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ABSTRACT

Methods of biasing three-dimensional deep penetration Monte
Carlo calculations using importance functions obtained from a two-

dimensional discrete ordinates adjoint calculation have been

developed. The important distinction was made between the applications

of the point value and the event value to alter the random walk in
Monte Carlo analysis of radiation transport. The biasing techniques
developed in this study are the angular probability biasing which
alters the collision kernel using the point value as the importance
function and the path length biasing which alters the transport
kernel using the event value as the importance function. Source
location biasings using the step importance function and the scalar
adjoint flux obtained from the two-dimensional discrete 6rd1nates
adjoint calculation were also investigated.

The effects of the biasing techniques to Monte Carlo
calculations have been invesfigated for neutron transport through
a thick concrete shield with a penetrating duct. Source location
biasing, angular probability biasing, and path length biasing were
employed individually and in various combinations. Results of the
biased Monte Carlo calculations were compared with the standard
Monte Carlo and discrete ordinates calculations. Based upon the
fractional standard deviations of the dnswers, the biasing techniques

are a factor of 2 to 8 better than the standard method. Hence, the



effectiveness and the applicability of the biasing techniques in

deep penetration, three-dimensional Monte Carlo calculations are

i

clearly demonstfated.
Results of Monte Carlo calculations using respectively the
event value and the point value to aitér the transport kernel
showed that the event value calculation gave much better statistics
(the .FSD reduced by a factor of 2) than the point value calculation.
Therefore, it was confirmed that the event value is the more

appropriate function for biasing the transport kérnel.

vi
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CHAPTER I
INTRODUCTION

The Monte Carlo method is a very useful tool to solve a large
class of radiation transport problems. In analyzing radiation
transport by Monte Carlo, enough histories must be generated and
processed in order to sufficiently determine the average behavior
of the particles. For the deep penetration problem where the
natural probability of contr%bution to the answer of interest is small,
importance sampling must be used. Importance sampling is a variance
reduction procedure which alters the sampling scheme to one which
samples more often from the phase space coordinates which make important
contributioné to the answer. In Monte Carlo, importance sampling is
a form of "biasing."

It has long been reCOgnized(],2,3)

that the adjoint solutionis
a good if not optimum choice of importance function for Monte Carlo

biasing. In principle, the application of importance functions

derived from adjoint calculations is straightforward. However, in

practice, it has been limited tn special cases where either a

reasonable approximation to the importance function may be represented
analytically or the adjoint flux can be numerically calculated from
a simplified problem.
Ka]os(4) used an approximate analytic form of importance
function to bias neutron penetration through hydrogen slabs. Armétrong

and stevens(®) applied the vO importance function, which is the first



2
term of a series representation of the adjoint function and is similar
to the form used by Kalos, to calculate gamma ray penetration in slabs
of lead and of water. A
It should be noted that the. works of Kalos, and Armstrong and
Stevens concerned only special cases where the importance function
could be approximated by a relatively simple analytic expression.
Another approach to obtaining an importance function is to solve the
inhomogeneous adjoint transport equation and to use this adjoint
flux as the importance function. Since it is just as difficult to
calculate the numerical adjoint flux as it is to calculate the forward
flux, a practical approach is to solve the adjoint problem in a
simplified geometry. This approximate adjoint flux is then employed
as the importance function in the Monte Car]b calculation of the ~

real problem.

=

(6)

Bendall and McCracken calculated the numerical adjoint flux

with the removal diffusion method, then used this adjoint flux in

(7)

the Monte Carlo calculation with some success. Cain used the one-
dimensional discrete ordinates adjoint flux to bias the source energy
distribution and to generate parameters for an exponential transform
which is dependent on energy and position. Schmidt et a].(g)
extended this approach to include directional dependence in the
exponential transform parameters, and at the same time utilized the
adjoint function as a guide to set the weight standards of Russian
roulette and splitting.

(9)

Burgart and Stevens further extended the application of ' i

the one-dimensional discrete ordinates adjoint flux to bias the



e

collision kernel. A symmetrical discrete angular grid was employed to

incorporate angular biasing and angular-dependent path ]éngth stretching.

This method was quite successful for deep penetration in simple
geometries. However, the application of this approach to deep
penetration in complex geometries such as a thick concrete shield with
a penetrating duct is very Timited. Two reasons account for this
limitation: |

1. The one-dimensional discrete ordinates adjoint flux
does not lead to a good approximation of the importance
function for the three-dimensional complex geometry
problem.

2. The symmetrical discrete angular grid, which restricts
particles -to travel only in discrete directions, fails to
properly describe the streaming radiation through the
duct.

The objective of the present study is to use the two-dimensional
discrete ordinates adjoint flux to bias the Monte Carlo analysis of
the three-dimensional deep penetration problem. Two biasing
techniques, "angular probahility biasing" and "path length
biasing," have been developed. The effectiveness of "source biasing"
using the scalar adjoint flux was also investigated.

In the angular probability biasing technique, the probabilities
associated with the scattering directions are biased by the point
value. The point value is used because it is the value to the
effect of interest of a particle comihg out of a collision. In the

path length biasing technique, the selection of the next collision



site is biased by the event value. The event value, being the value
of a particle going into a collision, is the appropriate function to
bias the path length of a particle going into the next collision
site. These two value functions can be obtained directly from a
two-dimensional discrete ordinates adjoint calculation.

The three biasing schemes are investigated for neutron transport
in a thick concrete shield with an axial duct. Reéu]ts of biased
Monte Carlo calculations are compared with standard Monte Carlo and
discrete ordinates calculations. Improvements achieved by the biasing
schemes are very good, and their general usefulness is clearly
demonstrated.

The multigroup Monte Carlo code, MORSE(]O) is used for the
Monte Carlo calculations, and the two-dimensional discrete

(11)

ordinates code, DOT is used to calculate the adjoint fluxes.

R <3



CHAPTER II

THE ADJOINT BOLTZMANN TRANSPORT EQUATIONS

In this chapter, the time-independent multigroup adjoint integral
transport equations are formulated in terms of the point value and the
event value importance functions.* Then the adjoint Boltzmann integro-
differential transport equation is derived from the principle of
conservation of value. Finally, the relationship between the point
value and the event value and their applications to the biased Monte

Carlo calculation are discussed.

2.1 The Event Value and the Point Value Equations

There are several integral forms to the adjoint Boltzmann
transport equation, namely the point value eguation, the event value
equation, the emergent adjunction density equation, and the adjunction

(

event density equation. 10) These adjoint integral transport
equations describe the importance of radiation particles with
respect to a specific effect of interest. Hence, they are
equivalent to one another even though each involves a different
variable. The focus of thié study is on the event value and the
point value because they are the importance functions which will be
used to bias the Monte Carlo random walk. In this section, the

integral transport equations for the event value and the point value

will be formulated.

*For brevity, these quantities will be referred to simply as
the point value and the event value respectively.
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The behavior of radiation particles in a medium may be described
in terms of the event density or the emergent particle density. The
event density is the density of particles going into collisions, and
the emergent particle density is the density of particles leaving a
source or emerging from collisions. The concept of the importance of
particles can be described in terms of the value of going into a
collision or in terms of the value of emerging from a collision or
a source. The event value wg(F,ﬁ)* is defined to be the value to
the effect of interest of a particle which enters a collision at
point r with energy group g and direction §. The point value
xa(?,ﬁ) js defined to be the value of a particle which emerges from
a collision or from a source at point r with enefgy group g and

direction Q. According to Irving,(]z)

the event value wg(F,ﬁ) is
composed of two parts, the immediate payoff arid the future payoff.
The immediate payoff is simply the group g response function
Pg(F,ﬁ). The future payoff is the expected value* of the prﬁbabi]ity
that the particle survives the collision and emerges withAenergy
group g~ and direction in dﬁ’_about,ﬁ‘ times the value of this
emergent partic]e.xa,(F,ﬁ‘). This interpretation feads to the

following time-independent multigroup integral equation

The symbolism and terminology of this chapter follow those of
Straker et a1.(10) . ,

*Expected value implies integration over all appropriate phase
space coordinates.
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the group g response function for Q-directed

'particles which experience events at r,

™
(=]
—
=
~—
"

the group g total macroscopic cross section [cm']],
zg+g’(F,§+§‘) = the group g to group g~ differential
scattering cross section [cm'] steradién-]];

The summation over g~ denotes all energy groups. Howeyer,‘if there
is no upscatter, the g; summation woﬁ]d be'from g to G, where G
is the group number with lowest energy. |

As defined abqve, the point value xa(?,ﬁ) js the value of a
particle which emerges from a collision or from a source at r with
energy group g and direction Q. This particle will experience an
event in dR about r+RQ with the probability

R .g/= -
-{° £2(r+R"Q) dR”
Jo %t dR

zg(F+R§) e
and the value of this event is given by wg(F+Rﬁ, Q). Since the
value of leaving a collision is equal to the expected value of
going into future collisions, the following time-independent multi-
group integral equation is obtained.

e g R ed(Fered) dr-
* =
X g(r,g). fo zt(r+Rm) e

wg(F+R§,§) dr. (2-2)
Equations (2-1) and (2-2) express explicitly the event value and the
point value respectively in terms of the other. The integral transport
equation for the event value is obtained by substituting Equation (2-2)

into Equation (2-1).



(7.8) = PURE) + T [, [ 2
W (F,8) = PY(F,0) + — X
g g g 4w Jo Zg(r)
. —L? 23 (F+R07) dR” o i
z% (r+R3°) e Wg,(r+RQ’,Q’) dRdG~. (2-3)

Substitution of Equation (2-1) 1nt6 Equation (2-2) yields the integral

transport equation for the point value

S e geos R SEeRR) e
* =
Xg(r,g) b zt(r+RQ) [Pg(r+RQ,Q) +
Zg+g'(;+RQ’§+§,)
D o ——g o+ (F+R3,3°) di-] dR
g 23 (P+RA) |
e - ge f§ sJ(F+R-G) dR-
= PX(r,2) + ) f4ﬂ fo t(r‘+RQ) e X
2397 (483,577 o
TET x*_(r+RQ,Q°) d2-dR, (2-4)
£y (r+R3) 9 .

X(7 3y = [° 59(5eps) o
where Pg(r,Q) j6 zt(r+RQ) e

Pé(?,ﬁ) is the response function of a particle which emerges from a
collision at r with energy group g and direction 2. Then according
to Equation (2-5), the response function of a particle leaving a

collision at r is the expected value of the probabi]ity of traveling



9
to r* = r + RQ and having an event within dR about r~” times the
response function for an event at r- = r + RQ. Figure 1 illustrates

the relationship between spatial points 7 and r-.

2.2 Derivation of the Adjoint Boltzmann Equation from the Value

Functions

The multigroup adjoint Boltzmann transport equation is well

(10,12,13)

documented in the literature, and can be written as

-§-v¢§(i,§) + 22(F) ¢o*(r,0) =

t g
S5(7,3) + L J4, 79 % (F.007) ok.(F,07) di-, (2-6)
where
SS(F,Q) = the group g adjoint source,
¢;(F,Q) = the group g adjoint angular flux the nature of which

is determined by the choice of the adjoint source
S¥(7,2). |
Equation (2-6) can be derived from the feyward Boltzmann trans-
port equation by defining an adjoint function and an operator which
is adjoint to the operator associated with the forward Boltzmann
transport equation. Then from the property of adjoint operators and
the proper application of the boundary conditions, the adjoint
Boltzmann transport equation can be obtained. This is strictly

a mathematical procedure, and the physical wmeaning of the adjoint

function is yet to be determined. The details of this derivation

“are presented in References 10 and 13,
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Figure 1. Coordinate System which Relates a Fixed Point r to an

10
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Arbitrary Point r* = r + RQ.
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Using the physical interpretation of the adjoint function as a
neutron importance to an éffect of interest, Bell and G]asstone(]3)
derived directly the adjoint Boltzmann transport equation from
first principles.
The adjoint Boltzmann transport equation can also be derived
by requiring that the value of a particle be conserved along its

path. The derivation is based on the distinction between the

value of a particle entering a collision and the value of that

" particle leaving a collision. Consider a particle which emerges

from a point r in direction Q@ and energy group g. For the
particle's value to be conserved, the following relationship must

be true for an incremental distance AR along the Q direction:

[value of emgrging] - [probability of ] [value of going into]
from point r ~ “collision in AR- “collision in AR

+ [probabi]ity of no]‘[value of emgrgigg]
collision in AR from point r+aRQ -?

which can be expressed as

3) = [3(7) oR] (U (7 + 5 0R8,&)1 + [1 - £3(7) ar]

['XE(F + ARE,E)]. | (2-7)
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Equation (2-7) can be rearranged as

x*(F,2) - x*(r+aR2,2)
g g - 59 1
AR Zt(r) wg(r T3

dx*(r,2) ) L i o
) XQR""‘= 22 () Wy (7,8) - 22(F) x (7.8, (2-8)

a1 ER 2.0
x*(r,Q) - — =W (r,Q) 2-9
t
dx*(r,) - _-.(10) __: - - (
Noting that ——i%ﬂi-—— = Q-an(r,ﬂ) and substituting wg(r,n) from
) [
Equation (2-1) into Equation (2-8) yields
—' - - g - - -
- VXS(rQQ) + Zt(r) Xg(rag)
= pr,d) + T [, tTY(F.507) xr.(F,87) di (2-10)
g ] . 4‘” S ] g’ L] b
where Pg(F,ﬁ) = z%(?) Pg(F,ﬁ).
Pg(F,ﬁ) is the group g response function of the effect of interest
due to a unit angular flux. A comparison of Equation (2-10) with
the multigroup adjoint transport equation as given by Equation (2-6) .

reveals that if PS(F,Q) = SE(F,@), the two equations are identical
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and xa(F,ﬁ) = ¢§(F,§). Therefore, the adjoint angular flux (the
solution of the integro-differential form of the adjoint Boltzmann
equation) is the value of a particle leaving a collision if the

adjoint source is taken to be the response function Pg(F,ﬁ).

2.3 Application of the Point Value and the Event Value in Monte

Carlo Biasings

The random walk. procedure in Monte Carlo calculations is
composed of the transport process and the collision process. The
biasing of these processes requires importance functions which may
be obtained from appropriate deterministic adjoint calculations.

Since the transport process involves the selection of the next
collision site, the event value would seem to be the appropriate
importance function to bias the transport kernel. In the collision
process, a particle emerges from a collision site with its new
energy and direction determined by the collision kernel. The point
value would seem to be the suitable importance function to bias
the collision kernel. Therefore, a distincfion must be made
between the point value x* and the event value W, insofar as their
applications to Monte Carlo biasing techniques are concerned.
Finally, proper correction of the particles' statistical weights
must be exercised in order to remove the bias and preserve the

“"fair game."



CHAPTER TIT
DEVELOPMENT OF MONTE CARLO IMPORTANCE SAMPLING TECHNIQUES

This chapter first presents a description of the collision

(10) The "angular

mechanics used in the Monte Carlo code MORSE.
probability Biasing" technique is then introduced, and the

~ application of the point value to bias the selection of the emergent
directioﬁ from a collision process is described. Fina]}y, "the path
]ength.biasing" technique.using the event value as the importance |

function is deve]oped'and a method of norma]izingythe altered

transport kernel is formulated.

3.1 Collision Mechanics

The MORSE code utilizes the same multigroup cross sections used

19) or DTF-IV.(ZO)

by the discrete ordinates codes DOT,(]]) ANISN,(
These cross section sets employ an nth-order Legendre polynomial
expansion to describe the scattering distribution for each group-to-
group transfer.

At a collision site, the emergent energy group and direction

are normally selected according to the natural collision kernel

z?g (v,2>07)

c¥ 9 (7,5+0°) = (3-1)

3(F)
where zg+g (r,2>Q”) is the group g to group g~ differential scatfering

cross section and the group scattering cross section Zg(F) is equal to

14

«¥
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2 f4 29+g (r,2>0”) d2”. The collision kernel is a properly
norma11zed joint probab111ty density function (p.d.f.) and may be

expressed as a product of a marginal p.d.f. and a conditional p.d.f.

[y, Y 9°(7,55") di” zg+g (r,2+07)
c$9° (r,0+07) = aal - X
zg(r)

P97 (7 250 4o
f4ﬂ zg ° (r,e0°) do

=3 . . : (3-2)

The energy group g° of the emergent particles is selected from the

marginal p.d.f.

179 (F)
s forg-=g,g+1, .. . 0G. (3-3)

The emergent direction 5’.15 then selécted from the conditional p.d.f.

= s ) (3'4)

given that a particular g-g“ transfer has been selected according to
Equation (3-3). Considering the scattering process as azimuthal
symmetric, the differential scattering cross section may be written
as a function of the cosine of the poular anglc, and expanded as a.

serics of Legendre po]ynom1a1§

Il o~13

T F ) = g 1T P, (3-5)

2=0
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where
g>qg~ _ th ..
fz (r) = the ¢~ Legendre coefficient for the group g to group
g~ transfer,
n = the maximum order of the expansion,

p = Q+Q”, the cosine of-the scattering angle.

Using Equation (3-5), Equation (3-4) can be written as

9" (7 5,5~
£7 7 (r,a-07) n -
S e L U P
1379 (7) 4r 53 9 (F) 270
L - X
= 5= 2579 (r) P (1),
2m 4=0 2 2
g>g9” (=
grg” =y _ Tz (1)
where f* (r) = ————.
&gm (r)

The conditional p.d.f. as given by Equation (3-6) can be
expressed as a product of two distributions, namely the polar angle
distribution and the azimuthal angle distribution. The polar angle

distribution is

n ’
m(u) = Z fzg+g (r) PQ(U),

£=0

(3-7)

where the group-to-group transfer superscript and the position vector

r are dropped to simplify the notation. Because of the azimuthally

symmetric scattering, the azimuthal angle distribution is simply

h(e) = o .

(3-8)



17

The realization of the polar angle, cos']u5 from Equation (3-7)
is not accomplished directly. Instead, the distribution w(u) is
discretized by the use of a generalized Gaussian quadrature scheme.(]o)
This approach effectively replaces the continuous distribution
w(p) by a discrete distribution w*(u) with the constraint that the

first n moments of w*(u) are identical to the first n moments of w(yn)

respectively. Thus, the angular distribution of Equation (3-6) becomes

e397(F,507) ~
—— = h(¢) w(n)
Zg 9(%)
= h(¢) w*(u)
] N
=7 L Py slumg)s (3-9)

where P is the probability that polar angle cos']ui will be selected
and N is equal (n+1)/2, The original normalization of Equation (3-6)
gives
3797 (7,757
f 279 (F)

do” =1,

which provides the following normalization requirement on the pi's,
fz"j]—]§ §(u-y;) dudp = 1
o 4-172q (L PioUTH wde = 1,

and
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The selection of the outgoing direction is normally
accomplished within MORSE in two separate steps:
1. First, a scattering polar angle is selected from the
discrete distribution w*(n).
2. Then an azimuthal angle is selected from the uniform
distribution h(¢).
The sequence of the two steps can be reversed, i.e., first azimuthal
angle then polar angle, because the two distributions, w*(p) and
h(¢), are independent. Figure 2 illustrates the two possible
scattering directions ﬁ‘] and 5‘2 and their corresponding cones
with respect to the inéominq flight direction Q for a P3 scattering

distribution.

The nature of the Gaussian quadrature scheme of discretizing
the scattering distribution produces discrete directions which tend ¢
to be located near the peaks of the scattering distribution. Examples
of the P3 scattering distributions and their corresponding discrete
distributions for the concrete cross section are shown in Figures 3
and 4, Note that although the truncated Legendre expansion for the
scattering distribution may have negative values, the discrete
distribution will always yield positive probabilities. This is true
because the condition of positive probabilities is one of the

constraints for the generalized Gaussian quadrature scheme.



LN

19

ORNL-DWG 75-17718

Figure 2. Particle Incoming Direction and Two Possible Scattering
Directions at a Point P(X,Y,Z).
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Figure 3. The P3 Scattering Distribution and the Discrete Distribution - -
for Group 1 to Group 1 Transfer.
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3.2 The Angular Probability Biasing Technique

The "angular probability biasing" technique is formulated by
biasing the conditional p.d.f. of Equation (3-9) using the point
value x;(?,ﬁ) as the importance function. The biased scattering

distribution is denoted as y¥9 (F,3»%~) and can be written as

= — A' . (3-10)

piG(U‘U.i) XS,(F',S-Z') de”

In Equation (3-10), the N possible outgoing directions ﬁ’i(u1,¢i)
must be known so that the corresponding point values Xa,(F,ﬁ’i) can
be identified. In order to accomplish this, the azimuthal angles

for each of the N polar angles are selected first. With the N
possible outgoing directions determined, the corresponding point
values X;,(?,ﬁ’i) can be identified. This approach of predetermining

the N outgoing directions effectively transforms the distribution -

given by Equation (3-10) into



i=1 1
p' X*A(;SSTZ‘ )
= & d L for i =1, 2, , N
. ox*L(r,Q”
1‘21 Py %G ( ;)
= pt fori=1,2, ..., N. (3-11)

As would be the case for any biasing procedure, the statistical weight
of the particle must be corrected in order to remove the bias. The

weight correction is

WT = R (3-12)

* (r,Q7.
xg-(ra7;)

where the direction "j" has been sclected from the biaséd distribution
g{ven by Equétion (3-11).

It is interesting to note that this'biaﬁing technique alters
the probabilities of the N discrete scattering angles while'the=
corresponding N possible scattering angles remain unchanged. This
is the reason that the name "angular probability biasing" is

adopted.
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3.3 The Path Length Biasing Technique

The transport of radiation particles from one collision site
to the next involves the selection of a path length from the transport
kernel. For particles traveling within a material, the transport

kernel Tg(F+F+R§) can be written as(]4)

-39
e R

Tg(i+F +RY) dR=:1J e dR, (3-13)

t
-zg R
where e is the probability that a particle travels the distance
R without suffering a .collision and zg dR is the probability that a
collision occurs within dR. Also since
g
-z R
o dR=1,
the transport kernel Tg(F»F + RQ) is a properly normalized p.d.f.

