TBEL W kg
FMI-)boo-1¢4

T8 | TH T
18-y /.} ,7§

Z,. i Q,Mr a) Pi«w.

v, Feris

i (o

Quantitative Evaluation of Visual Detection Performance

in Medicine:

Stuart J. Starr, B.S.

Lee B. Lusted, M.D.

Center for Radiologic Image Research,.
Department of Radiology,

The University of Chicago,

and

ROC Analysis and Determination
of Diagnostic Benefit Qo ’\/2’// }7(0/ ;z ', 2

Charles E. Metz, Ph.D.

The Franklin Mclean Memorial Research Institute,*

Chicago, Illinois, U.S.A.

*Qperated by the University of Chicago for the U. S. Energy Research and

Development Administration under Contract E(11-1)-69.

Presented at the 7th L. H. Gray Conference, "Medical Images:

Formation,

Perception and Measurement," held at Leeds, England, 13-15 April, 1976.

To be published in the proceedings by The Institute of Physics, Bristol.

NOTICE

h and Devel

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor thc Umted States Energy
ion, nor any of

or their

their employees, nor any of their contractors,
loyees, makes any

liability or l'ort e

warranty, express Ol implied, or assumes any legal

or useful of any infe

infringe privately owned rights.

product or
process disclosed, o1 represents that its use would not

NASTER

 feeds Fplald
R 4 /

To Ao &wé(, -~ PRAEE
Fat

{

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

Q/)\

/



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



ABSTRACT

An ROC curve provides an empirical description of the trade-offs
which are possible among the various types of correct and incorrect
decisions as the human decision-maker varies one or more "confidence
thresholds." Conventional ROC curves measured in simple decision-making
situations can, in same cases, be used to predict human decision perform-
anée in more camplex situations.

By considering both the consequences of the various types of diag-
nostic decisions and the overhead cost of a diagnostic study, one can use
the ROC curve to evaluate the diagnostic usefulness of a study in any par-
ticular clinical context. Since the ROC curve describes the possible
relationships among the probabilities of the various types of correct and
incorrect decisions, it plays a central role in optimizing diagnostic

strategies using the general techniques of decision analysis.



1. INTRODUCTION

With the introduction of new diagnostic imaging techniques in recent
years, the problem of evaluating the relative usefﬁlness of these new pro-
cedures in a meaningful way has become increasingly important. The question
is often asked: Which imaging technique is best? This paper will attempt
to describe an approach which can, in principle, provide an objective and
quantitative answer to that kind of question.

The approach to be described here can be applied to both highly speci-
fic and also more general problems of evaluating diagnostic image quality.
In order to answer a question regarding which of several imaging procedures
is best, however, the question must be carefully phrased. What criteria are
to be used to measure "best"? Best at doing what? Best for what human ob-
server? Best in what situation or situations? The answer to' a question
regarding diagnostic image quality cannot be more precise than the question
itself.

An important aspect of diagnostic medicine consists of making deci-
sions regarding the actual health or disease state of the patient. On the
basis of the information available to him, the diagnostic physician must de-
cide whether the various attributes of a particular disease state are present
or absent, must decide whether or not to request additional diagnostic tests,
and must finally decide whether a particular disease state (or which one of
several) is present in a particular patient.

The approach to diagnostic image evaluation described here is based

upon measurement of the quality of the decisions which a physician is able



to make when usihg a diagnostic imaging techniqﬁe in a given si'tuation. The
approach is divided into two parts: (1) measurement of the relationships
among the relative frequencies of the various types of correct and incorrect
decisions wh:Lch the physician can achieve using the imaging technique, and
(2) evaluation of the diagnostic benefit which can be gained from those
possible combinations of decision frequencies. Principles of signal detec~
tion theory are used to guide the approach, to predict relationships among
descriptions of decision performance in various situations, and to suggest
optimal decision-making strategies. Essentially, however, the approach is
empirical.

In the following sections we will review briefly the basic principles
of Receiver Operating Characteristic .(ROC) curve analysis; we will suggest
ways in which the conventional ROC approach can be generalized to describe
complex decision tasks; we will indicate how various measures of diagnostic
quality can be derived from knowledge of the ROC curve; and we will point

out applications of ROC analysis in a general decision-analytic approach

to the diagnostic problem.

2. CONVEN’fIONAL ROC METHODS
To begin, consider the situation in which the diagnostic decision-
maker must choose between two altermatives: for example, a particular
disease may be present or absent, a lesion may be present or absent,
or a disease may be of type A or type B. Two classes of "true states"
exist which we can, for now, call "actually positive" and "actually nega-

tive"; and two decisions are possible, namely, a "positive" decision (i.e.,



the decision that the true state is "actually positive") and a "negative' de-
cision (i.e., the decision that the true state is "actually negative'").

Either decision may be correct or incorrect. Four types of decisions
are therefore possible in this situation: a "true positive" decision (i.e.,
a "positive" decision for an "actually positive" true state); a "false posi-
tive" decision (i.e., a "positive" decision for an "actually negative" true
state); a "true negative" decision (i.e., a "negative" decision for an "actu-
ally negative" true state); and a "false negative" decision (i.e., a "nega-
tive" decision for an "actually positive" true state). All four types of de-
cisions will occur in almost any decision-making situation in the presence of
uncertainty, and hence all four types of decisions must be taken into account
when measuring (and attempting to specify) decision performance.

