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ABSTRACT 
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  he ' u s e  o f  d r y  c o o l i n g  t o w e r s  f o r  d i s s i p a , t , i ' n g  w a s t e  h e a t  . 

produced f r o m . e l e c t r i c  power g e n e r a t i o n  can  s i g n i f i c a n t l y  , . 

r e d u c e  b o t h  t h e  need f o r  w a t e r  a n d . $ h e  s . t r e s s . . o n  t h e  eny i ron-  

ment caused  by p l a n t  o p e r a t i o n .  However, e f f e c t i v e  a r rangement  

o f  t h e s e  c o o l i n g  towers  a t  a power p l a n t  s i t e  c a n  b e  a  c r i t i c a l  

d e s i g n  problem. 

The p r e s e n t  s t u d y  was c o n d u c t e d ( 1 )  t o  d e v e l o p  a  two- 

d i m e n s i o n a l  ma themat ica l  s i m u l a t i o n  model f o r  d e t e r m i n a t i o n  

of  plume d i s p e r s i o n  and r e c i r c u l a t i o n  from a n  e x i s t i n g  code;  

( 2 )  t o  i n v e s t i g a t e  e x p e r i m e n t a l l y  and m a t h e m a t i c a l l y  t h e  r e -  

c i r c u l a t i o n  and t e m p e r a t u r e  d i s t r i b u t i o n s  o f  plumes from two 

d r y  c o o l i n g  towers  a t  t h e  Wyodak P l a n t  i n  Wyoming; and 

( 3 )  t o  e l u c i d a t e  t h e  e f f e c t s  of  wind v e l o c i t y ,  t e m p e r a t u r e  

of  h e a t e d  e f f l u e n t ,  a d j a c e n t  c o o l i n g  towers  and l o c a l  

topography on  plume d i s p e r s i o n  and r e c i r c u l a t i o n .  

The. m a t h e m a t i c a l  model i s  based  on s o l u t i o n  of  t h e  s t e a d y  

. f l o w  momentum and e n e r g y  e q u a t i o n s  u s i n g  t h e  s t r e a m  f u n c t i o n -  

v o r t i c i t y  t e c h n i q u e .  Exper iments  w e r e  conduc ted  i n  a  10- foo t -  

w i d e ' h y d r a u l i c  f lume ,  u s i n g  w a t e r  a s  a model f low.  . . 

The s t u d y  shows t h a t  plume r e c i r c u l a t i o n  and d i s p e r s i o n  

a r e  s t r o n g l y  i n f l u e n c e d  by l o c a l  topography and nea rby  s t r u c -  

t u r e s  such  a s  a d j a c e n t  c o o l i n g  towers  and b u i l d i n g s ,  a s  w e l l  

as by t h e  ambient  wind v e l o c i t y  and e f f l u e n t  e x i t  t e m p e r a t u r e .  

I n  t h e  p r e s e n t  s t u d y ,  nea rby  c o o l i n g  t o w e r s  a n d . l o c a l  topog- 

raphy produced up  t o  a p p r o x i m a t e l y  1 8  p e r c e n t  o f  t h e  r e c i r c u l a -  

t i o n  r a t i o ,  which i s  a  nondimensional  t e m p e r a t u r e  r ise i n  t h e  

c o o l i n q  t o w e r ' s  wi thdrawal  a i r .  T h i s  caused a 7 p e r c e n t  

r e d u c t i o n  i n  t h e  c o o l i n g  t o w e r ' s  h e a t  r e j e c t i o n  c a p a b i l i t y .  

T h i s  reducLiu11 of h e a t  r e j e c t i o n  c a p a c i t y  c o u l d  be two to 

t h r e e  t i m e s  more f o r  w e t  c o o l i n g  t o w e r s .  The s t u d y  a l s o  



r e v e a l e d  v e r y  s t r o n g  nonuniform d i s t r i b u t i o n s  of c o o l i n g  tower 

i n l e t  a i r  t empera ture  w i t h i n  t h e  c o o l i n g  tower,  implying t h a t  
. . 

it riaf n o t  ..'be a p p r o p r i a t e  t o  assume th .a t  t h e  ambient ':air 
. . . .; . 

t empera ture  i s  , t h e  t r u e  i n l e t  c o o l i n g  a i r  tempera ture ,  a s L i s  : 
. .: . - .  

commonly done "to evalua. te  c,ooling tower performance. A :. . . . . .  . 
. . . .  . . . . .  ' .  ' ,: :. 

. . . . . . . ,  
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.MATHEMATICAL AND EXPERIMENTAL. INVESTIGATIONS ON DISPERSION 

AND RECIRCULATION OF' PLUMES. FROM DRY COOLING TOWERS. 
I AT WYODAK POWER PLANT I N  WYOMING 

1 .0  INTRODUCTION 

Dry c o o l i n g  ' towers use  a i r - coo led  h e a t  exchangers  f o r  

r e j e c t i n g  was te  h e a t  from thermal  power p la .n t s  and t h e  chemical  

p roces s  indus t ry . ,  A s  compared w i t h  once-through and w e t  cool-  
. . 

i n g  methods, t h e  use  of  t h e  d ry  c o o l i n g  tower can s i g n i f i c a n t l y  

reduce  wate r  use  and stress on t h e  environment1 and could  make 

p l a n t  s i t e  s e l e c t i o n  easier. Dry c o o l i n g  towers  have been used 

i n  t h e  United S t a t e s  p roces s  i n d u s t r y  f o r  decades .  However, 
. . 

on ly  a few e l e c t r i c  power p l a n t s  i n  Europe and one i n  t h e  

Uni ted S t a t e s  (Wyodak P l a n t ,  Wyoming) use  t h e  d r y  c o o l i n g  

system. 

Large-scale  e l e c t r i c  power p l a n t s  r e q u i r e  many dry c o o l i n g  

tower modules t o  handle  t h e  q u a n t i t y  of  h e a t  gene ra t ed  by t h e  

power p l a n t .  Proper  arrangement of t h e s e  c o o l i n g  towers  on a 

power p l a n t  s i t e  can be a c r i t i c a l  d e s i g n  problem. Improper 

arrangement can l e a d  t o  r e c i r c u l a t i o n  of  h o t  exhaus t  a i r  i n t o  

t h e  i n t a k e s  of t h e  c o o l i n g  tower o r  nearby c o o l i n g  towers  

and cause  an i n c r e a s e  i n  t h e  condenser  temperature^.^" This  

t empera ture  r ise  i n  t u r n  i n c r e a s e s  t h e  t u r b i n e  back-pressure  

and thereby  reduces  t u r b i n e  e f f i c i e n c y  and t h e  p l a n t ' s  a u t p u t  

of e l e c t r i c i t y .  

During c e r t a i n  metk?orological c o n d i t i o n s ,  c o o l i n g  tower 

performance can b e  adve r se ly  a f f e c t e d  by t h e  tower i t s e l - f ,  

a d j a c e n t  towers ,  b u i l d i n g s ,  and t h e  sur rounding  

When crosswinds  a r e  p r e s e n t ,  t h e  hea t ed  e f f l u e n t  plume i s  

d e f l e c t e d ,  o r  b e n t  ove r ,  and t h e  plume t r a j e c t o r y  i s  s h i f t e d  

c l o s e  t o  t h e  i n t a k e  f a c e s  o f  t h e  c o o l i n g  tower ,  r e s u l t i n g  i n  

r e c i r c u l a t i o n  of t h e  plume i n t o  t h e  tower i n t a k e .  R e c i r c u l a t i o n  



can, become a s i g n i f i c a n t  problem . i f  t h e  tower o r  .a,  por t ion:of  

t h e  plume .is s i t u a t e d  i n  a  wake caused by a d j a c e n t , s t r u c t u r e s  

and/or  t h e  l o c a l  t e r r a i n .  I f  one tower i s  . loca ted  downwind 

o f  a n o t h e r ,  some o f  t h e  e f f l u e n t  from t h e  upwind tower may 

be  i n g e s t e d  i n t o  t h e  i n t a k e  o f  t h e  downwind tower ,  c a u s i n g  

i n t e r f  e rence .  

Severe  r e c i r c u l a t i o n  and i n t e r f e r e n c e  w i l l  occur  i f  a  

c a p t i v e  eddy forms and p e r s i s t s  between t h e  c o o l i n g ' t o w e r s . "  

When r e c i r c u l a t i o n  and/or i n t e r f e r e n c e  occu r ,  t h e .  t r u e  cool ing  

a i r  tempera ture  a v a i l a b l e  .to t h e  a i r -cooled.  heat  exchangers 

i n c r e a s e s  and r educes  c o o l i n g  tower performance. 
. .  . . . , . 

~ i t t l e  i s  known about  t h e  r e c i r c u l a t i o n  c h a r a c t e r i s t i c s  

o f  l a r g e  d r y  c o o l i n g  towers f o r  a  power p l a n t .  The purpose . . of  
I 

: t h e  p r e s e n t  s tudy  has  been (1) t o  develop a  mathematical  simula- 
. , . . . .  
t i o n  model f o r  plume d i s p e r s i o n  and. r e c i r c u l a t i o n  s t u d i e s '  from 

an  e x i s t i n g  code; ( 2 )  t o  i n v e s t i g a t e  expe r imen ta l ly  and mat'he- 

m a t i c a l l y  t h e  p l . b e  r e c i r c u l a t i o n  and d i s t r i b u t i o n s  of 

t empera ture  and f low i n  t h e  v i c i n i t y  of  t h e  330  M W e  g e n e r a t i n g  

p la 'n t  d ry  c o o l i n g  tower a t  Wyodak, Wyoming, and t h e  nearby 

50 MWe ERDA d r y  cool. ing tower; and, ( 3 )  t o  i d e n t i I y   he' e f f c a t s  

of  w i n d ' v e l o c i t y ,  t empera ture  o f  hea ted  e f f l u e n t ,  a d j a c e n t  

c o o l i n g  towers ,  and l o c a l  Lopography on plume d i s p e r s i o n  and 
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2.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
. . 

2.1 SUMMARY AND CONCLUSIONS 

A two-dimensional s imu la t ion  model f o r  d i s p e r s i o n  of plumes 

from d r y  c o o l i n g  towers was 'evolved i n  t h i s  s tudy .  .Dispers ion ,  

r e c i r c u l a t i o n  and i n t e r f e r e n c e  o f  t h e  plumes from t h e  5 0  MWe 

ERDA and t h e  330 MWe Wyodak p l a n t  d r y ' c o o l i n g  towers  a t  Wyodak, 
.- - - -  --- - . --. . . . . . . . 

Wyoming, w e r e  i n v e s t i g a t e d  both  expe r imen ta l ly  and r n a t h e r n a ~ i ~ a l l ~ ,  

c o n s i d e r i n g  e f f e c t s  of v a r i o u s  wind v e l o c i t i e s ,  e f f l u e n t  e x i t  

t empera tu re s ,  nearby c o o l i n g  towers  and l o c a l  topographies .  

The s tudy  r e v e a l s  t h a t  t h e  f low c h a r a c t e r i s t i c s  i n  t h e  

v i c i n i t y  of  t h e  d r y  c o o l i n g  towers a t  t h e  Wyodak p l a n t  i n d i c a t e  

s t r o n g  th ree -d imens iona l i t y .  The plume r e c i r c u l a t i o n ,  and hence 

t h e  coo l ing  tower performance, a r e  s t r o n g l y  a f f e c t e d  by t h e  

a d j a c e n t  c o o l i n g  towers and l o c a l  topography a s  w e l l  a s  by t h e  

v e l o c i t y  r a t i o  of t h e  hea ted  e f f l u e n t  t o  t h e  ambient f low,  K t  

and t h e  e f f l u e n t  dens ime t r i c  Froude number, IFD Two-dimensional 

hea ted  je t  exper iments  were a l s o  conducted t o  examine t h e  v a l i d i t y  

of t h e  numerical  code developed i n  t h i s  s tudy .  

The main conc lus ions  drawn from t h e  i n v e s t i g a t i o n  may be  

summarized a s  fo l lows :  

1) When K d e c r e a s e s  ( t h e  ambient  f low v e l o c i t y  i n c r e a s e s ) ,  

o r  FD i n c r e a s e s  ( e f f l u e n t  e x i t  t empera ture  d e c r e a s e s )  , 
t h e  plumes from t h e  c o o l i n g  towers a r e  d e f l e c t e d  more 

c l o s e l y  t o  t h e  ground. . The mixing .between t h e  plumes 

and t h e  ambient glow was a l ' so  enhanced when K dec reases .  

2 )  C e n t e r l i n e  t r a j e c t o r i e s  of plume from bo th  t h e  Wyodak 

p l a n t  and t h e  ERDA d r y  c o o l i n g  towers  r e v e a l  t h e i r  

s t r o n g  dependency on t h e  l o c a l  topography and are 

expres sed  by Equation 4 .4 :  



where X and Z are l o n g i t u d i n a l  and v e r t i c a l  d i s t a n c e s ,  

r e s p e c t i v e l y .  Va and F denote  t h e  ambient  f low veloc-  

i t y  and buoyancy f l u x  of  t h e  plume, r e s p e c t i v e l y .  The 

d i s t a n c e  between t h e  c o o l i n g  tower and t h e  c o a l  mine 

p i t  a r e  r e p r e s e n t e d  by " a "  and "b" is  t h e  dep th  o f  

t h e  c o a l  mine p i t  a t  t h e  Wyodak p l a n t  s i te .  Hence, 

t h e  plume rise i s  p r o p o r t i o n a l  t o  "2/3 power" of t h e  

l o n g i t u d i n a l  d i s t a n c e  X.  

3) The p r e v a i l i n g  wind a t  t h e  Wyodak p l a n t  s i t e  i s  nor th-  

' w e s t e r l y .  When t h i s  i s  t h e  c a s e ,  t h e  plume from t h e  

.upwind ERDA d r y  c o o l i n g  tower merges 'w i th  t h e  plume 

from t h e  downwind Wyodak p l a n t  d ry  c o o l i n g  tower ,  

r e s u l t i n g  i n  a h ighe r  plume r i s e  of  t h e  merged plume ' 

. . 
and a  lower tempera ture  nea r  t h e  ground. .  Hence, t h e  

e x i s t e n c e  of t h e  ERUA tower 111 L l l i s  caac may roduce 

t h e  r e c i r c u l a t i o n  r a t i o ,  R (nondimensional  t empera ture  

rise o f  c o o l i n g  t o w e r ' s  i n l e t  a i r  f low de f ined  by 

Equat ion 4 . 1 )  f o r  t h e  Wyodak p l a n t  c o o l i n g  tower and 

may.improve i t s  performance. When t h e  wind i s  south-  

e a s t e r l y ,  t h e  plume from t h e  Wyodak p l a n t  tower covers  

t h e  downwind ERDA tower.  A f a i r l y  s t r o n g  i n t e r f e r e n c e  
. . . . - - . . - . . . . ,. . . . 

oc.curs i n  t h i s  c a s e ,  caus ing  h i g h e r - k e o i r c u l a t i o n  r a t i o s  

f o r  bo th  t h e  Wyodak p l a n t  and t h e  ERDA d r y  c o o l i n g  Lowers. 

4 )  I t  was found t h a t  t h e r e  was s e v e r e  nonuniform d i s t r i b u -  

t i o n .  of t h e  coo l ing  tower1  s withdrawal  f low tempera ture  

( i . e . ,  r e c i r c u l a t i o n  r a t i o ,  R )  w i t h i n  t h e  Wyodak. p l a n t  

c o b l i n g  tower (See F i g u r e s  4.35 through 4 . 3 8 )  . . It  i s  

expec ted  t h a t  t h e  a v a i l a b i l i t y  o f  t h e  cool.ing a i r  

t empera ture  v a r i e s  f o r  each  module withji-1 'a cooling 

tower.  Th i s  i m p l i e s  t h a t  it may n o t  be  a p p r o p r i a t e  

t o '  assume t h e  ambient  air tempera ture  t o  be  t h e  t r u e  

i n l e t  eooliriy air- t empcra tu re ,  as is commonly done t o  

e v a l u a t e  t h e  c o o l i n g  tower performance. 



5)  The r e c i r c u l a t i o n  r a t i o , .  R ,  i s  sma l l  when K i s  l a r g e  

( o r  t h e  ambient  v e l o c i t y  i s  r e l a t i v e l y  s m a l 1 . a ~  com- 

pared w i t h  t h e  hea ted  e f f l u e n t  e x i t  v e l o c i t y ) . .  R . . 

f i r s t  i n c r e a s e s  a s  K d e c r e a s e s  ( o r  t h e  ambient wind 

v e l o c i t y  i n c r e a s e s )  from a  l a r g e  va lue  of K and r eaches  

i t s  maximum va lue  a s  K d e c r e a s e s .  R t hen  d e c r e a s e s  as  

K f u r t h e r  dec reases  ( s e e  F i g u r e  4 .40) .  This  may be  

exp la ined  as fo l lows:  t h e  plume rises r e l a t i v e l y  

s t r a i g h t  upward a t  a  l a r g e  v a l u e  of  K ,  r e s u l t i n g  i n  

a sma l l  r e c i r c u l a t i o n  r a t i o .  When K dec reases  t h e  

plume i s  d e f l e c t e d  more c l o s e l y  t o  t h e  ground and R 

i n c r e a s e s .  A s  K f u r t h e r  d e c r e a s e s ,  t h e  plume is  b e n t  

ove r  more. However, mixing between t h e  plume a n d . t h e  

ambient  f low i s  a l s o  g r e a t l y  enhanced, r e s u l t i n g  i n  

t h e  s i g n i f i c a n t  d i l u t i o n  of t h e  plume and l a r g e  reduc- 

t i o n  i n  temperature  r ise.  Moreover, t h e  s t r o n g  ambient  

f low can supply more wi thdrawal  flow from t h e  upstream 

s i d e  i n t a k e  f a c e  r a t h e r  t han  withdrawing t h e  f low from 

t h e  wake behind t h e  tower. Hence, R s t a r t s  t o  d e c r e a s e  

a s  K f u r t h e r  dec reases .  

.6) A s  shown i n  F igu res  4.43 through 4.46, t h e  r e c i r c u l a t i o n  

r a t i o ,  R,  f o r  bo th  c o o l i n g  towers  monotonical ly  i n c r e a s e s  

a s  t h e  e f f l u e n t  dens ime t r i c  Froude number,IFD i n c r e a s e s  

( o r  t h e ' t e m p e r a t u r e  d i f f e r e n c e  be tween . the  e f f l u e n t  and 

t h e  ambient f low, ATo d e c r e a s e s )  f o r  t h e  range covered 

by t h i s  s tudy .  

7 )  A l a r g e  d i f f e r e n c e  of  R between t h e  s o u t h e a s t e r l y  wind 

w i t h  f l a t  ground c a s e  (Run C) and t h e  no r thwes t e r ly  

wind wi th  f l a t  ground c a s e  (Run A )  w a s  found f o r  bo th  

t h e  Wyodak p l a n t  and t h e  ERDA towers  (see F i g u r e s  4.40 

and 4 .42) .  The maximum K v a l u e s  o f  t h e  ERDA tower f o r  

Runs C and A w e r e  19 and 1 p e r c e n t ,  r e s p e c t i v e l y .  T h i s  

19 p e r c e n t  r e c i r c u l a t i o n  r a t i o  i s  due t o  t h e  s t r o n g  



i n t e r f e r e n c e  caused by t h e  upwind Wyodak p l a n t  tower.  

The maximum R v a l u e s  of t h e  Wyodak p l a n t  tower f o r  

Runs C and A were 6 and 2 p e r c e n t ,  r e s p e c t i v e l y .  These 

d i f f e r e n c e s  w e r e  due t o  t h e  l o c a t i o n s  o f  t h e  nearby 

c o o l i n g  towers  ( t h e  Wyodak p l a n t  tower l o c a t i o n  f o r  t h e  

ERDA tower ' s  r e c i r c u l a t i o n  r a t i o  and t h e  ERDA tower loca-  

t i o n  f o r  t h e  Wyodak p l a n t  t o w e r ' s  r e c i r c u l a t i o n  r a t i o )  

w i t h  r e s p e c t  t o  t h e  wind d i r e c t i o n .  Actua l  topography 

i n  t h e  v i c i n i t y  o f  t h e  Wyodak p l a n t  s i t e  reduced va lues  

of R f o r  t h e  s u u l l l e d s t e r l y  wind case (Run T D )  , b u t  

i n c r e a s e d  v a l u e s  of  R f o r  t h e  no r thwes t e r ly  wind c a s e  

(Run T U )  as compared t o  t h o s e  f o r  t h e  f l a t  ground c a s e s  

(Runs C and A ) .  

8)  A d r y  c o o l i n g  tower  performs poor ly  d u r i n g  t h e  h o t  

'summer months. A t  t h e  Wyodak p l a n t  s i t e , ~ n o r t h w k s t e r l y  

and sou theas t e rPy  winds p r e v a i l  i n  t h e  summer.' F i g u r e s  

4.39 and 4 . 4 2  show t h a t  t h e  wors t  performances of  bo th  

t h e  Wyodak p l a n t  tower and t h e  ERDA tower a r e  expected 

t o  occu r  a t  10 mph and 37 mph sou thwes t e r ly  winds,  

r e s p e c t i v e l y .  The r e c i r c u l a t i o n  r a t i o s  i n  t h e s e  c a s e s  

a r e  6 and 19 p e r c e n t .  I f  t h e  ambient  wind tempera ture  

i s  assumed t o  be 85'F, r e d u c t i o n s  i n  t h e  c o o l i n g  

c a p a c i t i e s  o f  t h e  Wyodak p l a n t  and t h e  ERDA towers  

a r e  e s t i m a t e d  a t  2 and 7 p e r c e n t ,  r e s p e c t i v e l y .  For  

convent iona l  wet cuo l iny  tuwers ,  which usua l ly ,  havc a . . 
much s m a l l e r  i n i t i a l  t empera ture  d i f f e r e n c e ,  t h e  l o s s  

of heat  r e j e c t i q n  capaciky due t o  r e c i r c u l a t i o n  could  
. , 

be  two t o  t h r e e  t i m e s  more s e v e r e  t han  t h a t  o f  a  d r y  

c o o l i n g  tower for t h e  same reci .rc111ation r a t i o .  , , I n  

bo th  c a s e s ,  p roper  arrangement of  c o o l i n g  towers  can 
, .  , 

'be a c r i t i c a l  de s ign  problem. 



