

PREPRINT UCRL- 77697

(CONT'D. 760539-5)

Lawrence Livermore Laboratory


A HPGe COMPTON-SUPPRESSION AND PAIR SPECTROMETER

David C. Camp

May 19, 1976

This paper was prepared for the ERDA Symposium on X- and Gamma-ray Sources and Applications, Ann Arbor, Michigan, May 19-21, 1976

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

MASTER

PHOTOCOPIED FROM THE ORIGINAL TO UNLIMTED

NOTICE
The report was prepared as an account of work sponsored by the U.S. Energy Research & Development Administration and the United States Energy Research & Development Administration, and its contractor, Lawrence Livermore Laboratory, and its employees. It is believed that the information contained in this report is accurate and reliable. However, neither the United States Energy Research & Development Administration nor its contractor, Lawrence Livermore Laboratory, nor any of their employees makes any guarantee, expressed or implied, as to the accuracy or reliability of the data or conclusions set forth, or endorses or endorses any technique, apparatus, product or service. The United States Energy Research & Development Administration and its contractor, Lawrence Livermore Laboratory, disclaim any liability or responsibility for any use that may be made of the information contained in this report.

A HPGe COMPTON-SUPPRESSION AND PAIR SPECTROMETER

David C. Camp
Lawrence Livermore Laboratory, University of California
Livermore, California 94550

Summary

A HPGe detector incorporated into a Compton-suppression and pair spectrometer yields a continuum suppression factor of over 30. Cryostat housing requirements to obtain such suppression are discussed, sample spectra are presented, and several experiments making use of the HPGe dual system are discussed.

Introduction

Early Ge(Li) detectors were small. Consequently, the signal-to-noise or peak-to-Compton-continuum values were poor, and ways to improve peak identifiability were sought. Pulse-shape discrimination, Compton scattering-summing spectrometers, Compton-suppression spectrometers, and three-crystal pair spectrometers were all tried. The first two methods proved unsatisfactory, but the latter two have been more successful. These methods are more fully discussed and referenced in an earlier review.¹

Compton-suppression and pair spectrometers are useful in measuring gamma-ray spectra. They improve upon the peak-to-continuum ratio of a Ge detector alone. Also, they simplify the spectrum, remove interferences, and lead to improved accuracies in determining transition intensities. Compton continuum suppression factors have varied from 4 to 12 depending on the geometry employed. Pair spectrometers can lead to dramatically simplified spectra, but generally they require longer data accumulation times.

Over the past five years, the efficiency of Ge(Li) detectors has increased from 10% to almost 50% relative to a $7.6 \text{ cm} \times 7.6 \text{ cm}$ NaI(Tl) at 1.33 MeV. Excellent energy resolution ($\sim 2.0 \text{ keV}$ at 1.33 MeV) has been maintained. Thus, the necessity we desire for continuum reduction appears to have lessened. This is unfortunate because suppression and pair spectrometers can always improve the signal-to-noise ratio regardless of the Ge(Li) detector size. The use of Ge(Gi) detectors of 15% to 45% relative efficiency in combination with appropriate anticoincidence geometries can result in Co-60 peak-to-minimum ratios of from 100/1 to perhaps 500/1. Unfortunately, these larger Ge(Li) detectors no longer function effectively as three-crystal pair spectrometers because of the reduced amount of annihilation radiation that escapes. However, if careful attention is paid to the experimental arrangement, it is possible to achieve excellent continuum suppression and use the spectrometer simultaneously as a three-crystal pair spectrometer. This paper describes the use of a high-purity-germanium (HPGe) detector and large anticoincidence NaI(Tl) detectors in combinations which lead to simultaneous use of the system as a Compton-suppression and pair spectrometer.

Principles of Operation

The two most common anticoincidence geometries used for Compton-suppression spectrometers are illustrated in Fig. 1. Another geometry is discussed by Konijn, et al.² Generally, a Ge(Li) detector within its own vacuum housing is placed within a scintillation detector (usually NaI(Tl) or plastic scintillators with a split-anulus or split-halves enclosing geometry). Gamma rays from a

* This work was performed under the auspices of the U.S. Energy Research & Development Administration, under contract No. W-7405-Eng-48.

