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1.0 INTRODUCTION 

I n  t h e  d r y  c o c l i n g  concepts under s tudy  a t  B a t t e l l e ,  P a c i f i c  Northwest 

Labora to ry ,  (PNL), waste heat  from t h e  power p l a n t  condenser i s  t r a n s f e r r e d  

f rom t h e  i n t e r m e d i a t e  heat  t r a n s f e r  f l u i d  t o  t h e  a i r  by means of an a i r -  

coo led heat  exchanger ( d r y  tower)  u t i l i z i n g  f i n n e d  tubes.  Both wa te r  and 

ammonia a r e  be ing  s t u d i e d  as p o t e n t i a l  i n t e rmed ia te  heat  t r a n s f e r  f l u i d s ;  

t h e  f e a s i b i l i t y  o f  t h e  use o f  ba re  p l a s t i c  tubes i n s t e a d  o f  metal  f i n n e d  

tubes i n  t h e  d r y  tower  i s  a l s o  be ing  examined. 

Dur ing  t h e  c o c l e r  p o r t i o n s  o f  t h e  year ,  t h e  c o o l i n g  tower  w i l l  

opera te  as a  comp le te ly  d r y  system. Dur ing  warm pe r i ods ,  h o ~ e v e r ,  

p r e l  i n l i na ry  s t u d i e s  a t  PNL and e l  sewhere ") i n d i c a t e  t h a t  de lug ing  

p o r t i o n s  c f  t h e  hea t  exchanger su r faces  w i t h  wa te r  w i l l  i nc rease  hea t  

r e j e c t i o n  c a p a b i l i t y  and s i g n i f i c a n t l y  reduce t h e  c o s t  o f  d r y  c o o l i n g .  

I n  t h e  deluged d r y  c o o l i n g  mode, s e n s i b l e  hea t i ng  o f  t h e  a i r  i s  augmented 

by heat  t r a n s f e r  t o  t h e  a i r  by evapora t ion  o f  t h e  de luge wate r  ( de luga te ) .  

One o f  t h e  p r i n c i p a l  u n c e r t a i n t i e s  i n  t h e  de luge concept i s  t h e  

tendency toward d e p o s i t i o n  o f  s o l  i d s  ( s c a l  i n g )  f rom t h e  de lugate.  Scal  i n g  

can occur  by  a )  exceeding t h e  s o l u b i l i t y  l i m i t  under cont inuous f l o w  

c o n d i t i o n s  and b )  evapora t ion  o f  t h e  de luga te  on t h e  heat  exchange 

sur faces  i n  m u l t i p l e  we t - t o -d r y  cyc l es .  Workers i n  t h e  USSR s t u d y i n g  t h e  

concept s t a t e  t h a t  s c a l i n g  can be avo ided by t h e  use o f  p roper  wa te r  

t reatment ,  b u t  t h e  e x t e n t  o f  t h i s  t r ea tmen t  i s  n o t  c l e a r .  Exper ience 

i n  t h i s  c c u n t r y  has shown t h a t  smooth tubes c o n t i n u ~ u s 1 . y  f l ooded  by a  

massive f l o w  o f  wa te r  w i l l  n o t  deve lop enc rus ta t i ons  p rov i ded  t h e  wate r  



i s  p r o p e r l y  t r e a t e d  and t h e  su r f ace  temperature does n o t  exceed about 

66°C (1  50°F). ( 3 )  Again, however, d e t a i  1  s  concern ing p roper  wa te r  

t rea tment  a r e  n o t  c l e a r .  

On t h e  o t h e r  hand, a  vendor o f  a i r - c o o l e d  hea t  exchangers i n  t h i s  

coun t r y  has s t a t e d  t h a t  i n t e n t i o n a l  w e t t i n g  o f  extended sur faces  i n  U.S. 

process p l a n t s  has been unsuccessfu l .  Accord ing t o  t h i s  source, wa te r  

s o l  i d s  and a i r - b o r n e  d i r t  c r e a t e  se r i ous  f i n - s i d e  f o u l  i n g  problems which 

a f f e c t  bo th  heat  t r a n s f e r  and mass a i r  f l o w .  ( 4 )  Th i s  adverse exper ience  

has l a r g e l y  been w i t h  systems i n  which wate r  i s  sprayed on t h e  f i n n e d  

tubes and a l lowed t o  comp le te ly  evaporate;  i n  t h i s  case, s o l i d s  a r e  

depos i ted  r a p i d l y  i n  p r o p o r t i o n  t o  t h e i r  concen t ra t i on  i n  t h e  wa te r  and 

p a r t i c u l a t e  m a t e r i a l  i n  t h e  a i r .  (5 )  

Thus t h e  ques t i on  of de luga te  wa te r  q u a l i t y  i s  o f  ma jo r  impor tance 

i n  e v a l u a t i n g  s c a l e  f o rma t i on  and i t s  e f f e c t  on hea t  t r a n s f e r  i n  

t h e  deluged d r y  c o o l i n g  system. Indeed, s c a l i n g  ( f o u l i n g )  has been 

descr ibed  as t h e  major  unreso lved problem i n  hea t  t r a n s f e r .  ( 6 )  T h i s  

paper w i l l  d i scuss ,  i n  r e l a t i o n  t o  t h e  deluged d r y  c o o l i n g  system, t h e  

impor tance o f  s c a l e  p reven t ion ,  t h e  t h e o r y  o f  s c a l e  f o rma t i on  and 

a p p l i c a t i o n  o f  t h i s  t heo ry  t o  t h e  deluged system, t h e  problems o f  

de luga te  evapora t ion ,  and de luga te  t rea tment  r e q u i r e d  t o  p reven t  s c a l i n g .  



2.0 THE IMP?RTANCE OF CALCIUM CARBnWATE SCALE PREVENTION 

The impor tance  of  p r e v e n t i n g  t h e  f o r m a t i o n  of c a l c i u m  carbon at^ 

s c a l e  i n  de luged d r y  c o o l i n g  systems can be seen b y  examin ing t h e  b a s i c  

hea t  t r a n s f e r  e q u a t i o n  f o r  h e a t  f l o w  under  p u r e  conduc t ion  c o n d i t i o n s .  

The h e a t  f 1 o ~ ~ 1  i s  c o n t r o l  l e d  by t h r e e  f a c t o r s :  

" t h e  n a t u r e  o f  t h e  c o n d u c t i n g  s u r f a c e  

" t h e  d i f f e r e n c e  i n  tempera tu re  

" t h e  c ross  s e c t i c n a l  area o f  t h e  c o n d u c t i n g  s u r f a c e .  

The h e a t  f l o w  i s  c a l c u l a t e d  ?:-om t h e  e q u ~ t i o n :  ( 7  

where 

Q = T o t a l  h e a t  f l o w  ( B t u l h r ) ,  

2  
A = Area o f  h e a t  t r a n s f e r  s u r f a c e  ( f t  ) ,  

AT = Temperature d i f f e r e n c e  between t h e  two s u r f a c e s  (OF), 

U  = Heat t r a n s f e r  c o e f f i c i e n t  ( ~ t u l h r - f t 2 - ~ ~ ) .  

The o v e r a l l  h e a t  t r a n s f e r  c o e f f i c i e n t  i s  g i v e n  by :  ( 7  



where 

= Res is tance t o  hea t  t r a n s f e r  o f  f l u i d  on t h e  o u t s i d e  
R0 of t h e  f i n n e d  tube; 

Ri 
= Res is tance t o  hea t  t r a n s f e r  o f  f l u i d  on t h e  i n s i d e  

o f  t h e  tube; 

Rw = Res is tance t o  heat  t r a n s f e r  o f  t h e  f i n ;  

s = Res is tance t o  hea t  t r a n s f e r  o f  t h e  sca le ;  

where 

t = s c a l e  th i ckness ,  ft; 
S 

2  ks = thermal  c o n d u c t i v i t y  o f  sca le ,  B t u / h r - f t  - " F / f t .  

