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A PRECIPITATION MODEL AND EXPERIMENTAL
CORRELATION WITH VARIOUS PROPERTIES OF

PENTAERYTHRITOL TETRANITRATE

Thomas Rivera, Ph. D.
Department of Chemistry

The University of New Mexico, 1975

ABSTRACT

A continuous precipitation method for the preparation of crystal-

line pentaerythritol tetranitrate (PETN) has been developed. The pro-

cess involves the precipitation of PETN from an acetone solution by

the addition of water in a static mixer. The principal independent

variable is the ratio, R, of the acetone-PETN solution flow r5.te to the

flow rate of water.

A mathematical model based on dispersed plug-flow equations

adequately represents the physical process. The relationships devel-

oped can be used to predict particle size distributions^ two explosion

properties of PETN, and estimate the effective kinetics involved in the

precipitation process. The mass-weighted mean particle size, L, of

the precipitated PETN is a linear function of R. The initial nucleation

and growth rates are exponentially decaying functions of R. The

nucleation exponent is 3. 75 ± 0. 05; the growth rate exponent is 1. 56 ±

0.02. The value of the diffusion parameter, Pe, is 51 ± 1. Experi-

mentally determined PETN initiation-threshold voltages can be

expressed as a second degree polynomial in L, with a minimum at

about 50 p,m. Observed PETN explosion transit times follow a third

degree polynomial in L, increasing with increasing particle size.

ix



I. INTRODUCTION

An important consideration in the applications of high explosives

is the ability to predict the physical and explosion properties of the

material. In the case of a crystalline explosive, the particle size

distribution and crystal habit are important.11'30 Batch processes

commonly used in the preparation of high explosives frequently result

in large variations in the products9 and usually provide little informa-

tion about the kinetics of the process. A method for the preparation of

a reproducible crystalline product having a known particle size distri-

bution and crystal habit is desirable.

The; method of recrystallization employed in this work involves the

precipitation of PETN from an acetone solution by the addition of water

in a static mixer. The primary independent variable is the ratio, R,

of the PETN-acetone solution flow rate to the flow rate of water.



II. OBJECTIVES

The objectives of this study are to develop a continuous repro-

ducible recrystallization technique for the preparation of the high

explosive, pentaerythritol tetranitrate (PETN), which has definite

crystalline properties, and to develop a model that provides some

information on the kinetics and predicts the crystalline and explosion

properties of the product-



III. PROPERTIES OF PETN

PETN is a symmetrical, nonpolar organic compound,

[C(CH2ONO2)4], namely,

O O

O
I

N ^B O
N—O — CH2 - C - C H 2 - O - N^T

O" I O
CH2
I

O

A
o o

having a. formula weight of 316. 15. It forms colorless, nonhygroscopic

crystals. PETN is readily compressible and has a maximum density

of 1.77 g/cm3. It melts at 141 CC and decomposes rapidly at tempera-

tures above its melting point. PETN is insoluble in water, and soluble

i'.i acetone. Figure 1 gives the solubility of PETN in mixtures of

acetone and warer.19
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Figure 1.
Solubility of PETN in Aqueous Acetone Solutions,

PETN has an ignition temperature of approximately 215°CP which

is slightly higher than that of nitroglycerin. It is of the same order of

sensitivity to impact as nitroglycerine PSTN detonates or decomposes

according to the equation

C(CH2ONO)4 -* 2CO + 3CO2 + 4H2O + 2N3 .

Its heat of detonation lies between 1466 and 1543 cal/g.1 The high

explosive strength of PETN has been attributed to the fact that its

oxygen deficiency is small {10. 1%). The decomposition products of the

ideally oxygen-balanced material would be CO2, H2O, andN3, witiout

the formation of CO. The ability to compress PETN to a relatively

high density is also a major contributing factor.

PETN has a detonation velocity of 5330 m/s for compacted material

(density 0. 85 g/cm3), 7600 m/s for material having a density of



1. 5 g/crn3, and 8300 m/s for highly compressed material (density

1. 70 g/cm3}. The brisance or shattering power of PETN is much

greater than that of nitroglycerin. Its explosive strength is at least

50% greater than TNT. B

Becaus° of its great explosive power and brisance, PETN is

widely used as a military and industrial explosive. Its ease of initia-

tion and its high explosive power combine fo make PETN exceptionally

serviceable in detonators as the Jonor charge that initiates a less

sensitive acceptor explosive. PETN has also been used in percussion

caps and grenadas and as a propellant in smokeless powders.1*5

PETN can be used in the treatment of angina pectoris as a long-

acting coronary vasodilator, which is capable of reducing the frequency

and severity of the attack.1



IV. EBW DETONATORS

Chemical explosives comprise two main types: (1) detonating or

"high" explosives, characterized by very high rates of reaction and

high pressures and (2) deflagrating cr "low" explosives, which burn

more slowly and develop much lower pressures. Detonating explosives

may be further subdivided into (a) primary and (b) secondary explo-

sives. Primary explosives nearly always detonate by simple ignition

such as by a spark, flame, impact, or other primary heat sources of

appropriate magnitude. Secondary explosives require, in practical

applications, the use of a detonator and frequently, a booster. A

booster is a sensitive secondary high explosive that reinforces the

detonation wave from the primary explosive or detonator and delivers

a more powerful detonation wave to the main explosive charge.3

A problem encountered in explosive operations is that of initiating

the detonation wave in the explosive. Often, this problem, is compli-

cated by the provisions of simplicity and safety, and the necessity of

precisely controlled timing at widely separated points. A variety of

devices, called detonators, have been developed to perform the func-

tion of initiation. The exploding bridgeware (EBW) detonator has an

explosive train with a secondary explosive requiring an elaborate

power source to vaporize or "explode" a wire by extremely rapid

deposition of electrical energy to initiate detonation in the material.32

The basic circuit for exploding a wire consists of a power source

to charge a capacitor, a capacitor for storage of electrical energy, a



spark gap and trigger switch to discharge the capacitor across the

bridgewire, a transmission line to the bridgewire, and a bridgewire.

As the switch is closed, voltage is applied to the transmission line and

bridgewire circuit which causes current to begin to flow at a rate con-

trolled by the RLC characteristics of the circuit. The rate of current

flow (approximately 1000 A/p,s) and the amount of energy are so great

that the wire is heated to vaporization but the physical shape of the

wire is maintained by inertia. As vaporizs.tion occurs, the resistance

of the wire increases greatly. At this point, the current reduces within

approximately one microsecond. Within a few nanoseconds after

vaporization, the inertia of the wirs material is overcome and the wire

explodes giving off a shock wave and the contained thermal energy.18

The problem of finding a secondary explosive sufficiently sensitive

to be initiated by the small shock developed by the exploding "wire is

resolved by utilizing an intrinsically sensitive secondary explosive.

Generally, PETN loaded as a low density granular powder of con-

trolled particle siiie and shape is used. Even though the effective sen-

sitivity of secondary explosives may be increased by the proper selec-

tion of physical parameters, such materials are still 3 to 4 orders of

magnitude less sensitive than primary explosives.33

The basic inert components of an EBW detonator consist of a

header that contains the electrical wire leads and the bridgewire.

Header material may vary from plastic to a metal/ceramic combina-

tion. The electrica* connection may be hookup wire lead? or a coaxial

7



or multipin assembly into which the cable mates directly. The sleeve,

which actually contains the explosive, may be a part of the header or a

separate part that is threaded or crimped into place. End caps may be

used. The explosive is generally pressed in two increments. The

first increment, next to the bridgewire, is pressed into the header at a

density of approximately 50% of that of the crystal density. The second

increment, called the output charge, is pressed to approximately 90%

of that of the crystal density.18

The shock wave and thermal energy released from the exploding

bridgewire are transferred into the low density secondary explosive

next to the bridgewire. In general, the shock wave from the wire

travels at about 1500 m/s. As the wave travels into the explosive,

a detonation of the explosive is initiated and builds up to the normal

detonation velocity of the initial pressing explosive (approximately

5000 m/s). As the shock wave moves through the initial pressing and

into the output pellet, the velocity of the wave again increases, because

of the higher density pellet, to approximately 8000 m/s.1 8 The time

from bridgewire burst to shock wave breakout is called the function or

transit time of the detonator (t ). This time is on the order of one in

several microseconds, depending on the overall length of the detonator.

Another quantity that is often used is the threshold voltage (E0#5). The

threshold voltage is the firing set capacitor voltage level at which one

half of the detonators will fire.



EBW detonators are used for many applications including the

following;18

• The production of accurate and refined metal forming or welding

• The generation of Shockwaves for physics research studies

• The creation of small point energy or light sources

• The closure of an electrical switch in a very short and pre-

dictable time.



V. CRYSTALLISATION THEORY

The techniques for interpreting crystal size distributions from

crystallization processes to ascertain the nature of the controlling

24

mechanism developed rapidly over the period from 1962 to 1964

(Randolph and Larson,16 Hulburt and Katz10 ). The work began with

the first attempts to rationalize, model, and predict crystal size dis-

tributions from realistic mixed-magma crystallizers and is based on

the concept of a population balance of crystal particles along the
17

particle size axis. The detailed development of the particle-number

continuity equations and the moment transformation of the population

balance may be found in Ref. 17.

A. Plug Flow Model

At steady state, with negligible breakage, the population balance

is given byx7

V • Vgn + ̂  (Gn) = 0 , (1)

where a is the number population density of the system, and G is the

linear growth rate, — . The internal coordinate is taken as the Stoke's
at

diameter L, as determined by sedimentation techniques. The external

coordinate system is represented by the single crystallizer length

dimension, x. For small particles, and high velocities, V , the

external linear velocity, may be taken as the plug flow velocity, u .

Assuming that growth rate G remains independent of size, an

10



empirical observation known as McCabe's AL law, which often holds

true, then Eq. (1) reduces to

u ^ + G £ f = 0 . (2)
x bx bL

Equation (2) is the plug flo'w equation that includes the following

assumptions:

• Steady state is achieved

• Linear velocity = plug flow velocity = constant

• Negligible breakage is achieved

• Growth rate is independent of size.

Multiplying Eq. (2) by L dL, and integrating from zero to infinity, we

have

<X> CD

LJu —dL T I LJG-r-dL=0 ,
xbx / bL

o o

(3)

or
CO CO

(4)

CD CD

u ~ / L n̂ dL + G / LJ' dn = 0 .
x bxj J

o o

Taking the second integral by parts, we have

CO / ICO CO

u — / L^ndL+GlL^n -j / L^n
xbxy i Jj

o \ o o
dLI = 0 . (5)

11



Let us introduce the jth moment of the population defined by the

integral, ri -" / Lr n dL. If N is the total number of particles, the
J J

o

ini t ia l population densi ty is n° = (dN/dL) Q and the rmcleation r a t e is

B°_ = (dN/dt) . The boundary conditions a re n° = B ° / G and n = 0 .x L —• ̂  x x x, y

H e r e , the notation rL - r (x , L) is used. Equation (5) becorv......

dm.
, J . /A W nO • /*~*«~ n / C \
^ __^^— ' r 1 U j XJ ~* J VJlTl . — \J I O I

where j = 0, 1, 2, . . . , and (0)J = 0 when j i 0 and (0)J = 1 when j = 0.

