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ABSTRACT o s e

Two techniques for radionuclide imaging and reconstruction have
been studied; both are used for improvement of depth resolution.

The first technique is called coded aperture imaging, which is a
technique of tomographic imaging. The image of an object is first
recorded in a coded form by a gamma camera with a special aperture
containing a coded hole pattern or opening. A decoding process is
needed to reconstruct the image from its coded form. The investigations
of this technique are concentrated in theory and a few prospective
coding~decoding methods. The results show that a non-redundant pinhole
coded aperture can provide us a simple and reliable way to obtain the
images of a 3-D object with adequate depth resolutions and low
background artifacts.

The second technique is a special 3-D image reconstruction method
which is introduced here as an improvement to the so called focal-plane
toinography. This method can be applied to a number of tomographic
imaging devices, such as the positron camera, the rotating slanted-
hole collimator camera (tomocamera), the multiplanz tomographic scanner
(tomoscanner), and the multiple pinhole camera, Applications of this

reconstruction method to the last tomographic imaging device have shown,




through computer simulations and experiments with radioactive phantoms,
that within the limit of the depth resolution of the tomographic imaging
device, structures from activities above and below the in~focus planes

can be removed mostly from the focal-plane tomographic images.
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0. INTRODUCTION TO RADIONUCLIDE IMAGING

0.1 _Review of Radionuclide Imaging in Nuclear Medicine

Nuclear medicine is the application of radioactive materials to
the diagnosis and treatment of patients and the study of human disease.
(Refs. 1-4) From its early beginings when artificially produceq
radionuclides first became avatlables. nuclear medicine has devoloped
into one of the most exciting and important components of modern
biomedical science. Nuclear methods have found application in both
the diagnosis and treatment of disease. HWith the passage of time,
howaver, diagnostic techniques are receiving an increasingly large
share of the attention of clinical investigators.

In diagnostic nuclear medicine, examinations of tumors, organs,
or other anatomical structures zre carried out by detection of the
electromagnecic radiation emitted by radioactive substances concen-
trated in these structures. These electromagnetic radiations may be
either emitted by the radionuclide{gamma rays), or they may result
from a process secondary to radioactive decay(x rays and annikilation
radiation). (Fotr the sake ¢f simplicity, the different electromagnetic
radiations will, in this thesis, be called gamma rays). The instru-
ments used for this purpose can be broadly categorized inte (1)
scanners and (2) gamma cameras.

Scanners utilize radiation detectors collimated to accept

photens from a single resolution element of the structure to be



visualized, and the image of the structura is formed by u scamning
motion of the detector over the area of interest. Gamma cameras,

on the other hand, are stationary devices; their radiation detector
continuously observes the whole field to be visualized. Only a
discussion of gamma cameras will be given in this section for the
purpose of this thesis, descriptions of other instruments for radio-
nuclide imaging should be refered to Ref, 6.

Radionuclide cameras are relatively new instniments for imaging
the distribution of radiocompounds iunside the tody. They have many
advantages over scanners.7 They have the ability to "sec' some
organs in tueir entirety and 1o display visually changes in an oigan
during a dynamic function test. Most of them are constructed so the
detector head can be positioned to do organ imaging either in the
recurbent or the sitting position. The construction of a gamna camera
consists of three components: (1) a device capable of channeling the
gamma~-ray photons wicth the purpose of forming an image, (2) a detector
sensitive to the gamma~ray photons, and (3) a system capable of es-
tablishing a spatial celationship between the signal supplied by the
detector and the position of the gamma-ray photons in the image
formed by (i).

Since the index of refraction of optical lenses is very close
to one for electromagnetic radiation with wavelengths in gamma-ray
region, a large lens aperture provides no means of collimating
gamma-ray photons for the image forming. A number of different

methods of collimation have been used with the purpose of praviding



the detector of a gamma camera with an image formed by gamma-ray
photons. Conventional collimating devices are multichannel colli-
mators and pinhole apertures. Other collimating devices such as
slanted multichannel collimzﬂ‘.o‘rs,s'9 converging (or diverging)

multichannel ‘colli.mators,lo and coded aperturesu' 12

are relatively
new Jlesigns and their special uses will be explained in Section 0.2,

Multichannel (or parallel-hole) collimators are the most widely
used image forming devices in gamma cameras. They consist of a
series of holes or channels with parallel axes in a plate made of
a dense and heavy material such as lead. The image-forming mechanism
of a multichannel collimator is shown in Fig.l-1. The gamma~ray
photons emitted from the source pass through the parallel channels
of the collimator and form an image of the source distribution with
its size and orientation unchanged. The best image resolution is
obtained by means of a multichannel collimator in contact with the
object observed, and this resolution decreases with distance.

The principle of operation of pinhcle apertutves for gamma rays
is identical to that of the pinhole optical camera. A pinhole aperture
consists of a hole that is provided in a plate opaque Lo gamma ray
photans, originating at the object to be visualized and traveling
towards the hole as shown in Fig.l1-2, form an inverted image of the
object at the detector. The size of the image is determined by the
object-to-aperture and the aperture-to~detector distances. Thus,

a pinhole aperture has the ability to magrify images of small objects

for a bettcr image vesolution.



There are many position sensitive devices which can be used as
detectors in gamma cameras. At least four different types of gamma
cameras can be identified according to the detectors used. The Anpor-

6:7 are the most widely used gamma cameras.

type scintillation cameras
Commercially.availabie Anger Cameras use a 1/2-inch thick Nal(T1)

crystal that varies in diameter from 12 to 13,5 inches, depending on
the manufacturer, and use 19 or 37 multiplier phototubes arranged in
a hexagonal array. Other experimental types of gamma cameras that

have been used are image intensifier cameras"z, spark charnbcr;u'
and multi-wire proportional chambexs,ls and semiconductor imaging

systemslG. General descriptions of these gamma camera systems are

given in Ref. 6 and 7,

0.2 _Tomography and Three-Dimensional Image Reconstruction

An important limitation of the conventional gamma ecameras is
that gamma cameras with a pinhole aperture or a parallel-~hole
collimator can not "see" the depth of an object distribution.

A conventional gamma camera photo is only a two~dimensional portrayal
of the three-dimensional distribution of the object. For th2 purpose
of diagnosis for abnormality in small lesions, it is highly desirable
to have imaging devices which can exclude the unwanted activity above
and below the plane of interest. During the last 50 years, radiology
has developed several methods to exclude unwanted information and

improve the radiographic image. These methods are called tomography

from the Greek words meaning “to write a cut®,



Conventicnal radiographic tomography emhances tue visibility of
radiographic structures on or near a chosen plane by blurring all
objects off the chosen plane, thereby reducing the confusing effects
of averlying and underlying stvuctures. In radionuclide imaning,
the same technique ir used with more flexibility because of the
availability of various radionuclides for radiopharmaceucicals and
advanced instruments for imaging. To aveid confusion with the old
terms used in radiology, a specific tema was suggested by Anger for
the radionuclide imaging methods that result in sharp images of
radinactive objects located on a chosen plane and blurred images of
objects located above or below that plane; it is called focal-plane
tomography. The earliest apparatus used for this purpose ire recti-

1719
an

lincar sranners with wide-angle focused colliminators, d

positron camcras.zo'n

During the last decade many new instruments

and techniques have been introduced to perform focal-planc¢ tomography,
some of them have been actually in us¢ for quite some time while others
are still under study. Examples are the multiplane tomographic
scanner (:omoscanner).zz the rotating slanted-hole collimator camera
(to:ncz::amer:n),ﬂ'9 the magiiifying collimator camera.w and coded aperture

11,12 A summary of all these tomographic imaging devices and

imaging.
techniques is given in Ref.23,
Coded aperture imaging was recently introduced in ‘he field of

1
nuclear medicine imaging first by Barrettn 12

and later b, Rogers
as 2 high resolution tomographic imaging technique. The special

feature of this imaging technique is that it is a two-step process.



The image first obtained from a coded aperture imaging system is not
in a rccoylizaple form. It must be decoded before the true image can
be visualized, The depth information of the vbject distributien is
stored in the coded image and can be brought back through the decoding
process, Although in some cases coded aperture imaging provides us
net gain in signal collection efficiency, the main advantage of coded
aperture imaging is its ability to get tomographic images without any
movement of the object or the camera (including the collimating
device). Brief descriptions of this imaging technique will be
given in Chapter 1, and an intensive analysis is the ‘subject of Part 1
of tuis thesis, B4
Although tomography provides us better image contrast and depth
resolution than the conventional methods, it does not eliminate the
events from off-plane activities, and such events can still reduce
the contrast and the visibility of the in-focus images even through
these events are scattered. Since the objects for nuclear medicine
imaging are often of low contrast, it is often not possible to iden-
tify the true in-focus images from the out-of-focus background images.
Removal of the background imapges would enable detection of smalier
lesions and of lesions of lower contrast., It is possible to remcve
the unwanted background images from the focal-plane t:.omographic images
provided that the direction of each detected gama-ray event is known.
A method of 3-D image reconstruction, which will be given in Part II
of this thesis, is for this purpose.

In parallel to the rapid growth of radionuclide imaging, trans=-



mission imaging in radiology has also achieved great improvcment. A
3-D radiographic imaging technique, called tomosynthesis, has been

37,38 Instead of a continuous

studied by a number of investigators.
motion (in conventional tomography) a discrete sample precedure is
performed in tomosynthesis, i.e. N discrete radiographs are recorded
from N different pasitions of the x-ray sovurce. Tomographic images
of an object at various depths are consiructed from its sample radio-
graphs. This imaging technique has also been used in radicnuclide
imaging. A gamma camera with a multiple pinhole array aperture
(or a single-pinhole aperture at N different positions) is used
in this case. Detailed descriptions of the method of tomosynthesis
in radionuclide imaging is given in Chapter 5. Both conventional
tomography and tomosynthesis are not capable of imaging fast moving
objects because of the duration of the sequential imaging process.
To avercome this difficulty, Weis:z has suggested a method of coded
sources for imaging of objects like the beating heart or fast flowing
contrast media injected in the brain, Kidneys or other organs. This
method uses a single radiograph (coded image) generated by an array
of x-ray sources to construct the tomographic images of the objeu':l:.39
The principle of operation of a coded source imaging system is exactly
the same as that of a coded aperture imaging System. .

Aside from tomographic imaging in x-ray transmission study, a
number of improved image reconstruction techniques, such as the
algebraic reconstruction r.eehniques,zl' the iterative reconstruction

techniques,25 the Fourier recor.struction t:e:chniv:lue,26 and the technique



7 have shown great promise

of linear superpnsition with compeasation,
for 3-D image reconstruction. All of thaese techniques have the advan-
tage of being section imaging methods in which a layer of the object
is imzged from its sides so that neither the activity nor the radi-
ation of the overlying and underlying structures can influence the
image ;:econstruction of a chosen plane section. Image reconstructions
are actually performed in the x-y plane. Budinger has adopted some

28 It is evident that

of these techniques in radionuclide imaging.
studies of various 3-~D imaging and reconstruction techniques as well
as improvements of tamographic imaging techniques with better depth
resolution and image contrast and minimum backgrounc artifacts will

be the future trends for both radiographic imgging and radionuclide

imaging.



PART 1 RADIONUCLIDE IMAGING WITH CODED APERTURES

1., INTRODUCTION TO CODED APERTURE IMAGING

1.1 _Coded Aperture Imaging in Nuclear Medicine

It was explained in Section 0.1 that 2 gamma camera requires a
device capable of channeling the gamma-ray photons with the purpose
of forming an image, A pinhole aperture or a multichannel collimator
can provide the detector of the gamma camera a direct mapping of the
object distribution. Aside from the size and orientation the image
impinging on the detector is an exact 2-D portrayal of the object
distribution. Thus, a pinhole aperture or a multichannel collimator
gives us a simple and direct way to obtain images of objects in the x-y
plane. In order to obtain some information on the object distribution
in the z direction one has to take several views of the object at
different angles. This means longer exposure time is required,

One way which can enable us to get several views of the object
at different angles without increasing the exposure time is to add more
pinholes to a single-pinhole aperture plate of a gamma camera. In
this case, however, all of the pinhole views impinging on the detector
overlap one another and are spread over a large area of the detector,
The image of the object is no longer recognizable and a means of image
reconstruction is required. This image is said to be coded by the

pinhole pattern of the aperture plate. We shall call it a coded image
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or a shadowgranm.

Coded aperxture imaging is an indirect method of imaging in which
the conventional pinhole aperture or multichannel collimator ig re-
placed by = plate containing a coded hole pattern or opening, as
shown in Fig.1-3. A point gamma-ray source will cast a shadow of
this hole pattermn on the detector and this shadow is the coded image
of the point source, A source distribution is encoded as a super-
position of many such patterns. The hole pattern is chosen to
facilitate the image reconstruction or decoding process and to
ensure a faithful reproduction of the source distribution. The
decoding may be accomplished in a number of ways both optically
_and electronically.

Any aperture plate with opening other thun a single pinhole
may be called a coded aperture plate, and there exist many different
code patterns. The multiple-pinhole~array(MPA) coded apertures
and the Fresnel-mne-plate(FZP) coded apertures are the best known
ones. A multiple-pinhole-array aperture is simply an aperture
consisting of a number of pinholes. The random pinhole array shown
in Fig.l-4a was first suggested by Di.::-ke29 for x-ray astronomy and
has been used for solar x-radiation.3° This type of MPA consists
of a large number of pinholes randamly distributed having an average
transmission of 50%.

A second type of MPA is called the non-redundant pinhole array
and an example of this type is shown in Fig.l-4b. The non-redundant

pinhole array was originally proposed for radar am:erma.:n'_:’3
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An optical simulation of the use of this type of MPA was shown by
Houters, et al.al' The positions of the pinholes of a non-redundant
pinhole array are carefully chosen so that the vector distancc between
any two pinholes occurs only once, i.e., the pinholes are spaced
non-redundantly. This non-redundancy means that the autocorrelation
function of this pinhole array is sharply peaked at the center and
uniformly distributed elsewhere.

The reconstruction of a MPA coded aperture system can be inade
by correlating the coded images with the original coded pinhole
aperture array. It is done cither with a simple optical system or
with a small digital computer, The resulting images from this two-
step system have a finite depth of focus, that is, a sharp recon-
structed image can be seen at the appropriate image plane and blurred
images are seen at image planes some distance away from that plane,
Therefore, 3-D information of the object distribution is obtained
through this system. There is alsoc gain in geometrical efficiency
due to the increased number of pinholes over the single-pinhole
aperture system. But as the object to be imaged becoms:s larger the
signal-to-noise ratio of coded aperture imaging decreases and the
gain in geomerrical efficiency is lost (this will be explained later).

Perhaps the flrst use of a coded aperture was by Mertz and
Younp who used a Fresnel 2one plate to image x-ray stats.35 Decoding
was done by using coherent light from a laser, Barrett later applied

36

this method to Nuclear Medicine imaping. The FZP cored aperture

systems are somcwhat more compllcated than the MPA coded aperture
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systems because of the additional focusing property of Fresnel
zone plates. A Fresnel zone plate consists of a number of concentric
zons and the radius of the n':h zone is given by = J_n' Ty where
T is the radius of the first zone., The transmission of each zone
is either 0 or 1 as shown in Fig.l-4c, It is known that a Fresnel
zone plate behaves somewhat like a lens. When the zone plate is
illuminated with a plane wave of monochromatic light, part of the
light is diffracted into a converging spherical wave so that it forms
a bright focal spot according to the formula f = ri"/;\ » where f is
the focal length and A is the wave length of the incoming coherent
light, Detailed analysis of the diffraction properties of zone
plates will be given in Scetions 2,2 and 3.3,

The coded image or zone plate shadowgram is obtained by putting
a zone plate mask somewhere between the radiocactive object and the
detector. For two point sources located at different distances
from the zone plate mask, the shadowgram so produced consists of
two zone plate patterns of different sizes. Upon passing a beam
of coherent light through this zone plate shadowgram, the large
zone plate pattern in the shadowgram focuses the light-beam to a
point further away from the shadowgram than that from the small
zone plate pattern because the focal length of a zone plate pattern
is proportional to the area of the first zane(rf). Therefore, by
coding the object distribution into a zone plate shadowgram, the

2~-D informatior of the object distribution is stored.
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1.2 dvantages and Limitations

The coded aperture systems have a mumber of advantages over
the conventional imaging systems., The most important one is that
the coded apertuie systems can offer us three-dimensional informatiom . ’
about the source distribution. Other advantages are i
(1) Since the coding-decoding process has very little correlation
with the background and scattered radiation, the resulting image
is less sensitive to it. For the same reason, other noise such as
electronic noise and film noise (if there is any) can cause only
slight problem to the coded aperture systems as compared to the
conventional imaging systems.
(2) The effect of nonuniformity of the detector systems is less
dominant when the coded aperture imaging technique is used.
(3) For noncompact source distributions such zs the skeleton, and
for source distributions having a sr 11 number of picture elements
such as the thyroid glands, the kidneys, and the pancreas, the
signal-to-noise ratic is higher when we use the coded aperture
Systems because of the net gain of geometrical efficiency over the
single pinhole camera syst:ems.ss'sl"55
(4) Coded apertures offer us considerable flexibility in terms
of field of view and image magnification as compared to the
parallel-hole collimators.

There are also limitations and drawbacks to the coded aperture

systems. These are ¢
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(1) The coded aperture systems require larger detectors in order

to cover its field of view which is larger than that of a con-
ventional imaging system.

{2) The signal-to-noise ratic of a coded aperture system decreases
as the size of the object to be i.ma‘ged increases.

(3) The coded aperture systems require two-step processing which is
time consuming when on-line computer processing is not avallable (in

that case, an optical reconstruction method is used).
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2. ANALYSIS FOR CODED APERTURE IMAGING SYSTEMS

2.1  Coding gnd Decoding

As mentioned earlier coded aperture imaging is a two-step
Process, cozlfling and decoding. Therefore an analysis of some general
aspects of the coding-decoding process would enable us to get a better
understanding of the prospective and the limiting features of coded
aperture imaging in nuclear medicine.

The analysis of a coded aperture imaginz system is similar to
that of an electrical communication system. Both the imaging system
and the communication system are designed to collect or convey infor~
mation. Although in the latter case the information is of a temporal
nature (i.e., a modulated voltage or current waveform) while the former
case it is of a spatia? nature (i.e., a distribution over space),
there is actually no substantial difference between them from an
abstract point of view. In the analysis of communication systems the
electronic networks which are studied often possess two important
properties called linearity and invariance. Any system which is
linear and (time- or space-) invariant can be described mathematically
with considerable ease, A system is sald to be linear if the
following superposition property is obeyed for all input functions

£(x,y) and g{x,y) and all complex constants a and b t

\y{a £0x,¥) + b glxsy) } =a \y{f(:c.y)} +oW{atnn},
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where the mathematical operator \}’{ } represents the system, which
we imagine to operate on input functions te produce output functions.
We let the symbol h(x,y; n, ¢ ) dencte the response of the system at
point (x,y) of the output space to a S-function input at coordinates
7 ,s*) of the input space: that is,

h(x,y5%7, ¢) = \{’{ dx-7 -4 )}
The function h(x,y; s 5) ‘is called the impulse respanse of the system.
A linear imaging system is said to be space-invariant if its impulse
response h(x,y; 3 ,‘f) depends only on the distances (x—?) and (y-§ ).
For such a system we can write h(x,y5 7, ) = h(x-%,y-§) and
h(x,y;0,0) = h(x,y). Thus an imaging system is space-invariant if
the image of a point-source object changes only in location, not in
functional form, as the point source moves from one place ( 71,51)
to another (’(2. 5‘2). A coded aperture system is approximately linear
and space-invariant within its field of view if the attenuation of
gamma rays between the source and the detector (which is assumed to
be linear) does not change much from one straight-line path to another.
For the purpose of analysis, we consider all coded aperture systems
to be lineazr and space-invarlant and assume the attenuation of gamma
rays between the source and the detector is negligible,

In the next two sections studies of the coding-decoding process
will be given in both the spatial domain and the frequency domain.
Terms such as convolution, correlation, and Fourier transfcrm will
be used very often without givirg any descriptions of their mathe-

matical properties and physical significance. A few textbooks in



17

optics and communication theory are listed in Refs. 49,51,58,and 59
for reference.

Althoygh on-line decoding is possible in coded aperture imaging,
the decoding of coded images is mostly performed off-line., Therefore
a coded aperture system is considered as two subsystems. We define
the imaging or coding system as the gamma camera system which makes
the shadowgrams and define the reconstruction system as the system
which performs the decoding of the shadowgrams. The shadowgram of
a point source is the impulse or point response of the imaging system.
This impulse response is a binary function (i.e., the function has
only two possible values, 0 or 1) because the transmission of the
coded aperture plate is binary. However, it is possible to construct
an imaging system which gives an impulse response function other than
2 binary function (this will be explained in the next section). The
impulse response of the reconstruction system, on the other hand, may

be any type of function(real or complex).

