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SUMMARY 
. . 

  he series of Control Tes ts  has been completed. These tests. 
w e r e  conducted' to evaluate  t h e  s u i t a b i l i t y  o f , t h e  apparatus design, 
t o  . test  t h e  var ious  f i s s i o n  product character iza t ion.  devices. 
and methods, and t o  e s t a b l i s h  t h e  behavior of'.known chemical 
sp,ecies.which a r e  expected' t o  be encountered i n  t h e  l a t e r  phases 

. o f  t h e  program. Those t e s t s w h i c h  u t i l i z e d  e i t h e r  C s I  o r  Cs2O w e r e  
found t o  y ie ld  depos.its of hydrated. CsOH. i n  t h e  moist environment. 

Ni th  t h e  completion of t h e  Control Tes t  S e r i e s ,  a t t e n t i o n  has 
been turned t o  t h e  development of an acceptable  method of implanting 
se lec ted  f i s s i o n  product forms i n t o . t h e  fuel-cladding gap, and t o  
s t u d i e s  of t h e  r e l e a s e  of such implanted species  from subsequently 
ruptured capsules. The method of implantat ion which has been 
employed in t h e  tests conducted thus f a r  involves app l i ca t ion  of 
C s I  and CsOH on UO2 p e l l e t  su r faces  from aqueous so lu t ion ,  and 
implanta t ion of Te02 on t h e  f u e l  p e l l e t  ends from an aqueous 
slur.ry., The tests conducted t o  d a t e  i n d i c a t e  some decomposition of 
C s I  t o  y i e l d  elemental iodine,  s t a b i l i z a t i o n  of the  CsOH, probably 
through reac t ion  with U02, migrat ion of t h e  te l lur ium t o  t h e  
cladding, and t r anspor t  of t h e  C s I  down temperature gradients  
wi th in  t h e  f u e l  capsules. 

Two rods of a rod bundle of H. B, Robinson 2 Reactor f u e l  
Were s e n t  t o  the Eattelle Columbus Laboratories for gaseous species 
analyoin and fur f a b r i c a t i o n  i n t o  test capsules f o r  this program. 
These capsules have been received and a r e  c u r r e n t l y  i n  s t o r a g e  
at ORNL. 

Although problems had been encountered i n  at tempts t o  
c a l i b r a t e  a Knudsen cell-mass spectrometer apparatus f o r  use i n  
l i h i t e d  s t u d i e s  of C s  vapor pressure  over U02, these  d i f f i c u l t i e s  
appear. to .  have been. resolved. 

1. INTRODUCTION 

The primary object ives  of t h e  program are t o  determine the q u a n t i t i e s  

of r ad io log ica l ly  s i g n i f i c a n t  f i s s i o n  producta w h i c h  can be  re leased under. 

postulated '  spent f u e l  t r anspor ta t ion  accident  (SFTA) and successful ly  



terminated l o s s  of coolant  accident.;(LOCA) condit ions,  and t o  i d e n t i f y  

t h e s e  spec ies  wi th  respec t  t o  both chemical and physical  form. Toward 

t h e s e  ends, an appara tus  has been designed and constructed and is  

c u r r e n t l y  being u t i l i z e d  i n  a-program of research which c o n s i s t s  of a  

progress ion of experiments which ul t imate ly  involve the  use of h igh-  

burnup, l i g h t  w a t e r .  r e a c t o r  CLW) f u e l  rod segments, 

The f i r s t  series of experiments i n  t h i s  progression was designed t o  

demonstrate the  adequacy of t h e  experimental. apparatus and t o  test t h e  

s u i , t a b i l i t y  of t h e  f i s s i o n  p,roduct charac te r i za t ion  devices and techniques. 1 

Thooe tests included experiments wi th  12, CH31, C s I ,  and Cs20. The 

r e s u l t s  of most of these  so-cnllod contml. experiments have baen rrpur ecd 

and t h e  concluding test is  described i n  t h i s  repor t .  

~ u r i n i  the:  conduct of t h e  Cont,ydl. T e s t  Se r ies ,  .a  p a r a l l e l  e f f o r t  

was underway t o  develop a technique t o  Implant l i k e l y  f i s s i o n  product 

spec ies  i n  the  fuel -c lad  gap i n  a manner which would simulate the  
- , 

d i s t r i b u t i o n  i n  i r r a d i a t e d  f u e l  reasonably w e l l . .  The procedure se lec ted  

involves  t l k , a p p l i c a t i o n '  of water-soluble candidate f i s s i o n  product 

forms (e. g., C s I , .  CsOH) t o  t h e  UO f u e l  p e l l e t  su r faces  from an 
2 

aqueous solut ion.  For water-insoluble spec ies  (e.g., TeO ), on the o the r  2 
hand, . the mate r i a l  i s  ciepasi~ed i n  tho d i s h 4  ends of fhe  pe l l e r s . f rom 

an aqueous s l u r r y .  

The Implant T e s t  S e r i e s  w a s  i n i t i a t e d  s h o r t l y  a f t e r  t h e  completion 

of t h e  Control Test  Series..  These tests, c;hich a r e  d i rec ted  toward a 

determinskion of t h e  e f f e c t s  of c lad  f a i l u r e  s i z e  on f r a c t i o n a l  r e lease ,  

o i a t m o s p h e r e  ( p a r t i c u l a r l y  3 0  aqd 5) oa chemical behavior, and of 

aimulant migrat ion in the f u e l  rod, are being c o n d u c ~ ~ d  with the apparatus 

shown i n  Fig. 1; this design d i f f e r s  only a l i g l ~ s l y  from that described 
3 previously. , 

As is ind ica ted  in F Q ,  1, the f u n l  rod 1s induction-heated i n s i d e  

the furnace tube,  and t h e  rod ruptured by applying argon pressure. 