The thermal  c o n d u c t i v i t y  o f  porous ca l c i um  carbonate i s  about 0.2 

2  ~ t u / h r - f t ~ - ' ~ / f t ,  ( 7 )  w h i l e  t h a t  o f  a1 uminum i s  about 118 B t u / h r - f t  -OF/ f t .  ( 8 )  

Thus, sma l l  ca l c i um  carbonate s c a l e  depos i t s  may s i g n i f i c a n t l y  reduce t h e  

c o o l i n g  e f f i c i e n c y  of  a  deluged system. Table  1  shows t h e  r e d u c t i o n  i n  

t h e  o v e r a l l  heat  t r a n s f e r  c o e f f i c i e n t  as a  f u n c t i o n  o f  ca l c i um  carbonate 

sca le  t h i c kness  f o r  t h e  t h r e e  d r y  c o o l i n g  systems under s tudy .  S ince  

f i n  spac ing (excep t  i n  t h e  p l a s t i c  system, which has no f i n s )  i s  6.83 x  

l o m 3  f t  (2.08 mm), s c a l e  t h i c kness  (on each s i d e  of t h e  f i n )  g r e a t e r  

than  about 1.5 x  10-' f t  (0.5 mm) w i l l  hamper de luga te  f l o w  and t h u s  

f u r t h e r  reduce hea t  t r a n s f e r .  



TABLE 1. Reduct ion i n  Heat T rans fe r  C o e f f i c i e n t  R e s u l t i n g  From Calcium 

Carbonate Scale i n  Deluged DCT Systems. 

Ove ra l l  Heat T rans fe r  
Coef f ic ien4,  U, 

~ ~ ~ / h r - f t ~ - " ~  
Water, Water, 

Resisgance, Rs Normal Ammonia P l a s t i c  
Thickness, f t  H r - f t  -"F/BTU System(a) System(b) System(c) 

( a )  Carbon s t e e l  tubes, ext ruded aluminum f i n s  

(b )  Aluminum tubes and f i n s  

( c )  Bare p l a s t i c  tubes 

3.0 THEORY OF CALCIUM CARBONATE SCALE FORMATION 

3.1 SCALING INDEXES 

Most water  t rea tment  programs designed t o  c o n t r o l  ca lc ium 

carbonate s c a l e  f o rma t i on  i n  c o o l i n g  wate r  systems a re  based on t h e  use 

o f  t h e  L a n g l i e r  S a t u r a t i o n  Index. (') Th is  index makes i t  p o s s i b l e  t o  

p r e d i c t  t h e  tendency o f  a g i ven  water  a t  e q u i l i b r i u m  t o  e i t h e r  depos i t  

ca lc ium carbonate s c a l e  f rom s o l u t i o n  o r  t o  d i s s o l v e  ca lc ium carbonate 

w i t h  which t h e  water  i s  brought  i n t o  con tac t .  ( I 0 )  The index takes i n t o  



account t h e  w a t e r ' s  ca l c i um  con ten t ,  a l k a l i n i t y ,  pH, d i sso l ved  s o l i d s  and 

temperature.  Other  f a c t o r s  a f f e c t i n g  sca le  format ion which t h e  S a t u r a t i o n  

Index does n o t  account f o r  i n c l u d e  r a t e  o f  hea t  t r a n s f e r  and concen t ra t i on  

of magnesium, s u l f a t e ,  phosphate and s i  1  i c a .  Wh i le  t h e  index  does 

i n c l u d e  a  f a c t o r  f o r  t o t a l  d i s s o l v e d  s o l i d s ,  i t  does n o t  d i s t i n g u i s h  

among t h e  va r i ous  i o n s  i n  s o l u t i o n ;  r a t h e r ,  a l l  i ons  a r e  t r e a t e d  as 

hav ing  t h e  same e f f e c t  on s c a l i n g .  (11 

For  wa te rs  i n  t h e  pH range o f  6 .5  t o  9.5, L a n g l i e r ' s  equa t i on  

f o r  t h e  pH a t  which t h e  s o l u t i c n  i s  i n  e q u i l i b r i u m  w i t h  r espec t  t o  ca l c i um  

carbonate i s  as f o l l o w s :  ( 9 )  

where 

pHs = t h e  pH a t  ca lc ium carbonate s a t u r a t i o n ;  

pK i  
= t h e  n e g a t i v e  l o g a r i t h m  3 f  t h e  second d i s s o c i a t i o r !  

cons tan t  f o r  ca rbon i c  a c i d ,  c o r r e c t e d  f o r  t h e  i o n i c  
s t r e n g t h  and temperature o f  t h e  s o l u t i o n ;  

pK; 
= t h e  nega t i ve  l o g a r i t h m  o f  t h e  s o l u b i l i t y  p roduc t  f o r  

ca l c i um  carbonate,  a l s o  c o r r e c t e d  f o r  t h e  i o n i c  s t r e n g t h  
and temperature;  

pCa = t h e  nega t i ve  l o g a r i t h m  o f  t h e  mo la l  ca l c i um  concen t ra t i on ;  

pAlk = t h e  n e g a t i v e  l o g a r i t h m  o f  t h e  t o t a l  a l k a l i n i t y  expressed 
as equ i va l en t s  per l i t e r .  

The va lues o f  pH1, pK2, and pKs f o r  va r i ous  temperatures a r e  g i ven  

i n  Table  2. (12-14) Co r rec t i ons  f o r  i o n i c  s t r e n g t h  (u) a r e  g iven  i n  

(14,151 Table  3. 



TABLE 2.  E q u i l  l b r i u m  Values o f  t h e  S o l u b i l i t y  Constant c f  C02 (KH), t h e  

D i s s o c i a t i o n  Constants o f  Carbonic Ac id  (K1 and K2) and t h e  

S o l u b i l i t y  Product  o f  Calc ium Carbonate (KS) as They Vary Wi th  

Temperature. 

Temperature (CO) P K ~  PK1 PK2 pKs 

The S a t u r a t i o n  Index  i s  de f i ned  as t h e  a l g e b r a i c  d i f f e r e n c e  

between t h e  a c t u a l  measured pH o f  t h e  wa te r  (pHa) and t h e  c a l c u l a t e d  

pHs a t  ca l c i um  carbonate e q u i l i b r i u m :  

S a t u r a t i o n  Index = pHa - pH,. 

The index  q u a l i t a t i v e l y  shows t h e  tendency f o r  d e p o s i t i o n  o r  

s o l u t i o n  o f  ca l c i um  carbonate.  A  p o s i t i v e  S a t u r a t i o n  Index i n d i c a t e s  a  

tendency t o  d e p o s i t  ca l c i um  carbonate,  w h i l e  a  nega t i ve  va l ue  i n d i c a t e s  

an undersa tu ra ted  c o n d i t i o n  and a  tendency t o  d i s s o l v e  e x i s t i n g  ca lc ium 

carbonate sca le .  Waters w i t h  a  nega t i ve  S a t u r a t i o n  Index do n o t  form a  

p r o t e c t i v e  sca le ;  common c o o l i n g  water  p rac t i ce ' ' '  ) i s  t o  m a i n t a i n  a  

s l  i g h t l y  p o s i t i v e  (Q 1  .O)  S a t u r a t i o n  Index t o  m in im ize  co r ros i on .  



TABLE 3. Ionic Strength Corrections of the Ionization Constants of 

Carbonic Acid and the Sol ubil i ty Product of Cal cium Carbonate. 

The Ionic Strength (u) can be estimated from 

p = [ 4  (TH) - A], where 

TH = Total Hardness in mg/l as CaC03; 

A = Total Alkalinity in mg/l as CaC03; 

or ,  for waters of less t h a n  500 mg/l dissolved sol ids ,  

p = S x (2.5 x where 

S = Dissolved Solids in m g l l .  

Various nornographs have been prepared t o  simplify the calculation 

of pH,. A nomograph suitable for  this  purpose i s  shown in Figure 1 ;  (10) a 

sample Saturation Index calculation i s  included therein. 

Langl i e r ' s  Saturation Index was revised by Ryznar ( I 7 )  in an 

attempt t o  provide an index which would give quantitative scaling information. 

