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ABSTRACT
An iterative method 1s developed to find an approximation to

the least squafeé solution of minimum L2(0,1) norm,.fo, of a
\ef

Volterra integral equation of the first kind

” AR X ‘
Lf(g) = Jok<y,x)f(x)dx =g(y) 0sys1

where g € L2(0,1) and
Loy 2 '
J J k(y,x) dxdy < o,
0*o0 R ’

CN(L) converging to £, is constructed.

. -]
A sequence {fx } 0

73 =t

‘ fx miniﬁizes the functional
]

' 2 2
%fﬂ=|hi-gn e, Ay >0
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Introduction

'We consider. the Volterra integral equation of the first kind,

y
KEG) = | k(r,0£@)dx = g(y) (1)
0 y

where k(y,x), g(y) are given functions and f(x) is to be determined.

- Here we assume that we have Riemann integration.

Hochstadt [ 5 ] notes that the equation -

y .
| k@meeax = g, 50) = 0 @)
0 .

reduces to a Volterra integral equation of the second kind if the
kernel k(y,x) and g(y) are continuously differentiable and k(y,y) % 0.
The Volterra integral equation (2) 1is then transformed into the

Volterra integral equation'of the second kind

‘ y
E(,Y) + | Iy, EE)dx = &' ()
. .
or

-8 g0 =0 )

Hochstadt gives a proof of the existance and uniqueness of the
solution to (3).

Mikhlen and Smoletskey [107] suggest that a numerical
approximation to the solution of (2) with the above hypotheses
can be obtained without reduction to an integral equation of tﬁe

U

second kind by the application of quadrature formulas. They



obtain the Systém of equations

i

n :
‘ (n) -
Z AN, xR = Bx) W
"where A(n) 0 for i =1, ..., n are the quadrature weights. From

.(4) an approximation to f(xn) is determined recursively at all mesh

points of the quadrature fofmdla, except for x, = 0 where they take

E' go)
k(0,0)°

0
£(0) =

Riesz and Nagy [15] consider the Volterra integral equation

Y | |
] 0k(y,X)f(x)dx =g(y), 0sy=<1l (5)

as a special case of the Fredholm integral equation of the first kind

1

LEGy) = | A,0Edx = g(y) 6)
0

k if =
Lo = (g9 HEy

where
We will assume that (1) is written in the form (6). In addition
S U I | '
we will. assume that I J
_ 0" 0
continuous linear operator from H

I £(y,x) | 2dxdy_< ® so that L is a completely

= L,[0,1] to &, = L2[0;1] and

1 2

g € L2[0,1] = H,.

We will use the notation: R(L) = range of L, N(L) = {f € H) : Lf = 0}

Iy ' .
and M = {f € Ho @ < f,h >= 0 for all h €M CZHI} where < , > denotes

inner product in the Hilbert space L2[0,1].



~ operator L H

From Strand [17] we have that for a completely continuous
9 = N(L*) + R(L) where R(L) is the closure of R(L),

, L —_ L
Hl = N(L) + (N(L)), and R(L*) = (N(L)).

We are interested in finding an approximation to the least
squares solution of minimum.norm, fo; of tﬁe operator equation

Lf = g where g € H2, when such a solution exists. Kammerer and

Nashed [ 8 ] give the folldwing definitions.

Definition 1. For f € Hl’ g €H,, an element £ € H, is a least

1

4équares solution of Lf = g if and only if

1€ - g [|=1tnf {|]nE-g || | £ €n )

Definition 2. For f € H,, g €H,, an element £, € H; is a least
équares solution of Lf = g and || fo [l < || I || for all least
squares soiutigns f of Lf = g. |

Strand.tij] notes that the least squares .solution of minimum
norm egists‘(is unique and in N(le) if and only if g E*HZ can |
be written in the form

B =8 +8
where 8, € R(L) and 8y € N(L*). For this paper we will assume g
is always iﬁ the form g =8 + 8y, with 8; € R(L). From Strand [17]
and Diaz and Metcalf [3'L f is a solution of
[l - ¢ || =tnf {||Th-¢g || [nER] D

if and only if f is a'soiufion to Kf = g. They also note that

1



“the least squares solutions to L*Lf = L*g and Lf = g, are

the same.
. - 11
Twomey [20], Phillips [14], Tikhonov [18] and Strand [17]

considers the functional

QE) = |JLE-g ||+ x || E£-p ]]°, x>0, (8)
where p € Hy is an estimate for the least squares solution of minimum

; o ! )
norm of Lf = g. Strand [17] proves that (8) is minimized by

-1
£, = (L + A1) ~ (L*g + Ap).
‘Strand [17] gives a proof of the fbllowing theorem,

Theorem 1. _fp = .1im f) exists and fp is the unique solution of
A - ot v ‘
L*Lf = L*g for which || £ - p |] 2 s a minimum.

