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AB S TRACT 

An iterative method is developed to find an approximation to 

the least squaies solution of minimum L2(0,1) ngrm, fo, of a 

Volterra integral equation of the first kind 

where g E Li(0,l) and 

. . 2 (c(y, x) dxdy < i. 

A sequence [f ]= C N(L) converging to fo is constructed. 
h j  j=l 

' 'A. 
minimizes the functional 

j 
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Introduction 

We consider.the Volterra integral equation of the first kind, 

where k(y,x), g(y) are given functions and f(x) is to be deterrnfned. r. 

Here we assume that we have Riemann integration. 

- Hochstadt [ 5  ] notes that the equation 

~~k(y,x)f(x)dx = dy), p(0) = 0 (2) 
0 

I ,' 

reduces to a Volterra integral equation of the second kind.if the 

kernel k(y,x) and g(y) are continuously differentiable and k(y,y). =k 0. 

The Volterra integral equation (2) is then transformed into the 

Volterra integral equation of the second kind 

Hochstadt gives a proof of the existance and uniqueness of the 

solution to (3). 

Mikhlen and Smoletskey [lo] suggest that a numerical. 

approximation to the solution of (2) with the above hypotheses 

can be obtained without reduction to an integral equation of the 
L 

second kind by the application of quadrature formulas. They 



ob ta in  the  system of equations 

- 

where  A!") + 0 f o r  i = 1, . . . , n a r e  the  quadrature weights.  From 
1 

..' ( 4 )  an approximation t o  f ( x  ) i s  determined recurs ive ly  a t  a l l  mesh 
n 

po in t s  of the  quadrature formula, except f o r  x = 0 where they take 
0 

Riesz ,and Nagy [15) consider  the  Vol ter ra  i n t e g r a l  equation 

a s  a s p e c i a l  case of the  Fredholm i n t e g r a l  equation of the  f i r s t  kind 

where 

We w i l l  assume t h a t  (1) i s  w r i t t e n  i n  t h e  form ( 6 ) .  I n  addi t ion  
1 1  

we w i l l  assume t h a t  
2 1' 1 C(y,x) ( dxdy < so  t h a t  L i s  a completely 

' 0  0 
continuous l i n e a r  opera tor  from H = L2[0,1] t o  H2 = L2[0,1] and 

1 

We w i l l  use the  notat ion:  R(L) = range of L, N(L) = (f E H1 : Lf = 01  

I 
andM = [f € H I  : < f , h  > =  0 f o r  a l l  h E M C H ~ ]  where 5 , > d e n o t e s  

inner  product i n  the Hi lbe r t  space L2[0,1]. 



. From Strand [17] we have t h a t  f o r  a  completely continuous 

- - 
opera tor  L H = N(L*) +-R(L) where R(L) i s ' t h e  c losure  of R(L),- 

2  
I - I 

HI = N(L) + (N(L)), and R(L*) = (N(L)). 

We a r e  i n t e r e s t e d  i n  f inding an approximation t o  the  l e a s t  

' squares s o l u t i o n  of minimum.norm, fo ;  of the  opera tor  equation 

Lf = g where g  E H2, when such a  so lu t ion  e x i s t s .  Kammerer and 
-. 

Nashed [8 ] give the  following d e f i n i t i o n s .  

Def in i t ion  1. For f  E H1, g  E H2, an element 7. E H i s  a  l e a s t  
1 

. ,squares s o l u t i o n . o f  Lf = g i f  and only i f  
. . 

( I L F - g  ! ( = i n £  { I I i f - g  ( 1  I f  € H 1 l  
Def in i t ion  2. For f  E HI, g  E H2, an element f  E H i s  a  ].east 

0 1 

iquares  s o l u t i o n  of Lf = g and I I f 0  1 ( s I ( ? ( 1 f o r  a l l  l e a s t  

squares so lu t ions  ?;of .Lf = g.  
- I .  