The transport kernel can also be expressed in.terms of the mean free

path n, and we have
Tg(F»F + Ri) dR = e " dn, (3-14)

where n = z% R. Thus, the path length selection can also be

accomplished in terms of the number of mean free paths traveled.
Equation (3-14) is also valid for particle transport through more
than one material. Note that e " is a normalized p.d.f. over the
interval (0, ~»). However, events occur only in the interval

(0, ne), where e is the total number of mean free paths to the

n

external boundary. When a path is selected from e ", only the
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-n, - -n
fraction (1 - e~ e) are events, and the fraction e © leak into

the external void. Therefore, the leakage probability of a particie

. Ne e “Ne
is e =, and the nonleakage probability is (1 - e ©).

The "path length biasing" technique is an alteration of the
transport kernel using the event value wg(F,ﬁ) as the importance
function. The biased transport kernel TE(F+F+R§) can be defined as

_e M u(n)

TE(F>7 + RE) dR =~ dn (3-15)

where W(n) is the event value with the position expressed in terms of
n (g and @ are omitted to simplify the notation), and NF is the
normalization factor of the bjased transport kernel. If the
nonleakage probability of the biased transport kernel is assumed to
be equal to that of the unbiased transport kernel, we have

R R
e = = = _ [ e == =
/s T;(r+r + R2) dR = [, Tg(r+r + R2) dR

where Re= ne/zg. Substituting Equations (3-14) and (3-15) into the

above equation, we have

N, »~N n =n
ee W) _r € . n -1 - e
fo NE dn fo e "dn=1-e ~.
Hence,

n -
NF = ——‘1'_"7']— foe e n W(n) dn. (3—16)
1-e €

If an average W(n) is assigned to each spatial region, the event

value is given by
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- W(n) = W, for 0 < n < "
= WL | ﬂL_-If_ﬂ < nL’ (3-]7)

wheré L is the number of regions aidng theAparticle's trajectory
and n{ is the number of mean free paths from the particle's |
starting point td the emergent boundary of the ith region. Note
that nL5= Ng* Figure 5 shows a particle's flight trajectory
through three regions before reaching the external void. Although
the number of regions L would be different for each flight
trajectory, L = .3 is used to illustrate the analysis which would be
valid for any L. Substituting Equation (3-17) with L = 3 into

Equation (3-16), the normalization factor becomeS

_ 1 ™ -y 2
e LA TR AL
. C 1
n : ' |
fn3 e Wadn]. - (3-18)
2 o

Substituting Equation (3-17) into Equation (3-15), the biased

transport kernel becomes
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Figure 5. A Typical Particle Flight Trajectory in the Cylindrical
Geometry which is Divided into Twelve Spatial Regions.
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. ) e " W,
Tg(ﬁ+r + RR) dR = ——N?*—'dn for 0 <nc« M
e " W
:—-—.—-———Zd < <
NFT MmN
e " Ws
= dn np 1 < ng
= e-ndn n3 _<_ n < o, (3"]9)

The integration of Equation (3-19) over the interval (0, =) gives

-n -n -n
n,e "W n, € ny e W
© cyrm = o o= _n =M 2 2 3 3
o Tg(PoT + RE) aR = 7 ——dn + [~ dn [T dn #
e " dn
"3

] b 1
NF [£ € w] dn + L

. N, L -n
CPSLEY dn + [ 37y dn] + e 3, (3-20)
1 2 Ny 3

Substituting Equation (3-18) into Equation (3-20), we have
f:Ta(r—rr +R3) dR =1, (3-21)

which is the normalization requirement for the biased transport
kernel. With the normalization factor NF given by Equation (3-18),
the biased transport kernel is well defined and properly normalized.

Hence, Equation (3-20) becomes
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W n W n W n -n
_ 1 1 -n 2 +2 -n "3 43 ,-n dn + 3
1= N?‘fo e ' dn + N?'fn1 e dn + I”Z e n+e
= Pry + Pry + Pro+ Pry » o (3-22)

where Pri is the probébi]ity that the next collision will occur in the ith
region and Pre is the probability that the next collision will be in the
external void. In principle, the path length can be selected from
Equation (3-19). However, the actual sampling procedure is accomplished
as follows:

1. First determine the region where the next collision will

occur from Equation (3-22).
2. If the next collision is in region "i," select the number

of mean free paths n the particle travels in this region from

3. Compute the number of mean free paths between the new collision
site and the last collision site by g =iy tn.

4. Correct the particle's statistical weight by




CHAPTER IV

DESCRIPTION OF THE STANDARD PROBLEM AND
GENERATION OF IMPORTANCE FUNCTIONS

In this chapter, the standard problem and the two-dimensional
discrete ordinates adjoint calculations are deséribed. Then the
methods of obtaining the point value and the event value from the

adjoint discrete ordinates (DOT) calculation are described.

4.1 Description of the Standard Problem

- The standard problem was designed to have geometric complexity
along with deep penetration Timitations. The shield configuration_
consists of a right circular concrete cylinder with an axial
duct (void) 15.24 centimeters (6 inches) in diameter. The
dimensions of the cylinder are 152.2 centimeters in height and
150.0 centimeters in radius. An isotropic monoenergetic (14 MeV)
neutron source is uniformly distributed over the bottom surface, and
four detectors are positioned on a plane which is 152.2 centimeters
beyond the top surface. The radial positions of the detectors
are 5, 20, 75, and 150 centimeters from the Z-axis. The layout and
important dimensions are shown in Figure 6. One of the main reasons .
for selecting a two-dimensional configuration was the availability
of a discrete ordinates solution which would provide a comparison
for Monte Carlo calculations.

Analysis is done only on the neutron transport through the

first 14 energy groups of 22 group structure given in Table 1. The

30
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Figure 6. Geometry of Concrete Cylinder with Axial Duct, Source,
Detectors, and Adjoint Sources.
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TABLE 1
NEUTRON ENERGY GROUP STRUCTURE

Energy Group Upper Energy (eV)
1 1. 50(+7)
2 L22(+7)
3 .00(+7)
4 8. ]8(+6)
5 6.36(+6)
6 4.96(+6)
7 4.06(+6)
8 3.01(+6)
9 2.46(+6)

10 2.35(+6)
11 .83(+6)
12 ];11(+6)
13 5.50(+5)
14 1.11(+5)
15 3.35(+3)
16 5.83(+2)
17 1.01(+2)
18 2.90(+1)
19 1.07(+1)
20 3.06(+0)
21 1.12(+0)
22 4.14(-1)

*Read as 1.50 x 10’ eV(= 15 MeV).
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cross section set for the concrete is taken from References 15 and 16;

the angular dependence of particle scattering is approximated by a P3

Legendre polynomial series expansion. The concrete composition and

its neutron cross section are presented in Appendix E.

4.2 Two-Dimensional Discrete QOrdinates Adjoint Calculations

Several methods have been employed to obtain importance

functions for biasing Monte Carlo Calculations, (479)

Among these
methods, the one-dimensional and two-dimensional discrete ordinates
calculations provide numerical importance functions suitable
for Monte Carlo biasing. For problems with complex geometries, the
one-dimensional discrete ordinates adjoint fluxes are generally
inadequate.and two-dimensional adjoint calculations are required.
In this study, two-dimensional discrete ordinates calculations are
employed to generate the importance functions.

The twoédimensiona] discrete ordinates code DOT(]]) in R-Z
geometry was used to solve the adjoint Boltzmann transport equation.
An assymmetric angular quadrature set which consists of 166 directions

(25) The source was the detector

was recomnended for this problem.
response function which was taken as unity for all energy group since
neutron flux would be the quantity determined by the Monte Carlo
calculations. Calculations were performed for two different '
lTocations of the adjoinf source, one on the Z-axis and the other‘
150.0 centimeters off the Z-axis as shown in Figure 6.

The computer code GRTUNCL(]7) was employed to calculate the

analytic first collision source for the DOT calculation. The
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adjoint angular flux for each calculation was stored on two
magnetic tapes and the total scattering source was written on

another magnetic tape.

4.3 Determination of the Point Value

It was shown in Section 2.2, page 9, that the point value is
identical to the adjoint angular flux which may be calculated by
the discrete ordinates method. Hence, the point value is directly
available from the results of the adjoint discrete ordinates
calculation. Due to the truncated Legendre expansion of the
scattering cross section, the adjoint angular flux as calculated
by the DOTJcode may assume negative values. Negative fluxes
(forward or adjoint) do not have any physical meaning. Thus,
they are assumed to be zero before the adjoint angular flux is
spatially averaged into the point value.

The adjoint angular flux is averaged over spatial regions
and will be used in that form in the Monte Carlo calculations.
This is necessary so as to alleviate the data storage problem that
would exist if all of the adjoint angular fluxes were required in
the Monte Carlo calculations. Furthermore, it is straightforward to
carry out the proposed importance sampling schemes by region in
the MORSE('?) code.. |

The geometry of the concrete cylinder is divided into twelve .
spatial regions as shown in Figure 5, page 27. The directional depen-
dence of the point value is given in terms of the quadrature sef used
in the adjoint discrete ordinates calculation. This quadrature set

is described in terms of two cosines ¢ and ¢, and a weight WG. As
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shown in Figure 7, ¢ is the cosine of the polar angle y and ¢ is the
cosine of ¢y, the angle between the discrete direction and a unit vector
in the radial direction. The weight WG is the fraction of the total 4n
solid angle associated with a given discrete direction. Thus the
weights sum to unity. The discrete directions in the quadrature set
are grouped by polar angle and an arbitrary number of ¢ angles are
associated with each polar angle: For the quadfature set used in the
adjoint discrete ord{nates calculations, fhere are 20 polar angles.

The computer program POINT first reads the adjoiﬁt angular flux
tapes, then sets the negative adjoint angular fluxes to zero, and
finally calculates the region;averaged point values for all energy
groups and directiéns. The region-dveraged point values are then
stored on a magnetic tape for the éngﬁ]ar probability biasing of
Monte Carlo Calculations. A Tisting of the POINT program along with

the input instruction is presented in Appendix A.

4.4 Determination of the Event Value

The event value can be determined frbm the total scattering
source that is available from an adjoint DOT calculation. Equation

(2-1) can be rewritten as

.zg+9‘(F,§+§’)

f41r

* (r,07) dG-. 2-1
g X3 (r,”) (2-1)

e

- V,- =
W (r,0) =P (r,
(ry2) = Po(r,a) + g 95)

The point value x;,(?,ﬁ’) can be written as

* (r,07) = x*. (r,@7) + x*. (r,0”), 4-1
X (r,0°) Xs u( ) X3 C( ) (4-1)
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Figure 7. The Components of the Direction Vector Q in the Rectangular
and Cylindrical Coordinate Systems.
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where
Xa,u(F,ﬁ‘) = the uncollided contribution to the point value
Xg,C(F,ﬁ‘) = the collided contribution to the point value.

Substituting Equation (4-1) into Equation (2-1), the event value
becomes
13797 (7,80°)

W (r,8) = PY(F,8 ) X
r,Q) r )+Z 4 Z%(F‘)

<5y = 997 (= 5.5~ 2 5.y 4o
where Qg(r,Q) y .Qm I (r,0+07) Xa,u(r,ﬂ ) de-.

-

If the differential scattering cross section from Equation (3-5) is

substituted into Equation (4-2), then
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Q_(r,Q
W (r,2) = Pw(F,ﬁ) + 3 )
g J zg(r)
n Ll
y f?g(F)Pdu)
£y f, 20 . (F,a°) di~. (4-3)
g” fm 4n ZE(F‘) g-c : ‘

(18)

The addition theorem of Legendre polynomial can be expressed as

L
- - (Q-m) ! m m - -
P (u) = PQ(C) P, (27) + 2 mz] T Pele) Po(c?) cosm(¢-¢7)
L
- - (2=m)! _m m, .
P, () P (z7) + 2 mZ] (orm)T Py (8) Pyle?) x
[cosme cosme” + sinmé sinme”] (4-4)
where
Pg(;) = the assoéiated Legendre function

z = the cosine of the polar angle of the direction @

t” = the cosine of the polar angle of the direction -~

the azimuthal angle of the direction Q

-©-
1]

¢~ = the azimuthal angle of the direction Q-.

Substitution of Equation (4-4) into Equation (4-3) yields the

following equation for wg(?,ﬁ).



- - __ Q. (r,0)
W (F,2) = PY(F,8) + S
] 2y (7)
] 2n (1 ' - N _gg7, -
g ) fo f;] dg*de” x*. (r,z7,07) ) f, 9°(v)
4n zP(F) g° g 2=0

9‘ ' .
«Pye) P v 2 ) L BT(e) BT ) x

[cosm¢ cosme” + sinme sinme~]}. : (4-5)

Due to the symmetry of cylindrical R-Z geometry, the point value
XS,C(F,g‘,¢’) is an even fuhction of ¢~ and can be expanded in
spherical harmonics as. a function of Pg(c’)ncosm¢’. Since the
integral of cosmo” sinm¢” over the interva] 0 < ¢° <. 2 is equal
to zero, in Equation (4-5), all terms invoTying sinm¢” varnish
under the integration. Thus, Equation (4-5) becomes

W (F,8) = PY(F,8) + Qg(r,Q) P N % fg+gii)

g g IF) 4n z%(?) g° 250

20 1 - g
x[Py(2) Jo7 [y dordext. (F,e7567) P (c7)

%
(z—m;! m 21 1 o .
" m§1 pm)T Py () cosmo fo [y dorde X;‘C(Y,C 97) X

P?(c’) cosmo” ]
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Q (r,8) 1 n )

=) ¢ S =1 ] fPY®) [ Al
I zt(r) 4n Zt(r) g' =0 = m=0
] o e b .) -~
x JCT Y deraes X (F07507) AT(£307)] (4-6)

1/2
m - 2 (2-m)! m
where Ag(c,¢) = [] T (£+m)!] Pz(c) cosmé.

In discrete ordinates theory, the integral in Equation (4-6) is

known as the flux moment. That is
M=y _ e2m o1 s ok [ se ey aM .
Jg,(r) = [y [y dovde xg-(rs27,67) Aj(c7,07).

With the above relation and setting the response function Pg(F,ﬁ)
equal to zero because the detectors are located outside the

shield configuration, the event value of Equation (4-6) becomes

W (P = g (r:m
I 23 (F)
TS ) E SZL £9797(7) AM(z,0) 3EN(F). | (4-7)
4v () g- =0 m0 * A

t

Integration of Equation (4-7) over a volume element VI gives
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Q. (7,8)
fy W (F8) av = [, 4 qv
1 9 I Zg(r)
n g £9797(7) 3*0(F)
111 ANee) [, At v,
" g” 2=0 m=0 I Zg(r)

~ If the mean value approximation is applied to the volume integral,

the above equation becomes

n 1 dg
) Z Aglzs0) —dn vy (4-8)
=0 m=0 Et,I

3
[faY ]
\

Qg I(5) can be expanded in terms of spherical harmonics as
?

n g
= 2241 om ,m
= LAY Al(g, -
Qg’I(ﬂ) QZO mzo 4 99,1 o (550) (4-9)
where q 1 =/ Z"I 1 Qg I( ) AT(C,¢) dody.

Substituting Equation (4-9) into Equation (448), we have

- 1 o
(Q) VI = z Z AQ, s

4 zg [ #=0 m=0

Lm g+g _
[(22+1) qg,I vI + g f 1 g, I VI]' (4-10)
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Equation (4-10) can be further simplified by defining the "total

scattering source" for energy group g and volume element VI as
ame &m g>g~.am _
Tg,I. (20+1) 9,1 v, + g’ fz,I -1 Vi (4-11)

Substitution of Equation (4-11) into Equation (4-10) yields

- 1 n
W (9] V = ————
g’I( ) I 4n Et

L
] A(z,0) TV (4-12)

[ 270 m=0 9,1

Equation (4-12) is the relationship actﬁally employed to calculate
the event values. Similar to the point value, thé event value is
averaged over region for all energy groups and directions.

A computer program EVENT was Written.to read the total
scattering source tape‘from the adjoint DOT calculation and to
calculate the event values for all regions, energy groups, and
directions. A listing of this program along with the input
instruction is given in Appendix A.

Shown in Figure 8 is a flow diagram which illustrates the
relationships which exist among the adjoint DOT calculation, the -
generation of importance functions by the POINT and EVENT programs,
and the MORSE caicu]ation. Thé source 1ocatioﬁ biasing will be

discussed in the next chapter.
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Figure 8. Flow Diagram of Generation of Importance Functions from the
Adjoint DOT Calculation and Application to MORSE Calculation.



CHAPTER V
DESCRIPTION OF THE BIASING TECHNIQUES

The description of the biasing techniques including some
programming details will be presented in this chapter. The importanée
sampling techniques studied in this investigation were source
location biasing, path length biasing, and angular probability biasing.
In addition, the survival biasing schemes of nonabsorption weighting
and Russian roulette and splitting were routinely used in all

calculations performed.

5.1 Source Location Biasing

(3)

It was observed by Coveyou et al,. that source biasing using
a reasonably good estimate of the importance function would, in
general, reduce variance significantly at a relatively low cost.
However, a good estimate of the importance function at the source
requires that much is known about the solution a priori.

A particle random walk starts with the selection of energy
group, spatial position, direction, and age from a source distribution
function. For the problem under investigation, the age is assumed
fo be zero since this is a steady state problem, and the source
energy is of the first group. Thus, only the direction and spatial
position remain to be selected. Although the source is isotropic, only
the upward source particles can contribute to the answer because the

downward source particles enter an external void and are immediately

killed. Therefore, it is expedient to force all source particles to
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emerge in the upward direction and to correct their weight accordingly.
As for the source spatial position, particles which originate near
the duct would seem to be more important because they may penetrate
deeper into the shield by streaming through the duct. Thus, biasing
of the source location to encourage more particles to originate near
the duct was carefully studied in this work.

Two importance functions for source location biasing were
employed. The first one will be designated as the step importance
function which assumes that source particles generated inside the radius
of 10 centimeters are 1000 times more important than those outside.
This procedure is rather arbitrary, but it does encourage more
particles to originate near the duct. The probability density
function of this biased source distribution is simply

2nR

1000
oy a 1r(150)2 ( )

27R
2

= Ei%%gl_- 10 < R < 150, (5-1)
1

where NF1 is the normalization factor. The weight carrection requires
that the statistical weight of particles outside the 10 centimeter
radius to be 1000 times higher than that of particles inside,

The second source importance function was obtained from the
adjoint DOT calculation. It was assumed that the adjoint source
was located on the axis of the cylinder and the corresponding adjoint

flux should show the maximum effect of the duct. The group one scalar

adjoint flux x; at the bottom of the cylinder was plotted as a function
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of the radial position. This curve was then fitted by the function

I_(R) which is given by Equation (5-2).

S
IS(R) = 85 } 0<R<38
_ -0.13(R-8) 8 <R <50
= 0.004 e”0-02(R-50) 50 < R < 150. (5-2)

Figure 9 shows the group one scalar adjoint flux and IS(R) versus the
radial position. Mathematically, the second biased source distribution
takes on the following form

S(R) I_(R)

_ s
[7°0 S(R) 1.(R) R

5,(R)

Substitution of S(R) and IS(R) into the equation above yields

2R (g
5 _ 7(150)

(R) =
2 150
0° S(R) I_(R) dR

0<R<8

Z27R -0.13(R-8)
——7°® : .
- 7(150)™ 8 <R < 50

[2°0 S(R) I.(R) R

R (0.004
_ n(150) 50 < R < 150. (5-3)

1120 s(R) 1,(R) R

) e-0.02(R-50)

The integral in the denominator can be easily evaluated. Equation (5-3)

can be rewritten as
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Figure 9. Source Location Importance Function from the Adjoint DOT
‘ Calculation with Axial Adjoint Source, and the Approximating
Function IS(R) to the Importance Function.
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~ 85R
-0.13(R-8) .
_Re : 8 <R <50
NF, -
-0.02(R-50)
_ 0.004 Re 50 < R < 150, (5-4)
NF, -
130 s(R) 1.(R) R
where NF, = T ’
n(150)°

In order to remove the bias, the statistical weights of the

source particles are corrected by

wr=S(R)
€ S,(R)

Subroutine SOURCE in the MORSE code is an optional routine
which allows a user to generate source particles according to any.
desired distribution and to make the necessary weight correction,
Two SOURCE routines were employed in this study. One selects source
location according to the distribution in Equation (5-1), and the
other selects source location from Equation (5-4). Only prard
source directions were allowed in both cases. The SOURCE routines

are listed in Appendix A.

5.2 Angular Probability Biasing

The theoretical development of the angular probability biasing

technique was discussed in Section 3.2, page 22, and the method of
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determining the point value was presented in Section 4.3, page 34.
This section describes the implementation of this biasing technique
in the MORSE code.

The subroutine COLISN in MORSE is called at each collision site
to determine the outgoing energy group and the outgoing direction.
To carry out the angular probability biasing, the subroutine COLISN
was modified and a subroutine INSCOR was written to input the region-
averaged point values from the magnetic tape brepared by the POINT
program. In the modified COLISN subroutine,.the outgoing energy is
still selected from the downscattering matrix, but the outgoing
direction is selected from the biased angular distribution given

by Equation (3-11)

1 - for i =1, .. ., N.(3-11)

Then the statistical weight of the emergent paftic]e is corrected

by Equation (3-12) as shown below.

WT, = . (3-12)
x*,(r '
The biased angular distribution of Equation (3-11) requires the
point values for all outgning directions which comprise the N
discrete directions of the‘genera]ized Gaussian quadrature scheme.
The outgoing directions are expressed in terms of the rectangular
coordinate system, but the point values are given in terms of the

quadrature set used in the R-Z discrete ordinates adjoint calculation.
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Thus, the outgoing directions are transformed into the cylindrical
R-Z coordinate system, and the point values that are nearest to each
of these directions are chosen. Then the biased angular distribution
is constructed accordfng to Equation (3-11).

The transformation of a direction from the rectangular coordinate
system to the cylindrical R-Z coordinate system and the reverse
transformation are bresented in Appendix B. A 1is£ing of the sub-

routines INSCOR and COLISN are presentedAin Appendix A.