A s  d i s c u s s e d  i n  Conclusion 8 ,  t h e  wors t  r e c i r c u l a t i o n  

c o n d i t i o n s  f o r  t h e  Wyodak p l a n t  and t h e  ERDA towers  

occu r  a t  d i f f e r e n t  ambient wind v e l o c i t i e s .  Moreover, 

t h e  Wyodak p l a n t  tower ,  which h a s  a  much smaller 

r e c i r c u l a t i o n  r a t i o  t han  t h a t  o f  t h e  ERDA tower ,  w i l l  

b e  u s e d . t o  reject 85 p e r c e n t  of  t h e  t o t a l  p l a n t  exhaus t  

h e a t .  The o v e r a l l  c o o l i n g  performance ob ta ined  by t h e  

two dry  c o o l i n g  towers  i s  expec ted  t o  perform most 

poor ly  when t h e  wind i s  a t  30 mph from t h e  s o u t h e a s t  

du r ing  summer. However, even f o r  t h i s  case, t h e  l o s s  

o f  t h e  o v e r a l l  p l a n t ' s  c o o l i n g  c a p a c i t y  due t o  r e c i r c u -  

l a t i o n  i s  on ly  2 p e r c e n t .  I f  t h e  Wyodak p l a n t  tower 

i s  used t o  r e j e c t  a l l  t h e  p l a n t  exhaus t  h e a t ,  w i thou t  

u s ing  t h e  ERDA tower,  t h e  c o o l i n g  c a p a c i t y  l o s s  due 

t o  r e c i r c u l a t i o n  i s  on ly  1 pe rcen t .  Hence, l o c a t i o n s  

of t h e  Wyodak p l a n t  and t h e  ERDA.towers have been, 

p rope r ly  a r ranged  w i t h  r e s p e c t  t o  spac ing ,  o r i e n t a t i o n  

and a c t u a l  topography,  s o  t h a t  plume r e c i r c u l a t i o n  

causes  a lmos t  no i n t e r f e r e n c e  t o  t h e  Wyodak power 

p l a n t ' s  o v e r a l l  o p e r a t i o n .  

The numerical  s imulat ior i  model e v o l v e d  i n  t h i s  s tudy  

demonstra ted i t s  c a p a b i l i t y  t o  c a l c u l a t e  t empera ture  

d i s t r i b u t i o n  o f  t h e  plume from c o o l i n g  towers  and t h e  

f low p a t t e r n s  i n c l u d i n g  wakes behind t h e  towers ,  

r e c i r c u l a t i o n  and i n t e r f e r e n c e .  Comparison o f  the 

c a l c u l a t e d  and exper imenta l  r e s u l t s  f o r .  t h e  Wyodak 

. p l a n t  d r y  c o o l i n g  tower c a s e  r e v e a l e d  t h a t  plume 

h e i g h t s  agreed  reasonably  w e l l .    ow ever , t h e  com- . 

p u t e r  r e s u l t s  showed a  l a r g e  c i r c u l a t i o n  p a t t e r n  i n  

t h e  wake of t h e  Wyodak tower and s i g n i f i c a n t .  r e c i r c u -  

l a t i o n .  T h i s  disagreement  may be  exp la ined  by t h e  

f a c t  t h a t  t h e  computer model i s  two-dimensional,  

whereas t h e  h y d r a u l i c  model r e v e a l e d  s i g n i f i c a n t  

. three-dimensional  e f f e c t s .  These i nc luded  s i g n i f i c a n t  



edge e f f e c t s ,  such as  L a t e r a l  withdrawal and c n t r n i n -  

'. ment, because of  t h e  dry coo l ing  , tower ' s s h o r t  l e n g t h  

a s  compared t o  width .  These , e f f e c t s  t end  t o  dec rease  
. . t empera tures  w i t h i n  t h e  plume. 

11) Comparisons between computer and exper ' imental  r e s u l t s  

f o r  t h e  two-dimensional hea t ed  jet  'cases r e v e a l e d  t h a t  
. . 

t h e  w a t e r  t empera ture  d i s t r u b u t i o n i  y i e l d  good agree-  

ment and t h a t  t h e  s imu la t ion  model i s  a b l e  t o  p r e d i c t  
, 

bo th  f low p a t t e r n  and tempera ture  d i s t f i b u t i o n s  f o r  a 

plume d i s p e r s i o n  s tudy .  However, t h e s e  comparisons 

must be  regarded  a s  p re l imina ry  and f u r t h e r  d e t a i l e d  

tests a r e  needed t o  v e r i f y  t h e  numerical  model. 
' .  

Local topography and nearby s t r u c t u r e s  ( e . g . ,  a d j a c e n t  cool-  

. i n g  towers and b u i l d i n g s )  a r e  r evea l ed  t o  b e  impor tan t  f a c t o r s  

i n  r e c i r c u l a t i o n ,  i n t e r f e r e n c e  and plume ri,se. ~ h e ' s e  f a c t o r s  

may a l s o . c a u s e  a s t r o n g  m a l d i s t r i b u t i o n , o f  t r u e  c o o l i n g  a i r  

t empera ture  w i t h i n  a  c o o l i n g  tower. . S i n c e  l i t t l e  i s  known about  

t h e s e  problems, i t  i s  ,recommended t h a t  t h e s e  r e c i r c u l a t i o n  and 

i n t e r f  erenck problems be s t u d i c d  n u m e r i d a ~ ~ ~  and expe r imen ta l ly  

f o r  var io1.1~ t.opographies and nearby s t r u c t u r e s  and t h a t  g e n e r a l i z e d  . 
c o o l i n g  tower s i t i n g  c r i t e r i a ' b e  ob ta ined .  A Y s t u d y  f o r  d e t e r -  

mina t ion  o f  d e t a i l e d  f low and tempera ture  d i s t r i b u t i o n s  w i t h i n  

a  c o o l i n g  tower i s  a l s o  needed. I n t e r a c t i o n  among plumes from 

a l a r g e  number o f  c o o l i n g  towers ,  such as t h o s e  a t  p o s s i b l e  

energy c e n t e r s ,  i s  extremely complex. F u r t h e r  exper imenta l  and 

mathematical  s t u d i e s  a r e  recommended t o  o b t a i n  a c c u r a t e  v e l o c i t y  

and tempera ture  d i s t r i b u t i o r l s  i n  Lhe near f icld, w11icl-i i s  s t rnng l  y 

a f f e c t e d  by t h e  i n t e r a c t i o n  among many c o o l i n g  towers  and by t h e  

l o c a l  topography.  



3.0 DESCRIPTION OF -HYDRAULIC MODEL , ' 

3.1 DIMENSIONAL ANALYSIS AND MODELING C R I T E R I A  

. . 

For f i x e d  c o o l i n g t o w e r  geometry, sur rounding  topography 

and a d j a c e n t  s t r u c t u r e s ,  t h e  s p a t i a l  d i s t r i b u t i o n  of  t h e  temp- 

e r a t u r e  d i f f e r e n c e ,  AT, where AT i s  d e f i n e d  a s  t h e  d i f f e r e n c e  N 

between t h e  tempera ture  T a t  any p o i n t  i n  t h e  f low f i e l d  and 

t h a t  of t h e  ambient f l o w , .  T a t  can  be  expressed  by 

where 

X, Y, = C a r t e s i a n  c o o r d i n a t e s  i n  t h e  l ong i tud ina l ' ,  

l a t e r a l  and v e r t i c a l  d i r e c t i o n s ,  r e s p e c t i v e l y  

, g  = g r a v i t a t i o n a l  a c c e l e r a t i o n  

va t  v = kinemat ic  v i s c o s i t y  of t h e  ambient f l u i d  . 
j 

and tow'er d i s c h a r g e ,  r e s p e c t i v e l y  

Pa ' =  r e f e r e n c e  ambient  f l u i d  d e n s i t y  

Apo = d e n s i t y  d i f f e r e n c e  between t h e  tower d i s -  

. charge and t h e  r e f e r e n c e  ambient  f l u i d  

V = v e l o c i t i e s  of  t h e  ambient flow and tower 'a' j 
d i s c h a r g e ,  r e s p e c t i v e l y  

ATa/ A Z  = v e r t i c a l  t empera ture  g r a d i e n t  of  ambient 

flow 

yd = dry  a d i a b a t i c  l a p s e  r a t e  

ATo = t empera ture  d i f f e r e n c e  between t h e  tower 

d i s c h a r g e  and t h e  ambient flow 

L = c h a r a c t e r i s t i c  l e n g t h  s c a l e  of  t h e  ambient  

flow 

D = coo l ing  tower s t a c k  diameter  



Dimensional a n a l y s i s  w i t h  t h e  ll theorem y i e l d s  t h e  follow- 

i n g  exp res s ions  from ~ ~ u a t i o n  3.1: 

S ince  t h e  e f f e c t  o f  t h e  d e n s i t y  d i f f e r e n c e  between t h e  ambient 

f low and t h e  tower d i s c h a r g e  i s  inco rpo ra t ed  i n  the '  term of 
. a  . 

V,/ d ( ~ p ~ / ~ , )  g ~ I  t h e  t e r m  Apo/pa i n  Equation 3.2 can be  d e l e t e d .  

Tlrr L e r m  AT /ydL i:, impor t an t  on ly  if T, i.s a v e r t i c a l  d i s t a n c e .  
&I 

However, f o r  t h i s  c a s e  t h i s  term e x p r e s s e s  t h e  same meani'ng a s  

t h a t  of  t h e  t e r m  AT /ydAZ. Therefore ,  t h e  t e r m  ATa/ydL can b e  a  
d e l e t e d .  For t h e  p r e s e n t  exper iments ,  . n e u t r a l  s t r a t i f i c a t ' i o n  of 

t h e  ambient  a i r  f low was imposed. Hence, t h e  ambient f low s t a b i l i t y  

parameter  ATa/ydAZ w i l l  be  d e l e t e d  from Equation 3 . 2 .  Equation 

3 . 2  t hen  becomes 

where 
v 7 

. v 
IF = j , densilue Lric Froudc number 

EP- 

: 'aL , ambient  flow Reynolds number IR, = -  
V a  

V . D  
- 3 

v - -  , jet  Reynolds number 
j 

v 
K = , v e l o c i t y  r a t i o  of t h e  e f f l u e n t  t o  t h e  ambient  f lqw 

va 
.*( 3 -7 ) 



Hence, t o  o b t a i n  s i m i l a r i t y  between t h e  p r o t o t y p e  and t h e  

model, t h e  l a s t  f o u r  s i m i l a r i t y  c r i t e r i a  i n  t h e  r i g h t  hand s i d e  

of Equat ion 3.3, i n  a d d i t i o n  t o  geometr ic  s i m i l a r i t y ,  must be  

s a t i s f i e d .  However, it i s  n o t  p o s s i b l e  t o  e x a c t l y  s a t i s f y  a l l  

s i m i l a r i t y  c o n d i t i o n s  d e s c r i b e d  i n  Equation 3.3; it i s  in tended  

t o  s a t i s f y  t h e  Reynolds c r i t e r i a , I R a  a n d m  on ly  t o  t h e  e x t e n t  
j ' 

t h a t  t h e  ambient  and j e t  f lows  i n  t h e  model w i l l  be  main ta ined  

a s  t u r b u l e n t  f lows.  

I n  t h e  exper iments ,  water  was used a s  a model. f l u i d  t o  

s i m u l a t e  t h e  p r o t o t y p i c  a i r  f low movement because w i t h  wate r  

it i s  r e l a t i v e l y  e a s i e r ,  and r e q u i r e s  sma l l e r  'models, t o  s a t i s f y  

t h e  d e n s i m e t r i c  Froude number and Reynolds number c r i t e r i a  f o r  

t h e  model. Flow and tempera ture  measurements and f low observa-  

t i o n s  a r e  a l s o  more r e a d i l y  conducted i n  wate r  t han  i n  a i r .  The 

models of t h e  two proposed d r y  c o o l i n g  towers  a t  t h e  Wyodak p l a n t  

i n  Wyoming have a model-to-prototype l e n g t h  s c a l e  r a t i o  o f  

1/600. ' Actua l  p ro to type  and model f low c o n d i t i o n s  and s i m i l i t u d e  

w i l l  be d e s c r i b e d  i n  Chapter  4 .  

3.2 EXPERIMENTAL EQUIPMENT 

. .. The p r i n c i p a l  i t e m  of  equipment used i n  t h e  exper imenta l  

s tudy  was a h y d r a u l i c  flume l o c a t e d  i n  t h e  B a t t e l l e ,  P a c i f i c  

Northwest Labora to r i e s .  

3.2.1 Hydraul ic  Flume 

F i g u r e  3 .1  shows t h e  mul t i -purpose h y d r a u l i c  flume which 

was des igned  f o r  r e s e a r c h  i n  hydrodynamics and p h y s i c a l  model 

s t u d i e s  o f  f r e e  s u r f a c e  f low phenomena such a s  thermal  d i s p e r -  

s i o n ,  sediment and p o l l u t a n t  t r a n s p o r t ,  r i v e r  and e s t u a r y  

h y d r a u l i c s ,  h y d r a u l i c  s t r u c t u r e s ,  e t c .  Th i s  r e c i r c u l a t i n g  

' t- f l u h e  w i t h  an open-channel s e c t i o n  10 f e e t  wide,  1 .5  f e e t  deep 

and 4 2  f e e t  long has  a d j u s t a b l e  s l o p e  and i s  capable  of  f low 

rates up t o  10 c f s .  A s  shown i n  F i g u r e  3.1, one s i d e  w a l l  of  . * 



t h e  flume has  t h r e e  g l a s s  windows through which flow movement 
. . 

can  be  observed and photographed. Flow d i s c h a r g e  i s  measured 

by means of  c a l i b r a t e d  o r i f i c e  m e t e r s  i n  each of  t h e  two 1 0 -  
' .  

i n c h  r e t u r n  p ipes .  T h e  flume i s  equipped w i t h  a  motor d r i v e n  . . 

c a r r i a g e  which r i d e s  t h e  f u l l  l e n g t h  of  t h e  flume channel  on "" 

r a i l s .  Remote s ens ing  dev ices  (e .g . ,  an  i n f r a r e d  camera) can 

be i n s t a l l e d  on t h e  c a r r i a g e  t o  t a k e  tempera ture  d i s t r ' i b u t i o n s  
. . 

of s u r f  a c e  wate r  a t  eve ry  l o c a t i o n  i n '  t h e  flume (F igu re  3.2) . 
During t h e  cou r se  of  t h i s  s t u d y ,  t h r e e  major ~ i e c e s  of  

~ q i ~ i p r n e n t  have been f a b r i c a t e d :  (1) a q lass -wal led  hydrau l i c  flumc 

w i t h  an open-channel s e c t i o n  '4 f e e t  wide,  5 f e e t  deep and 40 
. - 

f e e t  long  ( F i g u r e s  3.3 and 3.4) and a  maximum d i s c h a r g e  of 
. > 

10 c f s ; ( ' 2 )  . .. a  PDP 11/10 C o m p u t e r ' ~ a t a  A q u i s i t i o n  and Cont ro l  . 

System f o r  exper iments  conducted i n  t h e  two h y d r a u l i c  f lum0s;  

and ( 3 )  a  4 - w a t t '  a rgon l a s e r  which can measure ' t h e  f low v e l o c i t y  

and c o n c e n t r a t i o n ' o f  v a r i o u s  subs t ance  i n  t h e  wate r  a t  any 
. 

. . 

l o c a t i o n  w i t h i n  t h e  .g lass -wal led  flume. 

3.2.2 Water H e a t  Exchanger 

Three  h e a t  exchangers  (two 90 kW and one 75 kW, i n  series) 

s u p p l i e d  hea t ed  wa te r  f o r  t empera ture  s t u d i e s .  The h e a t  i n p u t  

t o  obtain a  d e s i r e d  wa te r  t empera ture  could  be a d j u s t e d  t o  any 

v a l u e  between ze ro  and 255 kW by an  AC power c o n t r o l l e r .  Heated 

w a t e r  d i s c h a r g e  was measured by f low m e t e r s ,  shown a t  t h e  r i g h t  

s i d e  o f  F igu re  3.5. 

3.2.3 Thermis tors  

Temperature measurements w e r e  made w i t h  t h e r m i s t o r s  and an 

e l e c t r o n i c  d a t a  r e c o r d i n g  system ( F i g u r e s  3 .1  and 3 . 5 ) .  A l l  

t h e r m i s t o r s  used f o r  t h i s  s tudy  were c a l i b r a t e d ;  t h e i r  c a l i b r a -  

t i o n  cu rve  i s  shown i n  F igu re  3.6. T h e  d a t a  ob ta ined  by t h i s  

sys tem w e r e  f ed  i n t o  a  PDP 11/45 computer and t h e  wate r  tempera- 

t u r e  d i s t r i b u t i o n s  w e r e  p l o t t e d  by a  Calcomp P l o t t e r  936. The 



FIGURE 3 . 1  Photograph o f  the Multi-Purpose Hydraulic 
Flume and Experimental Set Up 

FIGURE 3.2 Photograph of the Multi-Purpose Hydraulic 
Flume and a Remake Sensj.ng Device 



FIGURE 3.3 Photograph of the Glass-Walled Flume 

FIGURE 3.4 Photograph of a Section of the 
Glass-Walled Flume 



FIGURE 3.5 Photograph of the Data Aquisition 
System and Hot Water Distributor 
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FIGURE 3.6. Calibration Curve of Thermistors 



e l e c t r o n i c  .- d a t a  . recording  system i s  p resen t ly  being replaced  

by t h e  PDP 11/10 Computer Data Acquis i t ion  and Contro l  System, 

which w i l l  be  connected t o  t h e  PDP 11/45 computer. 

3.2.4 Dry Cooling Towers 

Two mechanical d r a f t  dry coo l ing  towers w e r e  t e s t e d  i n , t h i s  

study. One w a s  a GEA d i r e c t  mechanical d r a f t  d ry  cool ing  tower 

(GEA-Air Condenser) f o r  t h e  330 MWe Wyodak p l a n t .  This  tower 

is approximately 350 f e e t  long, 180 f e e t  wide and 85 f e e t  high 

and is connected t o  a t u r b i n e  room 110 f e e t  long, 195 f e e t  wide 

and 97 f e e t  . high. - A drawing of  t h e s e  s t r u c t u r e s  i s  shown - .  i n  

~ i g b r e  3.7. The second tower i s - a  proposed d ry  coo l ing  tower 

which w i l l  be developed f o r  t h e  Energy Research an& Develop- 

ment Administrat ion (ERDA); The ERDA tower w i l l  test  t h e .  per- 

formance of  var ious  dry  cool ing  towers by accommodating up t o  

15  pe rcen t  of  t h e  waste h e a t  from t h e  330 MWe power p l a n t .  

Since t h e  p r e c i s e  type of t h e  ERDA dry coo l ing  tower has  n o t  

y e t  been determined, a hypo the t i ca l  50 MWe mechanical d r a f t  

dry coo l ing  tower was a r b i t r a r i l y  s e l e c t e d  f o r  t h i s  study. 

The assumed cool ing  tower i s  100 f e e t  long,  87 f e e t  wide and 

80 .feet high and h a s  two 50-foot diameter s t acks .  Photographs 

of :two dry  ' cool ing  tower models (model l eng th  s c a l e  of 1/600) 

a r e  shown 'in Figure 3.8. 

A schernitic l ayou t  o f  experjmenks t o  i n v e s t i g a t e  plume d i s -  
i I .  

pers ion ,  r ec i rcu lAt ion ,  and i n t e r f e r e n c e  a t  t h e  Wyodak p l a n t  
, _ . ,  I - ,  

J',> - 1 -  , '. 
site i s  show; i nt Figure 3 , 9 .  In this can t igura t ion  t h e  ERDA .I 

3 ,  - .  
tower i s  loca ted .  Gpwipd of  t h e  -1vyodak p l a n t  cool ing  tower. 