For the case where p

0 we have an approximation to the least
squares solﬁtion of minimum nofm of Lf = g. In generaiva method
.for detérﬁing a good choice for A in actual abplications and
construction of the inverse to represent‘(L*L + A I)-1 is difficult
sincé (L*L + >\.I)-1 is generally ill-conditioned for a useful

choice for A.



Basic Theorem

The following theorem will be‘implemented as a numerical
Aalgérithm, felated to a steepest discent ﬁethod for Tikhonov-Twomey
regularization, which converges to the least squa;és solution of
minimum norm, when Such a solution exists. The metho; developed
allows one'to find an apprdximation~tq the solution of (L*L + ANL)f = L*g
for a A > 0; When the convergence fails or becomes slow then the
advantage of this mgthod is that a néw starting ﬁectof can be oBtained.

A proof and discussion of the theorem as well as a choice for the startiﬁg

vector f, . can be found in [13].
’ .

Theorem 2. If

1. f_ 1is the least squares solution of minimum norm

0
of Lf =
2. f. _ €H, be given as starting vector,
1,0 €t
3. {{f 37 n}n-O}J _; be a sequence such that
£, = f, -+
fam - Tien-l *j,n
whefe
W = L*Lf, + AN, f., - L*g
jyn j,n J 3,0
w > :
O SWyw Min .
<TH, ,Lw ST AW, S W, S oW, #0
. J,n jyn . ] J,n J,n
@, =
J,n

0 for all n > nj if nj is the first n

§uch that wj,n = 0,



4, '{xj};;l is a sequence of positive‘féal numbers |
éonverging to zero,

then for any‘é > 0 there exists positive integers.ﬁ and j

such that | |f~3; RIPY |

For j fixed in the above theorem Peterson [13] notes that

{£. }°° converges to f. = f_, the function in the R(L*) that
jyn°n=0 . ) kj j . o .
~ minimizes
- 2 2
o - (e |1 2eng [l 117
J
Let oo(L*L) be the set of non-zero eigenvalues of L*L. We.

have the following theorem; proven in'[13],'using the above
notation, related to convergence.
" Theorem 3. If y= inf Y,
: *
Y, € o (L*L)

then

R [ (R
ll‘fj,u - .Q |‘ = Y + Aj + = Y,

and




Discretization of the Integral Equation
~We will consider the real n-dimensional space R" with scalar

field the real numbers. Define a mapping from R"xR" to R by

n

(U,V) =< U,V>=2 TU,V,

=1 333
where U =v(U' U LU )T V = (V \' 'V )T and
1’ 2} * n ) Al’ 2, ¢ ) n i

Ij > 0, Tj'G R for ali j=1, ..., n. Thus we have a Hilbert

-space,'which will be denoted by H;. Let {e?, eg, vy ez} be

the orthogonal (not necessarily normalized) basis for H; where

n ] . T . -
ej = (0, .0, B L 4 ) s J=1, n.
o v
If A : Hp ~Hg then A* : Hg — Hy will denote the adjoint.

The following theorem is given in [13].

Theorem 4. If A : H- —HT,

=== T s

A= (T.a, ,)i=1,n then Ax = (S,a, .)j = 1,m.
S R 14,3 < 1,n

In this paper we will be restricted to- the case where

A Hg -H; and a, j = 0 for i > j, with the additional requirement
b4
that the Si for i =1, ..., n appearing in the lower triangular

matrix A depends on the row as well as thé column.

Theorem 5. - If A : Hg —‘Hg,
A= (Sgi)ai J)i=1,n where a . =0
J 1,3 j=1,n sJ
: s o = (j) PO
for i > j then A* = (8;"’a, ,)j = 1,n
i3 i=1,n
ﬁhere S(J) =S, for i +j

i



‘Proof: We will show that the above A* is the adjoint of A.

n n 2 (1) n
< Ae e, >=<2, S a; &

n
3 = >
k L i=1 k i,k L
N CA) n n
=S, a&,k~<e{,’ e, >
_ <)
= Sk aqus&
and
n n n - (i)
A% = :
< € A eL >= < s §LISL -aL,jej >
= S(k)a <e e >
I A 8 L Tk
(k)
= SL a&,ksk
n n
=< Aek{ e& >

for all k and 4, therefore A* is the adjoint of A.