His Stabi l i ty  Index i s  defined by the empirical formula 

Stabi l i ty  Index = 2pHS - pHa. 
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FIGURE 1. L a n g e l i e r  S a t u r a t i o n  Index C h a r t -  

To Determine: 

pCa: Locate ppm va lue  f o r  Ca as CaC03 on t h e  ppm 
sca le .  Proceed h o r i z o n t a l l y  t o  t h e  l e f t  
d iagonal  l i n e  down t o  t h e  pCa sca le .  

pALK: Locate pprn va l ue  f o r  'M'ALK as CaC03 on t h e  
pprn sca le .  Proceed h o r i z o n t a l l y  t o  t h e  r i g h t  
d iagona l  l i n e  down t o  t h e  pALK sca le .  

T o t a l  S o l i d s :  Locate ppm va lue  f o r  t o t a l  s o l i d s  on t h e  pprn 
sca le .  Proceed h o r i z o n t a l l y  t o  t h e  proper  
temperature l i n e  and down t o  t h e  ' C '  s ca l e .  

Exampl e: 
Temp. = 140F. pH - 7.80 pCa = 2.70 
Ca Hardness = 200 ppm pALK = 2.50 
M A l k a l i n i t y  = 160 ppm C a t 1 4 0 F =  1.56 
To ta l  S o l i d s  = 400 ppm S u m = p H  = 6.76 

Ac tua l  7.80 
D i f f e r e n c e  = +1 .04 
= S a t u r a t i o n  Index 



For  waters  hav ing  a  S t a b i l i t y  Index of  6.0 o r  l ess ,  s c a l i n g  inc reases  

and t h e  tendency t o  c o r r o s i o n  decreases. When t h e  S t a b i l i t y  Index i s  

above 7.0, a  p r o t e c t i v e  c o a t i n g  o f  ca l c i um  carbonate s c a l e  may n o t  be 

developed, and c o r r c s i c n  becomes an i n c r e a s i n g  prcb lem as va lues inc rease  

above 7.5 .  (10)  

3.2 CRITICAL pH FOR SCALE FORMATION 

I n  F e i t l e r ' s  r e c e n t  work, ( I 8 )  t h e  t heo ry  i s  p o s t u l a t e d  t h a t  

t h e r e  i s  a  c r i t i c a l  pH--pHc--above which s c a l e  forms and below which 

s c a l e  does n o t  form. Th i s  work p o i n t s  o u t  t h a t  t h e  L a n g l i e r  S a t u r a t i o n  

Index i s  based on t h e  s o l u b i l i t y  o f  s o l i d  c a l c i ~ l m  carbonate and thus  does 

n o t  adequate ly  p r e d i c t  the  p o i n t  a t  which p r e c i p i t a t i o n  a c t u a l l y  occurs 

i n  t h e  absence o f  p a r t i c l e s  o f  v i s i b l e  s i z e .  F e i t l e r ' s  work has shown 

t h a t  t h e  c r i t i c a l  pH, pHc, t h e  pH a t  which ca lc ium carbonate p r e c i p i t a t i o n  

a c t u a l l y  occurs ,  i s  about 1.7 t o  2.0 pH u n i t s  above t h e  s a t u r a t i o n  pH, 

pHS. The c r i t i c a l  pH o f  a  water  can be determined us i ng  a  s c a l e  meter 

descr ibed  by F e i t l e r .  

F i g u r e  2 shows how t h e  s o l u b i l i t y  o f  ca lc ium carbonate v a r i e s  w i t h  

temperature and concen t ra t i ons  o f  ca lc ium and a1 k a l  i n i t y .  (19)  The s o l  i d  

l i n e  represen ts  a  s a t u r a t e d  s o l u t i o n ,  w i t h  t h e  area below t h e  cu rve  be ing  

unsaturated.  The S a t u r a t i o n  Index i s  a  means f o r  de te rm in i ng  t h e  p o s i t i o n  

of t h i s  l i n e ,  and p rov ides  i n f o r m a t i o n  about t h e  amount o f  ca lc ium carbonate 

t h a t  w i l l  remain i n  s o l u t i o n  i n  t h e  presence o f  s o l i d  CaC03. The area above 

t h i s  cu rve  i s  supersa tu ra ted  and i s  d i v i d e d  i n t o  two reg ions .  I n  t h e  metas- 

t a b l e  reg ion ,  sma l l  uns tab le  n u c l e i  fo rm and d i s s o l v e  w i t h o u t  c r y s t a l  growth.  
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FIGURE 2. Calc ium Carbonate S o l u b i l i t y  Diagram 

I n  t h e  l a b i l e  r eg ion .  n u c l e i  l a r g e  enough t o  cap tu re  p a r t i c l e s  form, and 

c r y s t a l  growth occurs .  The c r i t i c a l  pH d e f i n e s  t h e  l i n e  sepa ra t i ng  t h e  meta- 

s t a b l e  and l a b i l e  reg ions ,  and i t  p r e d i c t s  t h e  amount o f  d i s so l ved  ca l c i um  

carbonate which must be p resen t  f o r  p r e c i p i t a t i o n  t o  t ake  p l ace  i n  t h e  

absence o f  s o l i d  CaC03. (19)  

The wate r  reuse p o s s i b i l i t i e s  p r e d i c t e d  by t h e  va r i ous  s c a l i n g  

indexes a r e  shown i n  F i g u r e  3. ) The S a t u r a t i o n  Index curve  i s  a  p l o t  

of pHS c a l c u l a t e d  i n  t h e  usual  way, t h e  S t a b i l i t y  Index curve  i s  p l o t t e d  

as 2pHS - 6, t h e  Usual P r a c t i c e  cu rve  as pHS + 1, and t h e  C r i t i c a l  pH 

curve  i s  a  p l o t  o f  exper imenta l  da ta .  A temperature o f  49°C (120°F) was 

used i n  a l l  cases. Tak ing t h e  p r e d i c t i o n  o f  t h e  S a t u r a t i o n  Index a t  

pH 7.5 as one c y c l e  o f  concen t ra t i on ,  t h e  p l o t t e d  da ta  show t h e  wide 

v a r i a t i o n  i n  wa te r  reuse t h a t  i s  p r e d i c t e d  by these  va r i ous  indexes. 
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FIGURE 3. Sca l i ng  P r e d i c t i o n s  of Var ious Indexes. 

The da ta  used t o  generate t h e  c r i t i c a l  pH curve a r e  shown i n  
- - 

Table 4. From t h e  observed pHc da ta  t h e  f r ee  C03 concen t ra t i on  was 

c a l c u l a t e d .  Th i s  made i t  p o s s i b l e  t o  c a l c u l a t e  a  c r i t i c a l  s c a l i n g  

constant ,  KpHcy  t h e  p roduc t  o f  t h e  ca lc ium and f r e e  carbonate i o n  

concent ra t ions  a t  p H c  The average va lue  of  t h i s  cons tan t ,  1.8 x  , 

i s  75 t imes l a r g e r  than t h e  s o l u b i l i t y  p roduc t  (KS) o f  ca l c i um carbonate 

as g i ven  i n  Table 1  (2.37 x  lo- ' )  a t  50°C. Since KS i s  t h e  major  

f a c t o r  i n  t h e  S a t u r a t i o n  Index, i t  i s  apparent t h a t  us i ng  t h e  KpHc va lue  

a l l ows  t h e  use o f  much h ighe r  c a l c i u m / a l k a l i n i t y  values. 



TABLE 4. Exper imenta l  Values o f  t h e  C r i t i c a l  pH, pHc, and t h e  C r i t i c a l  

S c a l i n g  Constant,  KpHc, f o r  CaC03. 