Strand [I71 notes t h a t  the  l e a s t  squares . so lu t ion  of minimum 

1 
norm e x i s t s  ( i s  unique and i n  N(L) ) i f  and only i f  g  E , H 2  can 

be w r i t t e n  i n  the  form. 

where g1 E R(L) and g2 E N(L*). For t h i s  paper we w i l l  assume g  

i s  always i n  the  form g  = g + g2, with g1 E R(L). From Strand [17] 

and Diaz and Metcalf [ 3  1, f  i s  a s o l u t i o n  of 

i f  and only i f : £  i s  a  so lu t ion  t o  Kf = 
g1 ' 

They a l s o  note t h a t  



the least squares solutions to L*Lf = L*g and Lf = g are 
1 

the same. 
! . r ' 1  

Twomey, [20], Phillips [14], Tikhonov [18] and Strand El71 

considers the functional 

where p E HI is an estimate for the least squares solution of minimum 
\I 

norm of Lf = g. Strand [17] proves that (8) is minimized by 

strand [17] gives a proof of the following theorem. 
, . 

Theorem 1. f = lirn f), exists and f is the unique solution of 
P P 

h -, O+ 
2 

L*Lf = L*g for which I ( f - p I I is a minimum. 

For the case where p a 0 we have an approximation to the least 

squares solution of minimum norm of Lf = g. In general a method 

for determing a good choice for h in actual applications and 

- 1 
construction of the inverse to represent (L*L + h I) is difficult 

since (L*L + X I )-I is ill-conditioned for a useful 

choice for A. 



Basic Theorem 

The following theorem will be implemented as a numerical 

.algorithm, related to a steepest discent method for Tikhonov-Twomey 

regularization, which,converges to the least squares solution of 

minimum norm, when such a solution exists. The method developed 

allows one to find an approximation.to the solution of (L*L + h1)f = L*g 

for a h > 0. When the convergence fails or'becomes slow then the 

advantage of this method is that a new starting vector can be obtained. 

A proof and discussion of the theorem as well as a choice' for the starting 
i . '  

vector 'f can be 'found in [13]. .I, 0 

Theorem 2. If 

1. f" is the least squares solution of minimum norm 
0 

2. E H1 be given as starting vector, 

w QD 

3 *  [[fj,nIn=oIj=l be a sequence such that 

f.. = f  W 
~ , n  j,n-1 + @.j,n j , n  

where 

I 0 for all n > n .  if n. is the first n 
J J 

. L such that W = 0, 
j , n  



4 .  { A ~ ) ; = ~  i s  a sequence of p o s i t i v e  r e a l  numbers 

converging t o  zero, 

then f o r  any E > 0 t he re  e x i s t s  p o s i t i v e  in tege r s  < and 7 
sUch t h a t  ' 1  1 - - f o  !.I < E. 

. ' 3," 
. . 

For j  fixe'd i n  the  above theorem Peterson,  [13 ] notes t h a t  

[f * ' converges t o  f  = f  ' the funct ion  i n  the  R(L*) t h a t  j ,n  n=O h j' 
j 

'minimizes , '  

Let oo(L*L) be the  s e t o f  non-zero eigenvalues of L*L. We ' ,  

. . 

have the  following theorem, proven i n  .[I3 1, using the  above 

nota t ion ,  r e l a t e d  . t o  convergence. 

Theorem 3. I f  y = knf y n 

Yn E % (L*L) 

then 

I 1  w i , .  0 h j  ! I f j  I I  + when y + 0 I l  f j , u  - f q  I 1  y +  . Y  
. j  

, and 



D i s c r e t i z a t i o n  of t h e  I n t e g r a l  Equation 

n We w i l l  cons ider  t h e  r e a l  n-dimensional space R with s c a l a r  

n n f i e l d  t h e  r e a l  numbers. Define a mapping from R xR t o  R by 

T T where U = (U1,U2, . .  ., Un) , V = (V1, V2, . . ., Vn) and 
. . 