Now we develop a method of discretization of the integral

equation
1 1 1
| 25,9 1meoaxay + 1) = | 4,980y (6)
0 0 0

- ) ’1
where from Bachman and Narici [2 ] L*f(s) =.J L4(x,s)f(x)dx is
0

the adjoint to L.

(6) is equivalent to

s

SIS gy I
[0 [ k0@axdy + rtes) = [ k(r,908may.  (7)
s ¢ i s .



Partition the interval [0,1] into n-1 equal subintervals,

€Y%, € [0,1] such that

0 =¥y <vy, <... < Yo = 1,
0= Xy <x, <... < X =‘1,

and -
0=t <t, <...<t,_ =1,

1 2 0 n

Now from (7) we can w;ite‘

j k(y, ;e )y = ZJ SR s + R G )
&y N
where Rn(ti) is the discretization error. Here S§i) >0 j=1i,n
: 1 . y . : .
and i = 1,n; For J k(y,cii)j k(y,x)£(x)dxdy we have
i

j MmtﬂkWJﬁ&MmY—ZS“k@,t)zsuhw,ﬁﬁ@Q+Rﬁ)A
. j= 1

where E(ti) is the discretization error. Thus‘(7) can be written in
the form, for s = ti’
(i

n
. (1) : Y
JZ. 1sj k(y sty ) 2 s k(yj,xk)f(xk) + xf.(ti) + R (t))

(8)

Z Sgi)k(y bty )g(y ) +R (t ).
j =1

[
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(8) can be written in the equivalent form -

(s‘i)k<y : ))j 1 n(S(J)m 1) s nEGD g o
| | k=l,n
i n (15 _ _ ‘
+ M(t) + R(ty) =2 S k(ygpt)8(yy) + R (ty)
J=1i

where k(Yj’xk) 9 for 'k > j, -

k(yj,ti) 0 for j>1i

) and

(v,)

denotes an {-dimensional column vector.

17i=1,4

Now taking i= i,' .., n we obtain the'linear syétem

(S(i)k(yj:ti)) R )k<y ,xk>> PERCICR N,
| Ln

J_.
k=1,n

»-AS :3

e o g N

a
o
-
Y .
==}

+ (Ru(ti) - R(ti))1=1,n

i, i=1,n and

For notational convenience we can take x, = t
replace the index k with i. ‘ |
For convenience, using the same uotation as for the original

integral equation, let

(J)

L= (5 k(y %))

(SN
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\ o (1) : n .n
x = | x . -t .
. »3=1,n -

5 -~  n

fx - (f(xi))i=1,n ’ 2 £ G Hs’

- - ! n

g= &) 0 , B €H
and .

- o ,i‘ : - n

Ry = Rp(xy) = Ry, 0 REHg

Now with theorem 5, the same error bounds hold, és déveloped
in [15], where L*Lfb = L*g + ﬁb, ﬁb'the disérétization error vector

in the matrix representation for

1
k(y,t)g(y)dy .

ji#(&)t)jZk(y,x)fo(x)dxdyb=;Jt

The theorem relating error bounds 1is given for the case where

g 1s not known exactly, we have

-,

y ‘ :
J k(y,x)f(x)dx = g(y) + €(¥),
0

where E(y).€L2[0,1]. (9) may or may notft have a solution, see
A7 . .
Strand [17].
Similar to the previous discretization we obtain the

matrix representation

WALE + AE = Tz + 1€ + R,

7

— '

where'R2 is the discretization error vector.
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The system of equationstactually solved is

1f g is known exactly, take € = 0.
‘ The proof of theorem 6 follows that given in [13] and will be

omitted here.