Ca A l k  

I t  must be emphasized t h a t  KS and K a r e  va lues r e p r e s e n t i n g  
PHc 

d i f f e r e n t  p h y s i c a l  r e a l i t i e s .  The s o l u b i l i t y  p roduc t ,  Ks,  d e f i n e s  t h e  

amount o f  c a l c i u m  and carbonate which remain i n  s o l u t i o n  i n  t h e  presence 

of s o l i d  CaC03; t h e  c r i t i c a l  s c a l i n g  cons tan t ,  KpHc, d e f i n e s  t h e  amount 

o f  c a l c i u m  and ca rbona te  which,  i n  t h e  absence o f  s o l i d  CaC03, must be i n  

s o l u t i o n  b e f o r e  s c a l i n g  can occur .  (11 

3.3 EFFECT OF MAGNESIUM AND SULFATE IONS ON CALCIUM CARBONATE SOLUBILITY 

I t  i s  known t h a t  i n c r e a s i n g  t h e  c o n c e n t r a t i o n  o f  t h e  common 
- - 

i o n  ( i n  t h i s  case e i t h e r  cat+ o r  C03 ),  which occurs  as t h e  c y c l e s  o f  

c o n c e n t r a t i o n  a r e  increased,  causes s c a l i n g  t o  occur .  I n c r e a s i n g  t h e  

c o n c e n t r a t i o n  o f  i o n s  n o t  common t o  t h e  s c a l e  f o r m i n g  compound, however, 

i nc reases  t h e  s o l u b i l i t y  o f  t h a t  compound. T h i s  phenomenon, t h e  s a l t  

e f f e c t ,  i s  taken  i n t o  account i n  t h e  S a t u r a t i o n  Index i n  terms o f  a l l  

noncommon i o n s  h a v i n g  an equal  e f f e c t  on s o l u b i l i t y .  



The f a c t  t h a t  a l l  noncommon i ons  do n o t  have an equal e f f e c t  on 

ca l c i um carbonate s o l u b i l i t y  i s  p o i n t e d  o u t  by t h e  work c f  Ak in  and 

Lagerwerff. ('O) These workers demonstrated t h a t  bo th  magnesium and 

s u l f a t e  ions  enhance t h e  s o l u b i l i t y  c f  c a l c i t e  r e l a t i v e  t o  i t s  t h e o r e t i c a l  

s o l u b i l i t y ,  w i t h  magnesium hav ing t h e  g r e a t e r  e f f e c t .  A p l o t  showing 

t h e  r e l a t i o n  between t h e  s o l u b i l i t y  product  enhancement f a c t o r ,  E y  and 

t h e  r a t i o  r = [~g++ ] / [ ~a '+ ]  i s  g iven  i n  F igu re  4. (20 
M g  

F e i t l e r  has a l s o  shown t h a t  magnesium and s u l f a t e  i ons  have an 

e f f e c t  on t h e  c r i t i c a l  s c a l i n g  cons tan t ,  KpHc, w i t h  magnesium hav ing  a  

f a r  g r e a t e r  e f f e c t .  ) The r e l a t i o n s h i p  between K  and concent ra t ions  
P H ~  

o f  magnesium and s u l f a t e  i s  shown i n  F igu re  5 .  (11) 

FIGURE 4. Re1 a t i o n  Between t h e  Sol u b i  1  i t y  Product Enhancement Fac to r  E, 

and t h e  Equi 1  i br ium R a t i o  r = [ M ~ ' + ] / [ C ~ ~ + ] .  
Mg 
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FIGURE 5. Magnesium and S u l f a t e  I o n  E f f e c t s  On t h e  C r i t i c a l  S c a l i n g  

Constant ,  KpHc. 

4.0 APPLICABILITY OF SCALING THEORY TO DELUGED DCT SYSTEMS 

4.1 "PURE" DELUGATE MAKEUP - 

From t h e  abcve d i s c u s s i o n  i t  i s  apparen t  t h a t  t h e  c r i t i c a l  

s c a l i n g  c o n s t a n t  KpHc, s h o u l d  be used t o  d e t e r m i n e  t h a t  d e l u g a t e  q u a l i t y  

wh ich  w i l l  a s s u r e  no f o r m a t i o n  o f  c a l c i u m  c a r b o n a t e  s c a l e .  The d e l u g a t e  

w i l l  become s c a l e  fo rming when t h e  p r o d u c t  o f  t h e  c a l c i u m  i o n  and f r e e  

ca rbona te  i o n  mol a r  c o n c e n t r a t i o n s  exceeds KpHc. 



Tab le  5  shows a  wa te r ,  a r b i t r a r i l y  g i v e n  t h e  d e s i g n a t i o n  "pu re " ,  

t h a t  can u s u a l l y  be a t t a i n e d  th rough  t h e  use o f  l i m e  s o f t e n i n g ,  h o t  

process l i m e  soda s o f t e n i n g ,  h o t  process l i m e  soda s o f t e n i q g ,  r e v e r s e  

osmosis o r  d e m i n e r a l i z a t i o n ,  depending on t h e  raw wate r  q u a l i t y .  (21 

The c o s t  of t r e a t i n g  raw wate r  t o  t h i s  q u a l i t y  ranges f rom $0.27 t o  

$0.92 per  1000 g a l l o n s ,  depending on t h e  raw wate r  q u a l i t y  and t r e a t m e n t  

methodology. F u r t h e r  i n f o r m a t i o n  on t h e  c o s t  o f  t r e a t i n g  wa te r  i s  g i v e n  

i n  Appendix A-1 . 

TABLE 5. "Pure" Water Qua1 i t y .  

T o t a l  Hardness 20 - 40 mg/l as CaCf13 

Cal c i  um Hardness 15 - 30 mg/l as CaC03 

T o t a l  A l k a l i n i t y  10 - 25 mg/ l  as CaC03 

Sul  f a t e  10 - 15 mg/l as CaCQ3 

T o t a l  D i s s o l v e d  Sol i d s  50 - 100 mg/l 

Fo r  t h e  purpose o f  t h e  f o l l o w i n g  d i s c u s s i o n ,  i t  w i l l  be  

assumed t h a t  w a t e r  o f  t h e  q u a l i t y  d e s c r i b e d  i n  Tab le  5  w i l l  be used as 

t h e  o r i c j i n a l  d e l u g a t e  and as d e l u g a t e  makeup wa te r .  F i g u r e  6 shows t h e  

d i s t r i b u t i o n  o f  s o l u t e  spec ies ,  i n  m o l e s / l i t e r ,  as a  f u n c t i o n  o f  pH a f t e r  

t h e  above water  i n  c o n t a c t  w i t h  t h e  atmosphere has been a l l owed  t o  

concen t ra te ,  as a  r e s u l t  o f  evapora t ion ,  t o  an i m p u r i t y  l e v e l  35 t imes  

g r e a t e r  than  t h a t  shown i n  Tab le  5  (e.g.  , 35 c y c l e s  o f  c o n c e n t r a t i o n ) .  
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FIGURE 6. Aqueous Carbonate Equilibrium and Solubility of Calcium 

Carbonate as a Function of pH in a System Open to the 

Atmosphere; Ionic Strength = 0.035, Temperature = 40°C. 



The s e t  o f  equa t ions  needed t o  c o n s t r u c t  t h i s  d iagram a r e  a f t e r  Stumm 

and Morgan ( I 4 )  and a r e  g i v e n  i n  T a b l e  6. A l l  c a l c u l a t i o n s  a r e  based 

on a  c i r c u l a t i n g  d e l u g a t e  tempera tu re  o f  40°C (104°F) and an i o n i c  

s t r e n g t h  o f  0.035. 

I f  d e l u g a t e  o f  t h i s  q u a l i t y  i s  a l l o w e d  t o  come t o  e q u i l i b r i u m ,  

t h e  pH w i l l  s t a b i l i z e  a t  about  8.6, c a l c i u m  hardness a t  abou t  10 mg/ l  

as CaC03, and t o t a l  a l k a l i n i t y  a t  abou t  90 mg/l as CaC03. T h u s a b o u t  

1000 mg o f  c a l c i u m  p e r  l i t e r  w i l l  have p r e c i p i t a t e d  o u t  as c a l c i u m  

ca rbona te  s c a l e .  I f  t h e  w a t e r  f i l m  t h i c k n e s s  on t h e  de luged s u r f a c e s  

i s  0.25 mm (0.01 i n c h )  t h i c k ,  t h e  i n i t i a l  CaC!13 s c a l e  w i l l  be  about 

1.45 x mm (4 .8  x l o v 7  f t )  t h i c k  assuming a  CaC03 d e n s i t y  o f  

3  1.75 g/cm . W i t h  a  d e l u g a t e  makeup r a t e  o f  4000 gpm, s c a l e  t h i c k n e s s  

w i l l  i n c r e a s e  a t  a  r a t e  o f  abou t  1.3 x mmlday (1 .9  x f t l d a y ) ;  

t h e  unaccep tab le  l e v e l  o f  0.5 mm (1.5 x 10-"t) o f  s c a l e  w i l l  be reached 

a f t e r  abou t  3.2 y e a r s  o f  con t inuous  o p e r a t i o n .  