I 

T. > 0, T.. E R f o r  a l l  j = 1, . . ., n. Thus we have a H i l b e r t  
1 J 

n n n n space, which w i l l  be denoted by HT. Let [el, e2, . . ., e n ]  be 

n t h e  or thogonal  (not  n e c e s s a r i l y  normalized) b a s i s  f o r  HT where 

m n n 
. I f  A : H T  + H then  A* : HS - H: w i l l  denote  t h e  ad j o i n t .  S 

The fol lowing theorem i s  g iven  i n  [13]. 

A ' =  (T a .)i = l , n  then  A*' = (S a ) j = 1 , m .  
J ~ J J  j = i = l , n  

I n  t h i s  paper  we w i l l  be r e s t r i c t e d  t o .  t he  case  where 

n n 
A : HS + H S and a = 0 f o r  i > j, with  t h e  addi.t iona1 requirement 

i, j 

t h a t  t he  S. f o r  i = 1, . . ., n appearing i n  t h e  lower t r i a n g u l a r  
1 

mat r ix  A  depends on t h e  row a s  w e l l  a s  t h e  column. 

n n 
Theorem 5. I f  A : HS - H 

S' 

A =  (S ( i ) a  .)i = 1,n  where a -  = . O  
1 .',J j 1 ,n  i, j 

f o r  i > j ' then  A*, = (Si ( j ) a  . ) j  = 1,n  
i = 1,n 

&here s(') = S.  f o r  i + j. 
i 1 



Proof: We will show that the above A* is the adjoint of A. 

and 

for all k and 4, therefore A* is the adjoint of A. 

Now we develop a method of discretization of the integral 

equation 

-1 
where from Bachman' and Narici [ 2 ] L*f(s) = jo&(X, s)f (X)dX is 

the adjoint,to L. 

(6) is equivalent to 



P a r t i t i o n  t h e  i n t e r v a l  [ O , l ]  i n t o  n-1 equal  subintervals ,  

fi,yi>Xi E ['o, 11 such t h a t  

and 

O =  t < t 2  <.:. < t  = 1. 
1 n 

Now from (7) we can wr i t e  

where Rn(ti) i s  the  d i s c r e t i z a t i o n  e r r o r .  Here s ( ~ )  j > 0 j = i , n  
Y 

and i = l , n .  For f k ( Y , t i ) J  k(y,x);(x)dxdy we have 

ti 
0 

.. . 
where z ( t  i ) i s  t h e  d i s c r e t i z a t i o n  e r r o r .  Thus  (7)  can be wr i t t en  i n  

t h e  form, f o r  s = t i' 



(8) can be w r i t t e n  i n  the  equivalent  form 

where k(yj , \ )  = f 0 r . k  > j, 

. . 
k(y t i )  = 0 f o r  j > i 

j7 

and 

(v I ) i= l ,  & denotes an &-dimensional column vec to r .  

Now taking 1 = 1, . . . , n we ob ta in  the  ' l i nea r  s y s t e m  

Foi?notAtional  convenience we'can take x = t' i .= 1,n and 
i i' 

replace  the  index k with i. I 

For conveni,enc.c using the,  same no ta t ioq  as f o r  the  o r i g i n a l  

i n t e g r a l  equation,.  l e t  



+ 
g = , ; € H i  

' .. . . 

and , . 
fl  : 9  

. . . . 

$ = R n i  - ( X  i ) )  i=l,n3 Z E H ~  . 
Now with theorem 5, the sane error bounds hold, as developed 
. - . . 
I .. . . ' 

in [13], where L*LF0 = L*; + % , So the discretization error vector 
0 

r! ' 

in the matrix representation for . 

The theorem relating error bounds is given for the case where 

g is not known exactly, we have 

where E(y) a2[0,11. (9 )  may or may not have a solution, soo . . 
\ ?  

Strand [17]. 

Similar to the previous discretization we obtain the 

. matrix representation 

. . 

where -% is' the discretization error vector. 2 



The system of equations a c t u a l l y  solved i s  

- 
Le,t j,n, E be a  term i n  t h e  sdcquence defined i n  theorem 2 

f o r  (10).  I f  a  bound f o r  ! 1 I*? I  I  o r  ( I  I  I  can be found, we 
4 - 4 

can ob ta in  bounds on 1 1  3 - f ( "here ? i s  the  so lu t ion  
j,n,E A, E 

t o  (10) a s  s t a t e d  i n  the  theorem below. 