LALE + AF = L*g + L*€. (10)
Let f, be a term in the séquence defined in theorem 2
i,n, € .
for (10). If a bound for || L*€ || or || € || can be found, we
éan obtain.bounds on ll Ea - gj,n,E.!| where %;,E is the solution
to (10) as stated in the theorem below. .
Theorem 6.
||L*L(Eb,- E&,n;€)|| = ||§b|| + ||L*rEj,n,€-L*(§.+ 911 b
Coz o I TR R (T |
- =, SV ,n 0'" . J ]
HE, - fj’n,GH < hji'v + — — = 1Y 40 (13)
S [ AN AN =W AT -
- _ Nt j,n 0 ] 0 y
HfO B fj,ngéll = Y n v T NoHY (14)
Loz W e+ IR+ @+ B (1)
HeE, - £, - || s —2— 4 A : , if y # 0.
0 jym, €V’ >\j+Y 'YO\j'*"Y)
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Examples
.Example 1
We will consider the Volterra integral equation of the first kind .

y .
j Lo+ x+E@ax =2+ 2y 0<sys1 6
Y0 . ' A : .

with unique_solutfon f(y)'=Ay.

The quadrature method used for (15) was the trapezoidal method
with 11 equaily spaced points, so L*L : H%l -'H%l. The matrix operator
L*L constructed has smallest non-zero eigen&alue 5.08x10-5. For such a
 small minimum eigenvalue the error bounds given in theorem 6 are not
F'readily applicable.A Nﬁmericél:experimentétion iﬁdiéates that, in
‘général, a good choice for terminal hjlin the algorithﬁ given in the
appendix is to choose terminal xj to be such that’loxj-||gb‘| or
lej-!légll‘is of the same order of magnitude as ||§;l|.

For example 1, 1|§b'| was computed to be 1.2x10-3 and |]fb!| = /3/3.

Tﬁé following initial information was used in the algorithm in the

éppendix:
Terminal Lambda = 1.x10-4;
Control in ||W .||2 = 1.x10-12,
. . n, 3’
Lambda multiplier = .02,
and

Starting vector = (O.,0.,0.,0.,0.,0.,0.;0,,1‘,1.,1.)T.

The results of using the algorithm are given in table 1 under S1.
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The algorithm reduced the following norms to the results

indicated:
| IATAF + LAMDAYF - ATG || = .2333x107,
||aF - c|] = .1696x1073, |
-~ and |
| ||AT(Af.- ¢&)|] = .5975x10™%

after 554 iterations.
Examplé 1 was also sdlved using the method given in (4)

with results given in table 1 under S2.
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Table 1

X s1 D1 52 D2

0.0 0.0030 -0.0030 0. 0
0.1 0.0962 - 0.0038 .0972 0.0028
0.2 0.2002 -0.0002 .2004 -0.0004
0.3 0.2985 © 0.0015 .2979 ' 0.0021
0.4 0.3994 0.0006 .4005 -0.0005
0.5 0.4998 - 0.0002 4982 0.0018
0.6 ' 0.5981 0.0019 6006 -0.0006
0.7 0.7021 -0.0021 .6985 0.0015
0.8 1 0.7960 0.0040 .8006 -0.0006
0.9 0.9040 -0.0040 8987 0.0013
1.0 0.9904 0.0096 0540 -0.0540
Norm . of 0.5779 .  0.0033 5831 0.0126

Entries in table 1 rounded correct to four decimal places.

S1

S2

D1

D2

Computed solution from algorithm

in the appendix;

Computed solution using (4);
Actual solution - S1, pointwise;

Actual solution - S2, pointwise.
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Example -2
" We will consider the Volterra integral equation of the first kind

2 .
+ %y3 0<y<l, (17)

y . b} 3
j (x + yfx)dx = 3y
o , '
‘with least squares solution of minimum norm f(y) = 1 + vy
The quadrature method used for this example was the trapezoidal
rule with 11 equally spaced points, so L*L : HT" —»HT". The matrix

operator L*L has smallest non-zero eigenvalue 1.2x10-5.

For example 2{||§B||'was computed to be 6.5x10"% and

g, || = 1.5275.

4 The following information was used in the algorithm in
‘the appendix:
Terminal Lambda = 4.3x107°,

-12
Control on ||W ,||2 = 1.x10 1
: n, ] :

Lambda multiplier = .02

and
Starting vector = (0.,O:,O:,0.,0.,0.,0.,0.,1.,1.,1.)T.
The algorithm reduced the folloWipg_norms,tb the results

indi?ated:

||ATAf + Lambda*F - ATG | | =’.5642x10-5,

- laF - ¢|] = .2135x1073
and ‘

||AT(A£ - 6)|| = .6839x107*

after 151 iterations.
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The method suggested in (4) 1is not applicable since
k(0,0) = 0. The solution is not unique, however, the least

squares solution of minimum norm is unique.