TABLE 6. The E q u i l i b r i u m  D i s t r i b u t i o n  o f  So lu tes  i n  Delugate Water Open 

t o  t h e  Atmosphere, I o n i c  S t re r lg th  = 0.035, Temperature = 40°C. 

++ - - 
Species: Ca 

+ 
9 H2C03, HC03', C03 , H , OH- 

E q u i l i b r i u m  Constants:  

Concen t ra t ions  (35 Cycles o f  Concen t ra t ion )  : 

I o n i z a t i c n  F rac t i ons :  

K p  K 'K '  
H cop 1 2  

[co,--1 = 
[H+12 

K ' K '  
K ~ p ~ ~ ,  1  2  



- 7  From t h e  va lue  of t h e  c r i t i c a l  s c a l i n g  cons tan t ,  K = 1 .8  x  10 , 
P H ~  

and t h e  express ion  f o r  t h e  e q u i l i b r i u m  concen t ra t i on  o f  ca l c i um  i o n ,  

++ + 2  
[Ca I = K [H I I K P K I K I ,  t h e  c r i t i c a l  pH a t  any ca l c i um  i o n  

P H ~  H C02 1  2  
c c n c e n t r a t i o n  can be c a l c u l a t e d  . A t  35 c y c l  es o f  c c n c e n t r a t i o n  , [cat+] 

w i l l  be 1.05 x  m o l e s / l i t e r ,  and pHc i s  8.3; de luga te  a t  35 c y c l e s  

o f  concen t ra t i on  must be kep t  a t  a  pH va lue  l e s s  than  8.3  if s c a l e  

f o rma t i on  i s  t o  be prevented. 

Because o f  t h e  u n c e r t a i n  c o n d i t i o n s  i n  c o o l i n g  wa te r  systems, 

ac tua l  o p e r a t i o n  should  be a t  some safe f a c t o r  below t h i s  upper l i m i t .  

A conse rva t i ve  o p e r a t i n g  pH can be determined by s u b s t i t u t i n g  t h e  va lue  

o f  t h e  ca lc ium carbonate s o l u b i l i t y  product ,  Ks, i n  t h e  above express ion  

and s o l v i n g  f o r  t h e  hydrogen i o n  concen t ra t ion ;  t h e  pH ob ta ined  i n  t h i s  

way i s  7.6. Thus, i f  wate r  as descr ibed  i n  Table  4 i s  used as de luga te  

and i s  a l lowed t o  concen t ra te  t o  35 c y c l e s  of concen t ra t i on ,  t h e  pH 

should  be ma in ta ined  i n  t h e  range o f  7.6-7.8 t o  p reven t  t h e  f o rma t i on  of 

ca lc ium carbcna te  sca le .  Th i s  pH can be ma in ta ined  by a d d i t i o n  o f  

s u l f u r i c  a c i d  t o  t h e  de luga te .  

The amount of blowdown r e q u i r e d  t o  ma in ta i n  t h e  above de luga te  

q u a l i l y  can be determined from (10)  

% B  = 
% E 

( c yc l es  - 1 )  
where 

% B  = Blowdown expressed as percen t  o f  c i r c u l a t i o n  r a t e ;  

% E = Evapora t ion  l o s s  expressed as percen t  o f  c i r c u l a t i o n  
r a t e ;  

c yc l es  = Number o f  c yc l es  o f  concen t ra t i on  



Assuming an e v a p o r a t i o n  r a t e  o f  5%, t h e  amount o f  blowdown r e q u i r e d  i s  

0.15%. I f  t h e  de luga te  c i r c u l a t i o n  r a t e  if 78,700 g a l l c n s  per  minute ,  

which i s  t h e  approximate r a t e  f o r  a  1000 MWe p l a n t ,  t h e  r e q u i r e d  

blowdown r a t e  w i l l  be o n l y  about  120 g a l l o n s  per  m inu te .  

4.2 OTHER MAKEUP WATER QUALITIES 

Tab le  7 shows o t h e r  wa te r  q u a l i t i e s  and t h e  c y c l e s  o f  

c o n c e n t r a t i o n  t h a t  can be s a f e l y  a l l owed  i f  s c a l i n g  i s  t o  be avoided. 

TABLE 7. Use o f  Var ious Waters as Deluqate  as a  F u n c t i o n  o f  !j!ater q u a l i t y .  

Water 

T o t a l  Hardness, mg/l as CaC03 

Calc ium Hardness, mg/ l  as CaC03 

T o t a l  A1 k a l  i n i t y ,  mg/l as CaC03 

T o t a l  D i s s o l v e d  Sol i d s ,  mg/l 

A l lowed Cycles o f  C o n c e n t r a t i o n  

C r i t i c a l  pH of Delugate  

Opera t ing  pH of De luga te  

Percent  B l  owdown r e q u i r e d  ( a )  

Blowdown Rate, gpm ( b )  

Columbia R ich land  San Juan Sher idan 
"Pure" R i v e r  City R i v e r  Wyo . 

( a )  Assuming 5% evapora t ion  r a t e  

( b )  Assuming 1000 MWe p l a n t  w i t h  d e l u g a t e  c i r c u l a t i o n  r a t e  o f  78,700 gpm 

5.0 SCALE FORMED R Y  DELUGATE EVAPORATION 

The extended s u r f a c e s  o f  t h e  d r y  c o o l i n g  tower  w i l l  be deluged o n l y  

d u r i n g  warm p e r i o d s  t o  p r o v i d e  augmented c o o l i n g  c a p a b i l i t y .  When t h e  

d r y  b u l b  temperature  drops below a  s p e c i f i e d  p o i n t ,  t h e  f l o w  of d e l u g a t e  

w i l l  be t u r n e d  o f f  and t h e  tower  w i l l  c p e r a t e  w i t h  t h e  f i n n e d  tube  su r faces  

d r y .  



When t h e  de luga te  f l ow i s  t u rned  o f f ,  t h e  water  rema in ing  on t h e  f i n  

su r faces  w i l l  evaporate,  l e a v i n g  behind as a  s c a l e  a l l  o f  t h e  d i s s o l v e d  

i m p u r i t i e s  i t  con ta ined .  Some o f  t h e  s a l t  so depos i ted ,  such as t h e  

compounds o f  sodium, w i l l  r e d i s s o l v e  when t h e  f i n s  a r e  aga in  deluged. 

However, once ca l c i um  carbcnate sca le  i s  formed, t h e  s o l u b i l i t y  p roduc t ,  

KS, r a t h e r  than t h e  c r i t i c a l  s c a l i n g  cons tan t ,  KpHc, must be used t o  

determine whether t h e  sca le  w i l l  r e d i s s o l v e .  

Assuming t h a t  t h e  de luga te  q u a l i t y  i s  c c n t r o l l e d  as shown i n  Table  7  

(pH 7.6-7.8, blowdown r a t e  t o  ensure maximum ca lc ium concen t ra t i on  o f  

1000 mg/l as CaC03), t h e  p roduc t  o f  ca l c i um  and f r e e  carbonate mo la r  

concen t ra t i ons  w i l l  be equal t o  t h e  s o l u b i l i t y  p roduc t  o f  ca l c i um  

carbonate a t  t h i s  temperature,  and t h e  s c a l e  w i l l  n o t  r e d i s s o l v e .  S ince 

s o l i d  CaC03 w i l l  then be p resen t  i n  t h e  system, t h e  pH must be lowered 

and ma in ta ined  a t  about 7.2 t o  ensure no f u r t h e r  s c a l e  f o rma t i on .  