The equations given by Eq. (6) are the moment equations for the plug

flow model.

We will now introduce the retention time, T, defined by T = x/u ,
X.

where x is the effective length of the plug flow reactor in cm, and u
X.

is the plug flow velocity in cm3/s. For an ideal plug flow reactor,

each infinitesimal reactant volume will have the same retention time.2

The quantities Co, the initial concentration (x = 0), and C , the con-
s

centration of the saturated solution, will also be used.

It will be more convenient to use dimensionless quantities in the

discussion. The new quantities will be normalized in terms of the

initial conditions where x = 0. The dimensionless external coordinate

becomes z = x/x, the dimensionless internal coordinate becomes £ =

L/CUT, and the dimensionless population density becomes y = n/n£

where n£ = B̂  /Cb . The dimensionless concentration becomes j3 =

and the dimensionless saturated concern ration becomes jS = C /Co .
s s

12



dirnensionless moments of the population, f, are

vM
CO

m.

B°0(G0T)3T

The d imens ion le s s plug flow m o m e n t equations a r e

£'. - (0)] | o - j —• f. = 0 , j=0, 1, 2 , . . . (8)
3 Bo Go j - i

where f! = df./dz. The initial conditions are f.(0) = 0, j = 0, 1, 2, . . .
J J J

The total solids concentration per unit volume of solids-free

liquid is

MT = pk m3(x) = [Co - C(x)] (9)

where p i s the c r y s t a l densi ty of PETN, 1. 77 g / c m 3 , and K i s the

volume shape factor based on Stokes ' law. In t e r m s of the d imens ion -

l e s s quant i t i es , Eq. (9) b e c o m e s

fa(z) . (10)

At the exit of the reactor , z = 1. If the reaction is complete at

z = 1, then MT /C o + , 8 = 1 and
s

B = /3(D • (11)
S



This relationship is verified experimentally by weighing the pro-

duct for a given volume of solids-free liquid. The experimental MT

results are given in Table 1. The table is an experimental verifica-

tion of the completeness of reaction at z = 1.

Sample

3848

3849

3851

3852

3853

3856

3857

3858

3861

38&2

3863

3864

3S66

3867

3868

3871

3872

3873

3874

3876

3877

3878

3881

3882

3383

TABLE 1

EXPERIMENTAL M,

Measured Mr

(c/cm 3)

0.0008

0.0148

0. 0008

0.000775

0.00081

0.00144

0.00135

0.00134

0.00177

0.00171

0.00169

0.00161

0.00114

0.00114

0.00114

0.00205

0.00182

0.0R177

0.00195

0.0218

0.0213

0.0221

0.0128

a

0.0154

c0
(g/cm3)

0. 0008

0.03

0.0008

0.0008

0.0003

0.00133

0.00133

0.00133

0.002

0.002

o. ooz

0.002

0.001

0.001

0.001

0.002

0.002

0.002

0.002

0.0267

0.0267

0. 0267

0.03

0.03

0.03

RESULTS

0.000

0.453

0.000

0.000

C. 000

0.000

0.000

o.ooo

0.1125

0.1'.25

0.1125

0. 1125

o.ooo

0.000

0.000

0.1125

0.1125

0.1125

0. 1125

0. J6Z

0. 162

0.162

0.453

0.453

0. 453

1.00

0.95

1.00

0.97

1.01

1.08

1.01

1.01

0.99

0.97

0.96

0.92

1. 14

1. 14

1.14

1.14

1.02

1.00

1.09

0.98

0.96

0.99

0.83

a

0.97

not measured because of filtering difficulties.

14



U s i n g t h e s e r e s u l t s a n d s u b s t i t u t i n g E q . (11) i n t o E q . ( 1 0 ) ,

PK B°
1 - / 3 = ~ f 3 ( D , ( 12 )

S V_,Q

dividng Eq, (10) by Eq. (12) and rearranging,

«•>c'+ f i t i *. - trf!
This is the relationship for the concentration as a function of the

normalized external coordinate. The normalized external coordinate,

z, will be referred to as the reaction coordinate.

For the case in which 8 = 0 ,
' s

j8(z) = ]
 ~ M T ) • ( i 4 )

B. Dispersed Plug Flow Model

Consider the plug flow of a fluid, on top of which is superimposed

some degree of intermixing, the magnitude of which is independent of

position within the vessel. This is called the dispersed plug flow

model.15

For molecular diffusion in the x-direction, the governing differen

tial equation is given by Fick's law

hn 6n bsn
u — + G—r = D-—-g (15)

x5x iiX ox"* l

where the parameter D, called the axial diffusion coefficient, uniquely

characterizes the degree of backmixing between adjacent reattant

15



volume elements during flow. The dirnensionless group (D/u x),

called the vessel dispersion number, is the parameter that measured

the extent of axial dispersions. Thxis

— -• 0 negligible dispersion, hence, plug flow,
u

X

—=s -» ro large dispersion, henc i, mixed flow,
u x

x

This model usually represents quite satisfactorily flow that deviates

not too greatly from plug flow. ^

Equation (15) may be rewritten as

-D—g- + u •— + G—— = 0 . (16)

Multiplying by L dL and integrating from zero to infinity gives

%r L J d L = O , (17)

o r

. (18)

CO

Defining the jth moment as before, in. = / nL dL, we have

a m. dm. r

(19)

16



Integrating by parts and evaluating n = 0 as L -• °° and n = B /G as L -*0

dam. dm.

Using the definitions given in Section C, namelys

„ _ * . r - t -

we have

df.
_ J
dz

Simplifying:

+ (0)jB° + jG

dsf. df.

= 0 . (21)

( 2 2 >

Define the Peclet number, the reciprocal of the vessel dispersion

number,, Pe = u x/D. The resulting dispersed plug flow moment

equations are

( 2 3 )

with the boundary condit ions* '2 3 f.(0) - — f'JO) ~ 0, and ±1(1) = 0.
J Pe j j

Equation 13 from Section A holds for the dispersed plug flow model,

namely, £{z) = 1 + ̂ M fl- h&L a n d f o r g = 0 , fo) = 1 _
1 I J s

^ fl L a n d f o r g = 0 ,
*3 I L)

17



C. Kinetics

Equations (8) and (23) contain the quantities B°/BQ and G/GQ,

which reprerent the normalized nucleation and growth rate functions,

respectively. In order to solve these equations, some kinetic assump-

tions must be made.

1. Nucleation. The initial nucleation rate, EQ, is the rate of

formation of nuclei at z = 0, the entrance of the reactor. The assump-

tion is made that the initial nucleation rate is a function of tha ratio R.

Equation (12) may be written in the f m

T.° _- I L _ _ J C o ( 1 _ 0 , = BO(R) . ( 2 4 )

The tot?.l nucleation, B°, is assumed to be the product of the initial

nuclerition and a decay function of the form (1 - z) . The expression

for B° is

B° = B°(R)(1 - z)a (25)

and the nucleation ratio B /Bo is

(26)

2. Growth. The initial growth rate at the entrance is Go. The

initial growth rate is related to the mass-weighted mean particle size,

L, as follows:

18



L, the mass-weighted mean particle size, is defined by the ratio of the

4th and 3rd moments (La 3 in R if. 17)

and by Eq. (7),

' {GoTfrL(l) „ Ml)
Bo(GoT)3rf3(l) " ° f3(D '

Go is assumed to be a function of the experimental parameter, R. The

total growth rate, G, is assumed to be the product of the initial growth

rate and decay function of the form (1 - z) , namely,

= OolK;(i- - z) . \<-7j

The growth ratio G/Go is

— - (1 - z) . {iOj

The moment equations, including the kinetic assumptions, are

Plug Flow: f. - (0)^(1 - z ) a - j( l - z)bf. = 0 (31)

Dispersed Plug Flow: ~~ f'.1 - f. + (0)1' (1 - z ) a + j(l - z)b f. . = 0 . (32)
Pe j j j-'-i

Equations (31) and (32), together with the appropriate boundary

conditions, can be solved numerically to obtain the j t h moments of the

19



of the distribution. A discussion of the numerical methods can be

found in Appendix A.

D. Inversion of the Moments

The solution of either the plug flow or dispersed plug flow moment

equations by methods given in the Appendixes, gives a set of <f.>

dimensionless moments. The number of momencs used in this study

is ten, that is, j = 0, 1, . . . , 9.

The set of moments can be approximated by the equation

(33)

from which the dimensionless population distribution function, y ,
At

may be calculated for a given £ and A£ using matrix inversion

techniques.

The cumulative weight fraction distribution is1

L

r

P \ I P n(p) dp

WW(L) = —— , (34)

where n(p) is the population density of particles having size less than

L. Substituting the value for MT from Eq. (9), and cancelling pk ,

p3n(p) dp

WW(L)=^j . (35)
dL
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Substituting the dimensionless quantities given in Section V. A, namely,

n = n£y and L = Gor£, we have

f p3y(p) dp
WW(L) = 2 r— (36)

where y(p) is the dimensionless population density of particles having

dimensionless size less than £.

Equation (36) may be approximated by the sum

£

that is, WW(Lo) = j— (£y0 A&,), WW(L, ) = —

fiYi ACi). WW(La) = £ ~ <£y0 A^o + 4?yi A| r + 4ly2 Afc), etc.

E. Comparison of Theory with Experiment

The differential equations representing the dispersed plug flow

model are solved for a given set of parameters a, b, and Pe. The

resulting dimensionless moments are inverted to obtain the population

distribution functions and finally, the cumulative weight fraction dis-

tribution is calculated by means of Eq. (37). This cumulative weight

fraction distribution can be directly compared with experimentally

determined distributions.

The moments of the population may be compared directly without

inversion by converting cumulative weight fraction distribution data to
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moments based on weight distribution, and then converting to moments

based on a population distribution.