Table 2
X ' 'A s3 D3
0.0 Lo 0.9949 ~ 0.0051
0.1 - 1.1 1.0934 ~0.0066
0.2 1.2 ©1.1965 0.0035
0.3 13 1.2995 ~ 0.0005
0.6 1.4 1.4014 -0.0014
0.5 . 1.5 - 1.4967 0.0033
0.6 - - | 1.6 . 1.6026 -0.0026
0.7 1 ’ 1.6988 : 0.0012
0.8 18 1.7982 0.0018
0.9 1.9 . 1.9026 -0.0030
1.0 2.0 1.9873 0.0127

Norm of . 1.5275 1.5264 A 0.0043

All entries are rounded correct to four decimal places,
A = Actual solution, pointwise;
S3 = Computed solution, pointwise;

D3

Actual solution - Computed solution, pointwise,



.18

. Example 3
We will consider the Volterra integral equation of the first kind
y o 1 1L
f sin(m(x - y))E(x)dx = 3V cos(my) - 3o sin (nny) (18)
0 : : ‘

0 <y <1 with least squares solution of minimum norm
£(y) = sin(my).

. The quadrature method used for this exémple was the trapezoidal
‘rule with 61 equaily spaced poin;s and»sécondly a simple partition
with 61 equélly spacéd points. "For example 3 the following iﬁformation
was used for. both the caée of the simple partitidn and the trapezoid31 _
rulg in thé algorifhm in the appendix:
Términal Lambda = S.6x10-6,-
“Gonerol on |1, |? = 1.x101,
‘Lambda multiﬁlier = .05,
| and

Starting vector = (al, Byg eves 361)

where a, = 1. fori=1, ..., 61.

The algorithﬁ reduced the norms given in table 3 to the results

indicated.
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The final results are given for selected points in table 4,

'|; || 0.4083x10-4 for the simple partition,
R. || = :
AO " 1 0.4024x107% for the trapezoidal rule.
Table 3
Trapezoidal Rule ' Simple Partition
N1 | © 0.5382x107° 0.5238x10"°
N2 0.5637x10™* .  0.5080x10”%
N3 | © 0.3728x107° 0.3975x107°
IT ~ 729 689
N1 = ||ATAF + LAMBDA*F - ATG ||,
N2 = ||aF - 6],
N3 = ||arcar - 6) |,
= Total iterations.

IT
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Table 4
X - A S4 D4 S5 DS\
0.0 0.0 0.0035 -0.0035 . 0046 -0.0046
0.1 0.3090 | 0.3091 ©-0.0001 .3090 0.0000
0.2 0.5878 0.5877 0.0001 .5878 o;oooo
0.3 0.8090 0.8084 0.0006 .8085 0.0005
0.4 0.9511 0.9511 0.0000 .9408 0.0003
0.5 1.0000 1.0016 - -0.0016 L0016 20.0016
0.6 0.9511 0.9498 0.0012 .9502 - 0.0008
0.7 0.8090 0.8059 0.0031 8056 0.0034
0.8 0.5878 0.5965 -0.0087 .5973 -0.0095
0.9 '~ 0.3090 ' 0.2941 0.0149 .2901 - 0.0190
1.0 0.0 0.0 0.0 |
" Norm of 0.7068 0.7066 .0134

0.7071

0.0107

All entries rounded correct to four decimal places,

A = Actual solution, pointwise;

N

s4

D4

85

D5

Computed solution, pointwise,
using a simple partition; -

Actual solution - Computed solution;

Computed solutidn, pointwise, using
trapezoidal rule;

Aétual solution - Pointwise solution.
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Conclusion
. The dropping of the requirement that k(y,y) #0 for 0 <y <1
gives the algorithm an advantage over the methods found in the
literature. . ‘
An upper g;;ndifor l|§b|| can be difficult to obtain unless -
some informafion about the.solutionAis'known.

A better, more useful, method for obtaining theoretical error

bounds should be obtained.
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Appendix

Subroutine BiT is a program written to find a A-approximate

least squéres solution of minimum norm of an Volterra integral

‘.equation of the first kind. The subroutine BIT assumes that the

integral equation is of the form

LEG) = [k, 0EGEx = £(), y € (0,11
6 A

A driver program must be written which obtains the follo&ing

information:

1.