~ a & r  was withdrawn I . , i  through tubes (one tube f o r  t h e  ERDA tower 

an$ . s i x  t u b i s  'for th'e: Wyodak p l a n t  tower) connected t o  t h e  
i - 7  

i n t a k e  f a c e s ' o f  *ti&, cool ing  towers. ' These tubes  l a y  beneath 

tllb: sand b&d wi th  $nbch-bpth f l a t  grgund and a c t u a l  p r o t o t y p i c  
, 

gr%nd w e r e  modeled.. I n  t h e  . prototype,  . t h e  a i r  is drawn t o  

t h e  tower and forced  through t h e  cool ing  tower h e a t  exchanger 

c e l l s  by fans .  This  opera t ion  was modeled by a d j u s t i n g  t h e  



I >  ' -  . I-' k -  

. FIGURE 3 .7  Drawing. of the Wyodak Plant  ~ r y  Cooling Tower 



FIGURE 3 . 8  Photographs05 the Wyodak Plant and 
ERDA Dry Cooling Tower Models 



S C H E M A T I C  LAYOUT OF THE E X P E R l  M E N T S  

- AMBIENT FLOW SUP'LY SYSTEM 

AMBIENT SLOW D l  RECTl ON - STACK EFFLUENT SUPPLY SYSTEM --- COOLING TOWER I N-AKE WATER WITHDRAWAL SYSTEM 

a THERMISTOR (WATER TEMPERATURE MEASURING DEVICE) 

MODEL FLUME 

O L D  WATER 

FIGURE 3.9 Schematic Layout of -he Experiments 



t o t a l  e f f l u e n t  d ischarge  equal  t o  t h e  t o t a l  withdrawal. Tempera- 

t u r e s  of  both  t h e  withdrawn and discharged w a t e r  were measured, 

by the rmis to r s  embedded i n  t h e  e f f l u e n t  supply and withdrawal 

water  systems (Figure 3.9). F igures  3.1 and 3.10 show photo- 

graphs of  t h e  a c t u a l  modbl setup.  F igure  3.11 shows l o c a t i o n s  

o f  t h e  two d ry  cool ing  towers i n  r e l a t i o n  t o  the surrounding 

topography a t  t h e  ~ y o d a k ' p l a n t  s i te .  The v a r i a t i o n  of  t h e  

topography a long a northwest-southeast  l i n e  pass ing  through 

t h e  c e n t e r  of  t h e  ERDA tower is shown i n  Figure 3.12. 

3.3 EXPER1 MENTAL PROCEDURE 

I n  o rde r  t o  i n v e s t i g a t e  c h a r a c t e r i s t i c s  of plume d i s p e r s i o n  

and r e c i r c u l a t i o n  and t h e i r  e f f e c t s  on t h e  cool ing  towers, 
experiments w e r e  conducted on e f f l u e n t  discharged from t h e  

dry coo l ing  towers of  t h e  Wyodak p l a n t  s i te  with: 

1) surrounding topography assumed t o  b e  f l a t ,  and 

2 )  t h e  a c t u a l  ground topography. 

I n  a d d i t i o n ,  a two-dimensional h o t  water  jet case  was t e s t e d .  

The jet w a s  i n j e c t e d  v e r t i c a l l y  i n t o  an ambient flow from t h e  

bed through a l/4-inch s l i t  w i t h  a 40-inch l a t e r a l  length .  

F l a t  ground was assumed f o r  t h i s  case .  The experimental  r e s u l t s  

f o r  t h i s  c a s e  w e r e  used t o  e v a l u a t e  t h e  two-dimensional simula- 

t i o n  model evolved i n  t h i s  s tudy f o r  cool ing  tower plume 

a n a l y s i s .  

F igures  3.13 through 3.15 p r e s e n t  t h e  wind d i r e c t i o n  

measured a t  a Wyodak s'ite meteorological  tower. These f i g u r e s  

reveal t h a t  during t h e  pe r iod  September 1974 through June 1975 

t h e  p r e v a i l i n g  wind was nor thwester ly ,  whi l e  diiring J u l y  1975 

dominant winds w e r e  no r th  t o  nor thwester ly  and south t o  south- 

e a s t e r l y .  The main concern wi th  t h e  dry cool ing  towers i s  

t h e i r  performance dur ing  t h e  summer months. Hence, i n  t h i s  





FIGURE 3.11 Topography i n  the Vic in i ty  o f  the Wyodak Plant i n  ~yoming 



I ERDA DRY COOLING TOWER 

CROSS SECT ION AT 2460.0 FT 

Variation of Cross Section From Northwest to Southeast 
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FIGURE 3.13 . . P e r c e n t  Frequency of  Occurrence  f o r  Wind 
D i r c c t i a n  Muasured a t  the Wyodak P l a n t  

. . S i t e  Dur ing September 1, 1974,  Through 
J u n e  .30, 1975 
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FIGURE 3.14 P e r c e n t  Frequency of Occur rence  for  D i r e c t i o n  
o f  W i ~ l d  Whose Speed W a s  Rkcorded t o  be More 
Than 24  MPH a t  t h e  Wyodak P l a n t  S i t e  Dur ing 
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Septe l lber  1, 1974,  Through J u n e  30, 1975 





. . 

s t u d y .  n o r t h w e s t e r l y  .and s o u t h e a s t e r l y  winds were s e l e c t e d  . a s  . 

an 'ambient wind, w i t h  v e l o c i t y  vary ing  from approximately  5 

mph t o  40  mph. 



4 . 0  DISCUSSION O F  EXPERIMENTAL RESULTS 

h Experiments were conducted t o  i n v e s t i g a t e  e f f e c t s  o f  t h e  

ambient  wind. v e l o c i t y  ( K  i n  Equa.tion 3.3) , e f f l u e n t  d i s cha rge  

i t empera ture  (IFD) , l o c a l  ,topography, and nearby s t r u c t u r e s  on 

plume d i s p e r s i o n  and r e c i r c u l a t i o n  f o r  t h e  d r y  coo l ing  towers 
. ' 

a t  t h e  Wyodak p l a n t  s i te .  I n  a d d i t i o n ,  t empera tures  of t h e  

two-dimensional plume c a s e  w e r e  measured f o r  t h r e e  . d i f f e r e n t  

f low c o n d i t i o n s .  I n  t h i s  c h a p t e r ,  t h e s e  exper imenta l  d a t a  a r e  

summarized and t h e  r e s u l t s  a r e  ana lyzed .  

DRY COOLING TOWER EXPERIMENTS 

4 . 1 . 1  Summary o f  Exper imental  Data 

Tables  4 . 1  through 4 . 4  summarize t h e  exper imenta l  d a t a  

ob ta ined  f o r  t h e  330 MWe Wyodak p l a n t  and t h e  50 M W e  ERDA dry 

c o o l i n g  towers ,  t o g e t h e r  w i t h  t h e  s i m i l i t u d e  of  t h e  model s tudy.  

I n  Run A (Table  4 . 1 )  bo th  t h e  Wyodak p l a n t  and ERDA c o o l i n g  

towers  were l o c a t e d  on f l a t  ground and t h e  wind was no r thwes t e r ly .  

The ERDA c o o l i n g  tower was l o c a t e d  upstream o f  t h e  Wyodak p l a n t  

tower  f o r  t h i s  ca se .  For Run B ,  on ly  t h e  Wyodak p l a n t  , coo l ing  

tower was cons idered  on f l a t  ground. The wind i n  t h i s  c a s e  was 

a l s o  no r thwes t e r ly .  I n  Run C ( r e p o r t e d  i n  Table  4.2) two coo l ing  

towers w e r e  l o c a t e d  on f l a t  g round .and  t h e  wind was s o u t h e a s t e r l y  

( t h e  ERnA tower wao l o c a l e d  downwind of t h e  ~ y o d a k  p l a n t  t o w e r ) .  

Runs TU and TD i n  Tables  4.3 and 4 . 4  inc luded  t h e  a c t u a l  topog- 

raphy a t  t h e  Wyodak p l a n t  s i t e .  The former had a  no r thwes t e r ly  

wind, wh i l e  t h e  l a t t e r  had a s o u t h e a s t e r l y  wind. 

I n  Tables  4 . 1  thro1.1gh 4 . 4 ,  P and h i n  column 2 i n d i c a t e  

p ro to type  and model, r e s p e c t i v e l y .  W and E i n  colum 3 mean 
eh t h e  Wyodak p l a n t  and t h e  ERDA dry c o o l i n g  towers ,  r e s p e c t i v e l y .  

. S i n c e  t h e  Wyodak p l a n t  d ry  c o o l i n g  tower c o n t a i n s  69 s t a c k s  

< 
and t h e  e f f l u e n t  j e t s  d i scharged  from a l l  s t a c k s  a r c  expected 



TABLE 4 . 1  Summary o f  Exper imenta l  Data of t h e  Wyodak P l a n t  
and ERDX Dry Cool ing  Towers f o r  N o r t h w e s t e r l y  
Wind a n 3  ~ l a t  Ground Case 

Oenri- 

Tower metric Jet rP:rt Reclrculatlon Rat lo 

Vyodd Pmbient F l j r  . k t  Veloc- Tenpertture Stack Flow 'e loci ty  a ~ v n o l r r  Pnvnnld= 
R. Percent . 

no :;Kzy E;;y;:;r VY_Fity.5;i 't,ip:j, O.-lference Diameter lepth. Ratio 
' f  0 .  f t  i f K :;. I, r 10' I, ;-lo4 rt&m stream apc 

1) 12)  (3)  ( 3 )  3) (6)  ( 8 )  ( 9 )  (10)  ( .  0 2 )  (13) (14) (15) (16) 

. . -, . . - . - . . -, . . - . - - 
Nmber.. Number.. UD- Dorn- Aver- 



TABLE 4.2 Summary of Experimental Data of the Wyodak Plant and ERDA Dry 
Cooling Towers for Southeasterly Wind and Flat Ground Case 

Densi- 

Tower . metr ic  Jet hbient Rec i r cu la t i on  Rat io  Flow 
Wyodak Amtient Flow Je t  Veloc- Temperature Stack Flow Ve loc i t y  ;c;::$, Reynolds Reynolds R, Percent 

Prototype P lan t  o r  -r i t y .  V., 0iffere:ce Diameter Depth, Rat io  Number, Number, Up- Down- Aver- 
Run No o r  Model ERDA Tower mph f p  fpsJ ATo. F 0, f t  d, f t  K 'p D j  x l o 3  Ua x lo4  stream stream age 

11) (2)  (3) (4) (5 )  (6 )  ( 7 )  (8)  (9)  (10) (11) (12) (13) (14) (15) (16) 

P . W  9.E 14.4 10.9 35.0 180 678 0.76 0.58 10500 23000 
M W - 0.192 0.145 38.9 0.30 1.13 0.76 0.58 6.1 8.6 0 11.7 5.9 

C-E P E 9.E 14.4 29.0 35.0 50 678 2.01 2.93 7800 23000 
M E 0.192 0.386 38.9 0.083 1.13 2.01 2.93 4.5 8.6 3.5 

- - . - . . . . . - . - - - . . 
M ' W  0.572 0.152 40.3 0.30 0.80 0.27 0.58 6.4 17.9 0 5 . 0  2.5 

C - I :  P E 28.0 41.1 29.0 35.0 50 480 0.71 2.93 7800 47000 
M E 0.572 0.404 40.3 0.083 0.80 0.71 2.93 4.7 . 17.9 18.6 



' TABLE 4 . 3  Summary of  Exper imenta l  Data of  t h e  W-odak P l a n t  
and ERDA Dry Cool ing  Towers f o r  N o r t h w e s t e r l y  - 
Wind and A c t u a l  Topography Case 

e n t i -  

Tarer ne t r i c  Tz ~ e c 4 r c u l a t l o n  b t l o  

Yyoddk & b i g [  Flow Jet Veloc- ienperature Stack Flow Veloc i ty  LzE, Reynolds R e r o l d r  R, Percent 
Prototype slant or  w5 : t ~ ~ ~ : ~ ,  Difference Diameter Depth. Rat io  

Run Nc or Model E10A Tower mp p 
b b e r .  N-r. UP- Oa- Aver- 

OF 0. f t  d. f t  K t, x l o 3  aa x 10' s t rean s tma .  age 
I )  2 1 (31 (4)  (5) (61 (81 ( 9 )  (10) (11) (12) I131 114) (IS) (161 

P Y 18.: 36.5 10.9 24.6 I 80  666 0.41 1.68 , 10900 42300 
n Y .  0.346 0.142 30.6 0.30 1.11 0.41 3.58 5.3 13.6 1.8 5.8 3.8 

TU-E P E 18.: 26.5 29.0 24.6 50 666 1.09 3.42 8100 4 D W  

P Y I8.C. 26.5 10.9 I .  I80 666 0.41 2.28 11700 4 a W  
I4 . U  0.346 0.142 5.1 0.30 1.11 0.41 2.18 3.6 13.6 9.0 14.5 11.7 

TU-I ! P E I 8+  26.8 29.0 I 50 666 1 .OS P.CO 8600 d m 0  . 
II E 0.146 0.377 5.1 0.083 I .  I .  P.CO 2.6 13.6 2.1 . 



. . 
TABLE 4.. 4 Summary o f  ~ x ~ e r i r n e n t a i  Data of t h e  Wyodak P l a n t  

and.ERDA Dry Cooling T o w e r s  f o r  S o u t h e a s t e r l y  
Wind and Actual '  Topography Case 

Oensi- 

Tower metr ic Jet $!A:n,t Recirculat ion Ratio 

hyodak Ambient'Fla. Je tVe loc- .  ~ e m ~ e r d t u r e  Stack Flow Velocity ::$;, Reynolds Reynolds 
R, Percent 

Prototype PPant o r  V e 1 ~ 1 t y .  VC i t y  V. Dif ference' Diameter Depth. Ratio Number. Number. Up- Down- Aver- 
Run No o r  lbde l  ERW T w r  , mp f p  ipsJ '  ATO, OF 0. ft d. f t  K 'p I . x l o 3  8 a x 1 0 4 .  stream stream age 

( I )  (2) (3) (4) (5) 6) (7) (8) (9) (10) (11) 3 ( 1 ~ )  (13) (14) (15) (16) 

P U 5.5 8.1 10.9 35.0 180 666 1.35 0.58 10500 13000 
M U 0.099 0.133 35.4 0.30 1.11 1.35 0.58 5.5 4.0 1.7 2.4 2.1 

TD- l P '  E 5.5 ' 8 . 1  29.0 35.0 50 666 3.58 2.93 7800 13000 
II E 0.099 0.354 35.4 0.083 1.11 3.58 2.93 4.0 4.0 1.3 



t o  j o i n  t o g e t h e r  immediately a f t e r  d i s c h a r g e ,  t h e  j e t  v e l o c i t y  

f o r  t h i s  c a s e  w a s  ob t a ined  by d i v i d i n g  t h e  t o t a l  e f f l u e n t  d i s -  

cha rge  by t h e  t o t a l  a r e a  of  t h e  c o o l i n g  tower t o p  sur face . .  The 

s t a c k  d i ame te r ,  D ,  f o r  t h i s  c a s e  w a s  assumed t o  be  t h e  c o o l i n g  

tower width .  The symbol' d  deno te s  t h e  ambient f low dep.th i n  , t he  

model and i t s  cor responding  h e i g h t  i n  t h e  p ro to type .  I t  was 

assumed t h a t  L = 4d t o  c a l c u l a t e  t h e  ambient  f low Reynolds 
. . . . .  . 

. I .  

number, ma i n  Equat ion 3.5; c a l c u l a t e d  v a l u e s  a r e  shown i n  ., 

.. . . - . . - - . - . - , . - ~. 
column 13,- The , r e c i r c u l a t i o n  r a t i o ,  R ,  i n  columns 1 4 ,  1 5  and 

16 w e r e  de f ined  by 

where Tw i s  , t h e  t empera tu re  o f  wi thdrawal  wate r  a s  d i s c u s s e d  i n '  .:: 
S e c t i o n  3.2.4. A s  shown. i n  F igu re  3.9, f o r  t h e  Wyodak p l a n t  coo.1-.. 

i n g  tower c a s e ,  t h e r e  w e r e  t h r e e  s u c t i o n  tubes  . f o r  each upstream 

and downstream h a l f  o f  t h e  c o o l i n g  tower.  Columns 1 4  and 1 5  show 
. . 

v a l u e s  of R f o r  t h e  upstream and downstream rows, r e s p e c t i v e l y .  

Column 16 i s  t h e  average of  t h e  va lues  shown i n  columns 1 4  and 

15.  Values o f  R i n  t h e s e  t h r e e  columns a r e  t h e  averages  of  

3  t o  50 r epea t ed  exper iments .  

A s  d i s c u s s e d  i n  Chapter  3 ,  four impor tan t  f d c t u ~ s  in1 lucnce  

t u r b u l e n t  d i s p e r s i o n  o f  t h e  c o o l i n g  tower plume. The f i r s t  i s  

t h e  momentum of e f f l u e n t  and ambient f lows .  The r e l a t i v e  i n t e n -  

s i t y  of momentum of t h e s e  two f lows a r e  dominant f a c t o r s  nea r  

t h e  c o o l i n g  tower s t a c k s .  K i n  Equat ion 3.7 i s  t h e  square  r o o t  

o f  t h e  r a t i o  o f  t h e  e f f l u e n t  f low momentum t o  t h e  ambient f low 

momentum, prov ided  the Boussinesq assumption i s  adopted ( t h a t  

i s ,  t h e  d e n s i t y  d i f f e r e n c e  between t h e s e  two flows i s  impor tan t  

f o r  c o n s i d e r a t i o n  o f  t h e  buoyancy f o r c e  b u t  n o t  f o r  t h e  f low 

momentum) . 
Another impor tan t  f a c t o r  i s  t h e  e f f l u e n t  buoyancy f o r c e  

due t o  d e n s i t y  d i f f e r e n c e  between t h e  d i scha rge  j e t  and t h e  



ambient  f lows ,  e s p e c i a l l y  i n  t h e  n e a r  f i e l d .  The r e l a t i v e  

. . 
s t r e n g t h  o f  t h e  e f f l u e n t  momentum t o  t h e  e f f l u e n t  buoyancy 

C 

f o r c e  i s  exp re s sed  by t h e  d e n s i m e t r i c  Froude number, IFD a s  

shown i n  Equa t ion  3.4. A t h i r d  f a c t o r  i s  t h e  t u r b u l e n t  i n t e n s i t y  

.l o f  t h e  Je t  f low,  which i s  exp re s sed  by t h e  j e t  Reynolds number, 

3R. i n  Equat ion 3.6. Th is  i s  impor t an t  a l s o  i n  t h e  n e a r  f i e l d .  
3 

The f i n a l  f a c t o r  i s  a  combination o f  ambient  f low c h a r a c t e r i s -  

t i c s ,  i n c l u d i n g  t h e  ambient  f low t u r b u l e n c e ,  wakes behind t h e  

towers  and t opog raph i ca l  f e a t u r e s ,  and wind s h e a r  stress. 

S i n c e  t h e  c o o l i n g  towers  s e l e c t e d  f o r  t h i , s  s t udy  w e r e  r ec tangu-  

l a r  w i t h  s h a r p  c o r n e r s ,  f low s e p a r a t i o n  i s  independent  o f  t h e  

Reynolds number as l o n g  a s  t h e  f low i s . t u r b u l e n t .  The wind 

s h e a r  stress i n  t h e  t u r b u l e n t  f low i s  a l s o  independent  of  t h e  

Reynolds number b u t  depends on t h e  r e l a t i v e  s i z e  o f  t o p o g r a p h i c a l  

p r o j e c t i o n s .  The ambient  f low t u r b u l e n c e  i s  t h e  dominant 

mechanism f o r  d i s p e r s i n g  t h e  plume i n  t h e  f a r  f i e l d .  However, 

it i s  n o t  impor t an t  i n  t h i s  n e a r  f i e l d  s t udy .  

Tab l e s  4 . 1  through 4 . 4  r e v e a l  t h a t  t h e s e  f o u r  s i m i l a r i t y  

c r i t e r i a  (see Equa t ion  3 . 3 )  w e r e  a l l  s a t i s f i e d  t o  a s s u r e  t h e  

dynamic s i m i l a r i t y  between t h e  p r o t o t y p e  and model f lows.  

4 . 1 . 2  Flow P a t t e r n s  

Observa t ion  o f  f low p a t t e r n s  i n  t h e  v i c i n i t y  o f  t h e  c o o l i n g  

towers  r e v e a l e d  t h e  importance  of  K andIFD t o  plume d i s p e r s i o n  

and r e c i r c u l a t i o n .  When t h e  ambient  f l o w  v e l o c i t y  i n c r e a s e d  

( o r  K d e c r e a s e d )  t h e  p.lumes from t h e  c o o l i n g  t o w e r s , w e r e  d e f l e c t e d  

more c l o s e l y  t o  t h e  ground on t h e  downstream s i d e .  These plumes 

a l s o  a c t e d  a s  s o l i d  o b s t a c l e s ,  producing wakes behind them. More- 

o v e r ,  a  l a r g e  wake w a s  gene ra t ed  by t h e  s e p a r a t i o n  of f low from 

t h e  edge o f  t h e  r ec t angu la r ly - shaped  Wyodak p l a n t  c o o l i n g  tower.  

'.I T h i s  c a p t i v e  eddy zone c o n t i n u o u s l y  withdrew a  p o r t i o n  o f  t h e  
plume u n t i l  it reached  an e q u i l i b r i u m  c o n d i t i o n .  T h i s  was t h e  

p r imary  cause  of  r e c i r c u l a t i o n .  Photographs  of plume d i s p e r s i o n  



p a t t e r n s  f o r  var-ious ambient v e l o c i t i e s  a r e  shown i n  F igu res  

4 . 1  th rough  4.19. These photographs w e r e  ob t a ined  by i n j e c t i n g  

dye i n t o  t h e  plumes p r i o r  t o  t h e i r  emiss ion from t h e  towers .  " 

F i g u r e s  4 . 1  through 4 . 1 1  p r e s e n t  t h e  TU c a s e s  (no r thwes t e r ly  

wind and a c t u a l  topography imposed i n  t h e  model; see Table  4.3) 

and F i g u r e s  4.12 through 4.19 show t h e  T D  c a s e s  ( s o u t h e a s t e r l y  

wind and a c t u a l  topography imposed i n  t h e  model; s e e  Table  4 . 4 ) .  

