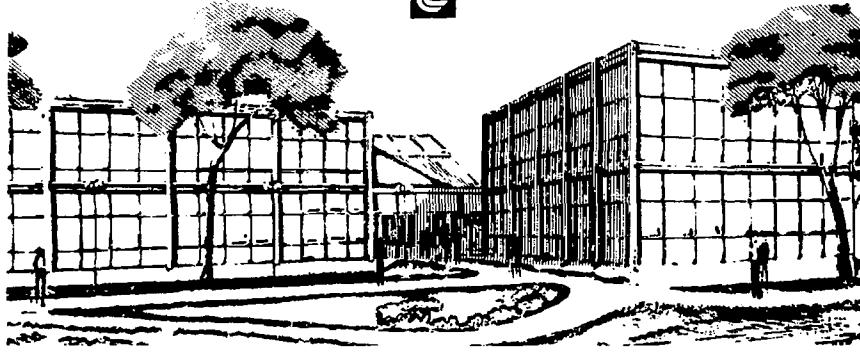


CONF-760703 - - 3

Lawrence Livermore Laboratory

M0200: A MODEL FOR EVALUATING SAFEGUARDS THROUGH MATERIAL
ACCOUNTABILITY FOR A 200 TONNE PER YEAR MIXED-OXIDE
FUEL-ROD FABRICATION PLANT


R. H. Sanborn

March 16, 1976

Prepared for presentation at the 1976 Summer Computer
Simulation Conference, July 12-14, 1976, Washington, D.C.
and publication in the proceedings of the meeting.

MASTER

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

MO200: A MODEL FOR EVALUATING SAFEGUARDS THROUGH MATERIAL ACCOUNTABILITY FOR A 200 TONNE PER YEAR MIXED-OXIDE FUEL-ROD FABRICATION PLANT*

Russell W. Sanborn
Lawrence Livermore Laboratory, University of California
Livermore, California 94550

NOTICE

This report was prepared in an account of work for the United States for the U.S. Energy Research and Development Administration, and its contents are not necessarily indicative of the views of the Administration, nor does mention of trade names, manufacturers, or their employees, make any statement, express or implied, or assumes any legal liability for any use of the information contained in this document. It is the responsibility of the user to determine the use of information, apparatus, product or process disclosed, or representations that its use would not infringe privately owned rights.

ABSTRACT

MO200 is a computer simulation model of a proposed 200 tonnes per year mixed-oxide fuel-rod fabrication plant that has been used to investigate the safeguarding of plutonium dioxide through material accountability. The computer program operating the model was constructed so that replicate runs could provide data for statistical analysis of the distributions of the randomized variables. The model was divided into material balance areas associated with the following processes: (1) manufacture of plant; (2) operations studied were modified end-of-blend material balances, end-of-blend errors formed by closing material balances between blends, and cumulative sums of the differences between actual and expected performance.

INTRODUCTION

It is possible that recycled plutonium in the form of plutonium dioxide (PuO_2) derived from the reprocessing of spent fuel from nuclear reactors will be introduced into the nuclear fuel cycle. This has forced a thorough examination of the present methods of safeguarding Strategic Special Nuclear Materials (SSNM) by the Nuclear Regulatory Commission (NRC). The NRC report (1) concludes that all aspects of safeguarding SSNM should be improved, not only because of the threats of loss or diversion, but also because of the substantial health hazard of PuO_2 . The goal is to develop methods and statistics good enough to assure adequate safeguards in the processing of SSNM. Physical security of SSNM must be supplemented by inventory and accounting techniques.

Present day material balance accounting for the relatively small quantities of PuO_2 involved in the commercial sector generally has limits of error of the order of 0.5 to 1% of throughput. When extrapolated to the tonnes possible in the future, these errors amount to kilogram quantities of SSNM. Moreover, results are only available at monthly or bimonthly intervals since physical inventories are required. The sensitivity and timeliness of today's method of material control needs to be greatly improved.

Automated accounting systems that log SSNM in and out of material balance areas (MBAs) improve the availability of accurate records, but cannot verify the actual presence of SSNM. Periodic physical inventories are still required to reconcile the book inventory with the actual content of the MBA. Maximum limits on inventories could be set in order to reduce the chance of significant loss. However, if information from the logs were put in a time reference frame and compared to standard behavior it could be used for timely, sensitive loss detection. This means that intimate knowledge of the process must be incorporated into the safeguarding of SSNM.