Partitions the interval integrated over, [0,1], into
N-1 subintervals. The ‘N-points constructed are stored
in XV and YV. ' : :

Construct the vector GV(I) = g(YV(I)) I=1,N,

Construct the NxN matrix A representing the operator L.

Constrdct the NxN matrix AT representing the operator L*.
Construct the vector WIK of weights for integration,

The driver program must be dimensioned as the dimension
statement for the subroutine BIT. /

The driver program musl supply the controls on convergence
given by

XIMDA = Lambda multiplier,
BB = Terminal Lambda, '
'M = Maximum number of iteration per
change in Lambda,

. and

DD = Control on ||ATAF + LAMEDASF - ATG | |2.
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SUBROUTINE BIT(N,A,GV,WIK,XV,YV,F,XLMDA,M, BB, AT

%ATA,R,T,V,W,WW,S,DD)

10

20

11

31

30

40

50
60
70

80

IMPLICIT REAL*4 (A-H 0-2)

DIMENSION A(N,N),AT(N,N),WTK(N),W(N),XV(N),YV(N)
DIMENSION F(N), ATA(N,N),GV(N),R(N),V(N),WW(N), S(N)
DIMENSION T(N)

LL=0

TEST FOR A ZERO SOLUTION.

DO 10 -I=1,N
W(I)=0.

DO 10 J=1,N

W(I)=W (I)+AT(I, J)*GV(J)
2Z=0.

DO 20 I=1,N
2Z=ZZAWTK (I)* (W(I)*W (L))
ZZ=SQRT(ZZ)

WRITE(6,11) ZZ

FORMAT('0', ' || ATG. ||=',E16.8)
IF(2Z.GE.1.E-20) GO TO 30
WRITE (6,31)

FORMAT('0', 6X, ' SOLUTION IS THE ZERO FUNCTION', /)
GO TO 600

DO 40 I=1,N

DO 40,J=1,N

ATA(I,J)=0.

DO 40 1=1,N

ATA(I,J)=ATA(I, J)+AT(I,L)*A(L, J)

OBTAIN AN ACTUAL STARTING VECTOR AND INITIAL LAMBDA.

DO 50 I=1,N

T(1)=0.

DO 50 J=1,N
T(1)=T(I)+ATA(I, J)*F(J)
72=0.

DO 60 I=1,N
ZZ—ZZ+WTK(I)*(T(I)*T(I))
ZZ=SQRT(ZZ)

DO 70 I=1,N
T(I)=T(1)/2Z

DO 80 I=1,N

R(I)=0.

DO 80 J=1,N .
R(T)=R(I)+A(T, J)*T(J)
CR=1.

U=2.

J=1
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92 X=0.0
DO 90 I=1,N :

90 X=X+(GV(I)=R(I))*(R(I)*WIK(I))
IF(X.GE.0.0) GO TO 1000 :
IF(J.EQ.2) GO TO 1001
J=J+1
DO 100 I=1,N
T(I)=-T(I)

100 R(I)=-R(I)
GO TO 92
1001 DO 110 I=1,N
110 GV(I)=U*GV(I)
J=1
CR=CR*U
GO TO 92
1000 DO 120 I=1,N
120 R(I)=R(I)-GV(I)
RR=0.0
DO 130 1=1,N
130 RR—RR+WTK(I)*(R(I)*R(I))
DO 140 I=1,N _
W(1)=0.0
~ 'DO 140 J=1,N
140 W(I)—W(I)+AT(I J)*R(J)
DD=DD*CR*CR
22=0.0
DO 150 I=1,N
150 ZZ=ZZ+WTK(I)* (W(I)*W(I)).
YY=Z2Z-X*X ' ‘
AB=RR+X
DO 160 I=1,N = - "
160 W(I)=W(I)+X*T(I)

OUTPUT SECTION FOR THE STARTING INFORMATION

WRITE(6 2) X
2 FORMAT('0', 'INITIAL LAMBDA=',E16.8)
WRITE(6,3)
3 FORMAT('0',12X, 'X="', 18X, 'STARTING="',12X, ' ATAF+LAMBDA*F-ATG=", /)
DO 170 I=1,N '
170 WRITE(6,4) XV(I),T(I),W(I)
4 FORMAT(''',3E24.8) -
© WRITE(6,5)
5 FORMAT('0',12X, 'Y=',18X, 'AF-G=",/)
DO 180 I=1,N
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180 WRITE(6,6) YV(I),R(I)
6 FORMAT(' ',2E24.8)
WRITE(6,7) CR
7 FORMAT('0', 'SCALING FACTOR=',E16.8)
WRITE(6,8) YY
8 FORMAT('0', 'MINIMUM VALUE=',E16.8)
XX=X :

THE MAIN ITERATIONS OF THE ALGORITHM.