Suppose that a physician views a series of images (e.g., radiographs
or scintigrams) which are similar except that same of the images are "actu-
ally negative" (e.g., are images of normal subjects), while the rest are
"actually positive" (e.g., are images of subjects having a certain type of
lesion or disease state). Because of statistical fluctuations in the image
data (e.g., due to quantum statistics) or in normal anatomical structure or
function (i.e., "structured noise" [Revesz, Kundel, and Graber, 1974]), be-
cause of neural and/or psychophysical fluctuations internal to the observer
[Wickelgren, 1968; Trfidsman and Leshowitz, 1969; Goodenough and Metz, 19751,
and perhaps because of statistical variations in the form of the lesion or
manifestation of the disease, the presence or absence of the lesion or dis-

ease may not always be decided correctly.



2.a. The Concept of Confidence Threshold

It is a fundamental assumption of our approach that the observer de-
cides whether or not a lesion (for example) is present by camparing his im-
pression of the image with some "decision criterion". or "confidence threshold"
and by stating that a lesion is present if and only if his confidence that
the lesion exists in the image exceeds that threshold. The method by which
the observer determines his confidence that the lesion is present is of no
concern in the application of our approach, although the method used by the
observer may influence his ability to detect the lesion. Training and ex-
perience would seém to be important factors in determining the skill with which
the observer can utilize the image data to form an appropriate estimate of his
confidence that a lesion or a disease state is present.

The relative frequencies of the possible correct ("true poéitive" and
"true negative") and incorrect ("false positive" and "false negative") deci-
sions will depend upon the confidence threshold adopted by the observer. We
will discuss later the question of what confidence threshold the observer
should adopt; let it suffice here to say that the degree of apparent "posi-
tiveness" which the observer requires before he is willing to make a "positive"
decision should depend both upon the clinical consequences of the four types
of correct and incorrect decisions for the case at hand and also upon the
frequency of actually positive cases.

Since the underlying detectability of the lesion by the observer does
not depend upon the confidence threshold chosen by the observer, however, any
useful and camplete description of the detectability of lesions (or disease



etc.) by a hunan oﬁserver in the presence of uncertainty must take into ac-
count the concept of a variable decision threshold. |

As a case in point, if an observer is required to detect lesions in
two series of images--of the same body part but produced by two different
imaging systems, for example--then it may be found that the observer's deci-
sions based upon one series of images yield both true-positive and false-
positive decision frequencies which are greater than those elicited by the
other series of images. In order to decide whether the differences in deci-~
sion frequencies are due to different inherent lesion detectabilities provided
by the two imaging systems, or whether they are due only to the (perhaps uncon-
scious) adoption of different confidence thresholds by the cbserver, one needs
a method of observer performance analysis which separates these two factors

influencing the relative frequencies of the four types of decisions.

2.b. The Conventional ROC Curve

The cambination of decision frequencies produced by an observer at-
tempting to detect a given image feature or disease state using a given imag-
ing s{;stem depends upon the confidence threshold adopted by the observer;
the appropriate confidence threshold depends on the clinical context of the
detection problem; and furthermore the confidence threshold which an observer
may adopt is difficult to quantitate. For these reasons, it is useful to de-

scribe detection performance by the relationship among the various possible

decision frequencies which are generated as different confidence thresholds
are adopted by the observer, with the values of confidence thréshold implicit,
rather than explicit, in the analysis. Receiver Operating Characteristic (ROC)
analysis does just that.



It is convenient to establish at this point a convention for notation
which will facilitate our subsequent discussion. Let s and n represent the
two true states "signal actually present" (i.e., "actually positive") and
"noise only actually present" (i.e., "actually negative"), respectively. let
S and N represent the decisions "positive" and "negative," respectively.

Then the conditional probability P(S|s), for example, represents the rela-
tive frequency with which actually positive images are decided to be posi-
tive in a large mumber of trials, and P(S|n) represents the relative fre-
quency with which actually negative images are called positive. Similarly,
P(N|s) represents the relative frequency with which actually positive images
are called negative, and P(N|n) represents the relative frequency with which
actually negative images are called negative. The four conditional proba-
bilities described above are scmetimes called the "conditional true positive
probability," the "conditional false positive probability," the "conditional
false negative probability," and. the "conditional true negative probebility,"
respectively. One should note that since all actually positive images must
be called either positive or negative, P(S|s) + P(N|s) = 1, and similarly,
P(S|n) + P(N|n) = 1. Thus specification of a cambination of conditional true
positive and false positive probabilities, for example, in fact specifies the
conditional probabilities, and hence relative frequencies, of all four types
of decisions.

A conventional ROC curve specifies the various trade-offs which are pos-
sible among the frequencies of the four types of carrect and incorrect deci-

sions as the confidence threshold is varied in a two-alternative detection



experiment by showing the various possible relationships between P(S[s),
the conditional true positive probability, and P(S|n), the conditional false
positive probability. Specifically, the conventional ROC curve is a graph
of P(S|s) versus P(S|n).