Fig. 1. The two most common geometries used in Compton-suppression spectrometers.

source positioned outside are collimated to strike the central Ge(Li) detector. Those gamma rays scattering between θ_{min} and θ_{max} have a finite probability of interacting with the surrounding scintillator. If these scattered gamma rays can be detected above the scintillator noise level, they can be used as anticoincidence gates for the corresponding central Ge(Li) detector events. In principle, then, only full-energy events should remain in the Ge(Li) detector spectrum.

In practice, however, the Compton continuum is not eliminated, but only partially suppressed. Those gamma rays having scattering angles less than θ_{min} will not be suppressed, while those having backscattering angles greater than θ_{max} escape detection. The latter contributes high-energy photoelectrons to the Ge(Li) spectrum concentrated near the Compton edge. Contributions to the Compton continuum also come from gamma rays that scatter from inactive Ge, the cryostat housing, or the collimator walls, and then interact completely with the Ge(Li) detector and from gamma rays that scatter out of the Ge(Li) detector and are totally absorbed in inactive Ge, cryostat walls, or the scintillator housing. Therefore, the extent of continuum suppression will depend on the completeness of enclosure by the anticoincidence detectors, the active to total volume of the Ge detector, and the materials enclosing and surrounding the central detector.

In three-crystal pair spectrometers, source gamma rays are collimated to strike only the central Ge detector. Those interacting with Ge via the pair production process produce electron-positron pairs, most of which lose their kinetic energy within the central detector. If the two oppositely directed 511-keV annihilation quanta escape the Ge detector and deposit their full energy in the surrounding scintillators, a triple coincidence will allow recording of only the double escape or pair peaks. As the central detector volume increases, the probability of both 511-keV quanta escaping decreases rapidly. Thus, large-volume Ge detectors make poor central detectors for pair spectrometers, but excellent detectors for Compton-suppression spectrometers. A more detailed discussion can be found in Ref. 1.

The HPGe Central Detector

The availability of HPGe offers the possibility that both the n - and p -junctions required to make a detector can be made vanishingly thin (0.1-100 μ m); thus the active to total volume ratio can approach 1.0. With inactive Ge reduced to a minimum, the next requirement is to reduce the amount of total mass surrounding the detector. Figure 2 is a schematic drawing of the detector-holding arrangement. The detector is 31 mm

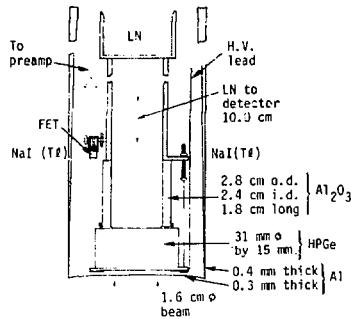


Fig. 2. A schematic drawing of the HPGe cryostat and detector mounting. (See text for details.)

in diameter and has a 14.5-mm-deep intrinsic region. Palladium is used for the p -contact ($\sim 0.1 \text{ nm}$) and diffused lithium for the n -contact ($\sim 0.01 \text{ nm}$). The detector operates at 2300 V, but is fully depleted at 300 V ($\sim 3 \times 10^9$ impurity atoms/cm 3). The detector is oriented so that collimated gamma rays enter through the p -contact; hence, backscattered photons will pass through the thinner junction.

The detector is mounted against tubular sapphire (Al2O3), which serves both as an excellent thermal conductor and as an electrical insulator. The sapphire is positioned against a tubular aluminum cold finger. Indium is used to improve thermal conductivity at each interface. The sapphire and detector are held to the tubular aluminum cold finger by three 0.25-mm-diameter stainless steel wires. Only one is shown in Fig. 2, as they are positioned at 120° intervals around the detector. These wires couple into a 0.75-mm-thick piece of lexan* that extends across the entire face of the detector. The lexan is 1.5 mm thick around the edge of the detector. This low-Z material is used to minimize mass, but it also serves to hold in place a small wire carrying the high voltage to the detector. The signal lead to the input FET is a Cu wire encircling the sapphire and twisted tightly into the indium and sapphire.