The f i r s t  component of the col lec t ion-character iza t ion system i s  a 

gold f oi l - l ined  thermal gradient  tube; species  w i t h  dewpoints above 

125OC are deposited i n  t h i s  region. Beyond t h e  thermal gradient  tube is  

posi t ioned a cascade-impactor; t h i s . d e v i c e  s e p a r a t e s ' p a r t i c u l a t e s  i n t o  

f i v e  p a r t i c l e . . s i z e  f r a c t s o n s  on Teflon membranes which can b e  removed 

t o  a l low d i r e c t  examination of t b  deposited mater ia l .  H i g k e f f i c i e n c y  
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Fig. 1. Apparatus f o r  s t u d i e s  o f  f i s s i o n .  product  release from 
LWR f u e l  rod segments. 



f i l t e r s  complete t h e  c o l l e c t i o n  of p a r t i c u l a t e s .  Reactive iod ine  

forms, such a s  I2 and H I ,  a r e  co l l ec ted  on fine-mesh s i l v e r  screens,  

whereas less r e a c t i v e  forms, notably CH31, a r e  c o l l e c t e d  on charcoal  

adsorbers  and silver-exchanged z e o l i t e  beds. The apparatus is  a l s o  

equipped wi th  c o l d  t r a p s  which may be used t o  c o l l e c t  f i s s i o n  product 

noble  gases. Las t ly ,  hydrogen which is  produced from the  steam- 

Zirca loy r e a c t i o n  is monitored using e i t h e r  a  thermal conduct iv i ty  meter 

o r ,  f o r  l a r g e r  amounts, a , w e t - t e s t  meter. 

2. CONTROL TESTS 

2.1 Cesium Oxide Behavior (cont ro l  Test8 7,  8 ,  and 9) 

Control T e s t s  7,  8 ,  and 9, which were performed t o  study C s  U 2 
behavior i n  an  802 steam-20% argon atmosphere a t  700, 800, and 950°c, 

have been described previous ly .  ' However, a t  t h a t  t i m e  i d e n t i f i c a t i o n  

of  t h e  X-ray d i f f r a c t i o n  p a t t e r n s  of depos i t s  taken from t h e  var ious  

appara tus  components was no t  poss ib le ,  owing t o  t h e  l a c k  of reference  

s tandards .  W e  have s i n c e  prepared the necessary reference  mate r i a l s  and 

on t h i s  b a s i s  were a b l e  t o  i d e n t i f y  t h e  monohydrate CsOHmH 0 and higher 2 
hydra tes  CsOH*xH20. (The l a t t e r  spec ies  a r e  r e a d i l y  formed upon 

exposure of t h e  monohydrate t o  normal a i r . )  

TII Cvntrs l  Toct 8, t.hsae hydrates were i d e n t i f i e d  ill deposi to  i n  

the quar tz  furnace  tube and on t h e  second impactor s tage.  I n  Control 

Tes t  9,  t hese  spec ies  w e r e  i d e n t i f i e d  i n  depos i t s  wi th in  t h e  thermal 

' g r a d i e n t  tube. The apparent ly  uns t ructured  cesium deposi t ion  p r o f i l e  

wNch w a s  obtained in t t ~ e  thermal g rad ien t  cube Tcom tioncrol Test. 9 

2s presented in Fig. 2. 

Deposits take11 from t h e  furua.ce tubes a t  t h e  conclusion of Control  

Tes t s  7 and 9 y ie lded distinctive X-ray d i f f m c t i e n  p a t t e r n s  of 

cons iderable  complexity that could n o t  b e  i d e n t i f i e d .  However, w e  

b e l i e v e  these  depos i t s  t o  be  pr imar i ly  mixtures of cesium s i l i c a t e s .  
4 

2.2 Cesium Iodide  Uehavior (Control Test  10) 

Control  T e s t  1 0  was conducted w i t h  a Cs-134, 1-130 t raced C s I  

sample which was placed i n  a quar tz  boat  and posi t ioned i n  the cen te r  
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TEMPERATURE C C I  

Fig. 2. Cesium-134 and iodine-130 nllclj.de concenLratfon profi les  
i n  the thermal gradient tube after  Control Tests 9 and 10. 



of t h e  furnace  tube. The sample was rap id ly  brought t o  7 0 0 " ~  under 

reduced argon flow, then t h e  argon flow was increased and steam 

i n j e c t i o n  i n i t i a t e d .  The a c t u a l  opera t ing condit ions are summarized 

i n  Table 1. 

The d i s t r i b u t i o n s  of both  t h e  cesium and the  iodine  nucl ides  a r e  

presented i n  Table 2. While most of t h e  cesium iernainad i n  t h e  furnace 

o r  was deposited i n  t h e  thermal gradient  tube, approximately one-third 

of t h e  iod ine  (probably a s  elemental  iodine)  was c a r r i e d  i n t o  t h e  

impactor and deposited eiLlier on the al-uminum sur faces  of t h e  impactor 

housing or u r ~  the oilver screens.  The cesium associa ted  wi th  the  quar tz  

boat  w a s  probably present  a s  s i l i c a t e s .  X-ray di .ffract ion patter'tls ~111~11 

w e r e  obtained from material deposited on t h e  t h i r d  and f i f t h  s t a g e  

c o l l e c t o r s  i n  the  impactor ind ica ted  t h a t  about 75% of t h e  mate r i a l  was 

CsOH and t h e  remainder C s I .  On t h e  b a s i s  of these  observations,  w e  

conclude that approximately one-third of t h e  C s I  was decomposed t o  

form 12, cesium s i l i c a t e s ,  and CsOH. 

The rad ioac t ive  iod ine  deposited i n  t h e  furnace tube was loca ted  a t  

the cooler  (about 200°C) inlet end. W e  be l i eve  that t h e  iodine  which 

deposited a t  the  cool  i n l e t  end occurred as C s I  during the f i r s t  few 

minutes by convective gas flow wi thin  t h e  furnace tube before  the  steam 

flow s t a r t e d .  

A s  i n  r e a d i l y  apparent  from t h e  da ta  presented graphical ly  i n  

Fig. 2, both  t h e  cesium and t h e  iod ine  nucl ide  concentrat ion p r o f i l e s  

i n  t h e  thermal grad ien t  tube  show s t r u c t u r e  which s t rong ly  suggests 

dcpoeitic111 as C a I i  

Iodin~.-130 a c t i v i t i e s  i n  t h e  thermal gradienr: Lube and ou the 

f i r s t  s i l v e r  screen are presented a s  funct ions  of cfiua i n  Fig.  3 .  

A-1 most two-thirds of t h e  iod ine  which was co l l ec ted  by the si lver 

screen was deposited v i r t u a l l y  insttustaneoutily w i t h  steam i n j e c t i o n ,  

and the remainder accumulated a t  a r a t e  of about 0.7% per minute. 

I n  c o n t r a s t  t o  t h e  behavior observed on the  s i l v e r  screen,  c o l l e c t i o n  

of t h e  CsI i n  t h e  thermal gradient  tube proceeded much more slowly; a s  

seen from the d a t a  displayed i n  Fig. 3, about 75% of t h e  C s I  was 

deposited over a 15-minute i n t e r v a l ,  and c o l l e c t i o n  appears t o  have 

been complete a t  t h e  termination of t h e  test. 