2.2 Spatial Domain_Analyc’ <

He consider the imaging of a 2-D source distribution first.
We let the distribution of the source object be given by o(x,y)
and the projection of the coded aperture pattern on the detector
from a point source at (0,0) in the object " -me be given by h(x,y).
h(X,y) is thon the impulse (or point) response of the imaging system.

The image of o(x,y) on the detector formed by a hypothetic pinhole at
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(0,0) in the aperture plane is given by T"ro(-éx.--i-y), where

o = Solsl is the magnification factor of the imaging system resulting
fror the imaging geometry shown in Fig.1-3. Applying the principle of
superposition to this linear and space~invariant system, the coded
image or shadowgram of the object o(x,y) on the detector plane is
given by the convolution integral of the image T'L;o(-;';x.- ;',_—y) and

the impulse response h(x,y) as
s(x,y) = ;’_-Jj:(—c{( z.f))h(x.y:?._f)dzdf = ::‘-;//0(-‘{(7.f))h(x-f.y-f)d?df

Adopting the commonly used short-hand notation for a convolution

integral, the shadowgram s(x,y) is expressed as, with r = (x,y),

S(x) = Sz o(-31) @ n(x) (2.1)

To get the image of o(x) we have to perform a decoding operation

on the shadowgram 5(5). This decoding operation can also be expressed
in a form of convolution .tegral because the reconstruction system is
also linear and space-invariant(this will become apparent later). If
h*(zr) is the impulse response of the reconstruction system, the output

image i(xr) from this system to an input o(,z s(~ol ) is then given by

i) = a? s(-dp) @i(ar) = ofr) ® [h(—u;)@h'(d._g)]
. (2.2)

Since only o(r) ® §(r) = o(r), a perfect reproduction of the
2-D source distribution o(z) can be obtained only if h(-oxr) @ h' (ar)
= §lar).
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A chmmonly used decoding technique for the reconstruction of
MFA coded shadowgrams is the optical correlation method. This method
takes h(r), the impulse response of the imaging system, as h'(r) of

Eq.(2.2) so that the resulting ilqage i(z) becomes
i) = () ® [ h(-ax) @h(u;)]

o0
Since h(-z) & n(z) = jj (- ,-§ ) h(x=,¥-¢) d?dj

]”jnh(’z'.‘f') h("“"?'-ﬁ\{')d?' df'

It

h(z) @ n(r),
the image i{r) can be expressed as
1D = o) © [ntap Dt ) = o) @ alap), (2.3)

where @ is used to represent the correlation of two functions and a(z)
is defined as the autocorrelation function of h(r). We see that in
this 2ase the resulting image i(r) is the convolution of o(r) and
a(ots) or, in other woids, the image of o(_g) is blurred by the coding-
decoding process with a point spread function a(ebr). If a(r) is a
delta function, 6 (r), then there is no spread of o(r) and the
resulting image i(;) is a perfect reproduction of the original

source distribution. However, this has never been the case for

any known coded aperture systems. The best autocorrelation function
we can have, from ‘.arious MF.. coded aperture functions, only approxi-
mately resemble a delta function, as shown in Fig.2-1b, which is from

a non-redundant pinhole array function. A study of the autocorrelation
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functions of thrce different types of pinhole arrays as well as the
Fresnel zone plate will be given in Section 3.2, Experimental results
from MPA coded aperture systems using the optical correlation method
will also be given there.

The correlation method may also be applied to the reconstruction
of FZP coded shadowgrams. However, the reconstructed images with this
method are generally embedded in a backgrounh of high intensity due to
the distl:ributicm of a(x) of the Fresnel zone plate, If the correlation
method will be used to decode the F2P coded shadowgrams a complex coding
method can be applied to eliminate the background. This method produces
an equivalent impulse respor:se with a 8-function~like autocorrelation
(an example is shown in Fig.2-14). Descriptions of this method will be
given later.

The commonly used decoding method for the reconstruction of FZP
coded shadowgrams utilizes the diffraction properties of zone plate
patterns. The transmissioﬁ function of an infinitely large Fresnel
zone plate can be expanded into a Fourier sine series plus a positive
constant (= 1/2). If we use th(_g) to denote this transmission functi.on‘
and let x = r:2 and T = 27:% = the period, the Fourier coefficients of
th(g) are calculated as follows:

{1 s if r2n<|£|<r2n+l
0, Aty <|E|<Toyg

where T, = forn=0,1, 2, ¢ou, and 2% is the radius of the first

th(x) = th(g) =

zone of the zone plate. The Fourier series expancion of th(x) is


http://respor.se
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given by
hZPCX) =a ¥ alcos(anlT) + ... + ahcos(Zmrx/T) + wes + bysin(2ex/T)

+ .00t bnein(Zn‘nx,lT) + e s =1y 2, 4e.

1 1 (2
= h_(x)dx=3% dx = 1/2
o T o @ T 0

o
L}

2 1
== = - o t
a T h_(x) cos(nnx/T) dx " cos(x') dx 0

;‘2_11’ n=l,3,..

0, n=2,4,..

2 (T
-f h_ (x) sin(2rrx/T) dx
o P

u

-3
f

n T

1 nmw
s sin(x') dx* =[
nf °

In temms of rz and rlz., the zone plate transmission function is given

by
1.2 .. 2,2 2 . 2,2
th(g) = 3+ 5 sinCrr /rl) + «o. + T sin(nar /rl) + o
(2.4)
n=1, 3, 5, .., = odd positive integers
or (in complex form)
R s 202 2, 2 s 2,2
1, i -imc%fry 1 ineS/r IR T 5 §
th(£)~ - e 1-.-n€ 1-...
(2.5)

n =41, 43, +5, ... = odd integers

Eq.(2.5) implies that, if a plane wave of light of wave length X
is incident on the zone plate, each exponential temm of Eg.(2.5) will
modulate the phase of the wave by an amount giv.a by nﬁrzfrf (n =+,
+3s 5, ...). It is known that, after the incidence of this wave on
the zone plate, part of the light is diffracted into both converging
and diverging spherical waves which come into a number of focal spots
according to the formula fn = r.f/m\. (n = cdd integers), and the rest of
the light is unaffected. The focal lengths fn can be calculated from a

simple equality as follows: In order to have a constructive interfer-
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ence at (0,0,2) of wavelets emerging from point sources at (x,y,0)
with amplitudes 1 and phase factors rm’rzlrlz. (r2 = xz + yz) the

following equality must be satisfied.

2

21:1

n

Zz+

-z = A

Expanding the first term of the above equality and making a two-term

approximation givas

z(1+r]2./nza)-z‘-3/\ or zgtf/nx.

In the reconstruction of FZP coded shadowgrams only the term
e-iﬂrzlrf in Eq. (2.5) is considered as the "signal carrier”; all the
other terms in the complex expression of th(g) are unwanted, The
reason for this can be explained easily by use of Eq.(2.2). When the
diffraction property of a zone plate is utilized for the reconstruc-
tion of FZP coded shadowgrams the impulse response h'(_r.) of the recon-
struction system is given by the Fresnel wavefuction -;i-z eim‘zl’\z (this
will be described in detail in Secti;on 3.3). The output image i(x) on

the first focal plane of the zone plate, 2 = r{/]\. s is given by

2

Tl
inr’ /rl of

i ime?/c?

o) ® th(—_r_) ® -5 e 1)| . Only the component e
1

th(g) is in autocorrelation with h'(r) and this autocorrelation

produces a delta-function response which, upon convoluting with o(_t_-_),
results in a perfect reproduction of o(r). (The proof of this nroperty
will be given in Section 3.3) All the other components of th(E)
results in background and artifacts whick are sup-erimposed on the true
image of o(xr). The largest contribution of the background and arti-~

facts is, of course, due to the undiffracted light from the zero order
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component of th(g). i.e. 1/2 in Eq.(2.5), It was proposed that this
zero order component of th(_r.;) can be effectively removed by a complex
coding technique. The method is described briefly below; a detailed
study will be given later. The Fresnel zone plate represented by
th(_g_) is called a positive zone plate (center tramnsparent). If the
cransmission of th(_r.;) is reversed such that the new transmission
function ﬁzp(_g) is 0 wherever th(_g_) is 1 and is 1 wherever th(_'g) is 0,
then the zone plate represented by th(g) is called a negative zone
plate (center opaque). The Fourier series expansion of ?l'zp(g) is given

> ﬁzp(l:_) = -12- - ,,Z‘ sin(ﬂrzlrf) - eee - -nZ-Tr sin(nxrzlrf) - e
n=1,3,5 .. (2.6

If we form two shadowgramss,(r) and s_(z) of the source object .
o(z) with a fixed imaging geometry, s, from the positive zone plate and
s_ from the negative zone plate, the difference of the two shadowgrams

gives a new shadowgram which contains no contribution from the zero

order component of th(g_) because
s (r) =s5,(x) - s (z) =o r)@[h @ -3 )= o(r)@[2h () - 1]~
o= o+ - (& 2p =~ zp &2 =~ zp "~
SC(L) is equivalent to the shadowgram formed directly from imaging
i d ; = -% .
o(r) with a coded aperture function hc(’E) th(}'_) th(_E) The
impulse response of this imaging system is a composite one, hc(_g),
which has three possible values, 0, 1, and -1. The autocorrelation
function of hc(_z;) is sharply peaked at r = @ and is very low elsewhere
(an example is shown in Fig. 2-1d, which is generated by computer with

a bounded hc(g), i.e., from zone plates of finite size). Both the auto-
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correlation and the diffraction properties of hc(;) can be used to
decode the shadowgram sc(g). It is difficult to construct sc(E) from
s,(z) and s_(z) optically, and s (r) can not be recorded directly on
film because it contains negative values.

A digital image processing system,on the other hand, has no
difficulty of this kind and it can perform all the operations which an

optical system can do. We shall assume, therefore, all the image

reconstructions from posite shadowgrams will be done with a digital
computer in later studies.

A coded aperture function with a sharply peaked autocorrelation
function can only guarantee good reproductiens of 2-D source distribu-
tions. In case of imaging 3-D source distributicns, both the auto-
correlation and the crosscorrelation properties of the coded apexture
function are important in the coding-decoding process. To sec this,
ve consider the following e€xample. We assume that a 3-~D object distri-
bution can be represented by a finite number of slices of its scctions
along the z axis, with the activities in each section concentrating on
the midplane of that section. The separations between two adjacent
midplanes of the sections are gliven by the depth tesolution of the
system. He let this object distribution be represented by 01(5). i=1,2,
...,Np, and let the distance between the object plane o and the aperture
plate be given by Si' The aperture ro detector distance is so. We can
formulate an expression for the shadowgram of this object distribution,
similar to Eq.(2.1).

N
s(x) = Zp-l; oi(-i—. n ® h;(p) 2.7

=N i
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wvhere h‘(g) is the point response of the dctector to a point aource at
r = 0 uf object plane i, and “’_l SISy«

If h(L) is the transmission function of the codod sperture, then h,(r)
is given by h‘(_r_) =h{c /(1+ d.)). The decoding operation on s(r)
can be expresscd in a form of convolution intcgral again. The resulting
image ij(g) of object planc j is given by Eq.(2.2) with « rcplaced by

< In order to cxpress ij(_r_) in & familiar form we let hi( -lj;) ve

given by n_‘( d.j_r_), i.c. the correlatfon method. Thus, the image 1’(;)
becones 2 @ .
i,(_l;) = < '("‘jl) hlatxflvet, 3 Jxle 2 cnn Ny
] 2
or P &, o
1.0 = -—% [ (J x) [h(- < r/hd. )@h(d- r/lvet )J
3= =] ‘i i “ -

(2.8)
The desired image is given by the autocorrelation term in Eq.(2.8); the
term with i = §3

o) @ [h( -0 © h‘PJjE)] ofp) @ alpy ),
Py B sdQre) (2.9)

The undesired background is given by the crosscorrclation terms; the

tems with i & j3

2 2
a o o 3
:%— oi(‘o—‘i D ® [h(-PUg_) @mpjjy] - :21 °x‘2f£’® oy 40
i

(2.10)

where the crosscorrclation function cij(g) is defined as
e5(E) = h(-'dur) (] h(ﬂjg)

Evidently, the autocorrelation function a(x) should be peaked as

sharp as possible to ensure pood image contrast and resolution. At the
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samc time, it is also necessary that the crosscorrelation functions
ci_i(E) to be flattened and diminished as much as possible to prevent
build-up of undesired background and artifacts.

Examples of the autocorrelation functions of a few coded aperture
functions are shown in Fig.2-1. Examples of the crosscorrelation
functions are showun in Fig.2~2. The non~redundant pinhole array gives
the best autocorrelation function as well as the crosscorrelation
function among the coded aperture functions with non-negative trans-
nissior. The autocorrelation function of a combined zone plate function
th, () - 'ﬁzp(f_), 10 zones) is quite close to a delta function as
compared to the other autocorrelation functions (Fig.2-1d). The
ecrosscorrelation functions of this combined zone plate function, shown
in Fig.2-2b, have some small peaks at and near r = Q. The cause of
these undesirable peaks is mostly due to the interference betweem the
first harmonic and the other harmonics of the zone plate function. It
is highly desirable to eliminate the contribution of most of the
unnecessary components of th(g) from the FZP coded shadowgrams to
suppress the interference, Complex coding with two zone plates, shown
in Fig.2-3a, is not enough to give good reproductions of 3~D source
distributions because it sliminates only the contribution from the zero
order component of th(_r_:_). A better complex coding which utilizes three
zone plate shadowgrams is given below for future study. (Complex coding
with four zone plates is shown in Ref. 66.) If we combine three
shadowgrams, which are formed by the imaging system with three different

zone plate functions (shown in Fig.2-3b~ 1,2,3), in a complex form the
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resulting composite shadowgram contains only the terms of Eq.(2.5) with

n=1,5, 7,11, 13, 17, +vo . Withx =t and T = zrf, the Fourier

series expansions o1 the three zone plate functions of Fig.2-3b are

given by
hl(x) = % + ;Z(Z :‘-lsin(nn/:%) cos{2nxx/T) + 5 Z'!lcos(mtlti) sin(2nxx/T)
n n
1_2¢1. 2¢ 1
hz(x) =3 ,'-‘z Es1n(n«/3) cos(2nxx/T) + &Z;cos(m/:i) sin{2n«xx/T)
n n

~ 1_2¢1 n=1,3,5 ..
ha(x) =th(x) = §~i§5 sin(2nmx/T) , '

If we combine the three shadowgrams resulting from hl' h
-in/3 /3

5t and h3

in a complex form given by 51(5) e + 52(5) 13, 54(D) &, then

the equivalent impulse response hc(-E) of this system is given by the
following?

1 1 T
b () = 3h()+3h(x) ~ ho(x) - i3 [hl(_{) - hz(S)J

hc(x) = % sin(an/T)+1§sin(lex/T)+ .. ] - igt[cos(21Lx/T)-%cos(101tx/T)+..]

=6mtL )

il 2
381$r/r1+3 1

= 2 2 1
hc(r-) T omi ”ni 7a
n=5

ei‘lmv.rzlt
, (2.11)
where m is a positive integer and 7 =1 if n=6m#l and 7 = -1 if n =
6m-1. The first term on the right side of Eq.(2.11) is the desired
*signal carrier” and the rest of the terms are unwanted and relatively

small, A plot of the real part of hc(z_) is shown in Fig.2-3b-4,



2.3 _Frequency Domain Analysis

Any system which p the properties of lincarity and invari~
ance can be described mathematically with considerable case using the
techniques of frequency analysis. Thus, just as it is convenieant to
describe an audio amplifier in terms of its (temporal) frequency
response, so likewise it is often convenient to describe an imaging
system in temms of its (spatial) frequency response. To apply the
frequency analysis to the previous coded aperture imaging system, the
object distributien o(r) is considered to be an input signal to a
linear and space-invariant system which has an impulse response
h(-<1) b (ax).

The two dimensional Fourier transform of a function g(x,y) is
defined oy

-n
J[g(x,y)] = Glvu) =ffs(x,y) IvY) gy
. 0w (2.12)
and the Fouriew transform of the convolution integral, £ ®g, is given

by the product of the two individual Fourier transforms,

JFwesw) - Fle) F (2] = FW o @1

Since the transfer function of a linear and invariant system is
defined as the Fourier transform of its impulse tesponée, the transfer
function of the coding~-decoding process is then given by, omitting the
scale factors,

Fponm] = ey wew) (2.14)

Fig.2-4 shows a schematic block diagram of the coded aperture



imaging system, The input-output signals and the system's responses
are shown in both the spatial domain and the frequency domain. It is
clear that a perfect reproduction of the object distridbutinn can be
achieved only if the total system transfer function H¥(WH'(Y) is unity,
which is equivalent to h(-r) @ h'(r) = 8(z). The absolute magnitude
of the transfer function of a system is called the modulation transfer
function of that system, For an imaging system, certain spatfal
frequency components of the object distribution can never be recovered
if the modulation transfer function of this system is zero at those
frequencies. In coded aperture imaging if IH(y_)l is non-zero everywiere
within the limit of the sbject's frequency band, then the best recon~
struction can be achieved with H'(¥) = 1/H#(y). On the other hand,
however, if |H() | is zero or relatively low at certain spatial
frequencies of the object distribution, application of H'(y) = 1/H%(¥)
to the image reconstruction will lead to amplification of the spatial
noise present in the coded image (finite photon statistics) because the
noise may not be zero or small at those frequencies. Therefore it is
desirable to have [H(y)} reasonably constant over its frequency band-
width. Fig.2-5 gives a few examples of |H(!)| of various coded aperture
systems, which were generated with a digital computer. It is seen that
the non-redundant pinhole array system gives a better lH(y_)l than those
of the other systems, because of the uniformity of lH(2)| .

It is worthwhile to point out that lH(l)l of a complex FZP coding
system is better than that of a simple FZP coding system (see Fig.2-5b).

The reason for this is, of course, because of the lack of the zern
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order component in the complex FZP coding gaverned by th(g) ~ 'ﬁzp(,g).
In case of the complex coding with threc zone plate shadowgrams, which
is governed by hc(_t_) of Eq.(2.11), the modulation transfer function
IJ [hc(;)] (g_)l shall be even better. In fact, if we make an approxi-
mation of h (r) by its first temm, the magnitude of J(hc(_g)](!) is

a3 cunstant. 3 2 2
Ty 1 lltzll‘
|F (v} @) - T’J[;"z ]
T

In spite of the fact that lH(!)l of the coded aperture systems may

2
o

&l
e—iﬂ:lzv z| It
W

have zero responses at a few frequencies y, we may still use H'(¥) =
1/H*(v) to perform the decoding in the frequency domain. In digital
image prucessing we can determine the spatial frequency components of
the object at frequencies where |H(\_:_)| is not zero by letting H'(y) =
L/n#(y) = HQ/ | H(!)lz because I(¥) = O(¥) H*(¥) H'(¥) = O(y) at these
frequencies (see Fig.2-4). Due to the presence of noise in the imaging
process one may want to let H'(y) be zero at frequencies where lH(g_)l
is zero or relatively small to supress the amplification of noise.
However, this will result in a peor image resolution and possibly a
certain degree of image deformation due to the loss of essential
frequency components of the object in the resulting image. On the
basis of resolutioen and signal to noise, an appropriate form of H'(\_p)
may be

Hw = H/wl® L i [P aty,,

(2.19)
IO RE TSN T [T 'L I

where HIna is the largest Fourier frequency component of ]H(\_’)l s and

X
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o is a variable paramcter which is chosen to optimize the resolution and
the signal to noise of the system, Digital recorstruction of FZP coded
shudowgrams using the above form of H'(v) has been studied by Dance et
31.56 The study was based on simple zone plate imaging. The recon-
struction is very sensitive to the input noise and the choice of ol
because IH(g)l of a simple zone plate imaging system has a large number
oi “zeros®, It is cxpected that & non~redundant pinhole array system
is preferable for the application of Eq.{2.19) in image reconstruction.
A study of this will be given in Section 4.2,

In two-dimensional image processing the Fourier transform is often
encountered. If a digital computer is used to do the image processing
the Fourier transform of a 2-D function f(x,y) inanN x N matrix is

performed in discrete form, defined as

N-1 N-1 s '
Flu,v) = rl_' T Y 0w o-i2F(uxtvy) i (2.20)
x=0 y=0

The evaluation of Eq.{(2.20) can be broken into two steps. rfirst, the
one-dimensional Fourier transform F(u,y), is taken along the x~-
coardinate of every horizontal line of f(x,y). Then a second one-
dimensional Fourier transform is taken in the y-direction of every
vertical line of F(u,y) to yie.d the composite transform, Flu,v).

Until recently, only brute force metheds were available for
producing Fourier transfomrm digitally. By conventional techniques, the
evaluation of Eq.(2.20) would require ZN3 complex multiplications and

additions, Fortunately, algorithms have been developed which require
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only ZNZIog(N) complex additions and complex multiplications using the
above two-step technique. The fast Fourier transform (FFT) algorithml'o

proposed by Cooley and Tukeyal in 1965 for efficiently

was fi
computing the discrate Fourier transform of a series of data samples,
The effiziency of this FFT algorithm is such that solutions to many
problems can now be obtained substantially more economically than in
the past. An excellent inrroduction of the FFT algorithm has been

given by Brigham in his book *“The Fast Fourier Transfom".{'z

2.4 Efficiency, Resolution, and Signal to Noise

Geometric Efficiency

The geometric efficiency of a coded aperture imaging system is
almost always better than that of a conventional single-pinhole camera
because of the larger area of opening of che coded aperture. In coded
aperture imaging, however, the gain in geametric efficiency is sometimes
not enough to give a better signal-to-noise ratio because of the coding
~decoding process involved (this will be explained later).