A plant can be divided into "unit processes" where material changes in form or composition or where by-product is generated. It would be convenient to incorporate the unit processes in MBAs. If the parameters of a unit process are identifiable and the time behavior is either a continuous or discrete sense is thoroughly consistent, then criteria can be developed for detecting unexpected loss mechanisms.

Existing plants where PuO_2 is handled utilize pilot plant production lines that use conventional equipment enclosed in glove boxes. Attempting to instrument such process lines for demonstrating the adequacy of new material control techniques has been suggested but would require great expense and time, disrupt the present use of the process lines, and produce results that might not be applicable to a high-throughput, custom-designed operation. Simulation of plants of the future, however, is one way to investigate both the plant operations and the material control instrumentation and to have results available in a reasonable time.

*Work performed under the auspices of the U.S. Energy Research & Development Administration, under contract No. W-7405-Eng-48.
**Metric ton.

This paper describes a simulation model, MO200, that has been used in a special Safeguards Study by the NRC to demonstrate various techniques that use automated measurements and in-line processing. State-of-the-art technology was assumed in the model in order to assess the present limits of PuO_2 accountability. The necessary stringent physical security measures were not under consideration for the model. The proposed Westinghouse Recycle Fuels Plant (2) (RFP) for mixed-oxide (PuO_2) fuel-rod fabrication at Anderson, S.C., was used as the basis of the model. The model uses in-line nondestructive assay (NDA) methods in a highly automated plant operating, and to assess the effects of scale on plutonium accountability. The 200 tonnes of mixed oxide (PuO_2) fuel throughput per year will require the processing of about 10 tonnes of PuO_2 . The automation envisioned for the RFP plant would not only minimize worker exposure to PuO_2 and provide some physical security, but also would greatly improve the repeatability of operations. The repeatability would lead to reliable statistics that could be available for process control and detection of off-normal events.

The model was expected to be versatile so that hypothetical questions could be answered. This required that both parameters and some sets of data could be easily modified. The development of a reasonable simulation required consideration of the plant as a system. In the process, we obtained insight into the problems of plutonium accountability.

DESCRIPTIVE MODEL

The Westinghouse license application (2) was used in constructing the model. Where necessary information was lacking in the application, nominal values typical of current industry practice were estimated. (3)

Fuel-rod fabrication involves making sintered (ceramic) cylindrical nuclear fuel pellets, stacking them into rods, and eventually assembling the rods into bundles for fueling nuclear reactors. The unit processes for the model were considered as black boxes, for detailed operation was concerned. They would be characterized by their inputs and outputs, for scrap, waste and holdings generation, and a delay from input to output. The holdup is material that accumulates in cracks and crevices and coats the walls of the processing equipment. Flows occur in discrete quantities throughout the plant. The process description that follows is oriented toward PuO_2 since the UO_2 is either natural or depleted in ^{235}U , and not considered SSNM.

Flowchart

The flow chart developed for the model is basically the Westinghouse flowchart with in-line NDA measurements inserted between the unit processes (see Fig. 1). Supporting services that were not really part of the main problem were Analytical Services, Miscellaneous Waste Treatment and Fuel Rod Shipping. Clean Scrap Recovery and Recycle MgO Storage were included in the model.

Fuel Rod Fabrication

The MgO fuel rod fabrication process for the model was decomposed into the unit processes:

- (1) PuO_2 Unloading - PuO_2 receiving and unloading a blend into one of three PuO_2 storage vessels.
- (2) Blending - blending of PuO_2 , UO_2 , and recycle MgO to form sub-blends or batches and storage in one of nine MgO storage silos.
- (3) Pelletizing - pelletizing the blended powder and loading the pellets into sintering boats and storing the boats in green pellet storage.