Table 1. Summary of experimental  ope ra t ing  cond i t ions  

Experiment number 
Control  1 0  Implant 1 Implant 2 Implant 3 

Mass C s  (mg) 2.16 2.50 0.034 7.23 
Mass I (mg) 2.06 2.39 0.033 0.70 
Mass. Te (mg) 0.0 0.0 0.0 1.68 - + 0.47 
Vacuum drying None a a a 
Pretreatment  None b b b 
.Avg. r a t e  of heatup COc/sec) 0.45 0.65 11. 1.1 
Time a t  temperature be fo re  

:rupture (min-OC) - (12-700) (17.5-700) (2.5-900) 
q r e s s u t e  a t  rup tu re  (psig)  - 330 330 250 

. Size  of rup tu re  (mm) - 0.046x9.0 0.06x3.6 0.23x3.5 
Wall th inning  - c .  c None 
Temperature a f t e r  rup tu re  COT) 700 700 7 00 900 
Time a t  temperature (hr)  1.0 1.0 1.5 2.0 
Steam flow rate (cm3/min, 

STP ) 277d 348 . 305 311 
Argon flow rate, 

(cm3/min, STP) 52d 60 56 56 
Furnace tube pressure  ( t o r r )  750 755 7 35 745 
Impactor pressure  ( t o r r )  186 186 1 8  6 191  

a 30 min a t  200°C, vacuum pump. 
b16 hr a t  400°c, 1 a t m  argon. 
C F l a t  spo t  5.1 cm (2.0 i n . )  long; t h i n n e s t  p o i n t s  0.023 cm (0.009 in . ) .  
d~team and argon i n f l o w  rates; only  41% of t h e  expected condensate  

volume was co l l ec t ed ,  i n d i c a t i n g  a l e a k  i n  the system, probably a t  the 
furnace  tube  cap. 



Table 2. Dis t r ibu t ions  of cesium and iod ine  i n  cesium iodide  experfmetts  

Quartz boat  700 23.3 1.6 - - - - 
U02 p e l l e t s  700 0 0 68.3 48.6 51.6 36.7 
Zircaloy cladding 7 00 0 0 19.0 31.8 41.1 46.8 
Quartz furnace tube 700 40.1 2.2 .8 11.5 . 17.1 7.2 1.1 
Thermal grad ien t  tube 700-150 34.0 30.9 0.9 .1.1 0.11 1.4 
Or i f i c e  assembly 125 1.0~ 1 . 8 ~  . 0.02 0.13 0.005 1.2 
Impactor housing 125 0 . 7 8 ~  LO. oa 0.1 1.0 0.03 6.4 

F i r s t  s t age  paper 0.04 0.09 0.01 0.03 0.002 0.05 
Second s t age  paper 0.04 0.12 0.01 0.01 0.002 0.003 
Third s t age  paper 0.13 0.47 0.01 0.01 0.002 0.01 
Fourth s t a g e  paper 0.13 0.18 0.01 0.005 0.001 0.01 
F i f t h  s t a g e  paper 0.40 0.26 0.03 0.03 < 0.001 0.002 

F i l t e r  housing 125 0. Oza l.la 0.003 0.02 0.001 0.81 
F i r s t  f i l t e r  paper 0.41 0.13 0.05 0.02 <0.001 0.09 
Second f i l t e r  paper 0.002 0.17 <O. 001 0.001 0.0 0.09 
Third f i l t e r  paper 0.001 0.04 - - 0.0 0.03 
S i l ve r  screen No. 1 0.00: 17.9 0.0 0.13 <O. 001 3.8 
S i l ve r  screen No. 2 <O.OOY 0.37 <0.001 0.01 <O. 00% 0.2% 
S i l ve r  screen No. 3-No. 12 <O. 002 0.41 <0.001 0.03 (0.001 0.61 

Adsorber housing 125 0.0 0.0 0.0 0.0 0.001 0.01 
Charcoal No. 1 0.G 0.37 <O ,001 0.02 <O. 001 0.83 
Charcoal No. 2 0.0 0.004 0.0 <O. O G l  0.0 0.001 
Other adsorbers  0.0 0.0 0.0 0.0 <O. 001 0.01 

Condenser housing 4) 0.0 0.0 0.06 0.01 0.003 0.03 
Condensate 0.0 0.0 0.0 <O. 001 0.0 0.0 

Freeze t r a p  -? 8 0.0 0.0 0.0 0.0 <O. 001 0.0 
Cold charcoal  t r a p  -38 0.0 0.0 0.0 <0. OU 0.0 0.0 

a 1 7 5 0 ~ .  
b ~ o .  3 through No. 8.. 
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TIME FURNACE TUBE AT 700°C (min) 
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Eig. 3.  Iodine-130 count rate of the thermal gradient tube and 
the f i r s t  s i lver screen as a function of time. Control Test 10. 
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Although the  s i gn i f i c an t  'decomposition of C s I  whidh w a s  noted i n  

this t e s t  runs counter t o  t he  generally regarded5 s t a b i l i t y  of C s I ,  

we hasten t o  point  out  t h a t  t he  high r e l ea se  of iodine i s  unquestion- 

ably  due to  reac t ion  of t h e  molten C s I  with the ,quar tz  boat, and..the 

consequent formation of cesium s i l i c a t e s .  

3.  IMPLANT TESTS 

3.1 Development of an Implantation Techlique 

Becauaa o f  t h e  costs and cxperime.ntal d i f f i c u l t i e s  associa ted 

wi th  t h e  use  of f u l l y  f r r ad l a t ed  fuo l  in Studies  of f i ~ s i o n  producL 

behavior, most researchers  seek t o  develop f u e l  preparation methods and 

experimental techniques which simulate a s  c losely  a s  poss ible  typ ica l  

condit ions.  Although the  extent  t o  which the simulant accurate ly  

corresponds to t h e  a c t u a l  s i t u a t i o n  i s  open , to  examination, a recent 

review6 of the  use of simulants vis-a-vis ' i r rad ia ted  f u e l  has concluded 

t h a t ,  i f  e s sen t i a l  d i f ferences  i n  f i s s i on  product behavior a r e  indeed 

present ,  these  a r e  i n s ign i f i c an t  when viewed i n  terms of t he  s e n s i t i v i t y  

t o  experimental conditions. It must be kept i n  mind, however, t ha t  

this conclusion app l ies  s t r i c t l y  to conditions o f  meltd~wn, wherein 

t h e  high temperatures involved tend t o  minimj.ze the importance of 

k i n e t i c s  i n  deLermining chemical form. 