A typical conventional ROC curve which might result from a two-
alternative visual detection experiment is shown in figure 1. If the ob-
server adopts some "moderate" confidence threshold in deciding whether to
call each image "positive" or "negative," the resulting combination of con-
ditional true and false positive decision probabilities might plot as point
A. . If the observer were to adopt a "strict" confidence threshold, on the
 other hand, in the sense that a suspected lesion must appear very convinc-
ing in order for the image to be called "positive," then false positive de-
cisions would be less frequent, but true pbsitive decisions would be less
frequent also (i.e., false negative decisions would be more frequent, and
more lesions would be "missed"). Hence, in this case, the resulting condi-
tional frequencies might plot as point B. As a third possibility, if the
observer were to adopt a rather "lax" confidence threshold, in the sense
that any suggestion of a lesion-like structure in an image would cause the
image to be called "positive," then true positive decisions would be more
frequent than in the first case, but false positive decisions would be more
frequent also. In this situation, the cambination of conditional decision
probabilities might plot as point C. As a continuum of various possible con-
fidence thresholds is considered, the dotted curve is swept out. This is

the conventional ROC curve, which describes the possible relationships between
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conditional true and false postive decision probabilities and hence among
the relative frequencies of the four types of correct and incorrect decisions
as confidence threshold is varied. |
ROC curve analysis was first developed for the evaluation of radar
signal detectability and was later used to evaluate human detection perform-
ance in psychophysics [Green and Swets, 1966; Pastore and Scheirer, 1974].
More recently, ROC techniques have been applied to the problems of evaluating
diagnostic medical decision-making [Lusted, 1968, 1971, 1975; Alcorm and
0'Donnell, 1969; Morgan et al., 1973; McNeil,‘ Varady, Burrows, and Adelstein,
1975; McNeil et al., 1976] and of evaluating the detectability provided by
diagnostic medical imaging systems [Revesz and Kundel, 1971; Goodenough,
1972; Goodenough, Rossmann, and Lusted, 1972, 1973, 1974; Anderson et al.,
1973; Andrus, Hunter, and Bird, 1975]. Introductory discussions of ROC analy-
sis have been published by Swets [1973], Metz and Goodenough [1975], McNeil,
Keeler, and Adelstein [1975], Metz, Starr, Lusted, and Rossmann [1975], and

Swets [1976], for example.

2.c. Context-independent Measures of Decision Performance
Related to the Conventional ROC Curve

Various measures of detection or decision performance have been pro-
posed which are independent of the practical situation to which the decisions
are applied and which can be related to the ROC curve.

Many investigators have used the index d' [Green and Swets, 1966, p.
60] to describe observer detection performance. This index is applicable

anly to detection situations which generate ROC curves of a particular form,
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however, and can be misleading if applied incorrectly [Goodenough, Metz, and
Lusted, 1973], especially in situations for which the conventional ROC curve
itself is inappropriate [Metz and Goodenough, 1973]. |

'The area under the conventional ROC curve can be shown to equal the
fraction of correct responses that would result from an experiment in which
the observer considers two images (or sets of data) simultaneously, one of
which contains a signal (or is due to a disease state), and must choose the
image contiaining the signal (or the data set associated with the disease
state) [Green and Swets, 1966, p. 47]. Thus the area under an ROC curve pro-
vides a measure of discrimination ability.

It is an empirical fact that most experimentally-determined conventional
ROC curves plot as almost straight lines on double-probability paper (i.e.,
on a graph with axes which are linear with respect to z, the inverse of the
cumulative normal deviate probability distribution [Green and Swets, 1966,
p. 611). To the extent that this is approximately the case, the conventional
ROC curve--and hence decision performance--can be described by a pair of num-
bers representing the slope and either one axis intercept or the distance
fram the origin to the ROC line along the negative diagonal on such a plot
[Swets, 1976].

Other possible context-free measures of decision performance have been

discussed by Swets [1976].

2.d. Practical Considerations
Although the ROC curve is usually regarded as describing ‘the locus of

cambinations of conditional true and false positive decision frequencies which
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are generated as thé observer adopts various confidence thresholds, the curve
is most often determined experimentally by requiring the‘ observer to use, in
effect, several thresholds simultanecusly and to state into which one of sev-
eral categories of confidence his impression of the image data (for example)
fé.lls. This so-called "rating method" [Green and Swets, 1966, p. 99; Good-
enough, Rossmann, and Lusted, 1974; Metz and Goodenough, 1975] thus yields
several points on the ROC curve fram a single series of observations, through
which ’a smooth curve can be drawn. It has been shown that ROC curves measured
by the "yes-no" and "rating" methods are equivalent [Egan, Schulman and Green-
berg, 1959].

A fundamental requirement for use of the ROC approach is that the true .
state must be known for each trial (e.g., each image). Although this require-
ment is sametimes tedious to satisfy in clinical applications of the approach,
demanding careful long-term follow-up of cases, the requirement seems unavoid-
able in any objective approach to diagnostic evaluation. The quality of diag-
nostic decisions cannot be determined if the correct answers are not known.