The enclosing walls of the aluminum vacuum housing are 0.40 mm thick in the vicinity of the detector, and get gradually thicker (for mechanical strength) away from the detector. The prestressed aluminum end window is 0.36 mm thick and was electron-beam-welded to the housing wa. s. Thus, mass surrounding the detector has been minimized. Note that no heat shield is employed and that the cold finger and insulator are tubular. It was necessary to adopt this "beam dump" geometry; otherwise the back-scattered gamma-ray distribution (centered about 225 keV) becomes enormous with the excellent Compton continuum suppression that this spectrometer yields.

The split-halves anticoincidence-detector geometry is used. The NaI(Tl) detectors, 34 cm in diameter and

* Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Energy Research and Development Administration to the exclusion of others that may be suitable.

17.5 cm thick are optically isolated and integrally mounted in a single housing. Since 7.6-cm-diameter phototubes view each end, the detector vacuum housing entrance well is 5.0 cm in diameter and 25 cm long, while the gamma-ray-beam entrance well is 1.9 cm in diameter and 9.0 cm long. The much smaller beam entrance reduces the gamma-ray back-scattering solid angle (0.05%) and allows better suppression in the vicinity of the Compton edges. The 80×10^3 cm² enclosure walls, designed to reduce noise interference between the central HPGe detector and the anticoincidence detectors are 0.75-mm-thick aluminum.

Electronfer

Figure 3 shows a block diagram of the electronics. The NaI preamplifiers should have excellent over-load

Fig. 3. Electronic circuit used to operate superregeneration and pair modes simultaneously.

characteristics and very fast recovery times for cascade ray events. Constant fraction discriminators are used for both NaI and Ge signals. The threshold of the scintillation detector's discriminator should be set as close to noise level as possible, but not in it. The best suppression factor is obtained when the smallest energy interaction in the scintillator is detected. When this system is used as a suppression spectrometer, a signal from either scintillator half in coincidence with a Ge event anticoincidences or rejects that Ge event and stops the TAC. In operation as a pair spectrometer, both scintillator halves must register a 511-keV annihilation quanta. Hence, a "one-slow" coincidence arrangement is used. A 4674TC fast-coincidence output gates the slow 418A triple-coincidence unit, whose output, in turn, allows acceptance of any Ge event by the analyzer. Note that a biased amplifier is introduced prior to the analyzer to select only that portion of the Ge spectrum above 1.0 MeV. Thus, Compton-suppression and pair, 1.0 MeV, can be recorded simultaneously.

Performance

Figure 4 shows two spectra of $Zn-65$. The top spectrum is taken at 100 keV , while the lower curve is Compton suppressed. Both spectra were recorded simultaneously. The maximum suppression factor achieved was 25 in the vicinity of 700 keV . This leads to a peak-to-continuum Compton value of 1100 to 1 . $Zn-65$ is a positron emitter; thus the 511-keV peak is normal. Note that the two spectra join at very low energy ($<25 \text{ keV}$), corresponding to no suppression of Compton-ray scattering anisotropies that begin about $>10^3 \text{ keV}$.