The weight distribution function is defined by1'

and the jth moment of the weight distribution function is

m (wt) = / LJW(L) dL (39)
o

or, approximately,

m.(wt) ^ £ LJ. A[WW(L.)] . (40)
3 i 1 *

The weight distribution may be converted to population distribu-

tion by the equation17

from which the following relationships are derived:

. (popl.)
i

and

m.(wt) = —i—. ^~r (42)
j v m 3 (popl . ) * ;

^lm.(wt) - ( G o T ^ - l ^ (43)
3 *3



Equation (43) allows the comparison of experimental data with cal-

culated quantities derived from the theoretical model directly, without

moment inversion. An alternate method, which utilizes three of the

moments, is the calculation of the coefficient of variation (C. V. ) of

the distribution. The coefficient of variation, or relative dispersion,

is the measure of dispersion stated as a function of its average, that

is,

C.V. =-=- , (44)

where 0" is the standard deviation from the mean for the distribution.

The coefficient of variation may be calculated from the moments

by

1 (45)

and by

C.V. = ( ^ - 1 j . (46)

(Note that mo(wt) = 1. )
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VI. EXPERIMENTAL

A. Apparatus

The crystallization apparatus consists of three sections: (1) the

constant flow feed system, (2) the static mixer, and (3) the filtering

system. A diagram of the apparatus is shown in Fig. 2.

^.FEEDBACK
LOOP

RESERVOIR

ROTAMETER

4
GLASS ^ X ^
Y-TUBE 

ĵ

O-RING s-^
CONNECTOR

VACUUM

PETN

Er— BALL VALVE
^^P - POLYPROPLYENE

*^~ CONNECTOR
"7

\ STATIC MIXER
<K

— FILTER SCREEN

Figure 2.
Crystal l izat ion Apparatus.
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1. Constant Flow Feed System. There are two identical feed

systems, one for the acetone-PETN solution, and one for the water.

Each solution is held in a 24-liter capacity polyethylene bottle equipped

with a polyethylene stopcock located through the sidewall at the bottom

of the bottle. The solution is allowed to flow into a polyethylene reser-

voir (about 1 liter) situated just below the bottle and about 2 m above

the static rrixer. The polyethylene stopcock outlet extends into the

reservoir. The liquid level is controlled in the reservoir by an air-

tight, 1.27-cm-o. d. polyethylene tube (feedback loop) that connects the

top sidewall of the reservoir to the top of the bottle. If the liquid level

in the reservoir drops below the tube inlet, the pressure above the

liquid in the bottle increases to atmospheric allowing more liquid to

pour into the reservoir. If the tube inlet is full of liquid, the feed

solution will not flow into the reservoir. The solution is led through a

1. 27-cm-o. d. polyethylene tube to a rotameter ahead of the static

mixer. The rotameters were calibrated using either pure acetone or

water. Each solution is fed to the static mixer through a 0. 635-cm-

o. d. polyethylene tube.

The flow limitations of the system, including the rotameters, are:

Minimum acetone flow rate 1. 3 cm3/s

Maximum acetone flow rate 15.0 cm.3/s

Minimum water flow rate 1. 0 cm3 /s

Maximum water flow rate 15. 0 g/cm3
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2. Static Mixer. The effluent from the rotameters mix together

at the first element of the static mixer by means of a glass Y-tube with

a glass divider. The Y-tube is connected to the static mixer by means

of an O-ring connector. Figure 3 is a schematic of the static mixer

and Y-tube connector.

J*£CN-_

Stainless
steel elements

O-ring connector

Glass divider

Glass Y-tube

Figure 3.
Static Mixer.

The static mixer contains no moving parts. The mixing is

achieved by the bow tie-shaped blades or elements. Their configura-

tion imparts four basic motions to the flowing material:

• Flow division--Each element divides material received from

the preceeding element.

• Flow reversal—The opposite twist of each succeeding element

constantly reverses the circular direction of flow.
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• Flow inversion--The material migrates from the center of the

pipe to the outside walls and back.

• Backmixing--There is a constant change in flow profile.

Velocity, pressure, and time have no influence upon the degree of

mix. Pressure drop is low, and radial temperature differences are

effectively eliminated.

Because of the continuous flow division reversal and flow inversion

at every eleir »nt of the mixer, ideal plug flow conditions are

approached.3

The static mixer is a 0. 63^-cm-i. d. glass tube, 30. 5 cm long,

containing 24 stainless steel bow tie elements. The volume, as

measured by water delivery at 20°C, is 9. 0 cm3.

The hclding time of the static mixer is calculated by the equation

TT , ,. . , . Volume of mixer (cm3) . . _ .
Holding tones = „ ••, ; p; . v y " % , \ . (47)

Total volume flow rate (cm Is)

Table 2 gives the scheme for holding times and flow rates used in

the experiments.
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Table 2

EXPERIMENT HOLDING TIMES AND FLOW RATES

Holding Time = 0. 5 s
Total Flow Rate = 18. 0 cm3 /s

Acetone
Solution

Flow Rate
(cm3/s)

3 . 6

6 . 0

9.0

Water
Flow Rate

(cm3/s)

14.4

12.0

9 . 0

R

Holding Time - 2. 0 s
Total Flow Rate - 4. 5 cm3 ,'s

1. 13a

2.25

3 . 0

3. 38

3.38

2.25

1.5

1. 13

3

1

2

3

This is below the rotameter measurement
limit. The flow rate was measured with a
graduate and stopwatch.

3. Filtering System. Small samples (about 2. g) were collected

on a 350-cm3 tared Buchner funnel with a fritted glass disc {madium

porosity) mounted on a 2-liter suction flask. The volume of the solids -

free liquid collected in the flask was measured. The PETN sample

was washed with distilled water and dried under vacuum fcr 18 h at

65 °C. The dried sample was weighed on a single-pan analytical

balance. The data were used to calculate the MT value for the run.
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Large samples (30 to 50 g) were collected on. a 29-cr/i- -diarn. stain-

less steel screen norriinally rated at 5 urn. The screen was mount.eel

on a holder that was on a stainless steel can (about 10-liter capacity)

equipped with a vacuum connection.

B. Materials

° PETN--The PETN used was recryatallized Cap Grade I,Lot

4-28-32) purchased from Du Pont. The material was as.&lyased

for Group WX-3 use. The result of the nitrogen analysis is

17. 26% N. The theoretical value is 17. 72% N.

© Acetone--The r.cetone used was Analytical Reagent Grade

o Water--Distilled water was used.

o Static Mixer--A Kenics Static Mixer, *•" purchased from Kenic's

Corporation, Danvers, IvWi, was used.

° Metal Filter Screen--A furnace-sintered woven wire mesh

filter screen nominally rated at 5 p,mwas purchased from

Pall Trinity Micro Corporation, Cortland, NY. A type 304

stainless steel filter screen, nominally rated at 5 [ivn, was

purchased from The Bendix Corporation, Filter Division,,

Madison Heights, MI.

o Plastic Fittings--All connections exposed to the acetoae-PETN

solution were made frompolypropyleue tube fittings purchased,

from United States Plastic Corporation, Lima, OH.

^•Registered trademark.



C. Procedure

The acetone-PETN solution (about 10 liters) was adjusted to 20 ±.

3°C and placed into the polyethylene bottle. The PETN concentration

was 0. 5 wt% for R ^ 1, and 5. 0 wt% for R > 1. The distilled water

(about 20 liters) was adjusted to 20 ± 3°C and placed in the second

polyethylene bottle. The solutions were allowed to flow into thair

respective reservoirs and the bottles and feedback loops were checked

for air leaks. The control valves were adjusted for the proper R-value

to be used. The total flow rate was checked with a stopwatch and

graduate. After allowing at least 30 s for equilibration, the metal

screen was placed into position for collection of the sample. During

the run, the rotameters were monitored for proper flow. Usually no

further adjustment was necessary unless precipitated PETN began

plugging the mixer. Precipitate buildup was significant for R > i runs.

If precipitate buildup did occur, the sample collection was stopped and

the mixer was "cleared" by opening the acetone solution to maximum

flow until the precipitate redissolved in the acetone. After clearing

the mixer, the flow was readjusted and the sample collection began

again. During the run, the small sample was collected in a Buchner

funnel with a fritted glass disc for MT measurements. The procedures

for each R value are summarized below:



R = j- (Batches 3846, 3851,* 3852, and 3853

The acetone-PETN feed, solution consisted of 39. 75 g of PETN in

10 liters of acetone (0. 5 wt%). The acetone-PETN flow race was

3.6 cm3/s, and that of the water was 14.4 cm°/s. The holding

time for the reactor was 0. 5 s. Some difficulties were encountered

in filtering the product. There was a tendency for a slight buildup

of liquid on the filter. This problem was circumvented by supple-

menting the metal filter 'with three additional 600-cm3 Buchner

funnels with fritted glass discs that were used in rotation so that

little or no fluid accumulation occurred. The precipitated PETN

collected on the filters was combined to form a single batch.

R = 5 (Batches 3866, 3867, and 3868)

The acetone-PSTN flow rate was 1. 13 cm3/s and that of the water

was 3. 37 cm3 /s, The reactor holding time was 2. 0 s. The feed

solutions were similar to the R = ̂  runs. The same filtering pro-

cedure was used.

R = j- (Batches 3856, 3857, and 3858)

The acetone-PETN flow rate was 6. 0 cm3/s and that of the water

was 12. 0 cm3 / s . The reactor holding time was 0. 5 s. The feed

solutions were similar to the R = \ and R = \ runs. The filtering

procedure was the same.

*Batch 3851 was found to be contaminated with a fibrous material
originating from the acetone stock. The batch was not included in the
study.
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R = 1 (Batches 3361, 3862, 3863, 3864,3871, 3872, 3873, and 3874;

Two reactor holding times were used. Batches 3861 through 3864

were made with an acetone-PETN solution flow rate of 9. 0 cm3/s

and water flow rate of 9» 0 cm3/s, giving a holding time of 0. 5 s.

Batches 3871 through 3874 were made with an acetone-PETN solu-

tion flow rate of 2.25 cm3/s and water flow rate of 2. 25 cm 3 /s ,

giving a holding time of 2. 0 s. The feed solutions were similar to

the R = \ , R = 3, and R = \ runs. No filtering difficulties were

encountered, and there was no need to supplement the metal filter.

R = 2 (3atches 3876, 3877, and 3878)

The acetone-PETN feed solution consisted of 416. 3 g of PETN in

10 liters of acetone (5.0 wt%). The PETN concentration was

increased because of its large solubility in the combined acetone-

water solvent. The acetone-PETN solution flow rate was 3. 0 cm3/

s and that of the water was 1. 5 cm3 / s . The reactor holding time

was 2. 0 s. A 0. 5-s holding time was not used because of a rapid

irreversible plugging that occurred at the higher flow rates. No

filtering problems were encountered.

R = 3 (Batches 3881, 3882, and 3883)

The acetone-PETN feed concentration was 5.0 v/t%. The acetone-

PETN flow rate was 3. 33 cm3/s and that of the water was 1. 11

cm 3 /s . The reactor holding was 2.0 s. Higher flow rates were

not used because of irreversible plugging in the mixer. Difficulties



with product filtering were encountered. It was necessary to

supplement the 29-cm-diam metal filter with the three fritted glass

filters and with an additional 29-cm-diam metal filter.

