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ABSTRACT

An ROC curve provides an empirical description of the trade-offs 

which are possible among the various types of correct and incorrect 

decisions as the human decision-maker varies one or more "confidence 

thresholds." Conventional ROC curves measured in simple decision-making 

situations can, in seme cases, be used to predict human decision perform­

ance in more complex situations.

By considering both the consequences of the various types of diag­

nostic decisions and the overhead cost of a diagnostic study, one can use 

the ROC curve to evaluate the diagnostic usefulness of a study in any par­

ticular clinical context. Since the ROC curve describes the possible 

relationships among the probabilities of the various types of correct 

incorrect decisions, it plays a central role in optimizing diagnostic 

strategies using the general techniques of decision analysis.

and
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1. INTRODUCTION

With the introduction of new diagnostic imaging techniques in recent 

years, the problem of evaluating the relative usefulness of these new pro­

cedures in a meaningful way has become increasingly important. The question 

is often asked: Which imaging technique is best? This paper will attempt 

to describe an approach which can, in principle, provide an objective and 

quantitative answer to that kind of question.

The approach to be described here can lie applied to both highly speci­

fic and also more general problems of evaluating diagnostic image quality.

In order to answer a question regarding which of several imaging procedures 

is best, however, the question must be carefully phrased. What criteria are 

to be used to measure •’best"? Best at doing what? Best for what human ob­

server? Best in what situation or situations? The answer to a question 

regarding diagnostic image quality cannot be more precise than the question 

itself.

An important aspect of diagnostic medicine consists of making deci­

sions regarding the actual health or disease state of the patient. On the 

basis of the information available to him, the diagnostic physician must de­

cide whether the various attributes of a particular disease state are present 

or absent, must decide whether or not to request additional diagnostic tests, 

and must finally decide whether a particular disease state (or which one of 

several) is present in a particular patient.

The approach to diagnostic image evaluation described here is based 

upon measurement of the quality of the decisions which a physician is able
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to make when using a diagnostic imaging technique in a given situation. The 

approach is divided into two parts: (1) measurement of the relationships 

among the relative frequencies of the various types of correct and incorrect 

decisions which the physician can achieve using the imaging technique, and 

(2) evaluation of the diagnostic benefit which can be gained from those 

possible combinations of decision frequencies. Principles of signal detec­

tion theory are used to guide the approach, to predict relationships among 

descriptions of decision performance in various situations, and to suggest 

optimal decision-making strategies. Essentially, however, the approach is 

empirical.

In the following sections we will review briefly the basic principles 

of Receiver Operating Characteristic (ROC) curve analysis; we will suggest 

ways in which the conventional ROC approach can be generalized to describe 

complex decision tasks; we will indicate how various measures of diagnostic 

quality can be derived from knowledge of the ROC curve; and we will point 

out applications of ROC analysis in a general decision-analytic approach 

to the diagnostic problem.

2. CONVENTIONAL ROC METHODS

To begin, consider the situation in which the diagnostic decision- 

naker must choose between two alternatives: for example, a particular 

disease may be present or absent, a lesion may be present or absent, 

or a disease may be of type A or type B. Two classes of ’’true states'* 

exist which we can, for now, call "actually positive" and "actually nega­

tive"; and two decisions are possible, namely, a "positive" decision (i.e.,
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the decision that the true state is "actually positive") and a "negative" de­

cision (i.e., the decision that the true state is "actually negative").

Either decision may be correct or incorrect. Four types of decisions 

are therefore possible in this situation: a "true positive" decision (i.e., 

a "positive" decision for an "actually positive" true state); a "false posi­

tive" decision (i.e., a "positive" decision for an "actually negative" true 

state); a "true negative" decision (i.e., a "negative" decision for an "actu­

ally negative" true state); and a "false negative" decision (i.e., a "nega­

tive" decision for an "actually positive" true state). All four types of de­

cisions will occur in almost any decision-making situation in the presence of 

uncertainty, and hence all four types of decisions must be taken into account 

when measuring (and attempting to specify) decision performance.

Suppose that a physician views a series of images (e.g., radiographs 

or scintigrams) which are similar except that some of the images are "actu­

ally negative" (e.g., are images of normal subjects), while the rest are 

"actually positive" (e.g., are images of subjects having a certain type of 

lesion or disease state). Because of statistical fluctuations in the image 

data (e.g., due to quantum statistics) or in normal anatomical structure or 

function (i.e., "structured noise" [Revesz, Kundel, and Graber, 1974]), be­

cause of neural and/or psychophysical fluctuations internal to the observer 

[Wickelgren, 1968; Tr^snan and Leshowitz, 1969; Goodenough and Metz, 1975], 

and perhaps because of statistical variations in the form of the lesion or 

manifestation of the disease, the presence or absence of the lesion or dis­

ease may not always be decided correctly.
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2.a. The Concept of Confidence Threshold

It is a fundamental assumption of our approach that the observer de­

cides whether or not a lesion (for example) is present by comparing his im­

pression of the image with some "decision criterion", or "confidence threshold" 

and by stating that a lesion is present if and only if his confidence that 

the lesion exists in the image exceeds that threshold. The method by which 

the observer determines his confidence that the lesion is present is of no 

concern in the application of our approach, although the method used by the 

observer may influence his ability to detect the lesion. Training and ex­

perience would seem to be important factors in determining the skill with which 

the observer can utilize the image data to form an appropriate estimate of his 

confidence that a lesion or a disease state is present.