Again  assumiug a  wa te r  f i l m  th i ckness  o f  0.25 mm, (0.01 i n c h )  t h e  

th i ckness  o f  ca l c i um  carbonate sca le  formed on evapora t ion  o f  t h e  de luga te  

w i l l  be about 1.45 x 10-~mm (4.8 x  f t ) .  Assuming t h a t  t h e  de luga te  

system i s  t u rned  o f f  and t h e  wate r  a l lowed t o  evaporate  200 t imes pe r  

year ,  an unacceptab le  amount o f  s ca le  (0.5 mm) w i l l  b u i l d  up i n  17 years  

of ope ra t i on .  Thus t h e  ma jo r  i n c e n t i v e  f o r  p reven t i ng  s c a l e  format ion 

by evapo ra t i on  i s  r e d u c t i o n  i n  t h e  amount o f  a c i d  which would have t o  

be added t o  p reven t  f u r t h e r  d e p o s i t i o n .  Format ion o f  ca l c i um  carbonate 

s c a l e  by evapora t ion  o f  t h e  de luga te  can be prevented by de lug ing  t h e  

f i n n e d  sur faces w i t h  zero hardness wate r  b e f o r e  t u r n i n g  o f f  t h e  wa te r  

f low.  About 100,000 g a l l o n s  o f  ze ro  hardness water  w i l l  be r e q u i r e d  f o r  



a  f i v e - m i n u t e  f l u s h .  C a p i t a l  c o s t  of  a  sodium z e o l i t e  system t o  produce 

t h i s  w a t e r  w i l l  be about  $2.5 x  l o 5 ;  o p e r a t i n g  c o s t  w i l l  be abou t  

4 
$1.0 x  10 p e r  y e a r .  

6.0 DELUGATE TREATMENT FOR SCALE DREVENTIQN 

6.1 SIDE-STREAM TREATMENT 

As has been i n d i c a t e d  p r e v i o u s l y ,  a  comb ina t ion  o f  a c i d  t r e a t -  

ment and c o n c e n t r a t i o n  c o n t r o l  i s  t h e  p r e f e r r e d  method f o r  p r e v e n t i o n  of  

c a l c i u m  ca rbona te  s c a l e  i n  de luged  DCT systems. S u l f u r i c  a c i d  i s  

g e n e r a l l y  used i n  open r e c i r c u l a t i n g  w a t e r  systems because o f -  i t s  l ow  

c o s t  . ( 1  0)  

A  schemat ic  d raw ing  o f  t h e  d e l u g a t e  system f o r  a  1000 MWe 

p l a n t  i s  shown i n  F i g u r e  7. ( 2 2 )  A  s i d e - s t r e a m  t a k e n  f r o m  t h e  d e l u g a t e  

i s  t r e a t e d  b y  l ime-soda s o f t e n i n g .  The a l l o w e d  c y c l e s  o f  c o n c e n t r a t i o n ,  

s i d e - s t r e a m  f l o w  r a t e ,  and chemica l  dose r a t e s  w i l l  depend on t h e  q u a l i t y  

o f  t h e  makeup wa te r .  T y p i c a l  va lues  a r e  shown i n  T a b l e  8 f o r  a  v a r i e t y  

o f  wa te rs .  

T a b l e  9 shows t h e  c o s t s  o f  s i d e - s t r e a m  and makeup w a t e r  

t r e a t m e n t .  ( 2 1  y 2 2 )  As can be seen, i t  i s  c o n s i d e r a b l y  l e s s  expens ive  

t o  use t h e  e x i s t i n g  raw w a t e r  s u p p l y  w i t h  pH c o n t r o l  and s i d e - s t r e a m  

t r e a t m e n t  r a t h e r  t h a n  t o  a t t e m p t  t o  p u r i f y  t h e  makeup w a t e r .  

6.2 DH COI'.ITROL 

The feed r a t e  o f  66" Baume s u l f u r i c  a c i d  t o  t h e  makeup 

w a t e r  can b e  c a l c u l a t e d  f r o m  t h e  f o l l o w i n g  f o r m u l a  (assuming a  12-hour 
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day and a maximum a l lowed de luga te  a1 k a l i n i t y  o f  40 mg/l as CaC03) : 

ga l .  H2S04/day = ( K T )  (Makeup Flow, gpm) (4.12 x  

where KT = A l k a l i n i t y  o f  Makeup, - 4 0  
mg/l as CaC03 c y c l e s  o f  concen t ra t i on  

A c i d  feed  r a t e  should  be c o n t r o l l e d  us i ng  an au tomat i c  pH c o n t r o l  system 

s i m i l a r  t o  t h a t  s i m i l a r  t o  t h a t  shown i n  F i g u r e  8. ( l o )  A t y p i c a l  

a c i d  d e l i v e r y ,  s t o rage  and t r a n s f e r  system i s  shown i n  F i g u r e  9. 
(10 )  

TABLE 8. Approximate Chemical Dosage Rates and Treatment Stream Flow 

Rates as a  Func t ion  of flakeup Water Q u a l i t y .  

Columbia R ich land  San Juan Sher idan 
"Pure" R i v e r  City R i v e r  Wyo . 

C i r c u l a t i o n  Rate, gpm 

Evapora t ion  Rate, gpm 

A1 lowed Cycles o f  Concen t ra t ion  

S ide  Stream Flow Rate, gpm 

Lime Dosage, Ib /day  

Soda Ash Dosage, l b / day  

A1 u~i i  Dosage, 1  b lday  

Blcwdown + Sludge Flow Rate, gpm 

Side-Stream Treatment E f f l u e n t  
Flow Rate, gpm 

Makeup Flow Rate, gpm 

S u l f u r i c  A c i d  Feed Rate, ga l /day 



TABLE 9. Approximate Costs o f  Side-Stream and Makeup Water Treatment .  

Columbia R ich land  San Juan Sher idan 
"Pure" R i v e r  City R i v e r  Wyo . 

Side-Stream Treatment Costs:  
4 

C a p i t a l  - 10 D o l l a r s  7 . 8  10.0 14.0 24.0 30.0 
4 

Opera t ing  - 10 Do1 1 a r s l y e a r  (a )  1 .O 1.6 2.5 6.4 9.1 

Makeup Treatment Costs:  
4 C a p i t a l  - 10 D o l l a r s  66-296 1.3 1.2 3.0 4.2 

4 
Opera t ing  - 10 001 l a r ~ / y e a r ( ~ ) l 4 - 3 8  1.1 0.9 4.3 7 .7  

( a )  Assuming o p e r a t i o n  a t  80% capac i t y .  
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FIGURE 8. System f o r  Automat ic  Con t ro l  o f  Delugate pH. 
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FIGURE 9. A c i d  D e l i v e r y ,  Storaqe and T rans fe r  System. 

6.2.1 Calc ium S u l f a t e  Sca le  Format ion 

Of  concern w i t h  t h e  use o f  s u l f u r i c  a c i d  f o r  pH c o n t r o l  

i s  t h e  p o s s i b i l i t y  o f  ca l c i um  s u l f a t e  s c a l e  f o rma t i on .  4 water  t r ea tmen t  

c o n s u l t i n g  f i r m  i n d i c a t e s  t h a t  a  good r u l e  o f  thumb t c  c o n t r o l  ca l c i um  

s u l f a t e  s c a l e  i s  t o  never a l l o w  t h e  p roduc t  o f  t h e  concen t ra t i ons  ( i n  

mg/l as CaC03) o f  ca l c i um  and s u l f a t e  i o n s  t o  exceed 500,000. (23) 

However, ~ e i t l e r ' " )  has shown t h a t  between 5  and 10 t imes t h e  s o l u b i l i t y  

p roduc t  concen t ra t i ons  a r e  r e q u i r e d  be fo re  p r e c i p i t a t i o n  o f  ca l c i um  

s u l f a t e  begins.  From h i s  da ta  a  c r i t i c a l  s c a l i n g  cons tan t  o f  about 

2.5 x  ([Ca"] [so4-']) can be c a l c u l a t e d  f o r  ca l c i um  s u l f a t e .  

The concen t ra t i ons  o f  s u l f a t e  i n  t h e  de luga te  f o r  t h e  

va r i ous  waters  be ing  cons idered  a r e  shown i n  Tab le  10. As t h i s  t a b l e  

shows, t h e  i o n  p roduc t  o f  ca l c i um  and s u l f a t e  i s  l e s s  than t h e  c r i t i c a l  

s c a l i n g  cons tan t  f o r  each o f  t h e  waters  shown; t h e r e f o r e ,  ca l c i um  

s u l f a t e  s c a l e  w i l l  n o t  form. 



TABLE 10. Bu i l dup  o f  S u l f a t e  Concen t ra t ion  i n  t h e  Delugate as a  Func t i on  

o f  Makeup Water Q u a l i t y .  