D. Particle Measurement

1. Photelometer Technique. 7>13 The estimation, of particle size

distribution for subsieve particles below the 45-iim sieve size was made

possible by a particle sedimentation-in-liquid method. In this method,

a representative PETN sample is dispersed hoinogeneously in a 50-vol%

mixture of n-octane and 1, 1,2, 2-tetrachloroethane in a sedimentation

tube. The intensity of a collimated beam of light passed through the

suspension is measured after varying sedimentation times, and at

varying levels. The particle size distribution is calculated by mean's

of Stoke's law.

About one gram of each PETN sample was placed in about 300 cm3

of the dispersing medium. The slurry was stirred for about 30 min by

means of an air-driven rotary stirrer. The suspension was examined

microscopically at 60X magnification to ensure total deagglomeration.

Duplicate photelometer runs were made.

The samples were wet sieved using PETN-saturated ethanol as the

transfer fluid. The following sieve sizes were used: 250, 177, 125,

88, 62, and 45 jj,m. Photelometer results were used for sub 45-jim

particles. Sieve analyses were used for the large particle size. The

The correlation of photelometer results with sieve analyses for HMX

(octahydro-1, 3,5,7-tetranitro-s-tetrazocine) is E> .;wn in Fig. 4.v
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Figure 4.
Cumulative logarithmic plot of photelometer analysis of HMX
and of sieve analysis of coarse fraction above 45 jim. Curve

is average of four runs ± one standard deviation.

2. Scanning Electron, Microscopy. Each sample was photographed

at 100, 300, and 1000X. The samples were gold shadowed to avoid any

thermal effects on the heat-sensitive particles.

E. Detonator Test Firing

The PETN samples that were used in the detonators had the

following pressed characteristics:

PETN pressed density 0. 88 g/cm3

PETN pressed diameter 4. 064 mm

PETN pressed length 2. 540 mm

PETN pressed mass 29 mg

1. Threshold Voltage Tests. Ten PETN pressings per sample

were used. The PETN samples were initiated by a bursting gold
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bridgewire 0. 0381 mm diam and 1. 016 mm long. The firing capaci-

tance was 1 |iF per detonator. The firing cables consisted of a 4.41-

m-long cable (Zl-C-31) connected to a 0.457-m-long cable (31-L-121)

by means of a double-ended connector. The inductance of the cables

plus bridgewire was 1.0413 \LH and the resistance was 0.266 SI. The

Bruceton "up and down" method of determining the 50% values of the

firing voltages (£0#s ) was used.

2. Transit Time Tests. Two detonators per sample were fired.

A high density {1.65 g/cm3) PETN pressing 7. 62 mm diam by 1.143 mm

long was added to the PETN sample to increase the output light inten-

sity. The transit time contribution of the high density PETN

is a known constant for the t<»sts. Any resulting variations in t are

due to the PETN samples. The measured t value is the difference in

time of the appearance of light between the bursting bridgewire and the

shock wave breakout. The light appearances are observed with a

rotating mirror camera (RMC),

The bridgewire used in the t tests is the same type as that used
m

in the E0 .5 measurements. The firing capacitance was 1 JJ,F with a

firing voitage of 2500 V per detonator. The firing cables used con-

sisted of a 1. 524-m-long cable (21-C-31) connected to a 0. 762-m-long

cable (31-L-121) by means of a double-ended connector. The
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inductance of the cables plus bridgeware was 0. 5389 M-H and the resis-

tance was 0. 191 Q
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VII. RESULTS

A. Experimental Particle Size Distributions

The cumulative weight distribution curves for all R-values are

shown in Figs. 5a through 5f. The error bars represent standard

deviations. Photelomster runs were sufficient for R < 1; for R2 1, the

photelometer method was supplemented by sieves. Table 3 summa-

rizes the -article size characteristics of the products.

Table 3

PARTICLE SIZE CHARACTERISTICS

R-Value

l
4

3"

l

z

1

2

3

Average
X

(p.m)

12.2

12.7

13.3

30.2

41. 0

63. 5

Average
Coefficient

of
Variation

0.34

0.35

0.40

0.49

0.47

0.52

Representative product scanning electron micrographs are shown in

Figs. 6a through 6g.
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Figure 6a.
Scanning Electron Micrographs, PETN-3848 {R = 4).
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Figure 6b.
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Figure 6c.
Scanninc Electron Micrographs, PETN-3856 (R - 2



100X

300X 1OOOX

Figure 6d,
Scanning Electron Micrographs, PETN-3861 (R = 1, T = 0. 5 s).
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Figure 6e.
Scanning Electron Micrographs, PETN-3871 (R = 1, T = 2. 0 s).
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Figure 6f.
Scanning Electron Micrographs, PETN-3877 (R = 2).
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Scanning Electron Micrographs, PETN-3883 (R = 3).
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B. Theoretical Model Predictions

1. Particle Size Distribution. The plug flow model calculations

predict distributions that are significantly narrower than the experi-

mentally determined ones. The coefficients of variation predicted by

the plug flow model range from 0. 11 to 0. 21. The inclusion of the

Peclet number causes the predicted distributions to broaden as Pe is

lowered. The Peclet value of 250 gives results very nearly approach-

ing plug flow values. The results described were obtained from the

calculations based on the dispersed plug flow model.

A series of about 500 computer runs was made with combinations

of the nucleation parameter, SL, ranging from 1. 0 to 4. 0; the growth

parameter, b, ranging from 0. 5 to 1.7; and the diffusion parameter,

Pe, ranging from 25 to 250. Additional runs were made to refine the

calculations.

2. Effect of Varying Parameters. The effect of decreasing a.

(longer nucleation period) is primarily to increase the coefficient of

variation. It also tends to decrease the mean particle size. It predicts

a wider distribution of slightly smaller particles. The primary effect of

increasing b (shorter growth period) is to decrease the mean particle

size. It also increases the coefficient of variation. It predicts smaller

particles having a wider distribution. The primary effect of decreasing

Pe (increasing diffusion) is to increase the coefficient of variation with

a small increase of particle size. The resulting best fit parameters

are a = 3. 75 ± 0. 05, b = 1. 56 ± 0. 02, and Pe = 51 ± 1. The resulting
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predicted particle size distributions, compared with experimental

results, arc shown in Figs. 7a through 7f. Any further attempts to

obtain a. closer fit or to increase the coefficient of variation without

deviation from a best fit gave unstable results. The resulting particle

size distribution curves were not smooth, but rather the points were

scattered in an oscillatory pattern.

3. Kinetics. A least-squares linear fit for L v s R gives the

equation, for L in (j,m:

L = (6.90 + 18. 56R) (48)

with a linear correlation factor of 0. 99. From Eq. (28), we have

•*-4 » x >

For a = 3.75, b = 1.56, and Pe = 51, the ratio [f3 (l)/f4(l)] is 2.44.

For Go T in |j,m, GQ T = 2. 44 (6.90 + 18. 56R) or

G0T = 16.84 + 45.29R . (50)

Four experimental runs were made with R = 1 and aO. 5-s holding

time. Four more runs were made with R = 1 and a 2. 0-s holding time.

The resulting particle size distributions, using the two holding times,

weie essentially the same. This information suggests that the true

holding time of the system is either equal to, or less than 0. 5 s.

T ^ 0. 5 s . (51)
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If T is taken equal to 0. 5 s, the resulting calculations result in limiting

quantities, subject to the flow rate range of the system used. The

resulting kinetic quantities are limiting, or effective, kinetic quanti-

ties. These effective kinetics are valid for this system, but may not

be valid if significantly higher flow rates are used, either by increasing

the height of the column of solution above the static mixer, or by using

a mechanical pump.

The effective initial growth rate in p,m/s is

Q> = 33.68 + 90. 58R (52)

or

Q, = 4. 88E . (53)

The total effective growth rate kinetics are

G= (33.68 + 90. 58R)(1 - z)1"56 (54)

with G in |im/s. For purposes of simplicity, the quantity BQ/Co (1 - /? )

s
will be used in the discussion so that Eq. (24) becomes

" ^ \ s ^ , T . (55)

where P = 1. 77 g/cm", K = ff/6, f3 (1) = 0. 006745 (using best fit

parameters), T = 0. 5 s, and

B° K
C o ( l - j S g ) (Q,T)a (56)



whore K = [pK Tf3(l)]~
1 = 3Z0 cm3/g.s. Also,

=C 0 ( l - p ) (16.84 + 45.29R) 3

s

The total effective nucleation rate kinetics are

B° = 320 {16.84 + 45. 29R)"3 C0(l - |8 )(1 - z)3-75 (58)
s

with B° in nuclei/cm3, s.

Experimental values for G and B° are those in which the kinetic

quantities were calculated from experimentally measured L using

Eqs. (49) and (56). These data, compared with those calculated

directly from R by Eqs. (48), (50), and (57), are presented in Table 4.

Figure 8 is a plot of the normalized concentration of PETN in the

acetone-water solvent, $(z); the normalized growth rate, G(z); and the

normalized nucleation rate, B°(z); as functions of the reaction coor-

dinate z. The early part of the reaction appears to be due to the com-

bination of a rapidly decaying nucleation with a nearly linearly decaying

growth. In the later part of the reaction, there is practically no

nucleation, the growth rate being the primary mechanism at this stage.

The change of the growth rate as a function of concentration is

shown in Fig. 9- The reaction proceeds from right to left along the

concentration axis. The relationship is nearly linear, except for the

initial and final stages of the reaction.
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TABLE: 4

CALCULATED KINETIC*

Standard
X Deviation

(experimental) (un;)

R

I
4

I

1

2

3

12.2

12.7

13.3

30.2

41.0

63.5

±1. 1

±1.8

±2.3

±9.0

±5.2

±10.4

(calculated)

11.5

13. 1

16.2

25.5

44.0

62.6

(experimental) (calculated)

59. 54 56

61.98 63

64.90 78

147. 38 124

200.08 214

309.88 305

. 3 3

. 8 7

.97"

. 26

. 8 4

. 4 2

B|d as
(experimental) (calculated)

0.97

1.07

1.24

1.42

7. 16

1.41

x 10' 1. 14

x 10' 0.98

x 10' 0.69

x 10B 2. 36

x 10s 5.77

x 10s 1.47

Effective kinetic quantities.
bE
CQ>

in |

in

i m .