’ The geometric efficiency of a muiiiple pinhole array (MPA) coded
aperture system is proportional to the total number and the size o" the
pinholes in the array aperture.

The geometric efficiency of a Fresnel zone plate (FZP) coded
aperture system is proportional to the open area of the zone plate,
which is given by fl\:r;‘;/Z (rN is the radius of the zone plate).
Resolution

The lateral resolution of a MPA coded aperture system is similar
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to that of a single-pinhole camera system, and is given by (see Fig.
2-6a) A, = d(1+5/5) , (2.21)

whers d is the diameter of the pinholes and 51 and So are shown in the
figure.

The dep.th resolution of the MPA coded aperture system is deter-
mined not only by the imaging geometry but also by the arrangement of
the imaging pinhole array. For the purpose of illustration, a circular
multiple-pinhole array of diameter D is used here as an example ( d is
the diameter of each pinhole). Suppose two point sources separated by
distance Az are located on the optical axis of an imaging system as
shown in Fig.2-6a and the lateral spatial resolution of that imaging
system is given by Ax = d(1+51/5°) a condition for the minimum Az exists

and is given by the following equations.

x _ _D/2
Az S1

er A, 20,8,/D = 2d(1+5/5 )s5,/D (2.22)
To check whether Eq.(2.22) still applies in the reconstruction of
the shadowgram of the two point sources, we construct a simple decoding
system (shown in Fig.2-6b) basing on the optical correlation method of
Section 2.2. The shadowgram is back-projected by a planar light source
{incoherent) through a mask which is a replica of the original ecircular
array. By the principle of autocorrelation, the images of the two point
sources will be focused on two image planes corresponding to the two

object planes.
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The light from the in-focus image on plane 1 jrroduces out-of-focus
background on plane 2. The light intensity of the in-focus image on
plane 2 is proportional to 1/1:d“2 while that of the out-of-focus back-
ground on plane 2 is proportional to 1/1¢D"2. If c is defined as the
intensity ratio of the in-focus image and the ocut-of-focus image, then

¢ is given by

D'A (5,45 ) A

D" (2 1 "o 2 2 2

e = () = ( 5 ¥ =« = )
d d sllso dE1+517505517n

(2.23)
If we let A2 bz given by Eq.(2.22), then c=4. This means that the first

image is attenuated to 1/4 of the intensity of the second image on plane
2. In other words, the depth resolution obtained previously is adequate.

¥hen a non-circular multiple pinhole array is used, Eq.(2.22) is
still valid. In this case, however, the appropriate value of D is given
by Zrm, where L is the median radius of the pinhole lucations in the
atray measured from the center.

Calculations of the lateral and depth resolutions of a zone plate
syscem are quite different from that of a MPA system because they are
derived from the focusing properties of a zone plate. The lateral
resolution of a zone plate system is “iven by (from Barrett“)

A =Ba0) (1 +5,/s ) A (2.26)
in which p(N) is a parameter of order of viity which depends on the
nunber of rings in the zone p1ate.57 ArNis the width of the outermost
ring in the zone plate. Eq.(2.24) shows that the zone plate aperture
lias a lateral resolution equivalent to a single~pinhole aperture having

a pinhole diameter of F(N) ArN ~ ArN .
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The depth resolution of a zone plate system is given hyn

A, =C3/88 )5 (1+8)/5, ) (2.25)
Eq.(2.25) is of the same form as Eq.(2.22), and the factor (3/8N) is
roughly the same as (2d/D) in many cases.

Signal to Noise

In radionuclide imaging, the measured source distributions contain
spatial noise due to the finite photon emission nature of the sources,
When the imaging system is a single-pinhole camera the signal-to-noise
ratio of the image is given by a single parameter., If Co is the average
number of photons collected by the pinhole camera from one resolution
element of the source object, then the signal-to-noise ratio is given

by, from Poisson statistics,

S =
(Z;)ph = c (2.26)

o

In coded aperture imaging, calculations of the signal-to-noise
ratios for various coded aperture systems are somewhat complicated
because of the involvement .of coding and decoding, A simplified calcu-
lation of the signal-to-noise ratio for a non-redundant pinhole array
(NRPA) coded aperture system is given in Appendix A. In the calculation
we let the total number of pinholes in the array be given by N and let
the source object be given by M equally spaced point sources (or reso-
lution elements) of equal intensities C,e c, is defined as before and
is given by the average number of detected gamma-ray events which pass
through one of the N aperture holes.

From Eq.(A.3) the signal-to-noise ratio of NRPA coded aperture

imaging, at the center of the image (the worst case), is given by
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[}

S
(_6'-)

N
Yy = % » iF MDN(N-D)

For a 27-hole NRPA coded aperture, a relatively large number of

s if M L N(N-1)

(2.27)

~~
afw

holes, the number uf object picture elements M is "large" when
M D 27 x 26 = 702. The usual number of picture elements in Nuclear
Medicine situations is generally larger than this number and so, in
these applications, the equations for M > N(N-1) usually apply. The
signal-to-noise ratio for a single pinhole camera is\/Fo_ which is
just what we obtain for the NRPA aperture system when M » N(N-1). Since
the time is the same for both apertures to get (:0 count/pinhole, for the
same diameter pinholes, we see that for most nuclear medicine applica-
tions of NRPA coded aperture imaging there is no net geometricai advan=-
tage over the single pinhole when producing )'ictures with the same
resolution and the same signal~to-noise ratio. FZP coded aperture
imaging is also no more efficient than the single pinhole when the
number of object picture elements exceeds a certain number but this
number is a function of the zone plate used.

Formulations of the signal-to-noise ratio of a zone plate system

have been made by a number of investigators.ss'sl‘

We let (:z to be the
average number of photons collected by the detector of a zone plate
camera from one point source or one resolution element in an array of

M equal point sources, The expressions of the signal-to-noise ratio of
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this zone plate camera are given by, from Barrett and DeMee:s(:er.53

C
S Y2 -1’
(?)zp = H (2.28)

Since the geometric efficiency of a zone plate camera relative to
a single~pinhole camera of the same lateral resolution is approximately

given by

open area of the zone plate aperture r;/z

srea of a pinhole aperture with diameter ATy - Ar:/l;

2
J2n 2
- ’
(ﬁ-JN—l)zrf
Eq.(2.28) may be expressed in the following form.
s | e
(S N2 [ o _ 4N S, (2.29)
o zp 9 ] 7y =« ‘ph '

Eq.(2.29) indicates that, in case M > 16N2/1t2, the zone plate
camera is worse than the single-pinhole camera in signal-to-noise

ratio.
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3. EXPERIMENTS AND RESULTS

3,1 Multiwire Proportional Chamber Camera System

Multi-wire Proportional Chambers (MWPC) were develuped at CERN
starting in 1968 as position sersitive detecturs for particle physics
research as successors to the Spark Chamber detectors which had been in
use for the previous 10 years. As the namz implies, tne MWPC is a gas-
filled radiation detector operating in the proporticnal mode of gas
multiplication, and containing a number of anode wires. The chamber is
usually rectangular in shape, and the anode wires form a parallel grid.
Two cathode planes of parallel wires are needed for locating the
position of ionizing events. The use of MWPCs in Nuclear Medicine was
developed primarily by our group at the Lawrence Berkeley Laboratory.
(Refs.44~66) The good spatial resolution, fast count rate, large
detection area and relatively low cost make MWPCs very suitable to a few
clinical applications in radionuclide imaging.

The MWPC used in coded aperture imaging is shown in Fig.3-1.

The effective sensitive area is 48cm x 48cm. There are three wire planes
inside the chamber, the central anode plane and the two mutually ortho-
gonal "drift planes" for locating the x and y coordinates of an ionizing
event, The drift planes are at 0 volt above ground, while the anode is
at about 3000 volts. Thne chamber is filled with a gas mixture of 90%
xenon and 10% CHI‘ at a pressure slightly above the atmospheric pressure,

Stainless steel wires of diameter 20 microns spaced 2 millimeters apart
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are used for the anode, while wires of diameter 50 microns spaced 1
millimeter apart form the drift planes. The distance between the anode
and each drift plane is about 4 millimeters.

The principle of operation of this MNEC system is as follows 3
¥hen an X-ray or 7-ray photon reaches the active volume of the chamber
it has a certain probability to interact with a gas atom and expell an
electron through the photoelectric effect. The kinetic energy of the
emitted electron equals the photon energy minus the binding energy of
that electron. This energy will then be deposited withir a small
region, mostly in the form of ionization. The higher the density of the
gas, the larger the probability of interaction, and the smaller the
region of energy deposition. This implies that higher sensitivity and
better spatial resolution can be achieved by using a heavy and dense gas
under high pressur2. Due to the electric field between the wire planes,
the secondary electrons (from the ionization of gas atoms by the photo-~
election) drift to the electric field between the wire planes, these
electrons drift towards the anode wires and undergo multiplication in a
small region surrounding a wire, producing a voltage pulse on it.
Simultaneously, an induced pulse of the opposite polarity is generated
on the cathode wires by the motion of the positive ions. The x and y
coordinates of the ionizing event are determined by the use of two
electromagnetic delay lines. These delay lines consist of a solencidal
winding on a plastic core which forms an inductance. A distributive
capacitance is formed by copper strips as shown in Fig.3-2. Since the
delay lines are placed over (but not in contact with) the drift planes,

signals from these wire planes are coupled capacitively to the delay
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lines. The time lag between the arrival of a pulse on a drift plane
wire and its arrival at the end of the delay line depends on the
position at which the pulse coupled into the delay line, Thus, the
spatial positions of ionizing events are translated into time delays.
A reference signal that indicates the occurrence of an ionizing event
is obtained by reading out the pulse from the central anode plane
through an RC net work with a time constant of 500 n sec. This signal
is amplified and fed into the MWPC window discriminator and the zero—
cross timing discriminator, The window discriminater has the ability to
select the upper and lower pulse belghts of the incoming signals. The
timing discriminator uses the technique of differentiation and zero-
crossing to provide a "time-zero" reference pulse that starts the two
image formiag systems, the analog system and the digital system. The
analog system and part of the digital system are shown in Fig.3-3, A
detalled description of the digital system will be given in Chapter 7.
The output signals from the discriminators are used to start two
Time-to-Amplitude Converters (TAC). Similarly processed signals
obtained from the x-coordinate delay line and y-coordinate delay line
are used to stop the TACs. The outputs from the TACs are then used to
drive the x and y deflection plates of a CRT (Tektronix 602 display unit),
while simultaneously a z unblank signal is applied, as ;shown in Fig.3-3.
Event dots are generated sequentially in the CRT screen and are inte-
grated into an image by a Polaroid camera. A pile-up rejector circuit
is used to eliminatc multiple events occuring within the delay lines®

delay interval (~3 microseconds) and the dead time of the electronics.
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The maximum count rate of this system is about 105 eventsfsec due to
the dead time of the delay lines, the associated electronics, and the

CRT display unit.

3.2 DMultiple Pinhole Array Coded Aperture Imaging

Experimental studies of the #PA coded aperture systems were made
with the multiwire proportional chamber detector. The optical corre-
lation method {Section 2.2) was used to decode the MPA coded shadowgrams.
Because of the importance of autocorrelation functions in the recon-
struction, an investigation of the autocorrelation functions of three
different types of pinhole arrays as well as the Fresnel zone plate,
shown in Fig.3-4, was made. Their autocorrelation functions, obtained
optically, are shown in Fig.3-5 and, for similar types of patterns,
drawn schematically in Fig.3-6.

Fig.3~4a shows a non-redundant pinhole array (NRPA). This array
has the property that its autocorrelation function (Fig.3-5a) is non-
redundant. That is, while the central peak, a(o), has intensity N
corresponding to the overlapping of all N holes from two superimposed
arrays, non-central locations of a(r) have at most inte.nsity 1 corre-
sponding to at most one hole from each of the superimposed arrays over-
lapping at a given displac.:anent r (Fig.3-6a).

In contrast to this array, the regularly spaced array of Fig.3-4b
having the same number of holes has a highly redundant autocorrelation

pattern (Fig.3~5b and 3-6b). The central peak still has intensity K and



42

the total amount of background is still the same, N{N-1) but for this
array a number of holes have overlapped simultaneously giving a local~
ized and relatively high intensity contribution to the image background.
The random array (Fig.3-4c). having N holes distributed randomly over
the same area as the previous arrays, has an autocorrelation pattern
(Fig.3-5¢ and 3-6c) similar to that of the non-redundant array, its
background peaks however, are som:times larger than 1, For comparisonm,
the Fresnel zone plate coded aperture is given in Fig.3-4d. Its auto-
correlation function (Fig.3-5d and 3-6d) is characterized by a high
ratio (0,5) of the high total transmission of the zone plate gperture,
50%, compared with ~~ 2¥ for the other three pinhole arrays.

By its nature the non-redundant pinhole array has the most
desirable autocorrelation function and produces the lowest backgtounh
intensity in the final image. In a very different application these
same non~redundant arrays, with radio telescopes replacing the pinholes,
are used in astronomy for mapping radio sources. Some of these arrays

32 Smaller non~redundant arrays {(N€15) are

are described by M.E.Golay.
fairly compact, that is, with most of the points of a(_l;) lying within a
circle with few unoccupied locations inside and only a few points lying
outside. Large arrays are built up by computer, starting with smaller
ones and using various algotithms.33 The 27-hole non-redundant array
shown in Fig.3-4a was provided by Klemperer. A circular (ring) point
array with an odd number of points is also non-redundant. However,

the autocorrelation function of this type of array is not as compact

and uniform as that of Fig.3-4a.
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Imaging of radiocactive objects using coded apertures of Fig.3~4
and the multiwire proportional chamber detector was made starting with
the non-redundant pinhole array. The test objects were gamma-ray
sources of 30 and 60 Kev energies. The coded aperture used were made
from 1.5 mm thick lead and the multiple pinhole arrays were usually
about 8 cm across. Diameters of the pinholes, 3 mm, were chosen so
their shadows on the detector were at least 3 times chamber resolution
(1.5 mm).

The shadowgram transparency is made by taking a time exposure of
the CRT which displays the pamma-ray events. Shadowgrams in coded
aperture iraging are much denser in the center than on the edges and
same care must be taken not to saturate the film. The devcloped trans-
parency is placed on a diffusing screen and illumined from behind (Fig.
3-7a), the light source teing a 500 watt projector, The viewing screen
is placed about a meter downstream. The mask, aluminum foil iyerforat:ed
with a replica of the coded aperture used, is placed between screen and
shadowgram. The initial focussing is done by rotating the mask about a
longitudinal axis so it lines up with the original aperture, and by
moving the mask longitudinally to focus on the screen. When this is
done a simple movement of the screen is all that is necessary to bring
different planes in the abject into focus, If the mask is made so that
the ratio of mask size to film size is the same as the ratio of aperture
size to detector size then images of different planes in the object have
the same sizes.

The first test was the imaging of a standard Picker Thyroid
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Phantom, shown in Fig.3=7b, using the non-redundant pinhole array of
Fig.3-4a. The shadowgram (shown in Fig.3-7a) consisting of 540,000
events was recorded on Kodak Ektapan film, The reconstructed image as
shown in Fig.3-7a was printed on high contrast paper to reduce the back-
ground of light and enhance the contrast, The right and left lobes of
the thyroid phantom differed in activity, and this difference can be
seen in the reconstruction. The smallest of the cold nodules is 5 mn
in diameter and is clearly imaged.

The tomographic capability of this coded aperture system is shown
in Fig.3-8, Fig.3-8 shows the shadowgram of a radioactive phantom

1251 ( a cross,

consisting of three geometrical patterns labelled with
a triangle, and a circle) which were separated by a distance of 2.5 cm
in depth. The imaging geometry for the middle object plane was 1l:l,
i.e. 51=50. A total of one million gamna events were rer-rded on the
shadowgram. Fig.3-8 b, c, and d are the reconstructions of each of the
patterns obtained by adjusting the screen to mask distance of the
reconstruction system so as to bring each pattern into sharp focus.

Each of the in-fucus images is superimpused on a background arising from
the planes at other depths in the phantom. The tamographic capability
of this system was further tested by moving the test phantom toward the
aperture such that the maximum depth resolving power of the imaging
system was reached (a decrease in Sl produces a smaller Az). The
results, from an imaging geometry S1 = %50. are shown in Fig.3~9. It
is seen that background artifacts from off-plane activities in the

reconstructions of Fig.3-8 are not seen in the reconstructions of Fig.

3-9.
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Experiments were made to evaluate the lateral and depth reso-
lutions of the above coded aperture system, A reconstruction of four
point sources Separated by 5 mm, 1 em, and 2 tm is shown in Fig.3-10a.
The lateral resolution of the system, calculated from a, = d{.1+51/s°),
is about 4 mm. Fig.3-10b shows the response of the system to a source
having 5 Tm bars separated by 5 mm, For measurement of depth reso-
lutions, sequential image reconstructions were made for the shadowgram
of previous 3 geometrical patterns, at intervals of 6.25 mm along the
optical axis of the reconstruction system. The depth resolution,

calculated from Az = 2d(1+51/S°)51/D wiin D given as the median

diameter of the 27-pinhole NRPA coded sperture, is about mm at
Sl = 125 mm. This agrees with the experimenta. result as shown in Fig.
3-11.

As seen from these reconstructions, good resolution and tomo-
graphic effects are easily obtainabl~ with the NRPA coded aperture
system. Only a strong light source, a diffusing s:reen, some optical
alignment equipment, and photographic materials are needed to recon-
struct the shadowgram. In fact with some modifications te the set-up,
direct image decoding is also possible withuut going th.oug: the
intermediate step of photographing the shadowgram separately. For
example the spot of light from the CRT display; which 'defi.nes the
coordinates of the detected radiation, nould be made to pass through
the reconstruction piniiole mask and be directly otserved in the image
plane. By a system of lenses, the various planes within the object

could be separately focussed and recorded. Since nu movement of the
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detector is necessary and all the information of the oblecct':: shape and
size is recorded in a single picture, dynamic studies are possible.

Only two simple experimental tests were made using multiple pimhole
arrays other than the non-redundant pinhole array. The results, together
with those from the non-redundant pinhole array, are shown in Fig.3-12
and Fig.3-13. Images of point gamma-ray sources taken with the
apertures of Fig.3-4 are shown in Fig.3-12. 1Images of the thyroid
phanton obtained with-pinhole arrays which differ only in the placement
of their 27 holes, non-redundant, redundant, and random arrays, are
compared in Fig.3-13. The redundant array image is only barely
recognizable because of the poor distribution of its autocorrelation
function. The random array image is much better than the redundant
array image. However, it still contains somewhat more background

artifacts than the non-redundant array image.

3.3  Fresnel Zone Plate Coded Aperture Imaging

The diffraction properties of a zone plate were described in
Section 2.2. The diffraction pattern of a zone plate and the recon-
struction of a zone plate shadowgram by diffraction can be derived
easily with a convolution formulation of Fresnel diffraction. If a
plane aperture mask of amplitude transmittance t(r) is illuminated by a
plane wave of amplitude 1 and wavelength Athe diffracted amplitude g(r)
on a plane at a distance z downstream from the aperture mask is given by

the Fresnel-Kirchhoff diffraction formula. After adopting the approxi-
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mation of parabolic wavefronts and omitting the obliquity factor, we

may express this diffracted amplitude as a convolution.5°’51

() = € t(x) @ wx), (3.1)

1anz o

where € is a constant phase factor (€ = e ) and w(x) is called the

Fresnel wavefunction

. a2
W) _:_; oI Inz

s 2
The Feurier transform of w(r) is given by W) iRy
The Fresnel wavefunction w(r) has two important properties
(1) w(r) is self-orthogonal under the convolution operation, i. e, ,

wi(r) @ w(r) = 8(x). This result follows from IW(\_))[Z =

(2) The convelution of w(r) with unity is equal to unity :
- @

wr) 81 =ffu(£)dxdy = 1.,

The diffraction pattern of a positive zone plate of finite radius

r,, is derived as follows : The transmission function th(g) of this

N

zone plate may be expressed as, from Eq.(2.5),

s .2, 2
h, () =[]§' ; Y Ir]_ - 1e11-=r n - Z L inmr Irl]c:.tc(r/r ),

odd integers (3.2

where the circle function circ(EIrN) iz defined by

- , |xl4r
c:.rc(EIr { 0, ot)-uarm.seN

The diffraction pattern of this zone plate on a plane at z = r.f/;\ (the
major real focus of the zone plate) can be obtained by substituting
t{r) in Eq.(3.1) by th(_r_). The Fresnel wavefunction at z = rf/}. is

s swn2, 2
given by w(x) = --lz- LM /y (3.3)
o
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The diffraction pattern (amplitude) is then given by

2 2 2
T, r T
e(r) = e{ []E' + -,,—3-‘-"’-'(5) + ;,_-lu(_r_) + ;R:—l- Z %H(ﬁ_r_:_)]circ(‘t_/ru)} @ w(x)
) n¥tl
odd (3.4)

The autocorrelation term in E:q.(3.4),[ﬂ(£)circ(£lrn)] @ w(r), is

calculated as follows.