171 X=XX
K=1

" 41 AA=AB
YY=27Z
DO 190 I=1,N
WW(I)=W(I)
W(I)=0.0
DO 190 J=1,N .

190 W(I)=W(I)+AT(I,J)*R(J)
DO 200 I=1,N .

200 W(I)=W(I)+X*T(1)
22=0.0.
DO 210 I=1,N

210 ZZ=ZZAWTK(L)* (W(I)*W(I))
IF(ZZ.LT.DD) GO TO 403
DO 220 I=1,N
V(I1)=R(I)

220 F(I)=T(1)
VV=RR :
DO 230 I=1, N
$(1)=0.0
DO 230 J=1,N

230 S(I)=S(I)+A(IL,J)*W(J)
¥=0.0
DO 240 1=1,N

240 Y= Y+WTK(I)*(S(I)*S(I))

=Y+X*ZZ ‘

B=2z/Y
DO 250 1=1,N

250 T(I)=T(I)-B*W(I)
DO 260 1=1,N
R(I)=0.0

- DO 260 J=1,N

260 R(I)=R(I)+A(IL,J)*(J)
DO 270 I=1,N

270 R(I)=R(I)- GV(I)
RR=0,0 ,
DO 280 I=1,N
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280 RR=RR+WTK(I)*(R(I)*R(I))
AB=0.0
DO 290 I=1,N
290 AB=AB+WTK(L)* (T(I)*T(I))
AB=RR+X*AB
IF(K.EQ.1) GO TO 201
IF(AB.LT.AA) GO TO 201
DO 300 I=1,N
T(I)=F(I)
W(I)=WW(I)
300 R(I)=V(I)
" RR=VV
22=YY
K=K-1
GO TO 401
201 IF(M-K) 600, 401 301
301 K=K+1
GO TO 41

403 K=K-1

401 LL=LI+K
IF(K.LT.M) GO TO 440
WRITE(6,1) X
1 FORMAT('0',3X, 'AT LAMBDA=" ,E16.8, 3%, 'THE MAXIMUM VALUE OF M HAS
%BEEN ATTAINED') ‘ A
440 IF(X.EQ.BB) GO TO 601
XX=XLMDA*X -
IF(XX.LT.BB) GO TO 610
GO TO 171 ' ~
610 XX=BB
GO TO 171

OUTPUT SECTION FOR THE FINAL RESULTS.

601 WRITE(G,23) - :
23 FORMAT('0', 12X, 'X=',14X, 'FINAL SOLUTION F=', 10X,
" %'ATAF+LAMBDA*F-ATG=',/)
DO 310 I=1,N
T(I)=T(I)/CR
W(I)=W(I)/CR
310 WRITE(6,4) XV(I),T(I),W(I)
WRITE(6,5)
" DO 320 I=1,N
: R(I)=R(I)/CR
320 WRITE(6,6) YV(I),R(I)
- '22=22/ (CR*CR) .
RR=RR/ (CR*CR)
ZZ=SQRT(ZZ)
RR=SQRT(RR) .
WRITE(6,26) ZZ,RR
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28

29

FORMAT(YO','I|'ATAF+LAMBDA*F-ATG ||=',E16.8,5%, ' | |AF-c | |=',
%E16.8) ' S
WRITE(6,28) LL

FORMAT('0', 'TOTAL ITERATIONS=',16)
€C=0.0 :
DO 330 I=1,N .

330 CC=CCHWTK (I)*(T(I)*T(1))

340

"~ 350

29
600

CC=SQRT(CC) .

WRITE(6,9) CC . .
FORMAT('0', '"NORM OF THE SOLUTION=',E16.8)
DO 340 I=1,N o

V(I)=0.0

DO 340 J=1,N ‘
V(I)=V(I)+AT(I,J)*R(J)

Vvv=0.0

DO 350 I=1,N ‘ ,
VVV=VVVHWTK (I )* (V(I)*V (1))

VVV=SQRT (VVV) :

WRITE(6,29) VVV : I
FORMAT('0',8X, ' || AT(AF-G) |]=',E16.8)
RETURN ' '
END