(im/s.

x 10'

x 10'

x 10'

x 10s

x 106

x 105

QUANTiTI

Residual

-0,

0,

2

-4,

3

-0

Residual

-3

1

14

-23

14

-4

. 21

. 8 9

.07

. 12

. 76

.46

. 7

. 4

.9

.7

. 0

. 9

BS

Average
Deviation Deviation

6. 1

3 . 0

17.9

18.4

6 . 8

1.4

Deviation

Residual

0.

- 0 .

- 0 .

0.

- 1 .

0.

17 x

09 x

55 x

94 x

39 x

06 x

10'

107

10'

10 s

10 s

108

5.

3.

17.

.18.

6.

1.

7

0

8

6

9

.5

8.9

Average
Deviation

a o
O. 7

Average
Deviation Deviation

14.

9.

79.

39.

24.

4.

9

2

7

8

1

1

28. 6

£ in nuc)si/cm3- a.
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Figure 8.
Theoretical Kinetics Along Reaction Coordinate.
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CGNChNTRHTION

Figure 9.
Growth Rate Kinetics Along Reaction Coordinate.
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The variation of the first four moments along the reaction coor-

dinate is shown in Fig. 10. The Oth moment may be thought of as the

total number of crystals in the volume under consideration. The rather

large slope at the early part of the rtctction may be due to the large

nucleation occurring at this stage. The first moment represents the

sum of the lengths of all the crystals in the distribution. This moment

is controlled principally by growth. There appears to be an increase

in the slope of the curve after the initial "surge" of nucleation. The

second moment is related to the specific surface area and the third

moment is related to the specific mass of crystals in the distribution.

• Zeroth
O First
A Second
-f Third

O.KO C.JOO o.»oa O.EOD o.eoo s.oco

REHCTION COQROINRTE, Z

Figure 10.
Variation of Moments Along Reaction Coordinate.



C. Detonation Characteristics

The results of the threshold voltage measurements for the PETN

samples are shown in Fig. 11. A polynomial regression was per-

formed on the experimental data. The resulting second-degree poly-

nomial curve is represented b •• the solid line in Fig. 11, and is

referred to as the theoretical curve. The average percent deviation of

the experimental data from the theoretical curve is 4. 1. The experi-

mental points are indicated in Fig. 11 by circles. Since the value for

L may be calculated from an R-value using Eq. (48), a correlation was

made between Eo.5 and L. The data are presented in Table 5. The

equation for the calculation of E0#5 from IT is

E0>5 = 1029. 977 - 18. 56256 T. + 0. 19019 L3 (59)

with L in |j,m and Eo.s in V.

The results of the transit time measurements for the PETN sam-

ples are shown in Fig. 12. The curve represented by the solid line

resulted from a polynomial regression performed on the experimental

data. The third-degree polynomial curve is referred to as the theo-

retical curve. The average percent deviation of the experimental data

from the theoretical curve is 4. 4. The correlation between t and L is
m

presented in Table 6. The equation for the calculation of t from L is

t m = 0. 5562 + 0. 03913 L - 0. 001227 L3 + 0. 00001726 L3 (60)

with L in |i,m and t m in \is.
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**7p!^^

— Theoretical Curve
O Experimental

io.ra ia.an
SIZE L

Figure 11.
PETN Detonator Threshold Voltages.

TABLE 5

CORRELATION OF THRESHOLD VOLTAGE WITH L

Average Standard Theoretical

L
(um)

12.2

12.7

13.3

30.2

41.0

63.5

EQ 5
(V)

800

825

8Y5

650

600

625

Deviation
(%)

4.4

1.3

3.5

7.0

3.5

2.8

Eg 5
(V)

8S2

825

817

432

589

618

Deviation
(%)

3.8

0.5

7.6

0.3

0.5

0.5
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Figure 12.
PETN Detonator Transit Times.

TABLE 6

CORRELATION OF TRANSIT TIME WITH "L"

Average Standard Theoretical
*m Deviation ^ n Deviation
(us) (%) (y,s)

12.2

12.7

13.3

30.2

41.0

63.5

0.882

0.878

0.890

1.099

1.422

2.385

1.6

0 .5

0.7

7 .3

12.1

10.9

0.882

0.891

0.900

1.094

1.287

2.513

0 .0

1.5

1.1

0 . 5

10.5

5 .1
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VIII. CONCLUSIONS

For a given R-value, the various quantities, including effective

nucleation and growth "ates, mass-weighted mean particle size, con-

centration function, transit time, and threshold voltage may be calcu-

lated using the equations summarized in Table 7.

The crystals obtained from the continuous plug flow crystallizer

have narrow distributions and are fairly uniform in crystal habit. The

dispersed plug flow model calculations provide a reasonably good pre-

diction of these properties.

The objectives for developing a continuous reproducible recrystal-

lization technique and a predictive model far the preparation of PETN

have been achieved.
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Quantity

Mass-weighted mean
particle size (|i.m)

Effective growth rate
(y,m/s)

Effective nucleation
rate (nuclei/cm3• s)

Concentration

Threshold voltage (V)

Transit time (us)

TABLE 7

SUMMARY OF THEORETICAL EQUATIONS

Equation

L = 6.90 + 18.56 R

G(R,z) = (33.68 + 90. 58 R)(l - z ) 1 - 5 6

B°(R,z) = 320(16.84 + 45.29 - |8 )(1 - z)3-7 5

s

B{z) = 1 + B

P{Z> 1 + f 3 ( l ) P s fa(l)

E0>s = 1029. 977 - 18. 56256 L + 0. 19019 L2

t = 0 . 5562 + 0.03913 L - 0. 001227 L2 + 0. 00001726 L3

in

Average Deviation
from

Expe r imental
Results

8.9

8.9

28.7

4. 1

4.4

determined.



APPENDIX A

NUMERICAL METHODS

The plug flow differential equation solutions were obtained by means of a Runge

Kutta method. The IBM System/3oO Scientific Subroutine Package, DRKG, was used.

The IBM System/360 Scientific Subroutine Package, SIMQ, was used to obtain the aolu-

tlons of the simultaneous linear equations. The runs were made on an IEM-360 Model 50

computer. Brief descriptions of DRKG and SIMQ are given below.

DRKG FROM THE SCIENTIFIC SUBROUTINE PACKAGE

SUBROUTINE DRKGS

PURPOSE
TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATIONS WITH GIVEN INITIAL VALUES.

USAGE
CALL DRKGS (PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)
PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT.

DESCRIPTION OF PARAMETERS
PRMT - DOUBLE PRECISION INPUT AND OUTPUT VECTOR WITH

DIMENSION GREATER THAN OR EQUAL TO 5, WHICH
SPECIFIES THE PARAMETERS OF THE INTERVAL AND OF
ACCURACY AND WHICH SERVES FOR COMMUNICATION
BETWEEN OUTPUT SUBROUTINE (FURNISHED BY THE USER)
AND SUBROUTINE DRKGS. EXCEPT PRMT(5) THE COMPO-
NENTS ARE NOT DESTROYED BY SUBROUTINE DRKGS AND
THEY ARE

PRMT(l ) - LOWER BOUND OF THE INTERVAL (INPUT),
PRMT(2) - UPPER BOUND OF THE INTERVAL (INPUT),
PRMT(3)- INITIAL INCREMENT OF THE INDEPENDENT VARIABLE

(INPUT),
PRMT(4)- UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS

GREATER THAN PRMT(4), INCREMENT GETS HALVED. IF
INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE ERROR
LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED. THE
USER MAY CHANGE PRMT(4) EY MEANS OF HIS OUTPUT
SUBROUTINE.

PRMT(5) - NO INPUT PARAMETER. SUBROUTINE DRKGS INITIALIZES
PRMT(5)=0. IF THE USER WANTS TO TERMINATE SUB-
ROUTINE DRKGS AT ANY OUTPUT POINT, HE HAS TO
CHANGE PRMT(5) TO NON-ZERO BY MEANS OF SUBROUTINE
OUTP. FURTHER COMPONENTS OF VECTOR PRMT ARE
FEASIBLE IF ITS DIMENSION IS DEFINED GREATER THAN 5.
HOWEVER SUBROUTINE DRKGS DOES NOT REQUIRE AND
CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL
FOR HANDLING RESULT VALUES TO THE MAIN PROGRAM
(CALLING DRKGS) WHICH ARE OBTAINED BY SPECIAL
MANIPULATIONS WITH OUTPUT DATA IN SUBROUTINE
OUTP.

Y - DOUBLE PRECISION INPUT VECTOR OF INITIAL VALUES
(DESTROYED). LATER ON Y IS THE RESULTING VECTOR OF
DEPENDENT VARIABLES COMPUTED AT INTERMEDIATE
POINTS X.
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DERY - DOUBLE PRECISION INPUT VECTOR OF ERROR WEIGHTS
(DESTROYED). THE SUM OF TTS COMPONENTS MUS7 BE
EQUAL TO I. LATER ON DERY IS THE VECTOR OF
DERIVATIVES, WHICH BELONG TO FUNCTION VALUES Y AT
INTERMEDIATE POINTS X.

NDIM - AN INPUT VALUE, WHICH SPECIFIED THE NUMBER OF
EQUATIONS IN THE SYSTEM.

IHLF - AN OUTPUT VALUE, WHICH SPECIFIED THE NUMBER OF
BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS
GREATER THAN 10, SUBROUTINE DRKGS RETURNS WITH
ERROR MESSAGE IHLF-11 INTO MAIN PROGRAM, ERROR
PRMT(3)=0 OR IN CASE S1GN(PRMT(3)). NE. SI GN(PRMT(2)-
MESSAGE IHLF=I2 OR IHLF=13 APPEARS IN CASE
PRMT(l)) RESPECTIVELY.

FCT - THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS
SUBROUTINE COMPUTES THE RIGHT HAND SIDES DERY OF
THE SYSTEM TO GIVEN VALUES X AND Y. ITS PARAME-
TER LIST MUST BE X, Y, DERY. SUBROUTINE FCT SHOULD
NOT DESTROY X AND Y.

OUTP - THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED.
ITS PARAMETER LIST MUST BE X, Y, DERY, IHLF, NDIM,
PRMT. NONE OF THESE PARAMETERS (EXCEPT, IF
NECESSARY, PRMT(4), PRMT(5) , . . . ) SHOULD BE CHANGED
BY SUBROUTINE OUTP. IF PRMT(5) IS CHANGED TO NON-
ZERO, SUBROUTINE DRKGS IS TERMINATED.

AUX DOUBLE PRECISION AUXILIARY STORAGE ARRAY WITH 8
ROWS AND NDIM COLUMNS.