The relative frequencies of the possible correct ("true positive" and 

"true negative") and incorrect ("false positive" and "false negative") deci­

sions will depend upon the confidence threshold adopted by the observer. We 

will discuss later the question of what confidence threshold the observer 

should adopt; let it suffice here to say that the degree of apparent "posi- 

tiveness" which the observer requires before he is willing to make a "positive" 

decision should depend both upon the clinical consequences of the four types 

of correct and incorrect decisions for the case at hand and also upon the 

frequency of actually positive cases.

Since the underlying detectability of the lesion by the observer does 

not depend upon the confidence threshold chosen by the observer, however, any 

useful and complete description of the detectability of lesions (or disease
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etc.) by a human observer in the presence of uncertainty must take into ac­

count the concept of a variable decision threshold.

As a case in point, if an observer is required to detect lesions in 

two series of images—of the same body part but produced by two different 

imaging systems, for example—then it may be found that the observer's deci­

sions based upon one series of images yield both true-positive and false­

positive decision frequencies which are greater than those elicited by the 

other series of images. In order to decide whether the differences in deci­

sion frequencies are due to different inherent lesion detectabilities provided 

by the two imaging systems, or whether they are due only to the (perhaps uncon­

scious) adoption of different confidence thresholds by the observer, one needs 

a method of observer performance analysis which separates these two factors 

influencing the relative frequencies of the four types of decisions.

2.b. The Conventional ROC Curve

The combination of decision frequencies produced by an observer at­

tempting to detect a given image feature or disease state using a given imag­

ing system depends upon the confidence threshold adopted by the observer; 

the appropriate confidence threshold depends on the clinical context of the 

detection problem; and furthermore the confidence threshold which an observer 

my adopt is difficult to quantitate. For these reasons, it is useful to de­

scribe detection performance by Hie relationship among the various possible 

decision frequencies which are generated as different confidence thresholds 

are adopted by the observer, with the values of confidence threshold implicit, 

rather than explicit, in the analysis. Receiver Operating Characteristic (ROC) 

analysis does just that.
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It is convenient to establish at this point a convention for notation 

which will facilitate our subsequent discussion. Let s and n represent the 

two true states "signal actually present" (i.e., "actually positive") and 

"noise only actually present" (i.e., "actually negative"), respectively. Let 

S and N represent the decisions "positive" and "negative," respectively.

Then the conditional probability P(S|s), for example, represents the rela­

tive frequency with which actually positive images are decided to be posi­

tive in a large number of trials, and P(S|n) represents the relative fre­

quency with which actually negative images are called positive. Similarly, 

P(N|s) represents the relative frequency with which actually positive images 

are called negative, and P(N|n) represents the relative frequency with which 

actually negative images are called negative. The four conditional proba­

bilities described above are sometimes called the "conditional true positive 

probability," the "conditional false positive probability," the "conditional 

false negative probability," and-the "conditional true negative probability," 

respectively. One should note that since all actually positive images must 

be called either positive or negative, P(S|s) + P(N|s) = 1, and similarly, 

P(S|n) + P(N|n) = 1. Thus specification of a canbination of conditional true 

positive and false positive probabilities, for example, in fact specifies the 

conditional probabilities, and hence relative frequencies, of all four types 

of decisions.

A conventional ROC curve specifies the various trade-offs which are pos­

sible among the frequencies of the four types of correct and incorrect deci­

sions as the confidence threshold is varied in a two-alternative detection
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experiment by showing the various possible relationships between P(S|s), 

the conditional true positive probability, and P(S|n), the conditional false 

positive probability. Specifically, the conventional ROC curve is a graph 

of P(S|s) versus P(S|n).

A typical conventional ROC curve which might result fran a two- 

alternative visual detection experiment is shown in figure 1. If the ob­

server adopts sane "moderate" confidence threshold in deciding whether to 

can each image "positive" or "negative," the resulting canbination of con­

ditional true and false positive decision probabilities might plot as point 

A, If the observer were to adopt a "strict" confidence threshold, on the 

other hand, in the sense that a suspected lesion must appear very convinc­

ing in order for the image to be called "positive," then false positive de­

cisions would be less frequent, but true positive decisions vould be less 

frequent also (i.e., false negative decisions would be more frequent, and 

more lesions would be "missed"). Hence, in this case, the resulting condi­

tional frequencies might plot as point B. As a third possibility, if the 

observer were to adopt a rather "lax" confidence threshold, in the sense 

that any suggestion of a lesion-like structure in an image would cause the 

image to be called "positive," then true positive decisions would be more 

frequent than in the first case, but false positive decisions would be more 

frequent also. In this situation, the canbination of conditional decision 

probabilities might plot as point C. As a continuum of various possible con­

fidence thresholds is considered, the dotted curve is swept out. This is 

the conventional ROC curve, which describes the possible relationships between
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conditional true and false postive decision probabilities and hence among 

the relative frequencies of the four types of correct and incorrect decisions 

as confidence threshold is varied.