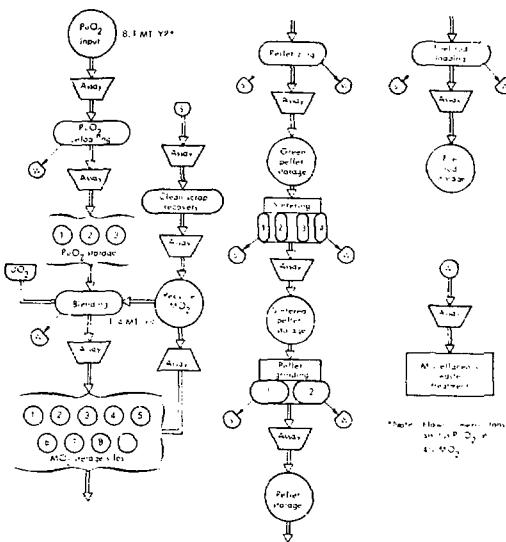


Fig. 1. Flow chart for PuO_2 proposed 200 tonne/year mixed-oxide fuel cycle plant.

- (4) Sintering - sintering the pellets of a batch in one of four sintering furnaces and placing the finished boats in storage.
- (5) Pellet Grinding - grinding the pellets of a batch in one of two grinders, inspection and loading acceptable pellets onto trays, and storing the trays.
- (6) Fuel Rod Loading - loading the pellets into fuel rods, sealing the rods by welding, inspection, gamma scan for uniformity and quantity of PuO_2 , and storing the finished fuel rods.
- (7) Clean Scrap Recovery - recovering clean scrap produced within the unit processes and adding it to Recycle MO_2 Storage.

Operation of the Recycle Fuels Plant

It is expected that the Anderson plant will process a blend of mixed oxide powder (about 4% PuO_2) in a week of 21 shifts of 8 h each. The equipment would then be cleaned for two shifts before starting the next blend. The cleanup would progress through the plant, not at the same time for all processes. The unit processes were sized to handle a sub-blend or batch in one shift. The automation includes pneumatic transfer of powder, location of storage vessels on load cells, automated feed hoppers capable of weighing, automated conveyors for pellet boats or pellet trays, walking beams for moving the pellet boats through the temperature profile of the sintering furnaces, and automated pellet testing and inspection.

Process Parameters

The seven unit processes used for the computer model are described in Table 1 by their respective process parameters of average scrap, waste and holdup factors, nominal discrete output quantities of PuO_2 , and processing time per unit. Three PuO_2 storage vessels were used so that one would be supplying PuO_2 to the process, one would be waiting for off-line analysis of the PuO_2 , and the third would be receiving the next shipment. Off-line analysis of the blended MO_2 powder would require approximately 48 h so the nine MO_2 storage silos provide buffer

capacity for input into the pelletizing operation. Off-line specification MO_2 would be removed to Recycle MO_2 Storage about once a week. Sintering requires about 20 h so four furnaces would be needed in order to average a batch per shift. The pellet grinders would even out the supply of pellets to fuel rod loading.

COMPUTER SIMULATION MODEL

Methodology and Programming

Time period modeling was chosen as the simulation method. In this method simulation time is advanced in fixed increments. After each increment the program cycles through the list of processes currently active and updates the state of each as compared to the simulation time. The progress of each simulation variable during the simulation can be easily displayed. The CSIM simulation package, although it uses a continuous system simulation language, was employed in constructing the model. A dummy integration was needed in order to make the translator work properly. The run-time support package of CSIM has distinct advantages for run-time modification of parameters, for retaining values of simulation variables at fixed increments in

Table 1. MD200 unit processes.

No.	Unit process	Unit output kg PuO_2	Unit rate Scrap kg PuO_2 /h	Scrap factor	Waste factor	Holdup factor
1	PuO ₂ Unloading	2.25 (can)	2.222	0.	0.0025	0.3514
2	Blending	9.0 (silos)	7.5	0.	0.0088	0.0019
3	Pelletizing	0.36 (boat)	0.227	0.004	0.0027	0.3072
4	Sintering	0.36 (boat)	20.	0.0090	0.0004	0.
5	Pellet Grinding	0.36 (tray)	0.354	0.0810	0.0012	0.0070
6	Fuel Rod Loading	0.080 (rod)	0.0625	0.0118	0.0007	0.
7	Clean Scrap Recovery	0.934	7.5	0.	0.0063	0.0021

simulation file for subsequent plotting, and for halting replicate runs with different randomization. The explicit type of CSMSL program with INITBLD, INITBLD, and TIMBLD sections was selected.