REMARKS
THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM,
IF
(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE

NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE
IHLF= 11),

(2) INITIAL INCREMENT IS EQUAL TO 0 OR HAS WRONG SIGN
(ERROR MESSAGES IHLF=1Z OR IHLF=13,

(3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH,
(4) THE SUBROUTINE OUTP HAS CHANGED PRMT(5) TO NON-ZERO.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED THE EXTERNAL,
SUBROUTINES FCT(X, Y, DERY) AND OUTP(X, Y, DERY, IHLF, NDIM,
PRMT) MUST BE FURNISHED BY THE USER.

METHOD
EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA
FORMULAE IN THE MODIFICATION DUE TO GILL. ACCURACY IS
TESTED COMPARING THE RESULTS OF THE PROCEDURE WITH SINGLE
AND DOUBLE INCREMENT.
SUBROUTINE DRKGS AUTOMATICALLY ADJUSTS THE INCREMENT
DURING THE WHOLE COMPUTATION BY HALVING OR DOUBLING. IF
MORE THAN 10 BISECTIONS OF THE INCREMENT ARE NECESSARY TO
GET SATISFACTORY ACCURACY, THE SUBROUTINE RETURNS WITH
ERROR MESSAGE IHLF=l'i INTO MAIN PROGRAM.
TO GET FULL FLEXIBILITY IN OUTPUT, AN OUTPUT SUBROUTINE
MUST BE FURNISHED BY THE USER.
FOR REFERENCE, SEE
RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COM-
PUTERS, WILEY, NEW YORK/LONDON, I960, P P . 110-120.
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SIMQ FROM THE SCIENTIFIC SUBROUTINE FACKAGE

SUBROUTINE SIMQ

PURPOSE
OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,
AX= B

USAGE
CALL SIMQ(A, B, N, KS)

DESCRIPTION OF PARAMETERS
A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE

DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS
N BY N.

B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE
REPLACED PV FINAL SOLUTION VALUES, VECTOR X.

N - NUMBER OF ~ JUATIONS AND VARIABLES. N MUST BE . GT. ONE.
KS - OUTPUT DIGIT

0 FOR A NORMAL SOLUTION
1 FOR A SINGULAR SET OF EQUATIONS

REMARKS
MATRIX A MUST BE GENERAL.
IF MATRDC IS SINGULAR, SOLUTION VALUES ARE MEANINGLESS.
AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL
DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTER-
CHANGING ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO
OR SMALL ELEMENTS.
THE FORWARD SOLUTION TO OBTAIN VARL\BLE N IS DONE IN N
STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS
CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION
VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN B(l),
VARIABLE 2 in B(2), VARIABLE M IN B(N).
IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0 ,
THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST
STATEMENT.

The dispersed plug flow differential equation solutions were obtained by means of

finite difference techniques. The runs were made on a CDC-7600 computer. The com-

plete program listings are given in Appendix C.

General discussions on Rung-Kutta methods, finite difference techniques, and

solutions of simultaneous linear equations maybe found in Refs. 8, 14, and El .

65



APPENDIX B

DISPERSED PLUG FLOW MODEL LISTINGS

PROGRAM OfiVRCOUT,FSET680UT)
DIMENSION HUMP)
COMMON/EPS 11 CN/FPS,EPS2

2.e«* ',-'!«) ) * l l , 0 - 2 ,
oo iaa N A ^ , 2

Do ton
D=I,5«+
DO 108 NP=2.2

CALL PRQG1 C B . N )
CALL PROG? (B.N)

100 CONTINUE
2000 F0HHAT(5X, UHA = , F 6 . 2 , 6 H , 8 r , F 6 . . ' . 6 H . P = .F6 .2 )

STOP
ENO

SUBROUTItF PRQGl(BtNO)
C * • FINITE OIFfF&E\C£ SOLUTION OF THt SECOND OHOtR OOf
C LCU) a -U«»/P • IJ» = F ON (ALEFT, ARIGHT)
C B(U3 i V OIRICHLET/NEUMANN/HIXED BC

COMMON /(JIFEOU/ ISIO£C,XSIDEC(1B),P,NMO>1, JDE
COMMON /hOMESH/ ALEFT,ARIGHTrH,N

CO"MON /OTHFR/ *ODt»*XlTER,H,XHESH
PRINT bB«
FORMAT(/* PROrtLFM*,1SX,*BY F I N I T E D I F F E R E N C E S * / / )

C « • h R I T t IH f TITLE

MODE « t
CALL SHLU(l.X.v)

C *» SET VARIOUS PAHAMF.TFRS FOR THE ODE
10 MODE i ?

CALL SOI UCI.X.V)
C •• SOLVE THE jnF-TH FQUATION, FOR 0 ,LE. .IDE ,LE.

JDE = \,
IJDE * i

20 CONTINUE
C ** FROM THE FD EQUATIONS AND SIDE CONDITIONS.
C GEk-EKAfF THF HANOFD SYSTFM MATRIX IN 0 AND THE RHS IN

fODF i 3
CALL F t ) t n U ( Q f U C I J D t ) )

C * * C C ' P i m THE APPROXIMATE SOLUTION U BY BAND/BANSl
CAUL B A N O t N , 1 , 1 , 0 , N , 1 T , D E T )
IFCAf55tntT) .It. l.F-7) PRINT 601,JOf.,OET

ftfil FORMAT(?X,»tt FOR MOMENT EQUATION*.14,* DET **«FIU,7,»

CALL BAV.S1 (N.1, 1,O,N,IT,U(IJDE)>
IFCJDE ,E(3. N.HOM) GO TO 3?
joe = J D E +i
IJDE * IJOE + N

GO TO 2P
C ** THF SYSTFH IS SOLVED
C OUTPUT T*E " O X F N T S u

JB CONTINUE
1ST = NHOH + 1
IP : NMQUftN + 1

I S T l s I S T - l
PRINT 5 0 1 , ( I , I « I S T 0 , I S T 1 )

5 0 1 FORMAT ( • IX * , 1 0 ( * U * , I 2 , 6 X ) )

DO 51 T = l , N , I $ T
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PRINT b<S?t (TOT, (U(K),K»I,1P,N))
51 I? * IP • 1ST

502 FOHfATCIStlfF»2.O)
NQ n NMOH • 1
DO «0 IFB = liKO
IFU = IFB»N
B(IFB) * U U F U )

OB CONTINUE
END FO

FDFOUCO.U)
C •» FILL SYSTFP MATRIX 0 AND RH3 U

3S1OEC,XS1DEC(10),P,NMOH,JDF.
ALEFT, ARIGHT, H,N

DIMENSION O(l)tU(l)
C ** F1HST ZERO C AND I) , THEN FILL D^ ROWS

12 = M
11 = 12 • K
DO 1 1*1, f-

i? = ia + i
13 • 13 • 1
1.(1) = [".
0(1) * P.
0(12) = i*.

1 (J(I5) s P.
HH = H*H
1SIDCC = 1
I = 1
12 = I + N
13 = 1^ • '-
X s ALtFT

C »• DO fHE 1-1H PO*
C FISST C H f C F0» SIDE CONDITIONS

2 I F U .FfJ. XSIDFC(ISTOEC)) GO TO 3
C ** THIS IS NPf A SIDF CGMOITnN RO^

0(1) = -1. - P,5*P*H
0(1?) = 2.
Q(13) = -I. + 11.5»P*H
CALL SOLU(1,X,V)
U(l) i HH*V

GO TO «
c ** THIS is A sne CONDITION ROW

5 J = I + (? - ISIDFC)*K'
CALL FDSIDUiQ(J)»U(in

C ** RETURN IF ALL RO»S FILLFO
« IFtI ,E0, *0 RETURN

C ** UPDATE FOR NFXT "0^
X a ALKFT + FLCAT(1)«H
I » I + I
12 = I? + 1
13 = 13 + 1

GO TO ?
END FDEGU
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SUhHOUTIME F D S I D ( I f O f U )
** F I L L G A^D U AT THE SIDE CONDITION ROWS

N / O t F F n u / I S I D E C , X S I D F C ( i e ) , P , N « O M , JDF.
1 T H N

D I M E N S I O N 0 ( 1 )
H h = H ' H GO TO U 0 , 2 e , 9 9 ) , I 10EC

C « . HIXED 8C P»U(ALEFT) - UOULEFT) » U«<AKl6H\') » B
10 x = XSIDFC(ISIDEC)

QC1) « t . • P*H

U = B« GO TO 90

20 X = XSIDECUSIOF.C)
0 ( 1 ) * *•?.
Q(
CALL S O L U ( I . X . V )
U = HH*V

9 . IS IDFC x I S I D E C • I

END FOSIO

s o L u r i x , x , v )

CCi-HON /DIFFOI I / ISIOFC,XSIDEC(10)»P,NMOM,JOE
COS'̂ OM /FPMFSH/ ALEFT,ARIGhT,H,N

HODE,MXITfcR,HXHESH
GO TO U 0 , 2 8 l , J D , « H ) , * O D E

C * * »STTE OUTPUT HFAOING
IB CONTINUE

KH = bU
DO 11 1 = 1 , 5

I F - ( F L O A T ( N H ) . G E . P ) GO TO t ?
J I KH I Nh • "• H

«,h s ^ + I H * Nh • NH
PRINT 1CH, N"0K,P,NH

RETURN
100 F-OR"AT(H<tH - I IJBS/P + UJ8 = F l • F2*UM , 0 . I E . J , L E . , I 3 »

/ * MJ(AIEFT) - UJ#(ALFFT)/P = 0 , UJH(ARIGhT) a B*
, / / * P = • # £ ! « . 6 » 5 X , * N H si

C ** INITIALIZF tVFRYTHING

ALFFT = 6,
ARIGHT x 1.
XSinfCti) 5 ALfcFT
XSI''i;Ct2) r 4HIGHT
H = (AHTGWT - ALEFT)/FLOAT(NH)

RETURN
*« PHOVIPt VALUt AT X OF RHS Fl + F2*U(J-1)
30 CO.' TlMiF

V = FKIX.J)
IFCJDE .FO. V") RtTUHN
I = (JDE - 1)*N • IX
V = V -f F?(IX,X)*U( I)

RETUHN.
** PROVIDE VHUF AT X OF THE EXACT SOLUTION IF KNOWN
aa CONTINUE

V = VALUt
RETUHN

END SOLD
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FUNCTION F 1 U X . X )
R A N nCtlHHON/V»R*/f.A,Nn,NP

COMMON /DIFEQU/ 1S1DEC|XS1DEC(10),P»NHOH,JOE

I F ( J O E ' . N E , 0) RETURN
T ! n 0 S

Fl * P » < 1 . « X ) * * »
RETURN

END Fl

FUNCTION F 2 t l X f X )