ROC curve analysis was first developed for the evaluation of radar 

signal detectability and was later used to evaluate human detection perform­

ance in psychophysics [Green and Swets, 1966; Pastore and Scheirer, 1974],

More recently, ROC techniques have been applied to the problems of evaluating 

diagnostic medical decision-making [Lusted, 1968, 1971, 1975; Alcorn and 

O'Donnell, 1969; Morgan et al., 1973; McNeil, Varady, Burrows, and Adelstein, 

1975; McNeil et al., 1976] and of evaluating the detectability provided by 

diagnostic medical imaging systems [Revesz and Kundel, 1971; Goodenough,

1972; Goodenough, Rossmann, and Lusted, 1972, 1973, 1974; Anderson et al., 

1973; Andrus, Hunter, and Bird, 1975]. Introductory discussions of ROC analy­

sis have been published by Swets [1973], Metz and Goodenough [1975], McNeil, 

Keeler, and Adelstein [1975], Metz, Starr, Lusted, and Rossmann [1975], and 

Swets [1976], for example.

2.c. Context-independent Measures of Decision Performance
Related to the Conventional ROC Curve

Various measures of detection or decision performance have been pro­

posed which are independent of the practical situation to which the decisions 

are applied and which can be related to the ROC curve.

Many investigators have used the index d' [Green and Swets, 1966, p.

60] to describe observer detection performance. This index is applicable 

only to detection situations which generate ROC curves of a particular form.
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however, and can be misleading if applied incorrectly [Goodenough, Metz, and 

Lusted, 1973], especially in situations for which the conventional ROC curve 

itself is inappropriate [Metz and Goodenough, 1973],

The area under the conventional ROC curve can be shown to equal the 

fraction of correct responses that would result from an experiment in which 

the observer considers two images (or sets of data) simultaneously, one of 

which contains a signal (or is due to a disease state), and must choose the 

image contiaining the signal (or the data set associated with the disease 

state) [Green and Swets, 1966, p. 47]. Thus the area under an ROC curve pro­

vides a measure of discrimination ability.

It is an enpirical fact that most experimentally-determined conventional 

ROC curves plot as almost straight lines on double-probability paper (i.e., 

on a graph with axes which are linear with respect to z, the inverse of the 

cumulative normal deviate probability distribution [Green and Swets, 1966, 

p. 61]). To the extent that this is approximately the case, the conventional 

ROC curve—and hence decision performance-can be described by a pair of num­

bers representing the slope and either one axis intercept or the distance 

from the origin to the ROC line along the negative diagonal on such a plot 

[Swets, 1976].

Other possible context-free measures of decision performance have been 

discussed by Swets [1976].

2.d. Practical Considerations

Although the ROC curve is usually regarded as describing the locus of 

combinations of conditional true and false positive decision frequencies which
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are generated as the observer adopts various confidence thresholds, the curve 

is most often determined experimentally by requiring the observer to use, in 

effect, several thresholds simultaneously and to state into which one of sev­

eral categories of confidence his impression of the image data (for example) 

falls. This so-called "rating method" [Green and Swets, 1966, p. 99; Good- 

enough, Rossmann, and Lusted, 1974; Metz and Goodenough, 1975] thus yields 

several points on the ROC curve fran a single series of observations, through 

which a smooth curve can be drawn. It has been shown that ROC curves measured 

by the "yes-no" and "rating" methods are equivalent [Egan, Schulman and Green­

berg, 1959].

A fundamental requirement for use of the ROC approach is that the true . 

state must be known for each trial (e.g., each image). Although this require­

ment is sometimes tedious to satisfy in clinical applications of the approach, 

demanding careful long-term follow-up of cases, the requirement seems unavoid­

able in any objective approach to diagnostic evaluation. The quality of diag­

nostic decisions cannot be determined if the correct answers are not known.

In the design of observer performance experiments to measure the rela­

tive detectability provided by alternative imaging systems, due consideration 

must be given to the control of experimental variables. Aside frcm the perhaps 

obvious variables of display and viewing conditions, prior information, and 

observer experience, the characteristics of the population of images to be 

viewed, for example, must be taken into account, because the conclusions to 

be drawn fran the experiment are applicable only to, and hence cannot be more 

specific than, the population of cases studied. To suggest a hypothetical and 

possibly extreme example, suppose that detection of liver carcinoma by two dif­

ferent scintigraphic imaging systems is to be evaluated, and suppose that in
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fact cne system detects diffuse metastases better while the other system de­

tects solitary nodules better. If proven cases having diffuse metastases 

were pooled both with cases having solitary lesions and also with normal cases 

to form a series of cases for a detection experiment, the results might sug­

gest that the detectability of liver carcinona provided by the two systems 

is about equal. This would be a thoroughly valid ccnclusicn for the popula­

tion of cases used in the experiment, but would neglect the fact that the 

systems are better or worse for different types of disease. Thus this conclu­

sion could be misleading if applied to populations heavily skewed to one type 

of disease or the other, and would fail to recognize that the imaging systems 

would not be of equivalent quality if one or the other form of disease could 

be ruled out by other tests.