5.3 Path Length Biasing

The path length biasing technique utilizes the event values to
importance sample particle flight paths (i.e., collision sites). The
determination of the event values from a two-dimensional discrete
ordinates adjoint calculation was discussed in Section 4.4, page 35.
To implement the path length biasing technique in the MORSE code, the
subroutine INSCOR was written to read the event values from a magnetic
tape, -and the subroutine NXTCOL was rewritten to carry out the actual
selection of the next collision site; 4

When a particle emerges from a collision site with a given energy
group and direction, its flight ﬁrajectoky is determined by the
subroutine REGION which subsequently returns to NXTCOL the regions
that this particle may go through énd the corresponding track lengths
within those regions. The particle's direction must be'transformed |
intp the cy]iﬁdrica] R-Z coordinate system s0 that the eveﬁt value
corresponding to the direction closest to the particle's direction
can be determined for each region. Now that the event values and

the track lengths in these regions are known, the selection of the
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path length (or the next collision site) from the biased path length
distribution according to Equation (3-19) can be achieved. For easy

reference, the biased transport kernel is included here:

=N
L e w]
T;(r—»r‘-*'RQ.)dR = —NF—dn 0<nc< n
e "W
= 2d n, < <
NF " 1="°"m
e” W
- 34 n, <n <
NFon 2 = 3
- aN '
= e dn < n < o, (3-]9)

n3_

The details of the sémp]ing procedure ié outlined in Section 3.3, page
24, and the listings of subroutines INSCOR, NXTCOL, and REGION are
included in Appendix A.

Due to the curvature effect in the cylindrical R-Z coordinate
system, the angle y between the radial vector and the flight
direction vector changes as the particle travels through the geometry
as illustrated in Figure-10. In this figure, the flight direction
vector @ is assumed to be on the same plane as the radial vector.
This curvature effect complicates the determination of the event
values, and requires for each region the determination of the direction
that is closest to Q. fo simplify this procedure, this curvature
effect is ignored and the‘ang1e 2 is used fof a]]lregjons in determining
the event values. The error caused by this assumption is not severe
because for a given energy group, region, and polar angle, the event

value is relatively constant with respect to the angle y.
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Figure 10. Curvature Effect of a Particle Direction in a Cylindrical
Geometry. ' '
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5.4 Russian Roulette and Splitting

Russian roulette and splitting is a form of survival biasing.
In the MORSE code, Russian roulette and splitting are applied through
a set of region and energy-group dependent weight standards. The
weight standards are composed of WTHIR, WTLOR, ‘and WTAVE. 1In order
for Russian roulette and splitting to be efféctive, a good choice of
weight standards must be made. For problems involving complex
geometry and deep penetration, an effective set of weight standards
is not easy to specify. Usually, weight standards are chosen on
the basis of intuition, experience, or some knowledge of the
problem under investigation.

(21)

As pointed out by Solomito, WTAVE in a set of weight standards

may be related to the importance function by the following
A = WT(P) x I(P), - (5-5)

where WT(P) could be used for WTAVE. This equation simply states that
the effect of interest » is equal to the weight of a particle WT(P)
times its importance I(P) with respect to that effect, and is valid

at any point in phase $pace. AL the sourcc location, WT(P) = NTO(P)
and I(P) = IO(P). Hence, the effect of interest » is determined, and
it can be used to determine the weight WT(P) at other points

provided that the importance I(P) is known. That is

) WT,(P) x I (P)
1(P) 1(P)
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In this study, Russian roulette and splitting were employed
routinely in all calculations performed. The same weight standards
were routinely used so that the relative merits of the various
biasing techniques can be studied. WTAVE was determined using
Equation. (5-5). The total adjoint flux x* obtained from the DOT
discrete ordinates adjoint calculation with the axial adjoint source
was taken as the importance'function I(P), and an approXimate value
of the effect of interest at detector 1 was used to calculate WTAVE.
Then WTHIR was arbitrarily assumed to be 10 times of WTAVE, and
WTLOR was assumed to be 40 times Tower than WTAVE.



CHAPTER VT
DISCUSSION OF RESULTS

Presented in this chapter are the results of the Monte Carlo
calculations of the standard problem. The proposed methods of source
biasing, of angular probability bia;ing; and of path length biasing
were thprough]y studied using a modified version of the Monte Carlo
code MORSE. The modificétions.a11owed the biasing techniques to be
incorporated into the random walk subroutines COLISN and NXTCOL.
Source biasing, angular probability biasing, and path length biasing
were employed individually and in various combinations. The list of
calculations which were performéd to test the'prbposed bﬁasing
techniques is presented in Table 2. The importance functions used in
these calculations were obtained from the adjoiht DOT calculation with
the axial adjoint source. Russian rou]ette:ana splitting were employed
in all calculations. The weight standards for calculations (0.5)* and
(SS) -were intuitively assigned, but "the same weight standards were.
employed for the rest of the'ca]cu1at16ns (S) through (SAP) and were
obtained from the adjoint flux of the DOT calculation with the axial
adjoint source.

In order to facilitate the evaluation of results, all calcula-
tions were performed for one hour on the Oak Ridge National Labora-

tory IBM 360/91 computer and the size of a batch of particles

*For easy reference, each calculation will be identified by
the naming given in the parenthesis.

55
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TABLE 2

MONTE CARLO CALCULATIONS PERFORMED

Calculation

Identification Biasing Procedures Employed

(0.5) Standard calculation with path length stretching
parameter PATH = 0.5

(SS) Step biasing of source location and PATH = 0.5

(S) . Source location biasing according to the scalar
adjoint flux and PATH = 0.5

(A) Angular probability biasing according to the
point value x* with step biasing of source
location and PATH = 0.5

(P) Path length biasing according to the event value
W and step biasing of source location

(AP) Combination of angular probability biasing, path
length biasing, and step biasing of source
location

(SP) Combination of source location biasing by the
scalar adjoint flux and path length biasing by W

(SA) Combination of source location biasing by the
scalar adjoint flux and angular probability
biasing by x* with PATH = 0.5

(SAP) Combination of source location biasing, angular

probability biasing, and path length biasing




57

was standardized to 400 histories. Neutron flux at four detector
locations were calculated using the next event estimator at each

collision and source point,

6.1 Comparison of Results of Monte Carlo and Discrete Ordinates

Calculations

Tables 3 and 4 present the uncollided flux and the total flux
respectively at the four detector 1ocation§ for the nine different
biasing schemes. The total flux as calculated by the fqrward
discrete ordinates (DOT) calculation is also included in Table 4
for comparison. It is clear from Table 3 that the uncollided flux
could be calculated rather easily. Source location biasing using
either the step importance function or the scalar adjoint flux
generally gives better results for the uncollided flux. However, the
(0.5) calculation which has no source biasing gives the best results
for detectors 3 and 4 because the natural source distribution
.produceS'a large fraction of source particles far away from the duct.
A final point of interest about the uncollided flux is that it
constitutes 82% of the total flux at detector 1 and 47% at detector 2.
For detectors 3 and 4, the uncollided flux contributes very little
to the total flux and the presence of the duct probably has little
effect on the results of the uncollided flux.

According to Table 4, Monte Carlo calculations are in general
agreement with the DOT calculation. However, the Monte Carlo results
are higher by 10% to 16% at detectors 1 and 2, and lower by 20% to

40% at detectors 3 and 4 except for the (0.5) and (P) calculations,



UNCOLLIDED NEUTRON

TABLE 3
FLUX? OF MONTE " CARLO CALCULATIONS OF THE STANDARD PROBLEM

Number Detectors:

Calculation of

Identification Batches 1. 2 3 4
{0.5) 31 2.431-9(..139)b 3.971-10(.315) 4.764-15(.079) 6.488-16(.012)
(SS) 57 2.327-9(.007) 5.153-10(.018) 5.577-15(.107) 6.640-16(.024)
(S) 60 2.348-9(.004) 5.086-10(.031) 5.579-15(. 097) 7.751-16(.199)
(A) 60 2.352-9{.006) 5.212-10(.018) 5.230-15(.116) 6.334-16(.028)
(P) 41 2.350-9(.207) 5.151-10(.016) 6.617-15(.137) 6.685-16(.044)
(AP) 49 2.356-9(.007) 5.252-10(. 022) 6.456-15(.118) 6.616-16(.036)
(SP) 54 2.347-9(.004) 5.209-10(.031) 4.997-15(.067) 5.775-16(.195)
(SA) 72 2.345-9(.C03) 5.093-10(.023) 5.211-15(.070) 6.714-16(.174)
(SAP) .62 2.337Q9(.003) 5.351-10(.021) 5.942-15(.072) 6.348-16(.150)
it =,neutrons/cm2/sourcé neutron.

bpead as 2.431 x 1072 with fractione] standard deviation of 0.139.
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TABLE 4
TOTAL NEUTRON FLUX® OF MONTE CARLO CALCULATIONS OF THE STANDARD PROBLEM

. Number o ~ Detectors:

Calculation of

Identification Batches 1 2 3 4
(0.5) 31 2 868—9(.124}b 9.071-10(.159) 4.677-11(.498) 2.241-11(.472)
(ss) 57 3.092-9(.048) 1.195-9(.149) 2.907-11(.269) 1.062-1T(.425)
(S) 60 3.025-9(.026) 1.158-9(.073) 2.831-11(.173) 1.160-11(.211)
(A) 60 2.928-9(.024) 1.085-9(.077) 3.039-11(.157) 1.165-11(.188)
(P) 41 2.830-9(.028) 1.036-9(.051) 3.987-11(.237) 1.746-11(.397)
(AP) 49 2.911-9(.024) 1.113-9(.067) 3.357-11(.223) 1.170-11(.255)
(SP) 54 2.805-9(.020) 1.020-9(.084) 3.002-11(.175) 1.136-11(.227)
(SA) 72 2.839-9(.014) 1.058-9(.045) 3.459-11(.243) 1.261-11(.269)
(SAP) 62 2.873-9(.023) 1.120-9(.080) 2.764-11(.186) 1.030-11(.222)
DOT 2.453-9 9.575-10 3.703-11 1.408-11

65

- 2
aUmt = neutrons/cm /source neutron.

b 9

Read as 2.868 x 10°~ with fractional standard deviation of 0.124.
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Because of the excellent statistics and the consistency of the Monte
Carlo results for detectors 1 and 2, it would not be unreasonable to
presume that MORSE's answers are correct and that the discrete
ordinates results are too low. It should be noted that this is
somewhat characteristic.for the discrete ordinates solution to
brob]ems of this type. In the discrete ordinates calculation, the
neutron dose for detectors located in an external void can be
calculated by the procedure of next event estimétion. In this
procedure, the probable uncollided contribution to the detector

weighted by the neutron flux is integrated over:all collision sites.(zz)

This integration is accomplished by the computer code FALSTF.(23)
For the standard problem, the major contribution to the neutron flux
at detectors 1 and 2 is ffom the neutron distribution near the duct.
If the spatial mesh around the duct was too coarse, the flux at
detectors 1 and 2 would probably be underestimated due to the
increased attenuafion to the detectors from the centrnids of the-
spatial cells. This is the probable eXp]anation for the character-
istically lower magnitudes of the DOT's results at detectors 1 and 2.
The discrepancy between Monte Carlo and discrete ordinates
results at detectors 3 and 4 might have been due to: (1) the
statistical fluctuation in Monte Carlo calculations, (2) under-
estimation which is a common occurrence in Monte Carlo solutions to

deep penetration problems.
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6.2 Comparison of Fractional Standard Deviations

The fractional standard deviations (FSD) of the total neutron flux
from the Monte Carlo calculations with different biasing techniques are
presented in Table 5. The results are arranged according to the decreas-

ing order of the FSD's associated with detector 1. Essentially, the

same decreasing order is true for the other detectors as well.
Individually, detector 1 receives the most benefit from the biasing
techniques followed in order by detectors 2, 3, and 4. The FSD decreases
from 12% to about 2% for detector 1, from 16% to about 7% for detector

2, from 50% to less than 20% for detector 3, and from 47% to. 20% for
detector 4.

It is apparent, from Table 5, that the (0.5) calculation is
grossly inadequate. Source biasing by the step function (SS) improves
the FSD's for detectors 1 and 3 a great deal but not much help for
other two detectors. Using the importance functions x* and W
obtained from the adjoint DOT calculation with axial adjoint source,
the (S), (A), and (P) calculations significantly reduce the FSD's
for all four detectors. It is interesting to note that the improved
source blasing (S) reduces the FSD at each of the four detectors
by one-half: The combinations of any two (of the three) biasing
-techniques, i.e., (AP), (SP), or (SA), show some improvement over
(S), (P), and (A). However, there seems to be a general tendency
of these calculations to underestimate the answers. Finally, no
further gain is obtained from the combination of all three biasing

techniques (SAP) and the answer itself is strongly underestimated.
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TABLE 5

FRACTIONAL STANDARD DEVIATIONS OF THE TOTAL NEUTRON
FLUX FROM THE MONTE CARLO CALCULATIONS WITH VARIOUS
SAMPLING TECHNIQUES FOR THE STANDARD PROBLEM

. , ‘ Detectors:

Calcuiation _

Identification 1 ' 2 3 4
(0.5) 0.124 0.159 0.498 0.472
(SS) 0.048 0.149 0.269 0.425
(P) 0.028 " 0.051 0.237 0.397
(S) 0.026 0.073 0.173" 0.21
(A) 0.024 0.077 0.157 0.188
(AP) 0.024 0.067 0.223 0.255
(SAP) 0.023 0.080 0.186 0.222
(sp) - 0.020 0.084 0.175 0.227
(SA) 0.014 0.045 0.243 0.269
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An important point not to be overlooked is that the three
biasing schemes, (S), (P), and (A), each utilized (of represented)
the importance data to different degrees of precision. The source
biasing (S) most completely utilized the importance data because the
scalar adjoint flux could be quite accurateiy approximated by the
ana1ytica1 function IS(R) which was the importance function for
source biasing (S). The path length biasing and the angular probability
biasing techniques utilized the adjoint information in a less precise
manner because the importance functions used in these biasing

schemes were region-averaged quantities.

6.3 Spatial Distribution of Collision Sites

Figures 11 through 16 show the spatial distribution of neutron
collision sites according to regions within the concrete shield. For
the (0.5) calculation, Figure 11 shows that a-1arge fractfon of
collisions occurred in regions far removed from the duct. This is
1arge1y.due toAthéﬂunbié;ed source.distr{thion Which generated most
of the source particles away from the duct. The step biasing of the
source and the source biésihg by DCT éca]ar adjoint flux greatly
increased the source particles produced near the duct. Hence, the
percent of collisions occurring within regions 7 through 12 increased
considerably. The angular probability biasing and the path length
biasing seemed to encourage the partfé]es to penetrate deeper into the

shield as can be seen in Figures 13, 14, and 16.
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Figure 11. Distribution of Neutron Collision Sites for the
(0.5) Calculation.
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Figure 12. Distribution of Neutron Collision Sites for_the (S)
Calculation.
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Figure 13. Distribution of Neutron Collision Sites for the (P)
Calculation.
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Figure 14. Distribution of Neutron Collision Sites for the (A)
Calculation. '
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Figure 15. Distribution of Neutron Collision Sites for the (SP)

Calculation,
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Figure 16. Distribution of Neutron Collision Sites for the (SA)
Calculation.



70

6.4 Path Length Biasing Using Different Importance Functions

Tables 6 and 7 compare results of Monte Carlo calculations using
different importance functions for path length biasing and angular
probability biasing. Each calculation consumed one hour computer
time, and the batch size was 400 histories.

Table 6 is a comparison of results of Monte Carlo calculations
using different importance functions for the path length biasing.

The (0.5) calculation is also included because it represented the
currently accepted practice. The event value and the point value were
employed as the importance functions in (P) and (P*) respectively.

These value functions were obtained'from the same adjoint DOT calculation
with axial adjoint source. However, the event value used in (P””) was
obtained from the adjoint DOT calculation with the off-axial adjoint
source. Obviously, the (0.5) calculation is grossly ineffective.

Among the other three calculations, (P*) has the highest FSD's for
detectors 1 and 2, and the lowest FSD's for detectors 3 and 4. Based

on the results of detectors 1 and 2, the event value would seem to be

the appropriate importance function.for biasing the transport kernel.

6.5 Angular Probability.Biasing Using Different Point Values

Table 7 contains a comparison of results for the (0.5) calculation
and for the angular probability biasing using'point va]ues obtained from
adjoint DOT calculations with the axial and the off-axial adjoint sources.
The FSD's of (A) and (A”) calculations are very close at all four
detectors. For angular probability biasing, the x* importance function

obtained from the adjoint DOT calculation with the off-axial adjoint



TABLE 6

COMPARISON OF TOTAL NEUTRON FLUX® OF MONTE CARLO CALCULATIONS USING DIFFERENT
IMPORTANCE FUNCTIONS FOR PATH LENGTH BIASING

Number Detectors:
of . '
Batches 1 2 3 ‘ 4
(0.5) 31 2.868;9(.124)e 9.071-10(.159) 4.677-11(.498) 2.241-11(.472)
% 41 2.830-9(.028) 1.030-9(.051) 3.987-11(.237) 1.746-11(.397)
(P')C 42 3.282-9(.065) 1.335-9(.065) - 4.019-11(.166) 1.466-11(.201)
(P")d 45 2.853-9(.032) 9.346-10(.058) 4.219-11(.359) 1.399-11(.247)
' qnit = neutrons/cmz/souree neutron.
' bPath length biasing by‘:he evght value W from DOTnadjoint ca]cu]étion with axial adjoint source.
“path length biasing by the point value x* from DOT adjoint calculation with axial adjoint source.
'dPath length biasing by the event value W from DOT adjoint calculation with off-axial adjoint
source.
®Read as 2.868 x 107 with fractional standard deviation of 0.124.

L



TABLE 7

COMPARISON OF TOTAL NEUTRON FLUX® OF MONTE CARLO CALCULATIONS USING DIFFERENT
POINT VALUES FOR ANGULAR PROBABILITY BIASING

Number Detectors:
of
Batches 1 2 3 4
(0.5) 31 2.868-9(.]24)d 9.071-10(.159) 4.677-11(.498) 2.241-11(.472)
(A)b 60 2.928-9(.024) 1.085-9(.077) 3.039-11(.157) 1.165-11(.188)
(A’)C 61 3.084-9(.030) 1.280-9(.086) 3.691-11(.156) 1.314-11(.168)

ay . s 2
Unit = neutrons/cm /source neutron.

bAngu]ar probability biasing with x* from DOT adjoint calculation with axial adjoint source.

CAngu]ar probability biasing with x* from DOT adjoint calculation with off-axial adjoint source.

d

Read as 2.868 x ]0'9 with fractional standard deviation of 0.124.

eL
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source seems to be equally effective as that obtained from the
adjoint DOT calculation with the axial adjoint source. Finally,
comparison with (0.5) calculations clearly demonstrates the

effectiveness of the angular probability biasing technique.



CHAPTER VII
CONCLUSfONS AND RECOMMENDATIONS

Methods of biasing three-dimensional deep penetration Monte Carlo
calculations using importance functions obtained from a two-dimensional
discrete ordinates adjoint calculation have been developed and system-
atiﬁally evaluated. The important distinction was made between the
application of the point value and the application of the event value
to bias the transport and the collision processes in Monte Carlo
analysis. The biasing techniques developed in this work were the
angular probability biasing (A) which altered the collision kernel
using the poing value as the importance function and the path length
biasing (P) which altered the transport kernel using the event value
as the importance function. Source location biasing using the step
function (SS) and using the group one scalar adjoint flux obtained
from the two-dimensional discrete ordinates adjoint calculation (S)

were also investigated.

The angular probability biasing, path length biasing, and source
location -biasing were applied individually and in various combinations
to solve the standard problem. The standard problem consisted of a
thick (deep penetration) concrete cylinder with an axial duct (geometric
complexity) and a 14-MeV neutron source uniformly distributed over
the bottom surface.

Results of calculations using the biasing techniques (A), (P), and
(S) were compared with a discrete ordinates solution and two standard
Monte Carlo calculations. The calculations using the biasing techniques

were shown to be clearly superior to the standard Monte Carlo calculations.
74
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Based on the FSD's of answers of detectors 1 and 2, the biased calculations
were a factor of 2 to 8 better than the (0.5) calculation, and a factor
of 1.5 to 3.4 better than the calculation with the step source biasing.
These improvements clearly demonstrate the applicability and
effectiveness of the importance sampling techniques in deep penetration,
three-dimensional Monte Carlo calculations.

The cbmparison of results of Monte Carlo calculations with path
length biasing qsing respectively the event value and the point value
as the importance function showed that the event‘va1ue'ca1cu1ation
gave much.better statistics (the FSD reduced by a factor of 2) than the
point value. Hence, it was concluded that the event value is the
appropriate function for altering the transport- kernel. The effects
of the importance functions, which were obtained from the discrete
ordinates adjoint ca]cuiation with the off-axial adjoint source, to
the biasing techniques were also investigated. Probably due to the
nature of the standard problem, these importance functions appeared to
be as effective as those obtained from the adjoint calculation with
the axial adjoint source.

The techniques of biasing the transport and collision kernels
developed in this study were shown to be effective and applicable
to the Monte Carlo analysis of three-dimensional deep penetration
shielding problems. However, for further research, the following
areas are recommended.

1. The effect uf hiyher-order Legendre expansion of the

differential scattering cross section to the angular

probability biasing should be studied. Since a
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higher-order expanéion allows more scattering directions
in the collision process, a more complete utilization of
the point value importance information to bias the
collision kernel would be possible.

Biasing of the azimuthal dependence of the scattering
directions should also be studied. One poséib]e
approach would be to discretize the cones formed by

the scattering polar angles and then bias these discrete
directions by the point value.

Increase the number of spatial regions of the problem

SO that-better representation and utilization of the
two-dimensional adjoint flux could be achieved. This
should be pafticu]arly he]pfu1 to the path length
bjasing when applied to a problem which has a complex
geometry such as the streaming duct.

Finally, the possibility of applying these methods to
solve more comp]ibated streaming duct prob]emé should

be investigated.
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APPENDIXES

APPENDIX A

COMPUTER PROGRAMS

A.1 Input Instruction and Listing of the POINT Program

The POINT program consists of a main routine and a subroutine

SATURN.

The input to this program is written in the free-form of

the FIDO format.(]g) Presented below is the input instruction and

the Tisting of the program.