2
T . spely 2 2y 2
[E"u'-“(_r_)circ(ger)] @ w() = —1—2- {e-x'ﬂr /rlﬁ-ycirc(_r_/rN)]}&a /Ty
xr
1

RO ID /R H 3 z y X e feexa™ Q-4
= —r"]/’ U [j J'(i::a;:u LI )J,m{v] eﬂ![& X (3-93°) r'&ﬁ.J)j,

_‘KI:

T m(x’*u’-.vr, / nm=—+v'z /[ (21 —;.‘;)74-4-(‘4—7;)3.}d JH]Ju dy

- m:r/ 7 (zﬂ:fu-w ) % y
1tr,. ] S(u- ru’) S(v—-;,'—;) dudv

u’+v"
0 .

2 J (Zﬂrr /r ) 2 J (2N1!r/r )
- ne /T PR i A i b (3.5
1rrrN/r1 N

The calculations of the other terms of Eq.(3.4) may be done in the same
way as that in the above, the results with approximations 60 are given
in the following.

¥ cire(z/ry) ® w(r) =% cire(z/ry) [1 @ w(g):(= % eire(z/rg)

N

T. 3 2
Iﬂ_f]: H(E)circ(_g_/rN)] ®w(r) =~ 5175 circ(;/ZrN) emﬂ%(r/rN)

rz ald ( )Z
[1—3—' Z % w(.rﬁ;)circ(r/rn)] @ u(r) = chuc(r/(nﬂ)t‘ )e i Frc g

R
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Thus, the intensity distribution of g(r) is given by

2 Jl(ZNKr/rN) 2 1
g*(xde(x) = z;circ(yrﬂ) + N _W?;—- + ;-; cnc(_r_IZrN)
odd

1 i . .
+ ;‘—2- z E(n_ﬂ)—r c1rc(£/,n+1’ru) + Cross~Product Terms

niHl (3.6)

A graphical interpretation of Eq.(3.6) is showm in Fig.3-1l4.

The intensity distribution of g(xr) is viewed as the output of a zone
plate system to a point source input. If the input source distribution
is given by o(r) then the output of this system will be given by

[0(5) @ s(r) 2 because the Fresnel diffraction amplitude of the zone
plate shadowgram of o(r) is given by €s(r) @ w(r) =€o(r) @ th(g) @w(x)
= o(r) @ g(r). Thus, the reconstruction of a zone plate shadowgram is
completely determined by the distribution of g{r). A plot of g{r),
generated by computer, is shown in Fig.3-15. The sharp central peak in
the figure is, of course, produced by the Bessel function of Eq.(3.5).
The background is small and is the result of the rest of the terms in
Eq.(3.4).

The first term on the tright side of Eq.(3.6) is relatively high
in magnitude as compared with the other non-signal terms. The effect
of this term is small when the object imaged is small. When the object
imaged is large, however, the intensity of the background produced by
this term is given hy o(r)@ Ycire(z/r, )l while the signal is given
by Nzlo(r)l This means that, if we assume the obJect contains M

uniform)y distributed resolution e¢lements with intensity 1, the
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background in the reconstructed image may be as high as %Hz in some cases
while the signal is only N?.

Fig.3~16 shows an optical reconstruction system for zone plate
shadowgrams. The two mirrors were used to extend the length of the
optical path on a small optical bench. The optical stop at the foeal
plane of the lens may be used for spatial frequency filtering to remove
the undiffracted light. The image formed on a plane somewhere behind
the focal plane of the lens corresponds to the negative focal length of
the zone plate pattern. This real image can be seen through a telescope
located at proper distance away from the image plane, Fig.3-17a shows
a zone plate shadowgram of four point sources separated at least by
twice of the system resolution. The coherent optical reconstruction of
this shadowgram is shown in Fig.3-17b.

The reconstruction of zone plate shadowgrams by Fresnel diffrac-
tion can also be performed with a digital computer. Aside from the
abvious advantages in image processing with the computer, mentioned in
Section 2.2, there are some other advantages of using the computer in
coded aperture imaging. A computer system is free of the problems
associated with film such as small dynamic range,film grain noise.
Results with the computer can be obtained quickly without the delay
associated with a two-step photographic process. In computer recon-
struction of zone plate shadowgrams the convolution integral of Eq.(3.1)
is evaluated by use of Fourier transforms. Direct evaluation of the
2-D convolution integral of two N x N matrices requires Nl‘ multipli-

cations and additions while the indirect method requires only three
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2 complex multiplications

Fast Fourier Transforms (Section2.3) and N
in the frequency domain,

The Fresnel diffraction amplitude i(r) at z = rf/z, of a zone plate
shadowgram s(r) is given by the convolution of s(r) with w(z), where

w(_;_) is the Fresnel wavefunction at z. The Fourier transform of i(r)

is given by

s 2. 2
1) = € () W(w) = € s(p) e LY 3.7
The reconstruction of s(_g_) by computer is done by first multiplying the
-i-nr.fvz

Fourier transform of s(r) by e and then taking the inverse

Fourier transform cf the product.

i(zx) = \}"1 [s(g) e‘i"rf“’z] (3.8)

A computer generated thyroid phantom was used to test this method
The reconstructed image is shown in Fig.3-18, plotted by the computer.
It is seen that the reconstruction contains a large amount of back-
pground, which is, as explained before, due to the positive bias
component (=1/2) of the zone plate. This high level background may be
eliminated to certain degree by frequency filtering,n at the expense
of losing part of the low frequency components of the object in the
resulting image. Many investigators have used the off-axis section of
a zone plate, for which the undiffracted light pattern does not overlap
the desired diffraction pattern and is therefore not a problem, A
halftone screen must be used here as a spatial frequency carrier which
moves the object frequency spectrum into the passband of the off-axis

zone plat:e.61 The major drawback to the off-axis zone plate is that
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its fine rings require a high~resolution image detector to be used., A
much better approach to the background elimination is to use the complex
coding method of Sectioq 2,2, Applications of this methed to the zone
plate system as well as the multiple pinhole array system will be given

in Section 4.1.
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4, FURTHER STUDIES AND CONCLUSIONS

4.1 _Complex Coded Aperture Imaging

One of the problems associated with coded aperture imaging is that
the backgroun.d lavel in the reconstructed image of an extended object
is always high if only simple binary coded apertures are used. As it
is shown in Section 2.2, perfect reconstruction can be made only if the
coding function h(r) and the decoding function h'(r) are related by
h(-z) @ h'(x) = 8(z). For binary coded aperture functions h(r), there
is no decoding function h'(z) such that h(-r) @ h*(r) = 8(r). The idea
of complex coded aperture imaging is that by a combination of two or
more shadowgrams we get a new shadowgram which can result in an image
without background. The combination of the shadowgrams is made in such
a3 way that the new shadowgram appears to be from a coded aperture with
both positive and negative transmissions and the reconstruction of this
new shadowgram contains no background.
FZP Coded Aperture Imaging

It was shown in Section 3.3 that the background in the coherent
optical reconstruction of a positive zone plate shadowg';:am is from the
positive bias term of the zone plate transmission function, % circ(;/rN).
This positive bias term can be eliminated, as mentioned in Section 2.2,
if we combine two zone plate shadowgrams sland Sy 51(3) from a positive
zone plate and 52(5_) from its corresponding negative zone plate, by
S(z) = 5){x) - s,(z). The reconstruction of s(r) is the same as that of

an ordinary zone plate shadowgram.



54

The Fresnel diffraction amplitude of s(x) at z = rf/z, is given by

(D) = €5 @ W) = € o @ [n, () -?xzp@] w(r)
€4.1)
From Eqs.(2.4), (2.6), and (3.3) we have

2 .
2r]
i) = €o@ @ le Sudipeire(r/ry) | @ W) (4.2
n=odd
The intensity distribution of i(x) is given by (see Eq.(3.6))
2
P Jl(ZNﬂr/rN)

i(z)i*(z) = 2N Tr/td— + -:—.12 ciTC(}._‘/'ZtN) + cae (4.3)
N 2

Thus, the background term, %circ(g/rN) in Eq.{3.6), is eliminated
through the use of this complex coding technique.

The autocorrelation of a combined zone plate fungtion th- ﬁzp A
as described in Section 2.2, can also be used for the reconstruction of
the combined shadowgram s(r). In fact, reconstruction of s(r) by auto-
correlation is almost the same as reconstruction of s(£) by Fresnel
diffraction because their point responses are similar.(compare Fig.2-1d
and Fig.3-15) The recons;:ructed image of s(r) by the autocorrelation
technique is given by

i(r) = s(x) @ [th(_g) -'Ezp(_r_:_)] = ofr) ® a (D) (4.4)

where ac(£) is the autocorrelation function of the combined zone plate
function ‘th(g_) - ’ﬂzp(g). A computer simulation of this complex coded
aperture imaging was made with a computer generated thyroid phantom (as
the object). The reconstruction of the combined shadowgram s(zr) was
done by autocorrelation, and the resulting image is shown in Fig.4-1.
It is seen that this image contains no background and is much better

than that from the simple coded aperture imaging, as shown in Fig.3-18.
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A further test was done to study this complex coding technique
with a 3-D source distribution, The source distribution consisted of
three sheet patterns, a triangle, a cross and a circle, separated by
2 cm in depth. The diameter of the zone plate (9 zones) was 13 em,

The result from the reconstruction using complex coding with two zone
plates (positive and negative) is shown in Fig.4-2. It is seen that
the structures from the off-plane activities produce a large amount of
background artifacts in the in-focus images. The reason for this
unpeasant result is because of the multiple-focusing property of the
zone plate. Each ni0 component of the zone plate transmission function
(see Eq.(2.5)) corresponds to a focus (real or virtual for n<0 or nd@).
In the reconstruction of the zone plate shadowgram, the contribution
of the n}0 &-1 components is relatively small when the n=-1 component
is in autocorrelation, and could be large when the n=-1 component is in
crosscorrelation (in this case one of the n}0 & -1 componentsmay be in
autocorrelation and therefore result in an unwanted peak). As was
explained in Section 2.2, the reconstruction of a; 3-D source distri-
bution contains mixtures of autocorrelations and crosscorrelations,
therefore, background artifacts are produced in the reconstruction fram
all the non-signal carriers of the zone plate (i.e. those n¥~l1 terms of
Eq.(2.5)).

Among all the non-signal carriers of a zone plate, the components
with n=0, n=1, n=-3, n=3 are most important. Complex coding with two
zone plates (positive and negative) can eliminate only the contribution

from the component with n=0 while complex coding with three zone plates
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(shown in Fig.2-3b) can eliminate the contribution from all of them,
(see Eq.(2.11)) Therefore, it is expected that by complex coding with
three or even more zone plates the background artifacts in the recon-
struction of 3-D source distributions can be reduced.
MEA Coded Aperture Imaging

It is also possible to combine two or more MPA coded shadowgrams
such that the resulting shadowgram shares the same autocorrelation
property as the previous combined zone plate shadowgram. For a large
random pinhole array with thousands of holes and 50% transmission, we
define its "negative" in the same way as that for a negative zone plate,
within the boundary of the array. We let the transmission function of '
this random pinhole array be given by hp(z) and let the transmission
function of its negative be given by hn(E). Within the boundary of the
array hn(E) equals 1 if hp(_r_) is 0 and vice versa. The corbined
functions h(x) = hp(g) - h(x), has a sharply peaked autocorrelation
function. This can be shown as follows

a(z) = h(-2) D n(z) = [hp(-_x;) - hn(-g_)] [hp(z) - hn(_r_)] (4.5)

a(r) = ap(g) + a(x) - cpn(g) - cnp(g:_) (4.6)
where

a, (@) = hp(-;)@hp(g) and 2 (r) = h (D)@ n () are auto-
correlation functions, and cpn(_r_) = hp(-£)®hn(£) and cnp(_g_) =
hn(—£)® hp(g) are crosscorrelation functions.

To derive expressions for the autocorrelation and crosscorvelation

functions, we first consider the correlation fumction of two arbitrary



57

functions f(x,y) and g(xs¥).

o(x,5) = £(-x,~y) O glx,y) = /[ £(7s¢) B(p+x, £+y) dzd‘f 4.7)

If f(x,y) and g(x,y) are aperture transmission functions of binary

values, 0 and 1, the correlation function c(x,y) becomes
J<4¥) = sum of all 1's of the product f(?,Jt) g(t+x,j+y) (4.8)

Now, we assume the pinholes and the entire array are square in shape,
with the width of each pinhole given by w and the width of the entire
array given by L. The autocorrelation function ap(s_) (or an(z)) and

the crosscorrelation function cpn(_z;) (or cnp(E)) are given by

ap(x,y) = sum of all 1's of the product hp(rl,f) hp(’(+X:$'*'Y)
cpn(x,y)= sum of all 1's of the product hp(‘?,‘f) hn(zi-x,ji-y)

It is very clear that ap(0,0)=N=the total number of holes in the array
and cpn(0,0)=0 because h (%,4) is the negative of hp(7’\§)' As {x| and
|¥| become slightly greater than w, ap(x,y) drops suddenly to N/2 and
cpn(x,y) increases suddenly to N/2 because half of the holes in hp(7(’$)
are expected to overlap to those in either hp(2+x, $#y) or h (pix,f+y).
as |x| and |y| become larger and larger, both ap(x,y) and cpn(x,y)
bevome smaller and smaller, and become zero finally when |x| and |y]
are greater than L. Thus, the appropriate expressions for ap(x,y)

(or a (x,¥)) and cpn(x,y) (or cnp(x.y)) are

ap(x.y) = ENACX/LN /L) + Wrect(x/wirect(y/w) + g'p(x,y) (4.9)

cpn(x’” = YNAGR/L)Ay/L) - ZNrect(x/wirect(y/w) + o-pn(x,y’) (4.10)
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where the rectangle function rect(x/w) is defined by

x| Sw

- ,
Tect(x/w) = { 0, otherwise

and the triangle function A(x/L) is defined by

- {I-IXI/L. Jxi<z
0, otherwise

ACx/L)

The noise terms of Eqs.(4.9) and (4.10), op(x,y) and o'pn(x,y). give
measures of. the deviations of the correlation functions from their
expected values. Since w (L for a large array of thousands of holes,
the rectangle function tect(x/w) represents a sharply peaked square
pulse of small width, The autocorrelation function a(r) of Eq.(4.6)
is given by

a(r) == M rect(x/wirect(y/w) + o (x,y), (4.11)
where g(x,y) = (0’; +°v'z] +g-sn +6121p)y2

We see that the background term, A(x/L) A(y/L), in the auto-
correlation function of a simple random pinhole array is eliminated
through this comple x process. Since the distribution of a(r) is like
a delta function, the complex coding technique used for zone plate
imaging can be applied here too. However, for random pinhole arrays
of small number of holes, complex coding.may not work well because of
the noise term of Eq.(4.11). This noise term is relatively unimpor-
tant when the number of holes in the array is very large, but can be
important if this number decreases.

For pinhole arrays other than the random pinhole array, the

complex coding technique still applies. For example, one of the
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simplest way to do complex coding with a non-redundant pinhole array is
to apply Eq.(4.5) using hn(E) = hp(-_r_), where hp(E) is the original
non-redundant pinhole array and hn(E_) repres \ts the array obtained by
rotating the original array 18’9. Computer simulations of this case
ware made and the results showed that only small improvements were
achieved this way. There is a better way to eliminate the background in
the reconstruction of NRPA coded shadowgrams. The method will be studied

in the next section.

4.2 Decoding by Fourier Transform Deconyolution

The frequency domair analysis of coded aperture imaging in Section
2.3 gives us a method of decoding in the freg-ency domain., Eq.(2.19) is
a form of the decoding transfer function H'(y_). Two expressions are used

for H'(y) accotding to the magnitude of the coding transfer function

|H(_\_v_)‘.56
e = B [ l?, e [H>er,, =etaxdlre)d
22 4.12)
B = B/ o |relg ek,

The parameter o should be carefully chos=n to supress the amplification
of statistical fluctuations in the measurement, without losing teo much
fidelity. We define the transfer function H(\_l) at frequency ¥ to be a
#zero” if ,H(\_r), is smaller than the cut-off value oUH The total

number of zeros in lH(y_)I of a coded aperture system gives us a weasure

of the system's response.
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The reconstructed image i(r) in the frequency domain is given by

Iv) = 5%(¥) H'(¥) = 0(v) He(¥) H'(Y) .
At those frequencies ¥ where ‘H(\_i)ls ol . the frequency components of
the image are given by  I(¥) = O(N) H¥(¥) H(¥) / o H;ax

In the spatial domain, the above expression becomes

i(r) = o(2) ® [h(-_r_) @ h(g)] / ¢2Hx§ax= [0(5) ® a(g)] / d'ZH:lax (4.13)

Thus, if ,H(y_)l has large percentage of zeros, the reconstruction with
Eq.(4.12) is dominated by the autocorrelation.

An investigation of the total number of zeros in IH(g)I as a
function of o for a few coded aperture functions was made with a digital
computer. The fast Fourier transform algorithm was again used to compute
the transform H(y). The test functions were stored in matvices of
128 x 128 elements and the transforms of these functions were stored in
complex matrices of G5 x 128 elements. Three zone plate functions and
one pinhole array function were used for the iuvestigation. The zone
plate functions were th(g), 'ffzp(_!:_), and th(g) -ﬁzp(g). which rcpre-
sented a positive zone plate with 9 zones, a negative zone plate with 10
zones, and a combined zone plate with 10 zones respectively. All of the
zone plates have the same Ty (radius of the first zone). The diameter of
the positive zone plate was equivalent to 76 elements (or bins) of the
matrix used, and the width of its last annular zone was about 2 bins.
The pinhole array function was hnp(E), which represented a non-redundant
pinhole array with 9 holes.(shown in Fig.4-5a) The size of the array

was about the same as those of the zone plates and the diameter of each



61
pinhole in the array was slightly less than 2 bins. The results from the
computer calculations are listed below.

~
n(z) = B, (2) ﬁ'zp(_r_) b, (2R () BypCE)

Total number of zeros (samples with values $°"Hmax)
in B320 samples of 1H(\_!)|

« = 0.000 1535 1150 123 -
o = 0,01 6784 6483 970 1
o = 0.05 - - - 455
«=0.1 - -- - 1789

It is seen that, for the samed., 'H(!)[ of the non-redundant
pinhole array has far fewer zeros than ttose of the zone plates, Because
of this fact and the good autocorrelation property of the non-redundant
pinhole array, it is expected that the non-redundant pinhole array can
give us better image reconstruction with Eq.(4.12) than the zone plates.

The non-redundant pinhole array was used to study the decoding
method given by Eq.(4.12). "The initial work was to examine the system's
behavior under various conditions witl: a point gamma~ray source.

Computer simulations of the coding-decoding i)rocess with different values
of ¢ and different levels of input statistical noise were made, and the
results are shown in Fig.4-3, It is seen that the width of the signal
peak (or resolution) is smaller for smaller values of cL while the
magnitude of the noisy background is higher for these ol .

From Fig.4-3, a compromise between the resolution and the signal
to noise is probably given by o.=0.05. Thi. value of ol was used in a

test reconstruction of a 2-D source distribution. The test object was a
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computer generated thyroid phantom with 5X statistical noise im it. This
5% noise-to-signal ratio was based on that the system received a random
number of events with an average of 400 from each resolution element of
the object if the intensity of that element is 1. The result of the
reconstruction together with the non-redundant pinhole array used are
shown in Fig.4-5. It is seen that good reconstruction without back-
ground can be obtained with this decoding method.

Effects of o on the point reconstructions at planes some distances
away from the in-focus plane were also studied. The results from
computer simulations, as shown in Fig.4~4, indicate that the off-plane
teconstructions are not very sensitive to changes of o . The average
magnitude of th- .~kground fluctuatic .s in each off-plane reconstruction
is very small, avwut 1% of that of the in-focus signal peak. This back-
ground to signal ratio is much smalle_t than that of the zone plate system
in the previous section.

A computer simulation of the reconstruction of a 3-~D source
distribution (consisting a cross, a circle, and a triangle) was made and
the results are shown in Fig.4~6., The input statistical noise was 5Z
for each resolution element of the source object. o=0.05 was used. It
is seen that images of Fig.4~6 are much better than those of Fig.4-2.

One important thing has not been explained yet. The results from
the computer reconstruction using the method described in thie section
seem to be not as good as those from the optical reconstruction using the
correlation method (see Figs.3-7, -8, and -9), Since the point recon-

structions from the method given by Eq.(4.12) zre better than those from



63

the optical correlation method, the reconstructions shown in Figs. 4~5
and -6 should look better than those shown in Figs. 3-7, -8, and -9. The
reason for the better appearance of the reconstructions in Figs.3-7, -8,
and -9 is because those Teconstructions were printed on high contrast
paper., The biasing action of the paper suppressed the background

artifacts in these reconstructions.