I S I O E C I X S I O E C ( 1 0 ) , P I N H O M , J O E

IF(JO? , ; n , P)
LOAT(NU-l ) * ,aS
i f t J D F ) * ( 1 , - X ) « » D

RETURN
END F2

DATA XND/PJ77777777777/
IF^.LT.l.PFt.lA,LT.N,OR.*L.LT,fl.OR,M|j,LT.a) c o T o

IF(N,EO,l.OR."L.tO.0) GO TO <)
fA = 1A
LL = «L • I'll • 1

OET = 1.
C ** SHIFT THF HHST «ML* R0*5 OF *A* TO THE LEFT

K s M|J + \
KJ = ML*MA
DO 3 I»1#^L

1J = I
IL = 1 • KJ
DO 1 J=I,K

A(IJ) =A(1L)
IJ r IJ + MA

1 IL = IL • MA
K a K • 1
DO 2 J=K,LL

A(IJ) s [I,
2 IJ = IJ • PA
3 XJ = KJ - Mi

C *• BEGIN GAUSS ELIMINATION LOOP
L = ML
KK = LL - I
IL = KK«MA
DO H «xl,M'

KP = J< • !
IFU.LT.N) L = L • 1
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IF(KK,G1.>'-K) HK r N » K
* FUR PIVOT ELEMENT IN COLUHN *K*

I * *
S * At)S(A(K))
DO U J=KP,L

1F(AHS(A(J)),LE,X) GO "JO !<
I = J
X i AnSCA(J))

a CONTINUE
INT r»<) = i
IFU.EO.K) GO TO 6

C *• INTERC-.ANHt «CVS OF *A« IP NECESSARY
IJ s I
KJ s K
DO b J=1,LL

X s A(KJ)
ACK.1) = A(IJ)
A(1J) -i X
IJ e IJ * MA

5 KJ : Kj « "A
OET * -OCT

C •* BEGIN THfc EXCHANGE STEP LOOP
6 X i A(K)

IFCX.FQafi.) GO TO !1
X * -l./X
IK s K t *"A
KJ = K • IL
TO 7 1=KP,L

KJ = KJ • MA
XX s A(I)*X
A(KJ) = XX
CALL ACDVFC(HK,XX,A(lK),MA,ftCI*MA),HA,A(I),HA)

7 AdtIL) = e.
8 CONTINUE

C •* END GAUSS f-LI*I"ATION LOOP
IFCA(N).EO,B.) GO TO 11
INTC^) = PI

RETURN
C •• IN THIS CASE *A* IS UPPER TRIANGULAR

9 DC 10 K=1,V
If(A(K).EO.e.) GO TO 11

IB UTCK) = K
DET = 1,
INTCN) = f

RETURN
C *• MATRIX *A« "AY BE SINGULAR

11 OET = 0.
INT(') > K

RETURN
C *» ERROR !N THE SYSTFM PARAMETERS »N*, *ML*» ••'U*

\2 OtT t XNO
RETURN
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SUBPOUTJNF
Dl"Ef.3IOi- AflAji).
IFO.Eti. 15 GO TO 5
KM s ,\ - I
MA = IA

IF(PL.EQ.C) GO TO 3
LP = (L * 1)*MA
BEGIN FOPWAPO SUH5T!TUTION LOOP FOR COMPUTING THE SOLUTION •
KK s ML
00 2 Kitl.f.'N

KP = K + 1
IF (KK.GT.N-K) KK s N •• K
I F ( I N t i K ) . F H . K ) GO TO 1

INTEt tCHAMKH RO-.S OF eY« JUST AS WITH ftA*
J = 1 N T C K )
X = Y { K )
Y C K ) = Y C J )
Y ( J ) = X
CALL A O O V E C ( K K , Y t K ) , A ( K t U P ) , : i * , V t K P ) , S » r ( K P ) i I )
CON-TINUE

B f G S N 6 i C K S U B S T I T U T I O N

DO 1 l = l ,r-J~'
K a N - I
KP r K + 1
KK •. L
l F ( K K . G T . I ) KR s I
Y C K ) = ( Y ( K ) -
CONTIMUE

aft MATH I X « A * TS j BV 1
b Y ( i ) * V ( I ) / » ( D

EMD

PETUHN

RETURN

P«0S2 Cri.N}
> i ('v ;i a ) , D x I ( l f i a j , A i t 00} f H ( t o d ) , x ( t a t ? ) , T F . * P ( 5 0 0 )

* X S I ( 1 3 ) *>
0 0 3 J--J,v
X I ( J ) = . R S t C F L O A T ( J ) -
X S I C J 5 =.( ! ( J)

5 O X I C J ) = . i
C A L L F C T ' A , ^ 1 , 0 X 1 , N )
C A L L U N S L T T C * , 1 , A , M , 3 , S , X , N , T F H P , O E T ,
CALL OuTPfjX, 1)
F j=l ,3/B('l)
DO 1 .1=1, s

DO ? .1 = 2 ^

X, 19MWPIGHT O ISTR inuTJON)
2 a a 2 ) H » t ( J K J 3 t , . " n

2BPI2 FORMAT C 1 fix , 5fc'1 4 . 7 )
h R I T E ( 6 , 2 P i M )
CALL PRNPLTtXSI j r iW, l . , , 0 1 , l , 2 , , 3 2 S f t l , 0 , N )

2001 F0HMATCHU)

EMO
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SUBROUTINE FCT(A,XI,DXI,N)
DIMENSION A(N,1),XI(N),DXJ(N)
DO 10 J*1,N
T=XI(J)
A(l,J)xDXI(J)
DO ia I»2,N

10 A(I,J)=AU-1,J)*T
RFTURN
ENO

SUBROUTINE OUTP(N,X,IX)
OIMFNSION X(l)

FCKHAT(1OX,5E1H,7)
HETUHN
END

SUBHUl.'TINF UNSLIT(N,M,-A,IA,B, IB,X,IX,SCR,OET,IEX,L)
C GIVFS l"CT?fiCTLY ROUNDtO SOLUTIONS OF A*X = B , WHHHE A IS
C UNSfMMETHIC A^D H IS N BY M , PROVIOtn A IS MOT TflO
C ILL-CUNOITUlMtn. USES HW0CFDURE3 tJNSnt-.T, tINSACC, UNSSOl.,
C INflpoO. CO-iPUThS THE OtTtRMINANT OF A IN THF FOH"
C DF.T * 2*«IEX , L IS THE NU«HEM OF REFlNt«F.NT STFP3,
C SCK IS wniTKTMG STORAGE OF LENGTH AT LEA3T N*(IA • S) + H*JB ,
C THF P B O C F D M P F : FATL3. AND PRIMTS ERROW MESSAGES, IF THE LU
C FACTOHI^ATIO'J OF A Ott THE ITERATIVE REFINEMfNT OF X FAILS.

10 FOKMATClHt',^7HMATRIX HAS ZfRO R0» IN UNSPET AT STEPjIO/)
11 FOHMAT( \t"j,m»PATRIX JS NEARLY SINGULAR IN UNSOET AT STF.P,I«/)
12 FOHMATC1HP,32HV0 CONVERChNCF IN U^SACC AT STEP.IU/)

DIMENSION A(IA,1),RUR, n,XCIX,l),SCH(!)
C AA STARTS IN S C R U A ) , DB IN SCR(LB) , T.NT IN SCRiLl)

DO 1 J=i,fi
K = CJ - I;*JA
DO 1 1=1.N

L = K • I
1 SCHCL1 = *(1,J)

LA = 1
LB = LA • IA*N
LI = L^ + in»M

C FOPP L" f-ACTORS
CALL UNSC'FT(M,SCH(LA), I A, OFT, I EX, SCR CL I), SCR (LI ) . ILL)
If- C I L L . N E . l - ) GO TO ?

C I T E R A T I V E HFFI- .FMFNT
CALL l ^ : S A C C C N , f , A , S C ^ ( L A > , I A , B , S C R ( L R ) , I H , X , I X S C R ( L I ) , L » I L L )
I F ( I L L . E Q . P ) METURN

C I T F H A T I V t R E M N E f E N T F A I L E D
PRINT 1 2 , I L L

RETURN
C LU FACT0R1/ATI0N FAILED

2 IF(ILL.GT.P) PRINT 11,ILL
ILL a -ILL
IF(ILL.GT.P) PKINT 13,ILL

RETURN
END
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SUUROUHNE
C ACCUMULATES THE SUM OF PRODUCTS X(K)»Y(K) AND HDDS IT
C TO THE INITIAL VALUE Cl * C2 IN DOUBLE PRECISION,
C Dl IS THF SINGLK PKF.CISION VALUE OF THE DOUBLE PRECISION
C SUH D, 03 IS THF SINGLE PRECISION DIFFERENCE D • Dl,
C IF THE VECTOR LENGTH t IS NOT POSITIVE, THEN 0 • Cl • C2,
C SPEED OF EXECUTION OF THIS ROUTINE CAN BE GRT.ATLY INCREASED
C BY HAND CODING. t»HAT IS REQUIRED IS THAT THE SUMS AHD
C MULTIPLICATIONS BE PERFORMED IN DOUBLE PRECISION,

OIHENSION X(1),Y(1)
DOUBLE PRECISION D»DX#DY
DX = Cl
DY = C2
D * DX • DY
IF (L.LE.B) GO TO 2
1 e 1
J * S
DO 1 K = 1,L

DX * X(J)
DY * Y(J)
D = U • DX*OY
X s I * IX

1 .1 = J • 1Y
2 Dl : 0

D? = D - Dl
RETURN

END

SUBROUTINE UNSDFT(N,A,IA,n£T,IEX,INT,SCA,ILL)

C FORMS LU FACTORS OF A BY CROUT 1ETHOD WlTh RC<* tCUlLIHRATlON
C AND PARTIAL PIVOTING. OVFR'-RITFS L AND U ON A, OMITTING
C UNIT DIAGONAL Of- U, *ND HFCOBDS RO* INTERCHANHF.S In INT,
C COHPiiTTS THE OrVFRHINiNT OF A IN THE FORM DET * S**1EX,
C THE PRHCEOURE FAILS IF A, AS MODIFIED HY BOUNDING ERRORSj IS
C SINGULAR OR Nt'AKLY SINGULAR, USES PROCKDURf. INRPRO. EPS IS
C THE {^ACHIUF-OFPENPENT) LEAST NUMBER X SO THAT 1. • X ,GT, 1,

0IMENSIO^' ACIA,1)»1NT(1J,SCA(1)
C DATA EPS /S.i'**t-17)/

COWHON/FPSILON/EPS,EPS2
ILL = 0

C SCALE SO THAT SCA(I)»(A(I>,)> HAS UNIT SUP NORM LFNGTH
00 2 l-i,*'

