 
the expected conditions of the 
proposed test. This reduces the 
driving pressure to about 95% of Its 
initial val^e in 60 seconds. The 
exponential decay continues for 
perhaps 10 minutes, after which the 
pressure decreases abruptly. This 
abrupt decrease in pressure occurs 
as the formation stares to fall 
into the cavity vrid space and 
rapidly cools the gases present 
there. 

A parametric study was completed 
to assure that radioactive contami­
nants would be contained below the 
surface of the earth if the proposed 
test were actually conducted. Figure 
6 shows results for maximum feasible 
values of initial crack length and 
width. Time for crack propagation 
to the surface of the. earth is seen 
to increase as permeability and 
the ratio of maximum resistive 

Table 1 
Parameters from a Proposed Underground 
Nuclear Test Use for Generating 
Results 

Distance to surface 
of the earth - 530 m 
Initial crack length - 30 to 110 m 
Initial crack width - 60 to 170 m 
M-i-.-im.in ini'M.ll 
crack thickness - 10 to 50 mm 
Permeability of the _, , 
formation - 10 to l(um) 

Porosity of the 
formation -0.3 

Poisson's ratio of 
the formation - 0.25 

Modulus of elasticity 
of the formation 
Initial driving 
pressure 

Gas viscosity 

3.5 GPa 

10 MPa 
2. 4 x lo" Pa • s 

pressure, P r , to initial driving rmax & 

gas pressure, P., increases. Because 
the driving pressure decays with time, 
each curve approaches an asymptote. 
That is, propagation will occur in 
the first few minutes if it occurs 
at all. Maximmr penetration of 
cavity gases into the formation 
beyond the crack tip was found 
to be less than 1% of the distance 
to the surface of the earth. For 
the proposed test, the permeability 
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of the earth formation ranges 
between 10 " and 1 (ym) . The 
expected ratio of P r /P, is close Lmax 1 
Co unity with the lowest feasible 
value equal to 1/3. Under these 
conditions we find that a crack 
would not propagate to the surface 
of the earth and therefore no 
radioactive material would be 

released into the atmosphere should 
Che proposed test be conducted. 

For any given set of parameters, 
there is a permeability large enough 
to prevent crack propagation. That 
is, gas flowing into the crack from 
the source permeates the earth 
formation so rapidly that pressures 
inside the crack do not exceed the 
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resistive pressure forces of the 
earth formation which tend to prevent 
crack propagation. As the permeabi­
lity is decreased, the crack 
propagates a short distance and 
stops. This is due to a reduction 
in gas pressure inside the crack as 
propagation occurs. Initially the 
gas flowing into the crack from the 
source cannot be dissipated into 
the earth formation fast enough 
to prevent propagation. As the 
crack grows, the area of the crack 
walls through which gas permeates 
the earth formation increases 
thereby decreasing the resistance 
to gas flow out of the crack. The 
resistance to gas flow inside the 
crack remains more nearly constant, 
increasing as the length of the 
crack increases and decreasing as 
the flow area inside the crack 
increases. The net effect is to 
reduce gas pressure inside the 
crack. 

With additional decreases in 
permeability, the crack propagates 
farther until a magnitude of 
permeability is reached where the 
crack just propagates to the surface 
of the earth. Further decreases in 
permeability shorten the time 
necessary for crack propagation. This 
is seen in Fig. 7 where the normalized 
crack tip location along the "Z" axis 
is presented as a function of time 
for three values of permeability 

near that which causes the crack 
to just reach the surface of the 
earth. The slope of the curves 
represent the speed of propagation 
which is rapid at first decreasing 
with time as the resistance for 
gas to permeate the earth formation 
decreases. Near the surface of the 
earth the resistive pressure forces 
of the formation, which are propor­
tional to the depth below the 
surface, decrease faster than the 
pressure near the tip of the crack. 
Hence, for those cases where the 
crack reaches the surface of the 
earth, the speed of propagation 
increases at late times. For the 
middle curve on Fig. 7, the minimum 
speed is about 15% of the maximum 
speed. 

Figure 8 shows the variation of 
crack tip location on the "Z" axis 
vs time for several initial crack 
sizes. The length and width values 
selected correspond to multiples of 
the spatial zone size. A crack with 
initial length and width of 30 m by 
30 m travels rapidly until it reaches 
the length and width of an initially 
larger crack. Beyond this time the 
speed of crack propagation for both 
cracks is nearly the same. Hence a 
variation in crack length and width 
by a factor of four results in a 
change in propagation time of 
only 15%. The maximum initial 
crack thickness chosen at the origin 
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Initial crack length = 110 m 
Initial crack width = 170 m 
Maximum initial crack thickness = 25 mm 
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Fig. 7. Crack-tip locaticn on the "Z" axis vs time for three magnitudes of 
permeability near that required for the crack to .lust reach the 
surface of the earth. 

is less than 102 of the crack thick­
ness at the origin after deflection 
occurs so that changes in initial 
crack thickness by a factor of four 
affect the crack propagation time by 
less than 25%. 

The initial shape of the crack 
in the "Y" and "Z" directions was 
chosen to be rectangular. Figure 9 
indicates that the crack becomes 
fan shaped as propagation occurs. 
The crack grows more vertically than 
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Fig. 8. Crack-tip location on the "Z" axis vs time for several initial crack 
sizes. 

horizontally because the earth 
formation resistive pressure, P , 
which tends to prevent crack 
deflection, is proportional to 
depth below the surface. 

Because gas pressure at the 
crack tip in the region near the 

horizontal depends mainly on the 
distance froia the pressure source to 
the crack tip, equal crack wall 
deflection, or crack thickness, occurs 
at a larger distance from the 
pressure source above the horizontal 
where P_ is less than its value on 
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Fig. 9. Crack length vs width at various times. Also shown are profiles of 
crack thickness at 8 seconds for Y * 0.42 and Z = 0.42. 

the horizontal. Hence, the locus of 
the crack tip is convex to the right. 
The cross hatched areas in Fig. 9 
show profiles of crack thickness 
for constant values of "Y" and "Z" 
at 8 seconds. The scale of the 
cross hatched areas is different 

than the rest of the graph with the 
maximum thickness for Y = 0.42 equal 
to 20 mm and for Z = 0.42 equal to 
85 mm. 

Figs. 10 and 11 show the 
variation of crack thickness and 
normalized pressure as a function 

-26-



400 

I 

0.2 0.4 0.6 0.8 
Normalized distance along the "Z" ox is 

Fig. 10. Crack thickness vs normalized distance along "2" axis for various 
times. 

of distance along the "Z" axis for 
various times. Both graphs are 
interrelated. Initial crack 
thickness was taken as linear with 
distance as shown by the lower left 
curve of Fig. 10. As gas flows into 
the crack, the crack thickness and 

pressure increase. The increased 
crack thickness reduces the resis­
tance to gas flow and allows for 
further increase in pressure within 
the crack. A complex variation of 
crack thickness and pressure with 
distance along the "Z" axis develops 
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Fig. 11. Normalized pressure within the crack vs normalized distance along the 
"Z" axis for various times. 

as time elapses. The concave upward 
shape near the left side of the 
curves in both graphs is characteris­
tic of a channel with porous walls. 
The crack thickness and pressure are 
depressed due to loss of gas through 
the walls of the crack into the 
earth formation. Near the crack tip 

the curves become concave downward. 
Here the crack thickness becomes small 
and the resistance to gas flow inside 
the crack increases. Consequently, 
gas flow into the formation is less 
important in comparison to gas flow 
inside the crack near the crack tip 
than it is near the "Z" axis. 
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Conclusion 

To our knowledge, this is the 
first study that shows the interaction 
of gas pressure within a crack, 
permeation of gas into a porous eirth 
formation, deflection of the crack 
wall, and the phenomenon of crack 
propagation. One other analysis by 
Keller, Oavfs, and Stewart deter­
mined if a small crack of length up 
to 75 mm would initially grow but 
not if propagation would continue. 
Although conditions were different, 
results that can be compared are in 
reasonable agreement. 

Crack propagation to the surface 
of the earth following an underground 
explosion occurs as shown in Fig. 6 
and the parameters of Table 1 only 
under unlikely conditions. For 
example, if the permeability is 

-4 2 3 x 10 (Um) and the ratio of 

maximum earth formation resistive 
pressure due to overburdt-n to 
initial driving pressure is 0.7, the 
crack would reach the surface of the 
earth in 50 to 60 seconds. 

Normally, the permeability of 
the earth formation at the Nevada 
Test Site where experimental under­
ground nuclear explosions are con-
ducted ranges between 10 and 1 

2 (|jm) . The corresponding value of 
maximum earth formation resistive 
pressure is close to the initial 
driving pressure so that crack 
propagation to the surface of the 
earth is not anticipated. Conditions 
of each test may be checked with this 
analysis to assure radioactive 
contaminants are contained below the 
surface of the earth following an 
underground nuclear explosion. 
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Norm nclut ure 

Surface area of pressure 
application 
Normalized area equal 
to A/L 2 

Equivalent radius of a 
square area of sides 2a 
Dimension less constant 
used In deriving Darcy's 
law 
Gerrard and Morgan de­
flection coefficient 
Characteristic length 
approximating the grain 
size 
Crack thickness in "X" 
direction which is half 
of the hydraulic diame-
ter, d h 

Hydraulic diameter equal 
to four times the flow 
area divided by the 
wetted perimeter 
Average particle size 
of grains in the earth 
formation 
Deflection of the crack 
boundary in the "X" 
direction due to a 
point force or pressure 
acting on a small area 
Total deflection of the 
crack boundary in the 
"X" direction 

dX,dY,d7. 

JN 

i.j.k 
1 

k ,k ,k x' y z 

- Normalized total surface 
daflection equal tu D/l. 

- Elemental distances In 
the "X". "Y", A "7." 

direct Ions 
- Elemental distance In 

the direction of the 
total velocity vector 
within the crack 

- Modulus of elasticity 
of the earth formation 

- Normalized modulus of 
elasticity equal to 
e/<P,-V 

- Pressure function 
equal to ( P + ^ ) 

- Force equal to gas 
pressure in the crack 
less the resistive 
pressure, times the 
area of application 

- Acceleration of gravity 

- Spatial indices 
- Number of spatial 

intervals in the "X" 
direction used in 
Blottner's grid 
stretching relationship 

- Directional permeabil­
ities for gas in the 
"X", "¥", & "Z" 
directions 
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- Oimensionless per­
meabilities equal to 

k k 
\ k0' % kQ- k

z 

k 
ko 
Normalized effective 
permeability for "X" 
direction eas flow in 
the crack defined by 
Eq. (20) 
Normalized effective 
permeability for the 
"V" and "7." direction 
gas flow in the crack 
defined by Eq. (21) 
Average gain size 
(diameter) of particles 
In the crack wall 
Reference permeability 
set equal to the Initial 
equivalent permeability 
in the crack at the 
origin and calculated 
using Eq. (21). 
Vertical distance be­
tween the Z=0 plane and 
the ground surface 
Pressure ratio, equal 
to P l/P 0 

Nevada Test Site near 
Las Vegas, Nevada 
Gas pressure 
Earth formation resis­
tive pressure 
Initial earth formation 
pore pressure 

Re 

- Initial gas driving 
pressure 

- Normalized gas pressure 
equal to (V-»V' ( PrV 
- NoTwallzed resistive 
pressure equal to 
(.V-y/ayy 

- Volume flow rate 
- Radius from load area 
used In calculating the 
Garrard and Morgan 
deflection coefficient, 

- Radius measured along 
the crack wall from 
the elemental area of 
force application t" 
the point where the 
deflection is being 
calculated 

- Gas constant 
- Reynolds dumber, 
Re = V dh .Vug. 

- Time variable 
- Absolute temperature 
of the gas 

- Apparent velocities in 
"X", "Y", & "Z" 
directions equal to 
volume flow rate per 
unit cross-sectional 
area 

- Magnitude of the total 
apparent velocity 

- I 2 2 vector, u =(u + u + h \ x " 4) 
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X.Y.Z 

X.Y.Z 

X.Y.Z 

-o 

- Actual velocities 
equal to u = u /E, 
v = u / E , W = u It 

y z 
- Total velocity vector 

in the crack 
- Spatial coordinates 

- Normalized spatial 
coordinates equal to 
X = X/L. 7 = Y/L, 
Z « Z/L 

- Terms due to bod;' forces 
actinp. on an elemental 
volume which are used 
in deriving Darcy's law 

- Total length in the 
"X" direction 

- Yeremenko and Markov's 
unsteady flow parameter 

i 

' - Finite difference forms 
of the second deriva­
tive 

- Torosity of the 
earth formation 

- Turbulent eddy viscosity 

- Variable hi Blotriu-r's 
grid stret>l.itig rela­
tionship normally 
ranging from 1.5 to 
e = 2.718 

- Tr let ion.11 
.'i'i-l~i W i . ^ i t 

- Laminar flow frlctional 
coeff ic ient 

- .' v..' constant in the 
earth formal Un 

- Turbulent flow 
frictlonal coefficient 

- Gas viscosity 
- .".!".' constant in the 
earth formation 

- Poisson's ratio of 
the earth formation 

- fias density 
- Bulk density of the 

earth formation 
- Dlmensionless time 

equal to ^(Pj-iyt/ 
E 11 L 

- Laminar shear stress 
- Turbulent shear stress 
- Wall shear stress 
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Appendix A - Derivation of the Governing Equations 

Included are the detailed analyses for determining crack wall deflection 
and gas flow ' .ch in a porous solid such as an earth formation and in the 
crack. Has flow in the crack uses a correlation for frictional coefficient, 
<, which is also discussed. In the appropriate portions of this appendix, 
alternate methods of solution are mentioned along with the reasons for using 
the particular method selected. 

DEFLECTION OF THE CRACK WALL 

Total deflection of the crack wall in the "X" direction will normally 
exceed the initial crack thicl-ness. We must account for this deflection to 
predict the "Y" and "Z" direction flow of gas in the crack accurately since 
the governing equation (Eq. 19) is dependent on crack thickness. 

Referring to Fig. 3, consider rhe right hand crack wali to be a portion 
oi the surface of a semi-infinite solid. Deflection of the crack wall in the 
"X" direction results from two opposing forces as explained in the analysis 
section. The gas pressure in the crack exerts a force that tends to deflect 
the crack wall in tt̂ e "X" direction. The horizontal earth formation resistive 
pressure results in a force which tends to prevent deflection and keep the 
crack closed. Any deflection of the crack wall beyond its initial position is 
then the resultant of these two effects. 

In -.alculat ing the deflection of the crack wall, the magnitude of the 
gas pressure in the crack is taken to he tnat in excess of the initial pore 
pressure in the earth formation. At NTS, the pores of the earth formation are 
filled with air to the depths of interest of this study so that the initial 
pore pressure is atmospheric. 

The horizontal earth formation resistive pressure is due to the over­
burden, or weight of material above, and is transmitted through the solid 
grains of the earth formation. If the earth formation has little strength 
and is subject to creep over geological times, then the horizontal resistive 
pressure will be close in magnitude to the overburden which is about 20 kPa/m 
of depth. Alluvium soil at the Nevada Test Site falls near to this category. 
Alternately, it a hydros*~.at ic state is not reached, then a three-dimensional 
stress state would exist where resistive pressure forces are a fraction of the 
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overburden. For example, if there has been no horizontal strain, the magnitude 
of this fraction is determined from Hooke's law to be 1-v/v. 

Total deflection in the "X" direction is found by applying the technique 
of superposition. We first determine deflection due to force applied at a 
point on the surface of a semi-infinite solid as shown in Fig. A-l part a. 
Following the analysis developed by Bousinesq ""-̂  and outlined by Timoshenko 
and Goodier , deflection in the "X" direction caused by an applied force on 
the surface of a semi-infinite solid is 

W.Z) - ̂ i X i i l ^ i <*_„ 

where here the deflection, 1\ acts at coordinates (V,Z) and the force F, acts 
at coordinates (Y',2'). 

The applied force is considered equal to the difference between the gas 
pressure in the crack that is in excess of the initial pore pressure, and the 
earth formation resistive pressure, times a small area of application as shown 
in Fig. A-l part b. The calculated deflection of Eq. (A-l) then becomes 

(1-v2) (P-P )dY'dZ" 
*>(Y.Z) - j-g-l- (A-2) 

where P is the earth formation resistive pressure; and dY', d'A' is the area r i » i 

over which the pressures are applied. Integrating the deflection calculated 
in Eq. (A-2) over a finite area of surface gives a solution for the total 
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F(Y 'Z ' ) 

Surface representing the plane of the crack 

Curve of surface deflection 

Semi-infinite solid 

(o) 

( P - P ) d Y ' d Z ' = r 

Surface representing the plane of the track 

Curve of surface deflection 

Semi-infinite solid 

(b) 

Fig. A-1, Part a. Surface deflection due to a force applied to a point on a 
semi-infinite solid. (See Eq. (A-D). Part b. Surface deflection 
due to a pressure applied over a small area of surface. (See Eq. 
(A-2)). 
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deflection, D, at coordinates (Y,Z) due to pressure acting on a portion of 
the boundary* 

D(Y,Z) - -^ &ff^H._ 
\ (Y-Y') 2 + (2-Z') 2 

The deflection at the coordinates (Y',Z') as calculated by Eq. (A-3) is 
singular. At this position, the average deflection under a small area is used 
since in reality the pressures are applied not at a point but over a small 
area. Timoshenko and Goodier have calculated average surface deflections 
for various rectangles subjected to a uniform pressure. In the special case 
of a square, which is convenient for our coordinate mesh spacing, 

2 U 
0(Y',Z') A = ° , 9 5 (J; " V } (P-P ) (A) (A-4) 

Average E r 

Total deflection at any point (Y,Z) due to pressure applied over part of the 
boundary of a semi-infinite solid may be calculated by using Eqs. (A-3) and 
(A-4). 

12 
*The form of Eq. (A-3) may be placed into that derived by Love if relation­
ships between E and V and the Lame constants V-, * and \, * are used. 
Taking 

E " 2 home ( 1 + v> 

lame v 
2 ( A lam'e + Home'* 

gives 

1 - v 2 (1 - v)(l + v) home + 2 Heme 
E " 2 vlame ( 1 + V ) " 4 Hami <Xla>* + vlamS> 

The right hand side of the above equation is the form used by Love. 
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The nature of the calculated deflection is such that a pressure applied 
over one region of the surface results in deflections over all areas of the 
surface. Deflections approach zero only as the radius approaches infinity. 
This is a result of the assumption that the medium is elastic. Actual data 
shows that an elastic analysis gives reasonable results for initial loading 
near the point of load application but over-predicts the surface deflections 
as the distance away from the load increases. 

Kig. A-2 indicates the variation of surface deflection with distance from 
the point of load application. The theoretical curve is shown for an elastic 
material calculated using Timoshenko and Goodier's analysis for a circular 
loading area. It may be seen to give deflections larger than the experimental 

8 data of Gerrard and Morgan away from where the load is applied. Gerrard and 
Morgan have developed more accurate theoretical solutions however these 
solutions still overpredict the data away from the area of load application. 

The data of Gerrard and Morgan is extrapolated to zero at a radius of five 
13 in conformance with data of Campen and Smith. The magnitude of deflection 

at the centerline of the uniform pressure loading area predicted by Timoshenko 
and Goodier agrees with Gerrard and Morgan's experimental data if an elastic 
modulus of about 6.9 MPa is incorporated. Gerrard and Morgan reference data 

A-2 from triaxial tests by Holden for their soil where the elastic modulus 
ranges from 3.4 to 10.3 MPa. Holden's data confirms that the experimental 
deflections near the uniform pressure loading area agree with the theory and 
only differ at locations away from the loading area. 

A-3 Waterways Experiment Station reports other data below the surface but 
off the axis of the point of load application. Extrapolation of this data to 
the surface gives a result that is also overpredicted by theory. 

We felt the more accurate and easier method of determining surface 
deflection was to utilize Gerrard and Morgan's data directly. The computer 
program used for this dissertation incorporates a square grid in the Y-Z plane. 
We converted these squares to equivalent circles by equating areas. This is, 
a square with sides of 2a would be considered equivalent to a circle of radius 
(4/ir)^a. Deflection at coordinates (Y,Z) due to a uniform pressure applied 
over an elemental area at coordinates (Y',Z') is found using the formula 

2 
C(Y,Z) = C G

 ( 1 " E
 V } (P-Pr) (AY1 AZ')*5. (A-5) 
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Fig. A-2. Profi le of surface displacements. 
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The Gerrard and Morgan deflection coefficient, C„, is set equal to 0.95 if 
the point where the deflection is calculated is below the loading area in 
conformance with Eq. (A-4). The coefficient would be zero for normalized 
radii beyond five. Table A-1 shows these coefficients for a square coordinate 
grid. The coefficients define a circle of influence around the location of 
uniform pressure load application beyond which the load has no effect on 
deflection. 

Table A-1 - Gerrard and Morgan Deflection Coefficients for Uniform Pressure 
Loading of a Square Area with Sides Equal to 2a. 

"Y" Direction 

Mesh No. 

r/a e q = 0 1.77 3.55 

C G = 0.95 0.30 0.05 

r/a = 1.77 eq ".51 3.96 

C„ = 0.30 
U 

0.10 0.02 

r/a = 3.55 eq 3.96 5.01 

C G = 0.05 0.02 0.002 

r/a - normalized distance from the center of the mesh indicated, to eq 
the center of mesh (1,1). Mesh (1,1) is the area subjected to 
uniform pressure loading. 

"eq ~ & 

C_ - Gerrard and Morgan Deflection Coefficient for use in Eq. 
IT 

(A-5 to A-,). 
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The total deflection, D, at a point is found using superposition by 
summing the component deflections for all non-zero C using the following 
equation. 

2 
D ( Y' Z )total " I CG i L r r L i ( P - V Wto')* (A-6) 

Equation (A-6) is put in dimensionless form 

2 
D(Y,Z) = V C„ ( 1 "• V ) (P-P ) (M'AZ')1* (A-7) 

^ G - r 

by dividing D, Y, and Z by a reference length and, (P-P ) andEby a reference 
pressure. We use the length of the "Z" axis and the initial driving pressure 
less the initial pore pressure as reference values. The bars above the 
variables indicate they are normalized. The crack includes all nodes where 
tne total deflection is positive. The extent of crack propagation is 
determined automatically by examining the region of positive total deflection. 

The use of superposition is justified by examination of experimental data 
as indicated in the analysis section. Because alluvium at NTS has negligible 
strength in tension when compared to the gas pressures present, the crack is 
actually formed more by parting of the surfaces along the plane of the crack 
rather than failure of the alluvium material. Even if the alluvium had 
appreciable strength, the crack could propagate along microfissures developed 
during the explosion so that formation of the crack would still be by parting 
of the surfaces. The application of superposition to our study is appropriate 
since the parting of the crack surfaces is similar to initial deflection of 
the earth materials which have experimentally exhibited elastic behavior. 

An alternate means of predicting deflection for axisymmetric crack shapes 
was developed by Sneddon. Sneddon incorporates a radially varying pressure 
within the crack with zero deflection beyond the crack as a boundary condition. 
A solution involving integration over the crack is developed for an elastic 
solid. In applying the solution, the axis of symmetry is horizontal and the 
length of the crack is in the radial direction. The crack contains both 
vertical and horizontal rays. 
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Unfortunately, the solution has several drawbacks for our particular 
application. First, cracks grow more vertically than horizontally since the 
overburden pressure decreases with depth. Hence, the axisymmetric assumption 
limits the use of results to small lengths of crack propagation. Second, the 
boundary condition of zero deflection at and beyond the crack tip is imposed 
in such a fashion that a separate criteria is required to determine propagation. 
In the method we utilize, deflection is based on pressures within a circle of 
influence and the extent of the crack is determined automatically. Third, the 
form of the integral is inconvenient for incorporation experimental data such 

o 
as Gerrard and Morgan's and an such is difficult to improve based on actual 
observation. 

Another means of predicting deflection is with the use of a finite 
element analysis using a computer code such as that developed by Wilson, 

17-19 Farhoomand, and Bathe. We used a modification of this code for the 
20 solution to a two-dimensional problem analyzed earlier where the crack grew 

only in the "Z" direction and contained a cross section independent of "Y". 
Extension of the analysis to three dimensions was possible but prediction of 
the deflection would be time consuming. Since the deflection is calculated 
repeatedly along with flow in the crack and in the porous solid, limitations 
on computer time appear to make this method unfeasible for a three-dimensional 
analysis. 