4,3 Conclusjons

It was shown in Section 3.2 that a NRPA coded aperture system
provides us a simple and economical way to obtain the tomographic images
of an extended 3-D source distribution., It was also shown that both the
autocorrelation and the crosscorrelation of a non-redundant pinhole array
are suitable for coded aperture imaging. The non-redundant nature of the
pinholes results in good image resolution and uniform background witn
few artifacts in the reconstructed images.

Improvement of simple coding by complex coding was discussed in
Section 4.1. By use of a positive and a negative zone plates one can
effectively remove the background produced by the zero order component
of the zone plate from the reconstruction. However, béckgtound
artifacts are still present in the reconstruction of a 3~D distribution
because of the other unwanted components of the zone plate, It is
expected that by use of three or even more zone plates one may effective-
1y remove a few of the most unwanted components of the zone plate (see

Section 2.2), but this complicates the imaging and reconstruction process.
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In theory the best coding with zone plates can be obtained if two
sinusoidal (sine and cosine) zone plates are used. In this case a
complex coding with the two zone plates can give an equivalent impulse
response ei"zlrlz- (=cos.zp+isin.zp), which corresponds a constant
modulation ‘ransfer function (see Section 2.3),

The Fourier tra-iform deconvolution method in Section 4.2 appears
to be very powerful for decoding of NRPA coded shadowgrams. The in-focus
point reconstructions (Fig.4-3) are very good on the basis of resolution
and signal to noise, The out-of~focus point reconstructions (Fig.4-4)
give only a small amount of background which fluctuates above and below
zero. This results in very few background artifacts in the recon-
structions of 3-D source distributions. Eq.{4.12) is only one of the
many possible forms for the decoding transform H'(¥). Other forms of
H'(¥) may be found in the future, which can minimize or eliminate the
background artifacts.

It was mentioned in the begining that coded aperture imaging is
only a special branch of tomography. In coded aperture imaging the:
direction of each gamma-ray event can not be determined exactly because
of the aperture used. A few other tomographic imaging techniques (or
devices, see Section 0.2), on the other hand, operate on events with
known directions and form their images by principle of back-projection.
The advantage of having the direction of each event know is that beteer
estimate of the 3-D source distribution can e made from enough data
samples of the distribution using various algorithms (depending on the

sampling). A new algorithm for 3~D image reconstruction from tomography
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will be given in Part I1. The particular way of sampling for that image
reconstruction algorithm will also be given., The direction of each

gamma-ray event collected by the detector must be known there.



66

PART II : THREE-DIMENSIONAL IMAGE RECONSTRUCTION FROM FOCAL-PLANE

TOMOGRAPHY

5. FOCAL~PLANE TOMOGRAPHY AND THREE-DIMENSIONAL IMAGE RECONSTRUCTION

5.1 _Gamma Camera Systems for Focal-Plane Tomography

As mentioned in the begining, a number of existing radionuclide
imaging devices other than the coded aperture imaging system can also
give depth information about a 3-D source distribution. These devices
have in common that they provide tomegraphic images of theobject, that
is, that images of a given object plane have that plane in focus and all
other object planes contribute an out-of-focus background superimposed
on the in-focus image.

Imaging devices which give depth information about a source point
require radiation from the point to be detected from distinctly separate
directions. In these imaging devices the direction of each gamma ray
event is known and, if separate views of a source distribution have been
made, a tomographic image on any plane through the source can be made by
back-projecting the gamma rays onto that plane.

Since the direction of each éwrma—ray event is known, the depth
information content of these imaging devices is much higher than that of
a coded aperture imaging system. In fact, the tomographic images obtained
from these imaging devices have some unused information about the original
3-D source distribution. In the following chapters, a method of 3-D

image reconstruction which utilizes this unused information to improve
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the tomographic images will be studied. Three imaging devices which
give tomographic images are described below.
Multiple Single-Pinhole Camera

One such tomographic device uses multiple single-pinhole views (Fig.
5-1a). The depth-~information properties of these multiple views is
illustrated in Fig,5-1b where the source distribution is a single point.
An exposure is made using one pinhole selected from the array. Tomo~
graphic images on a number of planes are made by back-projecting photons
from this exposure thraugh the same pinhole and adding the appropriate
intensity to each tomographic plane at its intersection with the line,
The process is repeated for the other views and the iinal tomographic
plane image is the sum of contributions from all these views. The plane
which actually contained the point source has a sharp image while in
other planes the image of the point source is blurred out.

In analyzing image formation it is useful to use the point response
function hij(L,rL). This function, characteristic of the imaging device
used, describes the response at point r in plane j to a peint source at
point r' in plane i, From Fig.5-1b it is seen that this function, or
blurring pattern, for the multiple single-pinhole camera has a shape
similar to the original array of pinholes but with a size which depends
upen the geometry. The non-redundant pinhole arrays which were used
previeusly for coded aperture imaging can be used to obtain multiple
projections for this camera system, and a 9-hole non-redundant pinhole
array is shown in Fig.5-2a.

Rotating Slanted-Hole Collimator Camera
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Another device used to obtain tomographic images in Nuclear
Medicine is the rotating slanted-hole collimator(Fig.5-3). The colli~
mator rotates about an axis perpendicular to the detector and the
parallel holes are slanted at an angle to this axis, generally about 20
degrees. When the collimator is at a given position the image of a point
source is a single point on the detector. When the collimator has
rotated 180° tl‘-ne image of this point source has traveled on the arc of a
circle to an opposite position. As done previously, tomographic images
on a number of transverse planes can be made by back-projecting the
detector image obtained at a given position of the collimator along the
known direction of the parallel holes arnd then repeating this process
for all positions of the collimator.

In one mode of operation of this camera views are taken at discrete
positions of the collimator and the blurring patterns have a shape

62 In another mode the collimator is rotated

similar to Fig.5~2b.
continuously during data collection and the blurring pattern is a circle
(Fig.5-2¢).5
Positron Camera

Positron cameras are currently under intensive develapmentsl"-ss
because of their ability to give tomographic images with;:ut the use of
a collimator and the associated loss of intensity. The two 511 KeV
annihilation gamma-rays from a positron source radiate from the source
point at 180° to each other (Fig.5-4). Interactions with two detectors

determine, as in the previous cases, only a line on which the source lies.

© Prajection of events detected onto a transverse plane gives, again, a
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tomographic image of the source distribution with that plane in focus
and other planes blurred and superimposed.

The fraction of detected events from a point source in the midplane,
say, decreases considerably as the point source moves away from the
centeerf the.plane, The three-~dimensional image reconstruction method
which will be studied later requires that the point response function
remains constant in shape, size, and i.ntensity as the point source moves
over the camera field of view on a given plane (this is called spatial
invariance), although it may be different for different planes. This
blurring pattern can be maintained constant over a given area of a plane
if the computer which constructs the tomographic image planes accepts
data only for those events for which lxz-—x.ll £d and {yz—yll < d where
d is smaller than w, the width of the detectors (square in shape). The
region of constant detection efficiency for the midplane which results
is a square of width w-d. The blurring pattern is also a square (Fig.
5-2d). If the detectors are of disc shape, the appropriate expression
for the acceptable data is l_r_l-g_zl Sd. The blurring pattern is

therefore a disc.

5.2 Solution for Three-Dimensional Images From Tomographic
Imapes

Conventional radionuclide focal-plane tomography produces images
of radioactive objects within the human body in which structuresat a

chosen depth appear in focus whereas those at other depth$are blurred.
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The inherent limjtation of these techniques is their inability actually
to remove background signal due to objects not in the chosen focal plane.
Tomography disperses the events from off-plane actlvity but such events
are still present as a semi-uniform background that can produce artifacts
or obscure faint structures even when the structures are located on the
focal plane of a given tomographic image or tomogram. In Nuclear
Medicine imaging with its poor resolution and frequently low contrast
objects it is often not possible to distinguish the in-focus plane from
the out-of-focus images. Removal of the background would enable
detection of smaller lesions and lesions of lower contrast.

A tomographic image of a plane section through an object has a
finite width slab of the object in focus. The thickness of this slab
is the depth of field which depends on geometry and detector resolution.
Also present in this tomographic image is an out-of~focus background
contributed by the reslt of the object. If this background is removed
from a collection of these tomographic planes which are separated by the
system depth of field, then the three—dimensional object is known to an
accuracy determined by the longitudinal and lateral resolution of the
system.

Now, the remaining problem is how the out-of-focus background can
be removed. Let us examine the constituents of a tomographic image
first, We assume in the following that the object is located in Np
plares and is rgpresented by the functions os(r), i=l, ..., Np. Np
tomogr ams tj(g) are formed by a computer from camera data using the

backprojection methods discussed previously. Since the point response-
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function hij(g.g') represents the system response at r on plane j due to
a point source of unit intensity at r' on plane i, the total contribution
from plane i to plane j is just the integral of °1<£')“1j(£'5') over all
I'. If the imaging system is made to have a constant point response
function as described previously, then hij(E'E' )=hij(£~£') and the above
integral becomes a convolution integral of °i.(£) and hijCE). The tomo-
graphic image tij(g) on plane j due to source °1(£') on plane i is then
given by

£y 50 = foi(_g')hij(g—_r_' Mr' = o, (r) ®h.1j(5) 131,250 N (5.1)
Since the tomographic image has contribution from all object planes we
have

N .
= P @ j= PR .
tj(l) = Zl 01(2)01‘15(5_) 3=1,2, N, G 2)

i=

Taking Feurier transform on both sides of the above equation, we have
N
T (w) = 2P 0,(¥) H, (v 515250000 N_ (5.33
[ i_z;:l 3 WX 13(_) J=1l,2, p( i

The above equation is linear and can be solved for 0.1(3) zasily if
det( Hij(y_) ) % 0 for all vy, The object distribution in spatial domain
can be obtained by taking inverse Fourier trémsfom of Oi(g). A detailed
description of this 3-D image reconstruction process will be given in the
next chapter,

It is worthwhile to point out that the tomographic images obtained
from a coded aperture imaging system can not be used for the above image
reconstruction because of det{ Hij(l) ) = 0 for all ¥ in coded aperture

imaging. To prove this, we let h‘.:(g_) Tepresent the response of the
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coding system to a point source on object plane i and let h?(;)
represent the response of the decoding system on image plane j to a point
on the shadowgram for coded aperture imaging. Assuming the system is
linear and space~invariant, the point response functien hij(E) of the
coded aperture system is then giver by hij(E) = h'.:(z:_) @& hg(g). The
Fourier transform of hij(-r-) is given by Hij(\_v) = H:(i) H?(\_!). The

determinant of { H,.(v) ) of this system is given by

1)
’ d . d d
By By ...HNpl g R
= = (] c d .d d
det (H; () = [By, Hy, ...HNPZ = Hfuz...ﬂnp Hy Hy ..oH
d .d d
By Hon <oy Hy Hy .-y
P “p PP PP o

Therefore, det(Hij(!))=0 for all v in coded aperture imaging.
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6. BASIC MATHEMATICS FOR THREE~DIMENSIONAL IMAGE RECONSTRUCTION

6.1 _Tomopraphic Images from Focal-Plane Tomography

As explained in the previous chapter, the formations of tomographic
imgges by the three tomographic imaging camera systems are similar, that
is, all the tomographic images are made through back-projection.
Therefore, only the multiple single-pinhole camera system is used to
illustrate the formation of tomographic images. To produce the tomo-
graphic.images for a pinhole camera svstem, a number of separate
exposures of the object are obtained with a pinhole aperture and a planar
gamma ray detector, and with the pinhole being moved successively to
different points of an N ~point array (Fig.6-1a). The known location of
the pinhole and the event positions recorded by the detector determine
the direction of emission fcr each detected gamma-ray. Using these Nh
single-pinhole images tomographic images on Np transverse planes through ~
the object are built up with computer in the following manner (Fig.6-1b).
The Kth pinhole image is projected back through the Kth pinhole onto
each of Np tomographic planes. This is done for all the pinhole images
and the final tomographic images tj' J=lyeans Np, are the sum of the
contributions from each of the Np single-pinhole images. These are true
tomographic images, the image tl’ for example, having in-focus ali the
points of the corresponding object plane o with all other planes
contributing out-of-focus background.

If the three-dimensional object can be approximated by intensity

distributions oi(}‘_) on a finite number of planes, i=l,esss Np’ then to
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construct these oi's from the tomographic images one needs to consider
the equations which describe the formation of the tomograms.

We assume here and in the following that the pinholes in the array
are small (delta functions). The effect of finite width pinholes will
be discussed later. Let the function hij(E) be the response of the jth
tomographic plane to a point source located in the itP object plane.

As discussed previously, the response of the tomogram'tj(z) to °i(£) is
its convolution with hij(E)’ °i(£)®h1j(£)' and tj(g) is the sum of its
responses to the Np object planes.

We can find the farm of hij(E') and the scale factor in °i(1"-) £rom
Fig.6~1c which shows the response of two tomographic planes to a peint
source located on an object piane., The figure shows that hii(E) is a
delta function of intensity Nh and that hij(_x.:) (j4i) is the pattern of
the Nh hole array used but with a reduced size depending on geometry.

If h(x) is the function which describes the pinhole array transmission

with pinholes located at positions Ek’ k=l,40es Nh’ we have

N
h s s
hy (2) = hlg/m; ;) = ;L:I 8z yx,) 1,312,000, (6.1)
where mij = (si-sj)/si and 55 is the distance of € (and of oi) from the

pinhole array. The object intensity which contributes to the tomogram

) 2 _ . .th
tj(g) is oi(_'t_:_/ocij)/ocij where dij z Sjlsi' The equation for the j

tomogran is then
=yP_L j= {
t(o) _1Z= 7 ouy ) ® ny ;@ L2 N, €6.2)
ij
Eq.(6.2) is a set of Np equations in the Np variables 'oi(E). The t;'s

are combinations of single-pinhole image data and the hij's depend only
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on geometry, that is, on pinhole locations in the array and on placement
of the reconstruction planes. All the equations are functions of r,
position relative to the of ' lc axis, and these Np equations must be
solved for each position r, in digital processing for instance, on a
64 x 64 matrix.

The tomographic images of the other two camera systems can be
expressed by the same formula as above, of course, with different point

blurring funetions hij(E-) as shown in Fig.5~2.

6.2 _Image Reeonstruction by Fourier Transform Deconvolution

Taking the Fourier transform of Eq.(6.2) we have

N
= 5P s
T, = 1Z=1 0;Cu oty ;) Hy (W), B2y, Ny (6.3)

where the guantities Tj, Di’ Hij are functionsof spatial frequency ¥
and are the Fourier transform of the corresponding quantities of Eq.
(6.2). To exhibit these equations as a set of linear equations in the
quantities Oi(_»_‘) we need to evaluate each of the equations for TJ.(!) at

a difforent point ¥' = s

j -
NP
T.'fs) = i{ﬂ 0, /sy) By (w'fs ), FL2,een, Ny (6.0)
ot in matrix form T = H O (6.5)
where Tl(\—"lsl) 01(21/51)
T (9'/s,) 0,(n"/s,)
r=] 2 2 o= | X152
Ty (/s D 0y (/sy}
P P P P




76

Hn(l.lsl) HZI(y_'Isl) veens HNpl(g'/sl)

R (u'fs,) Ho(8'fs,) »ouse Hy (u'/s))
H = 12 2 22 2 NPZ 2 €6.5)

emoann
erane
messe

H Gt/ ) Ho (9'fs, ) (/s )
w, o T SNP annp N

For those (angular) spatial frequencies W' for which the deteminant of
E, (') = Hii(y_'lsj) , is not zero, an inverse matrix, N1, exists and

Egs.(6.4) can be sloved for Di(y_’isi).
ilr=wtno=0 €6.6)
Inverse Fourier transformations then give the desired background-free

images 0,(z).

0,() o (D)
0,(w) 0,()
J‘l 0 =Jr1 = (6.7)
9 (v oy (o
P P

iIf the deteminant function H(g') is zero at some angular spatial
frequency v' then the reconstructed transform images Oi‘(!) are not
determined at the spatial frequency y_'/si. From Egs.(6.4) and (6.1)
e can get

N s . s
zh e-lﬂg'-gk(si-sj)/sisj 1,351,25000,n  (6.8)

gt =
B /sj) L P

Since Hij(2)=Nh=ccnstanl: for all i's and j's, the deteminant D(N')

is always zero at ¥'~0. This means that the reconstructions oi('_r.") are
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undefined by an additive constant. This is not a problem if this is the
only zero since this constant can be determined by some subsidiary
condition, for instance, that °i(£) has no negative value and the
background outside the field of view is supposed to be zero.

The general determination of additional zeros of the determinant
D{¥') is complicated and has not been done yet. The physical reason for
zeros in the binocular vision case (Nh=2), for example, is as follows,
Spatial frequency on each of two input planes can be such as to give the
same spatial frequency on the detector plane for each of the two single-
pinhole exposures. On reconstruction one is uncertain how much of the
original frequencies to a ascribe to each plane. A regularly spaced
array will increase the number of zero. However numerical calculations
of D(\_).') for non-redundant pinhole arrays of 9 to 24 pinholes and for
2-, 3-, and 4- plane geometries showed no zeros to exist, other than at
v*=0, Although ne general proof is made it would appear that zeros of
the determinant can easily be avoided by the use of non-redundant pinhole
arcays.

The determinant function D(\_") is characteristically very low near
V'=0 but rapidly increases to its maximum value. D(\_!_') varies with the
shape of the pinhole arrar as well as with the number and the location
of the tomographic planes. Fig.6-2 gives the cross-sectional plots of
the determinant functions as functions of array types (r2gular and non-
redundant arrays) and plune geometries (2-, 3~, and 4- plane geometries).
The non-redundant pinhole arrays are seen to give a determinant D(y') of
more uniform magnitude compared to the regular pinhole array. Fig.6-2-1.

shouws the pinhole arrays used for computing those determinant functions.
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6.3 _Systems of Finite Spatial Resolution

To investigate the effect of using an aperture array which has
finite width pinholes of diameter d we consider the geometry of Fig.6-lc.
A point source in plane i casts a shadow of a given pinhole onto the
detector plane which has a diameter d'=d(s°+si)/si. The diameter of this
spot cast on the tomographic plane j through the corresponding zero-width
pinhole on the right of the figure (zero-width because this is a mathe-
matical operation not a physical process) is dij=d'sj/s°=d sj(llsi+1/5°).
The real point response function that occurs in Eq.(6.2) is
h;:j(_g) = hy (D) @ cire(z/dy ).  cire(z/d;,) represents a circle

function of diameter dij' which is defined by

1, if |z| £4;./2
cire(z/d; ) = { J (6.9)
0, if |z| > q;,/2
If we define
4 = d s:l(llsi + 1/50),= uij/d'ij (6.10)
then
circ(ydij) = circ(EldicL.u.) -
Upon replacing hij(_z;) in £q.(6.2) by hgj(;_) we have
t.(x) = f L) @ b, () @ cir.c(r/d.d. )
o a2 1= =iy €6.11)
i LR A A A
If we define a new object distribution function °§(£) by
o) = o.(zx) ® circ(z/d,) i=1,2 [ (6.12)
D) = oz z/d,) , v 2 s By .

then the expression of tj(E-) in Eq.(6.11) becomes

N

= yb L e 5 =

1o = 'Z::1 g 05zl 5 @ hi@ =L 2 e, B (613)
1]



79

Eq.(6.13) has the same form as Eq.(6.2), therefore, the solution
of o‘i:(g) can be obtained by the same deconvolution method as described
previously for the infinite resolution system.

The reconstructed images of this finite resolution system are
given by 02(5). which is defined in Eq.(6.12) as a convolution integral
of oi(_v._-_) and circ(_gldi). The operation of the circle function on 01(5)
is considered as a blurring operation which occurs whenever an imaging
system of {inite recolution is used.

Apparently, the image resolution of the entire process, tomographic
imaging and 3-D image reconstruction, depends only on the first part of
the process., In other words, the resolution of the image is defined
when the object is imaged by the camera, and the later image processing
by the computer makes no change to this resolution (provided that the
computer has enough memory to represent and process the data from the
camera). Therefore, the formulas for the lateral and depth resolutions
of a MPA coded aperture system can still be applied to this 3-D image
reconstruction system. If a pinhole array of mean radius n (weighted
by the distribution of pinholes in the array) is used for the tomo-
graphic imaging and 3-D reconstruction, then the lateral and depth
resolutions for object plane i, at Sy from the pinhole array aperture,

are given by

8,

da(1+ silso ). (6.14)
and

a, = d(1l+ zsi/s0 ) si/rm , (6.15)

where i=1, 2, ..., Np .
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7.,  EXPERIMENTS AND RESULTS

7.1 _Construction of Digital JTmaze Read-Out System

The MWPC system described in Section 3.1 is again used here. Since
the 3-D image reconstruction method requires the use of fast digital
Fourier transforms, the analog system is no longer feasitle now. Instead,
a dipital computer together with an interface controller and some
peripheral devices are used to read and store the MWPC output. As shown
in Fig.7-1 the output signals from the timing and pulse height discrimi-
nators are used to start and stop a Camac digitizer. The function of
the pile-up rejector used in the analog system (in Section 3.1) is
replaced by a trigger conditioner., A delay gate sets the busy time
interval for the trigger conditioner so that an¥ signal pulses coming
from the central wire plane within that time interval after the first
one, which turns on the trigger conditiener, will be rejected.