Some parameters which should be considered in the design of an observer 

performance experiment have been listed by Metz and Goodenough [1975], Other 

ccnsideraticns of experimental design have been discussed by Green and Swets 

[1966, Appendix III] and by Kundel and Kevesz [1974].

2.e. Ccnditicns Under Which the Conventional ROC Approach is Valid

As we have mentioned, the conventional ROC approach can be applied to 

evaluate detection or decision performance in any situation for which true 

states can be divided into two classes and for which one of two decisions must 

be selected by the observer or decision-maker.

Che should note carefully the distinction between, first, the use of the 

"rating method" to elicit confidence ratings in such "simple" detection or de­

cision tasks and, second, more conplex detection or decision tasks in which
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multiple true states and decision alternatives are considered. In the former 

case, two true states are possible, "positive,, or "negative," for example, 

and the decision-maker may be required to rate his confidence that one of the 

two true states exists as opposed to the other. Thus, although various cate- 

gpries of confidence my be elicited as responses from the decision-mker, 

these responses are directed toward selection of one or the other of two de­

cisions: "positive" or "negative." If the observer is required to detect 

the presence of a lesion and to state in which quadrant of the image it is 

present, however, then five true states exist (no lesion, lesion in quadrant 

1, lesion in quadrant 2, etc.) and five different decisions are possible, each 

of which my have associated with it some degree of confidence. Similarly, 

if the observer is required to detect a lesion and decide, if present, whether 

it is a lesion of type A or B, then three true states exist (no lesion, lesion 

type A, lesion type B) and three decisions are possible, each having some de­

gree of confidence associated with it.

Although the conventional ROC approach cannot be applied directly to 

such complex detection or decision tasks, the fundamental principles of the 

approach can be generalized in a straightforward way to describe, and in some 

cases predict, decision performnce in such situations.

3. GENERALIZED EQC METHODS

Fundamentally, the ROC approach describes the relationships or trade-offs 

which are possible among various types of correct and incorrect decisions as a 

confidence threshold (or perhaps several confidence thresholds) is varied. View­

ing the ROC approach in this broad way, one can generalize the basic techniques
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of the approach and extend them to analyze decision performance in conplex de­

tection or decision tasks relevant to clinical diagnostic situations.

3.a. Detection and Localization

Conventionally, FOC analysis is applicable to visual detection situations 

in which zero or one visual signal (e.g., lesion or disease) is present some­

where in the visual field and in which the observer is required only to state 

whether the signal is present or absent. If the signal is present and the ob­

server states "Signal present,,, he is credited with a true positive response.

In this situation the observer my, occasionally, receive credit for a correct 

positive response when, in fact, he misses the signal but falsely identifies 

a cluster of noise or normal background structure elsewhere in the imge as due 

to the presence of the signal. Hence true positive decision frequency my be 

expected to decrease if the observer is required to determine correctly the posi­

tion of the signal as well as its presence in order to receive credit for a cor­

rect positive decision.

If this more strictly defined "true positive, correct location" decision 

probability were plotted versus false positive decision probability, the result­

ing curve would be expected to lie below the conventional ROC curve. We call 

this new curve an "LROC" curve to indicate that it is analogous to an ROC curve, 

but with the additional requirement of correct localization. The position of the 

LROC curve depends upon the precision with which the observer is required to lo­

cate the signal.

We have developed a simple theoretical relationship which can be used to 

predict the LROC curve from knowledge of the conventional ROC curve under rather 

general conditions. Details of the derivation and experimental verification of
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the predictions for the case of quadrant localization are reported elsewhere 

[Stair’, Metz, Lusted, and Goodenough, 1975],

Since the sum of the conditional probabilities of a positive response 

with correct localization and of a positive response with incorrect localiza­

tion when a signal is actually present in a detection and localization ex­

periment must equal the conditional true positive decision probability in a 

simple detection experiment, the "generalized” ROC curve for a detection and 

localization experiment can be represented by a line in three-dimensional 

space, with the three axes taken to be the first two conditional probabilities 

mentioned above and also the conditional false positive decision probability. 

The LROC curve can be thought of as the projection of this generalized ROC 

curve onto the plane defined by the first and third axes.

3.b. Multiple Signal Detection

Some diagnostic medical imaging procedures, such as gallbladder radiog­

raphy in search of gallstones and brain scintigraphy in search of metastases, 

may require determination of the number of visual signals or lesions present. 

Since conventional ROC curve analysis describes observer detection performance 

in situations where only two decision alternatives are available, and since 

conventional ROC curves are usually measured in situations where zero or one 

signal is known to be present, it would be both practically and conceptually 

useful to establish a relationship between the conventional ROC curve and a 

description of observer performance in the situation where more than one signal 

nay be present.
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We have derived theoretical relationships which can be used to predict 

human observer performance in a multiple signal detection experiment from 

knowledge of the conventional KOC curve. Experiments designed to test these 

preditions for the case in which zero, one, or two signals may be present 

appear to verify the theoretical predictions [Metz, Starr, and Lusted, 1976].