Similarly f o r  reasons of experimental convenience and economy, 

we have sought t o  develop a method t o  simulate f i s s i o n  product behavior 

&n thE fuel-clad gap of i r r ad i a t ed  fue l ,  The ob jec t ive  was t o  d i s t r i b u t e  

the f i s s i o n  product simulants on the  surfaces  of the U 0 2  p e l l e t s .  sinr.e 

add i t i ona l  r e l ea se  from the p e l l e t  matPfx I s  incsno0quential under the  

present set of test eondit ions.  

A t yp i ca l  Implant T e s t  fuel rud in nlcetcbrl i n  Fig. 4; t h e  method 

of implanting the f i s s i o n  products i s  out l ined i n  t he  f i gu re  as w e l l .  

Note t h a t  three p e l l e t s  a t  each end of t he  test f u e l  roll were not 

t r e a t ed  so that a x i a l  migration w i t &  t h e  f u e l  rod could be examined. 

Only C s I  was employed.in Implant T e s t s  1 and 2, whereas the  

remaining tests performed t o  d a t e  u t i l i z e d  cesium a s  both  CSI and CsOH. 

Cesium iodide which contained approximately 10% 1-129 was f i r s t  i r r ad i a t ed  

t o  provide the Cs-134 and 1-130 radiotracers .  The c r y s t a l l i n e  CsI 
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was then dissolved i n  a few drops of water and (for tests using CsOIi 

a l so )  mixed with dissolved CsOH under an argon atmosphere t o  minimize 

exposure to  02. After placing the  W2 pe l l e t s  on a la rge  p e t r i  dish and 

heating them with a hot p l a t e  (the pe l l e t s  w i l l  not became wetted i f  

cool), the pe l l e t s  w e r e  coated with the simarlant aqueous solution. I n  

those experiments i n  which water-izlsoluble Te02 was employed, the Te423m 

traced powder was divided in to  twenty-four al iquots  which were applied 

1 7 1 1  the, aoncave ends of the  p e l l e t s  while the U02 w a s  cool. Adhesion of 

the T a p  to the  f u e l  waa accomplished by adding a drop d water 1'1-1 the 

Ze(3 within Llre  conaave face  af cim pellet: an$ hezrblug tho resultant 
2 

~ l u r r y  t o  dryness on a hot plate ,  

W pe l l e t s  w e r e  then assembled i n  the  Z i rcdoy  rod and, a f t e r  

being subjected t o  a 2 0 0 ' ~  heat treatment under vacuum conditions, 

the rod was f i l l e d  with argon. The assembly was then maintained at  400°C 

f o r  1 6  hours to  permit attainment of chemical equilibrium within the 

assembly p r io r  to  actual  experimentation, T h e  amounts of f i s s ion  product 

s h u l a n t s  used generally correspond to  5% release to  the  gap space within 

a spent fue l  rod segment of the  s i z e  employed i n  the test. 

3,2 C e s i u m  Iodide Behavior a t  High Concentration a t  700QC 
CImglanr T e s t  1) 

Operating conditions fo r  the f i r s t  implant eacperiment a r e  summarized 

in Table 1. In this test only C s I  w a s  employed; the observed dis t r ibut ions 

of t h e  two nuclides monitored &re yrrssentcd in Tahle 2. T h e s e  data  

indica te  tha t ,  contrary ta t b  results of Control Test lQ, only about 

1.4% of the or ig ina l  iodine w7a8 convcr td  to eleaental form. Most of the 

c e ~ l u r ~  -oh entered the col lect ion aptem was collected in the thermal 

gradient tube era CHI. Thie i s  not surprising, since the vapar ygeseura 

of C s I  is 0.9 t o r r  a t  700°C; some of the  C s I  would thus be  expelled 

with the pressurized argon release during rod rupture, The s l i t - l i k e  

ruptuxe opening could then allow additional C s I  re lease by ordinary 

gas-phase diffusion. The rate of appearance of iodine-130 i n  tlm 

col lect ion system, as is shown in Fig. 5, tends t o  substant iate  this 

view, and calculations of C s I  release by gas-phase diffusion are i n  

naudml agreement with experiment. 
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The d i s t r i b u t i o n s  of the iodine-130 nucl ide  wi th in  t h e  f u e l  rod,  

as determined before  and a f t e r  t h e  experiment, a r e  presented 

g raph ica l ly  i n  Fig. 6. Release of mate r i a l  i n  t h e  immediate v i c i n i t y  

of t h e  rup tu re  a r e a  is unmistakable. Less well-defined is  migrat ion 

of t h e  f i s s i o n  product simulnnt toward the cooler  ends of t h e  rod. The 

d i s t r i b u t i o n s  presented i n  Fig. 6 probably represent  C s I ;  this is 

subs tan t i a ted  by a comparison of t h e  ,iodine-130 and cesium-134 scans 

which were. made a t  . t h e  conclusion of t h e  experiment. These d a t a  a r e  

shown graph ica l ly  I.n Fig. 7. 

A sauplc  of mate r i a l  wlrich was obtained I rou  the aolloctor of the  

f i f t h  impactor s t age  (which c o l l e c t s  t h e  smallest ae roso l  p a r t i c l e s )  

was submitted f o r  X-ray d i f f r a c t i o n  ana lys i s .  Although the da ta  of 

Table 2 suggest t h i s  ma te r i a l  t o  be CsI , .an  examination of the  

d i f f r a c t i o n  p a t t e r n  indicated  t h a t  g rea te r  than 80% of t h e  deposi t  was 

CsQH*H20. The iod ine  apparently was not present  i n  a form which could 

be  detec ted  by t h e  X-ray d i f f r a c t i o n  technique. 

3.3 C e s i u m  Iodide  Behavior a t  Low concentrat ion a t  700°C 
(Implant ~ e k t  2). 

I$iplant Test % w a s  idei lcical  to  tho preceding rest, except t ~ i t  a 

70-fold lesser concentra t ion of C s I  was employed, and the t c a t  was run 

30 min longer (cf. Table 1 ) .  T h e  d e t a i l e d  d i s t r i b u t i o n s  of t h e  two 

nucl ides  monitored are presented i n  Table 2. 