1$$ array: NAFT, NABC, IREG, JREG, MMDN, NEWDN, NEWMM, NREG T

NAFT
NABC
IREG
JREG
MMDN

NEWDN

NEWMM

NREG

2%% array:

3%$ array:

4$$ array:

logical unit number of the adjoint anqular flux tape
logical unit number of the point value tape

number of regions in radial direction

number of regions in axial direction |

number of downward difections in the angular quadrature set
number of downward directions with nonzero weights in the
angular quadrature set

number of total directions with nonzero weights in the
angular quadrature set

total number of regions, IREG x JREG

IRLO(L), L=1, IREG - mesh number of the lower boundaries of
region L in radial direction

IRUP(L), L=1, IREG - wmesh number of the upper boundaries

of region L in radial direction

IZLO(L), L=1, JREG - mesh number of the lower boundaries

of region L in axial direction

81
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5$$ array: IZUP(L), L=1, JREG - mesh number of the upper boundaries

of region L in axial direction T

C THE POINT PRQOGRAM
COMMON /BULKBU/ A(l)9L19L20L30L49L50L6!L70L80L99L1O’Ll10L129L13
1 sL1490L15L16,L17
2 +TDOT(18) sMMsIMeUMyIGsNININOU
3 9NAFTcNABCvIREG»JREG9MMDN,NEWDN¢NEWMM9NREG
[ «DUMMY (70000) - '
DIMENSION LA(L)
EQUIVALENCE (A(1)oLA(]1))
LENGTH=70050
DO 5 I=1+LENGTH
S A(I)=0.
NIN=S
NOU=6
" L1=43
L2=L1+8
NERR=0
CALL FIDO(2sIERRsNINyNOU)
ceranaaefDIT PARAMETERS
L1PB=L1+7 '
WRITE (NOUy1005) (LA(I)eI=L1.L1P8)
1005 FORMAT (*0PARAMETERS INPUT FROM CARDeeesseet/
t NAFT =9413s3Xe'L0G UNIT # FOR INPUT ANGULAR FLUX TaPE?
* NABC =',13¢3X,*L0G UNIT # FOR OUTPUT ANGULAR BIASING FUNCT*
' IREG ='4+13+y3XsNUMBER OF REGIONS IN RADTAL DIRFCTION?® )
t UREG ='eI3¢3Xs*NUMBER OF REGIONS IN AXIAL DIRECTION?®
+ MMDN =1',13+3Xs'NUMBER OF DOWNWARD ANGLES IN QUADRATURE SET?
t NEWDN='+13+3Xs'NEW NUMBER OF DOWNWARD ANGLES®
v NEWMM='4+I3+3Xe*'NEW NUMBER OF TOTAL ANGLES®
" NREG ='41393X+'TOTAL # OF REGION, IREG®JREG')
cesseaoREAD THE FIRST RECORD OF ANGULAR FLUX TAPE NAFT.AND PUT THE 1ST
C“”’““ 18 WARDS INTO TDOT ARRAYs THEN NEST 27 WARDS INTO A(L2) ARRAY
CALL REWND(NAFT) e
CALL WANDRZ2(NAFTsTDOT+18+A(L2)e2792)
WRITE (MNQU31010) TQOT
1010 FORMAT ('0DOT DATA TO BE PROCESSED FROM----*',IBA#)
MMz A(L2+3)
IM=LA(L2+6)
JM=LA(L2+7)
1G=LA(L2+26)
WRITE (NOUs1015) MMy IMsUMs IG
101% FORMAT (*OPARAMETERS INPUT FROM DOT===-t
1 /7 v MM =14313+93Xs *NUMBER OF DIRECTIONS? .
2 /7 v INMN =9,1393Xs "NUMBER OF RADIAL INTERVALS?
3 /7 v UM =9,13+3X+*NUMBER OF AXIAL INTERVALS?'.
4 / v IG =t.I3+3X«'NUMBER OF ENERGY GROUPS?!)
CALL CLEARX({A(L2)9s1s27)
L3=L2+IREG
Le=L3+IREG
L5=L4+JREG
L6=L5+JREG
L7=L6+MM
LB8=L7+MM
L9=L8+MM
L10=L9+MM
L11=L10+1IM+1
L12=L11+UM+1
L13=L12+IREG
Ll14=L13+UREG
L1S=L14+IM*MMDN
L16=L15+IREG®JM*NEWDN
L17 =L16+IREG*JREG*NEWMM

NV B W e
NNNNNNNN
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LAST=L17+NEWMM®NREG#*IG
WRITE (NOU«1017) LAST.LENGTH :

1017 FORMAT. ('0%#2v,164* DATA LOCATIONS REQUIRED VS. AVAILABLE'+16)
TF (LAST +6T. LENGTH) CALL ERROR('LAST',LAST)
CALL FIDO(2sIERRyNINsNOU)
NERR=NERR+IERR
TIF (NERR «GT. 0) CALL ERRO('DATA' NERR)

ceassssPRINT ARRAYS INPUT FROM SECOND DATA BLOCKS OF FIDO

L3M1=L3-1
WRITE (NOU91020) (LACI)eI=L2sL3M1)

1020 FORMAT (*QIRPLO(L)s INDEX OF LOWER LIMIT OF REGION L IN R OIRECTION'
1 /7 (2%X913))
L4M1=L4~]
WRITE (NQU+1030) (LA(I)+I=L3sL4M])

1030 FORMAT('QIRUP(L)s INDEX OF UPPER LIMIT OF REGION L IN R DIRECTION?
1 /7 (2X913)) .
LSMI=L5-1
WRITE (NOU91040) (LACI) sI=L4yLSM]) -

1040 FORMAT(*0IZLO(L)s INDEX OF LOWER LIMIT OF REGION L IN Z DIRECTION?®
1 /7 (2X913))
LeMI=L 6~1
WRITE (NQU.10S50) (LAC(I)sI=LSsL6M])

1050 FORMAT (*QIZUP(L)s INDEX OF UPPER LIMIT OF REGION L IN Z DIRECTION®
1 /7 (2X913))
CALL SATURN(LA(LZ)oLA(L3)!LA(L4)9LA(L5)'A(LG)OA(L7)’A(LB)OA(L9)9
1 ACLI0) oA(LIY1) 9A(L12)9sA(LL3) sA(L14)sA(LISIeA(LIE)A(LLT))
sToP
END

SUBROUTINE SATURN(IRLO«IRUP»IZLOsIZUP+WTNeWGT o+ XMUSETAS
1 RsZyAREASHEIGHT s AFLUX 9 AAF + AD9 COF)
DIMENSION PHE(150)
DIMENSION IRLO(1)sIRUP(1)eIZLO(1) s IZUP(1) ¢WGT (1) e XMU(1)sETAC(]),
1 WIN(LI) eR({1)+Z{(1)9AREA(L1) sHEIGHT (1)
DIMENSTON AFLUX (IMsMMDN) y AAF (IREGeJIMsNEWDN) 5 AD (NEWMM s JREG«IREG) »
COF (NEWMMeNREGs IG)
COMMON /BULKBU/ A(1)sL1osL24L39L 4ol SeL6sL79LBsLOeL109L 1sL 125013
1 oLlaslL1SeL16eL17
2 +TDOT(18) +MMyIMsUMIIGINININOU :
3 sNAFToNABCIREGeJREG+MMONyNEWDNNEWMMINREG
4  sDUMMY (70000)
CoonnpareawGT (1) IS THE ANGULAR WEIGHT ARRAY
counseaeaaXMU(1) IS THE MU ARRAY
cesaosvensfETA(l) IS ETA ARRAYs ETA BEING THE POLAR ANGLE
Cenesconsn INPUT QUADRATURE AND MESH DATA
conevascaaSKIP THE 2NDs 3RDs AND 4TH RECORD IN NAFT
CALL. WANDRO (NAFT+3)
CoeRpaatauREAD I*MM+IM+IM+2 WORDS FROM THE STH RECORD
CALL WANDR1 (NAFTsWGT+3¢MM+IM+UM+2,42)
coosnvacft TMINATE ANGLES WITH ZERO WEIGHTs AND RENUMBER THE ANGLES
N=0
DO 62 M=19MM
1IF (WGT (M) .EQ. 0.) GO TO 62
N=N+1
WIN(N)=WGT (M)
reaonenoas REFLECT XMU & ETA ANGLES WRT THE ORIGIN
XMU (N) ==XMU (M)
ETA(N)=-ETA (M)
PHE (N)=SQRT (1. 0=XMU(N) 282=-FETA (N) ##2)

—
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62 CONTINUE
WRITE (NQU.1S5) N
15 FORMAT (*ON=1,1444Xs *SHOULD BE EQUAL TO NEWMM?)
NEWMM=N
WRITE (NOUs10)
10 FORMAT (l1H1+10Xe7H WEIGHTs8Xs3H MUsOIXe4H ETAsBXs *RADIUS 47X
1 SHEIGHT'+9X+'PHE?)
CALL WOTB(WTNeNEWMMs XHUINEWMMIETAINEWMMyRs IM+1 02y UM+1+PHE s NEWMM
1 050+0s09NOW)
WRITE(NABC) (XMU(M) sM=1 +NEWMM) 9 (ETA(M) sM=1 s NEWMM)
CALL TIMEX :
CeooaranspPOSITION AND READ ANGULAR FLUX TAPE THEN PROCESS THEM
CALL WANDRO(NAFT1G+1)
00 60 I1G=1»1IG
DO 82 J=1sJIM
NNERTUFSEN]
coesssabveaREAD DOWMWARD ANGULAR FLUX
CALL NANDRI(NAFTcAFLUX IM#MMDNs 2)
DO 83 I=1+1IM
N=0
DO 83 M=1sMMDN
IF (WGT(M) .gEQ. 0.) GO TO 83
N=N+1
AFLUX (L 9yN) =AFLUX (1+M)
IF (AFLUX(TIsN) oLT, 0.) AFLUX(IN)=0.
83 CONTINUE :
NEWON=N
cressneons AVERAGE DOWNWARD ANGULAR FLUX QOVER RADIAL DIRECTION
DO 85 L=1+IREG
ILOW=TRLO (L)
IUP=IRUP (L)
TUPM]l=TUP-1
AREA (L) =3. 14159“(R(IUP)°°2 RIILOW)##2)
DO 86 M=1+NEWDN
AAF (LeJJsM)=0.0
DO 86 I=ILOW,JUPMI] )
86 AAF (LeJJeM)=AAF (LaJJoM) +AFLUX (I eM) #3,141508 (R(I+]1)8#82-R(T)=22)/
1 AREA(L)
85 CONTINUE
82 CONTINUE
Cosnonruecs AVERAGE DOWNWARD ANGULAR FLUX OVER AXIAL DIRECTION
00 87 L=1«IREG
DO 87 K=1+JREG
JLOW=TZLO(K)
JUP=IZUP (K)
JUPM]=yuP~1
HETGHT (K) =Z (JuP) =Z (JLOW)
DO 87 M=1+NEWDN
AD(MsKoelL)=0.0
D0 89 J=JLOW, JUPM]
89 AD(M~K.L)~A0(MoK-L)*AAF(LszM)”(Z(J*l)‘Z(J))/HEIGHT(K)
87 CONTINUE
MMUP =MM-MMODN
CenosnoaoaREAD UPWARD ANGULAR FLUX
DO 92 J=1lsJM
CALL WANDRI (NAFTeAFLUX « IM2MMUPs2)
DO 63 I=1sIM
N=0
DO 93 M=) s MMUP
MOP=M+MMDN
IF (WGY(MOP) .EQ. 0.0) 60 TO 93
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85

N=N+1

AFLUX(ToeN)=AFLUX (I M)

IF (AFLUX(IsN) LT, 04) AFLUX(IeN)=0,.
CONTINUE

NEWUP =N

Ceecsonoss AVERAGE UPWARD ANGULAR FLUX OVER RADIAL DIRECTION

96

95
g2

DO 95 L=15IREG
ILOW=IRLO (L)
IUP=IRUP (L)
1UPMl=IUP~1

DO 96 M=1yNEWUP
AAF (LyJ 9sM)=0.0

DO 96 I=1ILOW,I1UPMI]
AAF (Lod oMISAAF (Led sM)+AFLUX(T9M)#3,141592(R(I+1)#22=-R(I)un2)/
1  AREA(L)

CONTINUE

CONTINUE

Cooovanrr s AVERAGE UPWARD ANGULAR FLUX OVER AXIAL DIRECTION

99
97

N0 97 L=1s1IREG

D0 97 K=1sJREG
JLOW=TZLO(K)
JUP=1Z2UP (K)
JUPM]=JuP=-1

DO 97 M=1+NEWUP
MMM=M+NEWON
AD(MMMsKaelL)=0,0

DO 99 J=JLOW«JUPM]
AD (MMMa KoL) =AD (MMM KoL) +AAF (Lo deM) ®(Z(U+1)=-2(J)) /HEIGHT (K)
CONT INLIE

DO 100 L=1+IREG

DO 100 K=1«JREG

Cenonoenas COMBINE R~Z REGION INDICES LsK INTO ONE INDEX,I

120
100

61
60

I=JREG#® (L-1) +K

DO 120 M=1+NEWMM

COF (Ms1«11G)=AD(MeKoL)

CONTINUE

CONTINUE

IK=1G+1-T116

WRITE (NQUe61) IK

FORMAT ('O0GROUPY3T4+42Xs "ANGULAR ADJOINT READ FROM TAPE")
CONTTNUE

ceovoocnne REVERSE ENERGY GROUP NUMBER OF THE POINT VALUE FUNCTION

130

136

IGHALF=1G/2

00 130 116G=1,IGHALF

K1=1G+1-116

DO 130 I=1,NREG

DO 130 M=1sNEWMM

DUM=CDF (Ms I+ 11G)

COF (My1+T16)=CUF (MyIok1)

COF (MyIyK1)=pUM

CONTINUE

NREGM3=NREG-JREG

DO 135 11G=l.16

WRITE(NOUs136) 116

FORMAT (1Hls *THE POINT VALUE FUNCTION OF GROUP'.14)
CALL WOT(CDF(1s1+11G) sNREGM34+NEWMMy1 4 *ANGL '+ *REGN " "

geescocncs WRITE THE POINT VALUE FUNCTIONS ON NABC BY GROUP

135

WRITE (NABC) ((CDF(Msls1IG)sM=1aNEWMM) sIa],4NREG)
CONTINUE

sTop

END
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A.2 Input Instruction and Listing of the EVENT Program

The EVENT program consists of a main routine and subroutines,
PEASE and PCON. Like the POINT program, the input to the EVENT program
is written in the free-form of the FIDO format. The input in;truction
and the listing of this program are presented as follows.
1$$ array: IGM, IM, JM, MM, NEWMM, IREG, JREG, NREG, LMAX, NIZ4,

NEVF T
IGM - number of energy groups
IM - number of radial intervals
JM - number of axial intervals
MM - number of directions in the angular quadrature set
NEWMM - number of directions with nonzero weights in the angular
quadrature set

IREG - number of regions in radial direction -

JREG - number of regions in axial direction

NREG - total number of regions, IREG x JREG

LMAX - the order of Legendre Polynomial expansion of the differential

scattering cross section

NIZ4 - logical unit number for the scattering soﬁrce tape

NEVF - Togical unit number for the event valué tape
2** array: CST(IG), IG=1, IGM - total macroscopic cross section by

group (input in reversed energy group number) |
3** array: R(I), I=1, IM+1 - boundafies of radial intervals
4** array: 1Z(J), J=1, JIM+1 - boundaries of axial intervals
5** array: IRLO(L), L=1, IREG - mesh number of the lower boundaries

of region L in radial direction
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6** array: IRUP(L), L=1, IREG - mesh number of the upper bbdndéfies
of region L %n radial.difectfon

7** array: IZLO(L), L=1, JREG - mesh number of the lower boundarfes
of region L in axial direction |

8** array: IZUP(L), L=1, JREG - mesh number of the upper boundaries
of region L in axial direction

9** array: WGT(M), M=1, MM - weights associated to the directions in
the angular quadrature set -

10** array: XMU(M), M=1, MM - direction cosines with respect to the
radial directiqn in-the angular quadrature set

11** array: ETA(M), M=1, MM - direction cosines with respect to the

axial direction in the angular quadrature set.
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C THE EVENT PROGRAM
COMMON /BULKBU/ A(1) eL1oL2eL3¢L&4sL.SeLEILTILBLOsL10

Ce#eoRE

1005

999

1010

sL11oL12eL13¢L14sL15+0L16eL179L18s1 194120

+NIZ4 «NEVF
+DUMMY (64000)
DIMENSION LA(1)
EQUIVALENCE (A(1)sLA(1))
LENGTH=64000 :
DO S I=1+LENGTH
AlT1)=0.0
NIN=S
NOU=6
L1=24
L2=L1+11
NERR=0
AD 1%$% ARRAY
CALL FIDQ(25IERRsNINsNOU)
L1P=L1+10
WRITE (NOU+100S) (LA(I)+I=LYsL1P)

FORMAT ('*OPARAMETERS INPUT FROM CARDSeceoeoe'/
/ v IGM =1',T13+3X4*NUMBFR OF ENERGY GROUPS®
M 1513¢3Xy *NUMBER OF RADIAL INTERVAL?
IM 1,13+3Xy"NUMBER OF AXTAL INTERVALS?

MM *9vT13+3Xy "NUMBER OF DIRECTIONS!

NEWMM=1,13,3Xy *NEW NUMBER OF DIRECTIONS?

IREG

JREG

NREG

LMAX

NIZ4

t NEVF

1SC=LMAX+]

LM= (LMAX# (LMAX+3)) /2

LMP1=LM+1

KIM=22LMAX+1

WRLITE (NOU+999)

FORMAT (10 ISC=t913+54Xy?
IKIM=1413)

L3=L2+1IGM

L4=L3+IM+1

LS=L4+ UM+

L6=L5+IREG

L7=L6+IREG

LB=L7+JREG

L9=L8+JREG

L10=L9+MM

L11=L10+MM

L12=L11+MM

L1I3=L12+NEWMM*LM

L14=L13+LMP1oNREG

L1S=L14+NEWMMENREG® ] GM

L16=L15+NEWMMSTISC®TSC

L17=L16+KIM

LIB=L17+NEWMM

L19=L18+IMBIMEL MP]

L20=L19+IREG

LAST=L20+JREG

WRITE(NQU1010)

FORMAT (1082, 16y

1
2
3
4

*913+3Xy tNUMBER OF REGIONS?

3 6 0@ % % 0o RSB
* ® ® @ @ ® * * e
L LI I B L [ T '}

NN NN NNNNNN

ISCyLMyLMPLlsKIM
LM=1yI3s4Xe
1

LASTsLENGTH
DATA LOCATIONS REQUIRED VSe.

«NINsNOUsIGHMe IMe JMs MMy NEWMM, TREG + JREG s NREG s LMAX

*913+3Xy'# OF REGIONS IN RADIAL DIRECTIOM!
'y13+3X9'# OF REGIONS IN AXIAL DIRECTION?

"9 I1393Xy *MAXIMUM ORDER OF SCATTERING!

=y 13+3Xy'L0OG # FOR SCATTERING SOURCE TAPE?
=1431393Xe'L0G ¥ FOR EVENT VALUE TAPEY)

LMPL1='913+4X,
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AVATILABEL'+16)
IF (LAST .GT, LENGTH) CALL ERROR('LAST'sLAST)
CALL FIDO(2+IERRyNINsNOU)
NERR=NERR+IERR
IF (NERR ,GT. 0) CALL ERRO('DATA'+NERR)
WRTITE (NOU«1020)

1020 FORMAT (1H1910Xe" WEIGHT148X9? MU' e9Xe? ETAY 48X,

1

1

YRADIUS s 77Xy *HEIGHT )

CALL VWOTB(A(LYG) +sMMeA(L]10) +MMyA(LL1L1) oMMeA(L3) 9IM+],
AlL4) yJM+14050+04+040+04NOU)

WRITE(NNU,1030)

1030 FORMAT(1H1910Xe? CST*e8Xs'IRLO"+8Xs*IRUPY$8Xs"IZLO"

1
1

1
e

1

2

1
2
3

1

1

8Xy1ZUPY)
CALL WOTB(A(L2)sIGMyA(LS) y IREGsA(LE) yIREGA(LT) +JREGY
A(LS) s JREGsD90¢040+0504NOU)

CALL PEACE(A(L2) sA(L3) sA(LS) 9A(LS) sA(LE) sA(LT)»A(LB)
A(L9) sA(L10) 9A(LYIY)sA(L12)9A(L1I3) 9sA(LLISG)A(L1ISY)),
ACLLIG) sA(L1T) »ALLLIB) »A(L19) 3A(L20) sLMsLMPL1yISCeKIM)

SToP

END

SUBROUTINE PEACE(CSTsReZsIRLOSIRUPIZLO» TZUPsWGT s XMUy
ETA+PLsToWsPN9IBsCPsSSsAREASHEIGHT
LMsLMPLlsyISCsKIM)

COMMON /BULKBU/ A(1)sL1oL2sL3sLasLS+L6sLT9LBsL9sL10
oL11eL12sL13sL14+L15+L16s0L17sL18s0L194L20
sNINISNOUIGMe IMy UMs MMy NEWMMy IREG s IREG«NREGLMAX
sNIZ4 o NEVF

DIMENSION CST(1)9sR(1)9Z(1)sIRLO(]1)sIRUP(1)¢IZLQC(1)>
TZUP (1) sWGT (1) e XMU(1) sETA(])

DIMENSION PL(NEWMMLM) s T(LMPI+NREG) +W(NEWMMeNREGsIGM)y

PN(NEWMMISCeISC)»yB(KIM) yCP(NEWMM) sSS(IMyUMyLMP1)

DIMENSION AREA(IREG) sHEIGHT (JREG)

CALL PCON(XMUSETAWWGT«PLsPNyRsCPoNEWMM ISCoLMAX)

WRITE (NOUy10S0)

1050 FORMAT(1Hls?* TESTING PCON')

CALL WOT(PLeLMINEWMMs1 o "ANGL* s *PLMC* " ")

C ELIMINATE ZERO WEIGHT DIRECTIONS. & REORDER THE DIRECTIONS
THEN REFLECT XMU & ETA WITH RESPECT TO THE ORIGIN,

c

10
1000

1010

1020 FORMAT(1H1,?

1

N=0

DQ 10 M=1eMM

IF (WGT(M) .EQ. 0.) GO TO 10

N=Na+1

WGT (N)=WGT (M)

XMU(N) ==XMU (M)

ETA(N)=-ETA (M)

CONTINUE

WRITE(NQU+1000)

FORMAT (1H1+% MU & ETA AFTER REFLECTED?®')

WRITE (NOU+1010)

FORMAT (1HOe10Xe? WEIGHT 1 48X9? MUt ,GX4? ETAY)

CALL WOTB(WGT oNEWMMe XMUSNEWMM)ETASNEWMM
0909090909090+s04+0+04NOW)

CALL PCON(XMUYETAIWGToPL sPN4BoCPINEWMMS ISCoILMAX)

WRITE(NOU+1020)

DISCRETE VALUES OF PLM(THETA)Y®COS(MaPST) )

CALL WOT(PLeLMyNEWMMs]; ANGL Y 'RPILMCt,t ')
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CeoCALCULATE THE EVENT VALUE FOR EACH GROUP
c#aNOTE THAT THE GROUP NUMBER 'IS.IN REVERSE ORDER

DO 20 IG=1l.IGM
READ (NIZ4) (((SS(TadslL)eI=20IM)oy= leM)vLL leLMP1)

Co#oAVERAGE SCATTERING SOURCE OVER REGION

25

23

27
26
20
1001
1002

1003

DO 23 L=1.IREG

ILOW=TRLO (L)

TUP =1RUP(L)

TUPM1=TUP-1

AREA(L) =3.14159% (R(IUP) 222 = R(ILOW)®#2)
DO 23 K=1+JREG

JLOW=IZLO (K)

JUP =1ZUP(K)

JuPM1=JuP-1

HEIGHT (K) =Z(JUP) = Z(JLOW)

NR=JREG# (L=1) +K

DO 23 LL=1+LMP1

T(LLsNR)=0.0

DO 25 J=JLOW,JUPMI

DO 25 I=ILOW,IUPM]

TILLsNRY=T(LLNR) + SS(IyJsLL)
T(LLsNR)= T(LLsNR)/ (HEIGHT (K) #AREA (L))
CONTINUE

DQ 26 NR=1y¢yNREG

DO 26 M=1yNEWMM

W(MsNReIG)=T (LsNR)

DO 27 Li=1stM

W(MINReIG)=W(MsNReIG) + PL(MyLL)=T(LL+1sNR)
W(MvNRQIG)—W(MyNR9IG)/(4 023.141594CST(IG))
CONTINUE

CONTINUE

WRITE (NOUs1001)

FORMAT (*0 AREA OF RADIAL REGION®)
WRITE (NOU+s1002) (AREA(L)+L=1+IREG)
FORMAT (4X»1PE12.5)

WRITE (NOUy1003) .