Since nine types of correct and incorrect decisions are possible for this par­

ticular case, since three constraint equations exist because probabilities 

conditional on the same true state must add to unity, and since determination 

of a single conditional decision probability determines the other eight accord­

ing to our theory, the generalized ROC curve for this "0, 1, or 2" signal de­

tection experiment can be represented by a line in six-dimensional space or, 

equivalently, by a set of five two-dimensional graphs.

As in the case of the detection and localization experiments, this demon­

strated ability to predict observer performance in a complex detection task from 

knowledge of the conventional ROC curve determined in a sinple detection task 

is reassuring and suggests not only that signal detection theory can be usefully 

applied to the problem of analyzing human observer behavior, but also that the 

conventional RQC curve provides a description of human observer detection per­

formance which is applicable in situations clinically more relevant than those 

in which it is measured.

3.c. Other lypes of Generalized ROC Curves

’’Generalized ROC curves" describing the relationships among the relative 

frequencies of the various types of decisions in almost any diagnostic decison- 

naking experiment can be imagined and can, in theory, be determined experimentally.
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In some situations, however, the resulting relationships can be conplex, dif­

ficult to measure to acceptable statistical accuracy without large numbers of 

trials, and difficult to interpret if an underlying theoretical structure is 

not available.

Consider, for exanple, analysis of the "detection and recognition" situa­

tion in which an observer must decide whether an image contains a lesion of 

type "a," a lesion of type "b," or no lesion at all. Let "a," "b," and "n" 

represent the tree true states and let "A," "B," and "N" represent the corres­

ponding decisions. Nine types of correct and incorrect decisions are thus 

possible. Because of the fact that decision probabilities conditional on the 

same true state must add to unity, three constraint equations exist:

P(A|a) + P(B|a) + P(N|a) = 1;

P(A|b) + P(B|b) + P(N|b) = 1;

and

P(A|n) + P(B|n) + P(N|n) = 1.

Thus any combination of decision frequencies can be represented by a point in 

six-dimensional space, and observation of the relationships among six types 

of decision frequencies can always serve as an empirical description of obser­

ver performance in this situation.

Since more than one confidence threshold can be varied in this kind of 

experiment, however, the relationship among these decision frequencies is not 

necessarily represented by a line in the six-dimensional space. The number of 

degrees of freedom—and hence the theoretical and experimental complexity— 

actually necessary to describe human observer performance in a detection and
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recognition situation is not yet established. Luce’s "Choice Theory" [Luce, 

1963] suggests that specification of two conditional decision frequencies 

should serve to determine the other eight, while a general signal detection 

theoretic approach [Swets and Birdsall, 1956; Whalen, 1971, p. 140] designed 

to maximize average decision utility by adoption of a theoretically optimum 

decision strategy suggests that five conditional decision frequencies must be 

specified in order to determine the other four.

The practical usefulness of the generalized ROC curve concept for analy­

sis of decision performance in detection and recognition situations—and, in­

deed, in any situation requiring the use of multiple confidence thresholds— 

seems to depend upon our ability to discover theoretical points of view, simi­

lar to those described above for the detection-and-localization and multiple- 

signal-detection tasks, which can be used to illuminate fundamental relation­

ships amcng the various decision frequencies.

4. MEASURES OF DIAQJOSTTC QUALITY EERIVED FROM ROC CURVES

A conventional or generalized ROC curve describes the trade-offs avail­

able among the frequencies of the various possible types of correct and 

incorrect decisions and thus provides a nan-parametric description of dis­

crimination ability in the situation used to determine the curve. If conven­

tional ROC curves for detection of the same signal by the same observer are 

determined experimentally using two different imaging systems, for exanple 

and if the curve associated with one system is higjher everywhere than the other 

curve, then one can justifiably conclude that the first system provides greater 

detectability of the given signal by the given observer.
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Taken alone, however, the ROC curve does hot answer several fundament­

ally inport ant questions in applied decision-making situations, such as diag­

nostic medical imaging. "The ROC curve describes the trade-offs available 

among the various kinds of decisions, but what is the. best trade-off of those 

available?" "How can the better imaging system be chosen if the system pro­

viding somewhat greater detectability is more costly in terms of money, radia­

tion exposure, procedure conplications and/or patient discomfort?" The fol­

lowing sections describe various attenpts to come to grips with these questions. 

In each case, the ROC curve plays a key role.

4.a. Accuracy

Accuracy, or the fraction of all decisions which are correct, has been 

used frequently in the clinical literature as a measure of the "quality" of 

diagnostic decision-making.