The simulated operations of the fabrication plant were carried out in Fortran code *subroutines*. The L0200 of the Fortran code created by the CSMSL translator was extracted from the file containing the code to a short program after successful compilation. It was then inserted into the subroutines library necessary in the NCALY library of the GCA SOURCE operating system. This procedure completed the linkage between the CSMSL generated code and the subroutines and allowed more versatility than in the segments in the subroutine calls. The subroutines were then compiled as the next step in the job sequence. Since a file containing the L0200 was retained during model development the main program had to be translated when the file and variables of parameter tables were changed, or when a change in the sequence of events was desired. Newer versions of subroutines were loaded into the memory by the GCA L030 loader during debugging computer runs.

It was more convenient to treat some of the variables in the subroutines as elements of arrays. This enabled the use of a single subroutine for several of the unit processes; however, the run-time support provided by CSMSL allows only simple variables to be referenced in input or output since its indexing is in terms of simple tables. It was possible to do this by ordering the first references to the simple variables during initialization in the CSMSL language program such that the memory locations appeared similar to an array. A DIMENSION statement with a new variable name and an EQUIVALENCE statement in the subroutine was that which was required to properly point to the correct memory location when an index for the array element was used. The collection of derivative statements for the subroutines was in a single record and was inserted into the subroutines during the CSMSL compilation.

Design Criteria

The types of computer runs that were expected to be of interest influenced the design of the computer program and model. A partial list of the criteria considered includes:

- (1) Test the design and scaling of the plant.
- (2) Be able to observe the position identification of SSMs as a function of time.
- (3) Evaluate the burden of in-line SDA instrumentation on the throughput of the plant.
- (4) Compare different SDA measurement techniques.
- (5) Observe the time series behavior of the unit processes and associated SSMs.

- (6) Observe the errors in amounts of SSMs to be expected, both true errors and relative errors, during shift operations and at the closing of material balances after cleaning between blends.
- (7) Evaluate the theft detection capability of material accounting for both single and multiple thefts.

Simulation Measurements

In a real plant, observations (estimations) are made by taking measurements that are corrupted by noise. Figure 1 shows a unit process model (1) used for the program and the associated information flow. The amount of material going into storage is measured to an accuracy and precision determined by the systematic and random errors associated with the measurement. The product output of the process is measured before it goes into the next storage area. Scrap and waste output are also measured. It is believed that accumulations in the process holding can only be known by difference. In order to do material balance accounting, one close the material balance, the residue must be physically measured. This will be made clear later.

Simulation of measurement noise and other random errors in the computer model was performed by independent, a random number generator for each unit process. Since each computer run uses only a possible sequence of random numbers for each generator, provision was made for making several runs with different seeds for each of the generators.

The computer model really contained two parallel models, an independent model of the true values of random variables and a dependent model visualizing measured quantities. The true quantity of flow had its measured counterpart. Measurements were simulated by multiplying the true contents of a vessel by the factor $1 + \text{Gaussian}(\text{SDM})$ where the function represents a normal distribution random variable with mean zero, the calibration error, and standard deviation SDM, the relative static error. SDM was the seed value for a recursive uniform pseudo-random number generator. The calibration error was picked at each calibration time from a normal distribution with zero mean and standard deviation equal to the relative static error of the measurement being simulated. We assumed a 100% SDM error so there was no sampling effect.

Scheduling of Events

In keeping with the automation theme expected for the plant, a subroutine was written for the computer program that would act as a master controller and scheduler. This subroutine could read the status of input storage areas and unit processes and the position of batches throughout the plant for

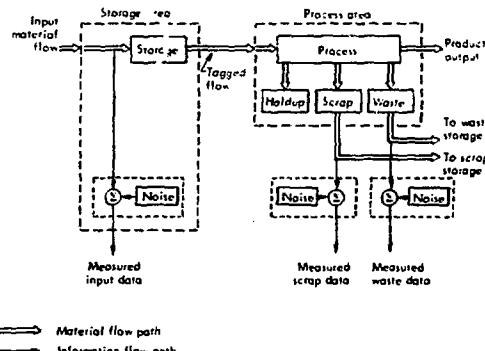


Fig. 2. The structural features of the unit processes for the M0200 simulation model.

as the batch products output based on the batch inputs. Both the batch inputs and outputs are distributions of values and care must be taken when the ratio is used. Although they have normal distributions themselves, the ratio is a Cauchy distribution, which can deviate from normality by a large margin. When the ratio is close to 1 and the distributions are well behaved, the ratio can be treated as having normal distribution. The evaluation of batch efficiencies was left to further study.