FORMAT (0 HEIGHT OF AXIAL REGION?)
WRITE (NOU»1002) (HEIGHT (K) sK=1+JREG)

C*¢REVERSE ENERGY GROUP NUMBER OF EVENT VALUE FUNCTION, W

IGMHLF=IGM/2
DO 30 IG=1,yIGMHLF

- K1=1GM+1-1I6

30

DO 30 NR=1,NREG

DO 30 M=l NEWMM
DUM=W (MyNRyIG)
W(MyNRsIG)=W({MsNRyK])
W(MyNR+K1)=DUM
CONTINUE
NREGM3=NREG-3

DO 40 IG=1l.1GM

Ce#WRITE THE EVENT VALUE FUNCTION ON TAPEs NEVF BY GROUP

WRTTE (NEVF) ((W(MyNRsIG) sM=1,NEWMM) «NR=1,)NREGM3)

Ct«PRINT THE EVENT VALUE FUNCTION BY GROUP

1030

40

WRITE (NOU«1030) 16

FORMAT (1H1« *THE EVENT VALUE FUNCTION QOF GROUP';IA)
CALL WOT(W(14191G)yNREGMIyNEWMMs1e tANGL s 'REGN? 4
CONTINUE

RETURN

END
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SUBROUTINE PCON (EMUSETAsWePLIPNsA+CP9yMMsISCyISCT)
DIMENSION EMU(1)sETA(1) oW (1) +PL{MMs1) sPN(MMYISCs1l),
1 A(l).CP(1])

C ==~ PCON CALCULATES A(L+MsD) TERMS FOR INSCATTER INTEGRAL
c USING VARYING ORDER RECURSION FORMULA
c. REFERENCE EQ. 8.5.1 - ABRAMOWITZ & STEGUN
. IFM = 287SCT+1
v A(l) = 1.0

DO 1010 I=2+1FM
1010 A(I) = FLOAT(I-1)2A(I=-1)
" " DO 1030 M=1,MM
El = 0.0 )
IF (W(M) ., EQ.0.0) GO TO 1015
El = SQRT(1.0-EMU(M) 2EMU (M) -ETA(M)BETA(M))
1015 CP(WM) = ATAN(EI/ETA(M))
1F (ETA(M) LT.0.0) CP(M) = CP(M)+3.1415927
PN(Mslol) 1.0 .
PN(Ms241) EMU (M}
PN(Ms2+2) = SORT(1.,0-EMU(M)CENMU(M))
IF (ISCT.LE.1) GO TO 1030
ROOT = 1.0/PN(Me242)
DO 1020 N=2,1SCT
El = 1.0 -1.0/FLOAT (N}

€2 = E1+41.0

PN(MyN+1el) = E2#EMU(M) #PN(MsNs1)=E1®PN(MsN=1,1)
DO 1020 J=1sN

I1 = N-=J+1

12 = N+y-1

El = [2

E2 = 11

1020 PN(MsN+1eJ+l) = ROOTH(EL1®PN(MsNyJ)=E2*EMU (M) #
1 PN(MsN+1sI))
1030 CONTINUE
LL = 0.
DO 1040 L=29+1SC
DO 1040 K=1loL
LL = LL+1
DO 1040 M=1 MM
PL(MLLL) = PN(MsLsK)
IF (K.EQ.1) GO TO 1040
El = SQRT(2.0%A(L-K+1)/A(L+K=1))

g2 = K-1
PL(MsLL) = E1®PL(MsLL)®COS(E2#CP(M))

1040 IF (ABS(PLIMyLL)) +LE«1.0E=S) PL(MsLL) = 0.0
RETURN

END
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A.3 Subroutines of the Modified MORSE Code

In the modified MORSE code, the -random walk subroutines COLISN
and NXTCOL were rewritten in order to incorporate the angular probability
biasing and the path length biasing techniques into the MORSE code.
Also, the subroutine REGION was introduced to track particle flight
trajectories so that path length biasing can be performed. The
subroutine INSCOR was written to read the point value tape, the event
value tape, or both the point value tape and the event value tape.

Finally, two SOURCE subroutines were written. The first one generated

source particle locations according to the source distribution which
was biased by the step importance function, and the second one generated
source particle locations according to the source distribution which
was biased by the DOT adjoint flﬁx.
fhe 1istings of these subroutines are presented here in the

following order: SOURCE, INSCOR, COLISN, NXTCOL, and REGION.



C

C

10

21

25

26

30
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SUBROUTINE SOURCE (IGsUsVeWsXeYsZsWATEsMED+AGs ISOURS
1 ITSTRyNQT3+DDF s ISBINMTG) '

SOURCE DISTRIBUTION BIASED BY A STEP FUNCTION

10

20

R1=10.0

RTOL=150.0

€=1000.0
XJ=(C=1.0)*R1*R1/(RTOL*RTOL)+1.0
XK=C#*R1%*R1/ (RTOL#RTOL®XJ)
RAN=FLTRNF (0)

IF(RAN.GT.XK) GO TO 10

RAD=SQRT (RAN#XJ/C) *RTOL
WATE=WATE®*XJ/C

GO T0 20

RAD=SQRT (RAN#XJ*RTOL®#RTOL=-(C~1.0) #*R1#R1)
WATE=WATE®XJ
THETA=2.,0%3.14159%FLTRNF (0)
X=RAD#COS(THETA)
Y=RAD*SIN(THETA)

Z=4+0.0001

CALL GTISO(UyVyW)

W=ABS (W)

RETURN

END

SUBROUTINE SQURCE(IGsUsVeWsXsYeZeWATE+MEDsAGeISOURY
1 ITSTR«NQT3+DDF+ISByNMTG)

SOURCE DISTRIBUTION BIASED BY DOT ADJOINT FLUX

REAL®4 M1sM2

M1=0.13155

M2=0.021675

P1=0.954236

P2=0.040994

RN1=FLTRNF (0)

IF(RNL .GT. P1) GO TO 10
RADIAL ZONE 1 1S SELECTED
RN2=FLTRNF (0)
RAD=8.0#SORT (RN2)
WATE=WATE®Q.00298086

GO 70 111

PilP2=P1+P2

IF(RNl .GT. PlP2) GO TO 30
RADIAL ZONE 2 1S SELECTED
RN3=FLTRNF (0)

IF(RN3 .GT. 0.48165) GO TO 25
SELECT FRUM SYEXP (=MS3)
ETALI=EXPRNF (0)
ETA2=EXPRNF (0)
S=(ETA1+ETA2) /ML

IF{(S .GT. 42.0) GO TO 21
GO TO 26 .
SELECY FROM EXP(-MS)
ETA=AMOD (EXPRNF (0) +42.0%M1)
S=ETA/M1

RAD=8.0+S
WATE=WATE®0,2533732¢%EXP (M1#S)
G0 70 111

RADIAL ZONE 3 1S SELECTED
RN4=FLTRNF (0)
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IF(RN4 .GT. 0.39911) GO-TO 35
c SELECT FROM S#EXP (-MS)
31 ETAL=EXPRNF (0)
ETA2=EXPRNF (0)
S=(ETAL+ETA2) /M2
IF(S «GT, 100.0) GO TO 31

GO TO0 36
c SELECT FROM EXP (-MS)
35 ETA=AMOD (EXPRNF (0) +100,0%M2)
S=ETA/M2

36 RAD=50.0+S
WATE=WATE®#63,343297%EXP (M2#®3)
111 THETA=2.0%3.14159#FLTRNF (0)
X=RAD#*COS(THETA)
Y=RAD=SIN(THETA)
Z2=+0.0001
CALL GTISO(UyVaW)
W=ABS (W)
RETURN
END

SUBROUTINE INSCOR
C INCLUDF NEXT LINE IF PATH LENGTH BIASING IS EMPLOYEQD
COMMON /STEAK/ EVENT(1464+12414)
COMMON /ANGUS/ TGMsNRGsNEWMM,MPA»POL (25) 4 IPOLST(25)
1 s JOHN 9 XMU(146) vETA(146)
C INCLUDE NEXT LINE IF ANGULAR PROB. BIASING IS EMPLOYED
2 sCOF{146412+14)
1GM=14
NRG=18
NEWMM=146
NABC=13
¢ INCLUDE NEXT LINE IF PATH LENGTH BIASING IS EMPLOYED
REWIND 14
REWIND NABC )
READ (NABC) (XMU (M) sM=1 +NEWMM) 9 (ETA (M) yM=1 s NEWMM)
NM3=NRG-6.

DO 100 T1G=1,IGM )
¢ INELUDBE WEAT LINE LF ANGULAR PROB. BIASING IS EMPLOYED
READ ({NABC) ((CDF (MyT+I1G)sM=1sNEWMM) sI=1yNM3)

C INCLUDE NEXT LINE IF PATH LENGTH BIASING IS EMPLOYED
READ(14) ((EVENT(MsI«IIG) sM=19NEWMM) 9I1=14NM3)
100 CONTINUE

C DETERMINE THE COSINES OF POLAR ANGLES POL (N) FROM ETA
c AND THEIR STARTING LOCATIONS IPOLSTIN} IN NEWMM
C IPOLST(N) TS THE STARTING LOCATION IN THE QUADRATURE
C SET OF THE NTH PQLAR ANGLE

N=1

POL (1) =ETA (L)

IPOLST (1) =1

DO 10 M=2+NEWMM
IF (ETA(M) +EQ. POL(N)) GO TO 10
N=N+1
POL (N)=ETA (M)
IPOLST(N) =M
10 CONTINUE
NPA=N
C NPA IS THE TOTAL NUMBER OF POLAR ANGLES



s NeNel

105
106
107

108

10

15

20
25

30

35

1
2

~NONSWN =

95

WRITE(64105)

FORMAT (' OPOLAR ANGLES, POL(N) ")

WRITE(64106) (POL (N) yN=1yNPA)

FORMAT (2Xs1PB8E14.5)

WRITE(6+107)

FORMAT (*QINDEX OF STARTING POLAR ANGLES. .IPOLST(N)*)
WRITE(6,108) (IPOLST(N) yN=1,NPA)

FORMAT (2X+81I14)

RETURN

END

SUBROUTINE COLISN(IGsUsVsWyWATE, IMEDsNREG)

THIS ROQUTINE IS CALLED AT EACH COLLISION .

1T CONVERTS INCOMING GROUP NO.s DIRECTION COSINES AND

PARTICLE WEIGHT INTO POST COLLISION PARAMETERS.

COMMON /ANGUS/ IGMyNRGsNEWMMyNPAyPOL (25) 9 IPOLST (25)

s JOHN S XMU(166) yETA(146)
sCDF (146512914}

COMMON /USER/ JUNK (22) sNMTG

COMMON /NUTRON/ DUM(13)eXsYsZ

COMMON/LOCSIG/ISTART+1SCCOGs INABOG+IGABOG IFPORG,
IFNGP«1FSPOGYyIDSGOGIPRBNG+IPRBGGs ISCANGy ISCAGG)
1SPORG s ISPORT s INPBUF s 1SIGOG INFPOG1ABS0G ITOTSGY
NGP sNDSINGGsNDSG s INGP s INDS ¢ NMED s NELEMsNMIX yNCOEF
NSCTeNTSsNTGsNDSNGP sNDSNGGy TADJINMELOCs INGSy INSG»
I11510sKKKs IXTAPEyIDELs ITEMLy ITEMGY IRSGyIRDSGy ISTRs
IPRINGIFMUGIMOMy IOTF s ISTAT 3 IPUNsNUSINGN THT » INUS
INUSNGINGN, INGNP o INNN, IGGG

COMMON SIGT(1) .

DIMENSION SICK(5) 4POF(5) +A(S) eB(5) sC(5) 9KNOX(S)

DIMENSION NSIG(1}

EQUIVALENCE (SIGT(1)9sNSIG(1))

CALL GTMED(IMED,MED}

IGMED=(MED-1) #ISPORG+IG

PNAB = SIGT(IGMED + INABOG)

WATE = WATE®PNAB

IF (IG-NGP) 10y 10415

1H=1G

NDSK=NSIG(INNN+IG)

IS=(MED-1)#ISPORG+IFSPOG+NSIG(INGS+1G)

NADDPG=0

ITE=NSIG(INGS+IH}

GO TO 20

NADDPG=1PRBGG-IPRBNG

IH=1G-NGP _

NDSK=NSTG(TGGG+IH)

ITE=NSIG(INSG+IH)

1S={MED-1)2ISPORG+IDSGOG+ITE

IF(LOC ) 25425435

Cc9=0.

R = FLTRNF(0)

D0 30 I=1eNDSK

€9=C9+SIGT(IS+I)

IF(C9-R) 30940440

CONT INUE

1 = NOSK

GO TO 40

IND=LOC +NTG*® (NREG~1)



40

45

5S¢

65

70

75

OO0

80

81
82

96

CALL GTIOUT(ISsIyNREGINDSKsIGsWATE+IND)

IG=1G +1-1-NUS

THO=IG

CHECK IF POST COLLISION ENERGY BELOW CUT-OFF ENERGY
IF (IHO.GT.IGM) RETURN

SELECT OUT GOING DIRECTION

IF (NSCT)45945+50

CALL GTISO(UyVeW)

RETURN

II=(MED-1)#1SPORG+IPRBNG+( ITE +1-1)#NSCT+NADDPG
IF (SIGT(LI+]l) .LT.0.) GO TO 4S5

DO 1 J=1eNSCT

IF (J=1) 21243

SICK(J)=SIGT(II+J)

GO 70 1 °

SICK(JY= SIGT(J+III-SIGT(II+J~-1)
CONTINUE

DO 60 J=1sNSCT

I3=(MED-1)*ISPORG+ISCANG+{ ITE +1-1)*NSCT+J+NADDPG
FM =SIGT(I3)

SINPST =SQRT (1.0-FM %FM )

CALL AZIRN(SINETAsCOSETA) .
STHETA = 1.0-UsU

IF(STHETA)Y 70470565

STHETA =SQRT (STHETA)

COSPHI= V/STHETA

SINPHI= W/STHETA

GO 70 75

COSPHI=1.0

SINPHI=0.

STHETA=0.
B(JI=VRFM+USCOSPHI®COSETA*SINPSI-SINPHI#SINPSI®*SINETA
ClI)=WHFM+UHSINPHI#COSETA#SINPSI+COSPHI®SINPSI®SINETA
A(JY=U#FM~-COSETA#SINPSI#STHETA

S=1,0/SQART(A(JI*A(J) +B(JI#B(J)+C(J)*C(J))
Al(J)=A(U)*®S

B(J)=B(J)#S

cldy=Cc(J)es .

PICK A POLAR ANGLE NUMBER NFLAG NEAREST T0 C(J)
APPLE=3.0

DO 80 N=1yNPA )

ORANGE=ABS (PQL (N)=C(J))

IF (ORANGE .GE. APPLE) GO TO 80

APPLE=ORANGE

NFLAG=N

CONTINUE :

DETERMINE THE BEGINNING AND THE END LOCATIONS OF THE
AZIMUTHAL ANGLES CORRESPONDING TO THE SAME POLAR ANGLE
IN THE QUADRATURE SET

IBGN=TPOLST (NFLAG)

IF (NFLAG .GE. NPA) GO TO 81

JEND=TPOLSTI(NFLAG+1)~-1

GO TO 82

TIEND=MEWMM

CONTINUE

COMPUTE OMEGAROL FROM A(J), AND B(J)e THEN PICK
XMU(KFLAG) WHICH IS CLOSEST T0O OMEGAROL.
SINPHE=Y/SQRT (X#X+Y"nY)

COSPHE=X/SQRT (X#X+Y®Y)

ROL=SART (A(J)RA(J)+B(JI*B(J))

SINKAI=B (J)/R0L



85
60
C
90
95
99
(o
c
(X2
Ccend

97

COSKAI=A(J) /ROL
RMU=ROL# (CQSKAI®COSPHE + SINKAL®SINPHE)
G=3.

DO 85 K=IB8GN,IEND
H=ABS ( RMU-XMU(K) )

IF (H .GE. G ) GO TO 8S
G=H

KFLAG=K

CONTINUE

PDF (J) = CDF(KFLAGsNREGsIHQ)
KNOX (J) = KFLAG
CONTINUE

IMPORTANCE SAMPLING THE ANGULAR PROBABILITY
C9=0.

SuUM=0.

DO 90 J=1sNSCT
SO=SICK (J) #PDF (J)
SUM=SUM+S0

R=FLTRNF (0)

R=R#SUM

DO 95 J=14NSCT
C9=CI+SICK (J)*PDF (J)

IF (C9-R) 95995499
CONTINUE

J=NSCT
WATE=WATE#SUM/PDF (J)
U=aA(J)

V=B (J)

W=C(J)

JOHN=KNOX (J)

RETURN

END

SUBROUTINE NXTCOL

THIS ROUTINE IS FOR BIASING OF NEXT COLLISION SITE BY
EVENT VALUE FROM DOT CALCULATION

COMMON /STEAK/ EVENT(1464+12+14)

COMMON /ANGUS/ IGMsNRGsNEWMM,NPAPOL (25) 5 IPOLST (25)

1 s JOHN s XMU (146)
COMMON /RIBEYE/ NEWREG(20) yARG(20) + XX (20) sYY(20) s
1 2Z2(20)4CSET(20) yIZONE(20) yMED(20)

COMMON /APOLLO/ AGSTRTSDDFsDEADWT(S) »ETASETATHWETAUSD,
1 UNIPsVINPsWNIP+WTSTRT yXSTRTyYSTRTyZSTRTyTCUTsXTRA(10) »
2 10911 eMEDTIAYIADUMIISBIASIISOURYITERSHYITIMESITSTRY
3LOCWISyLUCFWL «LOCEPRYLOCNSCLOCFSNaMAXGP o MAXTTMoMEDALB
4 MGPREGIMXREGINALBINDEAD(5) s MEWNMINGEOMyNGPQT1 +NGPQT 2
5 NGPQT3+«NGPOTGINGPQTNyNITSyNKCALCINKILL oNLAST ¢NMEM,

6 NMGP +NMOSToNMTGeNOLEAK s NORMF ¢ NPASTINPSCL (13),NQUIT
7 NSIGLINSOURSNSPLTSNSTRToNXTRA(10)

COMMON /NUTRON/ NAME «NAMEX»IG+ IGOsNMED+MEDOLDINREG
1 UsVeWoUOLDsYVOLD«WOLDIXsYeZsXOLDsYOLD2ZOLDIWATEOLDWTy
2 WTBC+IBLZNs1BLZO+AGE+OLDAGE

COMMON VEL (1)

DIMENSION PROB(20)4+Q(20) )

TF ANGULAR PROB. BIASING IS ALSO EMPLOYED, INCLUDE

THE FOLLOWING 3 LINES,

DATA NM/Q/

IF (NAME .EQ. NM) GO TO 99



Coas

80
Coas
Coat
Cova

8l

98

NM=NAME

PICK A POLAR ANGLE NUMBER NFLAG NEAREST TO WOLD
APPLE=3.0

DO 80 N=]1yNPA

ORANGE=ABS (POL (N)=wWOLD)

IF (ORANGE .GE. APPLE) GO TO 80

APPLE=0RANGE

NFLAG=N

CONTINUE

DETERMINE THE BEGINNING AND THE END LOCATIONS OF THE
AZIMUTHAL ANGLES CORRESPONDING TO THE SAME POLAR
ANGLE IN THE QUADRATURE SET

IBGN=IPOLST (NFLAG)

IF (NFLAG .GE. NPA)Y GO TO 81
IEND=IPOLST(NFLAG+]1)~1

GO TO 82

TEND=NEWMM

82 CONTINUE
csee® COMPUTE RMU FROM UOLD+AND VOLDs THEN PICK XMU(KFLAG)
Co#® WHICH IS CLOSEST TO RMU.

85
Ccauss
C##Q

99

IRG

OO0

55

100

120

SINPHE=YCLD/SQRT (XOLD*XOLD+YOLD#*YOLD)

COSPHE=X0OLO/SQRT (XOLD#X0LD+YQLD*YOLD)

ROL=SQRT (UOLO*UOLD+VOLD*VOLD)

SINKAI=VOLD/ROL

COSKAI=UOLD/ROL .