X s iJ.
00 1 J=l»*

1 IF(AHS(A(I,J)).GT,X) X a ABS(A(I,jn
IF(X) 7L,\\,i.

2 SCA(I) r l./X
DET = 1.
IEX = e
00 10 K=1,N

C COMPUTt tNTRIF.S OF L IN COLUHN K
L = K
X K p.
DO 3 7=n,N

CALL I^RPRO(K-lf-A(I,K),0..,ACIf 1)»IA,A(1,K),I,Y,YY)
A(I,K) s -Y
Y = AB5(Y*SC»(I))
IFtY.LF.X) GO TO J
X = Y
L = 1

3 CONTINUE
IFU.EQ.K) GO TO 5

C INTERCHANGE HOWS IF NFCES3A9Y, S'-VING INTERCHANGE INFORMATION
OET r -DFT
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1>U « J~ 1 , "•
Y ~ A(K,J)
ACK.J) = A(L,J>

a A(L,J) = Y
SCA(L) = SCA(K)

5 IHT(K) a L
C UPOATF OiTERHINANT AND CHECK FOR NEARLY SINGULAR A

OFT = DtT*A(K,K)
IF(X.LT.O.i'»fcPS) GO TO 12

c A is OK THROUGH ROW K
C SCALE OETFfMINANT TO AVOID OVERFLOW

6 IFvAbS(DET).LT.L) GO TO 7
OET = DF T*t*.l**>2S
If.X = IEX • U

no TO 6
7 IF(Ans(DET).GE.a.062S) GO TO a

OFT s OtT*l«>.0
IEX = IFX - 4

GO TO 7
C COMPUTE E M R I F S OF U IN ROW K

8 IF(K.EU.N) GO TO 10
X = -t,/A(K,K)
KP r K 4 t
00 9 JsKP.N

CALL IHRPRO(K-1,-A(K,J),P,,A(K,D»IA,A{1,J),1,V,YY)

q ACK.J) = X.Y

13 CONTINUE
RFTURK

C ft IS SJSCUl*''
tl ILL a -t

RFTURN
C A IS NEARL* SI'iGULAR

12 ILL = K

RFTUPN

SUBROUTINE UNSSOL{•>#»»A, U . B , IS
C SOLVES T*X S H «IHERE A IS IMSYHVFTRIC AND H IS N 3Y M.
C MOST tiF PHECFOFD BY PROrFDtJ»E UNSOfc'T TO P H O O U C LH FACTORS
C IN A «JTM HfcrC'Sn OF ROW INTERCHANGES IN JNI, OVERWRITES
C X ON B. USIS PROCEDURE INRPHO,

A (I ft, !),B('B,i. ),1NT(>)
t •-.< 0," 9

00 ? I*t,>
IF{IKT(T) ot0.T> GO TO 2

J = :M(1)
DC 1 Krl,''

>: = B(i,K)
B(I,I<) = H(J,K)

1 flU.Kl = t
2 CO-«TI»tT

no 5 mi,"
SPLVt I «Y = a.
00 J 1=1,v

CALL r.»P"G{I-|,B(I,K),«»,,A(l, \) , lt,B{\,K) ,\,t,*H)

3 Bt I,H) = -K./A( I, I)
SOLVE U»X = V
BC'l.A) r -8t'-,K)
DO « I|:?,s

I = N • J - II
C A L L i N R ^ o n - i , n n , K > , B . , A ( i , i t t ) , t 4 , ( , ( „ , , „ , f I f X X ) r ,

*» o ( I , K ) « » X
S CONT1«.'UF

REru»N
END



SUBRO'JTINF UNSACC(N,M,A,tA, I A,B»BH,1H,X, IX, INT,L, ILL)
C SOLVES :'.«X r R «HfPt A IS UNSYMMETRK AM) B IS N BY H,
C USING PROCEDURE UNSSHL, MUST BF PHFCF.DFD BY PHOCFDUHF UNSOET
C TO PRODUCt LU FACTOKS OF A IN AA WITH RECORD OF ROW
C INTERCHANGES IN INT. COMPUTES RESIDUALS bB e B - A«X USING
C PROCEDURE INRPHO, AND SOLVES A«D a BB, OVe"«RlTING 0 ON HB,
C THEN OVERWRITES THE REFINEMENT X *D ON X, REPEATS THE
C REFINEMENT SO LONG AS THF MAX CORRECTION AT ANY STEP IS LfSS THAN
C HAIF THAT AT THE PRFVIOUS STEP, UNTIL THE MAX CORRECTION 15 LESS
C THAN a*FPS*(SUP NOHM OF X), EXITS WITH H L ,NE, U IF THE
c SOLUTION FA ILS TO IHPHOVF.. L I S THE NU«BF.R OF ITERATIONS,
C FPS IS THE (KACHIME-OFPFNDENT) LEAST NUMBER T SUCH THAT
C 1, • T ,CT. !., AND frPS2 IS THE (MACHINE^DEPENDENT) GREATEST
C NUMBER T SUCH THAT Jv • T .EQ. 1,

DIMENSION ACIA,t),AAUA,l),BUB,i)>BBUB, J ) , XUX, J ) , INTt J)
C DATA FPS /2,e**(-U7)/ , EPS2 /C2,0*»(-afl))*(1.0 - 2.0*«(-«8))/

COMMON/EPS ILON/EPS,EPSH
ILL = P

C SET UP FOP FIRST APPrtOXIMATE SOLUTION
DO 1 J*1,H

00 1 I=1,N
XfI,J) a 0,

1 BB(I,J) e b(I,J)
L • 0
D0 = 0.P

C COMMUTE AMD ARO THE CORRECTION
2 CALL U'JSSOLtN.M.AA, IA,BB, IB, INT)

L = L • 1
ID s 0
01 = P.P
00 3 JsJ.H

00 * 1 = 1, f'
3 X(I,J) r x(I,J) • BBCI,J)

c ccMPurt «WEI« RFsrouALS
DO 5 J * ! , "

XMAX = o . n

BBMAX s 0 .H
D O 4 1 = 1 , N

l F ( f t B S ( X C t , J ) ) . C T , X H A X 3 XMAX = A B S ( X C I , J M
I F ( A b S ( H [ l ( l , J ) ) , G T , B B M A X ) BSMAX = A B S ( B B ( I , J ) )
C A L L J N R P » o ( N / - B { i , j ) , a . , 4 c i , n , i A , x ( i , j ) , i , c , c o

* B R ( I , J ) = -C
IFfBPiAx.GT.Dt»X^AX) OJ s B8MAX/XMAX

5 IF(B3>*AX,GT.2,P*F.PS*X»'AX) 10 a 1
IF(2,3«01.GT.04» .tUO, L.ME.J) ILL = L
DB = 01
IF(IO.EO.t) GO TO ?.

RETURN
END

SUBROUTINF PRMPLT(X,Y,XHAlf,XINCR,YMAX,YINCB,ISX,IS¥,NPTS)
C PHIMtR PLOT ROUTINE ••. S. ITZKCWITZ MAY,1<?67
C
C PLOTS THE 'NPTS' POINTS GIVEN BY #X(I),Y(I)' OS A 51 X 101 GRID
C USING A TOTAL OF S6 Ll^FS OK THF PRINi^B
C IF 'ISX* D« "ISY» ARE NON-ZERO, THE C1RRESP0NDING CAXIMIIf AND
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C INCREMENTAL STFP SIZF ARF COMPUTFD
C IF EITHfR INCREMENTAL STEP SIZE IS ZERO, THE PROGRAM EXITS
C NE1THFR OF THE INPUT ARRAYS APE DESTROYED, IF SCALING IS DONE
C THE CORRESPONDING MFW VALUES OF MAXIMUM AND STEP SIZE ARE RETURNED
C

01 HENS ION X(NPtS),Y(NPIS),K>RIO(105J,XAXlS(in
C

INTEGER bL*1"*, DOT, STAR, IGRID, PIUS
OATA BLAi'.K, POT, 9TAR, PLUS / 1H ,1H,,IH*,1H+ /

C
901 FORMATUUX, 105AI)
9P2 FORMAT IlXt10.3,?X,lH+,i05Ai,iH+)
903 F0«HAT(15X,JB^Clh,))
99« FDRHAT(7X,1UF10.2),2H (,I«,5H PTS) )
905 FOHMA'i (16X, M(lHt,9X))

9800 F0H4AT(«6HtSCALlNG ERROR IN PRNPLT, EXECUTION TERMINATED )
C

IF(XIMCR.E0.P..0R.YINCR,E0.3,) GO TO

X I ( . p l X U C
IZER0=Y"AX/YIMCR+l,5
JZER0=tdJ.5-XHAX/XlNCR
IF(JZCRO.GT.l?}.OR.JZERO.LT,«)
PRINT 95)5
PRINT 9HJ
DO I B 1 = 1 , 5 )
I F ( I .ME . IZ rRO) GO TO 16
DO I<1 J i l , 1?S

1« ICRIDtJ)=PLUS
GO TO IS

16 DO 11 J = l , l f b
I I IGR!D<J)=flLAM<
15

DO M K=1,SPTS
ITt'ST =(rMA
I F ( U c S T . N f . I ) CO TO 12
JsI01,'5-(X>'AX-X(K))/XlNCR

I F ( J . L T . 3 ) J = l

1? CONTINUE
IF(KOD(I, lUKEO.l) GO TO 13
PRINT 9P1.IGRI0
GO TO I Pi

13 Y*XIS3YMAX-tI-l )*YINCR
IF(AbS(YAXIS).LT.YAXMIN) YAXIS=H,
PRINT 9 0 2 , Y AX I S , ( I G R I D ( J ) , J » 1,1515)

10 COMINUF
P R I M 9H3
PRIMT 9P5
DO 2\l « » 1 , 11

IF(ABS(XAXIS(M)),LT.XAXHIN)XAXIS(H)=3.
CONTIWUF
PRINT 9P«,XAXIS,*'PTS
RFTURN
PRINT 9R0P
END
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^routine ADDVEC (vector addition) i s called in BAND. Also, ADDVEC and

Function DOTPRO (dot product) are used in BANS 1. TheBe are in the LASL. Sub-

routine Library. They are listed below:

SUBROUTINE ADDVEC(N, W, X, DC, Y, IY. Z, IZ)
DIMENSION X(l), Y(l), Z(l)
IF(N.LE.O) RETURN
J = I
K = 1
L = 1
DO 1 1=1,N

Z(L) = W*X(J) + Y(K)
J = J + IX
K = K + IY

1 L = L + IZ
RETURN

END
FUNCTION DOTPRO(N, X, DC, Y, IY)
DIMENSION X(l), Y(l)
DOUBLE PRECISION D
IF (N. GT. 0) GO TO 1
DOTPRO = 0.

RETURN
1 D = 0.

J = 1
K = 1
DO 2 1=1, N

D = D + X(J)*Y(K)
J = J + IX

2 X = K + IY
DOTPRO = D

RETURN
END
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