The prompt output of the trigger conditioner is useu to start the
digitizer and to trigger a pulse generator. . The pulse generator then
generates two output pulses, both are delayed by a short time interval.
One pulse is used to set the Look-at-me (LAM) signal for thc Camac
digitizer. A LAM sipnal is a signal sent by the Camac module to the
Camac crate controller to indicate request for attention. The other
pulse is used to stop counting of the digitizer. The time delay of these
two pulses from the prompt output of the trigger conditioner is about 5

microseconds while the busy time interval of the trigger conditioner is
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about 130 microseconds. This long busy time interval of the trigger
conditioner is required because the PDP-11/10 software takes about 120
microseconds to read the x and y data, to locate and increase a particular
memory location according to the x and y data, and to check the status

of the switch register and the crate controller.

The timing of the Camac digitizer is provided by a 150 HHz clock,
and the digital information of the x and y signals is transmitted
through the “read bus" lines of a Camac crate to the crate controller,
The PDP~11/Camac crate controller serves as an interface between the
MWEC electronics and the PDP-~11/10 computer. This type 1533A Interface/
crate controller made by Borer Electronics Ag serves to connect a Camac
crate directly to a PDP~11 Unibus., Built as a double width Camac module,
the crate controller is designed on the principle of offering .. sparent
operation in the reau/write mode whereby each crate subaddress appears
as a separate peripheral on the Unibus. The 15334 has an interrupt
vector generator for 16 vectors with individual priority selection which
speeds the handling of LAM's considerably.

The PDP-11/10 central processor controlls the signal reading, the
image processing, the data transnission, and the image display of the
MWPC system. All the computer system components and peripherals of
PDP~11/10 cennect to and communicate with each other on a single high-
speed bus kncwn as the Unibus, see Fig.7-1. The 28K core memory of the
PDP-11/10 provides enough space for temporary data storage. For more
processed data and long term storage, the disk unit of a PDP-11/45 system

is available., Data transmission between the PDP-11/10 and the PDP-11/45
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is through a telephone line with maximum speed ~~ 9600 bauds(bits per
se-ond). The tape unit of the PDP-11/45 system is also available for
the permanent storage of processed data on magnetic tapes. The LA36
DEC-writer is a fast(relative o the teletype) data terminal. It prints
from a set of 64 characters at speeds up to 30 characters per second.
Data entry is made from the 97-character keyboard. The Tektronix-4012
Computer Display Terminal is used for graphic plotting and input-output
characters, Inputs to the computer are made through the Terminal's
keyboard., Data from the computer can be displayed on the face or screen
of the Terminal's cathode ray storage tube. Fig.7-2 shows a photograph
of the entire experimental set-up excepf the PDP-11/45 system, which is

a remote station.

7.2 Software for Digital Image Processing

The intrinsic resolution of the MWPC detector and its associated
electronics is about 2 millimeters. Since th« active area of this
chamber is about 48cm x 48cm, the total number of resolution elements in
this chamber is about 240 x 240 = 57,6K which is about twice of the
memory size of the PDP-11/10 computer. To run a program with the PDP~
11/10 computer, about 8k memory space is required to store the system
software, and another 4K memory space should be preserved for the program
and subroutines which read and process the MWPC image data. Only 16k
out of the 28k memory space is available for storing th= dig.tized image

data of the MWPC system. In other words, the output of the MWPC can be
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at most represented by a 128 x 128 single-word matrix in the computer
programming. Because of this limitation, the spatial resolution of the
digital system is at least Z times worse than the intrinsic resolution
of the MWPC detector.

BASIC is used in the digital system because it is convenient. The
comput2r program which reads and bins the MWPC image data contains an
assembly language subroutine which runs a loop with a cycle time about
120 microseconds. This subroutine commands the computer to check the
LAM signal of the Camac digitizer first. When there is a LAM signal it
means that an event is digitized by the Camac digitizer and is ready for
computer to read. The computer then start to read the x and y coordi-
nates of that event through the Camac/PDP-11 interface controller. The
values of x and y are then used to determine the memory location for that
event in the 128 x 128 matrix which is assigned to begin at some
particular memory address. The content of the memory location for that
event is increased by 1, The subroutine then commands the computer to
initialize the Camac digitizer through the Camac/PDP-11 interface
controller and wait for the next LaAM signal. IXf the last switch register
on the PDP-11/10 operator's console is raised at this time, the read
cycle ends, otherwise, the read cycle continues. Since there are only
16 bits in one memory word of the PDP-11/10 computer ar.\d the image
matrix is represented by single-word <lements, the maximum permissible
number of events in cne element is 216 -1 = 65535 which is far above the
maximum value obtained experimentally.

The image of the MWPC output can be displayed on the screen of the
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Tektronix 4012, The 6" x 8" display area of the Tektronix 4012 contains
780 x 1024 points for the cathode ray beam. Since the width of a light
spot on the screen is about 2 points, the total number of resolution
elements on the display screen is 390 x 512. To display the intensity

distribution of an image which is stored in an Nl x N2 matrix, we divide

the display screen into N1 x Nz squares. Each square contains g:;—o x 5:'1‘—2
4 1 2

gray-shade elements which are used to represent the contents of a matrix
element. If an image of the MWPC output is stored in a 128 x 128 square
matrix, the maximum number of gray shades for eath matrix element is

3 x3 = 9. For a better gray-shade display, the image should be rebinned
into a 64 x €4 matrix, The gray-shade level is then § x & = 36,

To make tomographic images for the 3--D image reconstruction, a
number of image matrices are needed. The PDP-11/10 computer can take
only one 128 x 128 matrix and the rest of the matrices must be stored
temporarily in a direct accessible medium. The disc unit of the FDP-11{
45 computer is used for this purpose. The data processing is done by
transmitting data in aund out between the PDP-11/10 computer and PDP-
11/45 disc, and the final result is transmi:.ted to the PDP-11/45 tape
unit and stored on a magnetic tape permanently.

It is very time consuming and inconvenient to have to transfer
data in and out from one system to another. To avoid i:his inconvenience,
the last part of the 3-D image reconstruction which involves the use of
Fourier transforms and matrix inversion and multiplications is done by
a large off-line computer {CDC-7600). The formation of tomographic

images for the 3~D image reecunstruction is still done by the on~line
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PDP~11/10 computer and the resulting tomograms are recorded on a
magnetic tape using the PDP~11/45 tape unit. The magnetic tape is then
used as an input to the CDC-7600 computer. Tape conversion is necessary
because that a PDP-11 computer word contains 16 bits while a CBC-7600
computer word contains 60 bits. The 9—track magnetic tape obtained
from the PDP-11 system must be decoded and recoded into CDC-7600 words
before it can be used for the second part of the image reconstruction.

The formation of tomographic images from a set of projections is
the most time consuming operation in the entire 3-D image reconstructien
process., Because it requires Np coordinate shiftings for each event
teceived by the detector and the total number of events in each
projection is usually quite large (about 104-105). If a computer with
storage capacity larger than the PDP~11/10 computer is available, the
formation of tomograms can be done while the MWPC data is being taken
(provided that the data taking rate is low). In this case, no extra
time is required to produce the tomograms. The image teconstruction of
ithe tomograms takes very little time if the inverse matrix H-l is pre-
determined (H-]' may be predetermined because it does not depend on the
input object)., To illustrate the total computing time required to make
a reconstruction we let Np = 3 and let the three tomograms be stored in
matrices of size 64 x 64.

The first step of the 3~D image reconstruction process is Fourier
transformation of the three tomograms. The fast Fourier transform (FFT)
algorithm described in Section 2.3 is used here to perform the digital

transforms., It takes less than 20 milli-seconds for a large computer
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(CDC-7600) to do one fast Fourier transform using an assembly language
subroutine of FFT.

The second step is to perform the complex multiplications and
additions of H-l and the transformed tomograms T (boch H—]' and T' are

complex matrices).

-1 -1 -1
0, ) HW i@\ [ nw
~ S T -1 -1 -1
02(!) =0 =RT ={ Hylw sz(\_l) Hza(‘i) T,0)
0,09 Hp ) M) Hplw) [\ T,

-1 -1 -1 s =
0,(¥) = Hiy(MT, (W) + BT, Q) + HL(WTw . 1=1,2,3 oD

It takes three complex multiplications and twe complex additions
to evaluate each Oi(\_!_) at one of the 64 x 64 frequencies ¥. If we
neglect the computing time of complex additions, which is small compared
to that of complex multiplications, we have 3 x 64 x 64 complex multi-
plications in the second step. Since the Fourier transform of a real
function has a preperty tha‘t the Teal part is even and the imaginary
part is odd, all the frequency components can be represented by complex
matrices of size 33 x 64. The above number of complex multiplications
is therefore reduced by a factor of 2. On a large computer (CDC-7600)
the time required for doing those complex multiplicatigns is much less
than a FFT of 64 x 64 elements (less than 10 milli-second).

The last step is the inverse Fourier transformation of Oi(\_v). Ic
takes also about 20 milli-seconds for each inverse FFT. Thus, the total
computing time required for the reconstruction of three images from

three tomograms is rougnly given by 20 ms x 2 + 18 ms x 3 + 20 ms x 3
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= 150 ms = 0.15 second. It is seen that this computing time is propor-

tional to the total number of tomograms used.

7.3 Computer Simulations and Experimental Results_

Computer Simulations

A 9-pinhole array was used in a computer simulation in order to
test the 3-D image reconstruction method. The pinhole array is shown in
Fig.5-2a. The object (Fig.7-3b) was located in three planes, sl=8 cm,
52=10 cm, and s3=12 cm, The computer generated the tomographic images
of Fig.7-3c in the same three planes. The reconstructions produced,
using these tomographic images as input, are given in Fig.7-3d. The
results show excellent agreement with the original'object. The tomo-
graphic images were produced, however, with no statistical variation in
intensity of the picture elements of the object from one single pinhole
exposure to the next.

In the more realistic‘ case when the object picture elenents vary
statistically it is found that there occurs a small component of
background in the reconstructed images in addition to the expected
variation in the intensity of the image elements. This is shown in Fig.
7-4 where an average of 400 events total from each object picture element
has been collected, distributed statistically over the Nh=9 single
pinhole exposures, This gives a 5) statistical fluctuation in ot ject
picture element intensities. The corresponding fluctuation mzasured in
the images is 6%. Thus, the reconstruction method introduces a small

amaunt of noise. If the total number of events collected is held fixed
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it is found that the amount of introduced noise increcases slightly as
the number of pinholes is decreased,

In another case, a five-plane object was imaged and reconstructed
by the same system, Again, 5% statistical fluctuation was generated in
the object picturevelements, and the tomographic images of Fig.7-5a were
formed. The reconstructions are shown in Fig.7-5b. Only a small amount of
noise is seen, A study on statistical noise in the image reconstruction
process will be given in Section 8,2 and also in Appendix B.

Experiments with Radicactive Sources

Radioactive sources were used to test the reconstruction method.
The detector and the associated digital image read-out system were
described in Section 7.1. The software for the image processing was
discussed in the previous section. In all the experimental tests,nine
projections of the object distribution were taken with a circular pinhole
array (like the one shown in Fig.5-2b) for the fomation of focal-plane
tomograms. For a given object field of view a circular pinhole array
gives the best depth resolution among the multiple pinhole arrays of
the same size. The 9-hole circular array used was of diameter 9 cm and
each pinhole of the afray was of diameter 4 mm.

The first test object, consisting of three geometric patterns, was
located on three object planes, Sl=20 cm, sz=25 cm, and s3=30 cm. S0
was 39 em. This test object was labelled with I-125 (average photon
energy about 30 Kev). There were about 105 events in each object plane
and the spitial resolution was about 6.5 rm. The tomograms and their

reconstiuctions are shown in Fig.7-6. Although the choice of objects
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was such as to make their nature readily apparent from the tomograms
alone, the reconstruction method has clearly removed artifacts and
background successfully fram the tomograms. No effort was made to
improve the image reconstruction by correcting the non-uniformity of
the MWPC detector and the variation in transmissions of the pinholes.

The second test object consisting of five numerical patterns was
located on five cbject planes, 51=20 cm, SZ=25 cm, 53=30 om, s£.=35 cm,
and s5=40 cm. All other imaging parameters were unchanged. The point
responses of the system were cbtained first, They were then used to
compute the inverse frequency matrix, H_]. A rough correction of the
detector non-uniformity and pinhole transmission was made so that about
the same total number of events was found in each pinhole projection.

In this test the background events due to scatriering and cosmic
radiation were about 10% of the sirnal events received by the MHWPC
detector. Angular (spatial) tomograms were fcrmed on line with the
PDP-11/10 computer (also with the PDP~11/45 computer). The recon-
struction of thesc tomograms was perfcrmed by the CDC-76Q0 computer at
the Lawrence Berkeley Laboratory. The tomograms and their reconstruc-
tions are shown in Fig.7-7 f+he tomograms are shown in their ordinary
way to avoid confusion).

As a demonstration, an ohject consisting of five point sources was
used in place of the previous object. The point sources were regularly
spaced at 5 wm intervals in depth. The tomograms and their reconstruc~
tions are shown in Fig.7~8, The point blurring patterns of the imaging
system (multipie single-pinhole camera) can be s.en clearly in the last

3 tomograms. Fig.7-8b shows that the 3-P reconstruction method has
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removed all the off-plane point blurring patterns from the tomograms.
From Eqs.{6.14) and (6.15) we can calculate the lateral and depth
resolutions of the imaging system {5-plane geometry), using d=4 mm and
rm=4.5 om, Both the lateral and the depth resolutions are worse for
object planes further from the pinhole array aperture. The calculated
lateral resolutions are 6.1 nm, 6.6 mm, 7,1 mm, 7.6 mm, and 8.1 mm on
object plane 1, 2, 3, 4, and S respectively. The calculated depth
resolutions are 2.7 cm, 3.6 cm, 4.7 cm, 5.9 cm, and 7.2 cm on object
plane 1, 2, 3, 4, and 5 respectivaly., It is seen that the imaging
system can not resolve the last two object planes well because the
system*s depth resolutions are greater than the plane spacing (5 cm) on
the last two object planes. This may be the reason that the recon-
- styucted images on the last three object planes are not as good as those

on the first two object planes (see Figs. 7-7b and 7-8b),



8. FURTHER STUDIES AND CONCLUSIONS

8.1  _Determinant Function

The discussion given in section 6.2 showed that the determinant
function D(¥') is always zero at zero spatial frequency for the multiple
pinhole camera systems, In fact, D(\l‘) is zero at w'=0 for all the
camera systems which perform focal~plane tomography. This general
property, D(0)=0, arises from the fact that only a projection at 90° will
give the total intensity of an object plane. All other projections for
an object distribution which has, say, Np planes of uniform intensity
(oi(£)=1.1) give the same value (Z Ii) and assignment of a given plane’s
intensity is not possible. '

D(!') for various multiple single-pinhole camera systems has been
discussed previcusly. The calculations of D(\_g_') for the positron camera
and the rotating slanted-hole collimator camera (or the tomccamera)

systems are as follows: The point response function, hij(-r-)' of a
tomocamera system is either a delta function (i=j) or a ring-shaped
function (i%j, for the continuous type). The Fourier frequency function,
Hij(!). of a ring-shaped function is a Bessel function of order zero
(Jo(,\l)) while that of a delta function is a constant.

As discussed in section 5.1, data from the positron camera should
be taken with some maximum allowable difference in the coordinate values,
dZmax(lxl—le) andd> max(lyl-yzl). If the detectors of the positron
camera are of disc shape, the appropriate expression for the above

difference in coordinate values is d»max( ‘51-52[), where r; and I, are
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positions on the two detectors of the positron camera respectively.
When the above is done, in each object plane which is sufficiently near
the midplane there is an area where point sources are detected with
constant efficiency, The point response function, hij(}'_) with i%j, is
then given either by a 2-D rectangle function {rect(x)rect(y)) or by a
circle function (cire(r)), according to the shape of the detectors of
the positron camera. The corresponding Fourier frequency functions,
sin(v ) sin(v )
Hij(y_), are a sinc function (=3 x 3 ) and a Bessel function of

X y
order one(ﬁ%‘ﬂ)—)- Fig.8~1 shows D(¥') as a function of spatial

frequency fo;- the tomocamera system and the positron camera system,

based on a Tegularly spaced 4-plane geometry. The D(g') of two pinhole
camera systems are also shown in Fig.8-1 for comparison. They are based
on a regularly spaced 3-plane geometry.

Because the slope of D(¥') is also zero at ¥°'=0, the determinant
function has small values near the origin, for instance, at the first
harmonic of spatial frequency, w'. Since the reconstruction Oi(y_') has
terms in it proportional to Tj(-!' MD(N'), i=lseees Np. Tj(g') depends
on data from the camera and therefore has st.atisl:ical fluctuations in
it which are magnified by 1/D(2'), giving rise to inco.rect values for
Oi(\_y‘). These low freguency fluctuations have not been a problem so far
for up to S-piane reconstructions but they may turn out to be a limi-
tation of this reconstruction method. One simple way which can give us
estimations of the zero and low frequency components of an object

distribution from its reconstructed images is described below. The

inverse frequency matrix, H-l, is undetermined at ¥'=0 only, and
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therefere, it is set to be zero at ¥'=0. A computer reconstruction
produces a set of images which are stored in Np image matrices (for
example, Np 64 by 64 square matrices). These image matrices contain
images with wrong 2ero spatial frequencies and perhaps a few low spatial
frequency components. 1In most of the cases, it is known that the images
of an object distribution are located only in the central portions of
the matrices (for example, only in the central 48 by 48 arca), the rest
of the matrices should contain no events (or a few background events
which in general are relatively small). The presence of large non-zero
values and fluctuations in the marginal areas of the image matrices is
¢learly due to the undetermined zero frequency componeats and the noisy
low frequency components. Least squares estimations of the 2ero ond low
frequency components can now be made in such a way that the estimated
values give minimum background activity in the marginal arcas of the
image matrices. Experiments and computer simulations with NP=3 and 5
have showed that the zero and first few frequency components of the

object distribution can be estimated well enough this way.

8.2  Statistical Noise

The calculation of the output signal-to-noise ratio for the 3-D
image reconstruction method is rather complicated because many
transforms and a matrix inversion are involved. Since more than one
projection is needed for the construction of tomographic images, the
input statistical noise is not only a function of time and space but

also a function of the projections. For the same counting interval, one
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of the projections may reccive more counts tian some of the others from
the same resolution clement of the source object due to counting
statistics. When the 3-D image reconstruction method is applicd to a
sct of tomographic images, the spatial noisc in these images is
transformed arid amplified at the intermediate stages of the recon-
struction process. At low spatial frequencics the determinant function
D(¥) is small (sce Section 8.1), thercfore, the amplification of noise
is large. To suppress the amplification of noise, modifications of I{¥)
may be nceded at low spatial frequencies.

An attempt was made to relate the output signal-to-noisc ratio of
the 3-D image rcconstruction process to the input paramcters of the
system. The calculations and the result are given 1 Appendix B,
Although the result of Appendix B is derived from a multiple pinhole
camera system, it can be applied to other similar tomegraphic imaging
systems as well. The pinhole cimera system uses Nh separated pinhole
projecsions to form the tomographic images. The input signal-to-noisc

ratio of this system is given by, from Poisson statistics,

e = 0@ , (8.1)

where o‘{g is the total dectected gamma-ray cvents from one resolution
element of the object distribution at r.
The output signal-to~noise ratio at image planc k is given by,

from Appendix B,

S — o‘(;) s
— ad tr— gy —
g )output Np Sy C I )inpur. I‘v “pck (8.2)
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where the cocfficlent c is defined as

1 2 sin u 8.3)
cx‘i/;:l ll I)‘ = au (

and "jk(“) is an clcment of the inverse matrix of H(u) (see Appendix B).
2

-i- is given as the arca of onc resolution clement of the object divided
by the maximum number of derected gamma-ray events from cach resolution
clement. Since there is no simple formula for "jk(U)' €, can not be
further simplified. Eq.{8.3) indicates that Ck is a function of at least
three parametersjthe total number of projections Nh’ the point blurring
pattern hu(_g). and the imaging geometry (number =f object planes and
plane separatlons). The order of magniiude of t.‘k wias estimated to be
atout 1.