In this test 7.3% of tbe cesium and 16.5% of t h e  iod ine  were 

re leased from t h e  fuel rod, and atout 14% e f  t h e  o r i g i n a l  iod ine  was 

c o l l e c t e d  i n  elemental form. The cesium which deposited on t h e  

furnaae tube w a l l s  w a s  l a r g e l y  confined t o  a n  a r e a  near t h e  tube rup tu re  

loca t ion ,  as d g h t  bo expected i f  rap id  condensation of the escaping 

spec ies  had occurred. 

Deposition of t h e  iod ine  i n  t h e  impactor assembly and on t h e  f i r s t  

s i lver screen during the course of t h e  experiment is  shown i n  Fig. 8. 

The d a t a  i n d i c a t e  some delay  i n  the appearance of iod ine  011 the s i l v e r  

screen;  this may be  due t o  holdup of t h e  iodine  on t h e  aluminum 

impactor housing. Note a l s o  t h e  apparent cessa t ion  of iod ine  release 

approximately 60 minutes fol lowing tube rupture,  
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Fig.  6 .  Iodine-130 d i s t r i b u t i o n s  i n  Implant Tes t  1 f u e l  rod. 
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Fig. 7. Ladine-130 and cesium-134 d i s t r i b u t i o m  i n  Irplant Tes t  1 
fu ,+ l  rod  at  ccm.clusion o,f' experiment. 
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Fig. 8: Iodine-130 deposition i n  the impactor , . . .  and on the f i r s t  
s i lver screen during implant . . Test 2.  



Cesium nucl ide  d i s t r i b u t i o i l s  i n  t h e  f u e l  rod p r i o r  t o  and a f t e r  

exper imenta t ion,are  p r e s e n t e d - i n  Fig. 9. A s  i n  t h e  previous t e s t ,  these 

d a t a  i n d i c a t e  l o s s  of m a t e r i a l  near the  rupture  point  (5.6 inches along 

t h e  f u e l  rod) and some migra t ion t o  t h e  ends of t h e  f u e l  rod. 

P a r t i c u l a t e  m a t e r i a l  from two impactor s tage  c o l l e c t o r s  was . 

submitted f o r  X-ray d i f f r a c t i o n  analys is .  One of t h e  samples from 

Stage 1 (which contained t h e  h ighes t  amount of r ad ioac t iv i ty )  was 

found t o .  b e  p r i n c i p a l l y  CsOH.H20; t h e  second sample, from s tage  4 

(which contained t h e  da rkes t  v i s i b l e  deposit) ,was found t o  cons i s t  of 

aLmar equal  amounts of CSO~I*I~,~CI and f:sUH*xH20 ( x  > i). Since  the  samples 
A 

a r e  exposed to  a i r  p r i o r  t o  X-ray ana lys i s ,  rhe s ign i f i cance  o i  the 

degree of hydrat ion of Llie CsOH doe..s not warrant f u r t h e r  ana lys i s  a t  

t e s  time. Moreover, a s  remarked previously regarding similar  r e s u l t s  

from fmplant T e s t  1, t h e  iod ine  on t h e  c o l l e c t o r  s t ages  was n i t  i n  a 

f o r m , t h a t  could be  detec ted  by our d i f f r a c t i o n  technique. 

The ' la rger  f r a c t i o n a l  formation and re lease  of elekentah icrdd.ne experienced 

i n  this test compared w i t h  Implant T e s t  1 w e r e  probably t h e  manifestat ion 

o f  a concentra t ion e f f e c t .  I n  l i k e  manner, a l a r g e r  proport ion of iodine  

.appeared a s  organic iod ides  (i.e., co l l ec ted  on the  sorbers  beyond t h e  

oiLver screens)  i n  this test a s  compared with t h e  previous test, again 

probably because of the di.ffereuces i n  concentration. Such c-oncentration 

e f f e c t s  on organic iod ide  formation have been noted previously. 
7 

. 3.4 Tellurium Dioxide, C e s i u m  Iodide,  and Cesium Hydroxide 
Behavior a t  900°C (Implant T e s t  3)  

Iruplsnt Tost 3 i s  t h e  f i r s t  of severa l  experiments which w i l l  

erhploy th ree  f i s s i o n  product simulants , The experimetltal culzditiono 
.. . 

'arc.LPsted, i n  Table 1, and t h e  p e i r ~ i n e a t  nucl ide  d i s t r i b u t i o n s  a t  t h e  

: conclusion of the test a r e  presented i n  Table 3.  The ruptuxa a rea  of 

t h e  cladding i s  depicted i n  ~ i g .  10. 

Cesium concentra t ion p r o f i l e s  i n  t h e  fue1 , rod  a r e  displayed i n  

Fig. 11; these . d a t a  . i n d i c a t e  migiratiuu t o  t h e  ccll,d ends ~nd- t o  t h e  rupture  

area .  Moreover, migrat ion t o  the  r u p t u r e - a r e a  appears t o  be due t o  a 

l o s s  of cesium from t h e  p e l l e t  s u r f a c e s . i n  this region and a consequent 

r e a c t i o n  between this cesium and t h e  cladding. Corresponding p r o f i l e s  

f o r  iodine,  shown i n  Fig. 12, suggest migrat ion a s  C s I  toward t h e  ends 
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Fig. 9. Cesium-134 d i s t r i b u t i o n s  i n  Implant T e s t  2 f u e l  rod. 



Table 3 .  D i s t r i b u t i o n s  of cesium, iodine ,  and t e l lu r ium i n  l 'm~lan t  Test  3 

Temperature Percent found i n  each l o c a t i o n  
Lo c a t  i o n  CC) C s I T e  

U02 p e l l e t s  
Zi rca loy c ladding 
Quartz furnace tube 
Thermal g rad ien t  tube  
Orif  i c e  assembly 
Impactor housing 

F i r s t  s t age  papor 
Second s t a g e  paper 
Third s t a g e  paper 
Four th  s t a g e  paper 
F i f t h  s t a g e  paper 

F i l t e r  housing 
F i r s t  f i l t e r  paper 
Second f i l t e r  paper 
Third f i l t e r  paper 
S i l v e r  screen Nu. 1 
S i l v e r  screen No.  2 
S i l v e r  screen Nos. 3-8 

Adsorber housing 
Charcoal No. 1 
Chatcoal No.  2 
Other adsorbers 

Condenser hu using 
1 :nndensaLe 

Freeze t r a p  
Cold charcoal  t r a p  
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Fig .  11. Ceaium-I34 distributions i n  Implant T e s t  3 fuel  rod. 
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Fig.  1 2 .  Iodine-130 dis tr ibut ions  i n  Implant Test 3 f u e l  rod. 



of t h e  rod, and migration of the  cesium or ig ina l ly  aesociated only 

with CsOH in  the  rupture region. 