FLOW IN THE POROUS SOLID 

We consider a porous solid such as an earth formation on a macroscopic 
basis and establish a control volume for analysis that contains both pore 
space and solid grains as shown in Fig. A-3. A continuity equation is developed 
by equating the net influx of mass to the time change of mass within the 
control volume. Apparent velocities u , u , and u are defined as the volume r r x y a 
flow rate across a face of the control volume divided by the total cross-
sectional area, including both voids and solid. These apparent velocities 
are different from the actual velocities since a portion of the control volume 
is occupied by solid grains. Conversion to the actual velocities may be made 
by dividing the apparent velocities by the porosity. The continuity equation 
is written as 
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P u x + i ( P u x ) d X 

Porosity, and 
pore volume, edXdYdZ-

(similar terms 
in the Y and Z 

directions )-

•— P u (similar terms in the Y and Z x 
directions) 

Fig. A-3. Control volume used for derivation of flow through the porous so l id . 

pu + - ^ (pu )dX dYdZ - pu dYdZ 

[ P u y - £ (puy) dYJ 

[p"2
 + £ ( p Uz> d Z ] 

+ pu + ~ (pu ) dY dXdZ - pu dXdZ 1 y 3Y y y 

+ e |£ dXdYdZ = 0 

dXdY - pu dXdY z 

(A-8) 

W ̂  + W ( p uy> + £ ( p u«> + £ f = °" (A-9) 
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We may apply a similar control volume and develop the Navier-Stokes 
equations using the actual gas velocities u, v, and w. Full development of 
the Navier-Scokes equations are shown by Schlichting (Ref. 10, Chapt. 3). 
For brevity, only the "Z" direction equation with constant viscosity is shown 
below where Z is a term due to the net body force acting on the elemental 
volume. 

, 3w , 3w , „ 3w . 3w ; 3P 
p u 3X + p v 57 + p w 3Z + p IF = 2 " 3Z 

. , I 3 w . 3 w , 3 w , . /, / 3 u , 3 v . u « i i ,, ... 
U \Z2+^ + ZJ+U3 fe+3Y3Z+— J » ' < A " 1 0 ) ax 3Y 3z 

Velocities of interest in flow through porous solids are very slow so that 
Stoke's approximation may be applied (Ref. 10, p ].04ff). That is, we can 
neglect inertia terms which contain multiples of two velocities, in comparison 
with those which contain a single velocity. Since the time variable is on the 
order of Z/w, the last term on the left of Eq. (A-10) contains an equivalent 
of a multiple of two velocities also. Under Stoke's approximation, then, the 
left side of Eq. (A-10) is zero. In terms of the apparent velocities, this 
gives 

- p |3u 3 u 3 u / ^ u v ^ u ^ u I I 
z - - + " i # + ^ + ^ + i / 3 v - - + ^ + ^ j = o (A-U) 

Exact representation of the fluid passing through the solid is not 
practical because of the multitude of tortuous flow paths which exist. Instead, 
we view the problem on a macroscopic basis, treating the statistical nature of 
flow. We assume that 

•>2 s 2 ^2 A 2 
3u 3 u 3u N u 2_ Z_ , Z_ . i /o I : 
3X 2 3Y 2 3Z 2 \ 3 X 3 ; 

a 2 a 2 3 u 3 u 
3X3Z + 373? + 7 7 / " - C ^ ( A" 1 2 ) 

where d is a characteristic length approximating the grain size and C is a 
dimensionless constant. This approximation has been used by other 
investigators, ' has been verified 
correct. If we define a permeability 

21 A-4 investigators, ' has been verified experimentally, and is dimensionally 
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2 
k = ~ (A-13) 
z L 

and set the body force term equal to that due to gravity (Z = - pg)*, then 
substituting Eq. (A-12) and (A-13) into (A-ll) results in 

k z /ap \ 17 \n + P 8 j • (A-H) 
The value of permeability, k , is determined for each formation normally by 
experiment and in addition to the above effects contains such items as 
tortuosity, surface roughness, etc. Equation (A-14) is Darcy's law. For 
conditions at the Nevada Test Site the value of pg is negligible with respect 
to the minimum expected "Z" direction pressure gradient, leaving** 

u
z ' " 17 3Z • ( A- l j ) 

We can obtain similar expressions for the "X" and "Y" directions, but in these 
cases the values of body forces X and Y are identically equal to zero leaving 

u x = - f f i (A-16) 

uy = -ff- (A-17) 

*In the appendices of this report we include the acceleration of gravity, g, 
along with the density so that the equations are similar to those used in the 
computer program, CHASM, where g is required for consistency of units. 

**The driving pressure is on the order of the overburden of the earth 
formation, so the pressure gradient is approximately equal to the specific 
weight of the earth formation. That is, 3P/3Z = p sg where p s is the density 
of the earth formation. 3P/3Z ranges between 1.7 and 1.9 g/cc for soils of 
interest. The value of pg used in Eq. (A-14) for air is -.13 g/cc, a 
negligible value compared to 3P/3Z. 
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Darcy's Law is verified experimentally for Reynolds number,* Re, less 
than unity but data deviate from this relation as fluid velocity increases. 
A modification called Forchheimer's relation, which includes a velocity 
squared term, adequately predicts experimental data up to Re > 1000. * 
This added complication is not necessary for the present investigation 
because flow in the earth formal.ion is within the regime of Darcy's law. 

The equation of state used with the analysis is that of an ideal gas 
at constant temperature 

P = j~ . (A-18) 

The constant temperature ssumption circumvents the need for an energy 
equation and is valid since the gas reaches the temperature of the earth 
formation after having traveled normally less than one per cent of , he "Z" 
direction total length into the earth formation. This rapid change n a 
constant temperature occurs because the heat capacity of the earth formation 
is large in comparison to the amount of energy transported into the eart 1 
formation by the gas and becau ;e the average grain size of alluvium soil at 
NTS is small (about 1 mm). A =mall average grain size results in a large 
surface area to volume ratio of the particles that enhances heat transfer. 

The viscosity of the gas is a strong function of temperature and only a 
weak function of pressure so tiat it is appropriate to consider viscosity 
constant also. Substituting hqs. (A-15)-(A-18) into Eq. (A-9) gives 

/ P ___ __A J_ /_P ljr.iA._3. /_£_ \ j_A _______ 
IR T u 3X J 3Y \.Y "f v 3v) 3zl;?T u SZ I" E 3t ' (A-19) 

which for constant temperature and viscosity becomes 

±L P 1_. \+JL/_ F9*\+±L P j A 
3X I x V 3X ) 3Y l j V 3Y J + 3Z I \ * \.Z I 

3P = e u — . (A-20) 

'Here Reynolds number is defined as, Re = ud p/ug where u is the magnitude 
of the total apparent velocity vector and d£ is the average particle size of 
the grains in the earth formation. 
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Pu t i ( P u )dZ z oZ z 

" " y + ^ f u

y

W Y 

P u x + J < ^ x > d X 

d X = d /2 (1/2 the crack thickness) c 

Fig. A-4. Control volume used to derive equations governing gas flow inside 
the crack. 

If we consider P_, the initial pore gas pressure, and P , the initial 
driving pressure at time zero, we may define a dimensionless pressure 

P - P„ 
P - P ' 1 0 

(A-21) 
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so that 

P = P ( P X " P 0 ) + P 0 
(A-22) 

Eq. (A-20) then becomes 

< p rV { 

• * 

3Z •('**kWl*&) 
£ v ( p r V ST p + p - p 

rl 0 
(A-23) 

We use a reference length, L, equal to the length of the "Z" axis and a 
constant reference permeability, k Q, equal to an e. 
discussed later, to make the following definitions 
constant reference permeability, k n, equal to an equivalent crack permeability, 

X -£ 
X L 

W 
-*-i 

(A-24a) 

(A-24b) 

(A-24c) 

x k„ (A-25a) 

k 
(A-25b) 
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z k Q 

(A-25c) 

ko t y y 
,2 

E P L 
(A-26) 

The variables with bars then are normalized and t is a dimensionless time. 
Combining these definitions with the constant 

N = (A-27) 

in Eq. (A-23) gives 

3X 

N-lI 

_L IT- /-
3Y 

J. k /-
az" 

3 |p + 
(A-28) 

If k , k , and k are considered independent of their associated spatial 
coordinate, then Eq. (A-28) may be simplified to 

(A-29) 
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9 This development follows the arguments of Morrison who reasoned that we 
could reduce the error involved in approximating the derivatives by finite 
differences if we take the function 

•=M! 
(A-30) 

as the dependent variables for differentiation. Realizing that N is a 
constant and using the definition for F, Eq. (A-29) becomes 

2 3x 2 2 S Y 2 2 az 2 * " ( " 
Eq. (A-31) is the governing equation for flow in the solid if the normalized 
permeabilities are constant. If the normalized permeabilities vary 
spatially, then the governing equation is 

3X\ z 3X/ 3Y\ ' 3Y/ 3z\ 3Z/ f < A' 3 2> 
FLOW IN THE CRACK 

Flow in the crack is similar to flow within a pipe with porous walls. 
Consider a control volume which extends from the centerline of the crack to 
the boundary of the porous solid as shown in Fig. A-4. The total dimensions 
of the crack in the "Y" and "Z" directions are considerably larger than those 
of the control volume. A continuity equation is written by equating the net 
influx of mass to the time change of mass within the control volume and 
becomes 

I p u x + fx (pu ^ d X l dYdZ " Du
x
dYdz + pu + |Y (pu )dY I dXdZ " -pu dXdZ 

[' , . 57 (pu JdZI dXdY - pu dXdY + |§ 
Z OC 2 I Z ot 
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^ ( p u x ) + ^ ( p u y ) + 1 | ( p u z ) + | f i = 0 . (A-34) 

The porosity does not enter the crack flow equation as was the case in 
the porous solid because it is unity. The centerline of the crack is a line 
of symmetry and as such, no flow crosses the left hand boundary. Flow across 
the right hand boundary is dependent on the pressure gradient in the porous 
solid to the right. Since the distance, dX, is equal to one-half the crac!' 
thickness and since the velocity is zero across the left face we rewrite 
Eq. (A-34) as 

The velocity u is identical to the apparent velocity defined when 
deriving the equations for flow in the porous solid. This velocity may be 
equated, using Darcy's law, to the pressure in the porous solid. 

u = -r^ (A-36) 
x u 3X 

We use the fully developed internal flow momentum equation (Ref. 10, 
Chapter 20) in the "Y" and "Z" directions. The shear forces along the sides 
of the channel are equated to the difference of normal pressure forces 
between the ends of the control volume as shown in Fig. A-5. The value d. is 

h 
the hydraulic diameter with dN equal to an elemental length in the direction 
of the total velocity vector. That is, the velocity in the crack normally has 
components in both the "Y" and "Z" directions. The total velocity vector is 
the sum of these two components. Using a frictional coefficient, A, defined 
with a total velocity vector, V, and wall shear stress, T , as 

pV 
2g 

(A-37) 

then a force balance gives 

[p. ( p + f dN)] ^ - ^ d H . M i dN (A-38) 
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P +dP/dNdN 

Fig. A-5. Equivalent control volume for determining a force balance in the 
crack. 
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dP 
dN (A-39) 

The crack geometry approximates two parallel plates separated by a small 
distance. The hydraulic diameter* for this geometry is twice the separation 
or twice the crack width. That is 

d. = 2d h c (A-40) 

Eq. (A-39) is broken into the following two component equations using 
velocities parallel to the "Y" and "Z" directions. 

3P P" 
3Y 2d c 2g (A-41) 

3Z 2d c 2g (A-42) 

Combining the continuity and momentum equations for flow within the 
crack with the ideal gas equation of state, (Eq. A-18) gives 

2 F x 3P , 3 
d R T V 3X - 3Y \ R T \ | X P 3Y 

4 g d c g T 3 p | P ^ 

- 3Z \ R T 
/|^ dc * T 3P\ \j X ? 3zJ +-¥-' (A-43) 

The hydraulic diameter used is equal to four times the flow area divided by 
the wetted perimeter. Different definitions are used by different authors. 
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The plus sign on the "Y" and "Z" terms is used if the pressure gradient is 
<0 and the minus sign if the pressure gradient is >0. As before we take the 
flow to be isothermal which gives 

JS_ M£I + JL f ! 2 g d c R T 3 ( P 2 ) 
ud 3X - 3Y VI >• 3V (I 

/ 2 g d e i ? T 3 ( p 2 ) \ ' ' 
- az y x 3z y + at (A-44) 

If we use the definition of the normalized variables for P, X, Y, Z, T, and F 
we find 

3(P2) _ ( P r V jtt 
3 X h ' 3X 

(A-45a) 

3(P2) _ ( P 1 ~ V 3F 
3Y L 3Y 

(A-45b) 

3(P2) =
 ( F 1 ~ V _3F 

3Z L SZ 
(A-45c) 

3P _ W V 3P 
3t " 2 3T e u L 

(A-46) 
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so t h a t Eq. (A-44) becomes 

W V 3F 
V d„ 3X 

i - i / 2 g d c L J ? T 3 F V 
L 3? \ A 3Y7 

+ I J L / 2 g d c L J ? I

3 F \ , V V V 3 P _ Q 

~ L 3z \ A 3z/ E | , L 8 T 
(A-47) 

Finally we simplify Eq. (A-47) by defining effective crack permeabilities in 
the "X" direction and the "Y" or "Z" direction as 

e L k 
k * ex d k„ c 0 

(A-48) 

e u 
cy z ( P ^ P Q ) ^ V X 

/2g d g L g T\ k 

(A-49) 

to give the governing equation for flow inside the crack as 

k ^ ± M k 
C x 3X 3Y \ C y Z II l+^Jk . !& 

3Z cyz 3Z H-° (A-50) 

The value of reference permeability, k , may be taken as any 
representative quantity. We set k. so that all values of k are initially 
less than or equal to unity. That is 

^ 
2g d L R T\ 

0 <VV V A 
(A-51) 

where d is evaluated as its maximum initial value. This reference c max 
permeability is a constant for each problem. 
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The value of frictional coefficient, X, depends on Reynolds number and 
relative roughness. Both laminar and turbulent frictional coefficients are 
calculated at each node withii the crack based on the Reynolds number and 
relative roughness present. The larger of the frictional coefficient values 
is used since in accordance with reported data (Ref. 10, Fig. 20.18) the 
laminar frictional coefficient will be greater only if the flow is laminar. 
This is explained- graphically in Fig. (A-6), 

The fricti^nal coefficient for turbulent flow is based on the 
completely rough regime with one of the turbulent curves selected based on 
relative roughness. Even though the crack wall is considered to have a 
uniform absolute roughness, the relative roughness will be different for 
each node in the crack because of a varying crack thickness. The transition 
flow regime is omitted with the completely rough turbulent frictional 
coefficient used for all Reynolds Lumbers unless the flow is laminar. 

CALCULATION OF THE FRICTIONAL COEFFICIENTS 

In calculating the laminar frictional coefficient, we find that the 
shape of the flow channel is important. For the case of parallel plates (or 
an annular region with small separation between the walls), the experimental 
data correlates with (Ref. 10, Fig. 20.12) 

h - i < A - 5 2 > 
where the subscript i, represents laminar. The value of Reynolds number is 
based on the total velocity vector, V, and the hydraulic diameter, d , which 
for the case of parallel plates is twice the crack thickness, d . The 
Reynolds number then is 

V d. p 
Re !!— 

U g 

2V d c P 
" g (A-53) 
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-Laminar (X =96 /Re ) 

Turbulent values for different 
relative roughness, k / d . 

The greater of the laminar or 
turbulent value is used 

Re 

Fig. A-6. Variation of frictional coefficient with Reynolds number and 
relative roughness. 

A comparison may be made between the experimental values which yield 
Eq. (A-52) and the theory of steady laminar flow through a straight channel 
(Ref. 10, p 77). Referring to Fig. A-7 the velocity distribution and 
volumetric flow rate, Q, are 

1 dP ,,2 v 2 , 
u " " 2?J dX ( b " Y > (A-54) 
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2b r̂ -
z 2 

2c 

Fig. A-7. Parallel-flow channel used to develop a theoretical laminar flow 
frictional coefficient. 

where -TTT is a constant and 

Q = 4 / J u 
0 0 

dY dX 

dP fC 

t*Jn 

b 2 Y - ^ dX 

3 .c 4b J dP 
3p dX | 0 

A b e dP 
3 u dX (A-55) 

Q is also related to an average velocity across the channel which is set 
equal to the total velocity vector, V, which is the sum of the "Y" and "Z" 

direction components of velocity 

Q = 4 be V . (A-56) 

Equating Eqs. (A-55) and A-56) 

dP _ 3_uV _ 3jiV _ 48uV 
d X " b 2 " ( d h M ) 2 " d h

2 

(A-57) 
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The pressure gradient is related by Ref. 10, p 561ff: 

£-££• 
Combining Eqs. (A-57) and A-58) 

, = 96 gu = 96 . . 
* r p d. V Re U " ; 

which gives an identical result to experimental data of Eq. (A-52). We note 
that for Hagen-Poiseuille flow through a circular pipe the value of the 
constant would be 64 rather than 96. 

The hydrodynamic theory of lubrication (Ref. 10, p 108 ff) is an extension 
to the above analysis for the case when r.he plates are not parallel. If the 
angle between the two plates is significant, then the acceleration term in 
the Navier Stokes equation, u -57 , becomes important and must be compared to 

2 2 the viscous term, p3 u/3y , even though the velocity is small. In our case, 
this angle is negligible throughout the entire crack and the case of parallel 
plates applies. 

For the turbulent frictional coefficient, A , we utilize the extensive 
experimental results for fully developed turbulent flow (Ref. 10, Eq. 20.35) 
which relates A with relative roughness as 

At = j • < A _ 6 0 ) 

h log £ + 1.74 j 

The value of relative roughness, k /d , is the average grain size of 
particles composing the crack boundary divided by the hydraulic diameter. 

ALTERNATE MEANS OF CALCULATING THE "Y" AND "2" DIRECTION 
MOMENTUM EQUATIONS IN THE CRACK 

The momentum equations utilized for the "Y" and "Z" direction within 
the crack should include acceleration and transient terms to be complete. 
The method outlined below adds substantial complication to the analysis but 

-61-



does include these additional terms which were neglected earlier. Use of steady 
flow momentum equations in the "Y" and "Z" direction-; appears intuitively 
justified since the transit time in the crack is much less than for gas 
permeation in the solid. 

Let us consider that the total velocity in the crack is nearly parallel 
to the "Z" axis. This will simplify the analysis since u ~ 0. Extension to 
the more general case would follow the same outline. Neglecting body forces, 
the "Z" direction momentum equation is (Ref. 10, Chapter 3) 

3u 3u 3 u 

2 2 2 2 
The terms 3 u /3Y and 3 u /3Z are omitted since they are negligible when 2 2 z 

comoared to 3 u /3X . z 
There is some question as to the form in which the last term of Eq. (A-61) 

may be written for transient flow. This term relates to the viscous forces 
present and for steady flows is equated to a frictional coefficient, X, 
(Ref. 10, Chapters 19 and 20) as follows. 

a 2 

3 u z 3 r v z?~= 3xr + p e t ) 

•k [ T n + V 
Xpu 

Ai-57 < A " 6 2 ) 

Here T } and T are the laminar and turbulent shear stresses and e is the 
turbulent eddy viscosity. 
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28 29 
As explained in the main body of the report, Ginzberg and Petrova 

both assume that the resistance properties established tor steady flow apply 
30 for transient conditions. Yeremenko and Markov develop a relationship 

between increases in frictional coefficient for accelerating flow and an 
unsteady flow parameter, 6_, but do not indicate how to obtain <5_ without 
knowing the velocity distribution. Although this velocity distribution has 

31 been analyzed for laminar flow by Doughty , it is unknown in general. 
Therefore we have used the frictional coefficient based on steady flow. 

Combining Eqs. (A-61) and (A-62) with the gas equation of state 
(Eq. A-18) gives 

2 3u 3u j, APu 
P Uz IT + P ST - " * T M + 4TT • < A " 6 3 ) 

We cannot use Eq. (A-63) to eliminate u in the continuity equation for 
flow in the crack (Eq. A-28) as we had done previously. Instead, Eq. (A-63) 
is used as one equation in a set of coupled equations which could be solved 
numerically to obtain values of u and P. 

The second of the coupled equations is developed for the case when 
u s 0 by combining the continuity equation, Eq. (A-35), with the "X" direction 
momentum equation, Eq. (A-36), and the ideal gas equation of state, Eq. 
(A-18). This gives 

2P k x 3 p 3(Puz) 3P 
- - a i r ax + " i s - + I F - ° • < A " 6 4 ) 

c 

It is needless to say that the coupling between Eqs. (A-63) and (A-64) 
results in substantial complication in obtaining a solution. Rather than 
attempt this form of solution we choose to use the simpler formulation that 
includes the momentum equations for fully developed flow in the "Y" and "Z" 
directions. We then checked the magnitude of the neglected transient and 
acceleration terms using results of the calculations with the momentum 
equations for fully developed flow. Fortunately we found that the transient 
and acceleration terms were less than 10% of the included terms in the 
momentum equations exc pt at times less than one eighth the total problem time. 
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does include these additional terms which were neglected earlier. Use of steady 
flow momentum equations in the "Y" and "Z" directions appears intuitively 
justified since the transit time in the crack is much less than for gas 
permeation in the solid. 

Let us consider that the total velocity in the crack is nearly parallel 
to the "Z" axis. This will simplify the analysis since u = 0. Extension to 
the more general case would follow the same outline. Neglecting body forces, 
the "Z" direction momentum equation is (Ref. 10, Chapter 3) 

3u 3u a 3 2u 

2 2 2 2 The terms 3 u /3Y. and 3 u /3Z are omitted since they are negligible when 
s 2 

compared to 3'u /3X . z 
There is some question as to the form in which the last term of Eq. (A-61) 

may be written for transient flow. This term relates to the viscous forces 
present and for steady flows is equated to a frictional coefficient, A, 
(Ref. 10, Chapters 19 and 20) as follows. 

3 u - r 3u " - z 3 u 3 T 
» ̂ T • 3x[ ( l J + p et> 3X 

Xpu 2 

4 g d c 

(A-62) 

Here x. and T are the laminar and turbulent shear stresses and e is the 
turbulent eddy viscosity. 
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28 29 
As explained in the main body of the report, Ginzberg and Fetrova 

both assume that the resistance properties established for steady flow apply 
30 for transient conditions. Yeremenko and Markov develop a relationship 

between increases in frictional coefficient for accelerating flow and an 
unsteady flow parameter, <$., but do not indicate how to obtain 5 Q without 
knowing the velocity distribution. Although this velocity distribution has 

31 been analyzed for laminar flow by Doughty , it is unknown in general. 
Therefore we have used the frictional coefficient based on steady flow. 

Combining Eqs. (A-61) and (A-62) with the gas equation of state 
(Eq. A-18) gives 

3u 9u 3 APu 
P u • 3 = S - + P - 5 T 2 - - - / ? T | | + T — § - • (A-63) 

z 3Z 3t 3Z 4g d 

We cannot use Eq. (A-63) to eliminate u in the continuity equation for 
flow in the crack (Eq. A-28) as we had dona previously. Instead, Eq. (A-63) 
is used as one equation in a set of coupled equations which could be solved 
numerically to obtain values of u and P. 

The second of the coupled equations is developed for the case when 
u = 0 by combining the continuity equation, Eq. (A-35), with the "X" direction 
momentum equation, Eq. (A-36), and the ideal gas equation of state, Eq. 
(A-18). This gives 

2 P kx 3P +
 3< P uz> 3P . 

It is needless to say that the coupling between Eqs. (A-63) and (A-64) 
results in substantial complication in obtaining a solution. Rather than 
attempt this form of solution we choose to use the simpler formulation that 
includes the momentum equations for fully developed flow in the "Y" and "Z" 
directions. We then checked the magnitude of the neglected transient and 
acceleration terms using results of the calculations with the momentum 
equations for fully developed flow. Fortunately we found that the transient 
and acceleration terms were less than 10% of the included terms in the 
momentum equations except at times less than one eighth the total problem time. 
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Even at these early times we felt the transient and acceleration terms 
could be neglected for two reasons. First, the actual application of applied 
pressure appears over a short period of time rather than the mathematical step 
change we had used in the analysis. Second, the effect of any error included 
by neglecting the transient and acceleration terms at early times has little 
effect on the overall solution since most changes in gas pressure occurred 
after the time when the transient and acceleration terms were important. 
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Appendix B - Development of the Equations Used for Computation 

This appendix converts the governing equations into the difference 
equations used for numerical computation in the computer code CHASM. If 
feasible, the difference equations also are written in terms of the variables 
used in the computer code. 

The arrangement of this appendix follows the logic of the computations 
which is shown on the flow chart of Fig. B-l. After input, calculation of 
constants, and initialization, we iterate with time through a main computa­
tional loop. Within the main computational loop we first calculate the crack 
wall deflection based on the known values of pressure at time, n. We next 
calculate the frictional coefficient and values of the coefficients used in 
the crack-flow equations. Lastly we simultaneously calculate the pressures 
at a new time, n+1, throughout the solid and crack. If desired, we print out 
results before repeating the calculations in the main computational loop for 
the next time step. 

The problem is considered complete if the tip of the crack reaches the 
maximum node in the "Z" direction which normally represents the surface of the 
earth or if it reaches the maximum node in the "Y" direction which indicates 
additional nodes need to be added to obtain a proper solution. 