HMonte~Carle calculations of the signal-to-ncise ratio of the image
Teconstruction process have been made with a computer. The input object
distribution was a uniformly distributed Np x 25 x 25 point array with
a lateral point separation given by the system resolution (0.5 em). The
camera received on an average of (:DI)INh counts from one object point for
each pinhole in the imaging pinhole array aperture. Since there were Nh
pinholes in the array aperture, the fhput statistical noise was 1/%00=52.
The number of object planes was chosen to be 3 and 5 for this calculation,
The cbject plane to aperture distances Sy» i=1, 2, ...y Np, were given by

=20 cm, 5,=25 cm, 53--30 cm, for NP=3.

o 2
and s1=20 cm, sz=22.5 cm, 53=25 o, $,=27.5 em, ss=30 cm, for ans.
The output noise-to-signal ratio of the 3-D image reconstruction

process was calculated as follows.
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Np- 3 object plane 1 output noise 7.1% l
" 2 " 7.5% average noise 7.4%

° 3 " 7.6

Nps S object plaue 1 output noise 9.6

. 2 " 9,22
° 3 " 10,02 average noise 9,3%
o 4 " 7.3%
e 5 “ 10,42

It is very difficult to relate the results of Np=3 to the results
of Np=5 because their Ck are hard to calculate. If we let Ck=°'7 for

all k in both cases, we have, from Eq.(8.2),

Foutpue = % V3x07 = 7.25%, forn =3
() i S
S ‘output = 52 YS x 0.7 = 9.35%, for Np =5

It is seen that the above values agree with the results from the

computer simulations.

8.3 Spatial Invariance and Self-Attunuation

The basic assumption of the 3-D image reconstruction methecd is
that the point resronse function, hij(E)' must be a sp'ace-invariant
function, that is, hi.j(E'E') = hi.j(s'y) for any peint source located
at £’ on object plane i; and r 1is a location on the tomographic plane
j. Due to the inverse-square law and self-attenuation (mostly of tissue

in organ imaging), the point response function is actually not a Space-
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invariant function, the expression h“(g,z‘) = hij(E'-E') is only an
approximation which works well when the imaging solid angle is small.
When the imaging soiid angle is very large, as shown in Fig.8~2, the
point blurring pattern for a point source at r' = c(point 2) is quite
different from that for a peint source at r' = 0 (point 1) because the
photon attenuation of paths Lz and L:.,_ is different from that of paths
Ll and Li.

The correction of the deviation due to the inverse-square law 2an
be dore at the same time when correction of the detector nonuniformity
and pininle trausmission is made. Each pinhole image in che detector
requires a correction matrix for making corrections. By moving a point
source from peoirt to point on the middle object plane in a constant time
interval, a pinhole projecvion can be obtained, and the reciprocal of
this projection (normalized to 1) is the desired correction matrix.

The correction matrices made this way give exact correction only to
those gamma-~ray e¢vents from the middle object plane. For object planes
other than the middle one, the correction is only an approximation.

When tomographic imaging Jevices such as the tomocamera and the
positron camera are used, the inverse-squarc law does not give spatial
variaace problems in the imaging system. Slnce the tomocamera uses a
slanted parallel-channel collimator, the response of the camera is the
same for point sources at different locations (wlthin the field of view)
on a given object plane. In the positron camera case, if data selection
is made according to Sectinn 5.1, the response of the camera is also the

same for point sources at different positions on an object plane,
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although all the point rzsponses fzll off at larger values of l£-£'|
because of ‘he inverse-square law.

The correction of self-attenuation due to the source (or the
tissue, in organ imaging) itself 15 very hard to make because the source

distribution is supposed to be unk Usually the effect of sclf-

attenuation is neglected in focal-plane tomography for imaging of high
energy 5amm.a emitters since it is not serious as compared to that in
transverse axial tomography. For imaging of low energy photon emitters,
however, the effect of self-attenuation may not be neglected in focal:-
plane tomography. Additional effort is needed for the 3-D image recon-
struction from focal-plane tomography.

We may apply an iterative least-squares technique to the ricon-
structed images of the 3-D image reconstruction method to improve thc
image quality. The iterative least-sguares technigue is used mostly
in transverse axial tomography for x-ray transmission imaging as
mentioned in Section 0.2, A detakled description of this technique is
given in Ref.28. Using this iterative technique we improve the esti-
mation of the object distribution °1(£) in a least-squares sense, with
the reconstructed images (from the focal-plane tomograms) being the first
set of estimated 01(1'.), i=1, 2, ..., Np. The self-attenuation is taken
into account by the weighting i‘actors used in the iterative least~

squares technique,
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8.4 _Object Distrijbution and Image Processing

To study further the 3-D image reconstruction method, a few test
reconstructions were made by computer simulation, The purpose of these
test reconstructions is to find out what may happen in more realistic
situativns, for instance, that the number of object planes Np and the
object plane to aperture distances sy used in the image processing may
differ from their true values by certain amounts. These test recon-
structions may give us some idea of how sensitive the 3~D image recon-
struction is to the imaging parameters.

A 7-plane object distribution was used to make the first test
cteconstruction. The original object distribution was in 7 regularly
spaced planes located at 51=7' sz=8, 53=9, Sa=10’ 55'11, 56=12, s7=13.
The image processing for the 3-D reconstruction used N';=3 and s{=8,10,12.
The pinhole camera system was used, and the pinhole projections of the
7-plane object were used to form three tomographic images at s;_=8, 10,12,
Thus, only three images wex:e reconstructed from their tomographic images.
Fig.8-3 shows pictures of the input object (a), one of the 9 pinhole
projections of the object (b), the tomographic images (c), and the
reconstructed images (d) of this computer simulation. If one examines
the three reconstructed images carefuliy he will find that each recon-
structed image consists of only the images of the object at planes on or
near the assigned tomographi'c plane of that reconstructed image. That
is, for instance, the last image of Fig.8-3d (located at s'=12) consists

of only the image of the object at ss=11, 56=12’ an s7=13. This

indicates that, aside from a little noise in the resulting images,
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all the off-plane background images in the three tomograms of Fig.8-3c
we:e removed by the 3-D image reconstruction method.

The same test reconstruction was performed again with another
7-plane object, This time the object was made of 7 small square sources
located on 7 regularly spaced object planes just like the first test
object, Each square source was assigned to a particular location on its
plane in such a way that the normal projection of the sources on the
detector contained no overlapping images. Fig.8-4a shows the relicive
positions of these small sources. After going through the same imaging
and reconstruction process as in the first test, three tomographic images
and three reconstructions were obtained, and they are shown in Fig.B-4b
and ¢. It is seen that, aside from the noise, the 3-D image recon-
struction method had clearly removed the off-plane background images
from the three tomograms of Fig.B-4b. ( Notet In these two test recon-
structions, images of the object at si-l, s]!_. and s;_{-l are considered as
the in-focus images of the tomogram at si and all other images are
considered as the off-plsne background images of that tomogram). The
noise in the reconstructed images of Fig.8-4c is somewhat high, which is
probably due to the sharp changes in source distribution c¢f the ebject.
A sharply varying distribution has wide frequency bandwidths and
therefore requires small sample spacings for digital image processing
according to the 3~D sampling theorem (to be described later).

Another test reconstruction was made with a correct Np and
incorrect S» i=1,2,+445 N . The test object was three numerical

P
patterns (1, 2, and 3) located at sl=8’ sz=10, s5=12. The image



101

processing used object plane locations si = 54z to form the temographic
imapes and perform the 3-D image reconstruction, where z is a variable
parameter used to make 5;. different from .. The tesults of this Lest
are shown in Fig.8-5 with z = -0,5 in (a), 2=0.5 in (b), 2=1.0 in (c),
and 2z+1.5 tr (d). It is scen that false object plane locaticns for the
image processing resalt in deformation in the reconstructed images.
However, the images of the object can still be scen clearly when z is
small.

Proetically, all the object distributions for radionuclide imaging
are continuous. The use of discrete distributions in the 3D image
reconstruction method is not only because of its simplicity, the
requirement of digital image processing is also a reasen. An object
distribution imaged by a finite resolution system is bandlimited by
the system's frequency pass-band, and therefore it is considered as a
bandlimited function. The 3-D sampling theorem says that exact recovery
of a bandlimited function can be achieved from an appropriately spaced
3-D array of its sample values (the maximum x, y, and 2z spacings of the
sample lattice are %—‘; 217‘.’ and -;—"zrcspec:ively. where ZHx’ ZHy, and ZHz
represent the bandwidths gf its frequency spectrum). Therefore, it is
all right to use discrete distributions in the 3-D image reconstruction
method, as long as enough samples of the distributions are obtained.

In focal-plane tomography, the samples of an objeet distribution
are obtained by taking projections of the object from one side only.
The sampling in the x and y directions may be appropriate this way if

many projections of the object are taken at different angles (<9D° from
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th- z axis). However, it is likely that the sampling in the 2z direction
is not appropriate because the imaging system can not “see" the depth of
the object well this way. This relates somehow to the fact that the
determinant functions D(y) of all focal-plane tomographic imaging systems
are small and zero at low spatial frequencies (see Section 8.1). It may
be possible to make a relatively uniform D(!) if we modify the point
response functions hij(_z;) of the tomographic imaging system with a few
projections of the object distribution obtained at 90° angles from the

z axis., A study on this is needed in the future,

8.5 _Conclusions

The principle of operation of the 3~-D image reconstruction method
studied in Part II is based on Fourier transform deconvolution, which is
in turn based on a set of linear combinations of convolution integrals.
Therefore, the basic assumption of this method is that the imaging
system is linear and space-invariant. This image reconstruction method
can be applied to all tomographic imaging systems which perform focal-
plane tomography, as long as they are linear and space-invariant.

On the basis of spatial invariance, the tomocamera system is
better than the other two camera systems described in Section 5.1, for
the application of this image reconstruction method (because the response
of the collimator used by a tomocamera is roughly constant for all
depths). The positron camera system with i.ts high detection efficiency
and good point blurn:.ng characteristic offers a strong poten.. .i

application of this method. However, in order to apply this methiod to
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a positron camera system, some effort is needed to make the system

space -invariant (described in Section 5,1). As discussed in Section 8.3,
“here 1s no simple way to make the multiple pinhole camera system exactly

space~invariant. Therefore, application of the 3-D image reconstruction

method to this camera system is limited.

It was shown in Section 7.2 that the imag reconstruction of a
3-plane object takes very little computing time, For an object
distribution with 5 x 64 x 64 resolution elements the total computing
time required for the image reconstruction with a large computer (CDC-
7600) is about one quarter of a second (5 FFT's, complex additions and
multiplications, and 5 inverse FFT's). The same image reconstruction
may also be performed by a small computer together with an asscciated
disc system. Due to constraints of the core memory size and the speed
for performing complex arit'metic, a small computer system usually
requires more time to do a reconstruction. However, as explained in
Section 7.2, this increase in computing time is still much less than
the time required to accumulate the gamma-ray events and construct the
tomogiaphic images.

Although there has not yet been an attempt to examine this imape
reconstruction method under clinical situations, results from experi-
ments and computer simuiations indicate that better image contrast and
fewer background artifacts over the original focal-plane tomographic
images can be achieved without too much effort and computing time,
Future studies of this method based on theorems of sampling and

projection are necessary for the improvement of im ge reconstruction.
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APPENDIX A.

Background and Statistical Noise in Nun-Redundant Pinhole Array Coded
Aperture Imaging '

The discussions given below are for the coded aperture imaging
systems in which a non-redundant pinhole array (NRPA) coded aperture is
used and the reconstruction is done using the correlation method of
Section 2.2, Because of its simplicity, an incoherent optical system
is often used to perform the reconstruction. A detailed description of
this type of coded aperture imagirg is given in Sec:ion 3.2. Fig., A-1
shows 2 schematic diagram of the imaging and reconstruction of a point
source with a 3-hole coded aperture. The pattern on the image plane is
given by the autocorrelation function of the pinhole array used because
the mask for decoding is a replica of that pinhole array. (see Eq.(2.3))

The image of a single point source using an N-hole coded aperture
and incoherent optical reconstruction has a central intensity N
corresyending to the matching of the coded shadow of the ith aperture
hole with the ir'h hole in the mask for each of the N holes. Surrounding
this image is background which is produced when the coded shadow of the
ith aperture hole combines with the jth mask hole (j%i). The total
amount of background for a point source is thus seen to be N(N-1)
points, each of intensity 1 as in the non-redundant pinhole array, or
over correspondingly fewer points of higher intensity, as for the
redundant array (Fig.3-6b).

Background and statistical noise for NRPA coded aperture imaging
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can be calculated with the following assumptions
(1) The object lies in a single transverse plane and consists of M point
sources of equal intensities Co where Co is the number of detected gamma
ray events which pass through one of the N aperture holes. The point
sources are located on an equilateral iriangular grid with separation
given by the resolution length Ax (Eq.(2.21)). A triangular grid is
used because the non~redundant pinhole arrays are compuvsed on such a
grid to make more compact.
(2) The autocorrelation function is approximated by a spike of intensity
N surrounded by a dise of radius T, and intensity 1. T, is chosen so as
to contain the same number of background points, N(N-1) as does the
exact autocorrelation function but packed tightly on the triangular grid.
Thus, the approximate function is just a compact version of the .exact
function.
(3) The pinhole diameters are equal to the minimum spacing betweer holes
in the array. This is the least resolution usable with a given non-
tedundant pinhole array.

The image obtained in the double procesé of shadowgram exposure and
incoherent optical reconstruction is equivalent to the single step
i(r) = o(x) @] a(r). In order to provide a common scale we express the
convolution in the detector plane (Fig.A-1) by projecting the object
through a point in the center of the aperture plane onto the detector
planes. This has been done in Fig.A~2., Assumption 3 assures that the
spacing of the object points (Fig.A-2b) is the same as the spacing of
the autocorrelaticn points (Fig.A-2a). The convolution is performed by

centering the autocorrelation function on each object point and summing
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the results over the M object points. The signal at the center point 0
of the object has a value NCO. This signal 1is superimposed on a
background B at point O due to the overlapping of the autocorrelation
functions from neighboring object points. Those neighboring points,
such as point 1 in Fig.A~2b which are closer than the distance L each
contribute 1c° to the background intensity at 0. Those which are
farther away than ra, such as point 2, contribute nothing to the
background at O since the autocorrelation function is assumed zero
outside T, Since a maximum of N(N~-1) points occur in the autocorre-
lation function and therefore lie within the distance r, of the ceniral
point we have the following equation for the intensity of background at
the center of the image depending on whether the actual number of

object points M is greater than N(N-1) or not.

B=MC if M € N(N-1)
(A1)

B=N(¥-1)C,  if M > N(N-1)

The background is maximum in the center of the image of the M
point sources and falls to some finite valu-~ on its edges.

Noise ¢ in the image is due to statistical fluctuations in the
number co of gamma-ray events and comes from independent fluctustions
in the signal and in the background., Thus we have

o={Tm Jc, if MLNM-D)

o =n8c if M >NN-D)

we obtain th8 following values for the ratio of signal to background

(A.2)

and of signal to noise at the center of the image
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NJC
S N S ]
S5 X ad 2. T8 , if M SN(N-1)
B H s Jiwr

(A.3)
s _ 1 s . Jo R _
T S FT and G_- Co 2 if M > N(N-1)
APPENDIX B.

Statistical Noise in Three-Dimensional Image Reconstruction from Focal-

Planc Tomography

The multiple pinhole camera system described in Section 5.1 will
be used here for the calculations of the statistical nolse in the 3-D
image reconstruction process described in Section 6.2. The pinhole
camera system uses Nh separated pinhole projections to form the tomo-
graphic images. We assume the activities of the source object are in
Np separated object planes and are represented by the functions oi(;),
i=l, 2y.00y Np. Function o"i(;) is used to represent the events detected
by the detector from a resolution element at T on the object plane i
through the Ath imaging pinhole aperture. The point response function,
h;‘j(_r_-_r_'), of the tomographic imaging system is defined as the response
of the system at r on the tomographic plane j from a point source at x'
on the object plane i through the Ath pinhole aperture. The normalized
system point response function, hu(g-_t;’). is defined as -%;‘ig:h:j(_t_-g').
To find an expression for the input signal and noise, we let-thc true

mean of o:(_r_) be given as m;(r)/N, and the statistical fluctuation of
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o’;(s) from its mean be given as n;(g). The detected object distribution
from one pinhole projection, o:(s), is then given by

2 _ 2

oi(}‘_) = mi(E)/Nh + ni(L) (B.1l)
The BMS value of the input noise, which is given as the standard

deviation of the input signal, is calculated by Poisson statisties as

¥ 22
< ni(£)2> —-‘/ E(}®) = -" m (/N (B.2)
The input signal-to-noise ratic to this pinhole camera system is then

given by

N

h
m, (£ )/N
s 2-:1 o ny (o)

1=
=) = = o/ n(x) = , o, ()
S “input [ : *

<P 'l/ m; /N, (8.3)

where o, (r) Zh 7"(r:) is the total detected object distribution (while

m,(r) is the hypothet:.c true distribution).

The output signal~-to-noise ratio is calculated as follows: The
tomograpiic images tj(g), formed by the back-projection method, are
given by N

A
£(r) = i [ M) ® nlio (8.4)
3= it i3=
i=1 A=l
Substituting o, (r) by Eg.(B.1), we have

L va. ml _ Ny, x
i) = Z‘ @n, e + Y n () @ nl (o)

A=l h Am|
N Np Ny

= i n (D) @ by 5 + %Y n?_'(_g.) @hz'j(*_r_) (8.5)
=1 = Asl

Taking Fourier transforms to both sides of Eq.(B.5), we have
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N Np
T, = ,Z:"ﬁ!)ﬂij(\.') + é.; MR ) (8.6)
i =

As was glven in Section 6.2, an inverse frequency matrix H-]'(\_v) with

ZP -1 s < <
j=1313(!-)ﬂjk(1) = §;x 1is required to reconstruct the object distri-
bution. If we ignore the fact that H-l(_l_)_) doesn't exist, we may
multiply both sides of Eq.(B.6) by H;i(g) and sum them over all j.
Thus, we have the following expression for the frequency components of

the reconstruction.

Ne N, Np Ne Mp Ry,
5 T, ) = Z Z SR + ZZ N o L)
3= =i = 3 =Pl 3
Nr Np Ny
S AOEDIDY Z e (3)H 8.7
=1 39 A= 1

Upon taking the inverse Fourier transform of Eq.(B.?7), we have

T [ Z T, (v)HJk(v)] = m () + 'z‘_ Z. ‘[_ w}E)BnY (380 () (B.B)

=1 Y=t A=)
The fnst term of the right side of Eq.(B.S) is the output signal, and

the last term which contains n (r) is clearly the output noise. Let
the output noise be represented by

g, (D) = Z fi\ "(r)@h (r)@h (r) (B.9)

i=1j=1la=1

The calculation of the FMS value of the output noise, <gk(£) 2>’?
requires an understanding of how the noise is transfered through the
system. It is necessary to define a few quantities for the random
process which gives rise to the noise, First we define & stochastic
process { Zt s teT } as a family of random variables indexed by

points t in a subset T of the real line. We define the covariance
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function of Z, as E((Z:-mt)(zs-ms)) = R(t,s), where m, = ECZ). A
process {Zr_’ —w<r.<w} is called widesense stationary if E(Zt)=m
(independent of t) and R{t,s) = R(t-s). The spectral density function

of a widesense stationary process { Zr.’ ~elt <°'}is defined as

o
S(v) = j (re)) =[e'i2““x(:) de, (8.19)
-0
where
-1
R(t) = E((Z ., -m)Z -m) = 5(v) (B.11)
¢ tae " M o T JT(sw]

If a widesense stationary process { Zt, ~o Lt } is the input to a
linear and time invariant system with transfer function H(V)}, then the

= Zt:@h’ ~o{t{> } is also widesense stationary

output process { Yt‘.

and the spectral density function of the output process is given by
sy = | uew) | 2 s, (8.12)
Y A :
The proof of Eq.(B.12) can be found in many textbooks of system
analysis.
In order to change the 2D spatial coordinates into 1D real
numbers, we define a one-to-one mapping which transforms a peint,

r=(x,y) into an area, t, given by

w

t(x) (x-xmin)(y-ymin) + (y-A-ymn)(:gnax-x) (B.13)

Where X Xpax! Ymin’ and Ymax give the boundary of the object

‘min’
distribution, and A is the width of a resolution element of the object.
For the purpose of evaluating the statistical noisec, we assume the
input object distribution is uniform so that the noise is not affected
by the distribution of the object. We let a random process { Zt(r)'
0(:(£)<xmaxymax } be the total number of events detected from the

resolution elements of the object in area t(r). Further more, 2, is a
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Poisson process with parameter ?ﬂt/Nh. The derivative of Zt, 21: (evenis
per unit area), can be used to describe the input signal, o’i'(_l_r_). Fig.
B-1, shows an example of the distributions of Zt and 'Zt. Note that it
is actually a series of delta functions.