These f i g u r e s  c l e a r l y  i n d i c a t e  t h e  plume d e f l e c t i o n  due t o  

c r o s s  winds. The plume from t h e  ERDA tower reached a  h ighe r  

e l e v a t i o n  than  t h e  one from t h e  Wyodak p l a n t  tower because 

t h e  ERDA e f f l u e n t  had a  l a r g e r  K va lue .  The e f f e c t s  of  K 

tended t o  overcome t h e  c f f c c t s  o f  h ighe r  lF which g e n e r a l l y  
D '  

lowers  - t h e  plume rise. F i g u r e s  4.7 through 4.10 w e r e  ob t a ined  

by i n j e c t i n g  dye i n t o  on ly  one o f  t h e  two plumes be ing  d i scharged .  

These photographs  show t h e  fo l lowing  d i f f e r e n t  d i s p e r s i o n  p a t t e r n s  

between t h e  two plumes; t h e  Wyodak p l a n t  tower plume was swept 

away by t h e  ambient  f low and i t s ' l a t e r a l  d i s p e r s i o n  was much 

smaller than  t h a t  o f  t h e  ERDA tower plume. The ERDA tower plume 

( ~ i ~ u r e s  4.9 and 4 . 1 0 )  was r o l l e d  up t o  form a ,  p a i r  .of counte r -  

r o t a t i n g  v o r t i c e s ,  whereas t h e  Wyodak p l a n t  tower plume d i d  

n o t  i n d i c a t e  t h i s  p roces s  s t r o n g l y .  These d i f f e r e n c e s  between 

t h e  two d i s p e r s i o n  p a t t e r n s  are b e l i e v e d  t o  b e  due t o  t h e  

d i f f e r e n t  va lues  of K f o r  t h e  plumes. 
8 .  

Figure  4 . 1  shows t h e  plume d i s p e r s i o n  f o r  a  5.4 mph nor th-  

w e s t e r l y  wind. Although bo th  ER& tower s t a c k s  d i scha rged  t h e  

same amount of  e f f l u e n t ,  one e f f l u e n t  con ta ined  more dye than  

t h e  o t h e r  f o r  t h i s  p a r t i c u l a r  c a s e .  The plumes from t h e  ERDA 

tower and t h e  Wyodak p l a n t  towers  d i s p e r s e d  independent ly  o f  

each o t h e r  and a lmost  no r e c i r c u l a t i o n  nor  i n t e r f e r e n c e  occur red .  

When t h e  wind v e l o c i t y  i n c r e a s e d  t o  1 3 . 8  mph, t h e  plumes w e r e  

d e f l e c t e d  c l o s e r  t o  t h e  ground and some plume r e c i r c u l a t i o n  

occu r red  f o r  t h e  Wyodak p l a n t  tower ,  b u t  no i n t e r f e r e n c e ,  a s  

shown i n  F igu re  4.3. F i g u r e s  4.5 through 4 . 1 1  show s i m i l a r  

phenomena. 



FIGURE 4 . 1  P h o t o g r a p h  of P l u m e s  from the Two Dry C o o l i n g  
Towers  for Run TU-1. Va = 5 . 4  N P H .  

FIGURE 4 . 2  P h o t o g r a p h  of P l u m e s  f r o m  the Two D r y  d 0 6 1 g ~ ~  
Towers  for Run TU-2. Va = 9 . 5  MPH. 



FIGURE 4 . 3  P h o t o g r a p h  of P l u m e s  from the Two Dry C o o l i n g  
Towers  for Run TU-3. Va = 13.8 MPH. 

FIGURE 4 . 4  P h o t o g r a p h  of P l u m e s  f r o m  the Two Dry C o o l i n g  
Towers for Run TU-4. Va = 1 9 . 6  MPH. 



FIGURE 4 . 5  P h o t o g r a p h  of P l u m e s  from the Two Dry C o o l i n g  
Towers  for Run TU-5. Va = 2 9 . 8  MPH. 

FIGURE 4.6  P h o t o g r a p h  of the Top View for Plumes fr0m.the 
Coaling Towers for Run TU-5. Va = 2 9 . 8  MPH. 
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FIGURE ' 4 . 7  P h o t o g r a p h  of a P lume  from the Wyodak P l a n t  
Dry C o o l i n g  Tower for Run TU-5. Va = 29.8 MPH. 

FIGURE 4 . 8  P h o t o g r a p h  of .  the Top V i e w  for a P lume  f r o m  
the Wyodak P l a n t  Dry C o o l i n g  Tower  for Run 
TU-5. Va = 2 9 . 8  MPH. 



F I G U R E  4 . 9  Photograph of a Plume from the  ERDA Dry Cooling 
Tower f o r  Run TU-5. Va = 29.8 MPH. 



FIGURE 4 .ll Photograph of Plumes from the TWO Cooling 
Towers for Run TU-6. Va = 39.1 MPH. 



FIGURE 4 . 1 2  P h o t o g r a p h  of P l u m e s  f r o m  the Two D r y  C o o l i n g  
T o w e r s  for Run TD-1. Va = 5 . 5  MPH. 

FIGURE 4 . 1 3  P h o t o g r a p h  of P l u m e s  f r o m  the Two Dry C o o l i n g  
T o w e r s  for Run TD-2. Va = 1 0 . 3  MPH. 



FIGURE 4 .15  P h o t o g r a p h  of P l u m e s  f r o m  t h e  Two D r y  C o o l i n g  
Towers  f o r  Run TD-4. Va = 19.8 MPH. 



FIGURE 4.16 P h o t o g r a p h  of P l u m e s  f r o m  t he  Two D r y  C o o l i n g  
T o w e r s  fo r  Run TD-5. Va = 29.2 MPH. 

FIGURE 4 . 1 7  P h o t o g r a p h  of a P l u m e  from the Wyodak P l a n t  
D r y  C o o l i n g  T o w e r  for  Run'TD-5.  Va = 29.2 MPH. 



FIGURE 4 . 1 8  P h o t o g r a p h  of a P l u m e  f r o m  the ERDA D r y  C o o l i n g  
T o w e r  for  Run TD-5. Va = 29.2 MPH. 

FIGURE 4 . 1 9  P h o t o g r a p h  of P l u m e s  f r o m  the Two D r y  C o o l i n g  
Towers for  Run TD-6. Va = 37.1 MPH. 



These photographs f o r  t h e  no r thwes t e r ly  wind c a s e s  a l s o  

r e v e a l  t h a t  s i n c e  t h e  plume from t h e  ERDA tower merged wi th  - t h e  plume from t h e  Wyodak p l a n t  c o o l i n g  tower w i thou t  be ing  

withdrawn i n t o  t h e  downwind Wyodak p l a n t  tower i n l e t s ,  t h e  

merged plume may have a h i g h e r  t empera ture  t han  it o the rwi se  d 

would. Comparison o f  measured tempera ture  d i s t r u b u t i o n s  f o r  

t h e  two tower c a s e s  (Run A-4,  F igu re  4.22) w i t h  t h o s e  f o r  t h e  

Wyodak p l a n t  tower a l o n e  (Run B ,  F igu re  4.25) a l s o  suppor t s  

t h i s  obse rva t ion .  This  a d d i t i o n a l  t empera ture  r i s e  t e n d s  t o  

l i f t  t h e  plume and t o  reduce t h e  tempera ture  nea r  t h e  ground. 

Hence, t h e  e x i s t e n c e  o f  t h e  ERDA c o o l i n g  tower f o r  t h e s e  c a s e s  

may be  advantageous t o  t h e  Wyodak p l a n t  c o o l i n g  t o w e r ' s  per-  

formance because it reduces  t h e  plume r e c i r c u l a t i o n  t o  t h e  

Wyodak p l a n t  tower.  

However, when t h e  wind i s  s o u t h e a s t e r l y ,  t h e  plume from 

t h e  upwind Wyodak p l a n t  tower i s  drawn i n t o  t h e  ERDA c o o l i n g  

tower,  t he reby  gene ra t ing  i n t e r f e r e n c e  and s t r o n g  adve r se  

e f f e c t s  on t h e  ERDA c o o l i n g  t o w e r ' s  performance. A s  w i l l  be  

d i scus sed  i n  d e t a i l  l a t e r ,  t h e  ERDA tower r e c i r c u l a t i o n  r a t i o  

became 18 p e r c e n t  f o r  t h e  30 mph s o u t h e a s t e r l y  wind, r e s u l t i n g  

i n  a  r e d u c t i o n  o f  approximately  7 p e r c e n t  i n  t h e  ERDA t o w e r ' s  

coo l ing  c a p a c i t y  f o r  t h i s  c a s e .  I t  was a l s o  observed i n  t h i s  

c a s e  t h a t  t h e  plume from t h e  ERDA tower was somewhat s h e l t e r e d  

by t h e  plume from t h e  Wyodak p l a n t  tower.  

E f f e c t s  of  tower e f f l u e n t  t empera ture  ( o r l F D )  on t h e  plume 

d i s p e r s i o n  w e r e  a l s o  c l e a r l y  observed i n  t h e  exper iments .  When. 

t h e  tower j e t  t empera ture  was h i g h e r ,  t h e n  t h e  buoyancy f o r c e  

r e l a t i v e  t o  t h e  ambient  flow momentum inc reased .  Th i s  caused 

a  h ighe r  plume r i s e  and l e s s  d e f l e c t i o n  o f  t h e  plume, r e s u l t i n g  

i n  less recirculation. 

I n  o r d e r  t o  i d e n t i f y  t h e  e f f e c t s  o f  topography', plume c e n t e r -  

l i n e  t r a j e c t o r i e s  f o r  Runs TU-3 through TO-6 w e r e  ob t a ined  from 

photographs (F igu res  4.3 through 4 .,11) f o r  b o t h  t h e  Wyodak p l a n t .  



and ERDA towers  .. , Foc t h e s e .  c a s e s  ,, ..the .:winds w e r e  ,. 1.3 ~ 8 . ~ .  19: ,.6 ;: 

29.8 and 39.1 mph.'f r.om ' t h e  .:riorthwes t -  and - t h e  actual . :  topography . . .  

was i n s t a l l e d "  in t h e  model. --:;..The:open. c o a l  .mine p i t  f ~ r  t h e s e  . :, -. 

. . .  .. cases w a s  '' located:.-upwind...of; . t h e  .ERDA. tower: wh.ich::was i n  tur.n : : 
l o c a t e d  upwind .of .. t h e .  ~ y o d a k  . p l a n t  tower . : (see  F i g u r e s  3. &l. ,and.  . 

, 

k 

. . . .  3.;12) ; The  t r a j e c t a r i e S  of-iplumes were de f ined  a s  . the-mid-  . . . . .  

. . . . .  p o i n t  .' of t h e  upper and .lower ..plume e,dges..: They..,.are . . p l o t t e d ,  . a s  
3 3 ZV /F v ~ ~ s u s . ~ x v ~ / F  : i n .  Fsgu re .  4:.20,. where X and . Z  . a r e  l o n g i t u d i n a l .  a . . .  . . 

and v e r t i c a l  . d i s t a n c e s ;  and F ..is .Che buoyancy f l u x .  o f  t h e  - plume,, : , 

d e f i n e d  by' . . 

I n  c a s e s  o f  f l a t  or. f a i r l y - f l a t .  ground, .  B,riggs de r ived  t h e  - : ; . 

fo l lowing  semi-empir ical  exp res s ion  of plume t r a j e c t o r y  f o r  - . 

n e u t r a l  s t r a t i f i c a t i o n  o f  ambient  flow: 
, . . . . . . . :. . . . .  . . . 8 ,  . 

T h i s  equa t ion  was p l o t t e d ,  i n  F igu re  4 . 2 0  a s  a s t r a i g h t  l i n e ,  

i n  o r d e r  t o  compare i t . w i t h  exper imenta l  r e s u l t s .  F igu re  4 . 2 0 ,  

r e v e a l s  t h a t  t h e  t r a j e c t o r i , e s . o f .  plumes f r o m  t h e  ERDA t0we.r . 

d e v i a t e  s i , gn i , f i can t ly .  from t h e ,  s t r a i g h t  l i n e , ,  .whereas t h o s e  
. . . . . .  . : ' . : '.' ' . . . . . .  

from t h e  Wyodak i i i n t  t o w e r  . . . . .  show f a i r l y  good agreement w i t h : .  
. . . !. . ,: . , . . : .  .: . . . , L' . . . , 

t h e  Br iggs  e.xpression..  T h e  d i f f e r e n c e '  between t h e  ERDA tower ' ' 

8 .  
- .  . . . .  :.. . . .  . . . . , '  : . . .  i. ' . . . . .  . , : ;  . 

and Wyodak p l a n t  , . t ~ y g r  c a s e s  is b e l i e v e d  t o  be a t t r i b u t a b l e  t o  . . . . . . . . . . . . .  ., . 
t opograph ica l  . . . . . . . . . .  e f f e c t s ; ,  i,.e., ~ 7 , i s f e n c e  of  t h e  c o a l  mine pit 

' .. 1 , . : . .  . -. . : 

changed t h e  approaching ambient  f low ~ 6 n d i t i . o ~ ~  ( d i r e c t i o n  and,  
, .  . :. . ., . . . . . . .  I -. 

magnitude of  ambient  f l o w ) .  Th i s  e f f e c t  may b e  s t r o n g l y  f e l t  -. 
. . . . . . . . . . . . . . . .  . . .  

i n  . the '  pl&!nek fk6m: t h e '  ERDA' t b w &  ~ h i c h '  i:s loca, ted immediately 
. . . . . . . .  I '. downwind. t h e .  pi*. . :Since wLo"da.k : i g ,  lo&hted : . , 

. . . . . . ,  . . '  . ., . 7. . ..... ... . . . . . .  " ' .  j .  :: ! . . . . ' . . ' . . .  . . . . .  . . .  . , 1 .  . 
~ .' .. 

. . i 
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f u r t h e r  downwind, t h i s  e f f e c t  was cons ide rab ly  less i n t e n s e  

i n  t h e  Wyodak tower plumes, r e s u l t i n g  i n  f a i r l y  good agreement 

w i t h  t h e  Briggs  exp res s ion  (Equation 4.3) . v 

I n  o r d e r  t o  t a k e  i n t o  account  t h e  e f f e c t  o f  t h e  l o c a l  

topography on t h e  plume t r a j e c t o r i e s  , a ..simple . equa t ion  , . .,. . ., ' 

.. 
. . . .  . .  . .. . 

. exp (b/a)  was i n t r o d u c e d , .  where " , a w  . i s  t h e  d i s t a n c e  between t h e  
y<. . 

, open p i t  a n d ' t h e  c o o l i n g  towers  and "b" i s  t h e  dep th ,of  the2 p i t .  
. - ' I .  

-. The p rev ious :  f i g u r e  was r e p l o t t e d  us ing  t h e  new f u n i t i o n  ": :' 

.. . 3 (xva/r) - exp (b/a) ; Lhr r e s u l t s  for. t h e  EHUA and Wyogak g i a n t  
, 

. plumes are shown i n  F igu re  4.21.. T f  the ground i s  flat;:'exp : 
3.  ( b / a )  becomes u n i t y ,  r e s u l t i n g  i n  XVa/F. A s t ; a igh t  li:e i n  : 

. . . . 

: t h e  f i g u r e  w a s  drawn t o  f i t  t h e  p r e s e n t  exper imenta l  d a t a .  

As shown i n  F igu re  4.21, t h e .  data :  p o i n t s  f o r  t h e  ERDA tower j 
" 

. plume i n d i c a t e  a  b e t t e k  agreement w i th .  t h e . s t r a i g h t  l i n e ,  

. showing a marked improv&ment a s  cortipared t o  'Figure 4.20. , The. 

. . .*Wyodak p l a n t  plume a l s o  shows f a i r l y  g6o.d agreement. The 

. ; shadowed area i n  thO f i g u r e  r e p r e s e n t s  ' t h e  wid th  o f  t h e  s c a t t e r  
. . 

of v a r i o u s  w e t  c o o l i n g  tower plume d a t a  r e p o r t e d  by Briggs  . . . . 9 

. .  . : T h e  . s t r a i g h t  l i n e  o b t a i n e d  from t h i s  s tudy  i s  expressed  by 
. . 

'Hence t h e  plume rise .is p r o p o r t i o n a l  t o  ':2/,3 power" o f  t h e  

l o n g i t u d i n a l  . . . d i s t a n c e  X. Although t h e r e  i s , a  l a r g e  amount of 

scatter  for ehe. , .prnsent  d a t a ; ~ . e ~ ~ e c i a l l . ~  the slope- of  t h e  ERDA 

plume, F igu re  4 .21 r e v e a l s  t h a t e v e n  such a  s imple  f u n c t i o n ,  

exp (b /a ) ,  can improve t h e  r e s u l t s  s i g n i f i c a n t l y ,  i n d i c a t i n g  : 

t h e  ve ry  s t r o n g e f f e c t s  o f  l o c a l  topography o n t h e  plume d i s -  

p e r s i o n .  T h i s  i s  one a r e a  t h a t  n e e d s ' f u r t h e r  s tudy .  
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FIGURE' 4.21 .: V a r i a t i o n  o f  ~ond imens iona .1  Plume R i s e  w i t h  
Nondimensional  o own stream Di s t ance  i n  t h e  Cases . 

of Ac tua l  Topography and Nor thwes te r ly  Wind 



4.1.3 Temperature. D i s t r i b u t i o n  

F igu res  4.22 through 4.34 i n  Appendix. 1. p r e s e n t  normal.i*, 
,''7,.- .< 
4% *..j t empera ture  d i s t r i b u t i o n s  f o r  Runs A-4 ,  A-5, A-6, B ,  C-4 ,  C-52~:. ..-: v 

' *<.. -! 
I- _.I 

C-6, TU-4, TU-5, TU-6, TD-4, TD-5 and TD-6. Numbers shown in ' ; - . . :  
. . 

t h e s e  f i g u r e s  a r e  v a l u e s  of .  AT/ATo. P l u s  marks (+) indicate:.&he ., 

measurement p o i n t s .  The o r i g i n  o f  t h e  l o n g i t u d i n a l  a x i s  i s .  t h e  
- ,  . 

4 i: . 
lipwind i n t a k e  f a c e  of  t h e  upwind' c o o l i n g  tower;  i. e  . ,.-.!or &ins 

A,'  B, and TU, t h e  upwind i n t a k e  f a c e  of  t h e  ERDA c o o l h g  .tower = 
.... 

a n d  f o r  Runs C and T D ,  t h e  upwind f a c e  o f  t h e  ~ i o d & k . , ~ i ~ n t  
..> 
c o d i i n q  tower. For Runs T U  and.TD, bo th  c o o l i n 4  towe'rs,, were 

drawn i n  t h e  f igures ' .  ~ e r t i . c a 1  temperature. d i s ; t r i b u t i o n s  shown 

i n  F i g u r e s  4.22 throiugh 4.34 were ob ta ined  on ' a  v e r t i c a l  p l ane  : 
.. . 

which c o n t a i n s  t h e  ' c e n t e r l i n e  o f  t h e  ERDA d ry  . coo l ing  tower.  

The . e l e v a t i o n s  i n  t h e s e  f i g u r e s  were measured above t h e  l o c a l  
. . 

'ground l e v e l  a t .  each measurement p o i n t .  . . ' .  

' 
. Comparison of F igu res  4 . 2 2 ,  4.23 a n d  4 . 2 4  i n d i c a t e s  t h a t  + .. .. . . 

-when K d e c r e a s e s ,  t h e  plume d e f l e c t s  more toward t h e  d o w n s t r e a i  

d i r e c t i o n ,  r e s u l t i n g  i n  l e s s  plume r i s e .  Moreover, a s  K decrea 'ses ,  

'more v igo rous  mixing between t h e  plume a n d . t h e ' a m b i e n t  occu r s  . 

a n d ' r a p i d l y  r educes  t h e  t empera tu re  r i s e  i n  t h e  downstream a r e a .  

These phenomena were a l s o .  observed f o r  t h e  o t h e r -  s e t  o i  d a t a .  
. . i 

. ' Comparison of  Runs A-5 and B (F igures  4 . 2 3  and 4 . 2 5 )  shows ' 
, ., 

t h a t  when t h e  plume from t h e  upwind ERDA tower merges w i t h  t h e  

plume from t h e  wyodakSPlant  tower ,  t h e  r e s u l t a n t  plume has  a  

h i g h e r  t empera ture  t han  does t h e  plume from t h e  Wyodak tower 

a lone .  This  h i g h e r  temperature  l i f t s  t h e  merged plume t o  a  
. . . . 

h i g h e r  e l e v a t i o n ,  kO.+ultirig: i n  a  lower tempera ture  n e a r  the - 
ground. This  e f f e c t  reduces  t h e  r e c i r c u l a t i o n , - r a t i o  de f ined  by 

Equat ion 4 . 1  and improves t h e  downwind coo l ing  tower 

performance.  

01-e e I I ecL  o I  the l o c a l  tupoyrdphy url p l ~ u t ~ e  d i s p e r s i u r ~  i s  

seen  i n  Runs T U  and TD (F igu res  4.29 through 4 .34) .  Comparison 



of .  Runs- A and' TU r e v e a l s  t h a t  t h e  topography o f  t h e  Wyodak p l a n t .  ' 

: s i t e  reduced mixing of  t h e  plume wi th  t h e  ambient.  One poss i -  , : 

.- 
b l e  reason  i s  t h a t  a  c o a l  mine p i t  upwind of  t h e  c o o l i n g  towers  

was cons idered  i n  Run TU. Hence, t h e  ambient f low d i r e c t i o n  a t  
. . 

t h e  c o o l i n g  towers  w a s  somewhat upward, reduc ing  t h e  e f f e c t i v e  
:./ ambient v e l o c i t y  pe rpend icu la r  t o  t h e  plume. This  i n  ' t u rn  

r'educed t h e  amount o f  mixing between t h e  plume and t h e  a m b i e n t .  . . 

f low. 