RMUzROL® (COSKAT#COSPHE + SINKAI#SINPHE)

6=3.

DO 85 K=IBGN, IEND

H=ABS ( RMU=XMU(K) )

If (H .GE. G ) GO TO 85

G=H

JOHN=K

CONTINUE

IF ANGULAR PROB. BIASING IS ALSO EMPLOYEDs INCLUDE

THE FOLLOWING LINE.

CONTINUE®

WTBC=WATE

CALL REGION(XOLD'YOLD'ZOLD.UOLD'VOLD-WOLDOICOvMEDOL09
1BLZNsNREG+ IRGs IESCAP)

IF (1IESCAP.GE.1) GO TO 999

1ESCAP FQUALS TO 1 WHEN DIFFICULTY OCCURRED IN JRACKING
THROUGH THE GEOMETRY IN SUBROUTINE REGION '
THUS TREAT THE PARTICAL AS AN E€SCAPE

IS THE NUMBER OF REGIONS THE TRAJECTORY WILL 60

THROUGH BEFORE REACHING THE EXTERNAL VOIOD

NR=NEWREG (1)

M=JOHN -

IF (ARG(IRG) + 0,000001) 55v9999999
PEXT=EXP (ARG (IRG))

Q(1)=EVENT (M, NRs» IGQ) * (1, 0- EXP(ARG(I)))
DO 100 1=2+IRG

NR=NEWREG (T)
Q(I)-EVENT(M.NR;IGO)“(EXP(ARG(I ~1))=EXP(ARGI(I)))
CONTINUE

QSum=0,0

DO 110 1=1+IRG

QSUM=QSUM+Q(I)

FNORM=QSUM/ (1.0-PEXT)

D0 120 I=1+IRG

PROB(I)=Q(]) /FNORM

PROB(IRG+1)=PEXT



99

IRGP1=1RG+1
C IMPORTANCE SAMPLING THE NEXT COLLISION POINT
€9=0.0"
SUmM=0,0
DO 130 I=1,1RGPI
130 SUM=SUM+PROB(])}
R=FLTRMNF (0)
R=R&SUM
DO 140 I=1,1RGPI]
C9=C9+PROB(I)
IF (C9-R) 14091404145
140 CONTINUE
I=IRGP1
cees 10 IS THE ITH REGION ALONG THE PATH WITHIN WHICH THE
cee® NEXT COLLISION TAKES PLACE
145. IF (I .GT. IRG) GO TO 999
C PARTICAL ESCAPES WHEN I IS GREATER THAN IRG
IF (1.67.1) GO TO 150
DELARG=-ARG(1)
FREEPH=AMOD (EXPRNF (0) s DELARG)
DIS=FREEPH/CSET(I)
X=X0LD +UOLD®*DIS
Y=YQOLD +VOL D®0DIS-
Z=720l.0 +WOLO®*DIS
GO TO 160
150 DELARG=-ARG (1) +ARG(I-1)}
FREEPH=AMOD (EXPRNF (0) +DELARG)
DIS=FREEPH/CSET(I) '
X=XX(I-1)+U0LO*DIS
Y=YY(I-1)+VOLD*DIS
2=72Z(1-1)+WOLD*DIS
160 IBLZN=IZONE(1)
NMED=MED(I)
NREG=NEWREG (1)
WATE=WATE*FNORM/EVENT (MsNREG, IGO)
RETURN
999 WATE=0.0
NPSCL (8)=NPSCL (8)+1
CALL BANKR(8)
C ESCAPE
RETURN
END

SUBROUTINE REGION(X1eY19Z1oUysVeWeIGYMEDIUMyIBLZ «NREGNS
1 IRG.IESCAP) :

COMMON /RIBEYE/ NEWREG(20) yARG(20) ¢ XX (20) «YY (20} o

1 ZZ(20)+CSET(20)+1ZONE(20) +MED (20)

REAL#8 XBsWByWPsXPsRINSROUTHPINFsDIST«DISTOsS
COMMON/PAREM/XB(3) «WB(3) +WP(3) 9sXP(3) sRINsROUTHSPINF

1 DISTyIRyIDBGyIRPRIMyNASCyLSURF¢NBO+LRI+LRO«KLOOP,
2 LOOP«ITYPE4NOA :

COMMON /0RG1/ DISTOsMARKIBR

COMMON/GOMLOC/ KMA3KFPDIKLCR<KNBDsKIORIKRIZsKRCZ+KMIZy
1 KMCZsKKR19KKR2eKNSReKVOLsNADD+LDATAGLTMALFPD9yNUMR
2 IRTRUWNUMBJNIR

COMMON NNI(1])

COMMON/APOLILO/DUMI(28) 410

DATA PN/1./
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DATA NC/0/
MARCH=0
IESCAP=0
XB(1)=X1
X8 (2)=Y1
XB(3)=21
WB(1)=U
wWB(2)=V
WB(3) =W

NMED = MEOTUM
MED (1) =NMED
NEWREG (1) =NREGN
DIST=0.0
IR=1BLZ
IZONE(1)=1IR
NASC=-1
DISTO=PINF
IRG=1
C
20 IF(NMED-1000) 40430440
30 SIGT=0.

GO T0 S0
4Q CALL NSIGTA(LG+NMEDsTSIGyPN)
SIGT = ~-TSIG

CSET(IRGY=TSIG

S50 CALL G1 (SsNN(KMA) sNN(KFPD) «NN(KLCR) ¢ NN (KNBD) s NN (KLOR) «
. NN (KKR1) + NN (KKR2) )
IF (IRPRIM.EQ.-3 .OR.IRPRIM.EQ.0) GO TO 110
ETAUSD=S
IR=IRPRIM
IZONE (IRG+1)=1IR
NEWREG (IRG+1) =NN(KRIZ+IR-1)
MED (TRG+1)=NN(KMIZ+IR~1)}
NMED=MED (IRG+1)
IF (NMED.LE.0) MARCH=-1
IF(IRG.GT.1) GO TO 60
ARG (IRG) =SIGT#ETAUSD
GO TO 70

60 ARG (IRG) =ARG (IRG-1) +SIGT*ETAUSD

70 XX(IRG)=XB(1)+WB(1)*DIST
YY(IRG)=XB(2)+WB(2)%DIST
ZZ (IRG)=XB(3) +WB(3)#DIST
IF (MARCH .EQ. =-1) RETURN
IRG=IRG+1
GO T0 20

110 NC=NC+1

C SOME DIFFICULTY HAS OCCURRED IN TRACKING THRQUGH THE
C GEOMETRYy TREAT THE PARTICLE AS AN ESCAPE
1ESCAP=]
IF(NC.GT.5) CALL ERROR
(ot IF THLS OCCURS MORE THAN S TIMES,y THE JOB IS
C TERMINATED

WRITE(IO0+1010) IRPRIM )

1010 FORMAT(B8HOIRPRIM=4164+15H IN REGION #u#s )
RETURN
END



APPENDIX B
COORDINATE TRANSFORMATIONS

The purpose of this appendix is to describe how the components
of the direction vector Q are transformed from the cylindrical
coordinate system to those of the rectangular coordinate system, and
vice versa.

The direction vector Q at a point P(x,y,z) can be expressed in

terms of its components in the cylindrical coordinate system as

R ) z
= Qp eR+Q¢ e¢+szzez, (B-1)
where éR’ é¢ and éz are the unit direction vectors in the cylindrical

coordinate system. From Figures 7, page 36, and Figure 17, it can be

seen that oA
Qp = Q-ep = cosy = e (B-2)
0, = ﬁ-ez = COSy = ¢ (R-3)
2 2 2
QT =q° -
¢ o " R

1/2

101
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ORNL-DWG 75-17719

Figure 17. The Direction Vector Q and Its Components.
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Substituting Qp = siny and @, = ¢ into the above equation gives

R
Q¢ = i(sinzy - 52)1/2
= +(1 - COSZY - 62)1/2
- +(1 - 2 - e, (B-4)
The position vector of the point P is
P=xi+yj+ z
= R coS¢ ; + R sing 3 + zﬁ.
The tangent vectors to the R, ¢, and z curves are given respectively
P 3P P
by IR 34 and —E-where
%B- = C0Ss¢ % + sing 3
P .0 -
EYS -R sing i + R cos¢ j
E _ ~
oz
. . i . (24)
The unit vectors in these directions are
3P
" R COS¢ 1 + s1n¢ J
ep = T3p| - > 77 © coS¢ i+ sing J (B-5)
F—J (cos™¢ + sin ¢)
oR
k3 y
- -R s1n¢ 1 + R cos¢ J . 2

)1/2 = -sing i + cos¢ 3

l 51n2¢ + R21c052¢
(B-6)
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>
it
Faitd

(B-7)
Substituting Equations (B-2) through (B-7) into Equation (B-1) yields

~ ~ 2 ]/2 ~ ~ -~
e(cose i + sine j) =(1 - ¢~ - ¢°) (-sing i + cos j) + ¢k

2D
1)

(e cos¢ + -cz-ez.sin¢) i+ (e sing t/i—gz-az COSo) 3 + ;ﬁ.

Hence, the components of Q in the rectangular coordinate system is

cos¢ ;/i-cz-ez sing (B-8) "

|
™

A

Q =Q <]

= ¢ sin¢g i/l-cz-ez CoS¢ (B-9)

& -ﬁ 'l:
z
=z (B-10)
where sing = J and cos¢ =
2 2 2 2
X"ty X +y

Equations (B-8), (B-9), and (B-10) are the relationships for transfor-
mation of the direction vector @ at the point P(x,y,z) from the cylindrical
corrdinate system to the rectangular coordinate system. Note that for
each set of cylindrical components ¢ and ¢, these are two corresponding

sets of rectangu]ar components 2 Qy’ and Q. In a DOT calculation



105

with R-Z geometry, ¢z and ¢ are respectively the direction cosines
with respect to the Z-axis and the R-axis.
| Given the rectangular components 2y Qy, and e, of the
direction vector @ at the point P(x,y,z). The transformation of &
from the rectangular coordinate system into the cylindrical components
z and £ in the cylindrica1 coordinate system is performed as follows.

From Equation (B-10), z is simply equal to e,. Furthermore,

from Figure 17,

e = Qp = Qp cos(x-¢)
= Qp(cosxcos¢ + sinysing) (B-11)
where
Q Q
cosy = 55-', siny 51-,
P p
and
cos¢ = , Sing = Y
x2+y2 x2+y2

Substituting the above quantities into Equation (B-11), gives

o _x LYy oy
T ey 2+Q— 22]
0 lay 0 Ay
QXX+QY

= . - (B-12)

/x2+y
Equation (B-12) along with Equation (B-10) provides the transformation

for the direction vector @ from the rectangular coordinate system to

the cylindrical coordinate system.



APPENDIX C
COMPARISON OF x* AND W

In this appendix, a comparison of the point value x* and the
event value W is presented. Three particle trajectories are chosen,
and their importance functions in different regions along the
trajectories will be discussed. All three trajectories are for
neutrons of group one energy and are shown in Figure 18. The corre-
sponding x* and W in different regions are presented in Table 8.

It can be seen from Table 8 that in the same region W is
smaller than x* by one to two order of magnitude. This is not
surprising because the value of a paktic]e entering a collision is
reduced by the absorption probability and the collision process
before the particle emerges with the same energy group and direction.
The relative x* and W in Table 8 were obtained by dividing the
importance functions in different regions by the importance of the
region where the trgjectory originated. From trajectories I and II,
it can be seen that the W is.a stronger importance function than x*.
Hence, W would encourage more deep penetration than x*, particularly
for trajectory I. Finally, for trajectory III, W suggests that
regions 7 and 7° are about a thousand times more important than
regions 1 and 1°. However, x* suggests that the value of a particle

approaching the duct is roughly ten times of the value leaving the

duct.

106
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Figure 18. Particle Trajectories in the Geomet
Problem. ry of the Standard
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TABLE 8
COMPARISON OF x* AND W2

Trajectory X* XRELATIVE W NRELATIVE
I. Region 4 5.41-8P 1 2.41-10 1
Region 5 4,83-7 8.93 3.73-9 1.55+1
Region 6 2.59-6 - 4.79+] 8.35-8 3.46+2
II. Region 10 1.72-7 1 1.24-9 1
Region 11 1.05-6 6.10 9.30-9 7.50
Region 12 5.47-6 3.18+1 1.05-7 8.47+1
III. Region 1 1.37-10 1 1.17-12 1
Region 7 4.29-9 3.13+] 1.46-10 1.25+2
" Region 7- 6.42-10°  4.69 2.20-10 1.88+2
Region 1- 1.38-11 0.10 3.40-12 2.91
a

v* and W have the dimensions of response/neutron..

bread as 5.41 x 1078,



APPENDIX D
PLOTS OF ADJOINT DOT CALCULATIONS

The plots of adjoint fluxes  of the adjoint calculations with
axial adjoint source and off-axial adjoint source are presented in
this appendix. Figures f9 through 26 are adjoint flux plots from
the adjoint DOT calculation with axial adjoint source, and Figures
27 through 34 are adjoint flux plots from the adjoint DOT calculation

with off-axial adjoint source.
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Figure 20. Total Adjoint Flux Versus Z-Axis in the Duct of the DOT Calculation’

with Axial Adjoint Source.
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the NOT Calculatior with Axial Adjoint Source.

AN



113

ORNL-DWG 75-7930

(CM)

HEIGHT

160
rF T 1 17t 17T 17T 1T 1 17 T T T T 1
1§10 N iniae i -
i i
oL ! -
: e
| . '
.
1301 - E 10;’- L oaer t . * E —
! PR I * 1
120.1__ : "..,,QQQQMOQQQ ., : ]
E;' o?
1ol Lo
:: 1078 s oo © °o® :
100. : 00 000 0O e o 6 0 ¢ o0 © s E —]
! s00°® '
s0.d_ T o X
[y S— :’ o& x : —
" o x 1
) . ) x !
80.0— weo . x w0l x x X v
;: X X X XX x o X :
»o X X .
70.0_ b X -
[ ¢ ++ '
wd § P
;: * + v * :
+
0.0 w x Lase bt —
B o .
TN B e R
40 5 + ‘10- aa E
s0.0_ & x Py Lo a0t P —
t;f( N s’ ° ¢
20.0__ 4o x + PS o t _|
$ox + P o® i
+0:x + ‘A 10'100 (] |
X + © |
10.0— ;:x + R . @ o © [
X & - o * '
R I A T S N T i A B B A e B
0] 10 20 30 4o S0 60 70 80 SC 100 110 120 130 140 150 160

RADIUS (CM)

Figure 22. Total Adjoint Flux Levels of the DOT Calculation with Axial
Adjoint Source.



114

160

(o=
(Yol
| R R N A D R o -
18
e me e m .- —-.—-— e meeeea PR LT D it B R et e et 4
n « > ] N x o« ! ! ®
' " ' ' '
i " J % i " ' | 2
[ —
H x ) .d‘ P % 1 09 ) ® —
' " “ " " x “ "
3 l ' ' ' ' ¢« |9
“ M ' 1N s ® ' P ) —{
H 1 ) ] ' ) )
' 1 ' ' 1
: ' N 1 ) x ' | -t o
| 1 ' 1
' \I " > ) N ' x ' ¢ ). -0.@1.“
1 + 1 N ‘ 1 ¢ )
H 1 1 1 ' ' —
H ] » ] N ] x [] * ] [ {e)
H ' ) 1 x ' ' i
' 1 ' ' 0 —
“ x ) » ' N 1 [ ] * t 4
' x : ‘ ! 1 ' . (=]
H x ! > 1 N 1 x ' $ =]
' 1 1 ' ' —
! ' i | 1 o '
) [ I > ' N ' [ | - e
H \ ) ] o K 1 1 ] Q
1 ' \ © 1 ) ' o, —o
3 | > ] N 1 (3 1 L]
“ ' r~ ) [} 1 o ] -,
! O 1 | Y 1 o ) — i\ ¢
) I = [} o> [ —N ] ® [] .t o
| ] ) ' 1 —
' O x ' (] ' N ) ) '
' iy 1 > ' N 1 x ' ¢
' i ) N i ¢ o
' ' > ' 1 LI $ b
' x 1 > ' ~ ' X 1 e
1 ) 1 ] )
' » 1 > 1 N | x ' e o
: ' ) ' | 1 PRy
! o > i "o " A
! LI 4 t N X ) LN
' ' ' 1 \ o
! x ' > ) N LY 1 .
n PRI > ] N ! .
1 \ ' )
' o > ' Ny W 1 4
" ®x o > ) N " R ' o
) x ! > ' N} [ | —=
' x > ! N ' x :
H " 1 W ] N, ' wrxx. o
] 1 1 U
”. uuuuuuuuuuuuuu b mmm———-- w..atcuu-unuu..uu.r nnnnnnnnnn Frccrmmmae- { SO —=3™
i x > N i N
' x > N 1 ' el
" n 1 vv ' 1 1.1 + | .lmm
l ' ' ' )
' T Va.r ) ;ZZZ. '
x ! oy ' VNS g '
' 1 g% ) ] LIV o
] .F.T: v x> t > > > % e
[ SIS (X ﬂu.»f-.x.lkux.ltrxt.xxnr.x..fnn-ﬂnhnwh-w.nannw:x.xi-MN.V..NNnu R
t .
| .
I N N N N N N TN Iy I N NN S
g © o o o o o2 S % . . . . . . ©
wi = [{g] o — o (o] (o] (o] o o (o] o [w] o
- hand - - bl - a aw ~ w w - m ~N -—
{WJ) 1HOI3H

RADIUS (CM)

»

Figure 23.

Group 1 Adjoint Flux Levels of the DOT Calculation with

Axial Adjoint Source.



115

(CM)

RABIUS

(=]
[Ve}
P | B
]
.\ ||||| B reermcmne—— .1 llllllllll lll.". lllllll K mm———— QQIll.l lllll S —mm———— - —e )
' ' '
" ' ' ' 1 1 -
] 1 ) ) ]
' ' | 1 >
! ' ) | 49_ Q+ -
' ' 1 % +
H ' S 1 ' , Q
! b R " e e 2
'
" “ “ " . _
' '
H ' 1 N v 1 m
. " " o . Ly T
' ' ' 'y K i ¢ °
H 1 ] ) x e Ve d @ (w]
' ! H H ‘O Vet _—
! ) > ' ! i Ve -
H ! . " "9 "_  © o
'
! - ' ~> u4u "_Ox "mo e —9
[}
" Vel 1 ] + O 1o ' i
! ] ' o> boeN ! [ ' . ' °
“ o ! A : . ! " 8
_ el S T B A
“ ' 1 ' ] '
! ' : N ] X : ¢ i 8
! ' Il 1 | 1
i ~ ¥ : N : ® i s
: x > ' N ! [ ! I3 ! B
! L > ! N ! x ' '
[}
H | S > ! N 1 x ' ' o
1 ' |
! x > . N 1 x ! ' w
] ] ) i
! L > 1 N ' X 1 +
' x| > N L R
“ X o > ' ‘ % ! ) .
{ * | N LW ;
.. x M i N i %% ' =]
' x ! > 1 N ] .1 | —t
' x > . N ™ .
[} I > N L
' X > a.F" ' g
TR oS . > e—decmm—meae demmmmmmces reeeeoo2 Kaggmrmm =
) ] t
" i 5 N . L
| x ! v” HE ] ! ! L [
! % B 1 M N ' ' s
H 1 1 N
! ﬂl_ v%v. i Z%ZZZ n
" 5 P NN T
> > x5 . 1 ~—
_. |||||||||||||||| ..m-uﬁk.k.:.x-xX«Fn*x*itul.xghnw.wvm.whlﬂwlﬁnn.."\mW.Mw\uw.ﬂnﬂ
]
)

S T i
m o Q (o] [« (=) 3 . o . o ] . . (=
> m o - o [} [en} (] Q [} (=] Q o o

L - - - — - [o2] @« ~ (V) wn > m [4Y] -

W3) LHIL3H

Group 5 Adjoint Flux Levels of the DOT Calculation with

Axial Adjoint Source.

Figure 24.



116

160.

(WD) 1HOI3H

120

()]

RADIUS

o
[ [t 1T 1 7T "1T"1T 17 _6
[en]
n.llllx. ||||||| L s ettt B P L EERT T e 10:.||l|||‘-|1_.|\|w.
1 " > b ~N ' ) . 1 |
. ' ® | i x 1 “
' ] 1 e | o
' x > N i L . 1ox W — =,
" b 1 " ] o= 1
' ' 1 ' '
" x ; . B ! e 8
- . x ' —
! 1 N 1 ' ' vt -
' ' '
" x ' % ' ' x |
' ' B ' l
! » I N ' L3 + ° | x T e
' ' ' ) ' o ¥
¢ 1 ' ' ' M
! x 1> N ' ® i* e 1 N x i+ o
] e N i e ! —=
—
' H "> N ' x O.Q e _% : O.
! 1 ' [ —, 1 ' o ]
“ 1 O 1 o - | o
H x [ W N [ Y - —e ! x ] . IO
) ™~ ) [ ' ' —
] 6x A o .1 . ' i
H P > N ' x Ve T x ' -
' o -t ' ' ' H o
' 0= _flv " ] 1 ] i
N x L] 1
" ~ ' ] y ¢ ‘. ﬂ“ *
i ‘ ) : i | "o
x '
" N N x A ‘i x_ D
S 1 ' 1 X 1
H x IS N x [P ol x!
' x P N i ; 0 =]
“ 1 ' x vt % )% —
x ' > NS 3 ' O
“ _ b ). : b
x ] bd N L3 [ - [ 4 [ *% o
! » 1 ] ' ' ) >
! x 1 > N 3 1 - [ ‘ ¥
! x S N x e ‘ e o
1 1 ) ‘
! x ' > Ny x ! ‘. 1 w’o lw
" x ' > Nt % 1 - ' ' .,
. x N X e ! " .
“ x ' > N " ' Ny i <
H x ' > ~ % ! "040; ' 7
' ol i > Ny " 1 * ey
I x ' > Ny " ' +00
' x ' » %Y " W ' ' -, =
" lllllllllll Mo mmmbmmm oy m - N mm e - to = Mgy = = e [ - —— -3+
! x ' > "y ‘ ow ! '
' ' ' ! '
' % ' > Ny ' x-{x} ' o
1 X ' wv \ (™ ' | XXX}_ —{S
' x ' > ' N 1 ' L )
" ” ] > ' oy, ! ' ' ™ o
L} 1 ~
u l.r ] Vva._ .IZZZZIZ" " ...0
' » 3 ' ~ N Y e =
b e LES FE SN PXTTEZERERFRNEZP-R u.ﬂ.n.n.vmm.nm.mManﬂwk»N\w.
' ]
T T Y T Y MR T NN
o [=) (&) o o (=) . . . . 3 . . (=
wn =4 [{s] o~ — [&] o o (@] o o o o (o] o
- - - hend hand bl (v} s} r~ w w = ™ (Y] -

Group 10 Adjoint Flux Levels of the DOT Calculation with
Axial Adjoint Source.