Columbia R ich land  San Juan Sher idan 
"Pure" R i v e r  City R i v e r  Wvo . 

S u l f a t e  i n  Makeup Water: ( a )  

Na tu ra l  : 

Added : 

T o t a l  : 

Cycles o f  Concen t ra t ion :  

S u l f a t e  i n  Del  ugate:  ( a )  

Calc ium i n  Delugate:  ( a )  

[ ~ a + + ]  x  [so4--] x  l o 4 :  
C r i t i c a l  S c a l i n g  Constant  

x  10 : 

( a )  mg/l as CaC03 

7.0 RESEARCH NEEDS 

1  - Not  addressed i n  t h i s  paper a r e  t h e  degrada t ion  o f  de luge wate r  

qua1 i t y  and f o u l i n g  o f  t h e  f i n n e d  sur faces  by a i  r -bo rne  p a r t i c u l a t e  

m a t e r i a l  such as dust ,  i n s e c t s ,  po l l en ,  e t c .  A sys temat i c  s tudy  i s  

needed o f  f o u l i n g  p ropens i t y ,  c l e a n i n g  techniques and inc reased  s i de -  

stream t r ea tmen t  c a p a c i t y  necess i t a t ed  by degraded a i r  q u a l i t y .  

2 - Given here i s  an es t ima te  o f  t h e  e f f e c t  o f  s c a l e  on hea t  t r a n s f e r  

and de ldga te  f l o w .  Exper imenta l  da ta  i s  needed t o  p r e c i s e l y  d e f i n e  how 

much s c a l e  can be t o l e r a t e d  and r a t e s  of s ca le  d e p o s i t i o n  as a  f u n c t i o n  

o f  wa te r  q u a l i t y  and t rea tment .  



3 - I t  i s  recommended h e r e i n  t h a t  zero-hardness water  be used t o  f l u s h  

t h e  extended sur faces  a t  t h e  end o f  each de luge c y c l e .  When t h i s  water  

evaporates,  a  l a y e r  o f  i n o r g a n i c  s a l t s  w i l l  be depos i ted  on t h e  f i n  

su r faces .  P i t t i n g  c o r r o s i o n  o f  t h e  aluminum f i n s  beneath these s a l t  

depos i t s  i s  p o s s i b l e  d u r i n g  d r y  ope ra t i on .  ques t ions  which r e q u i r e  

l a b o r a t o r y  a n a l y s i s  i n c l u d e  t h e  f o l l o w i n g :  

" Does p i t t i n g  beneath t h e  s a l t  depos i t s  occur? 

" What i s  t h e  e f f e c t  o f  p i t t i n g  on t h e  hea t  t r a n s f e r  

performance o f  t h e  extended sur faces?  

" W i l l  f l u s h i n g  w i t h  de ion ized  water  be r e q u i r e d ?  

4 - An a1 t e r n a t e  de luga te  t rea tment  technology i s  one eniplcying 

d i spe rsan t s  (such as phosphonates, po l yacy l a tes ,  e t c )  t o  i n h i b i t  s c a l e  

f o r ~ i i a t i o n .  Whi 1  e  such m a t e r i a l s  a r e  w i d e l y  used as s c a l e  - i n h i b i t o r s  

i n  wet evapo ra t i ve  towers,  t h e i r  e f f e c t i v e n e s s  i n  systems a l lowed t o  

evaporate  t o  dryness i s  unknown. D ispersan ts  may a i d  i n  r e d i s s o l u t i o n  

o f  m a t e r i a l s  depos i ted  by evapora t ion ,  and t h i s  methodology may prove 

t o  be l e s s  expensive than  c o n t r o l  o f  pH and ca l c i um  concen t ra t i on ;  

1  abo ra to r y  da ta  a r e  r equ i r ed .  

5 - V e r i f i c a t i o n  o f  t h e  c r i t i c a l  s c a l i n g  cons tan ts ,  p a r t i c u l a r l y  

t h a t  f o r  ca lc ium s u l f a t e , i s  r equ i r ed .  Accurate  de te rm ina t i on  o f  these  

cons tan ts  i s  needed as a  f u n c t i o n  o f  temperature,  i o n i c  s t r e n g t h  and 

noncommon i ons  such as magnesium. 



6 - It has been assumed t h a t  t h e  a l t e r n a t e  wet -dry  cyc l es  i n  t h e  

deluge system w i l l  c o n t r o l  t h e  growth o f  a lgae  and o t h e r  b i o f o u l i n g  

organisms i n  t h e  system. Th is  assumption r e q u i r e s  exper imenta l  v e r i f i c a t i o n .  

I f  b i o f o u l i n g  appears t o  be a  problem, c o n t r o l  procedures such as t h e  

use o f  c h l o r i n e  and t h e  use o f  supplementary b i o c i d e s  must be ex~m ined .  

7 - The e f f e c t  o f  f i nned - t ube  des ign  on hea t  t r a n s f e r  degrada t ion  due 

t o  sca le  d e p o s i t i o n  and c o r r o s i o n  i s  l a r g e l y  unknown. The l e a s t  expensive 

des ign i s  one employing aluminum f i n s  wrapped on t o  carbon s t e e l  tubes. 

Whether t h i s  des ign  w i l l  be s u b j e c t  t o  such problems as c r e v i c e  c o r r o s i o n ,  

g a l v a n i c  co r ros i on ,  sca le  f o rma t i on  i n  t h e  c rev i ce ,  e t c .  i s  an area 

r e q u i r i n g  exper imenta l  work. C e r t a i n l y  exposed carbon s t e e l  tube  ends 

w i l l  be s u b j e c t  t o  co r ros i on ,  and an e f f e c t i v e  means o f  p r o t e c t i o n  must 

be dev ised.  

8.0 SUMNARY AND CONCLUSIONS 

De lug ing  o f  a i r - c o o l e d  hea t  exchangers w i t h  wa te r  d u r i n g  warm pe r i ods  

ho lds  t h e  promise o f  i n c r e a s i n g  t h e i r  hea t  r e j e c t i o n  c a p a b i l i t y  and 

reduc ing  t h e  c o s t  o f  d r y  coo l i ng .  One o f  t h e  p r i n c i p a l  u n c e r t a i n t i e s  

i n  t h e  use o f  t h e  de luge concept i s  t h e  tendency toward d e p o s i t i o n  o f  

s o l i d s  f rom t h e  de luga te .  Small amounts o f  ca lc ium carbonate s c a l e  

may s i g n i f i c a n t l y  reduce t h e  c o o l i n g  e f f i c i e n c y  o f  a  deluged system 

by reduc ing  t h e  hea t  t r a n s f e r  c o e f f i c i e n t  and i n t e r f e r i n g  w i t h  de luga te  

f l ow .  Thus i t  i s  impo r tan t  t o  d e f i n e  de luga te  wa te r  q u a l i t y  i n  

e v a l u a t i n g  t h e  f o rma t i on  o f  s ca le  and i t s  e f f e c t  on hea t  t r a n s f e r  i n  t h e  

deluged d r y  c o o l i n g  system. 



lYost water  t rea tment  p royams  designed t o  c o n t r o l  ca l c i um  carbonate 

sca le  f o rma t i on  i n  c o o l i n g  wa te r  systems a r e  based on t h e  use o f  t h e  

L a n g l i e r  S a t u r a t i o n  Index.  Recent work has shown t h a t  t h e  S a t u r a t i o n  

Index i s  conserva t i ve ,  and open r e c i r c u l a t i n g  c c o l i n g  systems can be 

operated a t  a  pH l e v e l  ( t h e  " c r i t i c a l  pH") 1.7 t o  2 .0  pH u n i t s  above 

t h a t  p r e d i c t e d  by t h e  S a t u r a t i o n  Index.  The presence o f  magnesium and 

s u l f a t e  i ons  i n  t h e  wa te r  inc reases  t h e  p e r m i s s i b l e  ope ra t i ng  pH even 

f u r t h e r .  Operat ion a t  pH l e v e l s  h i ghe r  than those de r i ved  f rom t h e  

S a t u r a t i o n  Index g r e a t l y  inc reases  t h e  water  reuse p o s s i b i l i t i e s  of a  

g i ven  raw wate r  supply .  