Theorem 6. 

T f  g i s  known exact ly ,  take  E = 0. 

The proof of theorem 6 follows t h a t  gkven i n  [13] and w i l l  be 

omitted here.  



Examples 

Example 1 

We will consider the Volterra integral equation of the first kind 

with unique solution f(y)' = y. 

The quadrature method used for (15) was the trapezoidal method 

with 11 equally spaced points, so L*L : H;~ + HI' T .  
The matrix operator 

-5 
L*L constructed has smallestnon-zero eigenvalue 5.08~10 . For such a 

small minimum eigenvalue the error bounds given in theorem 6 are not 

readily applicable. Numerical experimentation indicates that, in 

general, a good choice for tehinal h in the algorithm given in the 
j 

+ 
appendix is to choose terminal h to be such that 10A I If0 1 ( or 

\. 

4 
j + 

j 

10h ( Fj 1 ( is of the same order of magnitude as 1 (R 1 1 .  
j o - 3 
For example 1, llgoll was cmputed to be 1.2~10 and ll?o!l = a/3. 

~ h k  following initial information was used in.the algorithm in the 

appendix: 

- 4. 
Terminal ~ambda = 1.~10 , 

2 -12 
Control iri 1 ( I = 1 .x10 , 

n, j 

Lambda multiplier = .02, 

and 

T startlng vector = ( O . , O . , O . , O . , O . , ~ . , ~ . , ~ . ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~  

The results of using the algorithm are given in table 1 under S1. 



The algorithm reduced the following norms t o  the resu l t s  

indicated: 

and 

a f t e r  554. i t erat ions .  

~xample 1 was a l s o  solved using the method given i n  ( 4 )  

with r e s u l t s  given i n  t a b l e . ' l  under S2 .  



Table 1 

Norm .of  0.5779 . 0.0033 0.5831 0.0126 

Entries i n  table  1 rounded correct t o  four decimal places .  

S1 = Computed solution from algorithm 
i n  the appendix; 

S2 = Computed solution using ( 4 ) ;  

D l  = ~ c t u a i  so lut ion - ' ~ 1 ,  pointwise; 

' . D2 = Actual so lut ion - S2, pointwise. 



Example - 2 

We will: consider  the  Vol ter ra  i n t e g r a l  equation of the  . f i r s t  kind. 

with l e a s t  squares so lu t ion  of minimum nonn. f (y)  = 1 + y.  

The quadrature method used f o r  t h i s  example was the  t r a p e z o i d a l  

r u l e  with 11 equal ly  spaced points ,  so L-2L : " -, H " The matrix 
H~ T '  

- 5 
:, ope'rator L*L has smal les t  non-zero eigenvalue 1 . 2 ~ 1 0  . 

FOG example 2 ;  1 1 %  ( 1 was computed t o  be 6 . 5 x 1 0 - ~  and 

11?,1 1 = 1.5275. 

The following .information was used i n  t h e  algori thm i n  

the  appendix: 

-12 
Control on I IW ( l 2  = 1 .%lo 

ny j 
Lambda m u l t i p l i e r  = .02 

. and 

T 
S t a r t i n g  vec to r  = (O.,O.,O.,O.,O.,O.,O.,O.,l.yl.,l.) . 

The algori thm reduced the  fo l loq ing  nonns t o  t h e  r e s u l t s  

indica ted:  
- 5 I IATAF + Lambda*F - ATG I 1 = .5642x10 , 

( IAF - G I 1 = .2135x10-~ 

and 

( IAT(AF - G) 1 1 = .6839x10-~ 

a f t e r  151 i t e r a t i o n s .  



The method suggested i n  (4)  i s  not applicable since 

k(0,O) = 0.  The. solution i s  not unique, however, the l e a s t  

squares solution of minimum norm i s  unique. 

Table 2 

A l l  entr ies  are rounded correct t o  four decimal places.  