Figure 25.



117

160.

[e)
N Nl s ) s By It B B N B R B I
Q
i e e e R Rt  EEEECEREE R T EEE Femmemaen- - -
' ' ' ' ' 1
[ L3N x 1 © | o
! . N ' - ' « 1 ' ' m.v
N 4 1 ] ] ] —
Pox > N o s . x! Y « 1 e ! ! =
' ' 1 [ ' '
! w x ' ' ' 1
H ' 1 ' ' ] m
! ox > N * . s I - 1 e ) i -0
! N v 1 ' ' '
1 o ] )
i " " . “ " " S
! x > N 1% . ° VX ‘@ A_w h H JQ
] ] t 1 1
“ 1} ] ™ - 1 | ' 1]
) » " N “X * ® znu -t ) b. 00 “ " m
' 1 - — § O, i ' i DS
! x > N I Q ¢ e lix O+ ois 5} ' )
. o7 o, B~ T " : o
! x > N P © x + « o ' i —]Q
' [>o] t o' w—~ ) ' i ' —
H ™~ | [e0] -t ' ' ' '
-6 o — > oz 1-r.x * * “ x <> _‘ (5] _- _- o
I (=] -t ' * ' ' ' —_—D
! Ox et Nk - o X - e o ' '
t rix ' ' + ' ' '
' ' 1 ] ' ' (o]
“ * > N P " ¢ ¢ X M 0 w ' ' -
H ~N 1 ] 1 1 1
H 4 > N " 3 - © " X + "A 00 " "
H x > Nk e ¢ ! x . ' o5 ! ' m
)
' x > NV . o+ + ) 0@00 1 _
' ) 1 i o '
! x > N . o 1 x + 1 e 1 ooooo )
) ] 4 '
“ x 4 Ny X - ¢ x * “ LI ' 1 000 w
- 1
: x > N . o x 4 teaa, | b
' x > NoLox . ! x teo ! ‘vwe, B
" x E4 N O oK - U % t e e, | I LI "
1\ 1 ) + ]
A TR N M AT TOUNE SR
» > N 1 * el *x [ RadiP S 14
' x > N ! " pe < «xx;x ! "oot‘II,_U.
¥ x > ~ 3 . Ve, ! xvonxxx . N
! x > N, . ' . . v XX x , .
! x > N 3 - ' e, 1 XX g 2
R e et e P P RN ¥ e ==~ === Fecmcaccan Rt IV ~
. » > N *® 04‘ ' 00‘0« ' x
- T S . LN teee o) 5
v .. > ! " . ! MLEE IO ’ T, —IN
! . e .".Z il ' reen ' g
' x v NGy Dl ™ ' *‘¢.3 1 4
" m- va ' " ' xxlx+v2 . 00100009
Ao L. U U | * e
T 1 B s R Rk kRN S Yty B nu.umx.ﬂ P w..n#
! t
~
T T T T M I
q + 3 q
o o (=) o Q (o] . . . . . . . . . (=)
2] = m o — o o (o] () o o o o (o) o
-— - — — — — o o ~ @ n > ™ & -

(WD) LHOT3H

(CH)

RADIUS
Group 14 Adjoint Flux Levels of the DOT Calculation with

Axial Adjoint Source.

Figure 26.



118

e DOT Calculation with

x Contour of th
pdjoint Source.

Figure 27. Total pdjoint Flu
off-Axial



ORNL-DWG 75-7934

lC‘—u -
S : : .
] q 0 o
o
2 o
10
Aand o
107> ]
L]
" ' o
— . R
S o
q
o |
L]
2 ol
- [
510‘3 [.] '
= o
| o
S
2 °
E o
P
o
2 [
[
p
e ]
10" o
[.]
‘®
a ]
5 | o|°
o
® o
[]
P
q o
5| @
_8 ’
10 LN B - L S —
0 S.010 15 20 25 30 35 40 Y5 S0 S5 60 65 70 75 80 85 90 95 100 10S 110 115 120 125 130 135 140 145 150 155
' 7@ * '

Figure 28. Total Adjoint Flux Versus:Z-Axis in the Duct of the NOT Calculation
with 0vf-Axial Adjoint Source.

6LL



TOTAL ADJOINT ALUX

ORNL-DWG 75-7935

2lPon

0 S.010 15 20 25 30 35 40O 4S SO0 SS

60

65

0 75 80 85 90 95 100 105 110 115 120 125 130 135 140 14S
R M ‘

Figure 29. Total Adjoint Flux Versus Radius at the Bottom Surface of the Cylinder of
the NDOT Calculation with 0ff-Axial Adjoint Source.

0ZlL



HEIGHT (CM)

121

ORNL-DWG 75-7931

160,
rrrrtr—1 1ttt 1 1T T 1T T 1]
150.'_"'E """"""""""""""""""""""""""""""""""""""" H—
]
[} ]
Mo a
1 10-5 ”» |
1 . '
130‘_ :”””QQQ”””Q 4 2 2 4 4 0 0 L L * * * * + A : ]
4 ]
[} '
] ]
120, E ¢ —
E -6 o * °* E
10— E .’....ooooooooo¢o¢o o 010 o o o @ o
1o 007 :
— 1 j—
i %
90.0**" ~ L A
" 1077 w X x 1
, 2 X XM X X XX X x x x x x x x X x X i
b3 1
80.0— g xxxx v
70,0 ! > ' .
- : x 00 : —
L x 1078 ++ i
™ “w + * '
60.0— :x et t Pt + v+ 0 + ¢+ ! —
X et !
¥ ot
50.0— ’ 4 _|
+ a !
Xl'?‘l & a '
o ¢ 107 . ot '
4o0.0— ! g s 4 m s s . P
+ o ,
30.0— E : .‘4\ o8 —]
1 )
: + ‘l o® '
20.0_. :’z . 10-100 oo © o E —
:: t‘ o0 © ° e ® ° :
10-0_ i’ s . . Qw L i —
l‘ ) o
) E I N N . N SO N I A S S
1] 10 20 30 Yo S0 60 70 80 90 100 110 120 130 140 1S0 160

Figure 30.

RADIUS (CM)

Total Adjoint Flux Levels of the DOT Calculation with Off-
Axial Adjoint Source.



122

%
+
:
;
1
.4
1
]

x
g PP > S
R e et et R e Atntal

2

[EPIPRNPRF 3 SN

22

¥y

yY
]
.

*

v
Z
34

Aad

i 4
*

v
2
.

-10

PO S 10.

Y 170-‘77 Y
10F T
Tz oz 20 2

R I
e *
.

*

fv'yvaVV YYyYvyvyvyy

[

'
'
'
'

2
'
'
'
1
'
1
'
'
'
[
'
'
'

x
'
'
'

semmmmmap- g
+
‘

R G

b e eeMemmmeemtemmmmem-ememmmmemmmesememmmm—mmemee—eee——an
4
[ JR

[ S i i g

T

14
»

]

1

1

1

]

r

r

}

*

T D L D e e e R R ]

160

150

(WJ) LHII3H

1C0 110 120 130 140 1S0 160

90

(CH)

Group 1 Adjoint Flux Levels of the DOT Calculation with

€0
Off-Axial Adjoint Source.

70
RADIUS

S0 60

40

Figure 31.



123

4

(=]
_ SN S R R S BN R B =
3
Pemme e e e Nec—peccaetf e N Alnulu_.'lll01|||1c|nutIJ
" x > ) “k | B + ¢ 3 -
H ' N | ' l x
H " " L3 [} [] ) i n01
H % ' i N, LI LI ° e B
! ' ) o ‘ o < 4
H "> ) 1 | 1 Q
! - e ¥ " i ° =
! » 1 ' | |
! ' ' .w ]
H ' ' \ K ¢ 5
' [ ' > N [ « » =
' ' i 4 ¢ ]
" " b PN i ! ' =
]
H ' \ 1 ) - —=
H » “ > ” N "x (o] “9 1-;_ ®
' ' ) ' ~- ° (=]
i . o ) (o)
x ' > "N 1 ie ° —2
: ! o 11 K =) - 2
! o * 1 -ﬂ > _Oz A 1. Ve
' ' Ll ' ' O —
H | o Lol 1 ] ] - =
' on " i > " N ” x “0 “ @ o
H - ' ' \ 1 ' et
. . i o { e Lo B
H ) ' ' ' A =)
H x [} > ' N (B4 [ 'Y ' W —
H » ' > PN . P e A ==
; " \ > - VX i | -1 nQnu
' e ' °
H l 1 ' ' |
: u ' > PN pox Lo ! ° o
H L] ' > VN X [ t  —°
H .
i “ ' e PN 4o Y : °
! I : ' ' 1 1 ° is
x ' > ¢ N 1 X ) ¢ ] L by
: p L i P b * )
' x | > N X ' * W o
u x ' > t N ] x ] . ] o~
' x ! > ' N ' ® ' % H —
: x ! » 'oN - ! . ! {
" : i3 N P ‘4 2
4
I e PEET L dem N m e PR B wmecn ™
' ' v V
H n ' vv ' ZZ ' % '
; X " 3 . N L
! % 1 % ' v !.k
" : 3 “ > " "™ ' 0
' l 4 e ] " ._ "
L ' Jv ] -23. ]
H 'S 4

(W3} LHJIL3H

r

-

Group 5 Adjoint Flux Levels of the DOT Calculation with

0ff-Axial Adjoint Source.

Figure 32.



124

160

(WD)

THOT3H

3

o
r 1 1t 1T 17 17T 17T T T T T T1 =
OJ
R e S S, l!u._, uuuuu D EEECET CE R N —mmm e ~ = V)
t 1 ) 1
' » ' t P ' ¥ n he
! x ,. ~ ' ' 1 + ! o
: x > ! N [ - ' % ! x ! Z
' ' Y ' ' ' 1~
¢ ' i e P X ) «
! > ' | ' '
! ' N ' ' o ' + Q
> ' ' |
" 3 : A S B LS
. " " “ P
'
! ' ] ' ' Q
! % » ~ I 3. . X HR —3V
' I
' ' ] " " 3“
! x » ~ o . s N x — 3 o
! ! ! i Led N -
i 1 ¢ 1 . -
' x » N Vo O ., e v x @. -
“ ' ' ~- _0 O Lal o
' f} ' 1 et |
l
, u J © N G__.. x 09" - “ x n + Im
! ™~ ] O e ' '
. O x 1> ON [T ot 3 ' x e
| o - ! ' ' x ' o
' 1 | i i ' —_id)
H Ox iy ~ [ o e ' x .
! - ' ' ' ' '
1 x M ‘ o : ' o
H 4 N 'ox ] ° ! 5 ' « 12
n | ' ' | ' e
N x » N 'ox ¢ ° ' « ! -
' x s N - “ ‘ , Te 19
' (] ' ' ¢ 1 x ' i
: x » N Vo - o x ' !
1 . 1 ' ' ®
! x » N 1 K - g ®_ o
' 1 | % ' x g PO r
x x N " X e ®
! | ) ’ 1 IR
“ x x N ) L3 »- 9 | Xx
. . i Nl e 4 S =
' x » ~ ' *® (XY Y ' %
H x 3 N ! x ! e (S ' X
' d ' i ' © . '
" g » N ' [ [ S ' ° m.u
' x 3 ~ ! x ' -~ ' -
. x } N S U te.,
] » r N 1 X ' * ) ' ‘e
! x [d [N [ & ] b P ' Wlo
= " lllllll W m e mmmm == P mmme e WNemed e m = = (O TR L - [ S A3
: - iy N 1 " ' .009 ' ﬁ
' » e N % ) ' -, !
' [ X N [ H -! (=]
H » , N LI , 400 —N
! ﬂ ' vv Jf [l " e 1 ' he -,
' » [ s ' ' '
» ¢ » 3 1 L3 1
4 L ' vv ' ' _l-tl
.s ||||||||| [ A, bmmn ey e m- [ O § O I N G gl |d.|l|ﬂm.~f¢.xnx
'
Q (=) o o 0 0
V2] r [a2) [4Y) - o
- = — — — ey

RADIUS (CM)

Group 10 Adjoint Flux Levels of the DOT Calculation,with

Off-Axial Adjoint Source.

Figure 33.



125

160

Q
w
T 17 1T 17T T 77T 7T T 71T T 17 T 71 1
lo
.\-‘.lllv.lllllll.x |_||0|||..00-|IIX|lal‘llll‘n.ill@u llllllllll e T ————— 15
! " . o, ' ' '
: w ! ' o ' '
t N “ x ! 1 ¢ ' o
' x » N L3 - ® x| + T | ® ! ! —Z
L]
“ 1 . : * " " n o
1 ] L ] [}
1
b » ~ x - . + ' " ™
" 1 ¥ ‘< 8 1 _. I~
1 1 ] [ ]
)
] ] 1 .
“ ' ) .« ' H &
= ! x » N ® . ° ] - . © ' 1 -
1 ] ] ] ]
' ' 04 ' [}
!X > ~ »” - - i . < «1tN e H . o
' 1 "=y ] 1 —
'
) 1 ' ) —
H > N - . ce oy X m - 1-.. < _00 ' ' I
' - e, o ' '
[ ' [ ] [} o
R > N = O ¢ rmt o 1 ix O et ® ! : ~—9
' P -l_A ¢ m ~ " “ “ -
Vo > N o X « O x + " o ' t
' ~ ' o -t ' f 1 ' o
— ! (=] -t . ' ' ' ' —3
$ x .Ov ON A% . . (% + «t o 1 )
' -t N ! ' !
.p — 1 ] 1 ]
> N 24 ]
= ) ! ¢ ¢ e * “ 8 ' : 3
' ] ) 1
" > N .x * . ._x + ‘._ [>] M '
1 1 1
| x > ~ % . - "% 1 2
“ ' ' * “ 9 N ; e L
H > ~ x . . 1% - 1 @, ! '
+
" x > ~ « . . IR * ] 0.00 “
' ox > ~ po . ° ' . ) 1 00000. —3
" <« L)
1 ) 4
" x > ~ .! Y . v % . , ‘ed o « , .. OOP...
1 (] <
— ! “ > ~ x . . ] 0 P Yeag, h Mﬁvw
> ~N 3 - * ' x - ' <
H -
= > ~ = . - Yo [ -, ! P Y ~
[ > ~ x H % : MR , *
L R R et 22
H » » ~ 3 Py P » t [} + [} —_——
" X » ~ = . «! ol £V ' Trr.,
tox > ~ V - *00 H X ey ' ' MRS
' o o °, ol ! -
I > m [ t 03 ' WX o ' 19
R el . ks [ R ﬂ‘lﬁ.ll. ||||||||||| (SRR N TS SpupR IR et N2}
. % > ~ [ Cee ' ® 0o ' *xvoo.
"o > N ' = . *o [RASAE I ! ! >
1 x » ! 3 toq H 000+ ] ** o
F s % ' - ' ‘e ' MR . —A\N
. X » "~ ‘ oo ¢ 1 Ceo
. = > ifﬁ. ey} tee ' 1Tt e s
! ﬂ d ~ .ka ! 00‘09. ' ®..
H ' » ! .!Zi. " xxx-xx ] Motoeoih Q
T--m.m ..... L N o RV R L LY TR S AR A T
! JF
' v
T SN N SN Y Y WO T I O Y M "N T B
8 2 g g ¢ g . o 9 g crerTgToTTo T o
-
2 2 8 8 2 8 g ¢ ¢ g § g g g ¢
(W]} LHOI3H

(CM)

RROJUS

Group 14 Adjoint Flux Levels of the DOT Calculation with

0ff-Axial Adjoint Source.

Figure 34.



APPENDIX E
NEUTRON CROSS SECTION FOR CONCRETE

This appendix contains the 22 group P3 neutron cross section set
for the concrete used in the standard problem. The compositions of
the concrete are presented in Table 9 along with the percehtage of

the atomic density for each 'element.

v
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TABLE 9
CONCRETE COMPOSITION®

Element . Composition (atom/b-cm) Atomic Density in Percent
H 1.065(-2)° 13.71%
C 1.310(-4) 0.17%
0 4.084(-2) 52.58%
Na 1.071(-3) 1.38%
Mg 1.620(-4) 0.21%
Al 2.822(-3) 3.63%
Si 1.332(-2) 17.15%
K 8.280(-4) 1.07%
Ca 2.426(-3) 3.12%
Fe 5.428(-3) 6.99%

aDensity of composition = 2.62 gm/cc.

bpead as 1.065x10”

2 atom/b-cm.



CROSS SECTIONS AS READ FOR CONCRETE

GP

@~ BN -

0

10
1
12
13

14

16

17

13

19

20

21

22

ABS XSEC
1.6626~02
1.961E-92
1.601E-02
1.125€-02
5.024E-03
4.8485-03
1.624E-03
5.522E-C4
3.3156-06
1.894E-04
6.530E-05
4.895€-05
5. 700E-~05
2.3926-04
1.0196~03
2.5756-04

5.233E-04

9.081E~-04

1.595€-03

2.779E-03

4.574E-03

2.005€-02

NU®FISS

TOTAL
1, 267€-01
1.274E-01
1. 195E-01
1. 199€-01
1.347€~01
1.579E-~01
1.991£-01
1. 500e-01
1.216E-01
1. 688€-01
2. 198E-01
2. B823E-01
3.751€-01
e 231E-01
44946E-01
4.734E~-01

4.763E-01

4.768E-01

4.7TTE-01

4. 792€-01

4.813E-01

4. 973E-01

COEFFICIENY

FROM GROUP TRANSFER

5.867E-02
5.4656=02
4.5T4E-02
4.697TE=-D2
6.820E-02
T.821E-02
1.195€-01
7.051E-02

3.103E-02
1.111€-03
9.0i3g-02
2.8T9E-03
1.539€E-01
7.186E-03
2.159€-01
4.882€-03
3.145€-01
3.199E-03
3.562F=01
Ta2125-04
3.779E-01
1.813E-05
3.5T1E-D1
4.519E-06
3.3266-01
8.371E-07
1.030:z-07
3.16472-21
2.6456-07
2.547E-08
3.332£-01
2.049E-07
1.202E-08
3.155E-01
1.399E-07
8.443E-09
3.159E-01
3.149E-07
3.902€-0Y
4aT44E~D]
6.1T4E=-06
2.830€-09

T7.829E~03
1.789€-02
24182E-02
2+934E-02
2.630€-02
4.083E-02
4.357€E-02

1.815€-02

5.520E-02
4.900E-03
5.407E-02
4.491€-03
4.900E~-02
3.856E-03
5.808E-02
3.551€-03
5.903£-02
6.289E-04
4.792E-02
1.897E~-05
9.T93Fk~02
3.135E-06
8.664F-02
6.932€E~-07

9.739€-02
2.124E-07
2.610E-08
1.218E-01
1.099€-07
1.058€-08
9.731E-02
5.200€E-08
3.050F-09
1.104£-01
5.1425-08
3.104E-09
1.608E-01
1.833€-07
2.272E-09

t (P

o)

PROBABILITIES

24352E-03
3.450E-03
3,591€~03
64289E-03
1.241E-02
8.173€E-03

2.280€E~03
2.891€-02

1.410E-02
5.835€-03
1.040€-02
3.378€-03
1.379E-02
1.834E~-03
7.973€-03
5.412€E-04
1.228E-03
1.522€E-05
T.184€E~03
3.293E~06
1.270€~02
4.705€E-07

1.857€-02
1. 759€-07

3.263E-02
8.826E-08
1.085€-08
2.492E-02
2.789€-08
2.686E-09
2.886E-02
1.912E-08
1.121E-09
5.058€-02
2.993F-08
1.807F-09

6.510€E-03
24955E-03
2.739E-03
4.561E-03
4.092E-03

2.172E-03
7.15CE-C3
1.056£-02

9.2236-03
4.344F~C3
1.133E-C2
1.866E-013
2.937€-03
2.118F-C4
2.022E-04
1.211E-05
2.132E-04
2.643€E-06
1.078€~0C3
4.9436-C7

3.2226-03
1.194E-C7

7.716E~03
7.3096-C8

8.281F-013
24240E-CB
2.752E~-CS
9.163E~-03
1.025F~-08
9.874E~10
1.680E-02
L.113E-C8
6,527-10

5.891E-03
5.116E-03
4.362€~03
2. 849E-03

7., 433E-04
1.203€-03
1.272€-02
1.410E-02

1. 027€-02
2. 123E-03
2.032£-03
2.075E-04
7.455E-05
4.393E-06
3.488E-05
2.103E-06
3.201€-05
3.967E-0T7

2. 7136E-04
1.254E-07

1.339€E-03
4. 960E-08

1.958E~-03
1.855€-08

3. 044E-03
8.235€-09
1.0126-09
54 334E-03
5. S69E-09
5. 148E-10

2.789€-03
T.462E-03
4.303E-03

7.248E-04
3.8556~-03
6. 805€-03
6. 426£~03
5.482E-03

1.376F-03
2, 872€6-04
4. 00TE-05
3.897E-06
1.295E-05
7. 601€-07
5.227€-06
3.156E-07

8. 123E-06
1. 007E-07

1.137€-04
5.2126-08

3.398E-04
1.259E-08

7. 199E-04
6.819E-09

1. 772€~03
4. T94E-09
S5.891€£-10

5.447€E-03
2.811E-03

1.019€-03
3.231E-03
5. 746E-03
5. 583E-03
4.8256-03
1. 132E-03
3.211E-05
4.061E-06
6.945E-06
6. T03E-07
1.943E-06
1. 140€-07