When t h e  wind. was s o u t h e a s t e r l y ,  t h e  a c t u a l  topography upwind 

o f  t h e  coo l ing  tower was f a i r l y  f l a t .  This  may e x p l a i n  why t h e r e  

w a s  on ly  a  minor d i f f e r e n c e  between t h e  tempera ture  d i s t r i b u t i o n s  

of  Runs C and T D  f o r  t h e  2 0 ,  30 and 40 mph wind c a s e s .  However, 

a s  w i l l  be  d i scus sed  i n  t h e  nex t  s e c t i o n ,  t h e  r e c i r c u l a t i o n  r a t i o  

f o r  Runs C and T D  d i f f e r e d  when t h e  ambient v e l o c i t y  was less 

than  2 0  mph. 

4 . 1 . 4  R e c i r c u l a t i o n  R a t i o  

I n  t h i s  s e c t i o n ,  e f f e c t s  of wind v e l o c i t y  ( o r  K), e f f l u e n t  

e x i s t '  t empera ture  ( o r  IFD),  a d j a c e n t  c o o l i n g  towers  and l o c a l  

. topography on r e c i r c u l a t i o n  and i n t e r f e r e n c e  a r e  examined. 

A s  mentioned above, when cross-winds a r e  p r e s e n t ,  t h e  

hea t ed  e f f l u e n t  plume i s  b e n t  over  and t h e  plume t r a j e c t o r y  i s  

s h i f t e d  c l o s e r  t o  t h e  i n t a k e  f a c e s  of  t h e  coo l ing  tower,  caus ing  

some r e c i r c u l a t i o n  of  t h e  plume i n t o  t h e  c o o l i n g  tower.  Recir -  

c u l a t i o n  may become a s i g n i f i c a r i t  pruLle111 if Lhe tower or a 

p o r t i o n  of  t h e  plume i s  s i t u a t e d  i n  a  wake caused by a d j a c e n t  

s t r u c t u r e s  and/or t h e  l o c a l  t e r r a i n .  s e v e r e  i n t e r f e r e n c e  may 

occu r  i f  some of t h e  e f f l u e n t  from t h e  upwind tower i s  taken 

i n t o  t h e  downwind c o o l i n g  tower. 

F igu re s  4.35 and 4.36 (Runs A and C) show t h e  v a r i a t i o n  

.* i n  t h e . r e c i r a u l a t i o n  r a t i o  de f ined  by Equat ion 4 . 1  w i t h  t h e  

v e l o c i t y  r a t i o ,  K f o r . t h e  Wyodak p l a n t  d ry  c o o l i n g  tower 

located on f l a t  ground. A s  shown i n  F igu re  3.9,  t h e  Wyodak 
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p l a n t  tower model had s i x  p i p e s  t o  withdraw t h e  ambient  flow ------- 
i n t o  t h e  c o o l i n g  tower,  t h r e e  p i p e s  l o c a t e d  on t h e  upstream 

'I 1 
s i d e  and t h r e e  l o c a t e d  on t h e  downstream s i d e  of  t h e  tower.  I 

F i g u r e s  4.35 and 4.36 show va lues  o f  R measured a t  t h e  upstream 
' 

and downstream s i d e s ,  as w e l l  a s  average  v a l u e s  f o r  t h e  tower.  

I n  bo th  c a s e s ,  t h e  r e c i r c u l a t i o n  r a t i o ,  R ,  f i r s t  i n c r e a s e s  a s  

K d e c r e a s e s  from a l a r g e  va lue  ( o r  r e l a t i v e l y  s m a l l  ambient 

v e l o c i t y  a s  compared t o  t h e  hea t ed  e f f l u e n t  v e l o c i t y ) .  R 

r e a c h e s  i t s  maximum va lue  a s  K dec reases  ( o r  t h e  ambient wind 

v e l o c i t y  i n c r e a s e s ) .  R t hen  dec reases  a s  K f u r t h e r  i n c r e a s e s .  

A t  l a r g e  v a l u e s  of K t h e  plume rises n e a r l y  s t r a i g h t  up, a s  

shown i n  Fiqures 4 . 1  and 4.12. IIence, t h e r e  i s  very l i t t l e  

r e c i r c u l a t i o n .  When K d e c r e a s e s ,  t h e  plu&e i s  d e f l e c t e d  more 

c l o s e l y  t o  t h e  ground, which i s  t o  be  expec ted  s i n c e  t h e  r a t i o  

of  t h e  momentum of  t h e  ambient  f low t o  t h e  j e t  momentum i n c r e a s e s  

a s  t h e  wind speed i n c r e a s e s ,  whi le  t h e  e f f e c t  of  buoyancy i s  

k e p t  unchanged. Hence, R i n c r e a s e s  a s  K dec reases .  A s  K 

d e c r e a s e s  f u r t h e r ,  t h e  plume i s  b e n t  over  more and approaches 

t h e  ground more c l o s e l y .  However, mixing between t h e  plume 

and t h e  ambient  f low i s  a l s o  g r e a t l y  enhanced, r e s u l t i n g  i n  a 

s i g n i f i c a n t  d i l u t i o n  of t h e  plume and l a r g e  r educ t ion  i n  tempera- 

t u r e  rise. Moreover, t h e  s t r o n g  ambient f low can supply more 

f low from t h e  upstream s i d e  t o  t h e  i n t a k e  f a c e ,  r a t h e r  t han  

. withdrawing t h e  flow from t h e  wake behin'd ,.the tower.  Hence, 

a . .  R s t a r t s  t o  dec rease .  For Runs A and C ,  R,..reaches i t s  maximum 

v a l u e  a t  around K = ,0.35 and 0 .8 ,  r e s p e c t i v e l y .  
. . 

One s t r i k i n g  r e s u l t  i n  t h i s  c a s e  i s  t h a t  v a l u e s  o f  R f o r  

t h e  upstream and,,downstream s i d e s  o f  t h e  tower d i f f e r  s i q n i f i -  

c a n t l y  , :.and t h e r e  i s>  a s e v e r e  r n a l d i s t r i b u t i o n  of  t h e  tempera- 

t u r e  w i t h i n  t h e  c o o l i n g  tower.  For  example, F igu re  4.36 shows 

t h a t  f o r  K = 0.8,  v a l u e s  o f  R measured a t  t h e  downstream and -. 
upstream . s i d e s  . .... , .  a r e  12 and 0,. #pe rcen t ,  r e spec t ive ly . .  This  

i m p l i e s  t h a t  it. may n o t  be  a p p r o p r i a t e  t o  assume t h a t  t h e  
.- 



ambient a i r  tempera ture  i s  t h e  t r u e  i n l e t  c o o l i n g  a i r  t empera ture  

as i s  .commonly'done t o  e v a l u a t e  c o o l i n g  tower performance. The- 

a v a i l a b i l i t y  o f  t h e  c o o l i n g  a i r  t empera ture  v a r i e s  f o r  each - 
module w i t h i n  a  c o o l i n g  tower.  S ince  ve ry  l i t t l e  i s  known 

about  t h i s  d i s t r i b u t i o n  problem, a  f u r t h e r  s tudy  i s  neededato  
_I provide  more d e t a i l e d  in format ion  s o  t h a t  power p l a n t  eng inee r s  

can o b t a i n  more a c c u r a t e  eval .uat ion o f  c o o l i n g  tower performance. 

F igu res  4.37 and 4.38 show t h e  v a r i a t i o n  of  R w i t h  K f o r  t h e  

Wyodak p l a n t  tower l o c a t e d  on t h e  a c t u a l  p r o t o t y p i c  topography 

(Runs T U  and TD). These f i g u r e s  r e v e a l  t r e n d s  of  R s i m i l a r  t o  

t h o s e  f o r  t h e  f l a t  ground c a s e s  (F igu res  4.35 and 4.36) . R 

reached i t s  maximum v a l u e s  a t  approximately  K = 0.35 and 0.6 

f o r  Runs TU and TD. 

F igu res  4.39 and 4 . 4 0  show t h e  e f f e c t s  of  t h e  v e l o c i t y  

r a t i o ,  K ( o r  wind v e l o c i t y ) ,  an a d j a c e n t  tower and l o c a l  topog- 

raphy on t h e  average v a l u e s  o f  t h e  r e c i r c u l a t i o n  r a t i o ,  R ,  and 

hence on t h e  performance of  t h e  Wyodak p l a n t  tower.  Comparison 

o f  R va lues  i n  t h e  s o u t h e a s t e r l y  wind, f l a t  ground c a s e  (Run C )  

and t h e  no r thwes t e r ly  wind, f l a t  ground c a s e  (Run A) i n d i c a t e s  

t h a t  t h e  v a l u e s  o f  - R f o r  Run C a r e  much h i g h e r  than  t h o s e  f o r  

~ u n ' ~ .  This  d i f f e r e n c e  i s  due t o  t h e  l o c a t i o n  o f  t h e  smal l  

a d j a c e n t  ERDA tower w i t h  r e s p e c t  t o  t h e  wind d i r e c t i o n  and t h e  

Wyodak p l a n t  tower l o c a t i o n .  For  Run A ,  t h e  plume from t h e  

upwind ERDA tower h e l p s  t o  r a i s e  t h e  plume from t h e  downwind 

Wyodak p l a n t  c o o l i n g  tower.  The approaching ambient  flow i s  

a l s o  a f f e c t e d  by t h e  ERDA tower b e f o r e  it reaches  t h e  Wyodak 

p l a n t  tower. However, f o r  Run C ,  n o t  on ly  does  t h e  plume from 

t h e  ERDA tower n o t  enhance t h e  plume rise immediately behind 

t h e  Wyodak p l a n t  tower,  t h e  e x i s t e n c e  o f  t h e  ERDA tower i t s e l f  

may gene ra t e  a  c a p t i v e  eddy behind t h e  Wyodak p l a n t  tower and 

t h u s  cause  s t r o n g e r  r e c i r c u l a t i o n  a n d ' i n t e r f e r e n c e .  



VELOCITY RATIO, K 

FIGURE 4 . 3 7 .  V a r i a t i o n  o f  R e c i r c u l a t i o n  R a t i o ,  R ,  With V e l o c i t y  R a t i o , - K ,  f o r  t h e  
Wyodak P l a n t  D q  C ~ o l i n g  Tower With t h e  Ac tua l  Topography; North-  
w e s t e r l y  Wind -Case (Run TU) 



VELOCITY RATIO, K 

FIGURE 4 . 3 8 .  Var ia t ion -  o-f' ~ e c i r c u l a - t i o n  Ra t io ,  R ,  With Ve loc i ty  Ra t io ,  K,  f o r  t h e  
Wyodak P l a n t  Dry Cooling Tower W i t h ' t h e  Actual 'Topography; South- 
e a s t e r l y  Wind Case.  (Run TD) 
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FIGURE 4.39. Varia t ion  of Reci rcula t ion  Rat io,  R, With Wind-Velocity, Va f o r  t h e  
Wyodak P l a n t  Dry Cooling Tower 



FIGURE 4.40. Comparison of R e c i r c u l a t i o n  R a t i o ,  R ,  of  t h e  Wyodak P l a n t  Dry Cooling 
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These advantageous e f f e c t s  o f  t h e  ERDA tpwer f o r  Run A and 

adverse  e f f e c t s  f o r  Run C w e r e ,  however, o f f s e t  by imposing t h e  

a c t u a l  topography a t  t h e  s i te .  Comparison o f  t he -  average  v a l u e s  k' 
of  R f o r  t h e s e  f o u r  c a s e s  (Runs A ,  C ,  TU and T D )  , a s  i l l u s t r a t e d  ' 

by F i g u r e s  4.39 and 4 . 4 0 ,  r e v e a l s  t h a t  t h e  v a l u e  of R f o r  , t h e  
% 

n o r t h w e s t e r l y  wind c a s e  w i t h  t h e  a c t u a l  topography (Run TU) i s  
3 .  . , .. . 

g r e g t e r  than  f o r  t h e  f l a t  ground c a s e  (Run A ) .  Th is  may be due . 
.. . 

t o  t h e  f a c t  t h a t  t h e  c o a l  'mine p i t  j u s t  i n  f r o n t  of  t h e  c o o l i n g  : 

. . 

towers  changes t h e  approaching ambient  f low d i r e c t i o n  from t h e  

h o r i z o n t a l  t o  t h e  upward d i r e c t i o n ,  a s  was d i s c u s s e d  i n  

S e c t i o n  4.1.2.. 
. . 

' The va lue  o f  R f o r  Run T D  ( s o u t h e a s t e r l y  wind w i t h  a c t u a l  

topography) d e c r e a s e s  from t h a t '  o f  Run A ( s o u t h e a s t e r l y  wind 

w i t h  a  f l a t  ground) f o r  a  l a r g e  K .  Th is  i s  aga in  due mainly . t o .  . 

t h e  c o a l  mine p i t ,  which i s  l o c a t e d  downwind o f  t h e  two coo l ing ,  . 

towers  i n  t h i s  c a s e .  : The p i t ,  however, works f avo rab ly  t o  reduce 
. . . L 

' R .  Th i s  c o a l  mine p i t  p rov ides  a  l a r g e r  a r e a  f o r  an eddy t o  

cover  and lowers  t h e  t empera tu re  i n  t h e  eddy zone f o r  a  l a r g e  K .  

However, when K d e c r e a s e s ,  t h e  mixing. i s  enhanced and t h e  e f f e c t  

o f  t h e  p i t  i s  diminished.  

F igu res  4 . 4 1  and 4.42 show t h e . v a r i a t i o n  of R w i t h  wind 

v e l o c i t y  and topography f o r  t h e  ERDA c o o l i n g  tower.  The t r e n d  

i s  b a s i c a l l y  t h e  same as f o r  t h e  wyodak ' p l a n t  tower.   ow ever, 
t h e  r a t i o  o f  j e t  momentum t o  t h e  ambient  f low momentum ( K )  i s  

l a r g e r  f o r  t h i s  c a s e  t h a n  for  t h e  Wyodak p l a n t  tower. Hence, 

R f o r  t h e  ERDA tower  does  n o t  produce t h e  peak p o i n t  f o r  t h e  

exper imenta l  range covered . . i n  t h i s  s tudy .  A s  shown i n  t h e s e  

f i g u r e s ,  f o r  t h e  s o u t h e a s t e r l y  wind c a s e s  (Runs C and TD), t h e  

average  va lue  o f  R reached  19 p e r c e n t ,  i n d i c a t i n g  t h e  very  s t r o n g  

i n t e r f e r e n c e  causes  by t h e  upwind Wyodak p l a n t  tower. 

The plume r e c i r c u l a t i o n  a f f e c t s  t h e  i n i t i a l  ' temperature  

di ' f  f  erence, . I T D ,  which ' i n  turn c o n t r o l s  t h e  h e a t  r e j e c t i o n  
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c a p a c i t y ,  QD of  t h e  c o o l i n g  towers .  For a  mechanical  d r a f t  

d ry  c o o l i n g  tower ,  QD i n  Btu/hr may be assumed by 

QD = Ki ( I T D )  ( 4  6) 

where Kl is a  c o n s t a n t .  For  t h e  two d ry  c o o l i n g  towers  be ing  

cons idered ,  I T D  is  l a r g e  because o f  a h igh  back t u r b i n e  p r e s s u r e  

( s ay ,  7.4 p s i ) .  The c o o l i n g  tower i n p u t  wate r  t empera tu re ,  Ti 

.is assumed t o  be  173.0°F. . . 

The wors t  performance o f  d r y  c o o l i n g  towers w i l l  be  expe r i -  

enced du r ing  h o t  summer days.  A t  t h e  Wyodak p l a n t  s i te ,  t h e  

s o u t h e a s t e r l y  wind i s  one of  t h e  p r e v a i l i n g  winds d u r i n g  summer. 

Assuming an ambient t empera ture  of 85OF and t h e  e f f l u e n t  e x i t  

t empera ture  of  120°F, I T D  (= T - Ta) becomes 88OF w i t h o u t  . i 
r e c i r c u l a t i o n .  Hence, t h e  c o o l i n g  c a p a c i t y  o f  t h e  Wyodak p l a n t  

tower w i thou t  plume r e c i r c u l a t i o n  i s  

QD = K1 (88.0) : wi thou t  r e c i r c u l a t i o n  

When t h e  s o u t h e a s t e r l y  wind becomes 1 0  mph ( o r  K = 0 . 7 2 ) ,  R f o r  

t h e  Wyodak p l a n t  tower becomes 4 p e r c e n t  (see F i g u r e s  4.39 and 

4 .40) .  For t h i s  ca se  t h e  t r u e  c o o l i n g  a i r  t empera ture  i s  

e s t i m a t e d  as 86.4OF, and I T D  becomes* 86.6OF. The c o o l i n g  c a p a c i t y  

f o r  t h i s  c a s e  t hen  becomes 

QD = K1 (86.6) : w i t h  r e c i r c u l a t i o n  

' ~ e n c e ,  a  4 p e r c e n t  r e c i r c u l a t i o n  r a t i o  f o r  t h e  Wyodak p l a n t  tower 

reduces  i t s  c o o l i n g  c a p a c i t y  by .only 2 pe rcen t .  However, f o r  t h e  

ERDA tower ,  r e c i r c u l a t i o n  and i n t e r f e r e n c e  become more s e v e r e  . 

problems. For t h e  37.1 mph ( o r  K = 0.53) s o u t h e a s t e r l y  wind 

c a s e ,  R f o r  ' t h e  ERDA tower becomes 18.2 p e r c e n t  (see F igu res  

4 . 4 1  and 4 .42) .  The t r u e  c o o l i n g  a i r  tempera ture  i s  then  9 ' l . 4 ° ~ .  

i n s t e a d  of  85OF ambient t empera ture .  The c o o l i n g  c a p a c i t i e s  f.or 

c a s e s  w i thou t  and wi th  r e c i r c u l a t i o n  become 



QD = K2 ( 8 8 )  : wi thou t  r e c i r c u l a t i o n  

QD = K 2  (81.6)  : w i t h  r e c i r c u l a t i o n  . . . . ..+ .,r.. 
. . . ' . . . . I  

where K2 i s  a c o n s t a n t  which may be  e q u a l  t o  K1 i n  Equat ion 4.6 

i f  bo th  towers  have s i m i l a r  h e a t  r e j e c t i o n  c h a r a c t e r i s t i c s .  

The l o s s  of h e a t  r e j e c t i o n  c a p a c i t y  due ' t o  r e c i r c u l a t i o n  f o r '  

t h i s  c a s e  i s  approximately  7 pe rcen t .  For  convent iona l  wet 

c o o l i n g  towers ,  t h e  t u r b i n e  back p r e s s u r e  i s  much lower ,  r e s u l t -  

i n g  i n  a  lower va lue  o f  I T D  ( s a y  I T D  = 35OF). Note t h a t ' f o r  

a  w e t  tower,  w e t  bu lb  tempera ture  i n s t e a d  o f  d ry  bu lb  temperature  

must b e  used t o  g e t  I T D .  Hence t h e  l o s s  o f  h e a t  r e j e c t i o n  

c a p a c i t y  of a w e t  c o o l i n g  tower due t o  r e c i r c u l a t i o n  could  be  

two t o  t h r e e  t i m e s  more s eve re  t han  the .  c a p a c i t y  l o s s  of  a  d r y  ' 

c o o l i n g  tower f o r  t h e  same r e c i r c u l a t i o n  r a t i o .  F o r t u n a t e l y ,  

t h e  w o r s t  r e c i r c u l a t i o n  c o n d i t i o n s  f o r  t h e  Wyodak p l a n t  a n d .  

ERDA towers  occur  a t  d i f f e r e n t  ambient wind v e l o c i t i e s .  More- 

o v e r ,  it  i s  planned t h a t  t h e  Wyodak p l a n t  tower ,  which has  a  

s m a l l e r  r e c i r c u l a t i o n  r a t i o  t han  t h a t  of t h e  ERDA tower ,  w i l l  

b e  used t o  r e j e c t  85 p e r c e n t  o f  t h e  t o t a l  p l a n t  exhaus t  h e a t  

and t h e  ERDA tower w i l l  r e j e c t  on ly  15  p e r c e n t  of  t h e  t o t a l  

h e a t .  Hence, even one of  t h e  wors t  c a s e s  may have a  r a t h e r  

i n s i g n i f i c a n t  e f f e c t  on t h e  t o t a l  .power p l a n t  o p e r a t i o n .  

Example: For s i m p l i c i t y ,  assume t h e  c o n s t a n t  Kl i n  Equat ion 4.6 

i s  t h e  same f o r  b o t h  t h e  Wyodak p l a n t  and ERDA towers .  