In the design of observer performance experiments to measure the rela-
tive detectability provided by alternative imaging systems, due consideration
@st be given to the control of experimental variables. Aside from the perhaps
obvious variables of display and viewing conditions, prior information, and
observer experience, the characteristics of the population of images to be
viewed, for example, must be taken into account, because the conclusions to
be drawn from the experiment are applicable only to, and hénce cannot be more
specific than, the population of cases studied. To suggest a hypothetical and
possibly extreme example, suppose that detection of liver carcinoma by two dif-

ferent scintigraphic imaging systems is to be evaluated, and suppose that in
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fact ocne system detects diffuse metastases better while the other system de-
tects solitary nodules better. If proven cases having diffuse metastases
were pooled both with cases having solitary lesions and also with normal cases
to form a series of cases for a detection experiment, the results might sug-
gest that the detectability of liver carcinoma provided by the two systems
is about equal. This would be a thoroughly valid conclusion for the popula-
tion of cases used in the experiment, but would neglect the fact that the
systems are better or worse for different types of disease. Thus this conclu-
sion could be misleading if applied to populations heavily skewed to one type
of disease or the other, and would fail to recognize that the imaging systems
would not be of equivalent quality if one or the other form of disease could
be ruled out by other tests.

Some parameters which should be considered in the design of an observer
performance experiment have been listed by Metz and Goodenough [1975]. Other
considerations of experimental design have been discussed by Green and Swets

(1966, Appendix III] and by Kundel and Revesz [1974].

2.e. Conditians Under Which the Ccnventional ROC Approach is Valid

As we have mentioned, the conventional ROC approach can be applied to
evaluate detection or decision performance in any situation for which true
states can be divided into two classes and for which one of two decisions must
be selected by the cbserver or decision-maker.

One should note carefully the distinction between, first, the use of the
"rating method" to elicit confidence ratings in such "simple" detection or de-

cision tasks and, secand, more complex detection or decision tasks in which
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multiple true states and decision altermatives are considered. In the former
case, two true states are possible, "positive" or 'negative," for example,
and the decision-maker may be required to rate his confidence that cne of the
two true states exists as opposed to the other. Thus, although various cate-
gories of confidence may be elicited as responses from the decision-meker,
these responses are directed toward selection of one or the other of two de-
cisions: "positive" or "negative." If the observer is required to detect
the presence of a lesion and to state in which quadrant of the image it is
present, however, then five true states exist (no lesion, lesion in quadrant
1, lesion in quadrant 2, etc.) and five different decisions are possible, each
of which may have associated with it some degree of confidence. Similarly,
if the observer is required to detect a lesion and decide, if present, whether
it is a lesion of type A or B, then three true states exist (no lesion, lesion
type A, lesion type B) and three decisions are possible, each having some de-
gree of confidence associated with it.

Although the conventional ROC approach cannot be applied directly to
such complex detection or decision tasks, the fundamental principles of the
approach can be generalized in a straightforward way to describe, and in some

cases predict, decision performance in such situations.

3. GENERALIZED ROC METHODS

Fundamentally, the ROC approach describes the relationships or trade-offs
which are possible among various types of correct and incorrect decisions as a
confidence threshold (or perhaps several confidence thresholds) is varied. View-

ing the ROC approach in this broad way, one can generalize the basic techniques
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of the approach and extend them to analyze decision performance in complex de-

tection or decision tasks relevant to clinical diagnostic situations.

3.a. Detection and Localization

Conventionally, ROC analysis is applicable to visual detection situations
in which zero or one visual signal (e.g., lesion or disease) is present some-
where in' the visual field and in which the observer is required cnly to state
whether the signal is present or absent. If the signal is present and the ob-
server states "Signal present," he is credited with a true positive response.

In this situation the observer may, occasionally, receive credit for a correct
positive response when, in fact, he misses the éignal but falsely identifies

a cluster of noise or normal background structure elsewhere in the image as due
fo the presence of the signal. Hence true positive decision frequency may be
expected to decrease if the observer is required to determine correctly the posi-
tion of the signal as well as its presence in order to receive credit for a cor-
rect positive decision. ‘

If this more strictly defined "true positive, correct location" decision
probability were plotted versus false positive decision probability, the result-
ing curve would be expected to lie below the conventional ROC curve. We call
this new cur'vé an "LROC" curve to indicate that it is analogous to an ROC curwve,
but with the additional requirement of correct localization. The position of the
LROC curve depends upon the precision with which the observer is required to lo-
cate the signal.

We have dewveloped a simple theoretical relationship which can be used to
predict the LROC curve from knowledge of the conventional ROC curve under rather

general conditions. Details of the derivation and experimental verdification of
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the predictions for the case of quadrant localization are reported elsewhere
[Starr, Metz, Lusted, and Goodenough, 1975].

Since the sum of the conditional probabilities of a positive response
with correct localization and of a positive response with incorrect localiza-
tion when a signal is actually present in a detection and localization ex-
periment must equal the conditional true positive decision probability in a
simple detection experiment, the "generalized" ROC curve for a detection and
localization experiment can be represented by a line in three-dimensional
space, with the three axes taken to be the first two conditional probabilities
mentioned above and also the conditional false positive decision probability.
The LROC curve can be thought of as the projection of this generalized ROC

curve onto the plane defined by the first and third axes.