For the simple detection situation in which one of two true states exists 

and one of two decisions is possible for each trial, the probability of a cor­

rect decision is equivalent to the probability of a true positive or a true 

negative decision. Hence, in the notation defined earlier,

P(correct) = PCtrue positive decision)
+ P(true negative decision)

= P(s)P(S|s) + P(n)P(N|n)

= P(s)P(S|s) + [1-P(s)][1-P(S|n)]

= P(s)P(S|s) - Cl-P(s)JP(S|n) + Cl-P(s)].

By means of this expression, the probability of a correct decision can be com­

puted for each point on a conventional ROC curve (i.e., for each pair of values



for P(S|s) and P(S|n)), given knowledge of the a priori probability of an actu­

ally positive true state, P(s)—that is, the relative frequency of actually 

positive cases.

Differentiating this expression and setting the result equal to zero, 

one finds that the probability of a correct decision is maximum when the oper­

ating point on the ROC curve is chosen such that the ROC curve slope satisfies 

the equation

dP(S s) l-P(s)
cffTS n) PCs)

in which the term on the ri^it represents the inverse of the prior odds of an 

actually positive case. The maximum accuracy attainable in a given decision- 

naking situation can then be used as a measure of diagnostic quality. One 

should note that both the optimal operating point on the ROC curve and also 

the accuracy which can be achieved depend upon the relative frequency of actu­

ally positive cases, PCs). By measuring the ROC curve, however, one can deter­

mine maxim’.im attainable accuracy for any value of PCs).

The expression for accuracy shewn above can be rather easily generalized 

to include more coup lex decision tasks. In such cases, the optimal operating 

point on the appropriate generalized ROC curve can be found, and the resulting 

maximum possible accuracy can be used as a measure of diagnostic quality.

The accuracy of decisions in a diagnostic situation appears to be of 

limited usefulness as a meaningful measure of diagnostic quality in most prac­

tical medical situations, however, for several reasons.
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If the relative frequency of actually positive cases is small, as in diag­

nostic screening situations, for example, then diagnostic accuracy can be mis­

leadingly high even when the diagnostic value of a test is poor. If only 5% of 

the cases studied are actually positive, for example, then one can achieve an 

accuracy of 95% simply by blindly calling all cases negative!

In addition, the accuracy measure ignores the medical fact that the conse­

quences of different types of decisions can be quite different. The diagnostic 

inpact of correctly finding an actually positive case is almost always consider­

ably different from that of correctly diagnosing an actually normal case, for 

example. Similarly, the diagnostic consequences of a false negative decision 

are usually quite different from those of a false positive decision.

Finally, the accuracy measure does not account for the costs of a diagnos­

tic study itself, such as financial cost, risk of conplications, and radiation 

exposure.

4. b. Information

A popular definition of a good diagnostic test Is that of one which provides 

a large amount of "information" regarding the true state of health or disease. 

Since the concept of "information" can be expressed as a reduction in uncertainty, 

and since uncertainty can be quantified in terms of entropy, the information cor­

responding to any combination of decision frequencies—and hence any point on a 

conventional or generalized ROC curve—can be computed using standard informa­

tion theoretic techniques. Explicit applications of "information" as a measure 

of decision performance in a simple two-alternative decision task have been 

considered by Swets, Tanner, and Birdsail [1961] and by Metz, Goodenough, and
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Rossmann [1973]. Generalization to more conplex decision situations is straight­

forward. Measurement of the appropriate conventional or generalized FOG curve 

permits evaluation of the maximum information which can be gained from a given 

diagnostic test for any set of relative frequencies of the various possible true 

states.

The principal limitation of the information theoretic approach is that 

it does not appear to allow either the clinical consequences of the various 

types of decisions or the cost of the diagnostic test itself to be incorporated 

into the evaluation scheme.

4.c. Average Cost and Average Net Benefit

If the usefulness of a diagnostic study is to be evaluated in a generally 

meaningful way, it would seem necessary to consider both the possibility of dif­

ferent values for the consequences of the various types of correct and incorrect 

diagnostic decisions and also the cost, in the broad sense, of performing the 

diagnostic study itself. Only in this way does it seem possible to incorporate 

the factors which a physician must consider when choosing a diagnostic test or 

making a diagnostic decision and to allow for the fact that the medical informa­

tion to be gained from a diagnostic study my not justify the expense and risk 

of performing the study.

A rather straightforward approach which satisfies these requirements can 

be developed by extending the concept of "expected value" or "average cost"

[Green and Swets, 1966, p. 21; Whalen, 1971, p. 130]. The average cost per 

decision in a decision-making situation can be expressed by
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C = [''overhead" 
cost per 
decision^

+ E E
i j

cost of the consequences 
of decision i when the 
actual state is j.

probability that decision i 
is made and that the actual 
state is j.

= C + E E C.. PCD.It.) PCt.) o ^ 13 11 i 1
1 3

in which C is the fixed "overhead" cost which must be invested in order to o
permit a decision to be made, {D^} is the set of all possible decisions, and 

{t^} is the set of all true states considered. Benefits of certain decisions 

can be interpreted as negative costs if desired.