Superscripts are used for time variations and subscripts are used for 
spatial variations as indicated in Table. B-l. 

Table B-l - Subscripts and Superscripts used in the Difference Equations 

Subscript or superscript Meaning 

n old time value when conditions are known 
n+1 new time value when conditions are unknown 
*,** intermediate time values 

...,i-l,i,i+l,... "X" direction spatial nodes with node i 
located where values are being calculated 

...,j-l,j,...k,k+l,... "Y" and "Z" direction spatial nodes 
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f START 

INPUT 

CALCULATE 
CONSTANTS 

INITIALIZE 
crack dimensions, 

pressures, ere. 

CALCULATE 
DEFLECTION 
of crack walls 

based on pressure 
at old time, 

n 

CALCULATE 
FRICTIONAL 
COEFFICIENT 

based on pressure 
at old time, n 

CALCULATE 
COEFFICIENTS 

in crack flow 
equations 

Fig. B-1. Flow chart of computations in the CHASM computer code. 
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CRACK WALL DEFLECTIONS 

Deflections are calculated in dimensional form using Eq. (A-7) multiplied 
by the reference length, L. 

..2 

E 

2 
D (Y,I) = ^ C Q

 ( 1 1 V } (?-?r) (AY'AZ1)3* (A-7) 

2 
D (Y,I) • V C G

 ( 1"? ^L (P-F.) (AV'Al*)34 (B-l) 
E 

Values of C„ are established as input in the main computer program from 
8 13 

Gerrard and Morgan's and Campen and Smith's deflection data. These 
coefficients account for the effect of distance between the point the deflec­
tion is being calculated and the area subjected to uniform pressure loading as 
shown in Table A-l. We sum the component deflections only over those areas 
where C is non zero which in our analysis comprises the region within three 
nodes of the area subjected to uniform pressure loading. In the main computer 
program we define a term, CDEF, which contains all the constants in Eq. (B-l) 
and an array, CSUBG(j,k), of the Gerrard and Morgan deflection coefficients as 

2 
CDEF = ( 1 ~ V ) L (B-2) 

CSUBG(j.k) = C„ (AY'AZ')'5 

= C G / MM1 . (B-3) 

Here, NM1 is the computer term for the number of "Z" direction nodes minus 
one. Our mesh spacing over the X=0 plane is composed of uniform squares and 
the values of C are calculated for uniform square areas. If a difference mesh 
spacing such as a rectangle is incorporated, a new set of C„ values in Table 
A-l would need to be developed. 

The summation in Eq. (B-l) is accomplished in three parts in the computer 
program. First we sum over all areas which are at the same elevation as the 
point where deflection is being calculated. If the point is near a boundary 
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and the circle of influence, where C„ is greater than zero, extends beyond the w 
plane Y = 0, we utilize a symmetry condition to account for Y<0. If the circle 
of influence extends beyond the maximum "V" plane we set those gas pressures 
equal to the value at the maximum "Y". This is consistent with the boundary 
condition that the pressure gradient perpendicular to and at the maximum "V" 
plane is zero. 

Second we calculate the contribution due to nodes below the Z=0 plane if 
the circle of influence extends that far. If the Y node is within the region 
of applied pressure at Z»0 we utilize the applied pressure less the appropriate 
earth formation resistive pressure due to overburden as the net force tending 
to open the crack. If the Y node is outside the region of applied pressure we 
take the pore pressure to be a symmetric image of that above the Z=0 plane. 

Finally, we calculate the contribution of all nodes above the Z=0 plane 
which have a non-zero C and which have not been calculated previously. In all 
calculations, the appropriate Gerrard and Morgan deflection coefficient is 
chosen based on the number of nodes away from the point at which deflection is 
being calculated. We then multiply by the difference between the gas pressure 
in excess of the atmospheric pressure present at the node and the earth-
formation resistive pressure. 

FRICTIQVAL COEFFICIENT 

The governing equation for a laminar flow frictional coefficient with a 
geometry of closely spaced parallel walls is 

X £ = 96/Re (A-52) 

where 

2V d P 
Re = — . (A-S3) 

US 
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We first determine a relationship between the total velocity vector, V, and 
the pressure gradients in the "Y" and "Z" direction. Recalling that in 
the crack 

3P 
„ 2 

X p U y 
3Y 2d c 2g 

3P 
„ 2 

X p u
z 

az 2d c 2g 

(A-41) 

(A-42) 

we nay establish the velocity vector relationship as 

u 2 2 x 2 V = u + u y z 

= ̂ (IIMII)-
2 2 The absolute value signs are necessary to assure t -X u and u are positive 

for all values of pressure gradient as they must be. We take the values of X 
in Eqs. (A-41) and (A-42) to be for lamina,, flow since we are calculating 
X.. If the flow is actually turbulent, then the calculated value of A. will be 
discarded since the corresponding falue calculated for X will be greater. 

Combining equations we have 

2 2 2 
x
 2 . *i V 8 
1 4V 2 d c

2 p 2 

96 Z u 2 g X 
(B-5) 

^-c3p(|fh!ll) 
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Eliminating the density by using the equation of state (Eq. A-18) yields 

X 96 U « S T 

«-B

3 ' (if hill) 
.2 2 

9 6 n n , i • (B-6) 
8 d 3 

c prsj 
We wish to write Eq. (B-6) in terms of the pressure function, F, From the 
definitions 

P -P 
P - — f (B-7) 

*1 0 

we obtain 

and 

('•AT 

P 2 = ( P r P 0 ) 2 P 2 + 2P Q ( P r P 0 ) P + P Q
2 

<W2 fr* ST? •-£-*) 

L3Y 

( F 1 ~ F 0 ) JF 
L 3Y 
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¥-- ap2 
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Similarly 

_1 * rrV 2 

3Z 

2 f p -i> •) 
3P _ *• 1 (T 3F (B-10) 

az 

Combining Eq. (B-6), (B-9), and (B-10) 

h 9 6 V f i L * T s • (HI) 
8 (p r p 0 ) 2 dc

3 (\m + \m 
1 ° c VaYl Uz 

The equation used for computation is written in terms of the crack half 
thickness rather than the crack thickness so that 

»•>'•'" - . B.U, 

Care must be exercised to assure compatibility of units. We calculate 
all constants once in the first part of the main program as 

cnacii = m "** L / T . (B-13) 

The difference equations used along with Eqs. (B-12) and (B-13) are 

2 AY (B-14) |3-| = lFj+l,k " Fj-l,J / 

|M| = | F« _ Fn I / |3-| l*j,k+l *j,k-ll J 

and 

2 AZ (B-15) 

V 2 " d" / 2 • (»"") 
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If the location at which the frictional coefficient is being calculated is on 
a boundary then the gradients of the pressure function, F, are evaluated with 
either forward or backward differences rather than central differences. 

The value of the turbulent frictional coefficient is calculated directly 

Xt = - -j ^ (A-60) 
\2 log^+ 1.74J 

where k /d, is the relative roughness equal to the average diameter of Lhe 
solid grains composing the crack wall divided by the hydraulic diameter, 
d h = 2 d c = 4 ( d c / 2 ) . 

We choose the greater of the laminar or turbulent frictional coefficient 
for actual use. Because insignificant crack thicknesses can be obtained 
mathematically, upper limits to the frictional coefficients are imposed to 
assure that reasonable values are not exceeded. 

In the computer program, Reynolds number is calculated after the 
frictional coefficients. For laminar flow 

96 
h 

Re = Y- . (B-17) 

For turbulent flow we use Eq. (A-53), (B-4), (B-9) and (B-10). If we 
recall that the actual equation used for computation is written in terms of 
the crack half thickness, then 
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|v| d h p 
Re = 

V 8 

V (III + HI) 
2 dc ( 1 ' r V / 2 d c Am + i l z ^ 

8 (d c/2)(P 1-P Q) / (dc/2) 
|At g L R T (B-3 8) 

Again the constant values are combined into a single coefficient calculated 
in the main program which is 

8<P -P ) 
CFRIC2 r r - ^ L / a T l (B-19 

p r V / i \* 
V [ g L i? TJ 

IMPLICIT DIFFERENCING OF THE POROUS-SOLID FLOW EQUATIONS 

Above the crack tip but in the plane of the crack as well as through ut 
the rest of the porous solid, the permeabilities in the spatial coordina-es 
are considered as constants so that the governing equation is 

k 2 V 2 k 2 — 
2 3X 2 2 3Y 2 2 3 Z 2 " 3 T 

(A-31) 

where 

-HO (B-20) 
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We wish to difference Eq. (A-31) in terms of the pressure function, F. Using 
Eq. (B-20) we solve for ? and 3P~/3T as 

P = V* - jjij (B-21) 

3T * 3F 3T 

f^f (B-«) 

Substituting iuto (A-31) we obtain 

i 3 2F j. , 9 ZF , , 3 2F _-Js 3F /R-21> 
k — r + k — r + k — r = F TT- vo-i-i; 

x 9X 2 y 37 2 z 3l 2 8 x 

The coefficient of the time derivative is always finite since F is 
2 2 I ./Unded by 0<F£ N /(N-l) . Each spatial term taken separately with the time 

derivative forms a parabolic equation. We follow the procedure described by 
23 25 

Carnahan, Luther, and Wilkes which was originally developed by Brian since 
this reduces to the alternating direction implicit method in two dimensions 

B—1 used in differencing the crack flow equations. Use of Douglas' method 
described by Carnahan is an extension of the Crank-Nicolson method and as such 
would not be as compatible with the differencing chosen for the implicit 
solution of gas flow inside the crack in the "Y" and "Z" directions. 
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The major advantage of the solution method chosen is the tri-diagonal 
form of the matrix which results. That is, the matrix has non-zero elements 
only along the diagonal and immediately adjacent elements as shown in Fig. 
(B-2). A particularly efficient method to solve the matrix is available. 

23 Following Brian's method, the solution is broken into three parts as 

k 6 2 F* + k 6 2 F" + k S2 F" - ( F ^ * ) ^ L £ (B-24) 
x x y y z z v ' AT/2 V ' 

k 6 2 F* + k 6 2 F**+k 6 2 F" = (p".**)-* Ci£ (B-25) 
xx yy zz v ' AT/2 v ' 

k 6 2 F* + k 62 -r + k 6 2 F n + 1 - ( F**.-«)^ ^ 7 ! * * (B-26) 
x x y y z z ' AT/2 V ' 

2 2 2 Here 6 , 6 , and 6 are finite difference forms of the second derivative x y z 
acting on the pressure function at the time shown. The double superscripts 
indicate a value of F between the times denoted by the superscripts. 

The actual equations used for computations are developed following the 
solution method for tridiagonal matricies outlined by Roache. We let 

a = k (B-27) 

Y = k y (B-28) 

(B-29) 
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X X 
X X X 

X X X 0 
o X X X 

X X X 
X X 

Q Zero elements 

X Nonzero elements 

Fig. B-2. Form of a t r i -d iagonal matrix. 

and 

' i . j . k 
8 < j . k > H , + o H o ^ . J . k > 

-k (B-30) 

The coefficients a, Y, and C are taken to be independent of time and space. 
Time superscripts and spatial subscripts could also be included for generality 
if desired. The correct time value to use when calculating the value of 
F. . , in the r). . , coefficient is a matter at some debate. We include a 
i.j.k l.j.k * 

weighting coefficient 6 in the calculation of n '. , which may be varied 
depending on the specific problem. The superscript contains the two time 
values used in calculating the n coefficient. 
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26 We use Blottner's grid stretching method in the "X" direction to increase 
the effectiveness of the number of grid points used. This makes the grid size 
variable in the "X" direction. Substituting Eqs. <B-27) through (B-30) into 
(B-24) with the derivatives expanded into differences gives 

2 a (Fi+l,.1,k ~ Fi.j,k/ (Fi.1.k " Fi-l,.l,k) 

K-l/2 + M i - l / 2 ) •• 
AX i+1/2 AX 

k l.J.k i,j-i,k/ 
(AY)' 

i-1/2 

+ KjaMi. i !L^ + F 

(AZ) 2 

l.J.k-1.) n n'* 
ni,j,k 

/ * 
.Vi.Jt'' 

F".J.k) 
AT/2 

CB-31) 

where 

AX i+1/2 * Xi+1 (B-32) 

A Xi-l/2 = X i i-1 (B-33) 

Values of the spatial derivatives at the boundaries would use either the 
Dirichlet condition where the boundary value is specified or the Neumann 
condition where the spatial derivative in equal to zero. Within the crack, 
over the portion of the lower surface where the pressure is specified as 
input, and over the total upper surface where the normalized pressure is zero, 
we use the Dirichlet condition. On all other portions of the boundary we use 
the Neumann condition. 
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"X" Direction Implicit Differencing 

Equation (B-31) is written in the following form for use in the computer 
program when considering the "X" direction implicit with the "Y" and "Z" 
directions explicit. 

* * * 
" A i , j , k F i + l , j , k + B i , j , k F i , j , k " C i , j , k F i - l , j , k = D i , j , k (B-34) 

where 

2 a 
* i , 3 , k A X i + 1 / 2 ( A X 1 + 1 / 2 + a t _ l / 2 ) (B-35) 

B i , j , k " ( A X i + 1 / 2 * \ _ 1 / 2 ) [ A X ^ / 2 + A X i ' 1 / 2 

n , * 

+ A T / 2 

2 a 
+ 1 U A 

i X i + l / 2 M i - l / 2 * T / 2 

(B-36) 

C. 
2 a 

l . J . k A X . _ 1 / 2 ( A X . + 1 / 2 + A X . _ 1 / 2 ) (B-37) 

( F n - 2 F n + F n ) 
D = v i . J + l . k i , .1 ,k + * i , . i - l , k J 

+ E i , J , k + l i t 3 , k l , J , k - l / ' i , 1 , k j . j . k 
C (AZ) 2 ^ 

(B-38) 

In turn we have 

* * 
F = E F + F 

i . j . k i . j . k i + l , j , k i , j , k 

(B-39) 
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where 

A. . , 
i ' J , k B i , j , k _ Ci,j,k Ei-l,j,k 

(B-40) 

} . Di,.i.k + Ci,J,k Fi-l,j,k 
1 , J , k Bl,j,k- Ci,j,k Ei-l,j,k 

(B-41) 

At the left boundary, the subscript i-1, and from Eq. (B-39) 

* * F • E F + F l.j.k l.j.k 2,i,k 1,1,k (B-42) 

For a Dirichlet boundary condition where the value of F. , , is specified 

El.J.k-° 
F . = specified value 1, J ,k 

, Dirichlet 
condition (B-43) 

For a Neumann boundary condition where the derivative is zero 

• W " 1 

F l , j , k - ° 

Neumann 
condition (B-44) 

Using the boundary conditions above and the recursion relationship of 
Eqs. (B-40) and (B-41) we may calculate all the values of E . . and F ,. 

i>J»K 1 , J , K 
At the right hand boundary, where the subscript, i, has its maximum value 
we use either the Dirichlet condition to specify the value of F . , or the 

li,J ,K 
Neumann condition which gives from Eq. (B-39) that 

L.j.k 1-E. 
L-I,j,k (B-45) 
L-l,j,k 
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where the subscript, L, indicates the maximum "X" direction node. We may then 
use the recursion relation, Eq. (B-39) to calculate all other values of 
£ 
F. . , starting with the maximum "X" direction node, i.j.k 

iiyii 0 i r e c t i o n implicit Differencing 

Working with the "Y" direction implicit portion of the calculation, we 
have from Eq. (B-25) 

2 a 
( A X ± + I / 2 + A X ^ ^ ) 

FH-l,j,k ~ *l,j,k' (Fl,.1,k " Fi-l,,1,k ) 

AX i+1/2 AX 1-1/2 

** ** ** 

(AY) 2 

fF n - 2F n + F n ) + ; V l,J,k+l i.J.k i,j,k-r 
(AZ) 2 

(F** - F" ) n,** Ui,.j,k *i,.i,k; 

'i,j,k AT/2 (B-46) 

with 

AA AA AA A. 4 , F. ... , + B. . , F, . . - C. . . F. . . . = D. . , (B-47) i.j.k i,j+l,k i,j,k i.j.k i.j.k i,j-l,k i,j,k 

A. . , = Y i.j.k (B-48) 

Bi,j,k ' Y + AT/2 ni,j,k (B-49) 

i.j.k (B-50) 
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and 

Di,j,k 
2 a 

( A X i + 1 / 2 - A X l _ 1 / 2 ) 

It * * •» c * * A f(Fi+i,j,k " ^.j.k' ( Fi,i,k ~ Fi-i,,j,kJ1 
AX 

fF n - 2F n + F n 

i c
 l*i.j.fc»l "i^k**!,,!^-! 

(AZ)2 

i+1/2 

) 

AX. •1/2 

n n'** F n 

I "i.l.fc'i.-I.H 
AT/2 

Rewriting Eq. (B-46) 

(AY) 2 (B-51) 

** ** 
T s v F + F 
"i.j.k fii,j,k ri,j+l,k ri,j,k 

(B-52) 

with 

E. . i.1.k 
i , j ' k Bi,j,k " Ci,j,k Ei,j-l,k 

(B-53) 

D. . . + C. , . F, . , . J = i>J>k. lFj,k i,j-l,k 
^ B l . j , k - C i . j > k

E l . J - l , k 
(B-54) 

As before we use both Dirichlet and Neumann boundary conditions as appropriate 
for calculating first the values of E. . . and F, . . , and then the values of 
i.j.k" 
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"Z" Direction Implicit Differencing 

For the "Z" direction implicit portion, the difference equations used are 
developed from Eq. (B-26) as 

2 a 

<*W + A Xi-l/2 ) 

( F i+i, . i ,k ~ h.ny ( F i . j , k ~ F k-i . . i .k } 

AX i+1/2 AX i-1/2 

** ** rtrt 
+ ., i.J+l.k " 2Pi..1.k * Vl-l.k* 

' — 2 

r.n+1 2 F n + * , + F" + 1 (F" X - 2F + F ) 
, ;

 v'i..1.k+l " i . i . k * tt..1,k-l) 

(AZ) 2 

( F n + 1 - F** ) _ **.n+l Ui,.;,k 'i,j,kJ 

" nl,j,k AT/2 (B-55) 

with 

A i , j , k F i > j > k + 1 + B i > j > k

 F i , j , k - c i , j , k F i ( j , k - 1 • D i ( j , k < B - 5 6 > 

A. • v = 5 (B-57) 

_ (AZ)' **,n+l 
B i , j , k ~ -^ + AT/2 n i , j ,k (B-58) 

C i , j ,k = 5 
(B-59) 
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D i.j.k 
2 a 

( A xi +i/2 + ^ i - i ^ 

'(F* - F* ) (F* - F* >> Ui+l,j,k ri,.j,k; Ui,i,k 'i-l,.j,k' 
AX i+1/2 ^1-1/2 

** ** ** . **,n+l ** 
+ Y

 (Fi.i+l.k " Fi.1,k + Fi..i-l,k) nl,l,k Fi.i.k 
Y (AY)2 ^ 

(AZ) 2 . (B-60) 

In turn, 

n+1 „n+l ~ 
i.j.k i.j.k i,j,k+l T ri,j,k (B-61) 

with 

A. . , 
1 , j , k Bi,j,k" Ci,j,k Ei,j,k-1 

(B-62) 

J Di.i,k + Ci,.1,kFi,j,k-l 
^ Bi,J.k- Ci,J,k Ei.j,k-l 

(B-63) 

Maps outlining the calculations for all the spatial locations in each step 
are shown in Figs. B-3 through B-5 since there are a number of regions with 
different boundary conditions. The circled numbers outline the sequence of 
steps in the computer program. 

IMPLICIT DIFFERENCING OF THE CRACK-FLOW EQUATIONS 

We explored two ways of differencing the crack flow equations both of 
which are related here. Each method of differencing is satisfactory and result 
in nearly identical answers when compared in a sample problem. The method 
described first was used for all the calculations documented because there 
appears to be an advantage in stability. The alternate method has the 
possible advantage of being more accurate for the same spatial grid size. 
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M 

MM1 

Crack tip > 

i = l 2 

2 s Z ^ NM1 

LM1 L 

M 

MM1 

Crack tipj-

M2 

2 ; 

= m 

(3> 

0 

! 0 <~> ! 0 

Z = l 

Values in area A 
specified as a function 
of time by input 

1 2 L2 LM1 L 

Fig. B-3. Calculational steps for the X-direction implicit calculations for 
the porous solid. 
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MM1 

Crack Mp 

i.= 1 
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= 1 2 
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MM1 

Crack tip 

M2 

2 

J = l 

-—(PSIO) (psn) (ps 12)—1 

0 0 

Z = l 

Valves in area A are 
specified as a function 
of time by input 

1 2 L2 LM1 L 

Fig. B-A. Calculational steps for the Y-direction implicit calculations for 
the porous solid. 
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M 

MM! 

Crack tip • 

J. = 1 
i - 1 2 

(PS20 

- — ( p S 1 3 ) (PS16) ( P S I ? ) — " 

PS15) (PS18 PS21 

2= Zs NM1 

LM1 L 

Fig. B-5. Calculational steps for the Z-direction implicit calculations for 
the porous solid. 

The governing equation for flow within the crack is 

3F ^ 3 IT /|3F 
C x 3X 371 c y Z (i) H - k ^ ± - i k „ P= ± ± k .„ ^ + £ = 0. (A-50) 

°y z Mali 
SFlX^X , 3P 

3T 

We replace the temporal derivative of pressure with a derivative of the 
pressure function using Eq. (B-22) which results' in 

. ¥_ M ̂  fc__ ̂ ± A fc rf^* 
+ K * f = ° (B-64) 
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In the first method of differencing, we differentiate the second and third 
terms from the left in closed form to obtain 

CX 3X [iWI 3Y A^X'-i 3Y 13y) 2 /|M| 
3Y 

W ^ l ^ a ± - ^ ± |M| + i F^f - 0 (B-65) 
3zy sz 2l\—\\ 3 Z z 

2 2 The value of F is bounded by 0 <_ F < M /(N-1) so that the coefficient of the 
right hand term is always finite. On the other hand, it is possible for 
singularities to occur numerically in the third or fifth term from the left 
if 3F/3Y or 3F/3Z approach zero. One means of avoiding such difficulties is 
to multiply through by these values. However., this yields an equation which 
in the limit does not conform to the physics of the problem. For example, if 
3F/37 •*• 0, only the second and third terms from the left in Eq. (B-65) should 

— h approach zero. Yet if we multiply Eq. (B-65) by (3F/3YK we find that all 
terms approach zero as 3F/3Y •+ 0 leaving us with a trivial result. A better 
way of eliminating the possible singularity is to set the second and third 
terms from the right equal to *ero if |3F/3Y| is less than some small value. 
Similarly, we would set the fourth and fifth terms from the right equal to 
zero if |3F/3Z| is less than some small value. 

The plus signs in the second and third terms from the left in Eq. (B-65) 
are used if 3F/31T < 0 and the minus signs are used if 3F/3Y > 0. If we 
multiply the numerator and denominator of the second term by (|3F/3Y|) and 
remove the absolute value signs in the numerator, then the minus sign should 
be used regardless of the magnitude of 3F/3Y. In the third term we may 
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eliminate the absolute value signs In the numerator if the minus sign is used. 
Similar arguments may be made for the fourth and fifth ter;:is from the left. 
This gives, after rearranging, 

C X 3X I 3Y / V 3V 

K ! i f ' (B-66) 

In Eq. (B-66), the tevms containing 3F/3Y are set equal to zero in the computer 
y. 
25 

—2S 
program, CHASM, if [3F/3Y| is less than 10 . Similarly, terms 
containing 3F/3Z are set equal to zero if |3F/3z] < 10 

The "X" direction term taken separately with the temporal term forms a 
hyperbolic equation whereas either the "Y" or "Z" direction second derivative 
terms taken individually with the temporal term form parabolic equations. 
Accordingly, we retain an explicit differencing scheme in the "X" direction to 
prevent artificial numerical damping. In the "Y" and "Z" directions we retain 
an implicit differencing scheme because of its inherently better stability. 
We use an operator splitting technique (Ref. 33 and B-2) where Eq. (B-66) is 
broken into two parts which are 

r 3F 1 -H 3F 
k c x 7 = = 2 F 37 CB-67) 3X 



and 

*2JL 
-2 3Y 

• (mf)$ ^•'W'0")S 3Z 

i F - " | E . (B-58) 

In using Eqs. (B-67) and (B-68) as an alternate to Eq. (B-66) we are 
determining first the effect of the "X" direction spatial component throughout 
a given time to find a hypothetical value of the pressure function from Eq. 
(B-67), Then we use this hypothetical pressure function over the same time 
period to calculate the actual pressure function at the new time, using Eq. 
(B-68). 

Since we explicitly difference Eq. (B-67), the value of the time step must 
be less than the "X" direction spatial step size divided b> the equivalent 
velocity if stability is to exist. This time step would be 

AT < J" , (B-69) 
2 k F"4 

ex 

We repeat the explicit "X" direction calculation using Eq. (B-67) a number of 
n * * 

times until we have advanced from time T to time T . The time i is a hypothetical 
time value which occurs p.fter completion of the "X" direction calculations. 

23 24 — Next we use an iltt mating direction implicit scheme ' for the "Y" and 
"Z" directions in two cime steps from time T to time T . In the first step 



the "Y" direction spatial second derivative is differenced implicitly and in 
the second time step the "Z" direction spatiai second derivative is differenced 
implicitly. In the alternating direction implicit calculations, all 
coefficients are evaluated using some average value of the pressure function, 
F, between the hypothetical time, T , and the new time t . The total time 

* n difference in the explicit calculation, T -T , must be identical to the total 
time difference in the implicit calculations, T -T , if the solution we 
obtain from Eqs. (B-67 and B-68) is to be equivalent to a solution to Eq. 
(B-66). 

Use of an alternating direction implicit scheme is unconditionally stable 
for any time step if Eq. (B-68) is linear. Because Eq. (B-68) is nonlinear, 
stability must still be considered in selecting a time step. We approached 
the time step selection on a trial basis. We found the results were 
independent of variations in time step by over a factor jf 100 as long as 
stability was maintained. 

The best means of differencing the coefficients of Eqs. (B-67) and (B-68) 
depend on the problem and it is not clear which values of time should be used 
in evaluating the pressure function, F. We use a weighting factor, 8, for all 
implicit calculations which may be varied and which is a fraction used to 
multiply the new time value of F. The following coefficients are defined for 
use in the "Y" direction implicit portion of the calculation: 

a., . . = k (B-70) 
l , j , k ex , 

J >K 

* ** / ** ** \ I I —/, ** ** , NY5 

h',i>k - e ( F i . ^ i . k - F i , j - i . k ) / ( 2 A Y K i + i , k - F i , j- i ,ki )j 

+ " " « ( F l , j + l , k - < j - l , k ) | ( 2 A % * , j + l , k - F l , j - l , k l ) ) * (B-71) 
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*.** — Y, . , = k l .J .k cyz 

* ** 
l .J .k 

, . k[-/('K^-*-i.J'^ 
( i - e Y ( 2 ( i F i o + i , k - Fi.j-i.ki) / ®, h 

s (Fi!j,k+i - ^j.k-i) / ( 2 ^ ( i C k + i - C k - i ' ) / ' 

^ K ] | f c f i - ^ , w ) ( 2 i i ( l F i , j , k + i - i . j .k - i l ) ) 3 5 

/ ( * ( iC ,k + x-^ > k - i i ) / * ) * 

( ^ (2 H , j , k + i - , w- i i ) / A ^ 

' l . j . k - "cyz 

(B-72) 

(B-73) 

(B-74) 

n ' = 0.5 
l .J .k 

/
* * !« / A ^ 

C F l , j s k > + ( 1 - e ) / ( F l , J , k > J 
(B-75) 

with 

* * * * * * * * 
Bi . i = Yi • , = 0 if F. . . . . = F. . . . % 3 , k '1 ,3 ,k i .D+l.k l»] - l»k (B-76) 

* ** *.** * * 
Ki*mKu*m0it*ui.*-is*i.i.*-i ( B " 7 7 ) 

Similar values of the coefficients are defined between the times, T and 
T for use during the "Z"-direction-implcit portion of the calculations. 
The values of k are considered to be time independent. 

C Xj,k 
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In the first step of the operator splitting scheme the difference equation 
for the "X" direction is utilized. 

(F2,j,k " Fl,j,k) _ n,* (Fl,j,k ' Fl,j,k) 
"l.j.k A - " V j . k AT ( a 7 S ) 

The difference equations for the second step uses an alternating direction 
implicit scheme for the "Y" and "Z" directions. 

c y 2j+l,k c y Zj-l,k/ , *,** (Fl,H-l,k ' 2 Fl,j,k + Fl,j-l,k) 
2 AY" J- , J' K (AY)" l.j.k « .y 1.j,k 

5*,** (̂ -j.k+r̂ i.k-l) , .*.** ( ( L W - ^ I / ^ J 
l.j.k 2 AZ 1'^'k (AZ) 2 

. *•** V 1>3A hlM (B-79) 
nl,j,k AT/2 l B 7 9 ) 

(k -k 1 / ** ** ** \ 
cyzj+l,k cyzj-l,k/ + **,n+l Vi'l,i+l,k~2Fl,.i,k+Fl,j-l,k,/ •J • Y 

2AY ' J' (AY) 

/k -k \ / n+1 ,_n+l n+1 \ 
+ 6**,n+l V cyzj,k+l c y aj,k-l/ .,. ?**,n+l Vl.i.k+l "l.J.k l.j.k-1/ 

l.j.k 2 A I 1 , J , k (Al)2 

(>*1 _F** ^ **,n+l \ l.j.k l,j..M (B-80) 
nl,j,k AT/2 

Eq. (B-78) is solved for each new value of pressure function directly 
without iteration and the process is repealed until the total time difference 
equal to T - T is reached. We rewrite Eq. (B-79) to obtain a standard 
algorithm form for solving a tri-diagonal matrix as follows: 

** ** ** 
~ Al,j,k Fi,j+l,k + Bl,j,k Fl.j,k " Cl.j,k Fl,j-l,k = Dl,j,k (B-81) 
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where 

l . j . k " ' l . J . k 
(B-R2) 

_ 2 
R = 2 V * ' * * + ( ' - Y > - * • * * 
" l . J . k ^ l . I . k * - T / 2 ' l . J . k 

(B-83) 

ft ftft 
c Uj,k. " ' l i u k 

(B-S4) 

and 

l . j . k - l . J . k 
c y ' l + l . k c y : 1 - Lil + .•*.** Nfid£i^!I!itk±! 

2 AY ' l . j . k 2 :.z 

/ A ft ,ft V ft f ft* ft 
x - * . * * ( f l . i . k + l " 2 F l . j . k + F l , J . k - l ) . r ' l ] , ) .k F l . j , k 

' l . j . k (AZ> 2 A T / 2 
C Y ) 2 (B-S5) 

in turn, for the "V" d i r e c t i o n we wr i t e 

*ft 4ft 
F « F F + F 

l . j . k 6 l , J . k l , j + l , k r l , j . k 
(B-86) 

with 

" l . j . k 
1 , j , k B l , j . k " C l , j , k E l , J - l , k 

(B-87) 

F _ " l . j . k * C l , j , k F l . J - l . k 
1 , J ' k Vi.k _ C U j , k E L , i - U k 

(B-as) 

At the boundaries we use conditions identical with those mentioned previously 
for flow in the porous solid. That is 

Dirichlet Condition: Eĵ  fc - 0 and F t . fc - Fj , k 

(boundary value 
specified) 
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Neumann Condition: E, , , • 1 and F, . . = ( 
(boundary derivative 
equal to zero) 

for the "Z" direction wc write Eq. (11-80) as 

„n+l .n+l . ..n+l ,, 
" Al.J.k l.J.k+l "l.j.k t.i.k " Ll.j,k rl.i,k-l ' l,|.k (B-S9) 

where 

l.J.k l.j.k (n-90) 

- ,.",0+1 . (AZ)' . "*,n+l 
"l.J.k -'"l.J.k A?7T~ I.I.k (B-91) 

-ft*.n+l 
"l.j.k " H.j.k (B-92) 

and 

"l.j.k 3l.J.k 
j-l.k) 

2 AY ( ft* *6 ** \ 

+ ,, Fl.J+I.k ~ 2 Fl,J.k - 1,)-X,k) 
l.J.k ( f l 7 ) 2 

/k - it \ I **,n+l „** \ 
+ , " . *« 1 C ^ , k , t

 c ^.k- i j + h t J , k F

M , k ) 
l , J , k 2 AZ 

In turn, for the '"/." direction 

<AZ) 2. (B-93) 

n+l _n+l + p (B-94) 
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where 

A 
LJJJL. 

1 , J , k " l . j . k " C l , j , k F ' l , j , k - 1 
(B-95) 

F . * W * S t J , k \ j t k - l _ ( B _ , 6 ) 

U U k B l , j , k " C l , j , k E l , j , k - 1 

In all Implicit calculations we Iterate to update those coefficients which 
vary with time. The equations for the flow inside the crack are coupled with 
Che equations for the porous solid in the Y and 7. directions so that a single 
matrix is formed that covers all nodes in the problem. That Is we calculate 
changes in the X direction for all nodes either within the crack or in the 
solid iterating as necessary for the implicit calculations. Then we calculate 
changes and Iterate in the Y direction for all nodes. The 7. direction 
calculations and iterations for all nodes are performed T.ext. A final iteration 
loop over the total implicit calculations in rbi X, Y, plus 2 directions is 
included to assure convergence. 

ALTERNATE METHOD FOR DIFFERENCING THE CRACK-FLOW EQUVIONS 

We again start with the governing equation for flow Inside the crack, 
which is 

l^Mi^Mt'S')*^* - k c x * * -r: fk-..- Il^rll I- -= f k-_ n^ll 1+ T F * e " 0 (B-64) 

Rather than differentiating in closed form, Winslow has suggested 
Incorporating into the coefficient IT the necessary multiple of 3F/3Y or 
3F/& to eliminate the square roots. That is, since the coefficients k are 
variable we could add such a multiple to the coefficients without appreciable 
complication and obtain a form of Eq. (B-64) that may be directly applied to 
the tri-diagonal matrix solution algorithm. We obtain the following form of 
the equation: 
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,Kf * ; " ©'• 
In differencing Eq. (B-97) we define the following. 

*l,j,k ~ ex j.k 

Tfi.i+i/2.k = k c y Z j + 1 / 2 k 

h , j , k + l / 2 = k c y Z j + 1 / 2 ( k 

A ** 
n l . J . k - ° - 5 

where 

k = /k + k \ / : 

(B-97) 

(B-98) 

(B-99) 

(B-100) 

(B-101) 

(B-102) 

We retain the operator splitting technique using the "X" direction as explicit 
and an alternating direction implicit scheme in the "i" and "Z" directions. 
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In the "X" direction the difference equation is 

/ F2,j,k " Fl,.j,k\ n,* (Fl,,1,k ' Fl,,i,k 
l.j.k I & J "l.j.k I AT (B-103) 

In the "Y" and "2" d i rec t ions the difference equations are 

* f** / ** ** \ *,** / ** ** \ 
l | j + l / 2 , k I F l , j + l , k " r i , j , k ) ~ Y l , j - l / 2 , k l F l , j , k " F l , j - l , k j 

( * * \ * ^ * * / * * \ 

F l , j ,k+1 " F l . j , J " C l , j , k - l /2 P l . j . k " F l , j , k - l ) 

(AY) 

_1 \r*,* 

(AZ) 
+ - ,2pl,j ,k+l/2 

* , * * f F l , J . k " F l , j , k 
' l . j . k \ AT/2 , (B-1CK.) 

and 

1_ 

(AY) : 

(Al) 2 

*,n+l / * * ** \ **,n+l / ** ** \ 
, j+ l /2 ,k 1 l , j + I , k " l . j . k J " Y l , j - l / 2 , k I l . j . k r l , j - l , k J 

(_n+l n+1 \ .**,n+l / p n + i r n + 1 | 

l , j , k + l " l . j . k / " ' l , j , k - l / 2 ^ l . j . k " ' l . j . k - l ^ 

( F
n + 1 - F** ) 

.**,n+l 
'l,j.k+l/2 

'l.j.k AT/2 (B-105) 

This alternate formulation of the difference equations contains less terms 
and conservation of the pressure function flux across an elemental control 
volume is more apparent than in the method we used to obtain results. However, 
the alternate formulation was discarded because we found the stability limits 
to be more severe. Both formulations gave the same results on sample problems. 
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If the alternate method were to be utilized we would write Eq. (B-104) for 
the "Y" direction as 

** ** ** 
Ai,j,k Fl,j+l.k + Bi,j,k Fl,j,k " Cl,j,k Fl,j-l,k = Dl,j,k 

(B-106) 

where 

Al,j,k = Yl,j+l/2,k (B-107) 

B i , j , k - K : «. *.** \ + *.** mil 
j+l/2,k Yl,j-l/2,k/ 'l.j.k AT/2 

Cl,j,k * Yl,j-l/2,k (B-109) 

"l.J.k (AZ)' ^ 2h.J.k+l/2 (T* _F* \ _ £*.** L* _F \( 
\*i,j,k+i ^i,j,k/ n , j ,k - i / 2^ i . j ,k "l.i.k-m 

AT/2 'l.j.k (AV) ^ 2 (B-110) 

This gives 

Fl,j,k " El,j,k Fl,j+l,k + Fl,j,k (B-lll) 

where E, . and F are defined by Eqs. (B-87) and (B-88). We write 
i > J»K 1»J_tk 

Eq. (B-105) for the "2" direction as 

„n+l Ji+1 
Al.j.k Fl,j,k+1 + Bl,j,k Fl,j,k * Cl,j,k Fl,j,k-1 = Dl,j,k (B-112) 
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where 

,**,n+l 
Al,k,j " h,j,k+l/2 (B-113) 

**,n+l 
**.n+l **.n+l V nl.j.k. 
n,j,k+l/2 * n.j.k-1/2^ AT/2 

17,2 (AZ) 
AT/2 (B-114) 

= **,n+l 
"l.j.k n,j,k-l/2 (B-115) 

Yj.k (AY) 
„**,n+l / ** ** \ **,n+l / ** ** \ 
Yl,j+l/2,k (Fl,j+l,k~Fl,j,kJ "" Yl,j-l/2,k (Fl,j,k~Fl,j-l,k) 

**,n+l 

AT/2 l.j.k (AZ) 2 (B-106) 

which in turn we write as 

F
K + 1 = E F

n + 1 + f *l,j,k fil,j,k rl,j,k+l + rl,j,k (B-107) 

We use the definition of E. . . end P, . . in Eqs. (B-95) and (B-96) for use 
1*3 »k i»3 > K 

"Z" direction. Boundary conditions are identical to those described earlier. 

EVALUATION OF AN EFFECTIVE CRACK THICKNESS AT THE TIP OF THE CRACK 

At the crack tip there is a control volume which is represented half as a 
c^ack and half as a porous solid as shown in Fig. B-6. The crack thickness 
diminishes to zero at the central node location so that flow in the lower half 
of the control volume is governed by the crack-flow equations. In the upper 
half the porous solid flow equations apply. Our calculations consider that 
the control volume has a single gas pressure and a single effective crack 
thickness. 
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Plane of the crack 
cenrerline 

I AX 

« Control volume boundary 

Pcrous solid materia! 

Control volume node 

Boundary of linearly varying crack 

H 

Adjacent node below 

X = X„ 

Fig. B-6. Crack-tip control volume at a region on top of the crack where no 
Y-direction variation exists. 
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If the crack boundary varies in a linear fashion over the localized 
region, then the crack thickness at the lower surface c£ the control volume 
would be one half the value at the adjacent node below. The average 
thickness of the crack in the lower half of control volume would be one 
fourth that of the adjacent node below. 

Since the resistance to flow in the porous solid is generally much 
greater than that the resistance to flow inside the crack, the pressure at the 
node of interest would be approximately equal to that determined by the gas 
flow in the crack portion of the control volume. It could be argued that the 
average crack thickness represents an effective value to be used for 
calculating the average pressure over the control volume. 

Normally the shape of the crack wall is convex outward so that the 
thickness retrains large over most of its length and diminishes rapidly near 
the tip. This characteristic suggests that the effective crack thickness 
would be more than 1/4 that of the adjacent node below. On the other hand, 
any pressures calculated using the crack-flow equations apply only to the 
lower portion of the control volume so that the average pressure over the 
entire control voljme would be less. Ke have varied the effective thickness 
between 1/4 and 1/2 that r{ the adjacent ncde below and find less than 5% 

difference in the results of sample problems. This effective thickness is 
left as an input variable with the recommendation that i. value equal to 
about 1/4 that of the adjacent ncde below be utilized. 
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Appendix C - The Computer Code CHASM 

Included in this appendix is a listing of the computer code, CHASM, which 
was used to generate all results of this research on a CDC 7600 computer, a 
sample input for one of the problems, and a portion of the output. 

The computer code consists of a main program and three subroutines. The 
main program is used to calculate constants, initialize variables, call the 
subroutines during each time iteration, and printout the results. The first 
subroutine, DEFL, determines the deflection of the crack walls due to gas 
pressure inside the crack. The second subroutine, FRICT, calculates frictional 
coefficients for use in the last subroutine, FLOW. All calculations for gas 
flow in the crack and in the porous solid are performed within subroutine 
FLOW. Comment cards are included to describe each set of calculations. Also 
included is a listing of the nomenclature. The definition of the pressure 
function, F, in this report is revised from that used in the computer program. 
This revision results in simplification of some equations in the report. The 

2 definition in the computer program differs by a constant factor (1/N-l) and 
is consistent with all calculations performed. 

The sample input shows the format for those variables called for on lines 
198 to 200 and line 423 of the computer code. Although results are presented 
in metric units in the body of this report, English units were used for the 
computer input and output. 

The output shown includes only th">. first portion and a representative 
portion toward the end of the problem. The first portion lists the input 
variables and some calculated constants. The representative portion gives the 
output at one specific time in the problem. Similar portions for all other 
printout times are found in a complete output. 
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LISTING OF COMPUTER CODE, CHASM 

1 PHOGUAM CHASMITAPE59,INPUT,TAPEC=1NPUT,ANSWER,TAPE? ANSWER) 
2 C 
3 C G^S-INITIATED CRACK PROPAGATION IN A POROUS SOL1D--A COMPUTER CODE 
4 C [N THREE DIMENSIONS WHICH USES AN IDEAL GAS AS A FLUID. THE 
5 C PROGRAM CALCULATE? THE CRACK WALL DEFLECTION. FRICTIONAL 
6 C COEFFICIENTS. AND GAS FLOW BOTH IN THE CRACK AND IN THE POROUS 
7 C SOLID. THE FORTRAN PROGRAMMING USES MIXED MODE ARITHMETIC. 
8 C INITIALIZATION OF ALL VARIABLES TO ZERO BY THE COMPILER IS 
9 C REQUIRED. 
10 C 
11 COMMON /CRACK/ AF(10,15,20),AFF(10,15,20),BB(10.15,20).BETAI1,15.2 
12 10).CDEF.CFRICl,CFR!C2,CKX(15,20),CKYZ(15,20),CSUBG(3.3),D(15.20),D 
13 20C10,15,20).DELTA!1,15,20),DT,DTOT(15,201,DT2,0X(10),DY,DY2,0Z.DZ2 
14 3 . E E ! 1 0 , 1 5 , 2 0 ) , E F F T I P , E T A ! 1 0 , 1 5 . 2 0 1 , F ( 1 0 , 1 5 . 2 0 1 , F F C 1 0 , 1 5 . 2 0 1 , F M A " , F 
15 4STAR< 10 . ! 5 , 2 0 ) . F S S T A R d O , 1 5 , 2 0 ) ,GAMMA! I , 1 5 , 2 0 ) , 10 ,JSTOP(201 ,L .LM1 , 
16 5 L M 2 . L 2 , M , M M 1 , M M 2 , M 2 , N , N M I , N M 2 . N T T O T , N Y T I P ( 1 5 ) , P ( 1 0 , I 5 , 2 0 ) .PR.PRFUN 
17 6 , P S ( 6 0 1 ,REYNC(15 ,20 ) .SIZE,SPACE I 1 5 , 2 0 ) ,THETA,THETAl , X ( 1 0 ) .XKX.XLAM 
18 7 B < 2 0 , 3 0 ) ,YKY.ZETA(1 , 1 5 , 2 0 l . Z K Z 
19 CALL DEVICE (6HCREATE,6HANSWER,110000) 
20 C 
21 C NOMENCLATURE 
22 C 
23 C AAF--PREVIOUS VALUE OF THE PRESSURE FUNCTION AFd.J.K) USED IN aZn 
24 C DIRECTION FLOW CALCULATION ITERATION 
25 C AF!I.J.KJ--VALUE OF THE PRESSURE FUNCTION Fil.J.K) AT ADVANCED 
26 C TIME AFTER COMPLETION OF nZn DIRECTION FLOW CALCULATIONS 
27 C AFF!I,J.K1--VALUE OF THE PRESSURE FUNCTION Fil.J.K) AFTER nXn.QYn, 
28 C AND nZn DIRECTION FLOW CALCULATION ITERATIONS 
23 C AJ.AK--VARIA8LES USED IN CALCULATING THE INITIAL CRACK THICKNESS 
30 C ARG--ARGUMENT IN LOG BASE 10 FUNCTION FOR CALCULATING TURBULENT 
31 C FRICTION FACTOR, SUBROUTINE FRICT 
32 C BB(I.J.K1--VARIABLE USED FOR INVERSION OF THE TRI-DIAGONAL MATRIX, 
33 C SUBROUTINE FLOW 
34 C BETA!1,J,K)--VARIABLE COEFFICIENT IN THE CRACK FLOW CALCULATIONS 
35 C BLOTK--VALUE OF KAPPA IN BLOTTNER'S GRID STRETCHING METHOD 
36 C BLOTN—VARIABLE IN THE EXPONENT CF BLOTTNER'S GRID STRETCHING 
37 C METHOD (EQUATION 131 
3B C Bl ,B2—VARIABLES USEO IN CALCULATING BETAU.J.K) WITHIN 
39 C SUBROUTINE FLOW 
40 C COEF—CONSTANT USED IN SUBROUTINE DEFL (EQUATION B-2) 
41 C CFRICI--CONSTANT USED TO CALCULATE XLLAM IN SUBROUTINE FRICT 
42 C (EQUATION B-13) 
43 C CFR1C2--C0NSTANT USED TO CALCULATE TURBULENT REYNCIJ.K) IN 
44 C SUBROUTINE FRICT (EQUATION B-19) 
45 C CKX(J,Kl—NORMALIZED nXn DIRECTION PERMEABILITY THROUGH THE CRACK 
46 C WALL 
47 C CKYZ(J,K)--NORMALIZED EFFECTIVE PERMEABILITY IN THE nYn & nZn 
48 C DIRECTIONS WITHIN THE CRACK 
49 C COMPARE--DIFFERENCE BETWEEN OLO AND NEW VALUES OF FSTARII,J.K), 
50 C FSSTARI I , J.K) . AFd.J.K), OR AFF(I,J,K) USED TO CHECK 
51 C CONVERGENCE IN SUBROUTINE FLOW 
52 C CONCKX--CONSTANT USED IN CALCULATING CKX(J.K) 
53 C CSUBG(J.K)--GERRARD AND MORGAN DEFLECTION COEFFICIENT ACCOUNTING 
54 C FOR THE DISTANCE AWAY FROM THE POINT OF PRESSURE APPLICATION 
55 C OURING THE CALCULATION OF THE DEFLECTION OF THE CRACK WALL 
56 C D(J,K)--OEFLECTION OF THE CRACK WALL IN nXn DIRECTION (FEET) 
57 C DBLOTN—DIFFERENTIAL SPACING IN BLOTTNER'S GRID STRETCHING METHOD 
58 C (EQUATION 13) 
59 C DDU , J, K > — VARIABLE USED FOR INVERSION OF THE TRI-DIAGONAL MATRIX, 
60 C SUBROUTINE FLOW 
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61 C DEFLCT- TEMPORARY VALUE OF D(J,K) 
62 C DEFTOT--TEMPORARY VALUE OF DTOT(J.K) 
63 C DELTAd ,J.K)--VARIABLE COEFFICIENT USEO IN CRACK FLOW CALCULATIONS 
64 C DEN--VALUE OF THE DENOMINATOR USED IN CALCULATING EE1I.J.K) AND 
65 C FF(I.J.K) IN SUBROUTINE FLOW 
66 C DF--TOTAL DERIVATIVE OF THE FUNCTION. F(I.J.K) 
67 C DFY--nYn OIRECTION DERIVATIVE OF THE PRESSURE FUNCTION, F(I,J,K) 
68 C DFZ--DZD DIRECTION DERIVATIVE OF THE PRESSURE FUNCTION. Ftl.J.K) 
69 C DT--DIMENSIONLESS TIME STEP 
70 C DTDX--VALUE EQUAL TO DT/DX USED IN SUBROUTINE FLOW FOR THE nxn 
7! C DIRECTION EXPLICIT CALCULATIONS 
72 C DTOTCJ.KJ--CRACK HALF THICKNESS IN nXo DIRECTION (FEET) 
73 C DT2--HALF OF DT 
74 C DX<I)--NORMALIZED nXa DIRECTION SPATIAL MESH SIZE 
75 C DY--NORMALIZED nYn DIRECTION SPATIAL MESH SIZE 
76 C DY2--DY SQUARED 
77 C DZ--NORMALIZED nZa DIRECTION SPATIAL MESH SI^E 
78 C DZ2--DZ SQUARED 
79 C 01.02--VARIABLES USED IN CALCULATING DELTA!I,J.KJ WITHIN 
80 C SUBROUTINE FLOW 
81 C E--MODULUS OF ELASTICITY OF SOLID NORMALIZED TO P1MP0 
82 C EE(1.J.KI--VARIABLE USED FOR INVERSION OF THE TRI-DIAGONAL MATRIX, 
83 C SUBROUTINE FLOW 
84 C EFFTIP--EFFECTIVE CRACK TIP THICKNESS FRACTION 
85 C EMOD--MODULUS OF ELASTICITY OF THE SOLID (PSD 
86 C ENU--POISSONS RA1I0 IN THE SOLID 
B7 C EPS--POROSITY OF THE SOLID 
BB C ETA(!,J,K)--VAR1ABLE COEFFICIENT IN THE CRACK FLOW AND POROUS SOLID 
89 C CALCULATIONS (NOTE THERE IS A DIFFERENT DEFINITION IN EACH) 
90 C F(I.J,K)--PRESSURE FUNCTION IN THE SOLID AND CRACK EQUAL TO 
91 C P»P+2.«P/(N-1.). 
92 C FF(I,J,K!--VARIABLE USED FOR INVERSION OF THE TRI-DIAGONAL MATRIX, 
93 C SUBROUTINE FLOW 
94 C FMAX--MAXIMUM POSSIBLE VALUE OF THE PRESSURE FUNCTION, FII.J.K) 
95 C EQUAL TO IPR+I.J/CPR-].) 
96 C FRACT--VALUE USED IN DEFLECTION CRITERION EQUAL TO THE LITHOSTATIC 
97 C PRESSURE AT THE LOWER BOUNDARY OF THE PROBLEM DIVIDED BY THE 
98 C INITIAL GAS PRESSURE APPLIED TO THE LOWER BOUNDARY 
99 C FSIZE--MULTIPLIER OF THE AVERAGE GRAIN SIZE USED IN CALCULATING 
100 C THE CRACK HALF THICKNESS 
101 C FSSTAR(I,J,K)--INTERMEDIATE VALUE OF PRESSURE FUNCTION F(I,J,K) 
102 C AFTER nYn DIRECTION CALCULATIONS 
103 C FSTARd ,J,K)-- INTERMEDIATE VALUE OF PRESSURE FUNCTION FU.J.K) 
104 C AFTER OXn DIRECTION CALCULATIONS 
105 C GAMMAd , J,Kl—VARIABLE COEFFICIENT USED IN CRACK FLOW CALCULATIONS 
106 C GI .G2--VARIABLES USED IN CALCULATING GAMMAd,J,K) WITHIN 
107 C SUBROUTINE FLOW 
10B C 1--INDEX FOR nxn DIRECTION 
109 C IK.IKK.1KKK.& IKS--INDICIES USED TO CALCULATE DEFLECTION IN 
H O C SUBROUTINE DEFL 
111 C I0--INPUT-OUTPUT FLAG FOR PRINTOUTS 
112 C IX.IY.IZ.& IT--NUMBER OF NODES EXCEEDING THE CONVERGENCE CRITERION 
113 C IN SUBROUTINE FLOW FOR THE nXn.QYa.nZa DIRECTION AND TOTAL 
114 C SPACE LOOPS 
115 C ITERX.ITERXX.ITERY.ITERZ, 8. ITERT--NUMBER OF ITERATIONS THROUGH 
116 C aXn.aYa.nZn DIRECTION AND TOTAL SPACE LOOPS, SUBROUTINE FLOW 
117 C J.JJ.JJJ— INDICIES FOR nYn DIRECTION 
118 C JDEF—INDEX FOR CSUBG(JDEF.KDET) IN SUBROUTINE DEFL 
119 C JKMAX--INDEX USED FOR CALCULATING CRACK DEFLECTION. 
120 C JSTOP(K)--ARRAY DEFINING APPROXIMATE CIRCLE OF INFLUENCE IN 
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121 C SUBROUTINE DEFL (NUMBER OF NON-ZERO ELEMENTS MUST EQUAL 
122 C JSTOP(K)+l. ALSO, KMINUS MUST BE GREATER THAN OR EQUAL TO 
123 C JSTOPI1)) 
124 C K,KK,KKK,--1NDIC!ES FOR nZn DIRECTION 
125 C KDEF—INDEX FOR CSUBGIJDEF.KDEF) IN SUBROUTINE DEFL 
126 C KMINUS—NUMBER OF NODES BELOW THE LOWER BOUNDARY USED IN 
127 C SUBROUTINE DEFL FOR CALCULATING DEFLECTIONS. MUST BE 
128 C GREATER THAN OR EQUAL TO JSTOPI1). 
129 C L—NUMBER OF nXn DIRECTION NODES 
130 C LB—BACKWAHJ INDEX OF nXn DIRECTION NOOES 
131 C Ll'—M'JIiBER EQUAL TO L-l 
132 C LM2—NUMBER EQUAL TO L-2 
133 C L2--MAXIMUM nxn DIRECTION NODE OVER WHICH THE DRIVING PRESSURE IS 
134 C APPLIED ON THE LOWER BOUNDARY iaZu NODE EQUAL TO ONE) 
135 C M--NUMBER OF oYa DIRECTION NODES 
136 C MB—BACKWARD INDEX OF nYa DIRECTION NODES 
137 C MM1--NUMBER EQUAL TO M-l 
138 C MM2—NUMBER EQUAL TO M-2 
139 C M2—MAXIMUM DYa DIRECTION NODE OVER WHICH THE DRIVING PRESSURE IS 
140 C APPLIED ON THE LOWER BOUNDARY (aZa NODE EQUAL TO ONE) 
141 C N—NUMBER OF aZn DIRECTION NODES 
142 C NB—BACKWARD INDEX OF nZn DIRECTION NOOES 
143 C NMTIP--INTEGER VALUE EQUAL TO NYTIP(J)-1 
144 C NM1--NUMBER EQUAL TO N-l 
145 C NM2—NUMBER EQUAL TO N-2. 
146 C NHTIP—PAST VALUE OF NYTIPU) USED AS FLAG FOR WRITE STATEMENT 
147 C NT IP— INTEGER VALUE OF NYTIP(J) 
148 C NTTOT—NUMBER OF ITERATIONS OF EXPLICIT axa DIRECTION PRESSURE 
149 C CALCULATIONS IN THE CRACK FOR EACH IMPLICIT PRESSURE 
150 C CALCULATION IN THE SOLID OR IN THE CRACK 
!51 C NYTIP(J)—CRACK TIP oZa NODE LOCATION WHICH IS A FUNCTION OF aYc 
152 C NYTIPI —INITIAL VALUE OF CRACK TIP aYo DIRECTION NODE LOCATION 
153 C NYTIPM—VALUE OF NYTiPI MINUS ONE 
154 C NZTIPI—INITIAL VALUE OF CRACK TIP nZa DIRECTION NODE LOCATION 
155 C NZTIPM--VALUE OF NZTIPI MINUS ONE 
156 C P(I.J,Ki--PRESSURE IN SOLID AND CRACK NORMALIZED TO THE INITIAL 
157 C DRIVING PRESSURE 
158 C PDOWNH— INITIAL PORE PRESSURE IN THE SOLID (PSI) 
159 C PERM—PERMEABILITY OF THE SOLID (DARCYS) 
160 C PFSSTAR.PFSTAR—PAST VALUES OF FSSTAR<I.J.K) AND FSTAR(i.J.K) USED 
161 C FOR CHECKING CONVERGENCE IN SUBROUTINE FLOW 
162 C PR—RATIO OF THE INITIAL DRIVING PRESSURE TO AMBIENT PRESSURE 
163 C PRFUN—FUNCTION OF PRESSURE RATIO USED IN SUBROUTINE FLOU 
164 C PRINT—PRINTOUT INTERVAL 
165 C PSCK)—RESISTIVE PRESSURE IN THE SOLID NORMALIZED TO THE INITIAL 
166 C ORIVING PRESSURE AND USED IN DETERMINING CRACK PROPAGATION 
167 C PIMPO—INITIAL aZa DIRECTION PRESSURE DIFFERENCE ACROSS THE POROUS 
168 C SOLID (PSI) 
169 C R—GAS CONSTANT IN UNITS OF FEET/DEGREE RANKINE 
170 C REYNC(J,K)—REYNOLDS NUMBER IN CRACK 
171 C SIZE—AVERAGE GRAIN SIZE (DIAMETER) OF SOLID MATERIAL (FEET) 
172 C SPACE(J.K)—INITIAL CRACK HALF THICKNESS IN nxa DIRECTION (FEET) 
173 C TEMP—TEMPERATURE IN OEGREES RANKINE 
174 C TERMI—CONTRIBUTION TO THE CRACK WALL DEFLECTION BY NODES AT THE 
175 C SAME ELEVATION AS THE POINT DEFLECTION IS BEING CALCULATED. 
176 C TERM2--CONTRIBUTION BY NODES BELOW aZo=0. 
177 C TERM3--CONTRIBUTION BY NODES ABOVE THE PLANE oZa=0. 
178 C TFIN—MAXIMUM DIMENSIONLESS TIME BEFORE PROBLEM STOPS 
179 C THETA.THETA1—WEIGHTING FACTORS ON NONLINEAR COEFFICIENTS 
180 C EVALUATEO AT THE NEW AND OLD TIMES IN SUBROUTINE FLOW 
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181 C TIME--D1MENSI0NLESS TIME 
185 C TPRINT--T1ME FOR NEXT PRINTOUT 
183 C X«1)--OXB DIRECTION SPATIAL GRID LOCATION (FEET) 
184 C XKX--NORMAL1ZED nXn DIRECTION PERMEABILITY IN THE POROUS SOLID 
185 C XKZERO--NORMAL1ZING VALUE FOR PERMEABILITY IDARCYS) 
186 C XLAMBIJ,K)--FRICTIONAL COEFFICIENT OF GAS FLOW IN THE CRACK 
187 C XLLAM--LAMINAR FRICTIONAL COEFFICIENT OF GAS FLOW IN THE CRACK 
188 C XLTURB--TURBULENT FRICTIONAL COEFFICIENT OF GAS FLOW IN THE CRACK 
189 C XMAX--LENGTH OF SOL 10 IN nXn DIRECTION (FEET) 
190 C XMU--GAS VISCOSITY (LB-SEC/SO.FT.) 
191 C YKY--NORMALIZED OYD DIRECTION PERMEABILITY IN SOLID 
i92 C ZETA(1,J,K)--VARIABLE COEFFICIENT IN CRACK FLOW CALCULATIONS 
193 C ZKZ--NORMALIZED aZn DIRECTION PERMEABILITY IN SOLID 
194 C ZLENG--LENGTH OF SOLID ALONG CRACK AXIS OR aZa DIRECTION (FEET) 
195 C 
196 C INPUT 
197 C 
198 READ (2.19) BLOTK,DT.EFFTIP,EMOD,ENU,EPS.FRACT,FSIZE,L2,Ma.NTTOT.N 
199 IYT1PI.NZTIPI.PDOWNH.PERM,PRINT,P1MP0.R,SIZE,TEMP.TFIN,XMAX,XMU.ZLE 
500 2NG 
201 DATA I0,<JST0P(1>.1=1,3),KMINUS.L.M,N/3,2.2,2,2.10,15,20/ 
202 DATA THETA.TPRlNT/0.5,-1.E-10/ 
203 C 
204 C CALCULATED CONSTANTS 
205 C 
206 E=EMOD/P1MPO 
207 CDEF= ( I . -ENU«ENU) 'ZLENG.'E 
208 CFRICI=(12.*XMU/(144.'P1MP0))••2-32.2'ZLENG*R'TEMP 
209 CFR1C2=B.»I44.'P1MP0/(XMU«SQRT(32.2«ZLENG*R'TEMP)) 
210 DT2=DT/2. 
211 C 
212 C IF DY IS NOT EQUAL TO DZ. CHANGES IN SUBROUTINE DEFL ARE REQUIRED. 
213 C 
214 DY=l./(nl-li 
215 0Y2=0Y»DY 
216 0Z«1./(N-I) 
217 0Z2=DZ*DZ 
218 LM1=L-I 
219 LM2=L-2 
220 MM1=M-1 
221 KM2=M-2 
222 NMI*N-I 
223 NM2-N-2 
224 NYTIPM-NYTIPI-1 
225 NZTIPM»NZTIPI-1 
225 PR-IP1MP0+PDOWNH)/PDOWNH 
227 PRFUN-I./IPR-I.I'"2 
228 THETAI-l.-THETA 
229 CSUBGI1.1)«0.950/NMI 
230 CSU6G(2.1)"0.300/NMl 
231 CSUBG(3.1)-0.050/NMI 
232 CSUBGd ,2)-0.300/NMI 
233 CSUBG12.2J-0.100/NMI 
234 CSUBG(3.2I'0.020/NMI 
235 CSUBGCI.3I-0.050/NMI 
236 CSUBGI2.3I-0.020/NM1 
237 CSUBGC3.3»-0.002/NMI 
238 FMAX«CPR»I.)/<PR-I.1 
239 C 
240 C CALCULATE XU> AND DXIl) USING 8L0TTNERS EQUATION NUMBER 9. COMP. 
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am c METHOOS IN APP. MECH. a. ENGR. 119741. SEE EQUATION 13 OF THE 
242 c PRESENT REPORT. 
2*3 C 
244 XU)=0. 
245 8LOTN=0. 
246 OBLOTN=I,/LMI 
247 X(I)=0. 
248 DO 1 1=5,L 
249 3L0TN=BL0TN+0BL0TN 
250 x i l ) = X M A X » ( B L O T K » M B L O T N / D B L O T N I - I . ) / I B L O T K " I I . / D S L O T N I - I . i 
251 1 CONTINUE 
252 DO 2 i=2,L 
253 DX(1) = (X1I)-Xl1-1))/ZLENG 
254 2 CONTINUE 
255 C 
256 C CALCULATE OVERBURDEN PRESSURE. PS(K) 
257 C 
258 DO 3 K=l,NM1 
259 KK=N-K 
260 PSIK)=FRACT'KK/NM1 
261 3 CONTINUE 
262 DO 4 K=l.KMINUS 
263 KK=N-K 
264 KKK-N+K 
265 PS(KKK)=PS(1 H-PSIKK; 
266 4 CONTINUE 
267 C 
268 C SET UP INITIAL CRACK DIMENSIONS 
269 C 
270 DO 5 J=l.NYTIPM 
271 NYTIP(J)=NZTIPI 
272 5 CONTINUE 
273 NNTIP=NYTIP(1) 
274 C 
275 C SET UP INITIAL CRACK HALF THICKNESS. THE PRESENT ANALYSIS USES A 
276 C LINEAR RELATIONSHIP. 
277 C 
?78 DO 7 J=l.NYTIPM 
279 AJ=J-1 
280 NMT!P=NYTIPU)-1 
281 NT!P=NYTIP(J1 
282 DO 5 K=l,NTIP 
283 AK=K-1 
284 IF (NMT1P.EQ.0 .OR.NYTIPM.EQ.O) GO TO 7 
285 SPACE !J ,K) = ( 1 .-AK/NMT1P1M 1 .-AJ/NYT IPM) T S I Z E ' S l ZE 
286 DTOT(J,K)=SPACE(J,KI 
287 6 CONTINUE 
288 DTOT(J.NT1P)=DTOT!J.NMT1P)/EFFTIP 
289 7 CONTINUE 
290 DO 8 K=l.NZTIPM 
291 DTOT(NYTIPI,K)=DT0TCNYT1PM,K)/EFFTIP 
292 8 CONTINUE 
293 C 
294 C XKZERO IS CALCULATED USING EQUATION 21 FOR K BAR SUB CYZ. 
295 C K BAR SUB CYZ IS TAKEN TO BE UNITY AT TIME ZERO WHEN BOTH nYn AND 
296 C a7.a NOOES EQUAL ONE. XKZERO IS IN DARCYS. THE VALUE OF A 
297 C REPRESENTATIVE LAMBDA IS TAKEN AS 0.0454, WHICH CORRESPONDS TO A 
298 C REYNOLDS NUMBER OF 2100. 1.06E-11 SQ FT=1 DARCY, IS USED AS A 
299 C CONVERSION CONSTANT. 
300 C 
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301 XKZER0=EPS'XMU'S0RT(64.4'2. 'SPACE I 1.1) 'R'TEMP'ZLENG/O.0454] / I 1.OE-
302 1 I]'PIMPO'144. ) 
303 C 
304 C SET DIRECTIONAL PERMEABILITIES IN THE S'LID 
305 C 
305 XKX=PERM/XKZERO 
307 YKY=PERM/XKZERO 
308 ZKZ=PERM/XKZERO 
309 C0NCKX=XKX'EPS'ZLENG/2. 
310 C 
311 C INITIALIZE THE DRIVING PRESSURE OVER THE APPROPRIATE PART OF THE 
312 C PLANE WHERE THE aza NODE EQUALS ONE. 
313 C 
314 DO 9 1=1,L2 
315 00 9 J=l,M5 
316 P(I,J,I)=1. 
317 F(I.J.1)=FMAX 
318 9 CONTINUE 
319 C 
320 C WRITE OUT INPUT VALUES 
321 C 
322 WRITE (10.20) BLOTK,OT,EFFTIP,EMOD,ENU,EPS,FRACT,FSIZE,lO.KMINUS.L 
323 I,M,N,L2,M2,NTT0T.NYTIPI.NZTIPI.PDOWNH.PERM,PR INT.PIMPO,R,SIZE.TEMP 
324 2,TFIN.XMAX,XMU,ZLENG,E,XKX,XKZERO,(X(I).I=1,10) 
325 GO TO 18 
326 C 
327 C MAIN CALCULATIONAL LOOPS 
328 C 
329 C UPDATE CRACK HALF THICKNESS AND EFFECTIVE PERMEABILITY IN THE nZc 
330 C DIRECTION OUE TO CRACK DIMENSION CHANGES. 
331 C 
332 10 CALL DEFL 
333 DO 13 J = l,M 
334 DO 11 K=l,N 
335 C 
336 C CALCULATE FRICTION COEFFICIENTS 
337 C 
338 IF (DTOTIJ.K).LE.O.) GO TO 12 
339 CALL FRICT (J.K) 
340 C 
341 C CALCULATE CRACK EFFECTIVE PERMEABILITIES FROM EQUATIONS 20 AND 21. 
342 C NOTE THAT INITIALLY CKYZ(I . I ) = I . 0 
343 C 
344 CKX( J.K)=CONCKX/DTOTU,K) 
345 IF (XLAMB(J.K).LE.O.> GO TO 12 
346 CKYZIJ.KI=SQRT(DTOTIJ.K)'0.0454/(SPACE 11,1)«XLAMB(J.K1)1 
347 11 CONTINUE 
34B 12 IF IDTOTIJ.D.LE.O.) J=M 
349 13 CONTINUE 
350 CALL FLOW 
351 TIME=-TIME+DT 
352 IF (DTOTU ,N) .GT.O. .OR.DTOTIM. I! .GT.O. I GO TO 16 
353 C 
354 C REDUCE THE DRIVING PRESSURE WITH TIME. INCLUDE A MATHEMATICAL 
355 C RELATIONSHIP HERE OR OELETE THE LOOP IF THE DRIVING PRESSURE IS 
356 C CONSTANT. 
357 C 
358 DO 14 1=1,L2 
359 DO 14 J=l,M2 
360 ?(I.J.II=(I472./EXP<0.034422'T[ME>*29.J/J 501. 
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361 
362 
363 
364 
365 
366 
367 
368 
359 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
3B1 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
416 
HI9 
420 

15 
16 

17 
c c c 
IB 

F(I,J.I)=P(I,J,|)»(P[|,J,1)*2./(PR-1.)) 
CONTINUE 
IF (NNTIP.EQ.NYTIP11)) GO TO 15 
WRITE (10.21) TIME.(NYTIP(J),J=I,15) 
NNTIP=NYTIP(1) 
IF (TIME.GE.TPRINT.OR.TIME.GE.TFIN) GO TO 16 
GO TO 10 
DO 17 I=1,L 
DO 17 J=l ,M 
DO 17 K=l,NMI 
P(l ,J.K)=SQRT(F( i ,J,K)+PRFUN)-1 ./(PR-1 . ) 
CONTINUE 

,10),J=1.15) 
,10),J=I.15) 
,10),J=1,15) 
,10),J-I,15) 
10),J=1,15) 
10),J=l.15) 
10),J='.15) 
10),J=I,15) 
10),J=1,15) 

PRINTOUTS 
WRITE (10,25) 
WRITE (10,22) ((P(l,J.I),1=1 
WRITE (10,26) 
WRITE (10,22) ((PCI.J.2),1=1 
WRITE (10.27) 
WRITE (10.22) (IPU . J.3> .1 = 1 
WRITE (10.28) 
WRITE (10.22) ((PI I,J,4),1 = 1 
WRITE (10.29) 
WRITE (10,22) I(P(l,J.5),1=1 
WRITE (10,30) 
WRITE (10,22) I IPC I.0.61,1 = 1 
WRITE (10.31) 
WRITE (10,22) ((PC I.J.7),1 = 1 
WRITE (10.32) 
WRITE (10.22) (CPU,J,8>.1 = 1 
WRITE 110,33) 
WRITE CIO.22) ((PC!,J,9).1=1 
WRITE (10.34) 
WRITE (10.22) ((P(1,J.IO),1=1.10),J=!.15) 
WRITE ( 10.35) 
WRITE (10,22) ( (PCI.J.151 . 1 = 1 .101 ,-J=l . 15) 
WRITE (10,36) 
WRITE (10,22) ((PC I,J,19).1 = 1.10),J=I,15) 
WRITE (10.37) 
WRITE (10.23) ((O(J.K),J=1.15),K=1.19) 
WRITE (10.38) 
WRITE CIO.23) t(0T0T(J.K).J=l,15).K=l.19) 
WRITE (10.39) 
WRITE (10.23) c(CKXCJ.KI,J*1.15).l,«l.19) 
WRITE (10.40) 
WRITE CIO.23) KCKYZ(J.K) ,J=I ,I5),K=I .19) 
WRITE (10,411 
WRITE (10.231 ((XLAMB(J.K),J=1,15),K=I,19) 
WRITE (10.421 
WRITE (10.231 ((REYNC(J.K),J«I,151.K-l,19) 
WRITE (10.43) 
WRITE C10.44) (CNYTIPIJ),J-1,151) 
WRITE (10.24) TIME.OT 
TPRINT-TPRINT*PRINT 
CALL EMPTY (3) 
IF CTIME.OE.TFIN) CALL EXIT CD 
IF COTOTCI,N).GT.O..OR.OTOTIM.I).GT.O.) CALL EXIT (I) 
GO TO 10 

-110-



421 C 
422 C 
•+23 19 FORMAT (8F10.5./.515./.7F10.5./.4F10.5) 
424 20 FORMAT (41HBLOTK,DT,EFFT1P.EMOD,ENU.EPS,FRACT,FSIZE=./,8E15.5,//,4 
425 12HI0,KMINUS,L.M,N,L2.M2,NTT0T,NYTIPI,NZTIPI=,/,10110,//,3BHPD0WNH, 
426 2PERM,PRI NT,P1MPO,R,SIZE,TEMP=./.7E15.5,//,33HTFIN,XMAX,XMU,ZLENG,E 
427 3,XKX.XKZER0=./,7E15.5.//.5HX<1)=./.5E15.5./,5E15.5.////I 
428 21 FORMAT (14HTIME,NYTIP(J)=.E15.5,1515,//) 
429 22 FORMAT U0IF8.5,2X1 ) 
430 23 FORMAT (8E14.4,/,5X,7E14.4) 
431 24 FORMAT (9H TlME.DT=.EI4.3,2X,EI4.3,///> 
432 25 FORMAT (9HP(1,J.1) = > 
433 26 FORMAT (9HP<I,J,2)=) 
434 27 FORMAT !9HP(I,J,3)=> 
435 28 FORMAT (9HP( 1 , J, 4 > = I 
436 29 FORMAT (9hP 11 , J, 5 > = ) 
437 30 FORMAT <9HP(I,J,6)=) 
43B 31 FORMAT (9HP(1,J,7)=) 
439 32 FORMAT (9HP(1 ,J,8)=) 
440 33 FORMAT (9HP?1,J,9)=) 
441 34 FORMAT (10HP(i,J,10 > = > 
442 35 FORMAT UOHPd ,J, 15) = ) 
443 36 FORMAT (10HPU ,J, 19) = ) 
444 37 FORMAT 17HD(J,K)=) 
445 38 FORMAT (10HOTOT(J.K)=) 
446 39 FORMAT (9HCKX(J.K)=) 
447 40 FORMAT (10HCKYZ(J.K)=) 
448 41 FORMAT (11HXLAM8'J,K)=) 
449 42 FORMAT :IIHREYNC(J,K)=) 
450 43 FORMAT <9HNYTIP(J)=) 
451 44 FORMAT (I0(5X,15)) 
452 END 
453 C cccccc: ICCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 454 c 455 SUBROUTINE OEFL 
456 c 457 c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 45B c 459 c A SUBROUTINE TO CALCULATE THE nxa DIRECTION DEFLECTION OF THE 
460 c CRACK WALL CAUSED BY PRESSURE WITHIN THE CRACK. THE ANALYSIS 
461 c FOLLOWS i THAT OF TIMOSHENKO AND GOODIER nTHEORY OF ELASTlCITYo, 
462 c SECTION 139, AND OF GERRARD AND MORGAN. GEOTECHNIQUE, VOLUME 3S, 
463 c 1972. A CIRCLE OF INFLUENCE IS DEFINED BY THE ARRAY JSTOP(K) WITH 
464 c NO EFFECT ON OEFLECTION PRODUCED BY PRESSURES BEYOND THIS CIRCLE. 
465 c THE CENTER OF THE CIRCLE IS THE POINT WHERE THE OEFLECTION IS 
466 c BEING CALCULATED. A COEFFICIENT, CSUBG(J.K), IS USED TO ACCOUNT 
467 c FOR THE : EFFECT OF DISTANCE AWAY FROM THE POINT OF PRESSURE 
468 c APPLICATION ON THE DEFLECTION. 
469 c 470 COMMON /CRACK/ AF(10,15,20),AFF(10,15,20),BB(10,15,20).BETAI 1.15,2 
471 10I.CDEF ,CFRIC1,CFRIC2,CKX(15,20).CKYZ(15,20),CSUBG(3,3).0(15.20).0 
472 20(10.15 i,20).DELTA(1,15.20),0T,OTOT(15,201,0T2,0X(10),DY,0Y2.0Z,0Z2 
473 3.EEU0, I5.20),EFFTIP,ETA(10,15.20),F(IO,15,20),FF(10.15,201.FMAX.F 
474 4STARI10 1,15.20),FSSTAR(10,15.20),GAMMA(1,15.20),10.JSTOP(20),L,LMI. 
475 5LM2.L2. M.MM1 ,MM2.M2,N.NM1 .NM2.NTT0T ,NYT IP( 15) ,P( 10. 15,20) .PR.PRFUN 
476 6.PSI60) .REYNCI15.20).SIZE,SPACE(15,20),THETA,THETAl,X(10).XKX.XLAM 
477 78(20.30),YKY,ZETA(1.15.20),ZKZ 
478 c 479 c CALCULATE VALUES OF PRESSURE FROM THE PRESSURE FUNCTION. 
480 c 
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481 DO 1 K=l,N 
482 DO 1 J=l ,M 
483 P(1.J,K)=SQRT(F<1.J,K)+PRFUN)-i./(PR-1.1 
484 1 CONTINUE 
485 C 
486 C CALCULATE CRACK DEFLECTIONS OVER THE nXn = 0 PLANE USING EQUATIONS 
487 C 8-1,B-a. AND B-3. 
488 C 
489 DO 12 K=l ,N 
490 DO II J=l ,M 
491 TERM 1=0. 
492 JKMAX=2»JST0PIi > + l 
493 DO 3 JJ=I,JKMAX 
494 JJJ=J-l-JSTOP<1 I*JJ 
'•,95 JDEFMABSI JSTOPI I ) - JJ* 1 1 + 1 
496 IF IJJJ.GE.11 GO TO 2 
497 JJJ=2-JJJ 
498 C 
499 C NODES BEYOND J=M ARE CONSIDERED IDENTICAL TO NODE J = M 
500 C 
501 2 IF (JJJ.GT.M) JJJ=M 
502 TERM1=TERM1+CSUBG(JDEF,1)*(P(1,JJJ.K1-PSIK1) 
503 3 CONTINUE 
504 TE°M2=0. 
505 TERM3=0. 
506 DO 10 KKK=I,JKMAX 
507 IKK=K-!-JSTOPt1)+ KKK 
508 KDEF=1ABSIJSTOPI11-KKK+l:+l 
509 C 
510 C NODE K=N HAS A ZERO PRESSURE BOUNDARY CONDITION 
51 I C 
512 IF CIKK.EQ.K.OR.IKK.GT.N-1) GO TO 10 
513 IK=fABS(IKK-K1-M 
514 JKMAX=2»JST0P(IKI+1 
515 IF IIKK.GE.11 GO TO 7 
516 C 
517 C CALCULATIONS BELOW NODE K=I 
518 C 
519 IKS=N-IKK+1 
520 IKKK=2-IKK 
521 00 6 JJ=I.JKMAX 
522 JJJ=J-l-JSTOP(IKI-vJJ 
523 JDEF=IA8S(JST0P(IK1-JJ-M)+l 
524 IF (JJJ.GE.1) GO TO 4 
525 JJJ*2-JJJ 
526 4 IF (JJJ.GT.M2I GO TO 5 
527 C 
528 C J NOOE WITHIN THE CAVITY 
529 C 
530 TERM2=TERM2+CSU8G(JDEF.K0EF)MPI I ,JJJ. 1 1-PSC IKS' ; 
531 GO TO 6 
532 C 
533 C J NOOE BEYOND THE CAVITY 
534 C 
535 5 IF (JJJ.GT.M) JJJ-M 
536 TERM2« TERM2+CSUBG(JDEF.KOEF)•(P(1.JJJ,1KKK)-PS 1 IKS)) 
537 6 CONTINUE 
538 GO TO 10 
539 C 
540 C CALCULATIONS ABOVE NOOE K M 
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54 1 C 
542 7 DO 9 JJ=I.JKMAX 
5*3 JJJ=J-l-JSTOP(IK)+JJ 
544 JDEF=IABS(JSTOPt1K)-JJ+I)•! 
545 IF (JJJ.GE.1) GO TO B 
546 JJvl=2-JJJ 
547 a IF IJJJ.GT.M) JJJ=M 
548 TERM3=TERM3*CSUBG(J0EF,K0EF)'(P(1,JJJ,!KK1-PS<IKK)) 
549 9 CONTINUE 
550 10 CONTINUE 
551 DEFLCT=CDEF«(TERM!»TERM2*TERM3> 
555 IF (DEFLCT.GT.OU.K) ) D!J,K)=OEFLCT 
553 DEFTDT=DtJ,K)<SPACE<J,KJ 
554 IF (OEFTOT.GT.DTOT(J.K)1 OTOT(J.K)=DEFT0T 
555 C 
556 C STOP OYD DIRECTION CALCULATION IF THE CRACK THICKNESS IS ZERO 
557 C 
558 IF (DTOTU.K) .LE.O. ) J = M 
559 II CONTINUE 
560 C 
561 C STOP nZc OIRECTION CALCULATION IF THE CRACK THICKNESS IS ZERO 
562 C 
563 IF (DTOT11,K).LE.O.) K=N 
564 IS CONTINUE 
565 C 
566 C CALCULATE THE CRACK TIP BASED ON A POSITIVE CRACK THICKNESS 
567 C 
568 DO 13 J=I.M 
569 K=NYT1P(J) 
570 IF (K.LT.|) K=l 
571 IF (D(J.K).GT.O.J NYTIP(J)=K*1 
572 13 CONTINUE 
573 C 
574 C SET THE EFFECTIVE CRACK TIP THICKNESS 
575 C 
576 DO 15 J=l.M 
577 IF (NYTIP(J).LE.11 GO TO 16 
578 K=NYTIPIJ) 
579 DO 14 KK=2.K 
5B0 IF (DTOTCJ.KKl.LE.O.1 DTOT(J.KKI=DTOT(J.KK-1)'EFFTIP 
581 14 CONTINUE 
582 DTOT(J,K)=DTOT(J.K-ll/LFFTIP 
583 15 CONTINUE 
584 16 DO 18 JJ=2,J 
585 IF (NYTIP(JJ-)I.LE.NYTIPCJJII GO TO IB 
586 K=NYTIP(JJ) 
587 KK=NYT]P<JJ-1i-l 
588 DO 17 KKK=K,KK 
589 DTOT(JJ.KKK)=OTOT(JJ-l.KKKi/EFFTIP 
590 17 CONTINUE 
5SI IB CONTINUE 
592 RETURN 
593 END 
594 C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
595 C 
596 SUBROUTINE FRICT iJ.KI 
597 C 
598 C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
599 C 
600 C CALCULATES FRICTION COEFFICIENTS FOR FLOW WITHIN THE CRACK USING 
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601 C 96/RE FOR LAMINAR FLOW OR EQUATION 20.35 IN SCHLICHTINC'S 
602 C nBOUNDARY LAYEt, THEORYD FOR TURBULENT FLOW. WHICHEVER GIVES THE 
603 C LARGER VALUE. 
604 C 
605 COMMON /CRACK/ AF(10,15.201,AFF(10,15,20),BB(I 0,15.20).BETA!1.15,2 
606 10).CDEF.CFR1C1,CFR1C2,CKXI15,20),CKYZ(15,20).CSUBGI3.3),D<15,20).D 
607 2D<10,15.20).DELTA(1.15,201,DT,OTOT(15.20).DT2.DX110).DY,DY2,0Z,DZ2 
60B 3.EE(10,15,20).EFFTIP.ETA(10,15.20),F(10,\5,P">,FF(10,15.20).FMAX.F 
609 4STARI10,15.20),FSSTAR(10 15,20).GAMMA(I,15,20.,10.JSTOP120).L.LM1, 
6!0 5LM2.L2.M.MM1 ,MM2, M2.N.NM I , N*I2 .NTTOT .NYT I P ( 151 ,P( 10, 15,20) .PR.PRFUN 
611 6.PS(60 REYNC(15,20).SIZE,SPACE!15,20),THETA,THETAI,X(10).XKX.XLAM 
612 7BI20.301.YKY.ZETAII,15,20),ZKZ 
613 C 
614 C CALCULATE COEFFICIENT ASSUMING LAMINAR FLOW USING EQUATION B-12. 
615 C 
616 IF (K.NE.1) GO TO 1 
617 OFZ=ABS(F(1,J,1)-F(1,J.2>I/OZ 
618 GO TO 2 
619 1 DFZ=0.5'ABS(F(I,J.K+1)-F(1.J.K-1))/DZ 
620 2 IF I J.NE.1) GO TO 3 
621 DFY=ABS(F(1.1,K)-F(1,2,K))/OY 
622 GO TO 4 
623 3 DFY=0.5»ABSIF( 1 .J-fl ,K)-F( 1 .J-l.K) l/OY 
624 4 DF=DFY+DFZ 
625 IF (OF.EQ.O) GO TO 5 
626 XLLAM=CFR IC1/(DTOT(J,K >••3'OF' 
627 C 
628 C LIMIT XLLAM TO PREVENT INFINITE VALUES 
629 C 
630 IF (XLLAM...T. 10. > GO TO 6 
631 5 XLLAM=lo. 
632 C 
633 C CALCULATE COEFFICIENT ASSUMING TURBULENT FLOW USING EQUATION A-60. 
634 C 
635 6 ARG=4.'DT0T(J.K)/S1ZE 
636 C 
637 C LIMIT XLTURB TO A MAXIMUM OF 0.0454. THIS NUMBER EQUALS THE 
638 C LAMINAR FLOW COEFFICIENT FOR A REYNOLDS NUMBER OF 2100. 
639 C 
640 IF (ARG.LE.30.) GO TO 7 
641 XLTURB=1./(2.*ALOG10(ARG)+I.741*"2 
642 GO TO 8 
643 7 XLTURB=0.0454 
644 C 
645 C SELECT MAXIMUM OF XLLAM OR XLTURB 
646 C 
647 B XLAMB(J,K)=AMAX1(XLLAM,XLTURB) 
S48 C 
649 C CALCULATE REYNOIOS NUMBER USING EQUATIONS (B-17) AND (B-18) 
650 C 
651 IF (XLLAM.LT.XLTURB) GO TO 9 
652 REYNCIJ,K)=96./XLLAM 
653 GO TO 10 
654 9 REYNC<J.KI=CFRIC2*DT0T(J ,KMSQRT(DT0T(J ,K) *DF/XLTURB> 
655 10 RETURN 
656 END 
657 C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
658 C 
659 SUBROUTINE FLOW 
660 C 
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BS1 C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
662 C 
663 C THIS SUBROUTINE DETERMINES THE PRESSURE AT EACH NODE IN THE POROUS 
664 C SOLID AND WITHIN THE CRACK DUE TO THE GAS FLOW. FIRST FLOW IN 
665 C THE nXn DIRECTION IS CALCULATED EXPLICITLY WITHIN THE CRACK AND 
666 C IMPLICITLY OUTSIDE OF THE CRACK. NEXT THE °Yn AND THEN THE nZn 
667 C DIRECTION FLOW IS FOUNO IMPLICITLY. WITHIN THE CRACK AN OPERATOR 
668 C SPLITTING METHOO IS USED BECAUSE THE GOVERNING EQUATION IS 
669 C HYPERBOLIC IN DXn ANO PARABOLIC IN nYo AND °Zn . AN ALTERNATING 
670 C DIRECTION IMPLICIT METHOD IS USED M""i THF GOVERNING EQUATION 
671 C .3 PAKABOL1C. 
672 C 
673 COMMON /CRACK/ AFl10,15.20),AFF(10,15.201,BB(10,15.20),BETA!1,15.? 
67* 10) .CDEF.CFRIC! .CFR1C2.CKX! 15,20) , C'<YZ( 15,20) ,CSUBG(3,3) ,D( 15,20) ,D 
675 2D 110.15.20).DELTA!1.15,20).DT.DTOTI15,20),0T2.DX(101 ,DY,DY2,DZ,DZ2 
676 3. EE I 10. 15,20) .EFFTIP.ETA! I 0 , I 5 , 20 ) ,F 1 1 0 , 1 5 . >.' " ) ,FF r 1 0 , I 5 ,20 I .FMAX.F 
677 4STAR!10,15,20),FSSTAR(10,15,20).GAMMA!I,15,20),10.JSTOPI20),L,LMI, 
B78 5LM2.L2.M.MMI , MM2.M2 , N, Nfll ,NM2,NTTOT,NYTIP 1 15) ,P(10.15,20) .PR.PRFUN 
679 6,PSt50'.REYNCI15.20).S1ZE.SPACEI15,20).THETA,THETA1,X(10).XKX.XLAM 
680 78(20.30).YKY.ZETAI1,15,20),ZKZ 
6BI C 
682 C INITIALIZE VALUES 
683 C 
684 ITERX=0 
685 ITERY=0 
686 ITERZ=0 
587 ITERT=0 
666 DO 1 K=I.N 
689 DO 1 J=1,M 
690 DO 1 I* 1,L 
691 FSTARII,J,K)=F(I,J,K) 
692 AFF<I,J,K)=F(I,J,K) 
693 1 CONTINUE 
694 C 
695 C EXn DIRECTION EXPLICIT -- USED FOR nXn NODE EQUAL TO ONE AND 
696 C INSIDE TK£ CRACK. AN OPERATOR SPLITTING METHOD IS USED WHERE IN 
697 C THE nXn OJRECTION ONLY THE nXn COMPONENT EXPLICIT SPATIAL 
698 C DERIVATIVE AND THE TIME DERIVATIVE ARE CONSIDERED IN THE GOVERNING 
699 C EQUATION. LATER IN THE nYn AND °Zn DIRECTIONS AN ALTERNATING 
700 C DIRECTION IMPLICIT METHOD IS USED WHERE NO °Xn DIRECTION SPATIAL 
701 C DERIVATIVES ARE PRESENT IN THE BASIC GOVERNING EQUATION. THE 
702 C EXPLICIT TIME STEP IS SET EQUAL TO THE IMPLICIT TIME STEP OIVIDED 
703 C BY NTTOT. 
704 C 
705 DTDX=DT/(DX(2)»NTT0T) 
706 DO 5 ITIM£>1,NTTOT 
707 DO 4 K=l,NM1 
708 DO 3 J=l,M 
709 IF (DTOT(J.K).LE.O.) GO TO 3 
710 IF (J.LE.M2.AND.K.EQ.1) GO TO 3 
711 F(1,J.KJ=FSTAR!1,J,K) 
7I£ ITERXX=0 
713 2 ETA<I,J,K)=0.5*<THET4/SQRT(FSTAR(1,J,K)+PRFUN1+THETA1/SQRT(F(1,J,K 
714 IX-PRFUN)) 
715 FSTAR!1,J,K)=CKX(J,K > «DTDX* CF! 2,J,KI-F(1,J,K))/ETA(1,J,K)+F(1,J,K) 
716 1TERXX=ITERXX+I 
717 IF (ITERXX.LT.I) GO TO 2 
718 3 CONTINUE 
719 IF (DTOTII,K).LE.O.I K=N 
720 4 CONTINUE 
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7?! 5 CONTINUE 
755 C 
753 C ITERATE THROUGH COMPLETE IMPLICIT CALCULATION (X.Y, AND Z 
754 C DIRECTIONS! UPDATING THE COEFFICIENTS UNTIL CONVERGENCE IS 
755 C REACHED. ALSO ITERATE THROUGH EACH DIRECTION SEPARATELY. 
725 C 
757 C nxn DIRECTION IMPLICIT -- USED FOR REGIONS OUTSIDE THE CRACK 
758 C 
759 C 
730 C CALCULATE COEFFICIENTS FOR nZn NODE BETWEEN 5 AND NM1 UTILIZING A 
731 C WEIGHTED AVERAGE BETWEEN OLD AND NEW VALUES OF F(I,J,K). 
735 C CALCULATE FOR nXn NODES BETWEEN 5 AND LMI WITH QYn NODES BETWEEN I 
733 C AND M. IN CALCULATING oVn BOUNDARY NODES, USE THE NEUMANN 
734 C CONDITION IN THE nYn DIRECTION (DF(I,1,K>/DY=0. OR 
735 C DFI1,M,K)/DY=0.I. 
736 C 
737 6 00 9 K=5.NM] 
738 C 
739 C INTERNAL NODES 
740 C 
7m DO 7 J=5,MM1 
745 DO 7 1=5,LMI 
743 ETA(I,J,K1=THETA/SQRT(FSTAR< I ,J,K)+PRFUN)+THETA1/SORT IF(I.J.Kl+PRF 
744 IUN) 
745 BB(I.J.K)=5.*XKX/<DX(l+l)"DXlII)+ETAcI,J.KJ/DT5 
746 00 ( I ,J,KI=(YKY< (Ft i ,J+I ,K ) -5. "F ( I , J.K I +F ( I , J- I ,K) J/0Y2+ZKZ* <F( I , J, 
747 1K+!)-5.'Ft I ,J.KI+F!I.J.K-1I 1/DZ5+ETAI I ,J,K)*FI I ,J,KI/DT5) 
746 7 CONTINUE 
749 C 
750 C nYn NODE EQUAL TO nMn 
751 C 
755 DO 8 I=5,LMI 
753 ETA(I,M.KJ=THETA/SQRT(FSTAR(I.M.K)+PRFUN)+THETAt/SQRT(F(I.M.KJ+PRF 
754 |UN) 
755 BBII,M.K>=2.»XKX/(DX<I+1)*DX(I))+ETACI,M,K)/DT5 
756 DD(I,M.K)=(YKY«2.*(F(I,M-1,K)-F(I,M,K))/DY2+ZKZ*(FI I,M,K+1)-5.*F(I 
757 I,M,K)+F(I,M,K-I))/DZ5+ETA(I.M.K1*F(I,M,K)/DT5) 
758 C 
759 C nYn NODE EQUAL TO I 
760 C 
761 ETA(I.I,KJ=THETA/SQRT(FSTAR(I,I,K)+PRFUN)+THETA1/SORT(F(I.I,K)+PRF 
765 1UN) 
763 BBII.I.K>=5.»XKX/(DXl1 + 1)»DXI I Il+ETAII,I.K1/DT5 
764 DD(I.1,K)=(YKY«5.*(F(I,5,K)-F(I,!,K>I/DY5+ZKZ"(F(I,1,K+1)-5.»F(I,1 
765 1,K)+F(I.I,K-I)l/DZS+ETAII,1,KI»F(I,1.KI/DT5) 
766 8 CONTINUE 
767 9 CONTINUE 
768 C 
769 C CALCULATE COEFFICIENTS FOR °Zn DIRECTION NODE EQUAL TO ONE. USE 
770 C THE NEUMANN CONDITION (DF(I.J,1)/DZ=0.) IN nZn DIRECTION OUTSIDE 
771 C THE REGION WHERE F(I.J.l) IS SPECIFIED AS INPUT. CALCULATE ONLY 
775 C WHERE FI I,J.II IS NOT SPECIFIED AS INPUT. 
773 C 
774 IF (L.EO.LS.AND.M.EQ.MS) GO TO 12 
775 C 
776 C INTERNAL NODES 
777 C 
778 DO 10 J=5.MM1 
779 DO 10 1=5,LMI 
780 IF (I.LE.LS.AND.J.LE.M5) GO TO 10 
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7B1 ETA(1,J.I)=THETA/SQRT(FSTAR(I.J,1)+PRFUN)+THETA1/SQRT(F(1,J,1>+PRF 
7B2 I UN) 
783 BB(1,J.I)=2.*XKX/(DX(1 + 1)*DX(I)1+ETAI I,J.1 I/DT2 
784 DD(1,J.I>=<YKY«(F<I,J+1.1>-2.*F<I,J,I1+F(I.J-l.1))/DY2+ZKZ-2.•(F(I 
785 1,J.2)-F(I,J,I)1/DZ2+ETAIl,J,i)»F(I,J,l1/DT2) 
786 10 CONTINUE 
787 C 
788 C oYn NODE EQUAL TO nMQ 
789 C 
790 DO 1! 1=2,LMI 
791 IF I[.LE.L2.AND.M.EQ.M2) GO TO II 
792 ETA I I ,M, 1>=THETA/SQRT!FSTAR( I.M.I)+PRFUN)+THETAI/SORT(FI I.M.I)+PRF 
793 I UN) 
794 BBtI,M,1)=2.»XKX/(DXiI+I.*OX(I))+ETA(I,M,1)/DT2 
795 DDU ,M, 1 > = (YKY'2.« IF1I ,M-| . 1 )-F( I ,M, 1 >)/DY2+ZKZ*2.•(F( 1 .M,2)-FI I ,M 
796 1,1)1/DZ2+ETAIi,M,11»F(I,M,I1/DT2) 
797 C 
798 C nYn NODE EQUAL TO 1 
799 C 
BOO IF (1.LE.L2) GO TO I 1 
801 ETA(I,I.!)=THETA/SQRT(FSTAR<1,1,11+PRFUN1+THETAi/SORT(FI 1,1.1)+PRF 
802 1UN) 
803 BB(1,I.I)=2.»XKX/(DX(1 + 1)*DX(1 I)+ETAII,1,11/DT2 
804 DD(!,1,I) = <YKY«2.MFCI,2,I)-F(I,1,1))/DY2+ZKZ'2.•(FI I,I,2)-FI I,1,1 
805 I I)/DZ2+ETA(I,1,I)»F(I.1,11/DT2) 
806 11 CONTINUE 
807 C 
808 C CALCULATE EEU.J.K) AND FF(I.J.K) FOR nxn NODES BETWEEN 1 AND LMI. 
809 C USE THE DIRICHLET CONDITION (FSTAR(1,J,K) IS OBTAINED FROM THE 
810 C EXPLICIT CALCULATIONS) FOR 1=1 IF INSIDE THE CRACK. USE THE 
811 C NEUMANN CONDITION FOR 1=1 OUTSIDE THE CRACK IDF(1,J,K)/DX = 0.). 
812 C USE THE RECURSION RELATIONSHIP FOR ALL OTHER nxn NODES. IF THE 
813 C nZn NODE EQUALS I. VALUES ARE CALCULATED ONLY OUTSiDE THE REGION 
814 C WHERE F(I.J.I) IS SPECIFIED AS INPUT. 
815 C 
816 C CALCULATIONS FOR aZn NODE BETWEEN 2 AND NM1 
817 C 
81B 12 DO 16 K=2.NM1 
B19 DO 16 J=l,M 
820 C 
821 C INSIDE THE CRACK 
822 C 
823 IF (DTOT(J.K).LE.O.) GO TO 13 
824 EEC1,J,K)=0. 
825 FF(t,J,K>=FSTAR<1.J.K) 
826 GO TO 14 
827 C 
828 C OUTSIDE THE CRACK WITH 1=1 
B29 C 
830 13 EE(1.J,K)=1. 
831 FF(1,J.K)=0. 
832 C 
833 C ALL OTHER REGIONS 
834 C 
835 14 DO 15 1=2.LM! 
836 DEN=BB(I.J,K)-2.'XKX'EEI I - 1.J.K)/(DX(I)•!OX1 I + 1)+DX(1))) 
837 EElI,J.K)=2.*XKX/(DX(I+I)'(DX!1+1)+DX(1))«DENi 
838 FFII,J.K) = (DD(I,J,K)+2.»XKX«FF(1 - 1,J,K)/(DX(I)*(DXI I + I)+DX(1))))/D 
839 1EN 
84 0 15 CONTINUE 
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841 16 CONTINUE 
842 C 
843 C CALCULATIONS FOR nZn NODE EQUAL TO ! 
844 C 
845 DO 21 J=l,M 
846 IF (J.LE.M2) GO TO 18 
847 IF (DTOT(J.I).LE.O.) 60 TO 17 
848 C 
849 C INSIOE THE CRACK 
850 C 
851 EE(!.J.J)"0. 
852 FFU ,J,1 )=FSTAR< 1 ,J. I ) 
853 GO TO 19 
854 C 
855 C OUTSIDE THE CRACK WITH 1=1 
856 C 
857 17 EEC 1,J,11 = 1. 
B58 F F U , J, I 1=0. 
859 GO TO 19 
860 C 
861 C ALL OTHER REGIONS 
862 C 
863 18 EECL2.J,I)=0. 
864 FF(L2,J,1)=F(L2,J,J) 
865 19 DO 20 1=2,LM1 
866 IF (I.LE.L2.AND.J.LE.M2! GO TO 21 
867 DEN=BB<I,J,1)-2.'XKX*EE<I-I,J.1)/(DXCI)•(DX(I+!)+DX(I>)) 
868 EEC I,J,1)=2.»XKX/(DX(I + l)"(DX(1 + 11+DXCI)MDEN) 
869 FFCI ,J, I ) = (D0( 1 ,J. M+2. 'XKX'FFC I-1,J,1)/(DXI 1>•(DX(J + 1 )+0X ( 1 ) ) ) )/D 
870 1EN 
871 20 CONTINUE 
872 21 CONTINUE 
873 C 
874 C CALCULATE FSTAR(I,J,K) ~ AN INTERMEDIATE VALUE OF FCt.J.K) AFTER 
875 C COMPLETION OF THE axn DIRECTION IMPLICIT CALCULATIONS. 'AT nxo 
876 C NODE EQUAL TO L USE A NEUMANN CONDITION (DF5TARCL,J,K)/DX=0.) AND 
877 C THEN USE THE RECURSION RELATIONSHIP FOR VALUES TO nXa NODE EQUAL 
878 C TO 2. FSTAR WAS SET PREVIOUSLY EQUAL TO THE VALUE CALCULATED 
B79 C EXPLICITLY IF IN THE CRACK. USE THE NEUMANN CONDITION FOR 1=1 IF 
880 C OUTSIDE THE CRACK. IF THE nZa NODE IS EQUAL TO 1, SET FSTARII.J.I) 
881 C EQUAL TO F(I.J.l) IN THE REGION WHERE F(l.J.l) IS SPECIFIEO AS 
882 C INPUT. COMPARE VALUES OF FSTAR(l.J.K) WITH PREVIOUS VALUES AND 
883 C ITERATE THROUGH THE nXn DIRECTION IMPLICIT CALCULATIONS IF 
964 C CONVERGENCE IS NOT OBTAINED. 
885 C 
886 C CALCULATIONS FOR aza NODE BETWEEN 2 AND NM1 
8B7 C 
888 IX=0 
889 DO 24 K=2,NMI 
890 DO 24 J=1,M 
891 PFSTAR=FSTARCL,J,K) 
892 FSTAR(L.J,K)=FF(LM1,J,K>/(1.-EE(LM1,J,K)) 
893 COMPARE=ABS(FSTAR(L,J,K)-PFSTAR)/PFSTAR 
894 IF (COMPARE.LT.0.001.OR.FSTAR(L,J,K).EQ.PFSTAR) GO TO 22 
895 1X=IX+1 
896 C 
897 C INTERNAL NODES 
898 C 
899 BS DO 23 1=1,LM2 
900 LS=L-I 
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901 PFSTAR=FSTAR(LB,J.K) 
902 FSTAR<LB.J,K)=EE(LB,J.K>"FSTAR(LB+1,J.KJ+FF(LB,J.K) 
903 C0MPARE=ABS(FSTAR(LB,J,K)-PFSTAR)/PFSTAR 
904 IF (COMPARE.LT.0.001.OR.FSTAR(LB,J.K).EQ.PFSTAR) GO TO S3 
905 IX=IX+1 
906 23 CONTINUE 
907 C 
908 C OUTSIDE THE CRACK WITH 1=1 
909 C 
910 IF 'DTOT(J.K).LE.O.) FSTARI1,J,K)=FSTAR(2,J.K) 
911 24 CONTINUE 
912 C 
913 C CALCULATIONS FOR nZn NODE EQUAL TO I 
914 C 
915 DO 27 J=I ,M 
916 IF (L.EQ.L2.AND.J.LE.M2) GO TO 25 
917 PFSTAR=FSTAR(L,J,I) 
918 FSTAR(L.J,1>=FF(LM1.J,1)/(1.-EE(LM1,J.1)) 
919 COMPARE=ABS(FSTAR(L.J.I)-PFSTAR)/PFSTAR 
920 IF (COMPARE.LT.0.001.OR.FSTAR1L,J.I).EQ.PFSTAR) GO TO 25 
921 1X=IX+I 
922 25 00 26 1=1,LM2 
923 LB=L-I 
924 IF (LB.LE.L2.AND.J.LE.M2) GO TO 26 
925 PFSTAR=FSTAR(LB,J,1) 
926 FSTAR(LB,J,1>=EE(LB,J,1)*FSTAR(LB+1,J.1)+FF(LB,J,1) 
927 COMPARE=ABS(FSTAR(LB,J,1)-PFSTAR)/PFSTAR 
928 IF (COMPARE.LT.0.001.OR.FSTARILB,J,1).EQ.PFSTAR) GO TO 26 
929 1X=IX+1 
930 26 CONTINUE 
931 C 
932 C OUTSIDE THE CRACK WITH 1=1 
933 C 
934 IF (OTOT(J.l).LE.O.) FSTAR(1,J,I)=FSTAR(2,J,I I 
935 27 CONTINUE 
936 IF (IX.EQ.O) GO TO 28 
937 ITERX=ITERX+1 
938 IF (ITERX.LT.2) GO TO 6 
939 C 
940 C nYn DIRECTION IMPLICIT -- USED FOR ALL REGIONS 
941 C 
942 C 
943 C CALCULATE COEFFICIENTS FOR nZn NODES BETWEEN 2 AND NMl UTILIZING A 
944 C WEIGHTED AVERAGE BETWEEN OLD AND NEW VALUES OF F(I.J.K). INSIDE 
945 C THE CRACK THE OLD VALUES ARE FSTAR(1,J.K) AND THE NEW VALUES ARE 
946 C FSSTARll,J,K). OUTSIDE THE CRACK THE NEW VALUES ARE FSSTAR(I,J.K) 
947 C AND THE OLD VALUES ARE Fll.j.KI. CALCULATE FOR nyn NODES BETWEEN 
948 C 2 AND MM1 WITH nXn NODES BETWEEN I AND L. IN CALCULATING THE axo 
949 C DIRECTION BOUNDARY NODES USE THE NEUMANN CONDITION OUTSIDE OF THE 
950 C CRACK IN THE nXn DIRECTION (DFSTAR(1,J,K)/DX=0. OR 
951 C DFSTAR(L,J,K)/DX=0.). INSIOE THE CRACK THE OPERATOR SPLITTING 
952 C TECHNIQUE UTILIZED DOES NOT CONSIDER ANY nxo DIRECTION VARIATION. 
953 C 
954 28 DO 29 1=1,L 
955 DO 29 J=1,M 
956 DO 29 K=I,NM1 
957 FSSTAR(I,J,K)=FSTAR(I,J,K) 
958 29 CONTINUE 
959 30 DO 38 K=2,NM1 
960 DO 38 J=2,MM1 
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961 C 
965 C nXa DIRECTION NODE EQUAL TO ONE 
963 C 
964 IF (DTOT(J.K).GT.O.I GO TO 31 
965 C 
966 C OUTSIDE THE CRACK 
967 C 
968 ETA(1,J,K)=THETA/SQRT(FSSTAR<1.J,K1+PRFUN1+THETAI/SORT(FlI.J.K)'PR 
969 1FUN) 
970 BB(! ,J.K)=2.«YKY+0Y2«ETA(I ,J,K)/0T2 
971 DD( 1 ,J,K) = (8. 'XKX» IFSTAR(2, J,K)-FSTAR( 1 .J.K) )/ IDX(?) 'DXI?) WKZ'IF 
972 1(1.J.K+1>-2.«F<1,J.KI+F(1.J.K-1)I/DZ2+ETAII.J.KMFd.J.KI'DTgl>0<B 
973 GO TO 36 
974 C 
975 C INSIOE THE CRACK 
976 C 
977 31 81=0. 
978 85=0. 
979 Gl=0. 
980 G8=0. 
981 01=0. 
985 08=0. 
983 Z1=0. 
984 Z2=0. 
985 IF (ABSIFSSTARI1.J+I.Kl-FSSTARI1,J-1.Kl).LT.1.E-25> GO TO 35 
986 B1=THETAMFSSTAR( 1 ,J+1 ,K)-FSSTAR( 1 .J-l ,K) )/SQRT<5. 'DY'ABS IFSSTAR! 1 
987 I,J+l.KI-FSSTARII,J-I.K)1) 
988 G1=THETA/SQRT15.»ABS(FSSTAR(1.J+l.Kl-FSSTAfil1.J-l.K)l/DY) 
989 35 IF CABSIFSTARlI,J+1,K)-FSTAR<I,J-I,K)).LT.I.E-25) GO TO 33 
990 B2=THETA1•(FSTARI1,J*I,K1-FSTAR<I.J-1.Kl1/SORT(5.-DY'ABS(FSTAR(1.J 
991 1*1,K)-FSTAR(1,J-1,K))) 
992 G2=THETAI/SQRT(2. 'ABStFSTARf 1 .J* I ,KJ-FSTAR( 1 . J-l ,K) l/DY I 
993 33 BETA!I,J.K)=B1+B2 
994 GAMMA(1,J,K1=CKYZ(J,K!•IGI+ G2) 
995 IF (ABSCFSSTARC1.J.K+1l-FSSTARlI.J.K-1)I.LT.I.E-25) GO TO 34 
996 DMTHETAMFSSTARI 1 ,J.K+I l-FSSTARl I ,J.K-I 1 1/SORT I 5.«DZ'ABSIFSSTAR(1 
997 J,J.K+1)-FSSTAR(1.J.K-I))I 
998 Z1=THETA/SQRT(2.*ABSIFSSTARI 1.J.K+1l-FSSTARl1.J.K-1)>/OZ> 
999 34 IF IABSIFSTARI1,J,K+1)-FSTAR(1.J.K-1)).LT.1.E-251 GO TO 35 
1000 D2=THETA1MFSTARC I . J.K+I )-FSTAR( I .J.K-1 I I /SORT 15. •DZ'ABSI FSTARI 1 . J 
1001 1,K+1l-FSTARl1,J.K-1111 
1002 Z2=THETA1/SQRT(5.'ABSIFSTARI1,J.K+1I-FSTARII.J.K-1)>/OZ> 
1003 35 DELTA!I,J,K)=D1+D2 
1004 ZETAII,J,K)=CKYZIJ.KM(ZI+ZSJ 
1005 ETA( 1 .J,K)=0.5MTHETA/SQRT(FSSTARI 1 ,J.K)+PRFUN)+THETA1/SORT(FSTARI 
1006 I I ,J.K1+PRFUN1 1 
1007 BBS 1.J.K)=2.'GAMMA I1 ,J,K>+DY5'ETA{1 .J.K1/DT5 
1008 QD<1.J.K)=(0.5»BETA11,J.K)•ICKYZ!J+l ,K)-CKYZ<J-1 .K))/DY + 0.5»0ELTA( 
1009 !1,J.K)'ICKYZ(J.K+1)-CKYZ(J.K-1)1/DZ+ZETA11,J.K)•(FSTARt1.J.K+11-2. 
1010 2'FSTARl1,J,K)+FSTAR(1,J.K-II1/DZ2+ETAI1.J.K)'FSTARl1.J.KI/DT2I«DY2 
1011 C 
1012 C INTERNAL NODES 
1013 C 
1014 36 DO 37 1=2,LM1 
1015 ETAI1,J.K)=THETA/SORT(FSSTAR(I, J.K )+PRFUN)+THETA WSQRT IF II.J.KI+PR 
1016 1FUN) 
1017 BBl I , J.K I =-2. »YKY + DY2*ETA( 1 .J.K1/DT2 
1018 DDlI,J,K)=(2.«XKX»((FSTAR(I + l,J,K)-FSTAR(I.J,K>)/DX(1•1)-(FSTARI 1. 
1019 1J.KI-FSTAR(1-1,J.K))/DX< J))/(DX(1 + 11+DX11)1+ZKZMFlI,J.K+11-2."F(1 
1050 2.J.KI+FII.J.K-!)I/DZ2+ETAII.J.KMFC I.J.K)/DT2)»DY2 
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10? I 37 CONTINUE loaa c 
1033 C axa NODE EQUAL TO OLO i oat c 
1055 E T A i i . . J . K I -THETA/SQRTi rsSTARtL . j . tC)«PRFuN> • T M E T A ( / S Q R T r :_ . J . K J «PR 
1036 IFUNl 
1027 BBIL.J.KI=3.•YKr>0*a,E'AlL.J.KI'GT3 
1038 00<L,J.KI»«XKX«S.»IFStARlL«!.J.KI-rSTAP:L.J.K:i't0lt(L''3>iLll»Z'<Z* 
1039 MFIL.J.K-II-?.*F{J..J.HI"-!I.J.K-!II/OZS'E'A'L.j.<i«r!:. v.» 'Drai«c 
1030 era 
IC3I 38 CONTINUE 
103a c 
1033 C CALCULATE COEFFICIENTS FOR ^Za OiPSCTiCn r.CDE E0u*^ TO ONE. USE 
I03H C THE NEUMANN CONDITION iCFSTARf J . J. j I / 07»C . 1 IN THE oZo DIRECTION 
1035 C OUTSIDE THE REGION WHERE Fil.j.H IS SPECIFIES AS 1 N » U T . 
1036 C CALCULAir ONLY WHERE FU.j.li IS NOT SPECIFIC A S I N P J T . 
1037 C 
I03B IF H .tQ.La.AND.M.EO.Kai GO TO x7 
1039 00 H6 j*3.MMt 
10H0 C 
I OH I C axa NODE EQUAL TO i 
IOH3 c 
10*3 IF tj.LE.ia> GO TO •"> 
10HH IF (OTOTIJ.H .GT.O. > GO TO 33 
I0H5 C 
I0H6 C OUTSIDE THE CRACK 
10H7 C 
I0H8 ETA l I .J, I 1-THETA.-50RTIFSSTAR! I . J. I ! • PRruN!•THETA • /SQR'tf: ! . J. 1 I -PR 
10*9 IFUNl 
1050 Ben .j.n-a.»YKY.OYa«ETA(i , j , i wena 
1051 OD«I .J.Il»ia.•XKX'IFSTARia.J.It-FSTARt!.J. I I I/SOX ISI»0Xi2: I«ZKZ>a 
losa I M F I i . j . a>-F ! ! . j . 11 i/oza«ETAi i , j . ; i »F( i . j . 11 -DTai'DYa 
1053 GO TO HH 
I0SH C 
1055 C INSIDE THE CRACK 
1056 C 
1057 39 Bl«0-
1058 B3>0. 
1059 Gl-O. 
1060 oa=o. 
1061 01=0. i06a oa-o. 
1063 ZI'O. 
IO6H za>o. 
1065 IF lABSlFSSTARd ,J»I .1 l-FSSTARl I .J-l . I 1 I ,LT. I ,E-a5) GO TO HO 
1066 BI-THETA«lFSS7AR<I.J»l.I1-FSSTAR(1,j-|,I)i SORT<a.•DY»ASS(FSSTAR<! 
1067 I.J»l.1l-FSSTARl1.J-I.11 it 
1068 Gl =THET A/SORT I ABSca.'FSSTARl 1 .J.I . I i-FSSTARi I , j-1 , I I w D Y ! 
1069 HO IF (ABSlFSTARlI,JM.Ii-FSTARl1.J-l.111.LT.I.E-251 GO TO H1 
1070 Ba*THETAlMFSTAR< 1 . J« I , I>-FSTARI I ,J-| , 1 1 : /SORT (3 . «DY -ASS I FSTARI I ,J 
1071 |«|.Il-FSTARlI,J-I.I)lI 
1073 Ge=THETA|/SQR'ia.«ABSlFSTAR(I ,J»I .11-FSTARII .J-I . I 1 1/OYI 
1073 HI BETAI1,J.II=Bl*Ba 
I07H GAMMA I 1 .J. I l=CKYZU. 1 I *(GI«GSl 
1075 IF IABS(FSSTAR(1.J.ai-FSSTARlI.J.I 11.LT.I.£-351 GO TO na 
1075 DI"THETA«IFSSTARII,J .B!-FSSTARII.J,I)I/SORT(DZ«ABS<FSSTAR(!.J.ai-F 
1077 ISSTARll,J.11 I 1 
1078 Z!"=THETA/SQRT(ABSIFSSTAR(l,J.ai-FSSTARCl ,J.I ll/DZ) 
1079 H? IF (ABS(FSTAR(I.J.ai-FSTAR(I.J.11 I .LT. | .E-aSI GO TO 13 
IOB0 Oa=THETAI'(FSTARC1 ,J.a I-FSTARII ,J,1)I/SORT(OZ'ABS(FSTAR( 1 .J.ai-FST 
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1081 lARll.J.l))) 
1082 Z2=THETAI/SQRT<ABS<FSTARI1,J,2)-FSTAR<I,J.I))/DZ) 
1083 43 DELTA! 1 .J.I 1=01*02 
1084 ZETAI I ,J. I >=0.5*CKY7(J,1 1MZI+Z2) 
1085 ETAU,J.II*0.5*1THE,A/SQRT<FSSTAR(1,J,1)+PRFUN)+THETAI/SORT(FSTAR1 
1086 1 I.J.II+PRFUN)> 
1087 BBtl.J.I)=2.'GAMMA!I,J.1)+0Y2«FTA<I.U.IJ/DT2 
1088 DD(I,J.1)=(0.5«BETAC1,J,1)"(CKYZU+l,11-CKYZIJ-I.I)1/DY+DELTA1I.J, 
1089 111"(CKYZ!J,2)-CKYZ<J.I)>/DZ+ZETA(I,J,1)*2.•1FSTAR11,J,2)-FSTAR(1 J 
1090 2.11)/DZ2+ETA<I,J,1)»FSTAR(1,J,1J/0T2)»DY2 
1091 44 DO 45 !=2.LMI 
1092 IF 1I.LE.L2.AND.J.LE.M2) GO TO 45 
1093 C 
1091 C INTERNAL NOOES 
1095 C 
1096 ETA(I,J.I)=THETA/SQRT(FSSTAR(1.J.1I+PRFUN)+THETA1/SORT(F<1,J.Il+PR 
1097 1FUNI 
'098 BBl I ,J,1 >=2.•YKY+0Y2»ETAl1.J.11/0T2 
1099 DDCI.J.1> = (2.'XKX'IIFSTARII+I.J.1l-FSTARlI,J,1)I/DX(I+1)-(FSTAR<I, 
1100 I J.1l-FSTARII-l,J.I II/DX1I I 1/(0X1I + IJ+DX1I I)+ZKZ'2.•(F1[,J,2)-F1 I,J 
I 101 2.I))/DZ2+ETA< 1,J.I>'F(I.J,1 1/DT2MDY2 
1102 45 CONTINUE 
1103 C 
1104 f oxn NODE EQUAL TO °La 
1 105 C 
1106 IF (L.EQ.L2.AND.J.LE.M2) GO TO 46 
1107 ETAIL,J.1)=THETA/SQRT1FSSTAR(L,J,I)+PRFUN)+THETA1/SORT(F(L.J.I)+PR 
1108 1FUN1 
I 109 BB(L.J.I1=2.»YKY+DY2»ETA(L.J.1)/DT2 
1110 DDCL.J.I>=<XKX«2.MFSTARILMl.J.II-FSTAR1L.J,I)1/<DX(L>'DX1L>l+ZKZ* 
1111 12.»<F(L.J.2)-FIL,J,1>)/DZ2+ETA(L,J,II'FlL.J.I)/DT2)«DY2 
1112 46 CONTINUE 
1113 C 
1114 C CALCULATE EE1I.J.K) AND FF(I.J.K) FOR nYa NODES BETWEEN 1 AND MM1. 
1115 C USE THE NEUMANN CONDITION FOR J=l IOFSTARCI.1,K)/DY=0.). USE THE 
1116 C RECURSION RELATIONSHIP FOR ALL OTHER nYa NODES. IF THE °Zn NODE 
1117 C EQUALS 1. VALUES ARE CALCULATED ONLY OUTSIDE THE REGION WHERE 
1118 C F(l.J.I) IS SPECIFIED AS INPUT. THE D1RICHLET CONDITION IS USED 
1119 C AT THE BOUNDARY OF THE REGION WHERE THE INPUT IS SPECIFIED 
1120 C (FSSTARCI.J.1)=F(I,J,1)). 
1121 C 
1122 47 DO 49 K=2,NM1 
1123 00 49 1=1,L 
1124 EE(I.1.K)=1. 
1125 FF(I.1.K)=0. 
1126 DO 49 J=2.MM1 
1127 IF (DTOT(J.K).GT.O..AND.I.EQ.1) GO TO 48 
1128 C 
1129 C OUTSIDE THE CRACK 
1130 C 
1131 OEN=BB(I,J,K)-YKY«EE(I.J-l,K> 
1132 EE(I.J.K)=YKY/OEN 
1133 FF(I,J,K)=(DD(I,J.K)+YKY«FF<I,J-1,K>)/DEN 
1 1 34 GO TO 49 
1135 C 
1136 C INSIDE CRACK 
1137 C 
1138 49 DEN=BB( I ,J,K)-GAMMA( I .J.KJ'EEU ,J-1 ,K) 
1139 EE<1,J.K)=GAMMA(1,J,K)/DEN 
1140 FF(1,J.K)=(DD<1,J,K)+GAMMA<1.J,K)*FF(1,J-I,K)1/DEN 
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1141 49 CONTINUE 
1 142 C 
1143 C CALCULATIONS FOR "Z" NODE EQUAL TO I 
1144 C 
1145 DO 53 1=1,L 
1146 IF < 1 .LE.L2) GO TO 50 
1147 EEC1 .! .11 = 1 . 
1148 FF(I,1.11=0. 
1149 GO TO 51 
1150 50 EEU .M2.1 1 = 0. 
1151 FF(1,M2,1)=F(I,M2,I I 
H5e 51 DO 53 J=2,MMI 
1153 IF d.LE.L2.AND.J.LE.M2) GO TO 53 
1154 IF (DTOT<J.lI.GT.O..AND.I.EO.1) GO TO 52 
1155 C 
1156 C OUTSIDE CRACK 
1157 C 
I15B DEN=BB(I.J.1l-YKY'EEiI,J-1.I) 
1159 EEII,J,1)=YKY/DEN 
1160 FF(I,J,1)=(DD(!.J,1>+YKY«FF(I,J-1,I)1/OEN 
1161 GO TO 53 
1165 C 
1163 C INSIDE CRACK 
1 164 C 
1165 52 DEN=BB(I,J,11-GAMMACI.J.l)*EE(1,J-1.I) 
1166 EE(1,J.1)=GAMMA(1,J.Il/DEN 
I 167 FF(1,J.I) = (OD(1 ,J,1)+GAMMA(I ,J,I)*FFI 1,J-1.I )l/DEN 
1168 53 CONTINUE 
1169 C 
1170 C CALCULATE F5STAR(I.J.K) -- THE SECOND INTERMEDIATE VALUE OF 
1171 C F d . J . K ) AFTER COMPLETION OF nYa DIRECTION IMPLICIT CALCULATIONS. 
1172 C USE A NEUMANN CONDITION IF THE nYa NODE IS EQUAL TO M 
1173 C (DFSSTARd .M.K)/DY = 0. ) AND THEN USE THE RECURSION RELATIONSHIP 
I 174 C FOR VALUES TO nYn NODE EQUAL TO 2. IF aZn NODE EQUALS 1 SET 
1175 C FSSTARd.J.l) EQUAL TO F d . J . I ) IN THE REGION WHERE F d . J . I ) IS 
1176 C SPECIFIED AS INPUT. COMPARE VALUES OF FSSTARd.J.K) WITH PREVIOUS 
1177 C VALUES AND ITERATE THROUGH THE aYn DIRECTION IMPLICIT CALCULATIONS 
1178 C IF CONVERGENCE IS NOT OBTAINED. 
1179 C 
1180 C CALCULATIONS FOR nZa NODE BETWEEN 2 AND NM1 
1181 C 
1182 1Y=0 
1183 DO 56 K=2.NM1 
1184 DO 56 1=1,L 
1185 PFSSTAR=FSSTARd ,M,K) 
1186 FSSTARfI,M.K)=FF(I,MM1,KJ/<1.-EE(I.MM I,K)) 
1187 COMPARE=ABS(FSSTAR(I.M,K)-PFSSTAR)/PFSSTAR 
1188 IF (COMPARE.LT.0.001 .OR.FSSTARd ,M,K) .EQ.PFSSTAR) GO TO 54 
1189 IY=IY+1 
1190 C 
1191 C INTERNAL NODES 
1192 C 
1193 54 DO 55 J=I,MM2 
1194 MB=M-J 
1195 PFSSTAR=FSSTAR(I,MB.K) 
1 196 FSSTARd ,MB.K)=EE( I ,MB,K) «FSSTARd ,MB+1 ,K)+FFd ,MB,K) 
1197 COMPARE=ABS(FSSTAR<I,M8.KI-PFSSTAR)/PFSSTAR 
1198 IF (COMPARE.LT.0.001.OR.FSSTARd.MB,K).EQ.PFSSTAR) GO TO 55 
1199 IY=1Y+1 
1200 55 CONTINUE 
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1201 FSSTARl I .1 ,K>=FSSTARl I ,2.l<) 
1202 56 CONTINUE 
1203 C 
120* C CALCULATIONS FOR ala NODE EQUAL TO I 
1205 C 
1206 00 59 1=1.L 
1207 IF I I.LE.L2.AND.M.EQ.M2! GO TO 59 
1208 PFSSTAR=FSSTAR(I.M.I 1 
1209 FSSTARll ,M.Il=FFlI .MMI .I 1/I I . -EEI I .MM! .I M 
1210 COMPARE=ABS(FSSTARI I ,M.1 I-PFSSTAS1/PFSSTAR 
1211 IF (COMPARE.LT.0.001.OR.FSSTAfllI.M,i).EQ.PFSSTAR) GO TO 57 
1212 1Y=IY»| 
1213 57 00 58 J*I.MM2 
1214 M8=M-J 
1215 IF (1.LE.L2.AN0.MB.LE.M2i GO TO 59 
1216 PFS5TAR=FSSTAR(I.MB.II 
1217 FSSTARlI .MB,I >=EE(I.MB,I i«FSSTAR<I.MB*I , 1 1-FF I I ,M9. I I 
1218 COMPARE=ABS(FSSTARlI.MB,I)-PFSSTARI/PFSSIAR 
I2'9 IF (COMPARE.LT.0.001.OR.FSSTARlI.MB.I 1.EQ.PF5STARI GO TO 58 
i.?i'0 1 V= ( Y* 1 
1=21 58 CONTINUE 
1222 IF II.LE.L2I GO TO 59 
1223 FSSTARH , I .1 l=FSSTARI I ,2. I I 
1221 59 CONTINUE 
1225 IF (IY.EQ.0I GO TO 60 
1226 ITERY=!TERY*1 
1227 IF (ITERY.LT.2) GO TO 30 
1228 C 
1229 C azn DIRECTION IMPLICIT -- USED FOR ALL REGIONS 
1230 C 
1231 C 
1232 C CALCULATE COEFFICIENTS FOR aZn NODES BETWEEN 2 AND NMI UTILIZING ' 
1233 C WEIGHTED AVERAGE BETWEEN OLD AND NEW VALUES OF Fd.J.Kl. THE OLD 
1234 C VALUES ARE FSSTARlI,J.Kl AND THE NEW VALUES ARE AFI1.J.K) BOTH 
1235 C INSIDE AND OUTSIDE THE CRACK. CALCULATE FOR oYn NODES BETWEEN I 
1236 C AND M WITH axo NODES BETWEEN I AND L. BOUNDARY NOOES USE THE 
1237 C NEUMANN CONDITION IN 80TH nXa AND nYa DIRECTIONS. 
1238 C 
1239 60 DO 6! 1=1,L 
1240 DO 61 J=l,M 
1241 DO 61 K=l,NMl 
1242 AFII,J.K1=FSSTAR(I.J.K1 
1243 61 CONTINUE 
1244 62 DO 78 K=2,NMI 
1245 C 
1246 C axa OIRECTION NOOE EQUAL TO ONE 
1247 C 
1248 DO 68 J=2,MMI 
1249 IF (DTOTIJ.KI.GT.O.) GO TO 63 
1250 C 
1251 C OUTSIDE THE CRACK 
1252 C 
1253 ETA(I,J,K)=THETA/SQRT(AF(1,J.KI+PRFUN)+THETA1/SORT(FSSTARl1.J.K1+P 
1254 1RFUN) 
1255 BB(I,J,K>=2.'ZKZ+DZ2*ETA<1,J,K)/DT2 
1256 DD( 1 ,J,K) = I2.'XKXMFSTAR(2,J,K)-FSTARI1 , J.K 11 / (DX(2) »DX (21 1+YKYMF 
1257 ISSTARII.J+l,K>-2.»FSSTAR(1,J.K)+FSSTAR(I,J-1,K)I/DY2+ETAI1,J,K1*FS 
1258 2STARI1,J.KI/DT2)'DZ2 
1259 GO TO 68 
1260 C 
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6>« 

65 

66 

67 

126! C 
156? C 
1263 63 
1264 
1263 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
127H 
1275 
1276 
1277 
1278 
1279 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
1288 
1289 
1290 
1291 
1292 
1293 
1294 
1295 
1296 
1297 
1298 68 
1299 C 
1300 C 
1301 C 
1302 
1303 
130M 
1305 
1306 
1307 
1308 C 
1309 C 
1310 C 
1311 
1312 C 
1313 C 
131H C 
1315 
1316 
1317 
1318 
1319 
1320 

- I . K l I . L i . 1 . E - 2 5 ) GO TO 6H 
• J - I .Kl I/SORT 12. •OY«ABS(AFI ! : , K i - A F i : 

TO 65 
'ABS'FSSTAP; 

DY ] 

I . L T . 1 . E - 2 5 1 GO TO 66 
1 I )/SORT 12. 'OZ 'ABSlAFI l , J , K . I I -AF( 1 

INSIDE THE CRACK 

B I = 0 . 
82 = 0 . 
G l = 0 . 
C2 = 0 . 
D1=0. 
D2=0 . 
Z l = 0 . 
Z 2 = 0 . 
IF ( A B S I A F I I , J » t . K I - A F I I . J 
8 I=TH£TAMAF< I ,J« 1 .KJ -AF l1 

I . J - l , K > I I 
G l=THETA/SQRTl2 . 'ABStAF I 1 . J « I , K I - A F I 1 , J - 1 , K i I /DY) 
IF ( A B S l F S S T A R I I . J » l . K I - F S S T A R I 1 , J - I , K 1 ) . L T . 1 . £ - 2 5 1 GO 
B 2 = T H E T A 1 M F S S T A R C I , J » I , K ) - F S S T A R l 1 . J - l , K : 1 / S Q R T I 2 . « D Y 

I I , J » I , K 1 - F S S T A R ( I , J - 1 , K ) i l 
G2«THETAI/SQRTI2.«ABS(FSSTAR( 1 . J « l .K l -FSSTARi 1 . J - l ,K1 I 
B E T A I I . J . K I * B 1 » B 2 
GAMMA( I ,J .K1=CKYZIJ .K)« IG1»G2> 
IF (ABSIAFI 1 . J.KH 1-AFt 1 .J.K-I ) 
DI=THETA«(AF(I.J,K«11-AFI1.J.K-
I .J.K-II I I 
ZI=THETA/SQRTI2.-ABSlAFl1,J.K*I )-AFI 1 .J.K-1 I I/DZ) 
IF (ABSIFSSTARl1,J.K*1l-FSSTARI1.J.K-1J>.LT.1.E-251 GO 
D2=THETAI«(FSSTAR(I,J,K*1)-FSSTAR(I.J.K-1)}/SQRTI2.»DZ 
I 1 .J.K*1J-FSSTAR(1.J.K-1))) 
23=THETAI/SORT(2.«ABS<FSSTAR(1.J.K*1J-FSSTAR<1.J.K-1)! 
DELTAI1,J.K)=DI*D2 
ZETAII.J.KI=CKYZ(J.KI»<ZI*Z2) 
ETA I I,J.K)=0.5MTHETA/SQRTIAF< 1 ,J,K)*PRFUNl*THETA1/SORTiFS5TARI I , 
1.KI*PRFUN>I 
SB!1,J.K)=2.'ZETA<I,J.K)*DZ2'ETA<1.J.K1/DT2 
DDl 1 , J . K I = ( 0 . 5 * 8 E T A l 1 . J . K I MCKYZI J * 1 , K ) - C K Y Z U - 1 . K ) ] /DY* GAMMA I I , J . 

1K)»(FSSTAR< 1 . J * I . K ) - 2 . ' F S 5 T A R ( 1 , J . K ) * F S S T A R I 1 , J - 1 ,K I I / D Y 2 * 0 . 5 ' D E L T 
2 A ( I , J . K ) M C K Y Z I J . K * I 1 - C K Y Z I J . K - 1 ) ) / O Z * E T A ( I . J , K ) - F S S T A R C 1 . J . K l / D T 2 
3 M D Z 2 

CONTINUE 

oYn NODE EQUALS nMa 
ETA11,M.K)=THETA/SQRT<AFII,M.K>*PRFUN)*THETA1/SORT(FSSTAR!1,M.K)*P 
1RFUN) 
BBl1,M,K)=2.»ZKZ*DZ2*ETA(1.M.K1/DT2 
DOl1,M.K) = <2.*XKXMFSTAR<2.M.K)-FSTAR( 1 ,M.K1 I/IDX(21*DXI 2 I 1 
I*(FSSTAR(1,M-|.KI-FSSTARII.M.K)J/DY2*ETAC1.M.KI*FSSTAR(1,M, 
2*DZ2 

TO 67 
'ABSiFSST: 

/OZi 
• R ( 

iI*YKY*2. 
,K)/DT2 

nYo NODE EQUALS ONE 
IF (OTOT(l.K).GT.O.I GO TO 69 
OUTSIDE THE CRACK 
ETA(1,I,K)=THETA/SQRT(AF(1,1,K)+PRFUN)*THETAI/SORT(FSSTARtI,1,K)*P 
IRFUN) 
BB(1.I,K)=2.'ZKZ*0Z2»£TA(1.1.K1/DT2 
D D ( I . I , K ) = C 2 . ' X K X * ( F S T A R < 2 , 1 . K 1 - F S T A R I 1 , 1 , K > ) / ( D X ( 2 1 * D X ( 2 / 

IMFSSTARC 1 . 2 , K)-FSSTAR ( 1 , 1 ,K) l /DY2*ETA( 1 , 1 .K l 'FSSTARI 1 . 1 ,K 
2Z2 

l + Y K Y ' 2 . 
1 / D T 2 M D 
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13? I 
1325 C 
1323 C 
1324 C 
1325 63 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1335 70 
1337 
133b 
1339 
1340 71 
1341 
1342 
1343 
1344 
1345 
1345 72 
1347 
1348 
1349 
1350 73 
1351 
1352 
1353 
1354 
1355 
1356 
1357 
1358 C 
1359 C 
1360 C 
1361 74 
1362 
1363 C 
1364 C 
1365 C 
1366 
1367 
1368 
1369 
137C 
1371 
1372 
1373 75 
1374 C 
1375 C 
1376 C 
1377 
1378 
1379 
1380 

,K1).LT.I.E-251 GO TO 70 
,1.KlI/SQRTIDY»ABSIAF(1 
,K)-AFl1,I,KI1/DY> 

2.KI-AF(I.i,K>)I 

GO TO 71 
•ABSlFSSTARI1,2.K>-

TO 73 
•ABSIFSSTARI 

f,0 TO 74 

INSIDE THE CRACK 

81=0. 
82 = 0. 
G1=0. 
G2 = 0. 
D1=0. 
02=0. 
Z1=0. 
Z2=0. 
IF (ABSIAFI1.2.KI-AFI1,1, 
B1=TH£TA»IAFII,2,K>-AF(1, 
GI=THETA/SQRT(ABS(AFt1 ,2 , 
IF ( A B S ( F S S T A R I I , 2 . K ) - F S S T A R 1 1 , 1 , K ) I . L T . 1 . E - 2 5 > 
B2=THETAI MFSSTARI 1 . 2 . K 1 -FSSTAR! 1 . 1 ,K1 ! /SORTIDY-

IFSSTARl1 ,1 , K I I I 
G 2 = r H E T A l / S Q R T ( A B S ( F S S T A R ( 1 . 2 , K ) - F S S T A R I I . | , K > l / O Y l 
B E T A ! 1 , 1 , K ) = B I » B 2 
G A M M A ( 1 , 1 , K ) = 0 . 5 ' C K Y Z ( 1 , K ) » ( G 1 * G 2 > 
IF (ABS(AF(I.1,K*11-AFII,,.K-l>).LT.I.t>25> GO TO 72 
DI=THETA'(AFl1,1,K»1)-AF(1.I,K-1))/SORT(2.•UZ'ABSIAFl1.1,K»11-AF(1 
! .1 .K-l I 1) 
Z1=THETA/SQRT(2. 'ABSIAFI 1.1.K-f 1 1-AFI 1 , 1 ,K-I I 1 /DZ) 
IF (ABSIFSSTARII .1,K»Il-FSSTARl 1 ,1,K-I 1 ).LT. 1 .E-251 GO 
D2=THETA1MFSSTARlI.I,K*1)-FSSTAR(1.1.K-!)l/SQRT(2.«DZ» 
1 I.I,K*I)-FSSTAR!I.1,K-J))) 
Z2=THETA1/SORT(2.*ABSIFSSTARI 1 , 1 ,K*II-F5STARI 1 ,1,K-1) 1/DZ> 
DELTA11,I,K!=DI«-D2 
ZETAI1.1,K)=CKYZ(1.K)«l?l+Z2> 
E T A ( I . 1 , K ) = 0 . 5 M T H E T A / S Q R T < A F < I , 1 , K I + P R F U N I » T H E T A I / S Q R T ( F S S T A R ( 1 . 1 

I , K ) » P R F U N ) ! 
B B ( 1 . 1 , K ) = 2 . ' Z E T A ( I . I ,KH-DZ2'ETA( 1 . I . K 1 / 0 T 2 
DD(!.1,K)=(8ETAI1.1,K)•(CKYZI2.K)-CKYZI1.KlI/DY+GAMMA(1.1.K)»2.«(F 
1SSTAR11,2,K)-FSSTARl1,1,K))/DY2*0.5'DELTA11,I,KMiCKYZ<1,K*1)-CKYZ 
2(1,K-IIl/DZ+ETAI1,I,KI'FSSTARl1,1.K1/DT2)«0Z2 

nxa DIRECTION INTERNAL NOOES 

DO 75 J*2,MMI 
DO 75 1=2.LMI 

aYn DIRECTION INTERNAL NODES 

ETA(I,J.K)=THETA/SQRTIAF(I,J,K)+PRFUN)+THETA1/SORT(FSSTARII.J.K1+P 
1RFUNI 
BB( I .vl.KI=2.«ZKZ+DZ2«ETA( I .J.KJ/DT2 
D D ( I . J . K I ' t S . «XKX»(IFSTARI1+1,J,K)-FSTAR(I,J,K))/DX(1+1)-(FSTAR(I. 
1J,K1-FSTAR(1-1,J,K)l/DXII))/(DX<1*11+DXtl1)+YKY'(FSSTARII,J*l,K)-2 
2.»FSSTAR(1.J.KI+FSSTARI1.J-l,K)1/0Y2+ETAII,J,K)-FSSTAR(I,J.K)/DT2) 
3'DZ2 
CONTINUE 

nYD NODE EQUALS nMo 

DO 76 l«2,LMl 
ETA(I,M.K)=THETA/SQRT(AF(I,M,K)+PRFUN)+THETA1/SORT(FSSTARtI.M.K1+P 
1RFUN) 
BBI1.M,K1=2.'ZKZ+DZ2«ETA(I,M,K)/DT2 
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1381 DDI I .M.KI=(a. «XKX«f cFSTARI [•! ,M.KI-FSTARI I ,M.KI I/DXI I•i J-(FSTARI I . 
1388 1M.KI-FSTARI1-1 .M.KIl/DXCI I>/(DXI [»l) »DX I I I)«rKY'2.•(FSSTAR1 I,MM1.K 
1383 31-FSSTARI 1.M.K))/OYa*ETAI I ,M,K)'FSSTARII ,M,K)/0T2)>QZ2 
1384 C 
1385 C OYO NODE EQUALS 1 
1386 C 
1387 ETAII.1,K)=1HETA/SQRT(AF[I,1,K)«PRFUN)*THETA1/SQRT(FSSTAR(I,1.K)*P 
1388 1RFUN) 
1389 BBC I.1.K)=a.«ZKZ-*DZ2'ETAII,1.KI/DT2 
1390 GDI 1 .1 ,K)=(2.»XKX«I (FSTARI 1«1,1,KI-FSTAR(1,1.K!)/DXII»1)-(FSTAR(I, 
1391 II.K)-FSTARI1-1 .I ,K11/DXI1 I)/(DXI 1*1 )*DXI 1 ))»YKY«2.•IFSSTARI I .2.K1-
1398 2FSSTARII.1,K1l/n^ETA!i,1,K)«FSSTAR(I,I,K)/0Ta)"DZa 
1393 76 CONTINUL 
1394 C 
1395 C °Xa NODE EQUAL TO a m 
1396 C 
1397 00 77 J=2.MM1 
1398 E T A I L . J . K ) = T H E T A / S Q R T ( A F ( L . J . K I-fPRFUNI+THETA1/SORT IFSSTARl L , J , K ) * P 
1399 1RFUN) 
1400 B B I L . J , K I = 2 . • Z K Z * D Z a « E T A ( L . J . K l / D T 2 
mO I D D ( L . J , K ) = < X K X « 2 . MFSTAR(LM1 . J , K ) -FSTAR(L . J . K ) ) / ' 0 X 1 D ' D X I L ) H-YKY' 
lHOa 1 ( F S S T A R ( L . J * 1 , K l - a . « F S S T A R ( L . J , K ! « - F S S T A R ( L . J - l . K l I / D Y 2 + E T A ( L . J . K ) • 
' 4 0 3 2 F S S T A R I L , J . K > / D T 2 M D Z 2 
1404 77 CONTINUE 
1405 C 
1406 C QXD NODE EQUAL OLD AND oYa NODE EQUAL nMn 
1407 C 
1408 ETA(L.M,K)=THETA/SQRT(AF(L,M,K)*PRFUN)*THETA1/SQRTIFSSTAR(L.M.K1+P 
1409 IRFUN) 
1410 BB<L.M,KJ=2.'ZKZ+0Za,ETA(L,M,K)/DT2 
1411 0D(L.M.K!=CXKX»2.'CFSTARCLM1,M.K)-FSTARIL.M,K))/(DX1L)*DX(L!1+YKY* 
14 1 a ia.«(FSSTAR(L.MM1,KI-FSSTAR(L,M,K))/DY2*ETA(L.M.K)-FSSTARIL,M,K)/DT 
1413 aai'Dza 
1414 C 
1415 C nxo NODE EQUALS cLQ AND nYn NOOE EQUALS ONE 
1416 C 
1417 ETA(L.I,K)=THETA/SQRT(AF(L.1,K)+PRFUN)+THETA1/SQRT(FSSTAR(L.1,K)+P 
1418 1RFUN) 
1419 BBCL.l,K)=a.'ZKZ+DZ2'ETACL.l,K)/DTa 
1420 DDIL.1.K)=(XKX»2.«(FSTAR(LMI,1,K)-FSTAR(L,1,KI1/(DX(L)'DXCL)]+YKY« 
1421 12.»(FSSTAR(L,2,K)-FSSTARIL,I,K))/DYa+ETAIL,1,K)'FSSTAR!L,1.KI/DT2I 
maa a»oz2 
1423 78 CONTINUE 
1424 C 
1435 C CALCULATE EE(I.J.K) AND FF(I.J.K) FOR nZ° NODES BETWEEN 1 AND NM1. 
1436 C USE NEUMANN CONDITION FOR K=I (DFSSTAR/DZ=0.) IN REGION WHERE 
1427 C AFC I.J.I) IS NOT SPECIFIED AS INPUT AND DIRICHLET CONDITION WHERE 
1428 C AFC I.J.I) IS SPECIFIED EQUAL TO FSSTARII,J.1 I. USE THE RECURSION 
1429 C RELATIONSHIP FOR ALL OTHER nZa NODES. 
1430 C 
1431 DO 83 J«1.M 
1432 DO 83 1=1.L 
1433 IF CI.LE.La.AND.J.LE.M2) GO TO 79 
1434 EE(I.J,1)=I. 
1435 FF(I.J,1)=0. 
1436 GO TO 80 
1437 79 EE(I.J,1)=0. 
1438 FF(I.J.1)=FSSTARCI,J,1) 
1439 80 DO 82 K=2.NMI 
1440 IF CDTOTCJ.K).GT.O..AND.I.EQ.1 I GO TO 81 
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144 1 C 
1442 C OUTSIDE THE CRACK 
1443 C 
I W DEN=B8l I ,J,K!-ZKZ»EE( I .J.K-I I 
1445 EE(1,J.KI=ZKZ/OEN 
1445 FFII,J,KI = (O0'l .J,K)»-ZKZ»FF( I , J.K-J ) )/DEN 
1447 GO TO 82 
1448 C 
1449 C INSIDE THE CRACK 
1450 C 
1451 81 DEN=BB( I .J.KJ-ZETAI J , J,K)'EE( 1 ,J.K-I ) 
1452 EE(I.J,K)=Z£TA(1.J.K1/DEN 
1453 FF(I ,J,K)=COD( I ,J.KI+ZETAl I ,J,Ki»Ff I 1 ,J.K-I I 1/DEN 
1454 82 CONTINUE 
1455 83 CONTINUE 
1456 C 
1457 C CALCULATE VALUES OF AFII.J.K) -- THE LAST VALUE OF F(l.J.K) AFTER 
1458 C COMPLETION OF ALL EXPLICIT AND IMPLICIT CALCULATIONS. THE VALUE 
1459 C OF F(I,J,N) IS ALWAYS EQUAL TO ZERO. COMPARE VALUES OF AFd.J.K) 
1460 C WITH PREVIOUS VALUES AND ITERATE THROUGH nZn DIRECTION 
1461 C CALCULATIONS IF CONVERGENCE NOT OBTAINED. 
1462 C 
1463 C 
1464 IZ=0 
1465 DO 85 J=l,M 
1466 DO 85 1=1,L 
1467 DO 84 K=l,NM2 
1468 NB=N-K 
1469 AAF=AF1I,J.NB) 
1470 AF(I,J,NB)=EE!I.J,NB)«AF(I,J.N8+11+FF1I.J.NB) 
1471 COMPARE=ABS(AFI I ,J,NBI-AAF)/AAF 
1472 IF (COMPARE.LT.0.00!.OR.AF(I,J,NB).EQ.AAF) GO TO 84 
1473 IZ=IZ+1 
1474 84 CONTINUE 
1475 IF (I.LE.L2.AND.J.LE.M2) GO TO 85 
1476 AFC I ,J,1)=AF1I ,J,2) 
1477 85 CONTINUE 
1478 IF (IZ.EQ.O) GO TO 86 
1479 ITERZ=ITERZ+1 
1480 IF (ITERZ.LT.21 GO TO 62 
1481 C 
I4B2 C COMPARE TOTAL COMBINED nXn, nYn, AND nzn IMPLICIT LOOPS AND 
1483 C ITERATE THROUGH ALL IMPLICIT CALCULATIONS IF CONVERGENCE IS NOT 
1484 C OBTAINED. 
1485 C 
1486 86 IT=0 
1487 DO 88 J=!,L 
1488 DO 88 J=l,M 
1489 DO 88 K=l,N 
1490 IF (AF(I.J,K1.GT.FMAXI GO TO 91 
1-91 COMPARE=ABS(AFFI1,J.K1-AFII,J,K)1/AFFII,J.K) 
1492 IF (COMPARE.LT.0.001.OR.AFF(I,J,K).EQ.AF(I,J,K)1 GO TO 87 
1493 IT=IT+l 
I 494 87 AFFI I .J.K)=AF!I,J,K) 
!-t95 88 CONTINUE 
!-»96 IF (IT.EO.OI GO TO 89 
1497 ITERT=ITERT+I 
1H98 IF (ITERT.LT.21 GO TO 6 
1^99 C 
1..00 C UPDATE /ALUES OF F IF CONVERGENCE IS SATISFACTORY 
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1501 C 
150? 89 DO 90 J=l.M 
1503 DO 90 1=1.L 
I50H DO 90 K=l,NM1 
1505 F(1,J,K)=AF(I,J,K) 
1505 90 CONTINUE 
1507 RETURN 
1508 91 WRITE (59,92) I.J.K 
1509 CALL EXIT!1) 
1510 C 
1511 92 FORMAT (65HCONVERGENCE FAILURE 
151 a IP, I,J,K= ,315) 
1513 END 

!N SUBROUTINE FLOW, REDUCE TIME STE 
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