300-115 9753

In general, the simulation runs were carried out on 400×400 simulation areas, of 1000 units. A blend consisted of 20 input areas with 2.5 kg of $Poly_1$ in each. Two blends of $Poly_1$ were put through the reactor, one at a time, for initialization so that material would be ready for blending at time zero. The $Poly_1$ blend was initialized with 20 kg of $Poly_1$ (15.2 kg of MgO) before time zero and the weight simulated for a mean value. The rest of the plant was started up clean. The $Poly_1$ was sufficient for more than three blends to be completely processed. This was set at lower than the steady-state steady infiltration of 40 kg of $Poly_1$ to make the simulation include start-up, steady-state, and shutdown. The steady-state and steady-state blend were the same. The heat effect was also to obtain the steady-state blend. The steady-state was on a 100-unit, 100-unit, 200-unit, 200-unit, 200-unit scale. In some instances, in order to determine the range that values of the random variables could have for a blend, 1000 replicates would be needed for a reasonable statistic.

The total tree effect on the plant Pu-239 content was estimated through 20 separate runs of MCNP. The range of ΔV vs. P_{Pu} can be converted into terms of the total equilibrium plant inventory of about 100 kg of Pu-239. This may be viewed as an indication of the quality of the measurement configuration used in the model. The plant output over the course of the simulation was also about 100 kg of Pu-239 fuel rods.

ASSOCIATION OF THE PRACTICE

The evaluation of how accountability and theft detection was the prime interest for the Spectral Safeguards Study. The NSA access criteria for the model were chosen in conjunction with science applications in the 1980's and were close to state-of-the-art. Practical implementation to the level implied by the entries in Table 1 might prove difficult.

Table 4 gives the range of the end-of-shift ROM errors calculated in closing the material balance between blends. These are not the "true" errors, but are the relative errors internal to the measurement model. The results suggest that the model structure for blending might be defective, and that the Clean Scrap Recovery cell does not have adequate measurements. The model used a survey measurement of the P-10s in the Recycle Nitrogen Storage vessel and the clean scrap melting factor in order to have a value for closing the material balance. Also included in Table 4 is the end-of-shift (EOS) "true" error in the ROM inventories. The values parallel the ROM errors except for Clean Scrap Recovery. The survey measurement of the Recycle Nitrogen Storage vessel was not used for the inventory value.

The Fully Unloading placentas and TGA were chosen as examples since the FUD was unlinked with CO₂ and thus would be the most attractive for theft purposes. The replicate runs demonstrate the fact that the values of variables used in accounting will

be from distributions, because of the variability allowed in plant operations, and because of measurement errors. Judging whether or not a theft has taken place will depend on whether or not the measured value belongs to the distribution of standard values. Five successive inputs of 0.53 kg of Pulp were simulated. These were from single input cans, and occurred between weighing of the can and measurement of the contents at the Pulp storage vessel. Two cases were considered in order to show that the choice of measuring instrumentation in the plant is important. In Case 1, the weight of the contents of the can at the Pulp storage vessel was taken as the difference between the weight of the Pulp storage vessel filled with the measurement addition. The vessel would then be accurate if the measurement could be degraded to the first difference. In Case 2, the numbers would have to be used. In Case 1, it was assumed that the Pulp storage vessel could be provided with an input hopper. Hopper that would only measure the received contents. One can at a time. This would greatly improve the measurement of variance inherent into the vessel.

Three different techniques of using measurement data for quality control in the two cases will be described.

Measurement: Indicators

Except for the flittering MBA, there was no Party on the processing areas at the completion of shifts except for the buffer. A modified material balance, calculated at the end of shifts for each MBA would be indicative of the status of the processing area with respect to losses. The indicator for MBA indicator may be defined as:

Beginning Inventory + (Purchases - Disbursements) = Ending Storage Stock.

The beginning inventory is for the start of a blend and the flows are for the blend period.

Figure 3 and Table 12 sections of the Refinement

Figures 3 and 4 show 20 replicas of the 305 indicator film. Estimated width of the 305 film is 1.0 mm.

new embedding with a theft of 0.75. It was necessary to recompute the end of the second blend. The characteristic times and α values at the holdup mechanism during each blend is very evident. The general decline in the peak heights was caused by the fact the holdup factor was reset between blends. The distribution of values for the shift with the theft overlaps the standard distribution so that the detection probability would be very low, less than 10%. The deviation from the range of permissible values is shown for the two cases. In Case 1 the time sequence of values was being followed then it is likely that the 0.75% theft would have been detected in both cases and α . The theft actually was in five stages, 0.15 kg per stage from successive input tanks. The time series for Case 2 were much better behaved than in Case 1 and the detection of just one 0.15 kg theft would appear possible.