In the simple two-alternative situation, {D^} = {S,N} and {t^} = {s,n}, 

where S and N represent "positive" and "negative" decisions, respectively, and 

where s and n represent the corresponding true states. Then for this case 

the equation above becomes

^ = ^o + ^TP P(Sls) P(s) + CFN P(Nls) PCs)

+ Cpp P(S|n) P(n) + P(N|n) P(n)

= CC0 + PCs) + Qjjj PCn)] - - Qjp] PCS|s) PCs)

+ CGjp - 0^3 PCS|n) PCn) ,

where Cr^p = cost of consequences of a true-positive decision; = cost of 

consequences of a false-negative decision; Cpp = cost of consequences of a 

false-positive decision; = cost of consequences of a true-negative deci­

sion; and C = overhead cost per decision.
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This formulation assumes that decision-consequence and overhead costs 

can be combined linearly. Although this is often true, caution must be exer­

cised in certain situations. In considering mortality risk, for example, cne 

must realize that a person can die but once. The linear approximation is 

good, however, if such risks are small.

It. should be clear that if values can be assigned to the various cost 

terms in this expression, then for any frequency of actually positive cases, 

PCs), the average cost per decision, C, can be calculated for each possible 

operating point on the conventional ROC curve. Average cost is minimized when 

the operating point on the ROC curve is chosen such that

dPCS s) [l-P(s)] 
dHS nT PtsT

[CFp-CTN]
IC^C^T

Since conventional ROC curves exhibit a monotcnically decreasing slope as P(S|n) 

increases, this expression shows that the optimal operating point is on the lower 

left portion of the curve, for exanple, if actually positive cases are rare 

[PCs) « 1] or if the cost of the consequences of a false positive decision is 

relatively great.

The coordinates of the optimal operating point thus defined can be sub­

stituted into the previous expression to yield the minimum average cost per de­

cision which is possible in the decision-making situation. This minimum attain­

able cost can then be used to characterize the "quality” of the diagnostic 

procedure for the set of costs and for the frequency of actually positive cases 

considered.
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The "average net benefit" derived from a medical diagnostic study can 

be thought of as the reduction in average cost which is provided by performance 

of the study.

If no significant prior information is available regarding the state of 

health or disease in a particular case and if the study is not performed, then 

one may presume that in many situations no treatment is instituted and thus a 

"negative" decision is, in effect, made by default.* In this case, the average 

cost of not performing the diagnostic study is

C (no study) = PCs) + P(n)

and the average net benefit, NB, derived from performing the study is given by

NB = C (no study) - C (study)

= [Cjjj - Gjp] PCs) P(S|s) - CCjp - Gjjj] P(n) P(S|n) - Co .

One can easily show that average net benefit is maximized when average cost is 

minimized.

If significant information regarding the state of health or disease in a 

particular case is_ available before the study in question is performed, however,

*Exceptions exist, of course. If the decision to be made is that of 
whether a person has been bitten by a rabid dog, the decision to be made in 
the absence of information is "positive." In this case, C(no study) = C<jp P(s) + 
CppP(n), and modifications required in the subsequent analysis should be obvious. 
Decision-making in the absence of informtion pertinent to the particular case in 
question is equivalent to guessing. One can easily shew that the optimal guessing 
strategy is to choose "N" if PCs) + C,^ P(n) < Cjp PCs) + Cpp PCn) and to 
choose "S" if the converse is true.
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then the average net benefit to be gained frcm the additional test must be 

evaluated in a more general and somewhat more complicated way. Usually, prior 

information will yield decisions which are, on the average, more beneficial 

than those made when no information is available, and.the net benefit of the 

additional test will, logically, depend upon the diagnostic improvement which 

it provides, less the overhead cost of the additional study. In this situa­

tion, one must measure two FDC curves: a curve describing decision perform­

ance based upon the prior information alone, and a curve describing decisions 

based upon both the prior data and also the data derived from the additional 

test. Then the average net benefit provided by the additional study is given 

by

HB" = C(prior data) - (?{study and prior data),

where the two average costs are the smallest possible on the respective ROC 

curves.

The average net benefit approach seems intuitively meaningful and can 

be rather easily generalized to include complex decision-making situations. 

Perhaps the most fundamental problem in application of this approach to analy­

ses of acutal medical detection and decision-making situations is that of 

choosing appropriate values for the required cost terms. We believe that these 

difficult value judgments confront the clinician in many decision-making tasks 

today, however, and the fact that decisions are made routinely inplies that the 

associated value judgments are made routinely also. An important property of 

the average net benefit approach is that the usefulness of diagnostic perform­

ance, as specified by the ROC curve, can be evaluated for any system of cost
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judgments. Assignment of values to the possible consequences of the various 

types of diagnostic decisions seems to be an inescapable responsibility of the 

physician, the patient, and society, and the fact that the analysis should in­

clude these values seems only proper. Despite the inevitable philosophical 

nature of certain cost assignments, thoughtful analysis of the nature and com­

ponents of the costs inherent in the various types of decisions seems useful 

[Metz, Starr, Lusted, and Rossmann, 1975], The concepts of "multi-attribute 

utility theory" [Edwards, Guttentag, and Snapper, 1975] should provide a use­

ful approach to the problem of combining the various cost components, such 

as life expectancy, freedom from pain, risk of complications, and financial 

ejqpense.