A = Actual solution,  pnintwi-se; 

S 3  = Computed solution,  pointwise; 

. . D3 = Actual so lut ion - Computed solution, pointwise. 



Example 3 

We w i l l  consider  the  Vol ter ra  i n t e g r a l  equation of t h e  f i r s t  kind 

0 < y S l . w i t h  l e a s t  squares s o l u t i o n  of minimum norm 

f  (y)  = s in(ny) . 

The quadrature method used f o r  t h i s  example was the  t rapezoidal  

r u l e  with 61 equal ly  spaced po in t s  and secondly a simple p a r t i t i o n  

with 61 equal ly  spaced po in t s .  For example 3 the  following information 

was used f o r .  both the  case of the  simple and the  t rapezoidal  

r u l e  i n  the' algorithm i n  t h e  appendix: 

- 6 
, . Terminal Lambda = 5 . 6 ~ 1 0  , 

. . 
2 - 14 

Control on I IW ( I = 1 . ~ 1 0  , 
n, j 

.Lambda m u l t i p l i e r  = .05, 
. . 

and 

S t a r t i n g  vec to r  = (a1, a2, . . . , a ) 61 

where a = 1. f o r  i = 1, . . ., 61. 
i 

The the  norms given i n  t a b l e  3 t o  the  r e s u l t s  

indica ted .  



The f i n a l  r e s u l t s  are g iven f o r  s e l e c t e d  po in t s  i n  t a b l e  4 .  

- 

0 . 4 0 8 3 ~ 1 0 - ~  for  the simple p a r t i t  ion, 
I lZ0 I ! = 

0 . 4 0 2 4 ~ 1 0 - ~  f o r  the trapezoidal  r u l e .  

. . Table 3  

Trapezoidal Rule Simple Par t i t i on  

N1 0 . 5 3 8 2 ~ 1 0 - ~  0 . 5 2 3 8 ~ 1 0 - ~  

N2 0 . 5 6 3 7 ~ 1 0 - ~  0 .  508@10-~  

N3 0 . 3 7 2 8 ~ 1 0 - ~  0 . 3 9 7 5 ~ 1 0 - ~  

IT' = Total i t e r a t i o n s .  



Table 4 

Norm of 0.7071 0.7068 0.0107 0.7066 0.0134 

. . All entries 'rounded correct to four decimal places. 

A = Actual solution, pointwise; 

S4 = Computed solution, pointwise, 
using a simple partition; 

D4 = Actual solution - Computed solution; 
S5 = Computed solution, pointwise, using 

trapezoidal rule; 
. . 

D5 = ~ctual solution - Pointwise solution. 



Conclusion 

The dropping of the  requirement t h a t  k(y,y)  i 0 f o r  0 5 y s 1 

gives  the  algori thm an advantage over the  methods found i n  the  

l i t e r a t u r e .  
:, .-, ! , 

An upper bound f o r  11s 1 )  c a n b e  d i f f i c u l t  t o  o b t a i n  unless  
0 

some information about the  s o l u t i o n  i s  known. 

A b e t t e r ,  more useful ,  method f o r  obta in ing t h e o r e t i c a l  e r r o r  

bounds should be obtained. 
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Appendix 

Subroutine BIT is a program written to find a A-approximate 
. . 

least squares solution of.minimum norm of an Volterra integral 

equation of the first kind. The subroutine BIT assumes that the 

integra1,equation is of the form . . 

A driver program must be written which obtains the following 

information: 
Q'- 
\ 

1. Partitions the interval integrated over, [o, 11, into 
N-1 subintervals. The N-points constructed are stored 
in XV and W. 

2. Construct the vector GV(1) = g(W(1)) I = 1,N. 

3.  Construct the. NxN matrix A representing the operator L. 

4 .  construct the NxN matrix AT 'representing the operator L*. 

5 ,  Construct the vector WTK of weights for integration. 

6 .  The driver program must be dimensioned as the dimension 
statement for the subroutine BIT. 