1.326E-06
8.007E-08

3.375E-06
4.183E-08

2. 885E-05
1.323€E-08

1.249E-04
4.628€-09

44191E-04
3.970E-09

4,0326~C3
T.504E-04
5.788E~03
5.695€E~03
4.521E-03
3.337€-03
8. 896E~04
2.6T2E-05
5.578E-06
6.890E-07
1.042€-06
1. 004E-07

4.931E~07
2.892€E-08

5.511E-07
3.327€-08

B.565E-07
1.061E-08

1.061E-05
4.862E-09

7.272€-05
2.694E-09

8¢l



CROSS SECTIONS AS READ FOR CONCRETE

GP

DN NP, WN~-

L]

10
1
12
13
1%
15
16

17

18

19

20

21

22,

ABS XxSEC

O000ODO00ODO
LDO020

0.0
0.0

0.0

N

0.0

0.0

0.0

1ss TOTAL
1.267€-01
1.274E-01
1. 1956-01
1.199E-01
1.347E~01
1.5796-01
1.991€-01
1.500E-01
1. 21 6E-01
1.688E-01
2. 198€-01
2. 823E-91
3, 751€-01
4.231E-01
4.5 6E-01
4. T34E~-01

4.T763E-C1
4.768E-C1
4.777E-C1
4o T92E-01
4. 813E-01

4.973€-01

COEFFICIENT 2

FROM GROUP TRANSFER
1.368€-01

1.258E-01 6.785E-04
1.061E-01-7.944€E~03
9.999E-02~-5,470E-03
1.313E-01~1.165E~-02
1.622E-01~-1.019E-02
2.114E-01-9.408€-03
1.212E-01-3.286E-02

(p))

PROBABILITIES

1.980€E-03
2.330E-03
3.981E-03
4.163E-03
4.029€~-03
5.393E-03

7.630E-022 T.260E-03-6.734E-04

T.632€-05

1.3986-21 1.667FE-02-

5.549€E-04 3.202E~04
1.637E-01-2,212€-03
1.045€-03 6.383E-04
1.8026-01-1.688E-03
1.114E-03 6.080E-04
1.T723E-01 5.445€-02
8.939€E-D4 YH.450E-04
3.211E-01 6.443€-02
1.469E-04 B.8746~-05
3.168E-01 5.744E-02
1.270E-06 7.191E-07
3.178E-01 1.299€E-01
1.52¢€E-07 9.198E-08
2.809E-01 1.175£-01
1.289€E~08 1.008E-08
2.439E~10

2.563E-01 1.352F-01
2.426E-09 1.812E-09
5.948E~11 3.431E~11
2.811E-01 1.691E-01
1.354E-09 5.905€E-10
2.370E-11 1.448F~11
2.556E-01 1.351E-01
7.119€~10 1.905€~10
5.100E-12 1.342E-12
2.568E-01 1.531€-01
1.916E-09 1.587E-10
0.0 0.0
4.826F-01 2.033€-01
9.322€-08 5.506E~10
6.130E-13 0.0

1.5%2€-02

1.935£-02
3.0U43€E-04
1.515€-02
3.713€E-04
1.701€-02
2.976E-04
6.308E-03
5.411E~0%
3.726E-04
4.342E-07
%.568F~-03
5.207€E~-04
9.404E-03
6.083E-09

1.828E-02
1.418E-09

3.716€-02
4.413€E-10
6.841€E-12
2.686£-02
8.306E~11
0.0

3.401€-02
4.24BE-11
0.0

5.026E-02
4.562E-11
0.0

2.087€-03
2.4356-03
2.299€E~03
4+364E-03
3.264FE~03

1.077€-03
7.931E-03
1.520E-02

1.1326-02
2.142€-04
7.4146-03
1.817E~04
1.6886-03
2.954F=05
3.087€-C5
2.648E-07
2.698E~05
3.1456-08
3.021E~-04
3.4643E-09

1.323E-03
8.556E~10

4.450E-03
3.450E-10

5.226E-03
6.208E-11
0.0
5. 984E-03
1.852E-11
0.0
9.774E~03
1.221E-11
0.0

1.405€~03
1. 404E-03
2.383E-03
1.990€E-03

6. 504E~04
4.520E-03
9.183E-03
8.851E-03

5.541E-03
1.049E-04
7. 360E-04
1. B04E-05
8. 262E-06
1.445€-07
2.235€-006
1.917€-08
1. 784E-06
2.080E-09

4.249E-05
44 844E-10

3. 220E-04
2.082E-10

6. 259E-04
4.853E-11

1. 165E~-03
1.383E-11
0.0
1.721E-03
S5.322E-12
0.0

8.105€E-04
1l.4556-03
1.086E-03

3.966E-04
2. T29€E-03
5. 199E-03
Se342E-03
4. 332E~03

5.500E-04
1.041€-05
3. 602E-06
8.826E-08
5.983F-07
1.047E-08
1.4T3E-07
1.268E-09

2.510E-07
2.925€E~10

1. 034E-05
1. 179E~-10

4¢529E-05
2.9298~-11

1. 396E-04
1.082E-11

3.349E-04
3.978E-12
0.0

8.398E~-04
60 636E~04

2.165E-04
1.664E~-03
3.1396-03
3,02 56-03
2.615€-03
4. 300E-04
2.692€-06
5.095E-08
2.6086-07
6.393E-09
3.956E-08
6,922€E-10

2.079€E-08
1. 784E-~10

6.108E-08
T« 119€E~-11

l. 455E-06
1. 658E-11

1. 010E-05
5.390E-12

4.011€-~05
3.110€-12

3.829€-04
1.322E-04
9.085E-04
1.914£-03
1.826E-03
1.480€-03
2.596E-04
2.104E-06
1.949€E-07
3.689€-09
1.725€-08
4.228E~10

5456 5E-09
9.736E~-11

5. 061E-09
4.341E-11

8.591E-09
9.784E-12

3.244€E-07
2.078E-12

2.902E-06
1.877€-12

621



CROSS SECTJONS AS READ FOR CONCRETE

GP ABS XSEC.

RGO NS U -

-]

10
11
12
13
14

15

16

t7

18

19

20

21

22

“

NU*FISS

LY

0 OO0OO0OO0OOO0OD
. LI
0O O O ODO0OO0OOO0O

o o o
. .

.
o

0.0
0.0

0.0

0.0

0.0

0.0

TOTAL
1.267E-01
1.274E-01
1.1956-01
1. 199€-01
1.347€-01
1. 579€E-01
1. 991€-01
1.500€E~-01
1.216€-01
1.688F=01
2.198€E-01
2. 823E~-01
3.751E-01
4.231€E-01}
4e 94 6E-01
4 T34E~-01

f.763€-0!
4,768E-01
4.777E-01
4.792E-01
Q.BiJE-Ol

4.973E-0!

COEFFICIENT 3 (P2)
FROM GROUP TRANSFER PROBABILITIES
1.692E-01

1.531E-00 3.1476-03

1.304E~DLl 4.882E-03 2.704£-03
1.192E-01 4.181E-03 5.360€-03 1.363E-C3

1.477E-01 1.303E-02 3.715F=03 1.508E-03 4,025E-064

Lo738E-00 1.1T4E~02 4,219E-03 1.360E~03 4.042€-04-3.3306-05 .
2.034E-01 1.631€-02 1.073E-02 2.700E-03 .5.611E-04~9.437E-05-3.314E-04

1.093E-31 3.3386-02 4.878E-03 1.839E-03 4. 851E~04-1.468E-04~-2.898E-04-2.95TE-04

B.57TE-0R2-2.489E~03 5.208E~03 T7.6056-04 2.437€-04 2.273E~05-6.965E-05-8,272€-05
-7.373€-05 .

1.265€=01 1.066E-02 1.811E-02 7.213€~03 2,243E-03 4. 592E-04~2.469€-04-4,813E~04%
~4.65LE~04~3,T99E-04

1.650E-01 3.929E-02 1.738E~02 1.091E-02 2.420E~03-8.3176~05-1.078E-03-1.273E~03
~1.109E-03~8.856E-04-6.490E-04%

1.690E-¥1 5.822E-02 3.927E-03 5.436E-C4-1.042E-03- 2. 449E-03-2.590E-03-2,199E-03
=1e733E-23-1.2176~03-8.834E-04~6.046E-04

1.755€-31 2.094€~02-8.139E~03-8,285E-C3~7.473E-03-6.656E-03-5.064E-03-3,.592E-03
-2.5096-03-1,822E-03-1.177E-03-8.161E-04~5.381€E~04
2.589E-C1-3.405E~03-1.475E-02~6.334F~03-3,564E~03-2.897E-03-2.419€~-03~1.665E~03
=1.090€E-23-T4431E-04~-5.086E-04-3.183E~-04~2,165E-04~1,4C4E-04
3,020€6-21-14153E~02~2.967E=03-4.9T0E~04~ 1. 855E-04-9.966E~05~8, 007E~-05-6.632E-05
=44503E~C5-2.914E-05-1+97T1E~05-1.341E-C5-84344E-06-5.655E~06~3.656E~-06 .
3.041E-C1 5.968E-03-1.516E-02-5.301F~04~8.694E~05-3.2356-05~1.735E~05-1.394E-D5
=1.154E-05-7.834E-06-5.068E~06~3.426E~06-2.331E~06-1.450E~06-9.828E-07-6,354E-07
2.854E-(1 24323E-02-2.550E-02~2,616E-03-7,994E-05-1.306E-05-4.858E~-06-2.606E-06
=2.093E-06-1.733E-06-1.176E-06~T.6CTE~CT=5,143E~07-3.499E-07-2.171E~C7-1.475E-07
~9.536E-08 .

2.659E-01 6.136E-02-3.041E-02~7.573E~03~64 178E-04~ 2. 030E-05-3.316E-06-1.233E-06
~6.512F-07-5.3106-07~4.397E~07~2.984E-07-1.930E-07~1.305E-07-8.877E-08-5.524E-08
~3.743E~-38-2.420E-08

24856E-131 T.671E-02-6.433E-02-1.699E~C2-3.278E-03-2.833E-04-8.437E-06~1.378E-06
~5e123E-DT-2.T48E~07-2.207E-07-1.827€~07~1.240E-07-8.,021E-08-5.423E-08-3,.689E-08
~2.295F-08-1.955F-08-1.005F-08

2.562E=-01 6.110E-02=-3,727E~02- 1. T82E-02- 4+ T1 TE-03- 8, 441E-04-7.206E-05-2.141E-06
=3.497E-)7~1.300E-07-6,973E-08-5.6006~CB-4.637E-08~3.14TE~08-2.036E-08-1,376E-08
=9.361E-)9-5.825E-09-3.94TE~09-2.552E6~(S

2.665E-)1 B8.556F-02-3.716€~02~1.952E~C02-7.222E-03-1.T76€E~-03~3.1165~04-2.651E-05
~T.8T2E~)T-1.286E~07-4,779E-08-2.563E~(8-2.059E-08-1,7056E~08~1.157€E-08-7,483E-09
~5.059E-39-3.441E-09-2.141E~09-1.4516-09-9.381E~10 .

3.288E-)1 6.634E~03~7.876E-02-3.6526-02~1,280E~02~4+370E-03~1.044E-03~-1.8L7E~-04
=1e543E-D5-4.583E-07-7.483E~08-2.732E-C8~-1.492E-08-1.198E~08-9,924E-09~6.,T735€=-09
~%4.356FE09-2,946E~09-2.003E-09-1.2476-09-8. 44TE-10~-5.461E-10

0tlL



CROSS SECTIONS AS RFAD FOR CONCRETE

GP ABS XSEC

T DN NS W

L]

10
11
12
13
14
15
16

17

18

19

20

21

22

o o o
.
o

.
[~]

0.0

o o .O O00O00Q0OO
. )
o Q > OCLWVWOOCoCo

.
o

o o o
D) .
o Q

.
Q

0.0

NUSF [ SS

0.0
0.0

0.0

0.0

0.0

TOTAL
1,26 "E=01
1.274E~01
1.195F=01
1. 19SE-01
1.341€E-01
1.57SF-01
1.991£-01
1.5006-01

1. 2L 6E=-01

1.688:-01
2.198¢-01
2. 823€-01
3. T51€-01
4.231E-01
4. 966E-01
4.734E-01

4.763F-01

4. T68E-01,

4.777E-01

4e T92E-0L

4.813F-01

4. 973E-01

CCEFFICIENT & (P3)

FROM GROUP TRANSFER PROBABILITIES

1.863E-21

l.696E-01 2.565E~-03

1le®23E=-01 8.311E-03 3,862£-04

1.257€E-01 9.960E-03-6.172€-04-9.273E~C4 .

1.437E~D]1 1.578E~02 6.987E-04-1.248E~C3-1,576E~03

1.458€-01 1.787F~02 1.211F~03-1.312E-03-1.573E-03-1.300E~-03

1.524E-01 1.5006-02-1.906E-03-2,221E~03-2.858E-03-2,373E~03~1.689E~-03

T244TE-02 1.0326~02 5.283€-04-2.034E-03-2,368E-03-1.8726-03-1.365E-03-9.001E-0%

6e675E-02-2.849E-03-1.261E~03~3.653E~04~64339E-04~5.839E~04~4.201E~-04~-2. 953E~04%
=1.901E-04 :
T.983E-02 2.043E-03 1.688E-02 7.146E-04~-3,396E-03-3,560E~03~2,890E-03-1.948E~03
~1.331E-03-8.398E-04
8.848E-02 1.460E-03 1.748E~-03-4.41%4E~C3-8.74T€E-03-8,081E-03~-6.108E~03-4.310€E-03
=2.654E=-03-1.736E~03~1.060€E~-03 ’
6.049E-02-1.1136-02~1.704E-02-1.643E-02-1.478E-02-1.094E-02-7.232E=-03-4.TT4E-03
=3.105E-03~-1.7956~03-1.135€E-03-6.741E~04
9.505E-02-3.974E~02-3.345€6-02~-1.852E-02-1.461E~-02-1.182E-02-7.550E-03-4,489E~03
=2.795E-03-1.T44E-03-9.728E-04~6.020E-04-2.514E-04
FeS0LE-02-846T4E-02~-1.854E-02-5.423E~C3-2,437E~03~1.836E-03-1.443E-03~8.786E~04
~5.014E-04-3.044E-04-1.863E-064~-1.021E~04-6.251E-05-3.615E-05
1.943E~01-8.075E-02~1.276E-03-1.075E~C4-2.884E-05~1.258E-05-9.407E-06-T7.356E-06
=4.441E-06-2.515E~06-1.519E-06-9.262E-01-5.057E~-0T7-3.089E~07-1.783E-07
1.941E-01~17599E-01-1.422E-02~9.40TE~05- 7. 81 TE-C6-2.093E~-06-9.126E-07-6.820E-07
=5.333F-07-2.219E-07-1.822E~07-1.101LE-07-6. TLOE-08-3.663E~-08-2.237E~08~-1.291E-08
2.219E-01-1.269E-01-2.880E-02~1.036F~03~6.,240E~06-5.173E-07-1.385€-07-6.036E-08
~4.511€-08-3.527€E-08-2.129€E-08-1,205E~C8-7.279E=-09-4.438E~09-2.422E~09~-1.480E-09
-8.537€-10
2.298E-01-1.067E-01-5.016E-02-4,456E-03-1.4T8E-04- 8. T82E-07-7.278E-08~1.948E-08
= 84492E-09-6.344E-09-4.962E~09-2,994E-09- 1. 696E-09-1.024E-09~-6.243E-10-3.408E-10
-2.082E-10-1.201€~-10
2.219E-01-1.3356-01~-9.344F~02~1.439€-C2-1.112E-03-3.612E-05-2.138E-07-1.TT1E~-08
~4.7%0E-09-2.067E~09-1.545E-09-1.207E-05 7, 289E~10-4,126E-10-2.492E~10-1.519E-10
~8.293€E-11-5.067€-11-2.923€-11 C .
2.299€E-D1~1.070E-0L~7.145€-02-1.675E~02~2.141E-03-1.579E~-04~5.088E-06-3.007E-08
=2.492E-D9-6.668E=-10-2.907E-10-2.,173E-10~1.69086-10-1.025E~10-5.804E-11-3.505€-11
~2.137E-11~1.167E~11-6.596E-12-2.793E-12
2.300F-01-1.000F-01-8,402E~02-1.911F-02-3,952E~03~4.844E-04-3,529F-05-1.135E~06
=6.705E-09-5.556E-10~1.487E~10-6.,482E-11-4,842E-1t~3,.7B8E~11-2.2806E-11-1.294E-11
=T7.254E-12-2.999E-12-5.326E-13 0.0 0.0
5.54TF-02-2.302E-01-1.301E-01~3.108E-02-5,858E-03-1.161E-03-1.400E~04~1.0156-05
=3.263€-07-1.927F-09-1.597E~10-4.273€~11-1.863E~11-1.392E-11~-1.088E-11-6.570E~-12
-3.719€-12-2,246F-12~1.369E~-12 0.0 0.0 0.0
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GROUP

1

2

10

12
13
146
15

16
17
18
19
20
21
22

SIGT
1.26TE-01

1.2T74E-01

1. 195F-01

1.199E-01

1.347TE~01

1.579F-01

1.991E-01
1.5006-01
1.2165-01
1.688F-01
2.198F~01
2.823-01
3.751E-01
4.231F-01
4.946E-01
4.734E-01
4.763E-01
4.768%-01
4.TT7E-01
4.7926-01

4.813E-01
4.973E-01

L Y]

CROSS SECTIONS FOR CONCRETE

SIGSY
1.127E-01

1. 079E-01

1. 035E-01

1.086E-01

l.267e-01

1.531€8-01

1.975€-01
1.495€-01
1.213€-01
1.686€-01
2.19TE-01
2.8226-01
3.7506-01
4.229E- 01
4.936£-01
4. 731E-01
4. 15 7E- 01
4.75%-01
4. 761E-01
4.7656-01

4. 76 7E-01
4. T44E~01

PNUP

0.0

0.0

0.0

0.0
0.0
0.0
0.0
0.0

0.0

Q [=] [=]
. . . .
o o o

OO0.0000
200000 Q

PNABS
0.8894%

0.8467

0. 8661

0. 9062

0.9628

0. 9693

0. 9918
C. 9964
0.9973
0.9938
0.9995
0.9997
0.9998
0.9994
0.9979
0.9995
0.9989
0.5931
0. 9967
0. 9942

0.9905
0.9541

GAMGEN NUXFIS

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0

DOoODOOOQO
o 8 o o & &
QooowLOLO

0.0

0.0

DOWNSCATTER PROBABILIYY

0.5205
0.0099
0.0000

0.5004
0.0267
0.0000

0.4518
0.0695
0.0000

0.4323
0.0449
0.0000

0.5257
0.0247
0.0000

0.5110
0.0047
0.0000

0.6055
0.0001

0.4717
0.0000

0.2559
0.0C00

0.5346
0.0000

0.7004
0.0000

0.7651
0.0000

0.8386
0.0000

0.8661
0.0060

0.7655

0.7548
0.6992
0.6612
0.6997
0.6622
0.6627
1.0000

0.0694
0.0435
0.0000

0.1658
0.0416
0.0000

0.2109
0.0373
0.0000

0.2700
0.0327
0.0000

0.2028
0.0048
0.0000

0.2668
0.0001

0.2207
0.0000
0.1254
0.0000
0.4553
0.0000
0.3242
0.0000
0.2231
0.0000
0.2058
0.0000
0.1574
0.0000
0.1133

0.1984

0.1831
0.2047
0.2559
0.2044
0.2317
0.3373

0.0209
0.0518
0.000C

0.0320
0.0313
0.00.0C

0.0347
0.0177
0.0260

0.0579
0.0050
0.000C

0.0957
0.0001

0.0534
0.000C

0.0115
0.0000
0.1934
0.0000
0.11063
0.000C
0.0617
0.000C
0.0628
0.000C
0.G283
0.C000
0.7033

0.0170
0.0257

0.0392
0.0686
0.0524
0.0606
0.1062

0.0578
0. 03865
0.0000

0.0274
0.0173
C. 0000

0.0265
0. 0020
0.0000

0.0420
0.0001

0.0215
0.0000

0.0142
0. 0000

0.0362
0.0000
0.0707
0. 0000
0.0761
0.0000
0.0672
0.0000
0.0134
C. 0000
0.0007

0.0006
0.0025
0.0065
0.0163
0.0174

0.0193
0.0353

0.0523
0.0242
0.0000

0.0474
0.0019
0. 0000

0.0422
0.00C0

0.0262
0.0000

0.0057
0.0000

0.0471
0. 0000

0.0644
0.0000
0.0943
0. 0000
0.0847
0. 0000
0.0120
0. 0000
0.0G03

0.0001
0.0001
0.0006
0.0027
0.0041

0.0064
0.0112

0.0247
0.0025
0.0000

0.0692
0. 0000

0.0416
0.0000

0.0067
0.0000

0.0297
0. 0000

0.0445
0.0000

0.0325
0. 0000
0.0367
0. 0000
0.0l14
0. 0000
0.0002
0.0001
0.0000
0.0000
0.0003
0.0007

0.0015
0.0037

0.0483 0.0358

0.0000

0.0260
0.0000

0.0098
0.0000

0.0297
0.C000

0.0443
0.0C00

0.0365
0.0000

0.0244
0. 0000

0.0000

0.0070
0.0000

0.0559
0.0000

0.0524
0.0000

0.0349
Cc.0000

0.0218
0.0000

0.0045
0. 0000

0.0076 0.0002

0.0000
0.0003

0.0000
0.0000
0.0000
0.0001
0.0003

0.0009

0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0001

(&
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