Assume Ta = 85.0°F, ATo = 35OF, Va = ' 3 0  mph 

( o r  44.0 f p s )  and Ti = 173.0°F 

For  t h e  Wyvdak p l a n t  tower 



F o r  t h e  ERDA t o w e r  

Q, = 0 . 1 5  K1(ITD) = 0 . 1 5  K l ( 1 7 3 . 0  - 8 5 . 0 )  = 1 3 . 2  K1 

T o t a l  c a p a c i t y  

QD = 7 4 . 8  Kl + 1 3 . 2  Kl = 8 8 . 0  K1 

C a s e  2 .  With R e c i r c u l a t i o n  

F o r  t h e  Wyodak p l a n t  t o w e r  

F r o m  F i g u r e  4 . 4 0 ,  R = 0 . 0 2 5 5  

ITD = 1 7 3 . 0  - 0. .0255 x 3 5 . 0  = 8 7 . 1 ° F  

F o r  the  ERDA t o w e r  

F r o m  F i g u r e  4 . 4 2 ,  R  = 0 . 1 7 2  

ITD = 8 5 . 0  + 0 . 1 7 2  x 3 5 . 0  = 8 2 . 0 ° F  

T o t a l  c a p a c i t y  

C a s e  3.  T h e  Wyodak p l a n t  t o w e r ,  w i t h  r e c i r c u l a t i o n ,  rejects 

1 0 0  percent,  of t h e  p l a n t  exhaus t  heat (no  ERDA 

t o w e r  o p e r a t i o n )  

F o r  t h e  Wyodak p l a n t .  t o w e r  

- 1 2 . 8  f p s  V = 1 0 . 9  .X - - 
j 0 . 8 5  

= 0 . 2 9 1  = rn 



. . .. . 
From F igu re  4.40, R = 0.0275 . i . . . 

ITD = 173.0 - 0.0275 x 35.0 = 87.0°F 

For  the ERDA tower 

T o t a l  c o o l i n g  c a p a c i t y  

Hence, c o o l i n g  c a p a c i t y  l o s s e s  f o r  ca ses '  2 a n d  3.;' a s  compared 

t o  C a s e  1, a r e  on ly  2  and 1 p e r c e n t ,  r e s p e c t i v e l y ,  f o r  t h e  

p r e s e n t  Wyodak p l a n t  o p e r a t i o n  'because of t h e  r ea sons  discus,Sed 

above. 

V a r i a t i o n s  of  R w i t h  IFD ( o r  ATo) f o r  t h e  Wyodak p1,ant a n d  

t h e  ERDA c o o l i n g  towers  a r e  shown. in  F igu res  4.43 through . 4 . 4 6 .  

These f i g u s e s  r e v e a l  t h a t  R i n c r e a s e s  as IFD i n c r e a s e s  ( o r  ATo 

i n c r e a s e s )  . Thi s  i s  because when IFD d e c r e a s e s ,  t h e  buoyancy. 

f o r c e  r e l a t i v e  t o  t h e  f low momentum i n c r e a s e s '  and t h e  .plume rises 

h i g h e r  and moves. s t r a i g h t  upward. Hence, t h e  va lue '  of  . R .  dec reases .  
-, . 

A l s o ,  comparison o t  Runs TU and T D  ( ~ i g u r e s  4.43 and 4 . 4 4 )  shows 

t h a t  v a l u e s  of  R f o r  t h e s e  c a s e s  a r e  q u i t e  s i m i l a r , ,  d e s p i t e . t h e  

d i f f e r e n t  wind d i r e c t i o n s .  

Th i s  s tudy  r e v e a l s  t h e  s t r o n g  e f f e c t s  o f  l o c a l  topography 

and nearby c o o l i n g  towers ,  a s  w e l l  a s  t h o s e  o f  t h e  ambient  

v e l o c i t y  and e f f l u e n t  exhaus t  air t e m p e r a t ~ ~ r e . ,  , nn p11.1me r e c i r c u l a -  

t i o n .  A f u r t h e r  s tudy  i o  recommended to elucidaLe these eLIects 

on r e c i r c u l a t i o n  f o r  o t h e r  c a s e s .  
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FIGURE 4 . 4 3 .  ~ a r i a t i ~ n  o f  R e c i r c u l a t i o n  R a t i o ,  R ,  With D e n s i m e t r i c  Froude Number, 
q, f o r  t h e  Wyodak P l a n t  Dry Cooling Tower With t h e  A c t u a l  Topography; 
N o r t h w e s t e r l y  Wind Case 
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ED., f o r  t h e  Wyodd: Plant Dry Cool ing  Tower With t h e  A c t u a l  Topography; 
S o u t h e a s t e r l y  Wind C a s e  . 



. . I , . I 1 I I 
. . . , .  

g/ 

* , .Vo. - . 

. . - 
, , . - .  ... . . 

/ 
0 SOUTHEASTERLY WIND, K = 1.00 

A NORTHWESTERLY WIND,  K . * = ,  1.09. 
. . . . . . . . . . .  .:. . . . .  

0 .., ,. . . . . . .  *. ... ...  . . .  0 . <, . . .  ?: ; ' . . . . - 8 . '  . i .. - 
, . .,:~,0.~ . . '  

0 

, "' . . P 
! .: 1 - 

- - 

. . 8- -a=&-.& -8 ,.- 
I I I 1 

D E N S I M E T R I C  FROUDE NUMBER, IFD 
4 .' . , 

. . .  

. FIGURE ;4 .45 .  V a r i a t i o n  of R e c i r c u l a t i o n  R a t i o ,  R ,  With D e n s i m e t r i . ~  Froude N u m b e r , ,  
. . ED,  fo r  t h e  ERDA D r y  C o o l i n g  T o w e r  w i t h  t h e  A c t u a l  ~opography  ( k u n s  T U  

. . . . 
a n d T D )  . . , . , .  : .. . 



I I I I I I I 

A 18.0 mph NORTHWESTERLY WIND,  WYODAK P L A N T  COOLING TOWER 

---. A 18.0 mph NORTHWESTERLY WIND, ERDA COOLING TOWER 

0 19.8 mph SOUTHEASTERLY WIND,  WYODAK P L A N T  COOLING TOWER 
- -- - -- l 19.8 mph SOUTHEASTERLY WIND,  ERDA COOLING TOldER - 

* 
a\  - \ 

\ 
- --. 

-\ -- l - 
a\\, 

- 

-\ C \ A \ 
\ 

- 

; \A 
\ 
\ 

-a+ \ - ---- - - -  - - - -a  - 

'=--a- - 
- O A 
\ 

9- 
- A+- 

- -- --A--- ----- -A,A ---,,,,,,-- A,----------- -A 
I I 1 I I I 1 

TEMPERATURE DIFFERENCE , A T o y  I N  OF , --. . . -. . . . . . 

FIGURE 4 . 4 6 .  v a r i a t i o n  - o f  X e c i r c u l a t i o n  R a t i o ,  R ,  With t h e  Temperature ' Dif . ference  , 
ATo, f o r  t h e  Wycdak P l a n t  and ERDA Dry Cool ing  Towers With t h e  Ac tua l  
Topography ( R m s  TU and TD) 



TWO-DIMENSIONAL HEATED J E T  DISPERSION 
. . 

A two-dimensional c o o l i n g  tower  plume s i m u l a t i o n  model was 

developed i n  t h i s  s tudy .  I n  o r d e r  . t o  examine t h e  v a l i d i t y  o f  

t h i s  numerical  code,  t h r e e  exper iments  f o r  two-dimensional 

plumes w e r e  a l s o  conducted.  A s  w a s  d i s c u s s e d  i n  S e c t i o n  3.2,  

two-dimensional l aminar  hea t ed  j e t s  w e r e  d i r e c t e d  upward i n t o  

a  t u r b u l e n t  cross-ambient  flow. Hydrau l ic  c o n d i t i o n s  f o r  t h e s e  

t h r e e  exper iments  are shown i n  Table  4.5. 

Water t empera tures  downstream o f  t h e  j e t  d i s c h a r g e  s l i t  

w e r e  measured a long  s i x  d i f f e r e n t  v e r t i c a l  p l anes .  The m e a -  

su red  6 v e r t i c a l  d i s t r i b u t i o n s  of wate r  t empera ture  and t h e i r  

average  v a l u e  a r e  shown i n  F i g u r e s  4.47, 4.48 and 4.49' (Appen- 

d i x  1) .  Unfo r tuna t e ly ,  t h e s e  f i g u r e s  i n d i c a t e  some d i s c r e p -  

ancy from t h e  t r u e  two-dimensional plume d i s p e r s i o n  p r o c e s s .  

Temperature d i s t r u b u t i o n s  on t h e  ground f o r  t h e s e  t h r e e  

average  c a s e s  were p l o t t e d  a s  AT/ATo v e r s u s  K R (XID).   IF^ j  
(F igu re  4 .50) .  The wate r  t empera ture  on t h e  ground dec reases  

as X i n c r e a s e s  and i t s  v a r i a t i o n  i s  c o r r e l a t e d  by t h e  equa t ion  

Hence, t h e  tempera ture  d i s t r i b u t i o n  on t h e  ground i s  p r o p o r t i o n a l  

t o  "-2/3 power" of  l o n g i t u d i n a l  d i s t a n c e  X. '  Th i s  i s  somewhat 

expec ted  because o f  t h e  f a c t  t h a t  a plume c e n t e r l i n e  t r a j e c t o r y  

i s  g e n e r a l l y  expec ted  t o  be  p r o p o r t i o n a l  t o  2 / 3  t h e  power of x ' 

( t h e  "2/3  law") as shown i n  Equat ions  4.3 and 4.5. 

A s  i n d i c a t e d  by Equat ion 4.7, AT/AT i s  p r o p o r t i o n a l  t o  
0. . 

IF b u t  i n v e r s e l y  p r o p o r t i o n a l  t o  K-, IE? and ( X / D ) .  Among the'se 
D j  

pa rameters ,  ( X / D )  has  a  dominant e f f e c t  on AT/ATo, fo l lowed by 

K. IFg and R have less e f f e c t  on AT/ATo t han  t h o s e  of  ( X / D )  
j 

and K.  The i n v e r s e  e f f e c t  o f  K on AT/AT i s  e x p l a i n e d  a s  
0. 

fo l lows:  For t h e  range o f  K t e s t e d ,  t h e . d e c r e a s e  i n  K d e f l e c t s  

t h e  plume more c l o s e l y  t o  t h e  ground and hence AT/ATo o n t h e  



TABLE 4.5. Summary of Exp~rimsntal Data for Two-Dimensional Heated Jet Case 

,' 
Densi - Ambient 

F.mbi ? n t  Discharge m e t r i c  J e t  Flow 
F10.d J e t  Temperature S l i t  Flow V e l o c i t y .  Froude Reynolds Reynolds 

L e l o c i  t y ,  V e l o c i t y ,  D i ; f f s rence ,  Opening Cepth, R a t i o  Number, Number, Number ,4 
Run No; L J , f p s  Vj, f p s  AT-, u "F D, f t  d, f t  K P B j  B, L& x 10 



F I G U R E  4.50. 
. . 

V a r i a t i o n  of Temperature ~ i s t r i b u t i b n s .  o? 
.. 

;. . 
t h e  Ground.. 



ground inc rease .  When t h e  buoyancy f o r c e  inc reases  ( o r P D  

d e c r e a s e s ) ,  t h e  plume r i s e s  more s t r a i g h t  upward, r e s u l t i n g  - , 

i n  t h e  reduct ion  of AT/ATo on t h e  ground. Hence, AT/ATo i s  .' 
propor t iona l  t o p D ,  a s  shown i n  Equation 4 . 7 .  The inver se  

e f f e c t  of R .  on AT/ATo may be due t o  t h e  fol lowing reason: 
3 

For a laminar j e t ,  t h e  mixing of t h e  j e t  wi th  an ambient flow - 
w i l l  be  enhanced a s  R i n c r e a s e s  and. thus  va lues  of AT/ATo 

j 
w i l l  be  reduced. I f  t h e  j e t  i s  t u r b u l e n t ,  R. i n  Equation 4 . 7  

I 
w i l l  be de le ted ,  a s  d iscussed  i n  Sect ion  3.1. Deta i led  descr ip-  

t i o n s  of development of t h e  computer code and t e s t i n g  of i t s  

v a l i d i t y  a r e  given i n  Chapters 5 and 6 .  



5.0 MATHEMATICAL MODEL 
. . . . . . 

. . 

This section describes the theoretical basis and computa- 

tional procedure of the VECTRA computer program. VECTRA (Vorticity- 

Energy Code for Transport Analysis) is designed for 'applying numeri- 

cal simulation to a broad range of cooling tower flow configura- 

tions and adjacent topographical and structural in£ luences. The 

code's computational procedure is based on finite-difference 

approximation of the vorticity-stream function partial differen- 

tial equations which govern two-dimensional steady flow of 

incompressible, viscous fluids in conjunction with the trans- 

port of heat and other constituents. . 

Hydrodynamic arid thermddynamic behaviors of cooling tower 

flows are 'inherently three-dimensional and nonlinear. They are 

further complicated by :such phenomena as turbulence, buoyancy,' 

and ambient conditions as well as local.topographical features 

and adjacent structures. Because of these and other complica- 

tions the possibility of resolving detailed temperature and 

velocity patterns for certain systems is rather remote without 

the aid of three-dimensional computational techniques. Recent 

developments in large core, high speed computer 'systems make the 

numerical simulation of three-dimensional hydrodynamic phenomena 

feasible7'' and'have set. the s'tage for broad practical applica- 

tion. 
. . . . 

A working tool for tower flow assessment ~hould . be . as simple 

as possible, yet be, able to satisfactorily resolve. the phenomena 

in question. ' ' ' ' within this framework many fluid dynamic 

analyses can be adequately performed through use of two-dimensional, 

steady or psuedo-steady flow techniques. In view of the inherent 

numerical complexities and economics associated with three- 

dimensional simulation, it seems prudent to attain the greatest 

practical proficiency in dealing with two-dimensional techniques 

and to exploit 'such methods to the greatest possible degree. 
. .. . . 



The VECTRA code provides a  foundat ion computational t o o l  

t h a t  can be r e a d i l y  modified and incremental ly  improved t o  . 
i nc lude  c a p a b i l i t i e s  f o r  analyzing a  broad range of tower . . 

e x t e r n a l / i n t e r n a l  flow conf igura t ions .  

5 .1 THEORETICAL DEVELOPMENT 

The d i f f e r e n t i a l  equat ions which govern momentum and.+heat  

t r a n s p o r t  a p p r o p r i a t e  f o r  two-dimensional cool ing  tower flow . 

are based on t h e  fo l lowing t h r e e  phys ica l  laws: 

e conservat ion  of mass ( c o n t i n u i t y ) ,  

Newton's second law ('coiiservarion of murne~itw~l) , d l ~ d  

e t h e  f i r s t  law of thermodynamics (conservat ion  of ene rgy) ;  

I n  a d d i t i o n ,  an a p p r o p r i a t e  equat ion  of s t a t e  i s  requ i red  

t o  r e l a t e  f l u i d  d e n s i t y  i n  terms of  temperature.  

The assumptions made.at  t h i s  s t a g e  of  t h e  development a r e :  

incompressible  flow; 

t u r b u l e n t  f low; 

Reynolds stresses may be r e l a t e d  t o  mean flow i n  terms of 

eddy . d i f f u s i v i t i e s  f o r  momen.tum; 

eddy d i f f u s i v i t i e s  inc lude  molecular e f f e c t s  and, i n  t h e  

absence of  tu rbu lence ,  c o l l a p s e  t o  t h e  appropr ia t e  va lue  

of molecular kinematic v i s c o s i t y ;  

l o c a l  change i n  d e n s i t y ,  p, is s m a l l  c c r m ~ a r e d  t o  the 

a b s o l u t e  value of  d e n s i t y  ( i . e . ,  t h e  Boussinesq 

approximation, ( Ap ( / p  :<< 1) ; and 

t u r b u l e n t  h e a t  and mass t r a n s x e r  c o e f f i c i e n t s  a r e  r e l a t e d  

t o  eddy d i f f u s i v i t i e s  by an eddy Prand t l  number. 

The two-dimensional coord ina te  system considered i s  def ined  
5 

a s  a p lane  ( o r  r a d i a l  segment) normal t o  t h e  geopo ten t i a l  su r face .  
! 

The two coordina tes  a r e  def ined  a s  x and z where x l i e s  i n  t h e  

h o r i z o n t a l  plane and z i s  v e r t i c a l .  Corresponding v e l o c i t y  . 



components,  u  and v ,  are i n . t h e  x and z  d i r e c t i o n s ,  r e s p e c t i v e l y .  
. . 

The govern ing  e q u a t i o n s  a r e :  
. . 

'.I C o n t i n u i t y  - .  

Where 5 i s  a  b i n a r y  f u n c t i o n  d e f i n e d  by: 

5 = 1 : a x i s y m m e t r i c c o o r d i n a t e s  

6 = 0 : r e c t a n g u l a r  c o o r d i n a t e s  

Momentum . . 

x - d i r e c t i o n :  
C\ 

.. . 
, ' ,  

z-d ' i r ec t ion :  

Energy 



. . . . 

S t a t e  . . 

P = pRT 5 .5  
r* 

Symbols used i n  t h e  above equat ions  a r e  de f ined  a s  fo l lows:  

P = p r e s s u r e  

p, = r e f e r e n c e  d e n s i t y  
, . 

F ,P = drag fo rcca  
X Z 

E = eddy d i f f u s i o n  c o e f f i c i e n t  f o r  momentum 
. . " . 

K = eddy d i f f u s i o n  c o e f f i c i e n t  f o r  h e a t  ' 

. . R = gas  con 's tant  

T = t empera ture  

: .. A 'second s t a t e  equa t ion  of  t h e  form p = f ( T )  is- used' f o r  

modeling i n  water .  

The inomentum equa t ions  (5.2' and 5 . 3 )  i n  con junc t ion  wi th  .the 

c o n t i n u i t y  equat ion  (5 .1)  a r e  converted t o  t h e  fo l lowing  v o r t i c i t y -  

s t ream f u n c t i o n  set:  

S'tream   unction, rB 
\ 



where : 

The v e l o c i t y  f i e l d  u , v  i s  computed from t h e  s t r eam f u n c t i o n  
. . 

.. d i s t r i b u t i o n  us ing  t h e  fo l lowing  equa t ions  :, 

For t h e  purpose of  computer s i m u l a t i o n ,  Equat ions  5.5.; 5 . 6 ,  

. .5.7, 5 . 8  and 5 . 9  a r e  c a s t  i n t o  d imens ion less  forms us ing  t h e  

fo l lowing  v a r i a b l e s :  . . 
. ,  . 

where vo and L  are r e f e r e n c e  v e l o c i t y  and l e n g t h ,  r e s p e c t i v e l y .  

Dimensionless. parameters  used a r e :  

- VoL h o r i z o n t a l  r e f e r e n c e  Reynolds number, REx - - 
Ex 

- VoL I v e r t i c a l  r e f e r e n c e  Reynolds number 
REZ - - 

C" 

- PRx - 'X I h o r i z o n t a l  r e f e r e n c e  P r a n d t l  number 

5 
- - E z , v e r t i c a l  r e f e r e n c e  P r a n d t l  number 

PRZ r;- 
z 



Z - vo I '  : - , ' r e f e r e n c e  d e n s i m e t r i c  ~roude number 
. . 

Based on t h e  preceding  dimensionless  v a r i a b l e s  and .pa rame te r s ,  
/'- t h e  s t e a d y  flqw governing equa t ions  a r e  

Stream Funct ion 

V o r t i c i t y  

a Energy 

. '  . I . . 

Where 



.* 
For s i m p l i c i t y ,  eddy t r a n s p o r t  c o e f f i c i e n t s  a r e  assumed 

c o n s t a n t  i n  t h e  above equa t ions .  
H 

5.2 FINITE-DIFFERENCE G R I D  SYSTEM 

The f i n i t e - d i f f e r e n c e  g r i d  l a y o u t  c o n s i s t s  of two g r i d  

systems.  One g r i d  i s  used t o  c a l c u l a t e  t h e  s t ream f u n c t i o n ,  Y ,  

which prov ides  in format ion  t o  compute v e l o c i t y  components U and 

V. Th is  system c o i n c i d e s  w i t h  t h e  p h y s i c a l  boundar ies  and i s  

i l l u s t r a t e d  by t h e  wider l i n e s  on F igu re  5.1. The s t r eam func- 

t i o n  i s  c a l c u l a t e d  a t  t h e  i n t e r i o r  i n t e r s e c t i o n  p o i n t s  des ig-  

n a t e d  by t h e  s o l i d  round symbols. S o l i d  box symbols r e p r e s e n t  

boundary p o i n t s .  

V e l o c i t i e s  a r e  n o t  c a l c u l a t e d  a t  t h e s e  p o i n t s .  U components 

are computed a t  v e r t i c a l  ( o r  c o o r d i n a t e )  midpoin ts ,  which a r e  

des igna t ed  by open c i r c l e  symbols. The V components a r e  corn- 

' puted a t  h o r i z o n t a l ' ( o r  x c o o r d i n a t e )  midpoin ts -and  des igna t ed  

by open box symbols. Thus, t h e  stre'am f u n c t i o n  g r i d  l a y o u t  

d e f i n e s  a  syslzem o f  cel ls  w i t h  t h e  s t ream f u n c t i o n ,  Y ,  computed 

a t  each co rne r  p o i n t  ( o r  se t  by boundary c o n d i t i o n s ,  a s  t h e  c a s e  

may be )  and v e l o c i t i e s  de f ined  a t  t h e  c e n t e r  of  t h e  c e l l  f a c e  

(see Figure  5 . 2 )  . 
The second g r i d  system i s  used t o  c a l c u l a t e  v o r t i c i t y ,  R ,  

and t h e  tempera ture ,  T ,  and i s  i l l u s t r a t e d  i n  F igu res  5 . 1  and 5.2 

by narrow l i n e s .  T h i s  l a y o u t  comple te ly  o v e r l a p s  t h e  g r i d  (and 

p h y s i c a l  system) w i t h  i n t e r i o r  i n t e r s e c t i o n  p o i n t s  c e n t e r e d  i n  

t h e  cel ls  d e f i n e d  by t h e  Y g r i d  system. These i n t e r i o r  g r i d  

p o i n t s  a r e  i n d i c a t e d  by c r o s s e s  w i th  boundary v a l u e s  a t  c r o s s -  
'3 

and-box p o i n t s .  
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a u - ;  A ,  Q '  . . . 
I 1  I 1  I 1  I 1  '.. 