3.b. Multiple Signai Detection

Some diagnostic medical imaging procedures, such as gallbladder radiog-
raphy in search of gallstones and brain scintigraphy in search of metastases,
may require determination of the number of visual signals or lesions present.
Since conventional ROC curve analysis describes observer detection performance
~ in situations where only two decision alternatives are available, and since
conventional ROC curves are usually measured in situations where zero or cne
signal is known to be present, it would be both practically and conceptually
useful to establish a relationship between the conventional ROC curve and a
description of observer performance in the situation where more than cne signal

may be present.
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We have derived theoretical relationships which can be used to predict
hunan observer performance in a multiple signal detection experiment from
knowledge of the conventicnal ROC curve. Experiments designed to test these
preditions for the case in which zero, one, or two signals may be present
appear to verify the theoretical predictions [Metz, Sfarr, and Lusted, 1976].
Since nine types of correct and incorrect decisions are possible for this par-
ticular case, since three constraint equations exist because probabilities
conditional on the same true state must add to unity, and since determination
of a single conditional decision probability determines the other eight accord-
ing to our theory, the generalized ROC curwe for this "0, 1, or 2" signal de-
teétion experiment can be represented by a line in six-dimensional space or,
equivalently, by a set of five two-dimensional graphs.

As in the case of the detection and localization experiments, this demon-
strated ability to predict observer performance in a camplex detection task from
knowledge of the conventional ROC curve determined in a simple detection task
is reassuring and suggests not only that signal detection theory can be usefully
applied to the problem of analyzing human observer behavior, but also that the
conventional ROC curve provides a description of human cbserver detection per-
formance which is applicable in situations clinically more relevant than those

in which it is measured.

3.c. Other Types of Generalized ROC Curves
"Generalized ROC curves" describing the relationships among the relative
frequencies of the various types of decisions in almost any diagnostic decison-

making experiment can be imagined and can, in theory, be determined experimentally.
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In some situations, however, the resulting relationships can be complex, dif-
ficult to measure to acceptable statistical accuracy without large numbers of
trials, and difficult to interpret if an underlying theoretical structure is
not available.

Consider, for example, analysis of the "detection and recognition" situa-
tion in which an observer must decide whether an image cohtains a lesion of
type "a," a lesion of type "b," or no lesion at all. Let "a," "b," and "n"
represent the tree true states and let "A," "B," and "N" represent the corres-
ponding decisions. Nine types of correct and incorrect decisions are thus
possible. Because of the fact that decision probabilities conditional on the

same true state must add to unity, three constraint equations exist:

P(Ala) + P(B]a) + P(N|a) = 1;

P(A|b) + P(B|b) + P(N|b) = 1;
and

P(A|n) + P(B|n) + P(N|n) = 1.

Thus any combination of decision frequencies can be represented by a point in
six-dimensional space, and cbservation of the relatianships among six types
of decision fmquencies can always serve as an empirical description of obser-
ver performance in this situation.

Since more than ane caonfidence threshold can be varied in this kind of
experiment, however, the relationship among these decision frequencies is not
necessarily represented by a line in the six-dimensional space. The number of
degrees of freedom--and hence the theoretical and experimental complexity——

actually necessary to describe human observer performance in a detection and
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recognition situation is not yet established. Luce's "Choice Theory" [Luce,
1963] suggests that specification of two conditional decision frequencies
should serve to determine the other eight, while a general signal detection.
theoretic approach [Swets and Birdsall, 1956; Whalen, 1971, p. 140] designed
to maximize average decision utility by adoption of a theoretically optimum
decision strategy suggests that five conditicnal decision frequencies must be
specified in order to determine the other four.

The practical usefulness of the generalized ROC curve concept for analy-
sis of decision performance in detection and ;ecogniti.on situations--and, in-
deed, in any situation requiring the use of multiple confidence thresholds--
seems to depend upon our ability to discover theoretical points of view, simi-
lar to those described above fér the detection-and-localization and multiple-
| signal-detection tasks, which can be used to illuminate fundamental relation-

ships among the various decision frequencies.

4, MEASURES OF DIAGNOSTIC QUALITY DERIVED FROM ROC CURVES

A conventional or generalized ROC curve describes the trade-offs avail-
able among the frequencies of the various possible types of correct and
" incorrect decisions and thus provides a non-parametric description of dis-
crimination ability in the situation used to determine the curve. If conven-
tional ROC curves for detection of the same signal by the same observer are
determined experimentally us;'.ng two differént imaging systems, for example
and if the curve associated with one system is higher everywhere than the other
curve, then one can justifiably conclude that the first system provides greater

detectability of the given signal by the given observer.
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Taken alone, however, the ROC curve does not answer several fundament-
ally important questions in applied decision-making situations, such as diag-
nostic medical imaging. "“The ROC curve describes the trade-offs available
among the various kinds of decisions, but what is the best trade-off of those
available? "“How can the better imaging system be chosen if the system pro-
viding somewhat greater detectability is more costly in terms of money, radia-
tion exposure, procedure complications and/or patient disgonifoft?" The fol-
lowing sections describe various attempts to come tb grips with these questions.