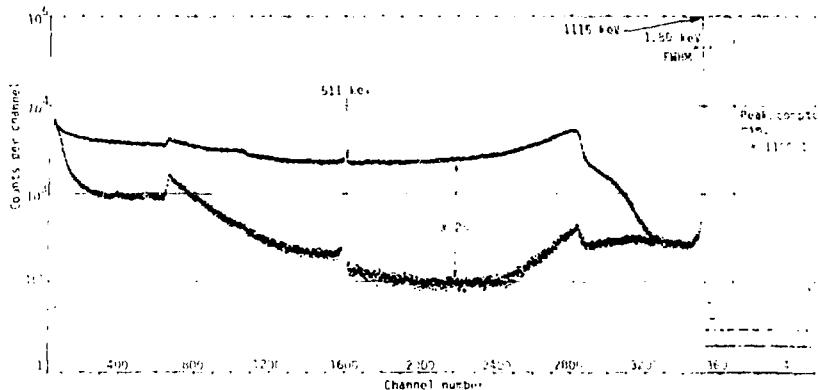


FIG. 4. Compton-suppressed (top) and single (bottom) spectra of Co-60.

Figure 5 shows a singles and Compton-suppressed spectrum of Co-60. Here, the two spectra join at about 10 keV for a $\theta = 90^\circ$ corresponding to about 220° . Note that the double-escape peaks at 151 and 310 keV are suppressed beyond detection. For higher-energy gamma rays, they are not completely eliminated, e.g. the Na^{22} -753-keV transition. This is easily understood if one considers two annihilation quanta that escape at 90° and 180° respectively, where there is no antiequidistance scintillator. Much less likely, but not zero, is the probability of both 511-keV quanta not interacting at all with either scintillator.

Note the presence of a small 511-keV peak in the suppressed spectrum. This is a result of annihilation quanta interacting via pair production with collinear quarks and any quarks in the vicinity of the detector. Subsequent to annihilation of the positron, the annihilation quanta is totally absorbed by the 8000 detector. The quark size of the back-scattered annihilation quanta is of 22° keV is readily apparent. It would have had an even greater area were it not for the "near-digital" process used in mounting the detector (see Fig. 2). The quark for annihilation has a FWHM of 190 keV, and the tails are essentially Gaussian. Thus, without significant filtering,

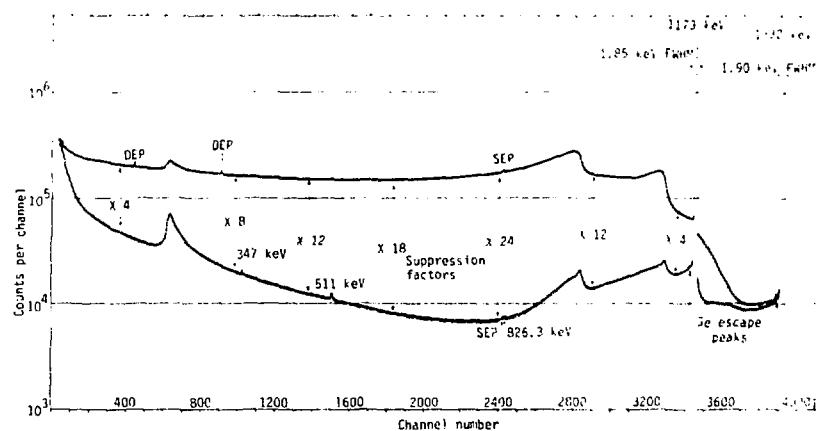


FIG. 5. Compton-suppressed (bottom) and singles (top) spectra of Co-60.

one observes the γ fluorescent x-ray escape peaks, the excellent peak shape is in part due to collimation of the incoming gamma radiation toward the center of the BLOD detector (fig. 2), and in part due to the excellent detector material quality, which allows the use of a large overvoltage.

The maximum suppression factor observed so far with this system is 11. It depends sensitively on the valid discriminator settings and the condition of the phototubes. With noisy or poorly working phototubes, small signal spikes will not be detected, and those events will not be rejected. A maximum suppression factor of 1 corresponds to 95.5% reflection, while a factor of 11 corresponds to 99.7%, a difference of less than one percent. In fact, some time after the Fig. 5 data were taken, six noisy and two non-working phototubes were discovered. Also the degree to which the Compton edge "breaks" are suppressed, and the low energy at which the spectra begin depend on photomultiplier response and discriminator settings. In data taken earlier, the suppression factors were 23% better than for the late run in Fig. 5. As a result, always at no increase was observed to occur in the spectrum towards the low-energy side of the suppressed 1.11-keV Compton edge, contrary to the increase observed in Fig. 5.