FIGURE 5.1 Computational Grid for Difference Equations 



COMPUTATIONAL POINT LEGEND : 

FIGURE 5.2 . Typical F i n i t e  '~ i f ference  Cell 
I l l u s t r a t i n g  I n d i c e s  
for JI, R, I' , U and V :... 



The s t a g g e r e d  g r i d  system i s  used f o r  computat ional  conveni- 

ence  i n  t r e a t i n g  boundary c o n d i t i o n s  and t o  pe rmi t  convec t ive  

t r a n s p o r t  t e r m s  t o  be  e v a l u a t e d  a t  c e l l  f a c e s .  

I n  F i g u r e  5.2, t h e  Y g r i d  system i s  s i z e d  by N J  and NK 

g r i d  p o i n t s  i n  t h e  x and v e r t i c a l  d i r e c t i o n s ,  r e s p e c t i v e l y .  

The fit T system has  s i z e  N J  + 1 and NK + 1 i n  the '  r e s p e c t i v e  

d i r e c t i o n s .  P o i n t s  on t h e  Y g r i d  a r e  i n d i c a t e d  by J ,  k whereas 

p o i n t s  on t h e  R ,  T g r i d  are i n d i c a t e d  by p ,  q .  Grid spac ing  

i n  e i t h e r  c o o r d i n a t e  system may be  v a r i a b l e .  F igu re  5.2 a l s o  

11 lus t r a t e . s  i n d i c e s ,  computed q u a n t i t i e s ,  c e l l  s i z e  and r a d i a l  

d i s t a n c e s  f o r  a t y p i c a l  i n t e r i o r  c e l l .  

5 .3  DIFFERENCING FOR CONSERVATIVE FORMS 

The f i n i t e - d i f f e r e n c e  methods employed i n  t h i s  work a r e  

based on c e n t r a l  d i f f e r e n c i n g  t echn iques ,  excep t  f o r  t h e  t r a n s -  

p o r t  equa t ion  convec t ion  t e r m s  which have t h e  c o n s e r v a t i v e  forms 

a ( u j r )  /axj .  The c o n s e r v a t i v e  form i s  i n  a d i r e c t  r e s u l t  of  a r  
ba l ance  i n  terms of i n f i n i t e s i m a l  q u a n t i t i e s  and has  t h e  c o r r e c t  

form f o r  p roper  conse rva t ion  of  a t r a n s p o r t e d  q u a n t i t y  i n  numeri- 

c a l  analysis. 

Convective ba l ance  o f  I' i n  x ,  z  c o o r d i n a t e s  i s  i l l u s t r a t e d  

i n  F i g u r e  5.3. 

The s t e a d y  flow convec t ive  ba l ance  equa t ion  f o r  volume ele- 

ment p is  given by 



F I G U R E  5 .3  Convective I? Flux f o r  a  R e c t i l i n e a r  
x-z Volume Element 

I n  Equat ion 5.4 and F igu re  5.3,  A l l  A 2 ,  e t c . ,  a r e  e lement  

a r e a s  cor responding  t o  s i d e  1, 2 ,  e t c . ,  and fi i s  a  u n i t  normal 

v e c t o r ,  w i t h  outward be ing  t h e  p o s i t i v e  s ense  and inward,  t h e  

n e g a t i v e .  Like d i r e c t i o n a l  s e n s e  i s  used f o r  t h e  boundary 
-+ 

v e l o c i t y  v e c t o r ,  v .  

The g r i d  system shown i n  F igu re  5.4 has  c o n s t a n t  Ax and Az 

and v e l o c i t i e s  u  and v  a r e  s p e c i f i e d  a t  t h e  c e l l  f a c e ,  whereas r 
i s  c e l l - c e n t e r e d  a t  p o i n t  p.  For t h e  donor c e l l  d i f f e r e n c e  

scheme based on Equation 5.14, t h e  v a l u e  of r a t  t h e  upstream 

neighbor  is convected i n t o  t h e  ce l l ,  p ,  and t h e  va lue  of  r a t  

p  i s  convected o u t  o f  c e l l ,  p.  Thus, t h e  va lue  of I' t o  b e  used 

i n  Equation 5.15 i s  given by 

Z 

3 A -+ * . . (va lue  at. aps+.r,enrn nnighhnr for l i * , n l  y e n .  , , '  



FIGURE . 5.4. x-z F i n i t e - D i f f e r e n c e  C e l l  w i t h  t h e  
Your Immediate Nt?igl'~Lol: C e l l s  

Using t h e  i d e a s  expressed  by Equat ion 5 . 1 4 ,  t h e  above equa t ion  i s  

expres sed  i n  f i n i t e - d i f £ e r e n c e  form a s  



5 . 4  DIFFERENCE EQUATIONS FOR RECTILINEAR COORDINATES 

F i n i t e - d i f f e r e n c e  models a r e  based on . ~ ~ u a t i o ' n s  5 ,  l o . ,  5 .11 ' 

and 5.12, a long  w i t h  t h e  a u x i l i a r y  Equat ions  5.13 and 5 .14,  which 

a r e  nee'ded f o r  computing v e l o c i t y  components. I n  t h i s  d i s c u s s i o n ,  

on ly  a  s t eady  flow c o n d i t i o n  w i l l  be cons ide red  w i t h  c o n s t a n t  eddy 

t r a n s p o r t  c o e f f i c i e n t s .  The d i f f e r e n c e  equa t ions  f o r  a  uniform 

g r i d  system ( a  v a r i a b l e  g r i d  i s  used i n  t h e  computer code) a r e  

summarized a s  fo l lows:  

@ Stream Funct ion 

- 
V o r t i c i t y ,  R ,. i s  t h e  average  v a l u e  f o r  t h e  f o u r . s u r r o u n d i n g  

j , k  
cel ls  (see F igu re  5.2) and i s  g iven  a s  

f i  + R + Rp+l,q+l) 5.18 
P r q + l  p + l , q  

e Veloc i ty  

u 1 - Y J , k  j  , k-1) 



Vorticity , . 

. . 

' [.A ( I u j ¶ k l  ' j ,k  ' IUj-1 ,kt - ' j-1 
. . 

IVj,kl ' ' j ,k * IVj,k-1 1 - ' j ,k-1 

+ .  2 + 
2 

RE,AX 

. . 

Temperature,  T . . -. . .. 



2 ,  

~ o u n d a r y  c o n d i t i o n s  a r e  
. . 

0 Free-sur face  . ( Z = Z h )  

Y = c o n s t a n t  = 1 

R = 0 ( f r e e  s l i p  c o n d i t i o n )  

aT - = 0 ( a d i a b a t i c  c o n d i t i o n ,  f o r  p r e s e n t  work) a z  

S p e c i f i e d  f low boundary 

Discharge / in take  v e l o c i t y  Vb and A a r e  assumed known from d a t a  

or ernpirica'l  r e l a t i o n s h i p s .  

e No-slip boundary 

. . 

Y = Y + l z h  VbdZ = constant = ' Y ~  
1 

. ... . .  . n = - - - - .  av (no-slip condition) az ax 

. . 

o Free-flow boundary- .. 

- -  a'4' - constant (that is, streamlines dc not change : ax 
slope a s  they cross this boundary) 



Sl = 0, flow into system is irrotational 



6. CODE DESCRIPTION AND COMPUTATIONAL RESULTS 

D The computer program d e s c r i b e d  i n  t h i s  s e c t i o n  i s  designed 

t o  o b t a i n  t h e  s o l u t i o n  of  t h e  d i f f e r e n c e  equa t ions  (5 .17,  5.19, 

5.20, 5.21 and 5.22) f o r  t h e  q u a n t i t i e s  I), U ,  V ,  R ,  and T  ( o r  r ) . ,  
r e s p e c t i v e l y .  The program c o n s i s t s  o f  sub rou t ines  and/or func- 

t i o n s  which i n  p a r t  are managed by t h e  e x e c u t i v e  r o u t i n e  VECTRA. 

6 .1  COMPUTATIONAL PROCEDURE 

The t a s k  of t h e  computer program i s  t h e  s imul taneous s o l u t i o n  

of one e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  equa t ion  f o r  t h e  stream func- 

t i o n ,  $, (Equation 5.17 and p a r a b o l i c  t r a n s p o r t  equa t ions  f o r  t h e  

v o r t i c i t y ,  R ,  and tempera ture ,  T I  (Equat ions  5.21 and 5 . 2 2 ) .  

Equat ions  f o r  U and V (5.19 and 5.20, r e s p e c t i v e l y )  a r e  a u x i l i -  

a r y  b u t  a r e  a l s o  so lved  s imul taneous ly  d u r i n g  i t e r a t i o n .  For  

n e u t r a l  buoyancy, t h e  buoyancy parameter  equa t ion  need n o t  be  

so lved  s imul taneous ly  w i th  t h e  v o r t i c i t y  and stream f u n c t i o n  

equa t ion .  The Gauss-Seidel i t e r a t i v e  technique  i s  used f o r  a l l  

q u a n t i t i e s  de f ined  by second o r d e r  p a r t i a l  d i f f e r e n t i a l  equa t ions .  

Liebmann a c c e l e r a t i o n  i s  employed wi th  t h e  a l t e r n a t i v e s  o f  bo th  

under- and o v e r - r e l a x a t i o n .  

Assuming a l l  boundary c o n d i t i o n s  a r e  set and p e r t i n e n t  

v a r i a b l e s  a r e  i n i t i a l i z e d ,  t h e  procedure  f o r  s o l v i n g  t h e  

Buoyancy coupled equa t ion  i s  

1) Compute T (and r ) us ing  Equat ion 5.22 based on 
P tq  . Pr9  

p rev ious ly  c a l c u l a t e d  v a l u e s  o f  U j t k ' v j , k  and appro- 
- 

p r i a t e  t r a n s p o r t  c o e f f i c i e n t s .  

2) Compute R u s ing  Equation 5.21 and t h e  p rev ious ly  
Ptcl 

computed v a l u e s  o f  U V 
j t k t  j . k t T p I q  

and a p p r o p r i a t e  
P t r a n s p o r t  c o e f f i c i e n t s .  

3 )  Update necessary  boundary v a l u e s  f o r  T I  r ,  and R .  



4 )  Use t h e  newly computed v a l u e s  o f  R t o  compute t h e  

stream f u n c t i o n  d i s t r i b u t i o n  from Equat ion 5.17. 

One o r  more i t e r a t i o n s  may be  r e q u i r e d  t o  a r r i v e  C 

a t  a  s a t i s f a c t o r y  s o l u t i o n  f o r  Y .  Compute a new 

v e l o c i t y  f i e l d  V and U from t h e  newly ca l cu -  
j,k j ,k k 

l a t e d  Y d i s t r i b u t i o n .  

5) I f  t h e  eddy t r a n s p o r t  t e r m s  a r e  n o t  cons ' tant ,  compute' 

m u l t i p l i e r s  FR and FZ from new v e l o c i t y  f i e l d  ( n o t  
s .  

implcmcntcd i n  p r e s e n t  code v e r s i o n ) ,  

6 )  Repeat S t e p s  1 through 5  u n t i l  a p r e s e t  convergence 

c r i t e r i o n  i s  s a t i s f i e d  o r  a  s p e c i f i c  number o f  i t e r a -  

t i o n s  has been cumpleted. 

6 .2  .EXECUTIVE PROGRAM AND SUBROUTINE DESCRIPTION 

The computer code c o n s i s t s  o f  an e x e c u t i v e  r o u t i n e  c a l l e d .  

VECTRA and .  18 s u b r o u t i n e s  and/or f u n c t i o n s .  A l i s t  o f  t h e ,  

primary d u t i e s  s e rved  by each o f  t h e s e  r o u t i n e s  fo l lows .  

VECTRA Execut ive  Routine 

1) Reads c a s e  header  and case se t -up  in format ion .  

2 )  Reads alphanumeric d a t a  f o r  l i n e  p r i n t e r  o u t p u t  a r r a y  

o p t i o n ,  p l o t  f i l e  o p t i o n s ,  and program c o n t r o l .  
\ 

3 )  C a l l s  s u b r o u t i n e s  f o r  d a t a  i n p u t ,  problem se t -up  and 

i n i t i a l i z a t i o n ,  and program execu t ion .  The sub- 

r o u t i n e s  c a l l e d  i n  sequence are 

INPTJT 

TYPE 

READY 

INDEXER 

REST 

SEMBLE 

PLABAK 



STREAM ( f o r  i n v i s c i d  f low s o l u t i o n )  

SSCOMF' 

.i 4 )  Performs o t h e r  misce l laneous  t a s k s  such a s  c l o c k  

i n i t i a l i z a t i o n ,  p r e s e t t i n g  v a r i a b l e s ,  e t c .  . . 

.-' Subrout ines  
. . - .  

Primary d u t i e s  o f  s u b r o u t i n e s  a r e  given below. 
. . 

Subrout ine  I N P U T  

General  d a t a  i n p u t  r o u t i n e  

Reads r e s t a r t  f i l e  i f  r e q u i r e d .  

Reads remaining i n p u t  d a t a  from c a r d s .  

Converts  p o r t i o n s  of i n p u t  d a t a  t o  a p p r o p r i a t e  

q u a n t i t i e s  and u n i t s .  

Subrout ine  is  c a l l e d  once d u r i n g  execu t ion .  

Subrout ine  TYPE 

S e t s  c e l l  co rne r  and c e l l  c e n t e r  node t y p e s .  

Subrout ine  c a l l e d  once d u r i n g  execu t ion .  

Subrout ine  READY 

'problem se t -up  r o u t i n e  

S e t s  a l l  computed c o n s t a n t s .  

S e t s  c o n s t a n t  boundary c o n d i t i o n s .  

Computes boundary c o o r d i n a t e s  £o r  p l o t t i n g .  

Subrout ine  c a l l e d  once d u r i n g  execut ion .  

Subrout ine  INDEXER 

Computes boundary c o n d i t i o n  I N D E X  ARRAYS f o r  hydrodynamics 

computat ional  bookkeeping. 

Subrout ine  c a l l e d  once d u r i n g  execu t ion .  

Subrout ine  BEST 

Computes index  a r r a y s  f o r  t r a n s p o r t e d  q u a n t i t i e s  a t  f r e e -  - f low boundary and s e t s  f i x e d  v a l u e s .  

Subrout ine  c a l l e d  once d u r i n g  execut ion .  



Subrout ine  SEMBLE 

Computes i n t e r c e l l  conductances f o r  h e a t  and c o n s t i t u e n t  
i. 

t r a n s p o r t .  

Subrout ine  c a l l e d  once d u r i n g  execut ion .  

Subrout ine  PLABAK 
L . , '  I . .  

General  i n fo rma t ion  and debug o u t p u t  

0 Writes t o  l i n e  p r i n t e r  v a r i o u s  computed and i n p u t  

s u p p l i e d  v a r i a b l e s  and t h e  o p e r a t i o n  modes of cur -  

r e n t  c a s e .  

e Wri tes  t o  l i n e  p r i n t e r  c o n s t a n t  a r r a y s  used i n  t h e  

d i f f e r e n c e  e q u a t i o n  computat ions .  

W r i t e s  t o  P i n e  p r i n t e r  c e l l - c o r n e r  and c e l l - c e n t e r  

node type  arrangement.  

Writes debuq a r r a y s .  

Subrout ine  i s  c a l l e d  once o r  n o t  a t  a l l ,  a t  t h e  u s e r ' s  

o p t i o n .  

Subrout ine  STREAM ( I T ,  NSKIP) 

Solves  f o r  s t r eam ' func t ion ,  Y 

CunlpuLes Lhe v i scous  o r  i n v i s c i d  s t r eam fi.!nctiuri by 

Gauss-Siedel  i t e r a t i o n .  When c a l l e d ,  this s h i ~ u t i n e  

i t e r a t e s  on Y "IT" t imes .  

Upon completion of  "IT" i t e r a t i o n s ,  t h e  v e l o c i t y  . 

components U 
j , k  

and V 
j , k  

a r e  computed by t h e  a u x i l i a r y  

Equations' 5.19 and 5 . 2 0 .  

Subrout ine  STREAM c o n s t i t u t e s  what i s  r e f e r r e d  t o  i n  t h i s  

~ l l a r ~ u s c r i p  as  the " innc r  i t e r ~ i l i o n  loop" ( ~ i ~ b r o u t i n e  SSCQMP 

c o n s t i t u t e s  t h e  " o u t e r  i t e r a t i o n  loop")  and i s  c a l l e d  a t  

least  once f o r  each  " o u t e r  i t e r a t i o n . "  



Subrout ine  SSCOMP 

C a l l s  sub rou t ines  f o r  s t eady  flow s o l u t i o n  of  a l l  t r a n s p o r t  

equa t ions .  , 

Solves  t r a n s p o r t  equa t ion  f o r  R .  

C a l l s  sub rou t ine  TRSPRT ( T I T )  . 
C a l l s  s u b r o u t i n e  ROTATE ( R )  . 
C a l l s  s u b r o u t i n e  STREAM t o  compute v e l o c i t y  f i e l d .  

C a l l s  s u b r o u t i n e  BOUSET t o  compute a l l  boundary 

c o n d i t i o n s .  

Writes o u t  monitor node v a l u e s .  

C a l l s  s u b r o u t i n e  OUTPUT f o r  e i t h e r  i n t e r i m  o r  f i n a l  

a r r a y  o u t p u t .  

Generates  p l o t  d a t a  f i l e .  

Th i s  s u b r o u t i n e  i s  r e f e r r e d  t o  a s  t h e  " o u t e r  i t e r a t i o n  loop" 

and i s  c a l l e d  on ly  once du r ing  a  c a s e  execut ion .  The code 

spends t h e  m a j o r i t y  o f  t h e  execu t ion  t ime i n  t h i s  r o u t i n e .  

Subrout ine  TRSPRT 

Computes q u a n t i t i e s  T and r .  

Subrout ine  ROTATE 

Solves  v o r t i c i t y  t r a n s p o r t  equa t ion  f o r  R .  

Subrout ine  BOUSET ( J U M P )  

S e t s  a l l  hydrodynamic - and t r a n s p o r t  boundary c o n d i t i o n s .  

Subrout ine  OUTPUT (MODE) 

This  i s  t h e  primary l i n e  p r i n t e r  o u t p u t  c a l l  r o u t i n e .  

The primary purpose o f  t h i s  r o u t i n e  i s  t o  c a l l  s e l e c -  

t i v e l y  t h e  o u t p u t  a r r a y  w r i t e r  sub rou t ine ,  AROUT, 

based on t h e  a l p h a . i n p u t  r e a d  i n  through t h e  execu t ive  

r o u t i n e .  The a r r a y s  and a r r a y  header  H o l l e r i t h s  are 

a l i g n e d  i n  t h e  c a l l  l i s t  of  AROUT. Th i s  s u b r o u t i n e  

may be c a l l e d  s e l e c t i v e l y  f o r  a r r a y  w r i t i n g  through 

i n p u t .  



The secondary,  purpose o f  s u b r o u t i n e  OUTPUT i s  t o  . 'wr i t e  

o u t  s e l e c t i v e l y  t h e  convergence r a t e  in format ion  com- 

puted i n  s u b r o u t i n e  SSCOMP ( i . e . ,  maximum changes i n  ,I 

and R and . the  nodal  l o c a t i o n  o f  t h e s e  changes,  du r ing  

s u c c e s s i v e  i t e r a t i o n s ) .  The i t e r a t i o n  numbers s e l e c t e d  
i 

f o r  o u t p u t  are s p e c i f i e d  by i n p u t .  

S u b r o u t i n e .  AROUT (li'st) 

T h i s  i s  t h e  g e n e r a l ' a r r a y  w r i t e r .  

Th i s  s u b r o u t i n e  i s  used t o  w r i t e  o u t  a l l  computed a r r a y s  

s p e c i f i e d  f o r  p r i n t i n g .  The a p p r o p r i a t e  a r r a y ,  header and 

g r i d  c o o r d i n a t e s  a r e  a l i g n e d  i n  t h e  c a l l  l i s t  a t  s u b r o u t i n e  

OUTPUT. Miscel laneous computations a r e  a l s o  performed he re  

a s  neces sa ry .  
.. . 

. ' s ub rou t ine  MAPPER ( l i s t )  

P r h n t s : , c e l l  c o r n e r .  and c e l l  c e n t e r  node type  i d e n t i f i c a t i o n  

t o  l i n e  p r i n t e r .  

Subrout ine  STATE ( N )  
, . 

T h i s  s u b r o u t i n e  computes f l u i d  d e n s i t y .  
. . . 

Subrout ine  ERROR 

F l o a t i n g  p o i n t  i n p u t  d a t a  e r r o r  check. . . 

Subrout ine  IERROR., 

I n t e g e r  d a t a  i n p u t  e r r o r  check. 
I 



6.3 COMPUTED RESULTS AND DISCUSSIONS 

A s  of t h i s  t i m e ,  t h e  VECTRA code has  been modif ied f o r  

a p p l i c a t i o n  t o  c o o l i n g  tower e x t e r n a l  -flows i n  two-dimensional 

r e c t i l i n e a r  and axisyrnmetric c o o r d i n a t e s  w i t h  c o n s t a n t  t r a n s p o r t  

c o e f f i c i e n t s .  P re l imina ry  r e s u l t s  have been o b t a i n e d  f o r  c a s e s  

i nvo lv ing  s i n g l e  and d u a l  towers .  One computer run  has  been 

conducted f o r  comparison w i t h  a  r e c e n t  p h y s i c a l  model t e s t  o f  

t h e  Wyodak p l a n t  tower.  