In each case, the ROC curve plays a key role.

4.a. Accuracy

Accuracy, or the fraction of all decisions which are correct, has been
used frequently in the clinical literature as a measure of the "quality" of
diagnostic decision-making.

For the simple detection situation in which one of two true states exists
and one of two decisions is possible for each trial, the probability of a cor-
rect decision is equivalent to the probability of a true positive or a true

negative decision. Hence, in the notation defined earlier,

P(correct) = P(true positive decision)

+ P(true negative decision)

P(s)P(S|s) + P(n)P(N|n)
P(s)P(S|s) + [1-P(s)I[1-P(S|n)]

P(s)P(S|s) - [1-P(s)IP(S|n) + [1-P(s)].

By means of this expression, the probability of a correct decision can be can-

puted for each point on a conventional ROC curve (i.e., for each pair of values
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| for P(S|s) and P(S|n)), given knowledge of the a priori probability of an actu-
ally positive true state, P(s)--that is, the relative frequency of actually
positive cases.

Differentiating this expression and setting the result equal to zero,
one finds that the probability of a correct decision is maximum when the oper-
ating point on the ROC curve is chosen such that the ROC curve slope satisfies

the equation

dP(S|s) _ 1-P(s)
da(Sn)y - P(s) °

in which the term on the right represents the inverse of the prior odds of an
actually positive case. The maximum accuracy attainable in a given decision-
making situation can then be used as a measure of diagnostic quality. One
should note that both the optimal operating point on the ROC curve and also

the accuracy which can be achieved depend upon the relative frequency of actu-
ally positive cases, P(s). By measuring the ROC curve, however, one can deter-
mine maximm attainable accuracy for any value of P(s).

The expression for accuracy shown above can be rather easily generalized
to include more complex decision tasks. In such cases, the optimal operating
point on the appropriate generalized ROC curve can be found, and the resulting
maximum possible accuracy can be used as a measure of diagnostic quality.

The accuracy of decisions in a diagnostic situation appears to be of

limited usefulness as a meaningful measure of diagnostic quality in most prac-

Hecal medical situations, however, for several reasons.
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If the relative frequency of actually positive cases is small, as in diag-
nostic screening situations, for example, then diagnostic accuracy can be mis-
leadingly high even when the diagnostic value of a test is poor. If only 5% of
the cases studied are actually positive, for example, then one can achieve an
accuracy of 95% simply by blihdly calling all cases negative!

In addition, the accuracy measure ignores the medical fact that the conse-
quences of different types of decisions can be quite different. The diagnostic
impact of correctly finding an actually positive case is almost always consider-
ably different from that of correctly diagnosing an actually normal case, for
example. Similarly, the diagnostic consequences of a false negative decision
are usually quite different from those of a false positive decision.

Finally, the accuracy measure does not account for the costs of a diagnos-

tic study itself, such as financial cost, risk of complications, and radiation

exposure.

4.b. Information

A popular definition of a good diagnostic test is that of one which provides
a largc—; amount of "information" regarding the true state of health or disease.
Since the concept of "information" can be expressed as a reduction in uncertainty,
and since uncertainty can be quantified in terms of entropy, the information cor-
responding to any cambination of decision frequencies--and hence any point on a
conventional or generalized ROC curve-—can be camputed using standard informa-
tion theoretic techniques. Explicit applications of "information" as a measure
of decision performance in a simple two-alternative decision task have been

considered by Swets, Tanner, and Birdsall [1961] and by Metz, Goodenough, and
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Rossmann [1973]. Generalization to more complex decision situations is straight-
forward. Measunanént of the appropriate conventional or generalized ROC curve
permits evaluation of the maximum information which can be gained from a given
diagnostic test for any set of relative frequencies of the various possible true
states. |

The principal limitation of the information theoretic approach is that
it does not appear to allow either the clinical consequences of the various
types of decisions or the cost of the diagnostic test itself to be incorporated

into the evaluation scheme.

4.c. Average Cost and Average Net Benefit

If the usefulness of a diagnostic study is to be evaluated in a generally
meaningful way, it would seem necessary to consider both the possibility of dif-
ferent values for the consequences of the various types of correct and incorrect
diagnostic decisions and also the cost, in the broad sense, of performing the
diagnostic study itself. Only in this way does it seem possible to incorporate
the factors which a physician must consider when choosing a diagnostic test or
making a diagnostic decision and to allow for the fact that the medical informa-
tion to be gained from a diagnostic study may not justify the expense and risk
of performing the study.

A rather straightforward approach which satisfies these requirements can
be dewveloped by extending the concept of "expected value" or "average cost"
[Green and Swets, 1966, p. 21; Whalen, 1971, p. 130]. The average cost per

decision in a decision-making situation can be expressed by



24

_ "overhead" cost of the consequences
Cs= cost per | + & I |of decision i when the
decision i j lactual state is j.

is made and that the actual

probability that decision i
X
state is j.