I 

7 ; The driver program muu t ,  supply the controls on convergence 
given by 

XLMDA = Lambda multiplier, 
BB . = Term'inal Lambda, 
M = Maximum number, of iteration per 

change in .Lambda, 

and 

2 
DD = Control on ( IATAF + LAMBDA*F - ATG ( I . 



SUBROUTINE BIT(N, A, GV, WTK, XV, W, F, XLMDA,M) BB, AT, 
%ATA,R,T,V,W,WW,S,DD) 
IMPLICIT REAL*4 (A-H, 0-Z) 
DIMENSION A(N, N), AT(N, N),wTK(N),w(N),xv(N), W(N) 
DIMENSION F(N), ATA(N,N), GV(N),R(N), V(N),WW(N), S (N) 
DIMENSION T(N) 
LG-0 

C 
C TEST FOR A ZERO SOLUTION. 
C 

DO 10 I=l,N 
W(I)=O. 
DO 10 J=l,N 

lo w(I)=w(I)+AT(I, J)*GV(J) 
zZ=o. 
DO 20 I=l,N 

20 ZZ=ZZ+WTK(I)*(W(I)*W(I) ) 
ZZ=SQRT(ZZ) 
WRITE(6,ll) ZZ 

11 FORMAT('O1, ' ( I ATG. 1 (=',~16.8) 
IF(ZZ.GE.1.E-20) GO TO 30 
WRITE (6,31) 

31 FORMAT ( ' 0 ' ,6X, ' SOLUTION IS THE ZERO FUNCTION', / ) 
GO TO 600 

30 DO 40 I=l,N 
DO 40 J=l,N 
ATA(1, J)=0: 
DO 40 L=l,N 

40 ATA(1, J)=ATA(I, J)+AT(T,L)*A(L, J) 
C 
C OBTAIN AN ACTUAL STARTING VECTOR AND INITIAL LAMBDA. 
C 

DO 50 I=l,N 
T(I)=O. 
DO 50 J=l,N 

50 T(I)=T(I)+ATA(I, J)*F(J) 
zz=o. 
DO 60 I=l,N 

60 ZZ=ZZ+WTK(I)*(T(I)*T(I)) 
ZZ=SQRT (ZZ) 
DO 70 I=l,N 

70 T(I)=T(I)/ZZ 
DO $U I = l , N  
R(I)=O. 
DO 80 J=l,N 

80 R(I)=R(I)+A(I, J)*T(J) 
CR=l . 
u=2. 
J= 1 



C 
. . '  OUTPUT SECTION FOR THE STARTING INFORMATION. C 

C 
WRITE(6,2) X 

\ 

2 FORMAT('O1, 'INITIAL LAMBDA=',E16.8) 
WRITE(6,3) 

3 FORMAT( ' of, 12X, 'X= ' ,18X, ' STARTING= ' , 12X, ' ATAF+LAMBDA*F-AT@ ' , I )  
t 

DO 170 I=l,N 
170 WRITE(6,4) XV(I), T(I),W(I) 
4 FORMAT(.'. ',3E24.8) ' 

WRI"p3(6;5) 
5 FORMAT('O1, 12X, 'Y=', 18X, 'AF-G=', 1 )  
DO 180 I=l,N 



180 WRITE(6,6) YV(I),R(I) 
6 FORMAT(' ',2E24.8) 
WRITE(6,7) CR 

7 FORMAT(' 0 ' , 'SCALING FACTOR=', E16.8) 
WRITE(6,8) YY 

8 FORMAT('O~,~MINIMUM VALUE=',E16.8) 
XX=X 

C 
C THE MAIN ITERATIONS OF THE ALGORITHM. 
C 
171 X=XX 

K= 1 
41 AA=AB 

W=ZZ 
DO 190 I=l,N 

. ww(I)=w(I> 
W(I)=O. 0 
DO 190 J-l,N . 