5. ROC CURVES AND DECISION ANALYSIS

In the preface to his introductory book on decision analysis, Raiffa 

[1968] states that, in his view, a propier approach to this subject presents 

neither a descriptive theory of actual behavior nor a positive theory of be­

havior for a superintelligent, fictitious being. Rather, decision analysis 

should prescribe "how an individual who is faced with a problem of choice under 

uncertainty should go about choosing a course of action that is consistent with 

his basic judgments and preferences. He must consciously police the consis­

tency of his subjective inputs and calculate their implications for action.

Such an approach is designed to help us reason and act a bit more systematically— 

when we choose to do so"!

Decision analysis provides a means for objectively optimizing decisions 

and actions while taking into account subjective judgments of various utilities



29

and likelihoods. The discipline of decision analysis has been applied to 

problems in medical diagnosis by Schwartz and colleagues [1973] and by Fryback 

[1974], and to problems in therapeutic medicine by McNeil and Adelstein [1975] 

and by Pauker and Kassirer [1975], for example.

FDC analysis is directly applicable in decision-analytic approaches to 

medical problems. In order to decide upon a course of action—such as what 

type of therapy to institute for a particular disease in a situation where the 

presence of disease is uncertain—the physician must consider the likelihood 

that a particular diagnostic decision is correct—that the disease is present, 

given a positive result for some test, for example. Since the odds that a dis­

ease is present, given a positive test result, are given by

P(s S) P(S s)
PTnj S) " PtS] n)

P(s)
PUTT

these odds are clearly dependent upon the operating point adopted on the ROC 

curve for the diagnostic study. Hence the optimal management of a clinical 

situation depends both upon an optimal selection of a cource of action, given 

the diagnostic decision, and also upon an optimal selection of the diagnostic 

decision itself, which is equivalent to selecting an optimal confidence -thresh­

old and a corresponding operating point on the FDC curve.

Given a certain amount of relevant information, the physician must decide 

whether to reach a diagnostic decision or, instead, to postpone his decision 

and to order additional tests which will be costly, in some sense. Elementary 

principles of decision analysis are directly applicable to such problems 

[Faiffa, 1968],
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In the previous section, we discussed optimizing the operating point cn 

the FOC curve for a diagnostic test by minimizing average cost or, equivalently, 

maximizing average net benefit. The same optimization would result from an 

explicitly decision-analytic approach in which the course of therapeutic action 

was determined solely by the diagnostic decision.

Also in the previous section, we considered the average net benefit of 

an additional diagnostic test when sane diagnostic information is already 

available. In decision analytic terms, the additional test is worthwhile in 

that case only if its average net benefit is positive. Decision analysis shows 

that the average net benefit of the additional test can also be evaluated in a 

more specific way by considering two situations: one in which the decision 

based on previous information is "negative" and one in which it is "positive"

[cf. Raiffa, 1968, Chapter 2]. The problem of deciding whether to order an 

additional test becomes one of evaluating whether or not the expected diagnos­

tic gain is worth the cost; the answer depends upcn the information available 

at the tine when the test must be ordered. Again, analysis of this situation 

requires knowledge of ROC curves—that is, knowledge of the possible relation­

ships among the relative frequencies of various types of correct and incorrect 

decisions.

We have discussed elsewhere the problem of evaluating conbinations of 

diagnostic studies [Metz, Starr, Lusted, and Rossmann, 19753. As one might 

expect, a highly definitive study with higjh overhead cost which is too "expen­

sive" to be used routinely can, in some cases, be advantageous if it is applied 

to a "screened" population, and optimal decision thresholds for both the "screen­

ing study" and the "follow-up study" depend upcn whether they are used alcne or
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in cornbination. Optimization of the diagnostic approach requires knowledge of 

the ROC curves for the various studies.

6. OVERVIEW

Most basically, an ROC curve provides an empirical description of the 

trade-offs which are possible among the various types of correct and incorrect 

decisions as the human decision-maker varies one or more "confidence thresh­

olds." Conventional ROC curves measured in simple decision-making situations 

can, in some cases, be used to predict human decision performance in more com­

plex decision situations.

By considering both the consequences of various types of diagnostic 

decisions and the overhead cost of a diagnostic study, one can use the ROC 

curve to evaluate the diagnostic usefulness of a study in any particular 

clinical context. Since the ROC curve describes the possible relationships 

among the probabilities of the various types of correct and incorrect deci­

sions, it plays a central role in optimizing diagnostic strategies using the 

general techniques of decision analysis.
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FIGURE LEGEND

Figure 1. A typical conventional ROC curve. The combination of relative 

decision frequencies represented by point "A" might result from use 

of a "moderate" confidence threshold, while combinations "B" and "C" 

would result fran use of a more "strict" and a more "lax" confidence 

threshold, respectively. The ROC curve is swept out as a continuum 

of various possible confidence thresholds is considered.
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SHORT TITLE

ROC Analysis and Determination of Diagnostic Benefit
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