C + .. P(D.|t. .
C, i ;: clJ P( lItJ) P(tj)

in which 55 is the fixed "overhead" cost which must be invested in order to
permit a decision to be made, {Di} is the set of all possible decisions, and
{ti} is the set of all true states considered. Benefits of certain decisions
can be interpreted as negative costs if desired.

In the simple two-alternative situation, {Di} = {S,N} and {ti} = {s,n},
where S and N represent "positive" and "negative" decisions, respectively, and
where s and n represent the corresponding true states. Then for this case

the equation above becomes
C =T, + Cpp P(S[s) P(s) + Cpp P(N|s) P(s)
+ Cpp P(S[n) P(n) + Cn P(N[n) P(n)

= [T + Cpy P(s) + Cry P)T - [Chy - Copd P(S|s) P(s)

+ [Crp - Cpd P(S|n) P(n) ,

where CTP = cost of consequences of a true-positive decision; CFN = cost of
cansequences of a false-negative decision; Cpp = cost of consequences of a
false-positive decision; CTN = cost of consequences of a true-negative deci-

sion; and C; = overhead cost per decision.
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This formulation assumes that decision-consequence and overhead costs
can be combined linearly. Although this is often true, caution must be exer—
cised in certain situations. In considering mortality risk, for example, cne
must realize that a person can die but ocnce. The linear approximation is
good, however, if such risks are small.

It should be clear that if values can be assigned to the various cost
terms in this expression, then for any frequency of actually positive cases,
P(s), the average cost per decision, C, can be calculated for each possible
operating point' on the conventional ROC curve. Average cost is minimized when

the operating point on the ROC curwve is chosen such that
dP(S's) o n-pe)1 | S
dP(S|n P(s) [CEN—CI,PT _

Since conventional ROC curves exhibit a monotonically decreasing slope as P(S|n)

increases, this expression shows that the optimal operating point is on the lower
left portion of the curve, for example, if actually positive cases are rare

[P(s) << 1] or if the cost of the consequences of a false positive decision is
relatively great.

The coordinates of the optimal operating point thus defined can be sub-
stituted into the previous expression to yield the minimum average cost per de-
cision which is possible in the decision-making situation. This minimm attain-
able cost can then be used to characterize the "quality" of the diagnostic
procedure for the set of costs and for the frequency of actually positive cases

considered.
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The "average net benefit" derived from a medical diagnostic study can
be thought of as the reduction in average cost which is provided by performance
of the study.

If no significant prior information is available regarding the state of
health or disease in a particular case and if the study is not performed, then
one may presume that in many situations no treatment is instituted and thus a
"negative" decision is, in effect, made by default.* In this case, the average

cost of not performing the diagnostic study is
C (no study) = Cpy P(s) + Cpy P(n)

and the average net benefit, NB, derived from performing the study is given by

NB = T (no study) - C (study)

[Cry - Cppd P(s) P(S|s) - [Cpp - Cpd P() P(S|n) - EO .

One can easily show that average net benefit is maximized when average cost is
minimized.
If significant information regarding the state of health or disease in a

. particular case is available before the study in question is performed, howewer,

*Exceptions exist, of course.. If the decision to be made is that of
whether a person has been bitten by a rabid dog, the decision to be made in
the absence of information is "positiwe." In this case, Clno study) = Crp P(s) +
Cpp P(n), and modifications required in the subsequent analysis should be obvious.
Decision-making in the absence of informtion pertinent to the particular case in
question is equivalent to guessing. One can easily show that the optimal guessing
strategy is to.choose "N" if Cpy P(s) + Coy P(n) < Crp P(s) + Crp P(n) and to
choose "S" if the converse is true.
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then the average net benefit to be gained fram the additional test must be
evaluated in a more general and somewhat more camplicated way. Usually, prior
information will yield decisions which are, on the average, more beneficial
than those made when no information is available, and the net benefit of the
additional test will, logically, depend upan the diagnostic improvement which
it provides, less the overhead cost of the additional study. In this situa-
tion, one must measure two ROC curves: a curve describing decision perform-
ance based upon the prior information alone, and a curve describing decisions
based upon both the prior data and also the data derived from the additional

test. Then the average net benefit provided by the additional study is given

by
KB = T(prior data) - C(study and prior data),

where the two average costs are the smallest possible on the respective ROC
curves.

The average net benefit approach seems intuitively meaningful and can
be rather easily generalized to include complex decision-making situations.
Perhaps the most fundamental problem in application of this approach to analy-
ses of acutal medical detection and decision-making situations is that of
. choosing appropriate values for the required cost terms. We believe that these
difficult value judgments confront the clinician in many decision-making tasks
today, however, and the fact that decisions are made routinely implies that the
associated value judgments are made routinely also. An important property of
the average net benefit approach is that the usefulness of diagnostic perform-

ance, as specified by the ROC curve, can be evaluated for any system of cost
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judgments. Assignment of values to the possible consequences of the various
types of diagnostic decisions seems to be an inescapable responsibility of the
rhysician, the patient, and society, and the fact that the analysis should in-
clude these values seems only proper. Despite the inevitable philosophical
nature of certain cost assignments, thoughtful analysis of the nature and cam-
ponents of the costs inherent in the various types of decisions seems useful
[Metz, Starr, Lusted, and Rossmann, 1975]. The ccncepts of "multi-attribute
utility theory" [Edwards, Guttentag, and Snapper, 1975] should provide a use-
ful approach to‘ the problem of cambining the various cost components, such

as life expectancy, freedam from pain, risk of camplications, and financial

expense.