We can now relate Z to o) (r) by

a
(4

o )=

:(r)+A t(H+ £ 5
qt = (t-t, )dt
O T R IS f rey %o K 510

To check the above expression, we evaluate the mean function of 02(5)

as follows :

K (D)) = B2, 0 -2,) = o(e+a)- St = - A7 (3.15)
h h h
From Eq.(8.1), we have
a m; ()
Bloy(x)) = —¢- (B.16)

Since the object distribution is assumed to be uniform, mi(E) becomes

a constant, mss and is given by m.1=n"1'A2. It can be shown that the

covariance function of Zt is given by Rz(t,s) = %(tﬁ-s-’ t—s‘) and the
h

mean and the covariance function of 2: are given by E(it) = -;l-— and
-~ h

- m - = - -
Ri(t.s) = ——Nh S(t-9) Rz(t s), for 0 <t,s< % max

Note that the random process it is widesense stationary if the

range of t is extended to the entire real line. If we define a process,

~
n., by n_= it-E(it) = it- %

€ s then n, is also widesense stationary

t

=

PECAUSE B(n,) = 0 and R (t.5) = Ry(t,s) = T 30 = RG-e).

The relationship between n_ and the noise term, n;(_g_) in Eq.(B.1),

t
is as the following ¢
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n n, tC)+al
) = o) - = = j (Z-—==2)d j n_de (B,17)
L= it N 1909 (2 AZ EN £(x) t

If the original delta function representation of ir. iszreplaced
by a more realistic square-pulsz function, p(t) with width% and
magnitude —k{(uhere L is a large integer, large enough to prevent the
occurrence of more than one event u:lthin—i— ), Eq.(B.17) can then be
written in the following form.

2
E;l(n“" 25 (B.18)
Making a change of variable and substituting n:(g) by Eq.(B.18), the

output noise gk given by Eq.(B.Q) becomes
x ~1
By ZL n &0l ()@ n () (B.19)
,(_1 =14 1—1 tHe — D ik

The temm n @hl' ()® h (r.) in Eq.(B.19) may be viewed as the cutput
process of a linear system with impulse response hij(t) ® hik(t) to an

input random process n_. As an approximatien, the random process n is

t
still widesense stationary and the spectral density function of n, is

given by
L4 - ~
5,00) = f ™ g [P E gy E G20
n Ry Ny
LA o

By the previcus assumption, the delta function §(t) in Eq.(B.20) should
be replaced by the square-pulse function p(t) and the actual spectral

densgity function of n, is given by

. A
sn‘“’ = j e-121!vr. p(t) dt = e—izuvt%(_l.> dt
n A2

- a2tz
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N 2
s () = _i;l‘_ s:.n('n\l;\ /L) ) (B.21)
h TVA“/L

Note that Eq.(B.21) reduces to Eq.(B.20) as L~»® because

1im ¢ sinwa /L ) =1,

Lete i.vA it 1

From Eq.(B.12) and J(r (:)@h (t)] = Hh(") H. kng. the
spectral density function of “:®h1j(t) @hjk(t) is given by

o = |t vk 2 5 (%)
131;" 13 jkv n (B.22)

Ideally, h,k.(r) is a delta function centered at a point r. The
one-to-one mapping of hlJ(E)’ n2 (t), is also a delta function and

therefore,
|} | = l f TR2VE §(emt,) dtl =

Eq.(B.22) can then be written as

o 12t ‘ =1 ¢.23)

Sp = 55,00 = |1 k("’l 5,0 = Ji7,] —%(“f\jﬁﬁ
(B.24)
We defind a random process fk(t) by
. “p P X ~ -1 ’
£,() = El jg El 1, @ i) D hy(e) (B.25)

The spectral density of the random process f"_r\ is calculated as

follows 3

b &b
$¢00) = 1);1 _,Z—' 21 S30) = By Ny z: $ 3
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N . 2
~ -1 2 ., sinMVA“/L
s.w) =8 &Y |n] (v)l —==) (B.26)
£ P jz=1 l ik w2/

The variance or mean-square value of fk can be obtained as follows 3

<fk(t)2> = E (£,(e) - Efk(:))2 =R (o) = jsf(w) ay

=
N 2
£(t)2y =N ® P IHTI(\!)IZ SiemAJL
< K > P jgl ik W-\'AZ/L

~ L
Np n -3-2 C (B.27)

<fk(t)2>

Where the coefficient Ck is defined as

L
N 2
1 P l -1, u sin u
kT jz=1 T xal L u

-.
Since there is no simple formula for H-j;'l‘(\!) and the computation of Ck

is rather complex, no attem has been made to relate the numerical
values of Ck to its parameters such as the total number of projections,
the imaging pinhole distribution, and the imaging geometry. The order
of magnitude of Ck was estimated to be one, and the value of Ck varies
with k, the image plane.

From Eq.(B.19) and Eq.(B.25), we have, for the output noise,

2 2
& =—€- él £ (ee28) (8.29)

The variance of By is given by

A2 , 2
S E f (e ) £ (o x{-) (5.30)

4
2 2_A
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L
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e
e

Since the random processes {nt+ ).AI/L }ancl { l"t:+,_’A"/L } are of zero mean
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2
and jadependent if §3 ), we may at leasr sseume that f (:+).-ﬁ—) and

fk(t-l- ).'% ) are uncorrelated if 1%)’, that is,
42 2y L : ,
E fk(t+,(—1“) fk(tﬂ-z- =0 if gay
The variance of 8y then becomes
2 =A f(:+1—) N'r'ﬁ' =N m, C (B.31)
{88 12 <& G =M m & (B

The RMS value of the output noise is given by

AR (8.32)

The output signal-to-poise ratio at imapge plane k is given by

s i ™ o3¢0
(=) = = ¥ (B.33)
G output 4 glf * Npck Npck
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FIGURE CAPTIGHS

A Multichannel Collimator Gamma Camera

The gamma-ray photons enitted by the source pass through the
channels of the collimator and impinge on the detector. A dot
image is formed through the electronic system of the camera and
can be displayed on the screen of a (RT.

A Pinhole Aperture Gamma Camera

A Coded Aperture Imaging System

The single-pinhole aperture of Fig. 1-2 is replaced by an
aperture plate containing 27 pinholes.

Examples of Coded Aperture Patterns

(2) A random pinhole array

(b) A non-redundant pinhole array

¢c) A Fresnel zone plate

Examples of the Autocorrelation Functions of a Few Coded
Aperture Patterns )

The 2-D gray-shade plots and cross-sectional piots of the
autocorrelation functions were generated by computer from the
following patterns:

(a) A random pinhole array (50 holes)

(b) A non-redundant pinhole array (9 holes)

(c) A positive zone plate (h_ (r), 9 zones)

2p "=

(a) A combined zone plate (h, (5)-3“(_1_'). 10 zones)

Examples of the Correlation Functions of Two Patterns
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The autocorrclation functions (in~focus point reconstructions by
the correlation method) and the crosscorrelation functians (out-
of-focus point reconstructions, on planes 2 om and 4 cm apart from
the focal plane) were obtained from the following two pattemns:
(a) A non-redundant pinhole array (27 holes)

(b) A combined zone plate (h, (c) - Ezp(g), 10 zones)

a~1 and b-l are autocorrclation functions and the rest are cross-
correlation functions. a~1, 2, and 3 were obtained optically and
b-1, 2, and 3 were obtained by coemputer.

Plots Showing the Constructions of Two Composite Zone Plate
Patterns

(a) A composite zone plate made from 1) a positive zone plate and
2) a negative zone plate

(b} A composite zone plate made from 1)} a -60°-phase-shifted zone
plate, 2) a 60°-phase-shifted zone plate, and 3) a 180°~phasc-
shifted zone plate (or a negative zone plate)

Schematic Diagram Showing the Coding and Decoding Process

The input-output relationship of coded aperture imaging is shown
in both the spatial domain and the frequency domain.

Plots of Modulation Transfer Functions [H(¥)| of a Few Coded
Aperture Systems

The 2-D gray-shade plots and cross-sectional (along x=y line)
plots of IH(\_{)l were generated by computer from the followingt

(a), (b), (c) A non-redundant array, a regular (or redundant)
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array, and a random array vespectively
The transfer functions of the pinhole arrays do not vanish
at high spatial frequencies because the pinholes in the
arrays are of narrow widths (also becanse of the property of
FET used).

(d),(e) A positive zone plate (th(l). 9 zones) and a combined

zone plate (th(E)-sz(g). 10 zones) respectively

(£) A random array of large number of holes

Imaging of Two Point Sources with a Circular Pinhole Array

Coded Aperture

(a) Formation of the shadowgram (showing only two pinholes)

(b) Reconstruction of the shadowgram with a replica of the
original pinhole array (with smaller pinhole size)

Schematic Diagram of a Multiwire Proportional Chamber

(a) A side view. The x~ and y- wire planes are mutually
orthogonal

(b) A top view showing the wire planes and the delay lines

Electromagnetic Delay Line

(a) A 3-view engineering drawing of the delay line

(b3 Pulse-shape characteristics of a signal coupling into and
out of the delay line

Electronics Block Diagram of a Multiwire Proportiomal Chamber

Camera -System

Only part of the digital image reconstruction system is showm

in this figure
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Coded Aperture Used with Wire Chamber Cameca for the Study of

Coded Aperture Imaging

(a) A non-redundant pinhole array (27 holes)

(b) A redusyrsant pinhole array (27 holes)

(c) A randos pinhole array { 27 holes)

(d) A Fresnel zone plate (9 zones)

Autocorrelation Functions of the Aperture Patterns Used

The autocorrelation functions of the previous four patterns

were obtained optically, and they are shown in the same order

as in the previous figure.

Sketches of the Previous Autocorrelation Functions

The previous autocorrelation functions are drawn schematically

to show their important features,

Simple Decoding System for Non-redundant Array Coded Shadowgrams

(a) A schematic diagram of the decoding system

(b) Construction of Picker Thyroid Phantom. The lobe on the
left has twice the activity of that on the right and
contains two cold spots of zero activity. The right
lobe has an upper cold spot and a lower hot spot of the
same activity as that on the left.

Imaging of 3-D Source Distribution with Non-Redundant rinhole

Array

A radiocactive phantom consisting of three geometrical patterns

(a triangle, a cross, and a circle} was imaged with a 27-hole

non-redundant pinhole array coded aperture.
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(a) The coded shadowgram

(b), (c), and (d) The reconstructed images

Imaging of 3-D Source Distribution with Non~Redundant Pinhole
Array

The previous radioactive source was moved toward the aperture
plate so that the pinhole projections of the source distribution
on the detector plane spread more. The shadowgram and the
reconstructed images are shown in the same order as those in
the previous figure.

Reconstructions Showing Lateral Resolution of the System

(a) Image of four point sources. The four point sources having
a minimum spacing 5 mm were imaged with a 27-hole non-redundant
pinhole array coded aperture.

(b) Image of a bar pattern. 5 mm bars spaced 5 mm apart were
imaged with the previous coded aperture,

Sequential Image Reconstructions Showing Depth Resolution of
the System

Coded aperture imaging of 3 ‘objects separated b;' 25 mm in depth
was made with the system of Fig. 3-B. Images were reconstructed
sequentially at intervals of 6.25 mm along the optical axis

(z axis) of the incoherent optical decoding system. The
parameters for imaging and reconstruction were S°=175 mm,

d=2 mm, D=22 m, and

4a) 91 5, = 100 mm, Az(calc.) = 14 mm,
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(8) X1 Sl = 125 mm, 4z(calc.) = 19 mm.

(12) O: Sl = 150 mm, Az(calc.) = 25 mm.

Image Produced by Point Gamma~Ray Sources Using Various
Apertures

Coded apertures of Fig.3-4 were used to image peint garma-ray
sources., The images obtained with wire chamber camera and
optical reconstruction are shown in the same crder .s thelr
apertures in Fig.3-4.

Images of Picker Thyroid Phantom with 27~Hole Array Coded
Apertures

The images were obtained with (a) a non-redundant array,

(b) a redundant array, and (c) a random array.

Graphical Interpretation of Eq.(3.6) Showing Intensity
Distribution of Fresnel Diffraction of a Positive Zone Plate
Only the di”‘raction patterns of n=0, 11, 13, and =5 are shown,
The magnitudes of the diffraction patterns shown in the figure
are not exactly proportional to their actual values,

Fresnel Diffraction Amplitude of a Positive Zone Plate

The diffracted amplitude of a positive zone plate (9 zones)
was generated by computer and is shown as a function of r.
Coherent Optical Reconstruction System for Zome Plate
Shadowgrams

(a) A sachematic diagram of the coherent optical system

(b) A photograph of the entire reconstruction system
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Optical Reconstruction of Point Sources with a Positive Zone
Plate

Ca) A shadowgram of 4 point sources separated at least by 2
resolution lengths of the imaging system,

(b) The reconstructed image using the system of Fig.3-l6b.
Image of Picker Thyroid Phantom Obtained with a Positive Zone
Plate and Coherent Reconstruction

The reconstruction was performed by computer using the Fresnel
diffraction formula.

Image of Picker Thyroid Phantom from Complex Coding with Two
Zone Plates

A positive zone plate (9 zones) and its negative zoae plate were
used to make this computer simulation of complex coded aperture
imaging. The deroding was done by autocorrelation with

hp2) - 'ﬁzp(p.

Image of 3-D Object from Complex Coding with Two Zone Plates
The computer generated 3-D object was a triangle, a cross, and
a circle, which were separated by 2 cm in depth. The recon-
structed tomographic images of the object are shown in this
figure. They were obtained from the same system and decoding
method as those described previously.

In-{.+ws Point Reror:structions Using Non-Redundant Pinhole
Array and Fourier Transform Deconvolution Method

The reconstruction of a point source at the in-focus plane were

made using the Fourier transform deconvolution method and a 9-
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hole non-redundant ninhole array coded aperture (shown in Fig.
4-5a). The resulting images, under variouc conditions (given
below), are plotted cross-sectionally along the y = 0 line.
(a) No input statistical noise 1

1) o = 0.01, 2) o = 0,05, and 3) & = 0.1
(b) Input noise-to-signal ratio (le)i = 10% )

1) o= 0,01, 2) o =0.05 and 3) o= 0.1
{c) Input noise-to-signal ratic (N/S).1 = 202

1) o =0,01, 2) ¢ = 0.05, and 3) & = 0.1
Out~of-Focus Point Reconstructions Using Non-Redundant Pinhole
Array and Fourier Transform Deconvolution Method
The reconstructions of a point source at two out-of-focus planes
were made under various conditions (given below), using the
pinhole array and decoding method described previously
(a) o =0.0l : 1) 2 cm out of focus, 2) 4 cm out of focus
(b) o =0.05: 1) 2 cm out of focus, 2) & cm out of focus
(¢) =01 : 1) 2 cm out of focus, 2) 4 cm out of focus
Image of Picker Thyroid Phantom with Fourier Transform
Deconvolution Method
The Picker Thyroid Phantom was generated by computer with 5%
statistical noise in each picture element. The parameter used
for the Fourier transform deconvolution was et = 0,05,
(a) The 9-hole non-redundant pinhole array used

(b) The reconstructed image
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Reconstruction of a 3-D Source Distribution with Fourier
Transform Deconvolution Method

The 3-D source distribution consisting a cross, a circle, and
a f:tiangle was generated by computer with 5% noise in each
picture element. The object planes were separated by 2 cm in
depth. The parameter ot was .05 and the pinhole array was the
same as in Fig.4-5. The reconstructed images are shown in (a),
(b), and (cl}.

Multiple Single-Pinhole Camera

(a) Making the different views with the multiple single-pinhole
camera

(b) Response te a point source, The tomographic images of the
point source are shown as the sum of back projections of the
single~pinhole views.

Point Blurring Patterns

(a) For multiple pinhole array

(b) For rotating slanted-hole collimator with discrete rotations
{or for circular multiple pinhole array)

(c) For rotating slanted-hole eollimator with continuous
rotation

(d) For positron camera with data selection (square detectors)
Rotating Slanted-Hole Collimator Camera - Response to a Point

Source



The tomographic images of the point source are shown for two
positions of the collimator, 0° and 180°.

Positron Camera - Response to a Point Source

The tomographic images of the peint source are shown for two
positron events.

Schematic Diagram Showing the Formation of Tomographic Images
from Pinhole Projections

{a) Exposure of the g image using the Kt pinhole of the
array

(b) The contribution of the Kth single pinhole image to the
Np=3 tomographic planes, The final images on tl’ tz. and t3
are sum of the contributions from each of the Nh pinholes.
(e) The response of tomographic planes ti and cj to a point
source in chject plane CH

Plots of the Determinant Functions D{v') of Three Pinhole
Arrays

The determinant functions were computed by computer with
different imaging geometries and pinhole arrays. Both 2-D
gray-shade plots and cross-sectional (along y=0 line) plots
are shown with vw' = 0 at the left bottom of each plot. The
imaging geometries were i) sl=8cm, and 52=10cxn for Np=2;

ii) 51=ch, sz=10cm, and s;=12em for Np=3, iii) s,=8cm,
52=10cm, 53=12|:m, and sa=1lacm for Np=l|.

(a) For a (Y-type) non-redundant pinhole array

(b) For a circular pinhole array of odd number of holes

133
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(non-redundant )
(c) For a regular pinhole array (redundant)
Schematic Diagram of the MWPC Digital Imazing and Data
Processing System
Both the on-line computer PDr-11/10 ard :he remote station
PDP-11/45 are shown.
Photograph of the On-Line Digital Image Proces:ing System
3-D Image Reconstruction - Computer Simulation Assuming No
Statistical Variation of Object Picture Elements
(a) Projected view of the object as it would be seen by a
multichannel collimator
(b} The 3-D object located in three planes sl=8c:m, sz=10cm,
and 53=12cm
(c) Tomographic images constructed using 9 pinhole projections
with point blurring pattern of Fig.5-2a
(d) Reconstruction of the object using the tomographit images
tl, tz, and t3
3-D Image Reconstruction = Computer Simulation Assuming 5%
Statistical Variation of Object Picture Elements
The object and all the parameters for imaging used in Fig.7-3
were used to produce the Teconstructions shown in this figure.
However, 5% input noise in each object picture element was
assumed.
3-D Image Reconstruction - Computer Simulatiuvn Assuming 5%

Statistical Variation of Object Picture Elements
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(a) Tomographic images on the five planes of a five plane

object using the point blurring pattern of Fig.5-2a

(b} Reconstructions of these planes showing a small amount of

background introduced by photon statistics

3-D Image Reconstruction - Experiment Using MWPC Digital
System and Radioactive Source

A circular pinhole array of 9 holes (similar to the one shown
in Fig.5-2b) was used to construct the tomographic images
tl' tz, and t3. The reconstructions of the tomograms are
01, 02, and 03¢

3-D Image Reconstruction ~ Experiment Using MWPC Digital
System and Radioactive Source

(a) Tomographic images of five numerical patterns separated
by 5 cm in depth, obtained with a 9-hole circular array

(b) The reconstructed images

3-D Image Reconstruction -~ Experiment Using MWPC Digital
System and Radioactive Source

(a) Tomographic images of five point sources separated by
5 cm in depth, obtained with a 9~hole circular array

(b) The reconstructed images

Plots of the Determinant Functions D{v') of a Few Tomographic

I¥maging Camera Systems
Rsnallest is the radius of the smallest point blurring
pattern produced by each camera system, Sx represents the

lateral resolution length of each camera system.
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Schematic Diagram Showing a Cause of Spatial Variance
Because of the inverse-square law, the blurring pattern of a
point source at point 2 is different from that of a point
source at point 1.

Image Reconstruction Showing Effect of Fewer Planes for Image
Processing

(a) A 3-D object consisting of seven numerical patterns {each
of size 23cm x 23cm) located at si=7cm, 8cm, 9cm, 10cm, llem,
12cm, and 13cm from the pinhole array

(b) One of the 9 single-pinhole projections of the object
obtained with a circular array

(c) Three tomograms formed at s;=8cm, 10cm, and 12ecm

(d) Reconstructions of the above three Eomograms

Image Reconstruction Showing Effect of Fewer Planes for Image
Processing

(a) Normal projection of the object showing the relative
positions of the square sources. The small square sources
were in place of the previous 3-D object, each source was in’
one of the seven object planes.

(b) Three tomograms formed at si = Bem, 10cm, and 12cm

(c) Reconstructions of the above three tomograins

Image Reconstruction Showing Effect of Wrong Plane Locations
for Image Processing

A 3-D object -onsisting of three numerical patterns was imaged

with a 9-hole circular array. The correct object plane
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locations were sl=8cm, sz=10cm, and sa=12cm. Three tomograms
and their reconstructions were made at planes si =8 + 2,
i=1,2,3.

(a) Reconstructions with z = ~0.5 em

(b) Reconstructions with z = 0.5 cm

(¢) Reconstructions with z = 1.0 cm

(d) Reconstructions with z = 1.5 em

Point Response for 3~Hole Non-Redundant Pinhole Array Coded
Aperture Imaging

The decoding is done by optical correlation, Dotted lines
are background,

Analysis of Image Using the Autocorrelation Function

(a) Sketch of approximate autocorrelation function of a 6-hole
non-redundant array as measured in the detector plane

(b) Object points, spaced by the system resolution, projected
onte the detector plane

Example of the Distributions of Random Processes Zt and i:
(a) Random process z,

(b) Random process 21:
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BLOCK DIAGRAM OF THE CODING-DECODING PROCESS
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