P ,pp l i ca t ion  o f  t h e  c r i t i c a l  pH concept t o g e t h e r  w i t h  carbonate 

e q u i l i b r i a  i n  an open aqueous system makes p o s s i b l e  t h e  c a l c u l a t i o n  of 

t h e  concen t ra t i on  o f  a l l  s o l u t e  spec ies a t  any pti. I f  an a r b i t r a r y  upper 

l i m i t  o f  1000 mg/l as CaC03 f o r  t h e  ca lc ium hardness i s  chosen, t h e  

system must be ma in ta ined  a t  a  pH l e v e l  l e s s  than 8.3 i f  f o rma t i on  o f  

ca lc ium carbonate s c a l e  i s  t o  be prevented. Suggested sa fe  o p e r a t i c n  i s  

a t  a  pH l e v e l  somewhat lower  than  t h i s  upper l i m i t ,  i n  t h e  range o f  

7.6-7.8. 

When t h e  f l o w  o f  de luga te  i s  t u rned  o f f ,  wa te r  rema in ing  on t h e  

sur face w i l l  evaporate  and d e p o s i t  as a  sca le  t h e  i m p u r i t i e s  i t  conta ined.  

Calcium carbonate s c a l e  so depos i ted  w i l l  n o t  r e d i s s o l v e ,  s i nce  t h e  i o n  

p roduc t  o f  ca l c i um  and f r e e  carbonate spec ies i n  t h e  de luga te  w i l l  be 

about equal t o  t h e  s o l u b i l i t y  p roduc t .  I f  f u r t h e r  s c a l e  d e p o s i t i o n  i s  t o  

be avoided, t h e  de luga te  o p e r a t i n g  pH must be reduced t o  about pH 7.2. 



Formation o f  ca lc ium carbonate sca le  by evapora t ion  o f  t h e  de luga te  can 

be prevented by de lug ing  t he  f i n n e d  sur faces w i t h  zero hardness water  

be fo re  t u r n i n g  o f f  t h e  water  f l ow .  

The method of  cho ice  f o r  t h e  p reven t i on  o f  ca l c i um carbonate s c a l e  

i n  deluged DCT systenis i s  a  cornbination o f  pH c o n t r o l  us i ng  s u l f u r i c  

a c i d  and concen t ra t i on  c o n t r o l  by t h e  use o f  s ide-s t ream t rea tment .  

Areas r e q u i r i n g  exper imenta l  da ta  i n c l u d e  t h e  e f f e c t  o f  a i r - b o r n e  

p a r t i c u l a t e s  on heat  exchanger f o u l  i n g  and degrada t ion  o f  d e l  ugate qua1 i ty, 

a  more p r e c i s e  d e f i n i t i o n  of heat  t r a n s f e r  degrada t ion  due t o  s e a l i n g  

and t he  amount o f  sca le  t h a t  can be t o l e r a t e d ,  t h e  e f f e c t  o f  s a l t  d e p o s i t i o n  

on f i n  co r ros ion ,  t he  use of d i spe rsan ts  t o  c o n t r o l  sca le ,  v e r i f i c a t i o n  o f  

va lues o f  t h e  c r i t i c a l  s c a l i n g  constants ,  t h e  p c s s i b i l i t y  c f  b i o f o u l i n g  

and t he  e f f e c t  o f  f i n n e d  tube design on s c a l i n g  and c o r r o s i o n  problems. 
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COSTS 

A-1 . WATER TREATMENT COSTS 

Fo l l ow ing  a re  t a b l e s  which show t h e  cos t ,  i n  1975 d o l l a r s ,  o f  

t r e a t i n g  raw wate r  o f  v a r y i n g  q u a l i t y  t o  var ious  p u r i t y  l e v e l s .  Table 

A-1 shows t h e  c a p i t a l ,  ope ra t i ng  and t o t a l  cos t s  ( i n  terms o f  $/I000 g a l )  

of a  three-mgd t rea tment  p l a n t .  Data a re  g i ven  f o r  f i v e  raw water  types 

and f o u r  t rea tment  l e v e l s ,  which a r e  de f i ned  i n  Tables A-2  and A-3. 

I n fo rma t i on  g iven  here i s  based on data rece ived  f rom J. S .  Nordin,  

Betz Environmental  Engineers , Plymouth Meet-i ng , PA. 



TABLE A-1. Hater  Treatment Costs ,  3-!1GD Treatment P l a n t  

(1 975 Do1 1 a r s )  . 

Des i red Raw Water 
Qua1 i  t y ,  TY pe Capi to1 

s e e  s e e  Cost ,  -5 
Table A-2 Table A-3 ..- $ x 10 

Potable:  A 4.4 

B 8 .6  

C 9.6 

D 10.1 

E 1 .7  

Pure: 

High Pu r i t y :  A 13.4 

B 17.7 

C 17 .6  

D 21.1 

E 23.4 

U l t r a  Pure: A 15.9 

B 20.2 

C 20.1 

D 23.6 

E 23.4 

Capi ta l  
c o s t ,  ( a )  

$11000 gal 

Operat ing 
Cos t ,  

$11000 gal 

Total  
Cos t ,  

$11000 gal 

( a )  Fixed charge r a t e  = 17.4%, 
P l a n t  capac i ty  f a c t o r  = 80%, 
P l a n t  L i f e  = 30 y e a r s .  



TABLE A-2. T y p i c a l  Raw b!ater Analyses. 

Raw wate r  t ype  A: Sur face,  medium hardness, low d i sso l ved  and 
suspended s o l i d s ,  low s i l i c a .  

Raw water  t ype  B: Surface, medium hardness, low d i sso l ved  
s o l i d s ,  h i g h  suspended s o l i d s ,  low s i l i c a .  

Raw wate r  t ype  C :  Well water ,  ve ry  hard,  h i gh  d i s s o l v e d  
s o l i d s ,  no suspended s o l i d s ,  h i gh  s i l i c a .  

Raw wa te r  t ype  D: Surface water ,  hard,  moderate d i sso l ved  
s o l  i d s ,  h i g h  suspended s o l  i d s ,  some c o l o r ,  
and s i l i c a .  

Raw wate r  t ype  E:  Well water ,  medium hardness, moderate 
d i s s o l v e d  s o l i d s ,  no suspended s o l i d s ,  
some s i l i c a .  

T o t a l  Hardness, mg/l 
as CaC03 6  0  50 400 200 100 

Calcium hardness, mg/l 
as CaC03 4  5  3  0  300 150 7  5  

Sodium, mg/l as CaC03 30 2  0  2  0  2  0  600 

A1 k a l  i n i t y ,  mg/l as 
CaC03 60 50 350 150 50 

Ch lo r ide ,  mg/l as CaC03 20 10 20 20 300 

Su l fa te ,  q g / l  as CaC03 15 10 5  0  50 350 

S i l i c a ,  mg/l as CaC03 2  2  40 8 10 

I r o n ,  mg/l 0.1 0.3 0.1 0.3 0.1 

D isso lved  s o l i d s ,  mg/l 110 100 670 330 560 



T.4BLE A-3. Treatment Levels .  

Po tab le  Pure High P u r i t y  U l t r a  Pure 

Hardness , 
m g l l  i t e r  50- 1 50 20-40 2-4 <O. !I5 
as CaC03 

D i  s so l  ved 
Sol  i d s ,  100-250 50-1 00 5-10 <O. 05 
m g l l  i t e r  

I r o n ,  m g l l i t e r  <0.3 ~ 0 . 1  q0. 1 <0.01 

S i l i c a  10-20 2 <0.1 ~ 0 . 0 1  

A-2. CHE!!I CAL , ELECTRICAL AND LAB9R COSTS 

A l l  o p e r a t i n g  c o s t  es t imates  a r e  based on t h e  f o l l o w i n g  

cos t s  o f  wa te r  t rea tment  chemicals,  e l e c t r i c i t y  and l a b o r :  

Lime - $0.017/ lb  
Soda Ash - $0.03/ lb  
A1 um - $0.2011 b 
S u l f u r i c  Ac id-  $0.37/gal  (66"  Baume) 
Labor - $1 Olwan-hour 
E l e c t r i c i t y  - $O.Ol/KWH 
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