5. ROC CURVES AND DECISION ANALYSIS

In the preface to his introductory boock on decision analysis, Raiffa
[1968] states that, in his view, a proper approach to this subject presents
neither a descriptive theory of actual behavior nor a positive theory of be-
havior for a superintelligent, fictitious being. Rather, decision analysis
should‘p_rescribe "how an individual who is faced with a problem of choice under
wncertainty should go about choosing a course of action that is consistent with
his basic judgments and preferences. He must consciously police the consis-
tency of his subjective inputs and calculate their implications for action.
Such an approach is designed to help us reason and act a bit more systematically--
when we choose to do so"!

Decision analysis provides a means for cbjectively optimizing decisions

and actions while taking into account subjective judgments of various utilities
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and likelihoods. The discipline of decision analysis has been applied to
problems in medical diagnosis by Schwartz and colleagues [1973] and by Fryback
[1974], and to problems in therapeutic medicine by McNeil and Adelstein [1975]
and by Pauker and Kassirer [1975], for example.

ROC analysis is directly applicable in decision-analytic approaches to
medical problems. In order to decide upon a course of action--such as what
type of therapy to institute for a particular disease in a situation where the
presence of disease is uncertain--the physician must consider the likelihood
that a particular diagnostic decision is correct--that the disease is present,
given a positive result for some test, for example. Since the odds that a dis-

ease is present, given a positive test result, are given by

P(s|S) _ P(S|s) . P(s)
P(n{S) = P(S|n P(n) °

these odds are clearly dependent upon the operating point adopted on the ROC
curve for the diagnostic study. Hence the optimal management of a clinical
situation depends both upon an optimal selection of a cource of action, given
the diagnostic decision, and also upon an optimal selection of the diagnostic

decision itself, which is equivalent to selecting an optimal confidence thresh-
o0ld and a corresponding operating point on the ROC curve.

Given a certain amount of relevant information, the physician must decide
whether to reach a diagnostic decision or, instead, to postpone his decision
and to order additional tests which will be costly, in some sense. Elementary
principles of decision analysis are directly applicable to such prcoblems

[Raiffa, 1968].
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In the previous section, we discussed optimizing the operating point on
the ROC curve for a diagnostic test by minimizing average cost or, equivalently,
maximizing average net benefit. The same optimization would result from an
explicitly decision-analytic approach in which the course of therapeutic action
was determined solely by the diagnostic decision.

Also in the previous section, we considered the average net benefit of
an additional diagnostic test when same diagnostic information is already
available. In decision analytic terms, the additional test is worthwhile in
that case only if its average net benefit is positive. Decision analysis shows
that the average nét benefit of the additional test can also be evaluated in a
more specific way by considering two situations: one in which the decision
based on previous information is "negative" and cne in which it is "positive"
[cf. Raiffa, 1968, Chapter 2]. The problem of deciding whether té order an
additional test becomes one of evaluating whether or not the expected diagnos-
tic gain is worth the cost; the answer depends upon the information available
at the time when the test must be ordered. Again, analysis of this situation
requires knowledge of ROC curves--~that is, knowledge of the possible relation-
ships among the relative frequencies of various types of correct and incorrect
decisions.

We have discussed elsewhere the problem of evaluating caombinations of
diagnostic studies [Metz, Starr, Lusted, and Rossmann, 1975]. As one might
expect, a highly definitive study with high overhead cost which is too "expen-
sive" to be used routinely can, in some cases, be advantageous if it is applied
to a "screened" population, and optimal decision thresholds for both the "screen-

ing study" and the "follow-up study" depend upon whether they are used alcne or
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in combination. Optimization of the diagnostic approach requires knowledge of

the ROC curves for the various studies.

6. OVERVIEW

Most basically, an ROC curve provides an empirical description of the
trade-offs which are possible among the various types of correct and incorrect
decisions as the human decision-maker varies one or more "confidence thresh-
olds." Conventional ROC curves measured in simple decision-making situations
can, in some cases, be used to predict human decision performance in more com-
plex decision situations.

.By considering both the consequences of various types of diagnostic
decisions and the overhead cost of a diagnostic study, one can use the ROC
curve to evaluate the diagnostic usefulness of a study in any particular
clinical context. Since the ROC curve describes the possible relationships
among the probabilities of the various types of correct and incorrect deci-
sions, it plays a central role in optimizing diagnostic strategies using the

general techniques of decision analysis.
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FIGURE LEGEND

Figure 1. A typical conventional ROC curve. The combination of relative
decision frequencies represented by point "A" might result from use
of a "moderate" confidence threshold, while combinations "B" and "C"
would result from use of a more "strict" and a more "lax" confidence
threshold, respectively. The ROC curve is swept out as a continuum

of various possible confidence thresholds is considered.
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SHORT TITLE

ROC Analysis and Determination of Diagnostic Benefit
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