R e s u l t s  f o r  a  t es t  c a s e  of  two towers  o r i e n t e d  pe rpend icu la r  

t o  . t h e  crosswind a r e  i l l u s t r a t e d  i n  F i g u r e s  6.1-A and B. These 

r e s u l t s . i l l u s t r a t e  t h e  c a p a b i l i t y  o f  t h e  VECTRA code t o  p r e d i c t  

r e c i r c u l a t i o n ,  i n t e r f e r e n c e  and plume r i s e .  Note t h a t  t h e  two- 

d imens iona l i t y  o f  t h e  s o l u t i o n  a l l ows  f o r  no edge e f f e c t s ,  t h u s  

t h e  format ion  of  a  s t r o n g  v o r t e x  between towers.  T h i s  behavior  

would be  expec ted  f o r  long  p r o t o t y p i c  towers ,  b u t  t h e  v o r t e x  

would undoubtedly be much weaker i n  t h e  c a s e  o f  s h o r t  towers  

where edge e f f e c t s  a r e  s i g n i f i c a n t .  

F igu re s  6.2-A and B i l l u s t r a t e  t h e  c a s e  o f  dua l  two- 

dimensional  towers  a t  t h e  Wyodak s i te ;  t h e  downwind tower simu- 

l a t e s  a  p o s s i b l e  c o n f i g u r a t i o n  o f  t h e  proposed ERDA t e s t  f a c i l i t y .  

Again t h e  two-dimensional i ty  o f  t h e  s o l u t i o n  i s  appa ren t  i n  t h e  

s t r o n g  v o r t e x  format ion  and r e c i r c u l a t i o n  between towers .  

Computed r e s u l t s  shown i n  F i g u r e s  6.3-A and B correspond t o  

the p h y s i c a l  model tes t  ease f o r  a  crosswind o f  28 mph (Table  

4 . 1 ) .  The computer s i m u l a t i o n  used a tower d i s c h a r g e  tempera ture  

excess  o f  37OF which d i f f e r s  s l i g h t l y  from t h e  modeled 35OF ATo. 

The crosswind was p r e s c r i b e d  a t  t h e  upstream boundary by 

t h e  g r a d i e n t  wind equa t ion  
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where Uamb i s  t h e  v e r t i c a l  d i s t r i b u t i o n  of  crosswind,  C i s  a 

c o n s t a n t  and Z i s  t h e  v e r t i c a l  dimension. For c o n d i t i o n s  

modeled, C = 9.4, which g i v e s  a crosswind o f  approximately  

' 2 8  mph a t  a  180 - f t  h e i g h t .  The computer r e s u l t s  show a l a r g e  

c i r c u l a t i o n  p a t t e r n  i n  t h e  wake of  t h e  tower and s i g n i f i c a n t  

r e c i r c u l a t i o n .  Computed i so therms  w e r e  compared w i t h  p h y s i c a l  

model test  r e s u l t s .  Although t h e  agreement i s  reasonably  good 

f o r  h e i g h t  of plume r ise ,  t h e r e  i s  disagreement  i n  t h e  down- 

s t r e a m  reg ion ,  p a r t i c u l a r l y  i n  t h e  r eg ion  o f  t h e  computed wake. 

Th i s  disagreement  i s  exp la ined  by t h e  f a c t  t h a t  t h e  computer 

model i s  two-dimensional,  whereas t h e  p h y s i c a l  model r e v e a l s  

s i g n i f i c a n t  three-dimensional  e f f e c t s .  The l e n g t h  of t h e  Wyodak 

tower i s  s h o r t  compared t o  i t s  wid th ,  and t h u s  t h e r e  a r e  s i g n i f i -  

c a n t  "edqe" e f f e c t s ,  such a s  l a t e r a l  wi thdrawal  and en t r a inmen t ,  

which t e n d  . t o  dec rease  tempera tures  w i t h i n  t h e  plume. 

The d e p a r t u r e  o f  t h e  two-dimensional computed r e s u l t s  from 

t h e  Wyodak p h y s i c a l  m6del; s i m u l a t i o n s  prompted f u r t h e r  model 

s t u d i e s  des igned  t o  e s t a b l i s h  t h e  l i m i t a t i o n s  and v a l i d i t y  'of 

t h e  two-dimensional computer program. I n  t h i s  r ega rd ,  two- 

dimensional  p h y s i c a l  t e s t s  were '  i n i t i a t e d  a s  desc r ibed  i n  Sec t ion  
, . 

4.2. A t .  t h i s  w r i t i n g ,  r e s u l t s '  f o r  t h r e e  t e s t  runs  have been, ob- 

t a i n e d  f o r  comparison. These r e s u l t s  a r e ,  however, p r e l imina ry  

and a r e  n o t  cons idered  e n t i r e l y  s a t i s f a c t o r y  I u r  a n  in-depth 

comparison - f o r  e v e n t u a l  v a l i d a t i o n  of t h e  t w O - d i r n ~ ~ S i U ~ ~ r l l  *lode1 . 
Computed mean s t r e a m l i n e s  and d imens ion less  i so therms  

cor responding  t o  t h e  exper imenta l  t es t  runs  Y - l ,  Y-2, and Y-3 

are i l l u s t r a t e d  by I? igurei  6.4, 6 .5 ,  and 6.6. The computed i s o -  

therms do  n o t  compare as w e l l  as d e s i r e d  w i t h  t h e  c u ~ r e s p o n d i n g  

exper imenta l  r e s u l t s  r ega rd ing  t h e  g e n e r a l  shape and magnitude of 

t h e  plume. 111 each case +hc. computed results qive a plume of 

l a r g e r  magnitude; t h a t  i s ,  i so therms  having l a r g e r  enc losed  a r e a s .  

An energy ba lance  check r evea l ed  t h a t  t h e  computer code conserves  t 

energy well w i t h i n  1% of  t h e  t o t a l  amount d i scharged .  
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The r e s u l t s  i l l u s t r a t e d  i n  F i g u r e s  6.4' through 6.6 were 
-i. 

computed u s i n 9 . a  "no - s l i p"  c o n d i t i o n  a t  t h e  bottom bounda.ry 

w h i c h , l e a d s  t o  development of a n e a r  p a r a b o l i c  v e l o c i t y  p r o f i l e  

i n  t h e  ambient  f low. To m o r e . c l o s e l y  s i m u l a t e  a c t u a l  t e s t  con- 

d i t i o n s  t h e  c a s e s  Y - 1 ,  Y-2, and Y-3 were recomputed us ing  a  s l i p  

c o n d i t i o n  a t  t h e  bottom boundary. A comparison of r e s u l t i n g  

' p r o f i l e s  f o r  both  s i t u a t i o n s  i s  i l l u s t r a t e d  i n  ~ i ~ u r e s  6 . 7  and 

6.8 f o r  Cases Y - 1  and Y-3, r e s p e c t i v e l y .  Observe t h e  near  

p a r a b o l i c  v e l o c i t y  p r o f i l e  i n  t h e  n o - s l i p  c a s e  a s  opposed t o  

t h e  ve ry  f l a t  p r o f i l e  i n  t h e  s l i p  c a s e .  The p a r a b o l i c  d i s t r i b u -  

t i o n  r e s u l t s  because o f  u s i n g  a  c o n s t a n t  v a l u e  of  eddy momentum 

d i f f u s i v i t y  i n  con junc t ion  wi th  t h e  n o - s l i p  c o n d i t i o n .  

V e l o c i t y ' p r o f i l e s  i n  t h e  p h y s i c a l  model were no t  measured 

du r ing  t h e  p r e l i m i n a r y  t e s t i n g  b u t  t h e  chanriel f low was e s t a b -  

l i s h e d  as t u r b u l e n t  based upon t h e  Channel Reynolds number 

(199,000 and 86,OO.O f o r  Cases Y - 1  and Y-3, r e s p e c t i v e l y ) ' .  

Based upon t h e s e  v a l u e s  o f  t h e  Reynolds number a  t y p i c a l  channel  

v e l o c i t y  p r o f i l e  i s  e s t i m a t e d  f o r  ed,ch c a s e  as shown i n  F igu res  

6.7 and 6 .8 .  Note t h a t  t h e  s l i p  c o n d i t i o n  more a c c u r a t e l y  

approximates  t h e  channe l  f low than  does  t h e  no - s l i p  c o n d i t i o n .  

Thus, computed r e s u l t s  ob t a ined  throug'h u se  of  t h e  s l i p  condi-  

t i o n  (see F i g u r e s  6 .9  through 6.11) a r e  i n  much b e t t e r  agreement 

w i t h  t h e  exper imenta l  d a t a  p r i m a r i l y  because of  improved dlnbienL 

v e l o c i t y  f i e l d  s i ~ n u l a t i o n .  One shou ld ,  n o t  conclude from t h e  

r e s u l t s  t h a t  a  s l i p  c o n d i t i o n  a t  t h e  bottom boundary i s  c o r r e c t ,  

b u t  t h a t  a s l i p  c o n d i t i o n  more a c c u r a t e l y  s i m u l a t e s  a  t u r b u l e n t  

p r o f i l e  t h a n  does  t h e  n o - s l i p  c o n d i t i o n  when us ing  a  c o n s t a n t  

eddy d i f f u s i o n  c o e f f i c i e n t  f o r  momentum. These r e s u l t s  t h u s  

i n d i c a t e  t h e  need f o r  more a c c u r a t e  t u rbu lence  modeling. 

Although t h e  s l i p  c o n d i t i o n  y i e l d s  g e n e r a l l y  good comparison 

w i t h  exper imenta l  d a t a ,  computed i so the rms  s t i l l  r e s u l t  i n  en-, 

c l o s e d  a r e a s  t h a t  a r e  s l i g h t l y  l a r g e r  t han  expe r imen ta l ly  d e t e r -  

mined average  v a l u e s .  The e x p e r i m e n t a l r e s u l t s u s e d  f o r  comparison 
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a r e b a s e d  on average o f  v a l u e s  ob ta ined  a s  d e s c r i b e d  i n  

S e c t i o n  4 . 2 .  S ince  the .dTscha rge  d i d  n o t  o,ccupy t h e  f u l l  

wid th  of t h e  f lume, va ' lues a long  t h e  edge are a f f e c t e d  by the ' ,  

ambient  and tend  t o  reduce  t h e  o v e r a l l  average  i so therm s ize , .  

Comparison w i t h  i so the rms  more c e n t r a l l y  l o c a t e d  a long  t h e  

d i f f u s e r  i n d i c a t e  s t i l l  b e t t e r  agreement between t h e  exper iments  

and computat ions  ( ~ i ~ u r e  6.12) . : 

. . 

. . . ,  

Based upon r e s u l t s  o f -  t h i s  p re l imina ry  t e s t i n g ,  it i s  con- 
. . 

c luded  that : '  - 

1. t h e  .numericai  model i s  capab le  of s i m u l a t i n g  two- 

- d i n k n s i o n a l  t r a n s p o r t  w i t h  r ea sonab le  good accuracy,  
, . , . .  . 

2. t h e  accuracy  m a y  be improved b y  i n c o r p o r a t i n g  improved 
1 :  turbule 'nce  modeling. 

With rega'rd t o  t h e  l a t t e r  p o i n t  above, it is  planned t o  incorpor  

ra te  a two-equation,model f o r  t u rbu lence  i n  t h e  nea r  f u t u r e .  
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(a) Vertical ~istribution 

FIGURE 4.23 Temperature Distribution for Run A-5. - Va = 28.1 MPH. 
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(d) Horizontal Distribution, 240 Feet Above the Ground 
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(a) Vertical Distribution 

FIGURE 4.23 Temperature Distribution for Run B .  Va = 27.5 MPH. 



LONGITUDINAL DISTANCE, IN FEET 

WYODAK PLANT TOWER ONLY 
B-H-1 .  

. . 
' (b) I3orizontal 'Distribution, Ground Level . .. . - . . 



LONGITUDINAL DISTANCE, IN FEET 

WYODAK PLANT TOWER ONLY 
B-H-2 

(c) Horizontal Distribution, 120. Feet Above the Ground 
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(d) Horizontal Distribution, 240 Feet Above the Ground 
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(a) Vertical Distribution 

2IC-iJRE 4.26 Temperature Distribution for Run C-4. Va = 18.5 MPH. 
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(d) Horizontal Distribution, 240 Feet Above the Ground 
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(e) Horizonzal Distribution, 360 Feet Above the Ground 
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(f) Horizontal Distribution, 480 Feet Above the Ground 
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(a) Vertical D~stribution 

FIGURE 4.27 Temperature Distributron for Run C-5. Va = 28.0 MPH. 
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) Horizonxal Distribution, 120 Feet Above the Ground 
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(d) H o r i z o n t a l  D i s t r i b u t i o n ,  240 Feet A b o v e  t he  G r o u n d  
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(e) Horizcrntal Dis t r ibu t ion ,  360 Feet  Above t h e  Ground 
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FIGURE 4.28 T e m p e r a t u r e  D i s t r i b u t i o n  f o r  Run C-6. Va = 36.0 MPH. 
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(b) Horizontal Distribution, Ground Level 
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(c) Horizontal Distribution, 120 Feet Above the Ground 
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(d)  Horizontal Distribution, 243 Feet Above the Ground 
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LONGITUDINAL DISTANCE IN FEET 

(a) Vertical Distribution 

FIGURE 4.29 Temperature Distribution for Run TU-4. Va = 19.6 MPH. 
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L O N G I T U D I N A L  D I S T A N C E ,  I N  F E E T  ERDA TOWER UPWIND 
TU-4-H-2 

(c) H o r i z o n t a l  D i s t r i b u t i o n ,  90 Feet A b o v e  t h e  G r o u n d  
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(f) H o r i z ~ 3 t a l  Dis t r ibu t ion ,  270 Feet Above t he  Ground 
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(g) Horizontal Distribution, 330 Feet Above the Ground 
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Horizontal Distribution, 390 Feet Above the Ground 
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(j) Horizonta l  D i s t r i b u t i o n ,  510 Feet Above t h e  Ground 
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(k )  H o r i z o n t a l  D i s t r i b u t i o n ,  570  F e e t  Above the  Ground  
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FIGURE 4.30 ~ e m ~ e k a t u r ~  D i s t r i b u t i o n  for  R u n  TU-5. Va = 29.8 MPH. 
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(b) Hor i zon ta l  D i s t r i b u t i o n ,  30 F e e t  Above t h e  Ground 
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(d) HGrizontal Distribution, 150 Feet Above the Ground 
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(3) Horizontal Distribution, 210 Feet Above the Ground 
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(f) Horizonta l  D i s t r i b u t i o n ,  270 F e e t  Above t h e  Ground 
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(j) Hcrizontal Distribution, 5.10 Feet Above the Ground 
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(k) H o r i z o a t a l  D i s t r i b u t i o n ,  570 Feet Above the G r o u n d  



, (a) Vertical Distribution 

FIGURE 4.31 ~em~erature Distribution for Run TU-6. 77 = 39.1 MPH. 
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(a) Vertical Distribution 

FIGURE 4.32 Temperature Distribution for Run TD-4. Va = 19.8 MPH. 
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(f) Horizontal Distribution, 270 Feet Above the Ground 
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(g) Horizontal Dis tr ibut ion ,  320 Feet  Above the Ground 
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( h )  H o r i z o n t a l  D i s t r i b u t i o n ,  390 Feet A b o v e  t h e  G r o u n d  
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(a) V e r t i c a l  D i s t r i b u t i o n  

FIGURE 4 . 3 3  Terrperature D i s t r i b u t i o n  f o r  Run TD-5. Va = 29.2  MPH. 
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(dl Horizontal Distribution, 150 Feet Above the Ground 
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(e) H o r i z o n t a l  D i s t r i b u t i o n ,  210 Feet Above the G r o u n d  
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(f) Horizonta l  D i s t r i b u t i o n ,  270 Fee t  Above t h e  Ground 
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(g) Horizontal Distribution, 330 Feet Above the Ground 
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(i) Horizontal Distribution, 450 Feet Above the Ground 



I LO>IGITUDINAL DISTALiCE, I N  F E E T  ERDA TOWER DOWNWIND 
TO-5-H-9 

(j) Horizontal  D i s t r i b u t i o n ,  513  Feet Above t he  Ground 
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FIGURE 4.34 Temperature Distribution for Run TD-6. Va = 37.1 MPH. 
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(d) Horizontal Distribution, 150 Feet Above the Ground 
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(e) Horizontal Distribution, 210 Feet Above the Ground 
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L
A
T
E
R
A
L
 
D
I
S
T
A
N
C
E
,
 
I
N
 
F
E
E
T
 



LONGITUDINAL DISTANCE, IN. FEET ERDR TOWER DOWNWIND 
TD-6-H-8 

(i) Horizontal Distribution, 450 Feet Above the Ground 
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2 DIMENSIONAL DIFFUSION 
Y- 1 -V-A 

(a) Vertical Distribution of the Average Water Temperature 

FIGURE 4.47 Vertical Tempezature Distribution for Run Y-1. 
K = 0 .72 ,  P~ = 6.7, P = 910, and Pa = 19.9 x 10 
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(f) Vertical Distribution of Water Temperature at Cross-Section 5 
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2 DIMENSIONAL DIFFUSION 
Y - 2 - V - A  . 

(a) Vertical Distribution of the Average Water Temperature 

FIGURE 4 .48  Vertical Temperature Distribution for Run Y-2. 
K = 0.72, FD = 4.5, 11 = 1130, and % = 19.9 x 10 4 
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(b) Vertical 3istribution of Water Temperature at Cross-Section 2 
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(a )  Vertical D i s t r i b u t i ~ n  ~f thc Avcragc Water Tempcratufe 

FIGURE 4 .49  Vert ical  Temperature D i s t r i b u t i o n  for Run Y-3. 
K = 1.65, ID = 4.5 ,  1 = 1130, and la = 8.6 x 10 
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APPENDIX 3 .  NOMENCLATURE 

a:  Dis tance  between t h e  open c o a l  mine pit t o  t h e  
c o o l i n g  towers 

b: Depth o f  t h e  open mine p i t  

C:  Cons tan t  

I T D :  

Cooling tower s t a c k  d iameter  

Ambient model f low dep th  and i t s  corresponding 
p ro to type  h e i g h t  

Plume buoyancy f l u x  

Func t iona l  r e l a t i o n s h i p  

Densimetr ic  Froude number d e f i n e d  by equa t ion  3 . 4  
. . 

Reference d e n s i m e t r i c  ~ r o u d e  number 

Drag Force i n  l o n g i t u d i n a l  ' d i r e c ' t i o n  
. , 

. ., 
Drag Force  i n  v e r t i c a l  ' d i r e c t i o n  

G r a v i t a t i o n a l  a c c e l e r a t i o n  

I n i t i a l  t empera ture  d i f f e r e n c e  

Ve loc i ty  r a t i o  of  t h e  h e a t e d ' e f f l u e n t  t o  t h e  ambient  
f low de f ined  by equa t ion  3 . 7  and .eddy  d i f f u s i o n  
c o e f f i c i e n t  f o r  h e a t  

. . 

C o e f f i c i e n t  i n  equa t ion  4 . 6  
. . 

C o e f f i c i e n t  
. . 

. . 

Reference l e n g t h  
: .  . . . 

P,: P r e s s u r e  . . 

P O : '  P/po 

P R ~ :  Hqr i zon ta l  r e f e r e n c e  P r a n d t l  number 

PRZ: V e r t i c a l  r e f e r e n c e  P r a n d t l n u m b e r  
, , 

,,o 



. , q: Heat sou rce  . .. . - .  
, . , . . . .  

QD: 
Heat r e j e c t i o n  c a p a c i t y  o f  a coo l ing  tower 

, I : . . .  
. ... . . 

R: ~ e c i r c u 1 a t ; o n  r a t i o  de f ined  by equa t ion  4 . 1  and 
'gas c o n t e n t  . . 

, . . .. . , 

r: Radia l  c o o r d i n a t e  . ... " 

JRa: Ambient f low Reynolds number de f ined  by equa t ion  3.5 L- 

: 
Je t  Reynolds numbe.r d e f i n e d  by equa t ion  3 . 6  

- .  9 

RE ,: . ~ o r i z o r i t a i  ' r e f  e r @ n c & . ' ~ e ~ n b l d ' s  number 
X 

REZ: V e r t i c a l  r e f e r e n c e  Reynolds number 
. . 

T: Temperature . .  . . . 

t: T i m e  . . . . .  . . , . 
. . 

: Ambient f l m ' t e m p e r a t u r e  Ta . .  . ,. 

Ti : 
Cooling tower i n p u t  wate r  t empera tu re  

, . . .. 

Tw : Withdrawal wate r  temperatur.e of a  coo l ing .  tower 
. .. . . . . 

U: Nondimensional l o n g i t u d i n a l . v e l o c i t y  (u/vo) 

u:  Long i tud ina l  v e l o c i t y  

V: Nondimensional v e r t i c a l  v e l o c i t y  (v/vo) 
. .' . . 
v:: V e r t i c a l  v e l o c i t y :  r . 

, .. . Ambient velcrci t.y 'a i . . . . 

a Vj : Heated e f f l u e n t  v e l o c i t y  

v  : Reference v e l o c i t y  ' , 

0 

X: Long i tud ina l  c o o r d i n a t e  and nondimensional 
l o n g i t u d i n a l  c o o r d i n a t e  (x/L) 

x: Long i tud ina l  c o o r d i n a t e  

x  : Represen ta t ive  l o n g i t u d i n a l .  l e n g t h  = 10, f e e t  
0 

: .  . . , .  . .  
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