Digitized by Google

The clearing of material balances between blends would produce discrepancies or errors that would lie within certain ranges (see Table 4). Values outside those ranges would point to non-standard behavior. Figures 5 and 6 show the End-of-Blend (EOB) error for pulp blending for Cases 1 and 2, again with the same 0.75 kg theft of pulp, from the second blend. The distribution for the EOB error after the theft overlaps the standard distribution for both of the cases, although less in case 2. The detection probability of the 0.75 kg theft would be substantially less than 1.0 in both cases.

Author's Note

That detection would be more sensitive if the standard behavior could be removed from the detection algorithm. The difference between the current, value and a nominal value was taken as the basic element of a cumulative sum (CUSUM) of the differences. The CUSUM should average about zero if all the standard behavior were removed. If standard behavior is not completely removed then this technique amplifies discrepancies. The unit process model was used to provide the expected values of the differences to be used in the batch data, then caution could be used since the current and last values in the sums may depart significantly from the values calculated from afar for the parameters of the model.

For PuO_2 Unloading in the processing of a blend, the Cumulative was defined as:

was defined as:

$$\text{Cusum} = \text{(increment to PuO}_2\text{ storage vessel)} - \text{(Measured can content)}(1 - \text{(holdup factor)}) - \text{(waste factor}).$$

Table 4. End-of-Blend (EOB) catalytic errors and end-of-shift EOB errors from replicate runs of 30000.

Material balance area	EUN relative errors kg PbO_2	EDS true errors kg PbO_2
1 PbO_2 Unloading	+1.6 to -1.0	+2.5 to -2.5
2 Blending	+0.57 to -0.25	+0.8 to -0.5
3 Pelletizing	+0.4 to -0.4	+0.55 to -0.62
4 Sintering	+0.14 to -0.18	+0.2 to -0.2
5 Pellet Grinding	+0.19 to -0.21	+0.2 to -0.2
6 Fuel Rod Loading	+0.47 to -0.49	+0.55 to -0.45
7 Clean Scrap Recovery	+8.5 to -8.5	+0.2 to -1.5

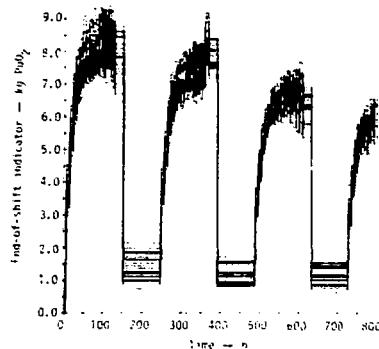


Fig. 3. End-of-shift indicator, PuO_2 Unloading, vs time, Case 1: theft of 0.75 kg of PuO_2 from second blend (20 replicate runs).

Fig. 5. End-of-blend error, PuO_2 Unloading vs time, Case 1: theft of 0.75 kg of PuO_2 from second blend (20 replicate runs).

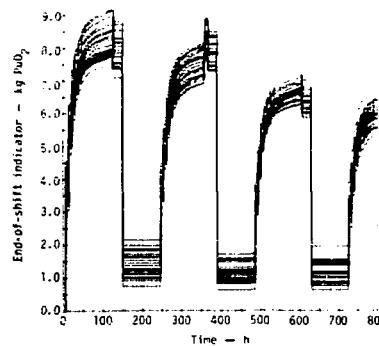


Fig. 4. End-of-shift indicator, PuO_2 Unloading, vs time, Case 2: theft of 0.75 kg of PuO_2 from second blend (20 replicate runs).

Fig. 6. End-of-blend error, PuO_2 Unloading, vs time, Case 2: theft of 0.75 kg of PuO_2 from second blend (20 replicate runs).

The can content was the value obtained by calorimetry. The holdup and waste factors were those used in the model of the unit process. Figures 7 and 8 show the Cusums for Cases 1 and 2 with the 0.75 kg theft of PuO_2 during the processing of blend two. In Fig. 7 the Cusum for each blend grew in uncertainty as the PuO_2 storage vessel became full. The theft is evident, but not too much different from normal. The improved precision of the measurement of increments to the PuO_2 storage vessel in Case 2 is clearly seen in Fig. 8 in the reduced width of the Cusums of the blends and the definite occurrence of theft during the second blend.