Iodine a c t i v i t y  as monitored a t  two points along the fue l  rod 

during the  experiment is displayed graphically in Fig. 13; these data 

indica te  continuous t ransport  of the iodine nuclide throughout the test. 

Similar p lo t s  of iodine a c t i v i t y  i n  the  t h e d  gradient tube and the 

impactor assembly a r e  presented i n  Fig. 14. The deposition of iodine 

j.n t h e  thermal gradient tube probably occurred as C s I ;  this behavior 

is suggested by the correspondence of the  cesium a d  iodine profileu in 

the t h e d  gradient tube as shown i n  Fig. 15. Moreover, about half of 

this BPBC~P.FI w a s  collected a t  the time of rupture. L e s s  iodine w a s  

col lected by the aluminum impactor housing a t  the time of rupture; 

this material  is believed t o  be elemental iodine. 

Since C s I  and CaOHhave sidlar" vapor presauree, one c ~ d d  reasonably 

expect the two speciea t o  display nearly ident ica l  migrat;ion behavAor. 

Xt is thus not surpris ing that the  thermal gradient tube appears t o  

y ie ld  no separataon of the  two species. Migration of the  two w i t h i n  

the f u e l  rod w a s  decidedly different ,  however. I n  the  swoklen clad 
rupture region, the cladding d is tor t ion  caused the induction-heated 

segment temperature to  rise to  about 1000°C, whereas the remainder of 

the rod w a s  maintained a t  900°C. A t  the lower tcmperatuce it appears 

l i k e l y  t h a t  the CsOH becomes s tabi l ized,  possibly as a r e s u l t  of the 

formation of uranate. For this reason, migration to  the cooler ends 

of the rod occurs primarily ae C s I .  A t  100OoC, w e  postulate 

sufficient decomposition of the usaumte eempound t o  permit fxansport of 

the cesium to the  claddiug, as Zndiaarad by the  data  i n  Pig. 11. Thi.8 

pot111 ated b&vior does not appear t o  be at variance with Knudsen 
2 .  cell ntuctlRs s f  6s partjal .  pressures over UOZ. 

Scans of tellurium a c t i ~ i t y  which w e r e  made along a segment of the  

cladding revealed preferent ia l  deposition on the  cladding a t  p e l l e t  

i n t e r f ace  locations. Since neither cesium nor iodine showed this behavior, 

A t  uas decided to  open the cladding and examine the e f f ec t  more clusely.  

As can be  readi ly seen from the  cladding photographs in Fig. 16, the 

a c t i v i t y  scans accurately ident i f ied  regions of preferent ial  depositgon; 

the tellurium species obviously did not d i s t r ibu te  uniformly along the  

fue l  rod. Samples of material removed from the  regions of t e l l u r i ~ c . l a d  
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Fig. 15. Cesium-134 and iodine-130 praffles Is the tbeulual 
gradient tube. 





i n t e r a c t i o n  exhibited X-ray d i f f r a c t i o n  pa t t e rns  which could not  be 

i d e n t i f i e d .  

3.5 Behavior of F i s s ion  Product Simulant Mixture a t  l l O O ° C  
(Implant Test 4) 

Implant T e s t  4 ,  which was conducted over a one-hour period wi th  t h e  

f u e l  rod maintained a t  l l O O ° C ,  was s imi la r  t o  Implant Tes t  3 i n  simulant 

makeup and composition. 

A lengthened induction c o i l  was employed t o  reduce the  a x i a l  

temperature gradient  along t h e  f u e l  rod. However, t h i s  caused the  

s t a i n l e s s - s t e e l  f e r r u l e  f i t t i n g  a t  t h e  inlet end of t h e  rod to  become 

overheated; this resu l t ed  i n  leakage of t h e  argon pressur iz ing gas, 

so t h a t  rupture  of the  rod could not  be ef fec ted .  Nonetheless, 

approximately 18% of t h e  cesium, 32% of t h e  iodine,  and 0.1% of t h e  

te l lur ium w e r e  released.  Most of t h e  iodine  deposited on t h e  furnace 

tube w a l l  near  t h e  entrance t o  t h e  thermal gradient  tube, probably a s  

C s I .  Considerable migrat ion of iod ine  was observed wi th in  the  f u e l  rod 

toward t h e  cooler  ends and, al though v i r t u a l l y  a l l  of t h e  t e l lu r ium 

migrated t o  t h e  cladding, the deposi t ion  r i n g s  which w e r e  observed i n  

Implant Test  3 w e r e  not iceably  absent.  

Oxidation of the  Zircaloy cladding a t  llOO°C produced smoke-like 

deposi ts  on t h e  furnace tube wal l  t h a t  ranged i n  color  from black t o  

white. The o r i f i c e  a t  the entrance t o  t h e  impactor became p a r t i a l l y  

plugged by Zr02 p a r t i c u l a t e s  Cas de temined  by X-ray d i f f r a c t i o n ) ;  

this necess i t a t ed  reduction of the steam-argon flow. Moreover, post- 

test examination of t h e  cladding revealed it t o  be  very b r i t t l e ,  and 

the sur face  flaky. 

More d e t a i l e d  a n a l y s i s  of t h e  experiment i s  p resen t ly  underway. 

3.6 Behavior of Fiss ion Product Simulant Mixture a t  700°C 
(Implaat Test 5) 

Implant Test  5 .was s imi la r  t o  Implant Test  3 i n  terms of t h e  

na tu re  and compositions of the simulants, but  was conducted ins tead  a t  

700°C over a two-hour period. A s  w i t h  Implant Test  4 ,  da ta  a n a l y s i s  

is incomplete. 



The d a t a  examined t o  d a t e  i n d i c a t e  t h a t  about 4% of t h e  cesium, 

15.5% of t h e  iod ine ,  and 6% of t h e  t e l lu r ium had been re l eased ,  and 

t h a t  most of t h i s  occurred a t  the time of rupture .  Because a  d i f f e r e n t  

method of wa l l  t h inn ing  was attempted f o r  t h i s  t e s t ,  t h e  rup tu re  was 

more e n e r g e t i c  than  experienced i n  t h e  previous t e s t s .  Approximately 

500-psi argon p r e s s u r e  was requi red  t o  b u r s t  t h e  rod i n  t h i s  t e s t  compared 

with 330 p s i  i n  Implant T e s t s  1 and 2, and 250 p s i  i n  Implant T e s t  3. 

(Wall. t h inn ing  is  necessary  f o r  tests a t  temperatures a t  o r  below 700°C 

t o  prevent  breakage of  t h e  qua r t z  furnace tube. ) 

4. PREPARATION OF HIGH-BURNUP mTEL ROD S P E C W N S  

The capped segments of H. B. Robinson 2 f u e l  rods have been 

rece ived  i n  good condi t ion  from B a t t e l l e  Columbus Labora tor ies  (BCL). 

S i x  of t h e s e  segments have been s e l e c t e d  f o r  experimentat ion and have 

been t r anspor t ed  t o  a h o t  cell ,  where d e t a l l e d  scans w i l l  be mrl.s t o  

de termine  t h e  a x i a l  concent ra t ion  p r o f i l e s  of s e l e c t e d  gamma-emitting 

f i s s i o n  products.  

The fol lowing d e s c r i p t i o n  of ope ra t ions  which had been performed 

a t  t h e  B a t t e l l e  Columbus Labora tor ies  i s  c a k n  from eorrocponden.ce nf 

R. 8. Klingensmith.' The two s u b j e c t  rods  were received a t  t h e  BCL 

Hot Laboratory as p a r t  of a  shipment of 20 H. B. Robinson 2 f u e l  rods from 

Aero je t  Nuclear Company (ANc) i n  Idaho. The rods w e r e  removed from t h e  

f u e l  assembly a t  t h e  ANC f a c i l i t y  i n  Idaho. 

4.1 Fiss ion  Gae Ana1ysj.s 

Accumulated f i s s i o n  gases  w i t h i n  each  rod were c o l l e c t e d  and then 

analyzed by mass spectrometry f o r  moleculat  and isuLuplc canat i fuento .  

A determinat ion  was a l s o  made of t h e  t o t a l  amount of gas and the void 

volume wi th in  each rod. 

Gases were c o l l e c t e d  from t h e  f u e l  rod using an  in -ce l l  puncturing 

dev ice  and a n  ou t -o f -ce l l  c o l l e c t i o n  system. Opera t ional ly ,  a f u e l  

rod  is  i n s e r t e d  through a gas-t ight '  punch 'chamber which, along w i t h  the 

out-of  c e l l  c o l l e c t i o n  system, is  evacuated. The c l a d  i s  then  punctured 

and t h e  gas allowed t o  expand i n t o  a  c a l i b r a t e d  volume. The r e s u l t i n g  

p r e s s u r e  i n  t h i s  volume i s  measured with a s e n s i t i v e  Wallace-Tiernan 

p ressu re  gage, and the gas  quan t i ty  ca lcu la t ed  using t h e  i d e a l  gas law. 



The gas i s  then  expanded a second time i n t o  a c a l i b r a t e d  volume f o r  a 

second measurement. The void  volume of t h e  f u e l  rod' is  determined as 

the d i f f e r e n c e  between pre-puncture and post-puncture system volumes. 

I n  o rde r  t o  determine t h e  s t a t i s t i c a l  spread  of  t h e  va lues ,  t e n  

measurements are made be fo re  and a f t e r  puncturing.  To a s s u r e  complete 

f i l l i n g  of t h e  rod i n t e r n a l  volume, helium a t  high p re s su res  is 

u t i l i z e d  i n  t h e  system. 

P e r t i n e n t  d a t a  and t h e  r e s u l t s  of  t h e  gas  ana lyses  are presented  

i n  Tables  4 through 6. (These d a t a  i n d i c a t e  on ly  0.24% r e l e a s e  t o  t h e  
Z gap and plenum, as r epor t ed  previous ly .  ) A ~ p e c i a l  e f f o r t  was made . 

t o  d e t e c t  methyl iodide.  For bo th  rods ,  methyl i o d i d e  con ten t  was 

below t h e  0.1 ppm d e t e c t i o n  l i m i t .  

4.2 Marking and Sec t ioning  

Overa l l  dimensions of t h e  f u e l  rods  examined were 152 i n .  l ong  

by 0.422 in .  OD. Each rod was marked ( 2 1 / 1 6  in . ) ,  s t a r t i n g  from t h e  

bottom, a t  12,  24, 48, 60, 72, 84, 96, 120, and 132 i n .  The a r e a  one 

inch  on e i t h e r  s i d e  of each  mark w a s  c leaned us ing  a w i r e  brush. 

Visua l  i n s p e c t i o n  of each cleaned area as su red  t h a t  no d e b r i s  remained 

t h a t  would hinder  Swagelok sea l ing .  A tub ing  c u t t e r  was used t o  s e c t i o n  

t h e  rods  a t  each of  t h e  marks. From each  rod t e n  p i eces  of  l e n g t h  ( i n  

o rde r  from t h e  bottom ) 12 ,  12, 24, 12,  12,  12 ,  12 ,  24, 12 ,  and 20 inches  

were obtained.  I n  a l l  c a s e s  t h e  c u t t i n g  o p e r a t i o n s  r e s u l t e d  i n  a 

n e g l i g i b l e  amount of f u e l  I a l l f r ~ g  from any of ehe c u t  su r f aces .  

Immediately upon c u t t ~ h g ,  t h e  exposed-fuel ends of e a c h  s e c t i o n  

were s e a l e d  with s t a i n l e s s  steel Swagelok f i t t i n g s .  The upper end of 

each  s e c t i o n  was s e a l e d  w i t h  a Swagelok cap  f i t t i n g  which h a s  a 2-in. 

l e n g t h  of 1/8-in.-OD s t a i n l e s s  tub ing  welded i n t o  a h o l e  through t h e  

cap. A 1/8-in. Swagelok cap f i t t i n g  was used t o  seal the 1/8-in.  

tube. The lowel: cud of each s e c t i o n  is  sealed w i t h  a r e g u l a r  Swagelok 

cap f i t t i n g .  The two end s e c t i o n s  of  each rod  a r e  s e a l e d , w i t h  t h e  

f i t t i n g s  which have the 1/8-in. t ube  attachment.  S p e c i a l  s t a i n l e s s  steel 

f e r r u l e s  were f a b r i c a t e d  f o r  these f i t t i n g s  t o  a s s u r e  p o s i t i v e  seal t o  

the 0.422-in.diameter  rod. Thi s  method of s e a l i n g  w a s  v e r i f i e d  by 

performing a helium leak check a t  8 0  p s i  on a sample system. 