33-42947-6, 29

The excellent Compton continuum suppression and near-exclosure of the Bhabha detector lead the spectra to a wider experiment not otherwise possible. For example, it is nearly impossible to measure quantitatively via beta-gamma ray intensities the very weak forbidden beta branches whose endpoint energies lie well within strong allowed beta transitions. However, with significant Compton suppression, it is possible to observe very weak gamma transitions that depopulate levels fed by forbidden beta decays. Banany has succeeded in measuring several such cases (although without suppression), the $\gamma\gamma\gamma$ and radioactivities of C-60 , In-113 , Ce-144 and Cs-137 , and others, all containable forbidden beta branches observed via weak gamma-ray transition-intensity measurements.

Similarly, one can measure weak gamma-ray branches that test various theoretical nuclear predictions. In the quadrupole vibrator model, small inter-particle couplings reduce the degeneracy to lead to a triplet of levels (0⁺, 2⁺, 4⁺) for the even-parity vibration. γ - γ -transitions between the 0⁺ and 2⁺ levels (the so-called "zero-phonon") are forbidden according to this model. These weak interband or odd-odd forbidden gamma-ray transitions are generally hidden by the continuum continuum. The hunting for such odd-odd

could be measured by looking for such transitions. They have been observed¹ in a number of nuclei, and the isotope transit as seen in Fig. 1 is just one "zero-photon" transition in history. Other examples, weak interband (i.e. to excited) transitions have been observed in the deformed nuclei region.

In the search for states of very high angular momentum via infrared spectroscopy, Crompton¹ suggested a cell allowing the observation of smaller ΔE 's in transition. Thus, those groups who have in the past used Crompton's supersonic spectrometers should have the small investment required to adapt their cell and obtain identical oscillators to fit the so-called high-temperature jet cell.

The almost complete $\pi^- p$ cross section measured by this antinucleon-deuteron system, combined with the small deuteron detection site makes the system an excellent $\pi^- p$ spectrometer. The possible experiment will be the confirmation of the neutrality of the experimental pion-production cross section (itself) at low energies via the Bethe-Bloch-like prediction. Another experiment currently under investigation will be a search for double-pion production. Double-pion production predicts a nonvanishing contribution to the reaction of the electric dipole moments of nuclei. Nevin, Wilkinson and Alburger¹⁰ were the first to attempt to measure the cross section, but they obtained only an upper limit. More recently, Alburger et al.¹¹ obtained indirect evidence of this process, with the present spectrometer (not SCM, set to have only 1.6 GeV) and with direct experimental observation, with both SM and SCM detectors, a cross section of this process can be established, even excluding the background cascade first-order or even two-body (in a complex

Ergonomics

1. Camp, D. C., Radiotracer in Biology, Vol. 1, eds., J. Hamilton and J. Van Thiel, Academic Press, New York, 1972 Vol. 1, pp. 11-49.
2. Rundt, J. C., Sonneveld, L. J., and Mengenau, L. J., *Anal Chem*, **35**, 103 (1963).
3. Raman, S., and Ghose, M. K., *Proc. Roy. Soc. (London)*, **104**, 104 (1933).
4. Camp, D. C., and Van Hise, C. C., *Proc. Roy. Soc. (London)*, See also *Phys. Rev. Lett.*, **13**, 1145 (1964).
5. Van Hise, C. C., Camp, D. C., and Dever, W. A., *J. Phys. A*, **72**, 383 (1964).
6. Yamakazi, T., and M. Hidemoto, *J. Phys. Soc. Japan*, **14**, 113 (1965).
7. Willison, D. H., and Albuter, D. J., *Proc. Roy. Soc. (London)*, **219** (1972).
8. Robertson, A., Bennett, S. J., and Prestwich, R. W., *Phys. Rev. C*, **11**, 1557 (1970).