190 W(1)=W(I)+AT(I, J)*R(J) 
DO 200 I=l,N 

200 W(I)=W(I)+X*T(I) 
zz=o. 0 
DO 210 I=l,N 

210 ZZ=ZU-WTK(I)*(W(I)*W(I)) 
IF(ZZ. LT.DD) GO TO 403 
DO 220 I=l,N 
V(I)=R(I) 

220 F(I)=T(I) 
w=RR 
DO 230 I=l,N 
S (I)=O. 0 
DO 230 J=l,N 

230 S (I)=S (I)+A(I, J)*W(J) 
YLO. 0 
DO 240 I=l,N 

240 Y=Y+WTK(I)*(S(I)*S(I)) 
Y=Y+X* z z 
B=ZZ/Y 
DO 250 I=l,N 

250 T(I)=T(I)-B*W(I) 
DO 260 I=L,N 
R(I)=O. 0 
DO 260 J=l,N 

260 R(I)=R(I)+A(I, J)*(J) 
DO 270 I=l,N 

270 R(I)=R(I)-GV(1) 
RR=O. 0 
DO 280 I=l,N 



280 RR=RR+WTK(I)*(R(I)*R(I)) 
AB=O :O 
DO 290 I=l,N 

290 AB=AB+WTK(I)*(T(I)*T(I)) 
AB=RR+X*AB 
IF(K.EQ. 1) GO TO 201 
IF(AB.LT.AA) GO TO 201 
DO 30.0 I=l,N 
T(I)=F,(I) 
W(I)=ww(I) . . 

300 R(I)=V(I) 
RR= W 
ZZ=W 
K=K- 1 
GO TO' 401 

201 IF'(M-K) 600,401,301 
301 K=K+l 

GO TO 41 
403 K=K-1 
401 LL=LM-K 

IF(K.LT.M) GO'TO440' . 

WRI.TE(6,l) X 
1 FORMAT ( ' 0 ' ,3X, ',AT LAMBDA= ' , E 16.8,3X, ' THE MAXIMUM VALUE OF M HAS 

%BEEN ATTAINED') 
440 IF(X.EQ.BB) GO TO 601 

XX=XLMDA*X 
IF(XX.LT.BB) GO TO 610 
GO'TO 171 

. .  6io XX=BB. 
GO TO 171 

c 
C OUTPUT SECTION FOR THE FINAL RESULTS. 
C 
601 WRITE (G,23) , 
23 FORMAT( ' 0 ' , 12X, 'X= ' ,1'4X, 'FINAL SOLUTION F= ' , lox, 

% ATAF+LAMBDA*F-ATG= ',/ ) $ L . . 
DO 310 I=l.,N 
T(I)=T(I)/CR 
W(I)=W(6) /CR - 7 310 WRIn(6,4) XV(I),T(I),W(I) 
WRITE (6,s) 
DO, 320 I=l,N 
R(I).=R(I)/CR 

320 WRITE (6,6) YV(I),R(I) 
ZZ=ZZ/ (CR*CR) , 

RR=RR/(CR*CR) . . 

ZZ=SQRT (ZZ) . . 

RR=SQRT(RR) . .  
WRITE(6,26) ZZ,RR 



f 26 FORMAT(,'O1,' 1,. ATAF+LAMBDA*F-ATG 1'(=',~16.8,5~,' I (@-GI I=', 
%E16.8> 
WRITE (6; 28) LL 

28 FORMAT('O1, 'TOTAL ITERATIONS=', 16) 
CC=O. 0 

F DO 330 I=l,N . 
. . 330 CC=CC+W!I'K(I)*(T(I)*T(I)) 

CC=SQRT(CC) 
c, WRITE(6,9) CC . . 

9 FORMAT ( ' 0 ' , " NORM OF THE SOLUTION= ' , E 16.8 ) 
DO 340 'I=1, N 
V(I)=O. 0 
DO 340 J=l,N 

340 V(I)=V(I)+AT(I, J)*R(J) 
vw=o. 0 
DO 350 I=l,N 

' ' 350 WV=WV+WTK(I)*(V(I)*V(I)) 
VW=SQRT(VW) : 
WRITE(6,29) W V  . .  . 

29 FORMAT('O1, 8X, ' I ( AT(AF-G) 1 (=',~16.8) 
600 RETURN 

Ern . . 