Table 4. F i s s ion  g a s  results of t t e  8. 6. Robinson 2 f u e l  rode 

F i r e t  expansion Sacond expansion Void volume 
Avg . Puncture Gas Volume Pressure  Gas Average Pcs t- Pr e- Rod 
punch Puncture v o l m e  quan t i ty  a f t e r  a f t e r  quan t i ty  gas p ~ r r c h  punch void 

Rod t y p .  volume pressure  V t l  e x p a n s b a  expansion Vt2 quan t i ty  vc liuoe volume volume 
No. ( C) V2 Ccc) P. bsia) Ccc, SW) Y ~ s  (cc) P2s b s i a )  CCC/STP) (cc, STP) V;; tee) V l  (cc) vv (cc) 

Table 5. Cab analyses  of t h e  H. B. Rnbinson 2 f u e l  rods  

Rod H2 He CH4 4 O  O2 N2 ~r C02 :c- xe xe/Kr 
No. 

D-12 < 0.01 95.2 0.01 < 0.1 < 0.2? 1.27 2.'D5 < 0.01 0.H33 1.04 7.82 

H-15 < 0.01 95.2 0.01 < 9.1 < 0.49 2.04 0.91 < 0.01 0.158 1.18 7.47 



Table 6. .Krypton and xenon i s o t o p i c  analyses o f  the H. B. Robineon 2 f u e l  rods 

Iraotopic abundance (%) Mass spectrometer 
Rod Kr-ypton Xenon Volume pressure Temp. w W 

No. 83 84 85 86 131 132 134 136 cc nrm Hg ("C) 



For i d e n t i f i c a t i o n  purposes, Rod D-12 is designated "A" and Rod 

H-12 i s  designated "B". Sect ions from each rod were numbered 1 

through 1 0  s t a r t i n g  a t  t h e  bottom end of t h e  f u e l  rod. Thus t h e  

s e c t i o n s  a r e  i d e n t i f i e d  a s  A-1 through A-10 and B-1 through B-10. 

These i d e n t i f i c a t i o n  marks are etched on each of t h e  Swagelok f i t t i n g s .  

4 period of a p p r o x b a t e l y  90 days elapsed between the time the rods 

w e r e  punctured f o r  f i s s i o n  gas a n a l y s i s  and t h e  t i m e  they were sect ioned.  

During t h i s  i n t e r v a l  a n  a i r - t i g h t  seal was placed over t h e  small  puncture 

h o l e  i n  t h e  c lad .  It should be pointed ou t  t h a t  the  i n t e r i o r  of Rod 

A (D-12) was exposed t o  a i r  through t h e  gas vent hole f o r  about 72 h r s  

be fo re  the hole  was sea led .  Rod B (H-15) was s i m i l a r l y  exposed f o r  

about  48 hrs .  

4 . 3  Packaging and Shipping 

The rod s e c t i o n s  w e r e  ind iv idua l ly  placed i n  s t a i n l e s s  steel tubes,  

and t h e s e  tubes,  i n  t u r n ,  w e r e  placed i n  s t a i d e s s  steel tubes which 

were tack-welded toge the r  i n t o  a c l u s t e r  t o  form a shipping basket.  

Spring-loaded s t a i n l e s s  steel cy l inders  were placed i n t o  each of t h e  

shipping basket  tubes t o  cons t ra in  movement of t h e  f u e l  rod sec t ions  

dur ing  t .ransport.  The e n t i r e  shipping basket  assembly was then placed 

i n  a s t a i n l e s s  steel, watet-eight sk ipp ing  cmlnis tcr  and tr;snsp~rte,d in 

this conf igura t ion .  

A s  ind ica ted  previously,  a l l  of the rod sec t ions  were received i n  

good condi t ion  a t  OWL. 

5. KNUDSEN CELL EXFEUmiTS 

4s a result of the X-ray d i f f r a c t i o n  s t u d i e s  associa ted  u i t h  

t he  Control  and Implant Tes ts ,  it is now apparent  that t h e  spec ies  

previous ly  i d e n t i f i e d  a s  Cs202 i n  the Knudsen c e l l  tests2 is a c t u a l l y  

hydrated CsOH. The c h a r a c t e r i s t i c  hea t  of vapor iza t ion  which was 

determined f o r  C s  vapor over t h e  CeOH'xH 0-U02 system by the  Knudsen 2 
cel l  technique w a s  60-4 kcal/mole; this result i s  i n  good agreement 

with the values  of 63-4 and 69.6 kcal/mole which were obtained f o r  C s  

vapor over Cs2U04 by Johnson and ~ o h n s o n .  These workers, i n  agreement 
+ 

w i t h  t h e  present  observat ions ,  de tec ted  minor i o n  c u r r e n t s  of C s O  , 



+ + 
Cs20 , and C s 2  , but no species  which contained uranium. These 

data  re in fo rce  our conjecture t h a t  t h e  Cs2C03 and t h e  CsOHeH20 

reacted with excess UO i n  t h e  Knudsen c e l l  t o  y ie ld  Cs2U04, so  t h a t  2 
the effus ing cesium corresponded t o  t h e  vapor pressure i n  equil ibrium 

with  the  uranate. An orange-red compound t h a t  remained i n  t h e  Knudsen 

c e l l  a f t e r  s t u d i e s  with a Cs2C03-U02 mixture has  been submitted f o r  

ana lys i s  by X-ray d i f f r a c t i o n .  

I n  an  e f f o r t  t o  convert t h e  ion  current-temperature products 

i n t o  vapor pressure  values,  c a l i b r a t i o n  of t h e  Knudsen ce l l -double  

focusing mass spectrometer apparatus has been attempted using s i l v e r  

a s  a standard. After  severa l  unsuccessful at tempts,  each of which 

resul ted  i n  apparatus adjustments t o  cor rec t  malfunctions, a 

s a t i s f a c t o r y  c a l i b r a t i o n  curve was obtained. This curve yielded a 

heat  of vapor iza t ion value of 61 kcal/mole, which is  i n  e s s e n t i a l  
1 0 , l l  

agreement wi th  values  (63 to  69 kcal/mole) repor ted  previously. 
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