DETECTION PROBABILITY

Distributions can be represented by their means and standard deviations. Statistical tables of the cumulative normal

distribution can be used to relate the detection probability of significant deviations from the normal distribution to the standard deviation. (5) Figure 9 presents a family of design curves for the detection probability versus theft levels normalized by the standard deviation. Each member of the family has a threshold normalized by the standard deviation. The intercept for no theft is the false alarm probability. With zero threshold, 50% of the values where no theft has occurred would lie below the mean and result in false alarms. False alarms imply plant disruptions so that alarm thresholds of 3 or 4 standard deviations would be reasonable. The false alarm probabilities would be 0.00135 and 0.000032, respectively. A false alarm probability of 0.00135 means that there is 1 chance in 741 that a result would cause a false alarm. M1200 was used in the Special Safeguards Study to evaluate the standard deviations to be expected for the KEP plant as modelled.

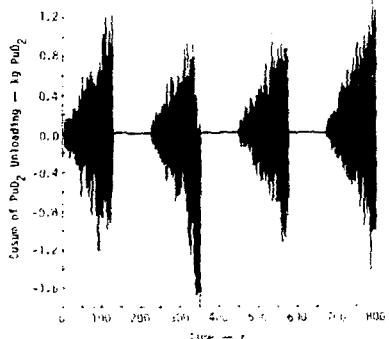


Fig. 7. Cusum of PuO₂ Unloading vs time. Case 1: theft of 0.75 kg of PuO₂ from the second blend (20 replicate runs).

Fig. 8. Cusum of PuO₃ Unloading vs time. Case 2: theft of 0.75 kg of PuO₂ from second blend (20 replicate runs).

SUMMARY

Simulation has been shown to be a useful tool in the study of material accountability in the processing of plutonium dioxide. Improvements in the plant operations and PuO₂ accountability could be made in the proposed Westinghouse RPP plant in Anderson, S.C. Concrete theft detection levels were not stated since the model was of a proposed plant, some

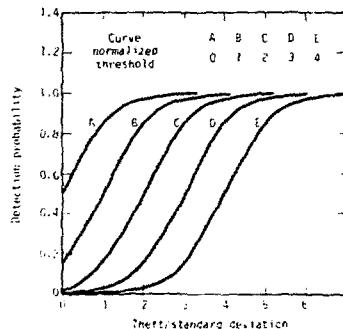


Fig. 9. Design curves for detection probability vs theft levels.

important factors were neglected, and the actual instrumentation that would be utilized might be quite different from that assumed in the model. Expected distributions in the plant and accountability levels would result from the simulation runs. The detection capability is directly related to the quality of the distributions. It does appear that the material accounting of large quantities of PuO₂ can be used in a timely manner to reduce the risk of illicit diversion or unexpected losses, especially in conjunction with stringent physical security measures.

ACKNOWLEDGMENT

The author would like to thank those involved in the Special Safeguards Study: L. Harris and T. Gobani of Science Applications, Inc.; Professor T. Brubaker of Colorado State University; and C. Pomeracki, F. Stephens, K. Gutschacher and K. Ernst of the ILL staff. Their advice and encouragement during the development of the simulation model was much appreciated.

REFERENCES

1. Draft, "Generic Environmental Statement on the Use of Recycled Plutonium in Mixed Oxide Fuel in LWR's," ORNL/M-1227, U.S. Nuclear Regulatory Commission, 1974, Vol. 1, p. 5-7.
2. "License Application for Recycle Fuel Plant, Anderson, S.C.," Westinghouse Electric Corporation, July, 1973.
3. Private Communication, Science Applications, Inc., San Diego, California.
4. Pomeracki, C.L., Sanborn, R.H., Magistad, J.G. and Frazer, J.W., *Nucl. Mater. Manage.*, No. 111, pp. 308-319, 1972.
5. Private Communication, Professor T. Brubaker, Electrical Engineering Department, Colorado State University, Fort Collins, Colorado.

NOTICE
-This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, nor any of their subcontractors, makes any warranty, express or implied, or assumes any legal liability for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights.