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ABSTRACT 

Two techniques for radionuclide imaging and reconstruction have 

been studied; both are used for improvement of depth resolution. 

The first technique is called coded aperture imaging, which is a 

technique of tomographic imaging. The image of an object is first 

recorded in a coded form by a gamma camera with a special aperture 

containing a coded hole pattern or opening. A decoding process is 

needed to reconstruct the image from its coded form. The investigations 

of this technique are concentrated in theory and a few prospective 

coding-decoding methods. The results show that a non-redundant pinhole 

coded aperture can provide us a simple and reliable way to obtain the 

images of a 3-D object with adequate depth resolutions and low 

background artifacts. 

The second technique is a special 3-D image reconstruction method 

which is introduced here as an improvement to the so called focal-plane 

tomography. This method can be applied to a number of tomographic 

imaging devices, such as the positron camera, the rotating slanted-

hole collimator camera (tomocamera), the multiplana tomographic scanner 

(tomoscanner), and the multiple pinhole camera. Applications of this 

reconstruction method to the last tomographic imaging device have shown, 
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through computer simulations and experiments with radioactive phantoms, 

that within the limit of the depth resolution of the tomographic imaging 

device, structures from activities above and below the in-focus planes 

can be removed mostly from the focal-plane tomographic images. 
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0. INTRODUCTION TO RADIONUCLIDE IMAGING 

0,1 Review of Radionuclide Imaging in Nuclear Medicine 

Nuclear medicine is the application of radioactive materials to 
the diagnosis and treatment of patients and the study of human disease. 
(Refs. 1-4) From its early beginings when artificially produced 
radionuclides first became available , nuclear medicine has dovoloped 
into one of the most exciting and important components of modern 
biomedical science. Nuclear methods have found application in both 
the diagnosis and treatment of disease. With the passage of time, 
however, diagnostic techniques are receiving an increasingly large 
share of the attention of clinical investigators. 

In diagnostic nuclear medicine, examinations of tumors, organs, 
or other anatomical structures zxe carried out by detection of the 
electromagnetic radiation emitted by radioactive substances concen­
trated in these structures. These electromagnetic radiations may be 
either emitted by the radionuclide (gamma rays)* or they may result 
from a process secondary to radioactive decay(x rays and annihilation 
radiation). (For the sake cf simplicity, the different electromagnetic 
radiations villi in this thesis, be called gamma rays). The instru­
ments used for this purpose can be broadly categorized into C D 
scanners and (2) gamna cameras. 

Scanners utilize radiation detectors colliroated to accept 
photons from a single resolution element of the structure to be 
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visualized, and the image of the structure is formed by a scanning 

motion of the detector over the area of interest. Gamma cameras, 

on the other hand, are stationary devices; their radiation detector 

continuously observes the whole field to be visualized. Only a 

discussion of gamma cameras will be given in this section for the 

purpose of this thesis, descriptions of other instruments for radio­

nuclide imaging should be refered to Ref. 6* 

Radionuclide cameras are relatively new instruments for imaging 

the distribution of radiocompounds inside the body. They have many 

advantages over scanners. They have the ability to "see" some 

organs in their entirety and to display visually changes in an oiban 

during a dynamic function test. Most of them are constructed so the 

detector head can be positioned to do organ imaging either in the 

recumbent or the sitting position. The construction of a ganiria camera 

consists of three componentsi (1) a device capable of channeling the 

gamma-ray photons with the purpose of forming an image, (2) a detector 

sensitive to the gamma-ray photons, and (3) a system capable of es­

tablishing a spatial relationship between the signal supplied by the 

detector and the position of the gamma-ray photons in the image 

formed by (1). 

Since the index of refraction of optical lenses is very close 

to one for electromagnetic radiation with wavelengths in gamma-ray 

region, a large lens aperture provides no means of collimating 

gamma-ray photons for the image forming. A number of different 

methods of collimation have been used with the purpose of providing 



the detector of a eanroa camera with an image formed by gamma-ray 

photons. Conventional collimating devices are multichannel c o l l i ­

mators and pinhole apertures . Other collimating devices such as 
8 9 slanted multichannel coll imators, * converging (or diverging) 

multichannel coll imators, and coded apertures ' are r e l a t ive ly 

new designs and thei r special uses wi l l be explained in Section 0.2. 

Multichannel (or para l le l -ho le) collimators are the most widely 

used image forming devices in &amma cameras. They consist of a 

scr ies of holes or channels with pa r a l l e l axes in a p la te made of 

a dense and heavy material such as lead. The image-forming mechanism 

of a multichannel collimator i s shown in F ig .1 -1 . The gamma-ray 

photons emitted from the source pass through the para l le l channels 

of the collimator and form an image of the source d is t r ibut ion with 

i t s size ar.d or ienta t ion unchanged. The best Image resolut ion i s 

obtained by means of a multichannel collimator in contact with the 

object observed, and t h i s resolution decreases with dis tance v 

The pr inciple of operation of pinhole apertures for gamma rays 

i s ident ical to that of the pinhole opt ical camera. A pinhole aperture 

consists of a hole tha t i s provided in a p la te opaque to gamma ray 

photons, originating at the object to be visualized and traveling 

towards the hole as shown in Fig.1-2, form an inverted image of the 

object at the detector . The size of the image i s determined by the 

object- to-aperture and the aperture-to-detector dis tances . Thus, 

a pinhole aperture has the ab i l i t y to magnify images of small objects 

for a be t te r image resolut ion. 



There are many position sensi t ive devices which can be used as 

detectors in gamma cameras. At leas t four different types of gamma 

cameras can be ident i f ied according to the detectors used. The Angar-

type s c in t i l l a t i on cameras ' are the most widely used gamma cameras. 

Commercially avai lable Anger Cameras use a 1/2-inch thick Nal(Tl) 

c rys ta l that var ies in diameter from 12 to 13.5 inches* depending on 

the manufacturer, and use 19 or 37 mul t ip l ier phototubes arranged in 

a hexagonal array. Other experimental types of gamma cameras that 
' 3 14 

have been used arc image in tens i f i e r cameras" * spark chamber^ 

and multi-wire proportional chambers, and semiconductor ijnaging 

systems . General descriptions of these gamma camera systems are 

given in Ref. 6 and 7. 

0.2 Tomography and Three-Dimensional Image Reconstruction 

An important l imitat ion of the conventional gamma cameras i s 

that gamma cameras with a pinhole aperture or a para l le l -ho le 

collimator can not "see" the depth of an object d i s t r ibu t ion . 

A conventional gamma camera photo i s only a two-dimensional portrayal 

of the three-dimensional d i s t r ibu t ion of the object. For the purpose 

of diagnosis for abnormality in small les ions , i t i s highly desirable 

to have imaging devices which can exclude the unwanted ac t iv i ty above 

and below the plane of i n t e r e s t . During the l a s t 50 years , radiology 

has developed several methods to exclude unwanted information and 

improve the radiographic image. These methods are called tomography 

from the Greek words meaning "to wri te a cut" . 
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Conventional radiographic tomoeraphy enhances titc visibility of 

radiographic structures on or near a chosen plane by blurring all 

objects off the chosen plane, thereby reducing the confusing effects 

of overlying and underlying structures. In radionuclide imaging, 

the same technique i-u, used with more flexibility because of the 

availability of various radionuclides for radiopharmaceuticals and 

advanced instruments for imaging. To avoid confusion with the old 

terns used in radiology* a specific term was suggested by Anger for 

the radionuclide imaging methods that result in sharp images of 

radioactive objects located on a chosen plane and blurred images of 

objects located above or below that plane; it is called focal-plane 

tomography* The earliest apparatus used for this purpose are rocti-
27-19 l inear scanners with wide-angle focused coll iminators, and 

positron cameras. ' During the l a s t decade many new instruments 

and techniques have been introduced to perform focal-piano tomography, 

some of them have been actually in ust for quite Gome time while others 

are s t i l l under study. Examples are the multiplane tomographic 

scanner (tomoscanner)p the ro ta t ing slanted-hole collimator camera 

(tomocamera), ' the magnifying collimator camerai and coded aperture 

11,12 imaging. A summary of a l l these tomographic imaging devices and 

techniques i s given in Ref.23. 

Coded aperture imaging was recent ly introduced in 'he f ield of 

11 1 2 

nuclear medicine imaging first by Barrett and later b, Rogers" 

as a. high resolution tomographic imaging technique. The special 

feature of this imaging technique is that it is a two-step process. 



6 

The image first obtained from a coded aperture imaging system is not 

in a recognizable form. It must be decoded before the true image can 

be visualized. The depth information of the object distribution is 

stored in the coded image and can be brought back through the decoding 

process. Although in some cases coded aperture imaging provides us 

net gain in signal collection efficiency, the main advantage of coded 

aperture imaging is its ability to get tomographic images without any 

movement of the object or the camera (including the collimating 

device). Brief descriptions of this imaging technique will be 

given in Chapter l f and an intensive analysis is the subject of Part I 

of tnis thesis. !' v 

Although tomography provides us better image contrast and depth 

resolution than the conventional methods, it does not eliminate the 

events from off-plane activities, and such events can still reduce 

the contrast and the visibility of the in-focus images even through 

these events are scattered. Since the objects for nuclear medicine 

imaging are often of low contrast, it is often not possible to iden­

tify the true in-focus images from the out-of-focus background images. 

Removal of the background images would enable detection of smaller 

lesions and of lesions of lower contrast. It is possible to remove 

the unwanted background images from the focal-plane tomographic images 

provided that the direction of each detected gamma-ray event is known. 

A method of 3-D image reconstruction, which will be given in Part II 

of this thesis, is for this purpose. 

In parallel to the rapid growth of radionuclide imaging, trans-
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mission imaging in radiology has also achieved great improvement. A 

3-D radiographic imaging technique, called tomosynthesis, has been 

studied by a number of investigators. ' Instead of a continuous 

motion (in conventional tomography) a discrete sample procedure is 

performed in tomosynthesis, i.e. N discrete radiographs are recorded 

from N different positions of the x-ray source. Tomographic images 

of an object at various depths are constructed from its sample radio­

graphs. This imaging technique has also been used in radionuclide 

imaging. A gamma camera with a multiple pinhole array aperture 

Cor a single-pliihole aperture at N different positions) is used 

in this case. Detailed descriptions of the method of tomosynthesis 

in radionuclide imaging is given in Chapter 5. Both conventional 

tomography and tomosynthesis are not capable of imaging fast moving 

objects because of the duration of the sequential imaging process. 

To overcome this difficulty, Weiss has suggested a method of coded 

sources for imaging of objects like the beating heart or fast flowing 

contrast media injected in the brain, kidneys or other organs. This 

method uses a single radiograph (coded image) generated by an array 
39 of x-ray sources to construct the tomographic images of the object. 

The principle of operation of a coded source imaging system is exactly 

the same as that of a coded aperture imaging system. 

Aside from tomographic imaging in x-ray transmission study, a 

number of improved image reconstruction techniques, such as the 
2A 

algebraic reconstruction techniques, the i t e r a t i v e reconstruction 
25 26 

techniques, the Fourier reconstruction technique, and the technique 
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of linear superposition with compensation, have shown great promise 

for 3-D image reconstruction. All of these techniques have the advan­

tage of being section imaging methods in which a layer of the object 

is imaged from its sides so that neither the activity nor the radi­

ation of the overlying and underlying structures can influence the 

image reconstruction of a chosen plane section. Image reconstructions 

are actually performed in the x-y plane. Budinger has adopted some 
28 

of these techniques in radionuclide imaging. It is evident that 

studies of various 3~D imaging and reconstruction techniques as well 

as improvements of tomographic imaging techniques with better depth 

resolution and image contrast and minimum backgrounc artifacts will 

be the future trends for both radiographic imaging and radionuclide 

imaging. 
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PART I RADIONUCLIDE IMAGING WITH CODED APERTURES 

1, INTRODUCTION TO CODED APERTURE IMAGING 

1,1 Coded Aperture Imaging in Nuclear Medicine 

It was explained in Section 0.1 that a gamma camera requires a 

device capable of channeling the gamma-ray photons with the purpose 

of forming an image. A pinhole aperture or a multichannel collimator 

can provide the detector of the gamma camera a direct mapping of the 

object distribution. Aside from the size and orientation the image 

impinging on the detector is an exact 2-D portrayal of the object 

distribution. Thus, a pinhole aperture or a multichannel collimator 

gives us a simple and direct way to obtain images of objects in the x-y 

plane. In order to obtain some information on the object distribution 

in the z direction one has to take several views of the object at 

different angles. This means longer exposure time is required. 

One way which can enable us to get several views of the object 

at different angles without increasing the exposure time is to add more 

pinholes to a single-pinhole aperture plate of a gamma camera. In 

this case, however, all of the pinhole views impinging on the detector 

overlap one another and are spread over a large area of the detector. 

The iiaage of the object is no longer recognizable and a means of image 

reconstruction is required. This image is said to be coded by the 

pinhole pattern of the aperture plate. We shall call it a coded image 
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or a shadowgram. 

Coded aperture imaging i s an ind i rec t method of imaging in which 

the conventional pinhole aperture or multichannel collimator i s r e ­

placed by & p la te containing a coded hole pa t te rn or opening, as 

shown in Fig.1-3. A point gamma-ray source wi l l cast a shadow of 

th i s hole pa t te rn on the detector and th i s shadow i s the coded image 

of the point source. A source d is t r ibu t ion i s encoded as a super­

posi t ion of many such pa t t e rns . The hole pa t te rn i s chosen to 

f a c i l i t a t e the image reconstruction or decoding process and to 

ensure a fa i thful reproduction of the source d i s t r ibu t ion . The 

decoding may be accomplished in a number of ways both op t ica l ly 

and e lec t ron ica l ly . 

Any aperture p la t e with opening other tfn\n a single pinhole 

may be called a coded aperture p l a t e , and there exis t many different 

code pa t te rns- The multiple-pinhole-array(MPA) coded apertures 

and the Fresnel-zone-plate(FZP) coded apertures are the best known 

ones. A multiple-pinhole-array aperture i s simply an aperture 

consisting of a number of pinholes. The random pinhole array shown 
29 m Fig. l -4a was f i r s t suggested by Dicke for x-ray astronomy and 

30 has been used for solar x-radiat ion. This type of MPA consists 

of a large number of pinholes randomly dis t r ibuted having an average 

transmission of 50%. 

A second type of MPA is called the non-redundant pinhole array 

and an example of th i s type i s shown in Fig . l -4b. The non-redundant 
31-33 pinhole array was or ig ina l ly proposed for radar antenna. 
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An optical simulation of the use of this type of HPA was shown by 

Wouters, et al. The positions of the pinholes of a non-redundant 

pinhole array are carefully chosen so that the vector distance between 

any two pinholes occurs only once, i.e., the pinholes are spaced 

non-redundantly. This non-redundancy means that the autocorrelation 

function of this pinhole array is sharply peaked at the center and 

uniformly distributed elsewhere* 

The reconstruction of a MPA coded aperture system nan be made 

by correlating the coded images with Che original coded pinhole 

aperture array. It is done cither with a simple optical system or 

with a small digital computer. The resulting images from this two-

step system have a finite depth of focus, that is, a sharp recon­

structed image can be seen at the appropriate image plane and blurred 

images are seen at image planes some distance away from that plane. 

Therefore, 3-D information of the object distribution i» obtained 

through this system. There is also gain in geometrical efficiency 

due to the Increased number of pinholes over the single-pinhole 

aperture system. But as the object to be iraaged becomes larger the 

signal-to-noise ratio of coded aperture imaging decreases and the 

gain in geometrical efficiency is lost (this will be explained later). 

Perhaps the first use of a coded aperture was by Hertz and 
35 Young who used a Ftesnel zone plate Co image x-ray stars. Decoding 

was done by using coherent light from a laser. Barrett later applied 

this method to Nuclear Medicine imaging. The FZP coined aperture 

systems arc somewhat more complicated than Che MPA coded aperture 
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systems because of the additional focusing property of Fcesnel 

zone plates. A Fresncl zone plate consists of a number of concentric 

zonos and the radius of the n zone is given by r » J7T r-, where 

r 1 is the radius of the first zone. The transmission of each zone 

is either 0 or 1 as shown in Fig.l-4c. It is known that a Fresnel 

zone plate behaves somewhat like a lens. When the zone plate is 

illuminated with a plane wave of monochromatic light, part of the 

light is diffracted into a converging spherical wave so that it forms 
2 

a bright focal spot according to the formula f - r,/x • where f is 

the focal length and X is the wave length of the incoming coherent 

light. Detailed analysis of the diffraction properties of zone 

plates will be given in Sections 2.2 and 3.3. 

The coded image or zone plate shadowgram is obtained by putting 

a zone plate mask somewhere between the radioactive object and the 

detector. For two point sources located at different distances 

from the zone plate mask, the shadowgram so produced consists of 

two zone plate patterns of different sizes. Upon passing a beam 

of coherent light through this zone plate shadowgram, the large 

zone plate pattern in the shadowgram focuses the light-beam to a 

point further away from the shadowgram than that from the small 

zone plate pattern because the focal length of a zone plate pattern 

is proportional to the area of the first zoneCr-). Therefore, by 

coding the object distribution into a zone plate shadowgram, the 

3-D information of the object distribution is stored. 
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1.2 Advantages and Limitations 

The coded aperture systems have a number of advantages over 

the conventional imaging systeras. The most important one is that 

the coded aperture systeras can offer us three-dimensional information, 

about the source distribution. Other advantages are t 

(1) Since the coding-decoding process has very little correlation 

with the background and scattered radiation, the resulting image 

is less sensitive to it. For the same reason* other noise such as 

electronic noise and film noise (if there is any) can cause only 

slight problem to the coded aperture systems as compared to the 

conventional imaging systems. 

(2) The effect of nonuniformity of the detector systems is less 

dominant when the coded aperture imaging technique is used. 

(3) For noncompact source distributions such ss the skeleton, and 

for source distributions having a sr- 11 number of picture elements 

such as the thyroid glands, the kidneys, and the pancreas, the 

signal-to-noise ratio is higher when we use the coded aperture 

systems because of the net gain of geometrical efficiency over the 

single pinhole camera systems. ' * 

(4) Coded apertures offer us considerable flexibility in terms 

of field of view and image magnification as compared to the 

parallel-hole collimators. 

There are also limitations and drawbacks to the coded aperture 

systems. These are t 
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(1) The coded aperture systems require larger detectors in order 

to cover its field of view which is larger than that of a con­

ventional imaging system. 

(2) The signal-to-noise ratio of a coded aperture system decreases 

as the size of the object to be imaged increases. 

(3) The coded aperture systems require two-step processing which is 

time consuming when on-line computer processing is not available (in 

that case, an optical reconstruction method is used). 
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2. ANALYSIS FOR CODED APERTURE IMAGING SYSTEMS 

2.1 Coding and PecodanR,. 

As mentioned earlier coded aperture imaging is a two-step 

process, coding and decoding. Therefore an analysis of some general 

aspects of the coding-decoding process would enable us to get a better 

understanding of the prospective and the limiting features of coded 

aperture imaging in nuclear medicine. 

The analysis of a coded aperture imaging system is similar to 

that of an electrical communication system. Both the imaging system 

and the communication system are designed to collect or convey infor­

mation. Although in the latter case the information is of a temporal 

nature (i.e., a modulated voltage or current waveform) while the former 

case it is of a spatial nature (i.e.* a distribution over space), 

there is actually no substantial difference between them from an 

abstract point of view. In the analysis of communication systems the 

electronic networks which are studied often possess two important 

properties called linearity and invariance. Any system which is 

linear and (time- or space-) invariant can be described mathematically 

with considerable ease, A system is said to be linear if the 

following superposition property is obeyed for all input functions 

f(x,y) and g(x,y) and all complex constants a and b t 

\p { a t(x,y) + b g(x,y) } = a >J/ { f<x,y)} -»- b \y { e(x,y> } , 
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where the mathematical operator j { } represents the system, which 

we imagine to operate on input functions to produce output functions. 

We let the symbol h(x,yj 1), | ) denote the response of the system at 

point (x,y) of the output space to a 5-function input at coordinates 

( ? ' / ) of the input spacet that is, 

h<x,y;?,^)= Y { <5<x-^,y-^)} 
The function h(x,y;^ , * ) is called the impulse response of the system. 

A linear imaging system is said to be space-invariant if its impulse 

response h(x>/;^ ,£) depends only on the distances (x-^ ) and (.y-$ ). 

For such a system we can write h(x,y; V ,£ ) = h(x- ̂  >y-J" ) and 

h(x,y;0,0) ~ h(x,y). Thus an imaging system is space-invariant if 

the image of a point-source object changes only in location* not in 

functional form, as the point source moves from one place ( V, » {*) 

to another ( 7?' ^ 2 ^ ' * coded aperture system is approximately linear 

and space-invariant within its field of view if the attenuation of 

gamma rays between the source and the detector (which is assumed to 

be linear) does not change much from one straight-line path to another. 

For the purpose of analysis, we consider all coded aperture systems 

to be linear and space-invariant and assume the attenuation of gamma 

rays between the source and the detector is negligible* 

In the next two sections studies of the coding-decoding process 

will be given in both the spatial domain and the frequency domain. 

Terms such as convolution, correlation, and Fourier transform will 

be used very often without giving any descriptions of their mathe­

matical properties and physical significance. A few textbooks in 
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optics and communication theory are listed in Refs. 49,51,58,and 59 

for reference. 

Although on-line decoding is possible in coded aperture imagingt 

the decoding of coded images is mostly performed off-line. Therefore 

a coded aperture system is considered as two subsystems. We define 

the imaging or coding system as the gamma camera system which makes 

the shadowgrams and define the reconstruction system as the system 

which performs the decoding of the shadowgrams. The shadowgram of 

a point source is the impulse or point response of the imaging system. 

This impulse response is a binary function (i.e., the function has 

only two possible values, 0 or 1) because the transmission of the 

coded aperture plate is binary. However, it is possible to construct 

an imaging system which gives an impulse response function other than 

a binary function (this will be explained in the next section). The 

impulse response of the reconstruction system, on the other hand, may 

be any type of function(real or complex). 

2.2 Spatial Domain Analyc*: 

Ke consider the Imaging of a 2-D source distribution first* 

Ke let the distribution of the source object be given by o(x,y) 

and the projection of the coded aperture pattern on the detector 

from a point source At (0,0) in the object *T>ne be given by h(x,y). 

h(x,y) is thon the impulse (or point) response of the imaging system. 

The image of o(.x,y) on the detector formed by a hypothetic pinhole at 
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(0,0) in the aperture plane i s given by - T - o ( - j x , - j y ) , where 

ct » S_/S. i s the magnification factor of the imaging system resulting 

from the imaging geometry shown in Fig.1-3. Applying the principle of 

, superposition to this linear and space-invariant system, the coded 

image or shadowgram of the object o(x,y) on the detector plane i s 

given by the convolution integral of the image - [ r o C - i - x , - i y ) and 

the impulse response h(x,y) as 

s (x ,y) = f / / o ( - i ( 7 , / ) ) h ( x , y i ? ^ ) d j d j ( ' jJJoi^^ix-f.y-fiifif 

Adopting the commonly used short-hand notation for a convolution 

integral* the shadowgram s(x,y) is expressed as* with 1: = (x*y), 

s(r) = JLo(-ir) © h(r) C2.1) 

To get the image of o(r_) we have to perform a decoding operation 

on the shadowgram s(r). This decoding operation can also be expressed 

in a form of convolution .tegral because the reconstruction system is 

also linear and space-invariant(this will become apparent later). If 

h*(r_) is the impulse response of the reconstruction system* the output 

image HT) from this system to an input d. s(-otr_) is then given by 

U r ) = * 2 sC-dT)®h'i*v) = o(r) © (h(-oix) © h*<*j;)) 

(2.2) 

Since only o(j_) © S(r_) = o(r.), a perfect reproduction of the 

2-D source distribution o(r_) can be obtained only if h(-«tr_) © h" Cotr_) 

= 5<*r). 
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A cvimonly used decoding technique fcr the reconstruction of 

MPA coded shadowgrams is the optical correlation method. This method 

takes h(r_), the impulse response of the imaging system, as h'(ir) of 

Eq.(2.2) so that the resulting image i(r) becomes 

i ( r) = o(r) © ( h<-«r) © h( « r) J 

Since b(-r)©h(r_) = J J h(-^ ,-f ) h C x - ^ y - / ) dfcd^ 

•II h C ? ' ' i ' J h f x + ^ t » y + / ^ d X d f ' 

= h(r.)@n(r>, 

the image i(r_) can be expressed as 

i ( r ) = o ( r )© (hCotr)^)h(elr)) = o(r) © a(e(.r), (2.3) 

where © is used to represent the correlation of two functions and a(rO 

is defined as the autocorrelation function of h(r_). We see that in 

this sase the resulting image i(x\) is the convolution of o(r) and 

afcr) or, in other wcids, the image of otr) is blurred by the coding-

decoding process with a point spread function aCekr). If a(r) is a 

delta function, o (,r), C n e n there is no spread of o(r) and the 

resulting image i(r_) is a perfect reproduction of the original 

source distribution. However, this has never been the case for 

any Known coded aperture systems. The best autocorrelation function 

we can have, from various MP., coded aperture functions, only approxi­

mately resemble a delta function, as shown in Fig.2-lb, which is from 

a non-redundant pinhole array function. A study of the autocorrelation 
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functions of three different types of pinhole arrays as well as the 

Fresnel zone plate will be given in Section 3.2. Experimental results 

from MPA coded aperture systems using the optical correlation method 

will also be given there. 

The correlation method may also be applied to the reconstruction 

of FZP coded shadowgrams. However, the reconstructed images with this 

method are generally embedded in a background of high intensity due to 

the distribution of a(;r) of the Fresnel zone plate. If the correlation 

method will be used to decode the FZP coded shadowgrams a complex coding 

method can be applied to eliminate the background. This method produces 

an equivalent impulse respor.se with a 5-function-like autocorrelation 

Can example is shown in Fig.2-ld). Descriptions of this method will be 

given later. 

The commonly used decoding method for the reconstruction of FZP 

coded shadowgrams utilizes the diffraction properties of zone plate 

patterns. The transmission function of an infinitely large Fresnel 

zone plate can be expanded into a Fourier sine series plus R. positive 

constant (= 1/2). If we use h (r) to denote this transmission function zp -
2 2 

and let x = r and T = 2r- = the period, the Fourier coefficients of 
h (r) are calculated as follows: 
zp -

where r =JiT r. for 11 = 0 , 1 , 2 . ..., and r, is the radius of the first 

zone of the zone plate. The Fourier series expansion of h <x) is 
zp 

http://respor.se
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given by 

h (x) = a + a,cos(2»x/T) + . . . + a cos(2n«x/T) + . . . + bjSinWux/T) 

+ . . . + b sin(2n*x/T) + . . . , n = 1 , 2, . . . 

a „ = \ I h ™ < x ) d x " \ f d x = ̂ 2 
o T J 0 zp T J 0 

a = 1 / h (x) cos(2mtx/T) dx = i f cos(x ' ) dx' = 0 n 7 J Q zp IMIJ 0 

, rT . rnff » ~ , n = l , 3 , . . 
b = | [ h (x) sin(2iwx/T) dx = -±- I s i n ( x ' ) dx 1 = j n 1 v 

n T J o z p ""JO U , n=2,4,.. 
2 2 

In terms of r and r. , the zone plate transmission function is given 
by 

h z p ( r ) = | + | s inOnr 2 / r 2 > + . . . + ^ s i n ( m r r 2 / r 2 ) + . . . 

n = 1 , 3 , 5, . . . = odd pos i t ive integers 

or ( in complex form) 

h ( r ) . U l e - i ^ 2 / ^ . | e i « r 2 / r 2 _ i e ^ r 2 / r 2 . 
zp ~* *i T* i" nit 

(2.6) 

n = + 1 | +3, +5, . . . = odd integers 
(2 .5) 

Eq.(2.5) implies that* i f a plane wave of l igh t of wave length ?» 

i s Incitlent on the zone p l a t e , each exponential term of Eq.(2.5) will 
• 2 2 

modulate the phase of the wave by an amount giv. A by nltr /r. (n - £1, 

+3, +_5, , . , ) . It is known that, after the incidence of this wave on 

the zone plate, part of the light is diffracted into both converging 

and diverging spherical waves which come into a number of focal spots 

according to the formula f = r-/na.(n = odd integers), and the rest of 

the light is unaffected. The focal lengths f can be calculated from a 

simple equality as follows: In order to have a constructive interfer-
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ence at (0,0,z) of wavelets emerging from point sources at (x,y,0) 
2 2 2 2 2 

with amplitudes 1 and phase factors n*r /r, <r = x + y ) the 
following equality must be satisfied. 

V 2 , 2 r l 

Expanding the f i r s t term of the above equali ty and making a two-term 

approximation givas 

z C 1 + r . / n z ) - z <& A, or z « r r^/ift. • 

In the reconstruction of FZP coded shadowgrams only the term 
_. 2, 2 
e" 1 r ' rl in Eq. (2.5) is considered as the "signal carrier"; all the 

other terms in the complex expression of h (r_) are unwanted. The 
zp 

reason for this can be explained easily by use of Eq.(2.2). When the 

diffraction property of a zone plate is utilized for the reconstruc­

tion of FZP coded shadowgrams the impulse response h*(r) of the recon-
""* • 2 

struction system is given by the Fresnel wavefuction - — e ' (this 
will be described in detail in Section 3.3). The output image i(r) on 

2 
the first focal plane of the zone plate, z = r./x * is given by 

o ( r ) @ f h ( - T ) @ c 4 e 1 ** / r l ) J . Only the component e " i l t r / r l of \ zp z *» 
r l 

h (r) is in autocorrelation with h*(r) and this autocorrelation zp — — 
produces a delta-function response which, upon convoluting with o(r), 

results in a perfect reproduction of o(r). (The proof of this property 

will be given in Section 3.3) All the other components of h (r) 
zp -

results in background and artifacts whic*~. are superimposed on the true 

image of o(r). The largest contribution of the background and arti­

facts is, of course, due to the undiffracted light from the zero order 
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component of h (r), i.e. 1/2 in Eq.(2.5). It was proposed that this zp ~ 
zero order component of h (r_) can be effectively removed by a complex zp — 
coding technique* The method is described briefly below; a detailed 
study will be given later. The Fresnel zone plate represented by 
h (r) is called a positive zone plate (center transparent). If the 
zp — transmission of h (r) is reversed such that the new transmission zp -
function b (r) is 0 wherever h (r) is 1 and is 1 wherever h (r) is 0, 

zp — zp — zp — 
then the zone plate represented by h (r_) is called a negative zone 

zp ** 
plate (center opaque). The Fourier series expansion of h (r) is given 

zp — 
V - } = 1 ' * s i n ( * r 2 / r l > - ••• - -Si s i n ( n « r 2 / r f ) - . . . 

. - 1 . 3 , 3 . . . . < Z - 6 ) 

If we form two shadowgrams s ( r ) and s_(r_) of the source object . 

o(r_) with a fixed imaging geometry, s from the posi t ive zone p la te and 

s from the negative zone p l a t e , the difference of the two shadowgrams 

gives a new shadowgram which contains no contribution from the zero 

order component of h ( r ) because zp -

s ( r ) = s . ( r ) - s ( r ) = o ( r ) © f h ( r ) - ' h ( r ) ] = o<r> © f a . ( r ) - l ) . 
C— *r— - — — ^ Z p — Zp — J ~ k z p — / 

s (T) is equivalent to the shadowgram formed directly from imaging 
o(r) with a coded aperture function h (r) = h (r) - ̂i (r). The — * c — zp — zp — 
impulse response of this imaging system is a composite one, h (r), 
which has three possible values, 0,1, and -1. The autocorrelation 
function of h (r_) is sharply peaked at r_ = £ and is very low elsewhere 
(an example is shown in Fig, 2-ld, which is generated by computer with 
a bounded h (r_), i.e., from zone plates of finite size). Both the auto-
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correlation and the diffraction properties of h (jr) can be used to 

decode the shadowgram s (r). It is difficult to construct s (r) from c — c — 
s.Cr̂ ) and s_(i;) optically* and s <£) can not be recorded directly on 

film because it contains negative values. 

A digital image processing system,on the other hand, has no 

difficulty of this kind and it can perform all the operations which an 

optical system can do. We shall assume, therefore* all the image 

reconstructions from composite shadowgrams will be done with a digital 

computer in later studies* 

A. coded aperture function with a sharply peaked autocorrelation 

function can only guarantee good reproductions of 2-D source distribu­

tions. In case of imaging 3-D source distributions, both the auto­

correlation and the crosscorrelation properties of the coded aperture 

function are important in the coding-decoding process. To sec this, 

we consider the following example. We assume that a 3-D object distri­

bution can be represented by a finite number of slices of its sections 

along the z axis, with the activities in each section concentrating on 

the midplane of that section. The separations between two adjacent 

midplanes of the sections are given by the depth resolution of the 

system. He let this object distribution be represented by o,(r_), i=l,2, 

...,N , and let the distance between the object plane o. and the aperture 

plate be given by S.. The aperture to detector distance is S . We can 

formulate an expression for the shadowgram of this object distribution, 

similar to Eq.(2.1). 

N . -
s<r) « £ P A o , C ~ r) © h,Cr> (2.7) 
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where h.(r) U the point response of the detector to « point source at 
£ » 0 of object plane i, and •&.• >>0/S«. 
It h(r) is the trantaission function of the coded torture, then h{(£) 
is r.lvcn by h,(!-) « h (jr /(l • * J ) . The decoding operation on s(r) 
can be expressed in a Com of convolution intcsral aeain. The resulting 
inane i,(r) of object plana j is Kiven by Eq.(2.2) with * replaced by 
*.. In order to express 1 ,(£> in a familiar torn we let h!( «l,r) be 
given by h,( «l.r), i.e. the correlation method. Thus, the inase l.(r) i r~ i — 
becomes , 

i j<r) « * } *<-«£> © htttjryi-nt^ j « 1, 2 N p 

or p *., *L, * x 

1 (2.8) 
The desired inace is Klvcn by the autocorrelation tern in Eq.(2.8); the 
tern with i = jl 

0 j(r) © [M-i*,^ © hVjj£,l " 0j (i } ® "VjjS' ' 
yOjj B ot^/CU*.) (2.9) 

The undesited background is Given by the crosscorrclation terms; the 
terms with i * ji 

2 2 
^ - „,< i r ) ® ! h(-^ l jr) © W A j 5 > ] . jji o ^ r ) © c^Cr) . 

(2.10) 
where the crosscorrclation function c. Xr) is defined as 

c l j (r) . h(-,«jr) © Kfe) 

Evidently, the autocorrelation function a(r) should tje peaked as 

sharp as possible to ensure good image contrast and resolution. At the 
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sane tine, it is also necessary that the crosscorrelation functions 

c,.(r) to be flattened and diminished as much as possible to prevent 

build-up of undesired background and artifacts. 

Examples of the autocorrelation functions of a few coded aperture 

functions are shown in Fig.2-1* Examples of the crosscorrelation 

functions are shown in Fig.2-2. The non-redundant pinhole arra> gives 

the best autocorrelation function as well as the crosscorrelation 

function among the coded aperture functions with non-negative trans-

nission. The autocorrelation function of a combined zone plate function 

(h (r) - l5 (r),10 zones) is quite close to a delta function as zp - zp -
compared to the other autocorrelation functions (Fig.2-ld). The 

crosscorrelation functions of this combined zone plate function, shown 

in Fig.2-2b, have some small peaks at and near i: * 0. The cause of 

these undesirable peaks is mostly due to the interference between the 

first harmonic and the other harmonics of the zone plate function. It 

is highly desirable to eliminate the contribution of most of the 

unnecessary components of h (r) from the FZF coded shadowgrams to zp 
suppress the interference. Complex coding with two zone plates, shown 

in Fig.2-3a» is not enough to give good reproductions of 3-D source 

distributions because it eliminates only the contribution from she zero 

order component of h (r). A better complex coding which utilizes three 

zone plate shadowgrams is given bfalow for future study. (Complex coding 

with four zone plates ir shown in Ref. 66.) If we combine three 

shadowgrams, which are formed by the imaging system with three different 

zone plate functions (shown in Fig.2-3b- 1,2,3), in a complex form the 
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resulting composite shadowgram contains only the terns of Eq.(2.5) with 
n = 1, 5, 7, 11, 13, 17, ... . With x * r 2 and T = 2r 2, the Fourier 
series expansions of the three zone plate functions of Fie.2-3b are 
given by 

hj(x) = 1 • ! £ jjsin(ni</3) cos(2n*x/T) + J £ i c o s ( n « / 3 ) sin(2n«x/T) 
n n 

h 2(x) = \ - |£lsin(n*/3) cosC2nnx/T) + j£-jcos(nic/3) sin(2n«x/T) 
n " 

h 3(x) ="K (x) = 5 - 4 £ J sin(2n«x/T) , 
* n 

If we combine the three shadowgrams resulting from h-» h_, and h_ 

in a complex form given by s.(r) e ' + s-£l) e + S2^S? e * t n e n 

the equivalent impulse response h (j_) of this system is given by the 
followingl 

h c C - ) = 2 hl (£ } + 2 h 2 ( - ) " h 3 C ^ " ^l ( V ^ " h 2 ( ^ 0 

h c ( x ) = |,(sin(2»rx/T)+|sin(10frx/T)+ . . . ] - i| |cos(2itx/T)-|cos<10rtx/T)+..) 

2 2 tv^mfl 2 2 

V^; *i e i + * i Z J

 7 n e x , (2.11) 
n=5 

where m is a positive integer and / = 1 if n = 6m+l and 7 = -1 if n = 
6m-l. The first term on the right side of Eq.(2.11) is the desired 
"signal carrier" and the rest of the terms are unwanted and relatively 
small. A plot of the real part of h (r) is shown in Fig.2-3b-4. 
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2.3 Freauency Domain Analysis 

Any system which possesses the properties cf linearity and invari-

anco can be described mathematically with considerable ease using the 

techniques of frequency analysis. Thus, just t* it is convenient to 

describe an audio amplifier in terns of its (temporal) frequency 

response, so likewise it is often convenient to describe an inacing 

system in terms of its (spatial) frequency response. To apply the 

frequency analysis to the previous coded aperture imaging system, the 

object distribution 0(1:) is considered to be an input signal to a 

linear and space-invariant system which has an impulse response 

h(-«(.r)©h'<<*•*). 

The two dimensional Fourier transform of a function g(x,y) is 

defined by 
«t m 

Jf(gCx,y)) = G C v ^ ) -/f«Cx.y)«- l 2 , ( ( v«?*V >tedy. 

- • — (2.12) 

and the Fourier transform of the convolution integral* f © g , is given 

by the product of the two individual Fourier transforms, 

J ^ ( f < r ) © g<r)j u jCff(r)j JC (g ( r ) J = *M G(£> (2.13) 

Since the transfer function of a linear and invariant system is 

defined as the Fourier transform of its impulse response, the transfer 

function of the coding-decoding process is then given by, omitting the 

scale factors, 
JF (h(-r) © h• (r)) = H*(NI) H'M (2.14> 

Fig.2-4 shows a schematic block diagram of the coded aperture 
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imaging system. The input-output signals and the system's responses 

arc shown in both the spatial domain and the frequency domain. It is 

clear that a perfect reproduction of the object distribution can be 

achieved only if the total system transfer function H*(v)H'(y) is unity, 

which is equivalent to h(-r,)©h'<£) = S(r_>. The absolute magnitude 

of the transfer function of a system is called the modulation transfer 

function of that system. For an imaging system, certain spatial 

frequency components of the object distribution can never be recovered 

if the modulation transfer function of this system is zero at those 

frequencies. In coded aperture imaging if | H(v) | is non-zero everywhere 

within the limit of the object's frequency band, then the best recon­

struction can be achieved with H'Cv) = 1/H*(v). On the other hand, 

however, if j HCv) J is zero or relatively low at certain spatial 

frequencies of the object distribution, application of H'(v) = 1/H*(V) 

to the image reconstruction will lead to amplification of the spatial 

noise present in the coded image (finite photon statistics) because the 

noise may not be zero or small at those frequencies. Therefore it is 

desirable to have |H(\0| reasonably constant over its frequency band­

width. Fig.2-5 gives a few examples of |H(v)| of various coded aperture 

systems, which were generated with a digital computer. It is seen that 

the non-redundant pinhole array system gives a better | H ( V ) | than those 

of the other systems, because of the uniformity of JH(v)| . 

It is worthwhile to point out that |H(V_)| of a complex FZP coding 

system is better than that of a simple FZP coding system (see Fig.2-5b). 

The reason for this is, of course, because of the lack of the zero 
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order component in the complex FZP coding governed by h (r_) - •>-./£)• 

In case of the complex coding with three zone plate shadowgrams, which 

is governed by h (r) of Eq.(2.U), the modulation transfer function 

|^7(h c(£)l <v_51 shall be even better. In fact, if wc make an approxi­

mation of h (r) by its first term, the magnitude of t 7 f n
c ^ J ^ is 

a constant. , , , 

I J ^ J W I - ^ - ^ J I - ^ I - - ^ ' " ! - ? 
In spite of the fact that | H ( £ ) | of the coded aperture systems may 

have zero responses at a few frequencies v, we may still use H'Cv) -

1/H*<v) to perform the decoding in the frequency domain. In digital 

image processing we can determine the spatial frequency components of 

the object at frequencies where |H(v)| is not zero by letting H'(v) = 

1/H*(v) = H(±il | H<i)| 2 because I(v) = OC^) H*Cv) H'(v) = 0(v) at these 

frequencies (see Fig.2-4), Due to the presence of noise in the imaging 

process one may want to let H*(v) be zero at frequencies where |H(£)I 

is zero or relatively small to supress tire amplification of noise. 

However, this will result in a poor image resolution and possibly a 

certain degree of image deformation due to the loss of essential 

frequency components of the object in the resulting image. On the 

basis of resolution and signal to noise, an appropriate form of H'(v) 

may be 

H'(v> = H(V)/|HCV)| 2 . if |H(a)|>«*Hnax 

H-(V) = H C V ) / , ^ , if I H C V ^ I H ^ 

where H is the largest Fourier frequency component of |H(v)| , and 
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si is a variable parameter which is chosen to optimize the resolution and 

the sicnal to noise of Che system. Digital reconstruction of FZP coded 

shadowgrams using the above form of H'(v) has been studied by Dance et 
eg 

al. The study was based on simple zone plate imaging. The recon­

struction is very sensitive to the input noise and the choice of U 

because | H ( V ) | of a simple zone plate imaging system has a large number 

of "zeros". It is expected that » non-redundant pinhole array system 

is preferable for the application of Eq..(2.19) in image reconstruction. 

A study of this will be given in Section 4.2. 

In two-dimensional Image processing the Fouvier transform is often 

encountered. If a digital computer is used to do the image processing 

the Fourier transform of a 2-D function f(xiy) inanN x N matrix is 

performed in discrete form, defined as 

FCu.v) = 1 "f l £ X f(x,y) e - * 2 * < « ^ > ^ ( 2 . 2 o ) 
" x=0 y=0 

The evaluation of Eq.(2.20) can be broken into two steps. 7irst, the 

one-dimensional Fourier transform F(u,y), is taken along, the x-

coordinate of every horizontal line of f(x,y).. Then a second one-

dimensional Fourier transform is taken in the y-direction of every 

vertical line of F(u,y) to yieid the composite transform, F(u,v). 

Until recently, only brute force methods were available for 

producing Fourier transform digitally. By conventional techniques, the 

evaluation of Eq,(2«20) would require 2N complex multiplications and 

additions. Fortunately, algorithms have been developed which require 
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only 2N log(N) complex additions and complex multiplications using the 

above two-step technique. The fast Fourier transform (FFT) algorithm 

was first proposed by Cooley and Tukey in 196S for efficiently 

computing the discrete Fourier transform of a series of data samples. 

The ef'isiency of this FFT algorithm is such that solutions to many 

problems can now be obtained substantially more economically than in 

the past. An excellent introduction of the FFT algorithm has been 

given by Brigham in his book "The Fast Fourier Transform". 

2.4 Efficiency, Resolution, and Signal to Noise 

Geometric Efficiency 

The geometric efficiency of a coded aperture imaging system is 

almost always better than that of a conventional single-pinhole camera 

because of the larger area of opening of che coded aperture. In coded 

aperture imaging, however, the gain in geometric efficiency is sometimes 

not enough to give a better signal-to-noise ratio because of the coding 

-decoding process involved (this will be explained later). 

The geometric efficiency of a multiple pinhole array (MPA) coded 

aperture system is proportional to the total number and the size o r the 

pinholes in the array aperture. 

The geometric efficiency of a Fresnel zone plate (FZP) coded 

aperture system is proportional to the open area of the zone plate, 
2 

which i s given by 1tx«/2 (r. . i s the radius of the zone p l a t e ) . 
Resolution 

The l a t e r a l resolution of a MPA coded aperture system i s similar 
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to that of a singlc-pinhole camera system, and i s given by (see Fig. 

2 " 6 a > A x = d < 1 4 S x / S o > , (2.21) 

where d is the diameter of the pinholes and S_ and S are shown in the 

figure. 

The depth resolution of the MPA coded aperture system is deter­

mined not only by the imaging geometry but also by the arrangement of 

the imaging pinhole array. For the purpose of illustration, a circular 

multiple-pinhole array of diameter D is used here as an example ( d is 

the diameter of each pinhole). Suppose two point sources separated by 

distance A are located on the optical axis of an imaging system as 

shown in Fig.2-6a and the lateral spatial resolution of that imaging 

system is given by A^ = d(l+S,/S ) a condition for the minimum A exists 

and is given by the following equations. 

A x _ _D/2_ 
A z " S l 

° r b.z = 2 A^ S x/D = 2 d ( 1 + S x/S o ) Sj/D (2.22) 

To check whether Eq.(2.22) still applies in the reconstruction of 

the shadowgram of the two point sources, we construct a simple decoding 

system (shown in Fig.2-6b) basing on the optical correlation method of 

Section 2.2. The shadowgram is back-projected by a planar light source 

(incoherent) through a mask which is a replica of the original circular 

array. By the principle of autocorrelation, the images of the two point 

sources will be focused on two image planes corresponding to the two 

object planes. 
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The l ight from the in-focus image on plane 1 produces out-of-focus 

background on plane 2. The l ight intensity of the in-focus image on 
o 

plane 2 i s proportional to l/itd" while that of the out-of-focus back-

2 
ground on plane 2 i s proportional to 1/rtD" . If c is defined as the 

intensity ratio of the in-focus image and the out-of-focus image, then 

c i s given by 

fZL-fl ' D ' V < W ,2 * Z ,2 
c " l d" ' ~ K d'S./S ' ' *• dCl+S,/S )SJD ' 

1 o 1 o 1 
(2.23) 

If ue let &. be given by Eq.(2.22), then c=4. This means that the first 

image is attenuated to 1/4 of the intensity of the second image on plane 

2. In other words, the depth resolution obtained previously is adequate* 

When a non-circular multiple pinhole array is used* Eq.(2*22) is 

still valid. In this case, however, the appropriate value of D is given 

by 2r , where r is the median radius of the pinhole locations in the 
m m 

array measured from the center. 

Calculations of the lateral and depth resolutions of a zone plate 

system are quite different from that of a MPA system because they are 

derived from the focusing properties of a zone plate. The lateral 

resolution of a zone plate system is -,iven by (from Barrett ) 

A x = (3<N) ( 1 + S 1 / S Q ) A r N (2.26) 

in which ̂ 3(N) is a parameter of order of unity which depends on the 

number of rings in the zone plate. ^ r » ^ s t n e width of the outermost 

ring in the zone plate. Eq.(2.24) shows that the zone plate aperture 

Ijas a lateral resolution equivalent to a single-pinhole aperture having 

a pinhole diameter of yS(N) A r N ftS A r M . 
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The depth resolution of a zone p l a t e system i s given by 

A z = C 3/8N ) Sj ( 1 + S x / S o ) (2.25) 

Eq.(2.25) i s of the same form as Eq.(2.22) , and the factor (3/8N) i s 

roughly the same as (2d/D) in many cases . 

_Signal to Noise 

In radionuclide imaging, the measured source d is t r ibut ions contain 

spa t i a l noise due to the f i n i t e photon emission nature of the sources. 

When the imaging system i s a single-pinhole camera the signal- to-noise 

r a t i o of the image i s given by a s ingle parameter. If C i s the average 

number of photons collected by the pinhole camera from one resolut ion 

element of the source object , then the s ignal- to-noise r a t io i s given 

by, from Poisson s t a t i s t i c s , 

In coded aperture imaging, calculat ions of the s ignal- to-noise 

r a t i o s for various coded aperture systems are somewhat complicated 

because of the involvement of coding and decoding. A simplified calcu­

la t ion of the s ignal- to-noise r a t i o for a non-redundant pinhole array 

(NRPA) coded aperture system i s given in Appendix A. In the calculation 

we l e t the to ta l number of pinholes in the array be given by N and l e t 

the source object be given by M equally spaced point sources (or reso­

lution elements) of equal i n t ens i t i e s C . C i s defined as before and 

^ o o 

i s given by the average number of detected gamma-ray events which pass 

through one of the N aperture holes . 

From Eq,(A.3) the s ignal- to-noise r a t i o of NRPA coded aperture 

imaging, at the center of the image ( the worst case) , i s given by 
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S "V^, 

S r - C 2 - 2 7 ) 

For a 27-hole NRPA coded aperture, a relatively large number of 

holes* the number of object picture elements M is "large" when 

M > 27 x 26 = 702. The usual number of picture elements in Nuclear 

Medicine situations is generally larger than this number and so, in 

these applications, the equations for M > N(N-l) usually apply. The 

signal-to-noise ratio for a single pinhole camera is-/c7 which is 

just what we obtain for the NEIPA aperture system when H > N(N-l). Since 

the time is the same for both apertures to get C count/pinhole, for the 

same diameter pinholes, we see that for most nuclear medicine applica­

tions of NRPA coded aperture imaging there is no net geometrical advan­

tage over the single pinhole when producing pictures with the same 

resolution and the same signal-to-noise ratio. FZP coded aperture 

imaging is also no more efficient than the single pinhole when the 

number of object picture elements exceeds a certain number but this 

number is a function of the zone plate used. 

Formulations of the signal-to-noise ratio of a zone plate system 

have been made by a number of investigators. * We let C to be the 

average number of photons collected by the detector of a zone plate 

camera from one point source or one resolution element in an array of 

H equal point sources. The expressions of the signal-to-noise ratio of 
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S3 
this zone plate camera are given by, from Barrett and DeMeester, 

i r V M <-T\>= '•£•!/-!?- « - 2 « 

Since the geometric efficiency of a zone p la t e camera r e l a t i v e to 

a single-pinhole camera of the same l a t e r a l resolut ion i s approximately 

given by 

open area of the zone p la t e aperture r N ^ 
area of a pinhole aperture with diameter ^ N Ac?M 

->« 2 

Eq.(2.28) may be c a r e s s e d in the following form. 

(2.29) 

Eq.(2.29) indicates t h a t , in case M > 16N lie, the zone p l a t e 

camera i s worse than the single-pinhole camera in s ignal- to-noise 

r a t i o . 
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3. EXPERIMENTS AND RESULTS 

3.1 Multiwite Proportional Chamber Camera System 

Multi-wire Proportional Chambers (MWPC) were developed at CERN 

starting in 1968 as position sersitive detectors for particle physics 

research as successors to the Spark Chamber detectors which had been in 

use for the previous 10 years. As the nar.a implies * tne MWPC is a gas-

filled radiation detector operating in the proportional mode of gas 

multiplication, and containing a number of anode wires. The chamber is 

usually rectangular in shape, and the anode wires form a parallel grid. 

Two cathode planes of parallel wires are needed for locating the 

position of ionizing events. The use of MWPCs in Nuclear Medicine was 

developed primarily by our group at the Lawrence Berkeley Laboratory. 

(Refs.44-46) The good spatial resolution, fast count rate, large 

detection area and relatively low cost make MWPCs v*jry suitable to a few 

clinical applications in radionuclide imaging. 

The MWPC used in coded aperture imaging is shown in Fig.3-1. 

The effective sensitive area is 48cm x 48cm. There are three wire planes 

inside the chamber, the central anode plane and the two mutually ortho­

gonal "drift planes" for locating the x and y coordinates of an ionizing 

event. The drift planes are at 0 volt above ground, while the anode is 

at about 3000 volts. The chamber is filled with a gas mixture of 90% 

xenon and 10% CH^ at a pressure slightly above the atmospheric pressure. 

Stainless steel wires of diameter 20 microns spaced 2 millimeters apart 
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are used for the anode, while wires of diameter 50 microns spaced 1 

millimeter apart form the drift planes. The distance between the anode 

and each drift plane is about 4 millimeters. 

The principle of operation of this HWPC system is as follows i 

When an X-ray or 7-ray photon reaches the active volume of the chamber 

it has a certain probability to interact with a gas atom and expel1 an 

electron through the photoelectric effect. The kinetic energy of the 

emitted electron equals the photon energy minus the binding energy of 

that electron. This energy will then be deposited within a small 

region, mostly in the form of ionization. The higher the density of the 

gas, the larger the probability of interaction, and the smaller the 

region of energy deposition. This implies that higher sensitivity and 

better spatial resolution can be achieved by using a heavy and dense gas 

under high pressure. Due to the electric field between the wire planes, 

the secondary electrons (from the ionization of gas atoms by the photo-

elecf-ion) drift to the electric field between the wire planes, these 

electrons drift towards the anode wires and undergo multiplication in a 

smal?l region surrounding a wire, producing a voltage pulse on it. 

Simultaneously, an induced pulse of the opposite polarity is generated 

on the cathode wires by the motion of the positive ions. The x and y 

coordinates of the ionizing event are determined by the use of two 

electromagnetic delay lines. These delay lines consist of a solenoidal 

winding on a plastic core which forms an inductance. A distributive 

capacitance is formed by copper strips as shown in Fig.3-2. Since the 

delay lines are placed over (but not in contact with) the drift planes, 

signals from these wire planes are coupled capacitively to the delay 
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lines. The time lag between the arrival of a pulse on a drift plane 

wire and its arrival at the end of the delay line depends on the 

position at which the pulse coupled into the delay line. Thus, the 

spatial positions of ionizing events are translated into time delays. 

A reference signal that indicates the occurrence of an ionizing event 

is obtained by reading out the pulse from the central anode plane 

through an RC net work with a time constant of 500 n sec. This signal 

is amplified and fed into the MWPC window discriminator and the zero-

cross timing discriminator. The window discriminator has the ability to 

select the upper and lower pulse heights of the incoming signals. The 

timing discriminator uses the technique of differentiation and zero-

crossing to provide a "time-zero" reference pulse that starts the two 

image formiig systems, the analog system and the digital system. The 

analog system and part of the digital system are shown in Fig.3-3. A 

detailed description of the digital system will be given in Chapter 7. 

The output signals from the discriminators are used to start two 

Time-to-Amplitude Converters (TAC). Similarly processed signals 

obtained from the x-coordinate delay line and y-coordinate delay line 

are used to stop the TACs. The outputs from the TACs are then used to 

drive the x and y deflection plates of a CRT (Tektronix 602 display unit), 

while simultaneously a z unblank signal is applied, as shown in Fig.3-3. 

Event dots are generated sequentially in the CRT screen and are inte­

grated into an image by a Polaroid camera. A pile-up rejector circuit 

is used to eliminate multiple events occuring within the delay lines* 

delay interval ("-3 microseconds) and the dead time of the electronics. 
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The maximum count rate of this system is about 10 events/sec due to 

the dead time of the delay lines, the associated electronics, and the 

CRT display unit. 

3.2 Multiple Pinhole Array Coded Aperture Imaging 

Experimental studies of the riPA coded aperture systems were made 

with the multiwire proportional chamber detector. The optical corre­

lation method (Section 2.2) was used to decode the MPA coded shadowgrams. 

Because of the importance of autocorrelation functions in the recon­

struction, an investigation, of the autocorrelation functions of three 

different types of pinhole arrays as well as the Fresnel zone plate, 

shown in Fig.3-4, was made. Their autocorrelation functions, obtained 

optically, are shown in Fig.3-5 and, for similar types of patterns, 

drawn schematically in Fig.3-6. 

Fig.3-Aa shows a non-redundant pinhole array (MRPA). This array 

has the property that its autocorrelation function (Fig.3-5a) is non-

redundant. That is, while the central peak, a(o), has intensity N 

corresponding to the overlapping of all N holes from two superimposed 

arrays, non-central locations of a(r) have at most intensity 1 corre­

sponding to at most one hole from each of the superimposed arrays over­

lapping at a given displacement i: (Fig.3-6a). 

In contrast to this array, the regularly spaced array of Fig.3-4b 

having the same number of holes has a highly redundant autocorrelation 

pattern (Fig.3-5b and 3-6b). The central peak still has intensity K and 



the total amount of background is still the same, N(N-l) but for this 

array a number of holes have overlapped simultaneously giving a local­

ized and relatively high intensity contribution to the image background. 

The random array (Fig.3-4c). having N holes distributed randomly over 

the same area as the previous arrays, has an autocorrelation pattern 

(Fig.3-5c and 3-6c) similar to that of the non-redundant array, its 

background peaks however, are sometimes larger than 1. For comparison, 

the Fresnel zone plate coded aperture is given in Fig.3-4d. Its auto­

correlation function (Fig.3-5d and 3-6d) is characterized by a high 

ratio (0.5) of the high total transmission of the zone plate aperture, 

502, compared with ™2% for the other three pinhole arrays. 

By its nature the non-redundant pinhole array has the most 

desirable autocorrelation function and produces the lowest background 

intensity in the final image. In a very different application these 

same non-redundant arrays, with radio telescopes replacing the pinholes, 

are used in astronomy for mapping radio sources. Some of these arrays 
32 

are described by M.E.Golay. Smaller non-redundant arrays (N^15) are 

fairly compact, that is, with most of the points of a(r_) lying within a 

circle with few unoccupied locations inside and only a few points lying 

outside. Large arrays are built up by computer, starting with smaller 
33 ones and using various algorithms. The 27-hole non-redundant array 

shown in Fig.3-4a was provided by Klemperer. A circular (ring) point 

array with an odd number of points is also non-redundant. However, 

the autocorrelation function of this type of array is not as compact 

and uniform as that of Fig.3-4a. 
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Imagine of radioactive objects using coded apertures of Fig.3-4 

and the multiwire proportional chamber detector was made starting with 

the non-redundant pinhole array. The test objects were gamma-ray 

sources of 30 and 60 Kev energies. The coded aperture used were made 

from 1.5 mm thick lead and the multiple pinhole arrays were usually 

about 8 cm across. Diameters of the pinholes, 3 mm, were chosen so 

their shadows on the detector were at least 3 times chamber resolution 

(1.5 mm). 

The shadowgram transparency is made by taking a time exposure of 

the CRT which displays the gamma-ray events. Shadowgrams in coded 

aperture ir.aging are much denser in the center than on the edges and 

some care must be taken not to saturate the film. The developed trans­

parency is placed on a diffusing screen and illumined from behind (Fig. 

3-7a)» the light source teing a 500 watt projector. The viewing screen 

is placed about a meter downstream. The mask, aluminum foil perforated 

with a replica of the coded aperture used, is placed between screen and 

shadowgram. The initial focussing is done by rotating the mask about a 

longitudinal axis so it lines up with the original aperture, and by 

moving the mask longitudinally to focus on the screen. When this is 

done a simple movement of the screen is all that is necessary to bring 

different planes in the object into focus. If the mask is made so that 

the ratio of mask size to film size is the same as the ratio of aperture 

size to detector size then images of different planes in the object have 

the same sizes. 

The first test was the imaging of a standard Picker Thyroid 
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Phantom, shown in Fig.3-7b, using the non-redundant pinhole array of 

Fig.3-4a, The shadowgram (shown in Fig.3-7a) consisting of 540,000 

events was recorded on Kodak Ektapan film. The reconstructed image as 

shown in Fig.3-7a was printed on high contrast paper to reduce the back­

ground of light and enhance the contrast. The right and left lobes of 

the thyroid phantom differed in activity, and this difference can be 

seen in the reconstruction. The smallest of the cold nodules is 5 mm 

in diameter and is clearly imaged. 

The tomographic capability of this coded aperture system is shown 

in Fig.3-8. Fig.3-8 shows the shadowgram of a radioactive phantom 
125 consisting of three geometrical patterns labelled with I ( a cross, 

a triangle, and a circle) Which were separated by a distance of 2.5 cm 

in depth. The imaging geometry for the middle object plane was 1:1, 

i.e. S.=S . A total of one million gamma events were retarded on the 

shadowgram. Fig.3-8 b, c, and d are the reconstructions of each of the 

patterns obtained by adjusting the screen to mask distance of the 

reconstruction system so as to bring each pattern into sharp focus. 

Each of the in-focus images is superimposed on a background arising from 

the planes at other depths in the phantom. The tomographic capability 

of this system was further tested by moving the test phantom toward the 

aperture such that the maximum depth resolving power of the imaging 

system was reached (a decrease in S., produces a smaller A ). The 

results, from an imaging geometry S- = %S , are shown in Fig.3-9. It 

is seen that background artifacts from off-plane activities in the 

reconstructions of Fig,3-8 are not seen in the reconstructions of Fig. 

3-9. 
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Experiments were made to evaluate the lateral and depth reso­

lutions of the above coded aperture system, A reconstruction of four 

point sources separated by 5 mm, 1 cm, and 2 cm is shown in Fig.3-10a. 

The lateral resolution of the system, calculated from A = d^l+S./S ) , 

is about 4 mm, Fig.3-10b shows the response of the system to a source 

having 5 mm bars separated by 5 mm. For measurement of depth reso­

lutions, sequential image reconstructions were made for the shadowgram 

of previous 3 geometrical patterns, at intervals of 6.25 mm along the 

optical axis of the reconstruction system. The depth resolution, 

calculated from A = 2d(l+S,/S )S-/D wiiii D given as the median 

diameter of the 27-pinhole NRFA coded aperture, is about " mm at 

S. = 125 mm. This agrees with the experimental result as shown in Fig. 

3-11. 

As seen from these reconstructions, good resolution and tomo­

graphic effects are easily obtainable with the SUPA coded aperture 

system. Only a strong light source, a diffusing screen, some optical 

alignment equipment, and photographic materials are needed to recon­

struct the shadowgram. In fact with some modifications to the set-up, 

direct image decoding is also possible without going th-oug^ the 

intermediate step of photographing the shadowgram separately. For 

example the spot of light from the CRT display* which defines the 

coordinates of the detected radiation, ̂ ould be made to pass through 

the reconstruction pinhole mask antf be directly observed in the image 

plane. By a system of lenses, the various planes within the object 

could be separately focussed and recorded. Since no movement of the 
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detector i s necessary and all the information of the ob^tc-t-*; shape and 

s ize i s recorded in a s ingle p ic ture , dynamic studies are poss ib le . 

Only two simple experimental t e s t s were made using multiple pinhole 

arrays other than the non-redundant pinhole array. The r e s u l t s , together 

with those from the non-redundant pinhole array, are shown in Fig.3-12 

and Fig.3-13. Images of point gamma-ray sources taken with the 

apertures of Fig.3-4 are shown in Fig.3-12. Images of the thyroid 

phantom obtained with pinhole arrays which differ only in the placement 

of the i r 27 holes , non-redundant, redundant, and random arrays , are 

compared in Fig.3-13. The redundant array image i s only barely 

recognizable because of the poor d is t r ibut ion of i t s autocorrelation 

function. The random array image i s much bet ter than the redundant 

array image. However, i t s t i l l contains somewhat more background 

a r t i f ac t s than the non-redundant array image. 

3.3 Fresnel Zone Plate Coded Aperture Imaging 

The diffract ion propert ies of a zone pla te were described in 

Section 2 .2 . The diffract ion pat tern of a zone p la te and the recon­

struct ion of a zone p la te shadowgram by diffract ion can be derived 

easi ly with a convolution formulation of Fresnel dif f ract ion. If a 

plane aperture mask of amplitude transmittance t ( r ) i s illuminated by a 

plane wave of amplitude 1 and wavelengthxthe diffracted amplitude g ( r ) 

on a plane a t a distance z downstream from the aperture mask i s given by 

the Fresnel-Kirchhoff diffraction formula. After adopting the approxi-
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nation of parabolic wavefronts and omitting the obliquity factor, we 

may express this diffracted amplitude as a convolution, ' 

e <r) = € t ( r ) © wCr) , (3.1) 

where € is a constant phase factor (€ = e 2 ' x ) and w(r) is called the 

Fresnel wavefunction : 
2 

, v i iter /*.z 
v& " - « e

 2 

The Fourier transform of w(r) is given by W(v̂ ) = e 

The Fresnel wavefunction w(r_) has two important properties J 

(1) w(ir) is self-orthogonal under the convolution operation, i, e, , 

v*(r_) © w(r) = 5(r_), This result follows from |w(v)| = I. 

(2) The convolution of w(jr) with unity is equal to unity : 
w(r_) © 1 = j J w(r) dx dy = 1 . 

The diffraction pattern of a positive zone plate of finite radius 

r M is derived as follows : The transmission function h (r) of this N zp — 
zone plate may be expressed as, from Ecj.(2.5)f 

f 2 ? 2 2 2 21 

1 . i -i*r /r , i i«r /r, i r 1 irntr /r_ ( , , * - + _ e ' 1 - 5 e 1 - - J ^ - e 1 j circCr/rH) , 
odd integers (3.2) 

where the circle function circ(r/r„) is defined by 
oirc(r/rB) = { £• " U L ^ x—' N 10, otherwise 

2 
The diffraction pattern of this zone plate on a plana at z ~ r./A. (the 
major real focus of the zone plate) can be obtained by substituting 

2 
t ( r ) in Eq.(3.1) by h ( r ) . The Fresnel wavefunction at z - r . / x is 

2 2 
given by «(r> = - - ^ e 1 * 1 / r l (3.3) 

r l 



The diffract ion pat tern (amplitude) i s then given by 

2 _2 _2 
6 ( r ) = J [ | + ^ w * ( r ) + ^ w ( r ) + ^ £ lw<4nr) ]c i rc( r / r N ) J © w(r) 

* n*+l 
odd" (3.4) 

The autocorrelation term in Eq.(3.4),fw*(r)circ(r/r,.)J ©w(tO, is 

calculated as follows. 
2 

(^w*Cr)circ(r/rN)) © wCr) = \ j e - ^ / ^ j ^ c i r t f r / r ^ l © ^ ' A 

" « ? e J J ~ 4 ^ S ( « - T l ) S C v - ^ i u i v 

ivJl-.2 J1C2«rr„/r^) < M «|- , / , \2 J,(2NKr/rM) 

The calculations of the other terms of Eq.(3.4) may be done in the same. 

way as that in the above, the results with approximations are given 

in the following. 

% circ(r/rN) ® w(r) as h circCr/r^) [T. © w(r)l= % circ(r/r„) 

r 2 
{£ w(r)circ(r/rN)] © w(r) « i circ(r/2rN) . . " " ^ V 

£ E n wWr)circCr/rH) © w(r) « 1 E n l b c i l ^ C n + 1 V e n f l rN 
n*±| ' n«l 

„)2 
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Thus, the in tens i ty d i s t r ibu t ion of g<£> i s given by 

2 [J 1 C2NKr/r„ ' ' 1 2 

g*(r)B(r) = i c i r c ( r / r N ) + N N l ( r y 
o d d "• 

+ —5 c i r c ( r / 2 r N ) 

^ Z | n T n + d c i r c ( r / | n + l | r N ) + Cross-Product 

4* 

Terms 

n*+l (3.6) 

A graphical interpretation of Eq.(3.6) is shown in Fig.3-14. 

The intensity distribution of g(r) is viewed as the output of a zone 

plate system to a point source input. If the input source distribution 

is given by o(r) then the output of this system will be given by 

|o(r_) © g(r) because the Fresnel diffraction amplitude of the zone 

plate shadowgram of o(r) is given by €s(r) © w(r) = €o(r) © n (r) ©w(r) 
~~ -~ zp ~ 

= o(r_) © &CO. Thus, the reconstruction of a zone plate shadowgram is 

completely determined by the distribution of g(i:). A plot of g(r_)» 

generated by computer, is shown in Fig.3-15. The sharp central peak in 

the figure isi of course, produced by the Bessel function of Eq.(3.5). 

The background is small and is the result of the rest of the terms in 

Eq.(3.4). 

The first term on the right side of Eq.(3.6) is relatively high 

in magnitude as compared with the other non-signal terma. The effect 

of this term is small when the object imaged is small. When the object 

imaged is large, however, the intensity of the background produced by 

this term is given *y I o(r) © %circCr/r„) J while the signal is given 

by Np(r)j. This means that, if we assume the object contains M 

uniformly distributed resolution elements with intensity 1, the 
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2 
background in the reconstructed image may be as high as M̂ in some cases 

3 

while the signal is only N. . 

Fig.3-16 shows an optical reconstruction system for zone plate 

shadowgrams. The two mirrors were used to extend the length of the 

optical path on a small optical bench. The optical stop at the focal 

plane of the lens may be used for spatial frequency filtering to remove 

the undiffracted light. The image formed on a plane somewhere behind 

the focal plane of the lens corresponds to the negative focal length of 

the zone plate pattern. This real image can be seen through a telescope 

located at proper distance away from the image plane. Fig,3-17a shows 

a zone plate shadowgram of four point sources separated at least by 

twice of the system resolution. The coherent optical reconstruction of 

this shadowgram is shown in Fig.3-17b. 

The reconstruction of zone plate shadowgrams by Fresnel diffrac­

tion can also be performed with a digital computer. Aside from the 

abvious advantages in image processing with the computer, mentioned in 

Section 2.2, there are some other advantages of using the computer in 

coded aperture imaging. A computer system is free of the problems 

associated with film such as small dynamic range,film grain noise. 

Results with the computer can be obtained quickly without the delay 

associated with a two-step photographic process. In computer recon­

struction of zone plate shadowgrams the convolution integral of Eq.(3.1) 

is evaluated by use of Fourier transforms. Direct evaluation of the 

2-D convolution integral of two N x N matrices requires N multipli­

cations and additions while the indirect method requires only three 
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2 
Fast Fourier Transforms (Section2.3) and N complex multiplications 
in the frequency domain. 

2 

The Fresnel diffract ion amplitude i(j_) at z = r^/a .of a zone plate 

shadowgram s(r_) i s given by the convolution of s ( r ) with w(r) , where 

w(r) i s the Fresnel wavefunction at z. The Fourier transform of i ( r ) 

i s given by 
2 2 

1(V) = e S(v) W(v) = £ S(v) e ' X l t r l V (3 .7 ) 

The reconstruction of s(r) by computer is done by first multiplying the 
r 2- 2 

Fourier transform cf the product. 

i(r) = J?-1 (S(NO e - i m l ' ; J (3.8) 
A computer generated thyroid phantom was used to test this method 

The reconstructed image is shown in Fig.3-18, plotted by the computer. 

It is seen that the reconstruction contains a large amount of back­

ground, which is, as explained before, due to the positive bias 

component (=1/2) of the zone plate. This high level background may be 

eliminated to certain degree by frequency filtering, at the expense 

of losing part of the low frequency components of the object in the 

resulting image. Many investigators have used the off-axis section of 

a zone plate, for which the undiffracted light pattern does not overlap 

the desired diffraction pattern and is therefore not a problem, A 

halftone screen must be used here as a spatial frequency carrier which 

moves the object frequency spectrum into the passband of the off-axis 

zone plate. The major drawback to the off-axis zone plate is that 
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its fine rings require a high-resolution ima^o dutrct-ui to be used, A 

much better approach to the background elimination is to use the complex 

coding method of Section 2,2. Applications of this method to the zone 

plate system as well as the multiple pinhole array system will be givon 

in Section 4.1. 
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4. FURTHER STUDIES AND CONCLUSIONS 

4.1 Complex Coded Aperture Imaging 

One of the problems associated with coded aperture imaging is that 

the background level in the reconstructed image of an extended object 

is always high if only simple binary coded apertures are used. As it 

is shown in Section 2.2, perfect reconstruction can be made only if the 

coding function h(r) and the decoding function n'Cr) are related by 

h(-r) ©h'(r) - S(r). For binary coded aperture functions h(r), there 

is no decoding function h'^r) such that hC-ir) © h f(r) = 8(j_)» The idea 

of complex coded aperture imaging is that by a combination of two or 

more shadowgrams we get a new shadowgram which can result in an image 

without background. The combination of the shadowgrams is made in such 

a way that the new shadowgram appears to be from a coded aperture with 

both positive and negative transmissions and the reconstruction of this 

new shadowgram contains no background. 

FZP Coded Aperture Imaging 

It was shown in Section 3.3 that the background in the coherent 

optical reconstruction of a positive zone plate shadowgram is from the 

positive bias term of the zone plate transmission function, \ circCr/r..), 

This positive bias term can be eliminated, as mentioned in Section 2.2, 

if we combine two zone plate shadowgrams s. and s_, s.(r_) from a positive 

zone plate and s.(ir) from its corresponding negative zone plate, by 

s(r) = ŝ (r_) - s 2(r). The reconstruction of s(r) is the same as that of 

an ordinary zone plate shadowgram. 
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The Fresnel diffract ion amplitude of s ( r ) at z = r . /^ . i s given by 

i ( r ) = 6 S ( r ) © w(r) = <L o ( r ) © fh ( r ) - h ( r ) l © w(r) — — ^ zp *" zp j — 
(4.1) 

From Eqs , (2 .4 ) , (2 .6 ) , and (3.3) we have 

i ( r ) = € o(r) © © w(r) (4.2) 

n=odd 
The intensity distribution of i(r_) is given by (see Eq.(3.6)) 

i ( r ) i * ( r ) 
J 1 (2Nitr / r N ) 

Nrtr/rN 

1 c i r c ( r / 2 r M ) + . . . (4.3) 

Thus, the background term, ^circ(r_/r N ) in Eq . (3 .6) , i s eliminated 

through the use of th i s complex coding technique. 

The autocorrelation of a combined zone p la t e function h - h , 
zp zp 

as described in Section 2.2, can also be used for the reconstruction of 

the combined shadowgram s(r). In fact, reconstruction of s(r) by auto­

correlation is almost the same as reconstruction of s(r) by Fresnel 

diffraction because their point responses are similar.(compare Fig.2-ld 

and Fig.3-15) The reconstructed image of s(r) by the autocorrelation 

technique is given by 
i(r) = s(r) © fh (r) - K (r) = o(r) © a (r) (4.4) — - ^ zp - zp - j _ c - , 

where a ( r ) i s the autocorrelation function of the combined zone p la t e 
c — r 

function h (r) - h (r). A computer simulation of this complex coded zp — zp — r 

aperture imaging was made with a computer generated thyroid phantom (as 

the object). The reconstruction of the combined shadowgram s(r_) was 

done by autocorrelation, and the resulting image is shown in Fig.4-1. 

It is seen that this image contains no background and is much better 

than that from the simple coded aperture imaging, as shown in Fig,3-18. 
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A further test was done to study this complex coding technique 

with a 3-D source distribution. The source distribution consisted of 

three sheet patterns, a triangle, a cross and a circle, separated by 

2 cm in depth. The diameter of the zone plate (9 zones) was 13 era. 

The result from the reconstruction using complex coding with t*o zone 

plates (positive and negative) is shown in Fig.4-2. It is seen that 

the structures from the off-plane activities produce a large amount of 

background artifacts in the in-focus images. The reason for this 

unpeasant result is because of the multiple-focusing property of the 

zone plate. Each n^O component of the zone plate transmission function 

(see Eq.(2.5)) corresponds to a focus (real or virtual for n<0 or n>0). 

In the reconstruction of the zone plate shadowgram, the contribution 

of the n^O&-l components is relatively small when the n=-l component 

is in autocorrelationj and could be large when the n=-l component is in 

crosscorrelation (in this case one of the n#0&-1 components may be in 

autocorrelation and therefore result in an unwanted peak). As was 

explained in Section 2.2, the reconstruction of a 3-D source distri­

bution contains mixtures of autocorrelations and crosscorrelations, 

therefore, background artifacts are produced in the reconstruction from 

all the non-signal carriers of the zone plate (i.e. those n#-l terms of 

Eq.(2.5)). 

Among all the non-signal carriers of a zone plate, the components 

with n=0, n-lp n=-3, n=3 are most important. Complex coding with two 

zone plates (positive and negative) can eliminate only the contribution 

from the component with n=0 while complex coding with three zone plates 
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(shown in Fig.2-3b) can eliminate the contribution from all of them. 

(see Eq.(2.11)) Therefore, it is expected that by complex coding with 

three or even more zone plates the background artifacts in the recon­

struction of 3-D source distributions can be reduced. 

MPA Coded Aperture Imaging 

It is also possible to combine two or more MPA coded shadowgrams 

such that the resulting shadowgram shares the same autocorrelation 

property as the previous combined zone plate shadowgram. For a large 

random pinhole array with thousands of holes and 502 transmission, we 

define its "negative" in the same way as that for a negative zone plate, 

within the boundary of the array. We let the transmission function of 

this random pinhole array be given by h_(r) and let the transmission 

function of its negative be given by h_(r). Within the boundary of the 

array h (r> equals 1 if h (r) is 0 and vice versa. The combined n — p — 
function, h(r) ̂  h (r) - h (r), has a sharply peaked autocorrelation 

function. This can be shown as follows 

a(r) = h(-r)©h(r) = jh p(-r) - h n(-r) © j h p(r) - hn(r)j (4.5) 

a(r) = a p(r) + ^(r) - c p n(r> - c n p(r) (4.6) 

a (r) = h C-r)©ti(r) and a„(r) ~ h (-r) © h (r) are auto-p — p ~ p — n — n — n — 
correlation functions, and c „(r) = h (-r) © h (r) and c (r) = pn — p — n — np — 
h (-r_) © h (r_) are crosscorrelation functions. 

To derive expressions for the autocorrelation and crosscorrelation 

functions, we first consider the correlation function of two arbitrary 
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functions f (x ,y) and g (x ,y ) . 

c(x,y) = f ( -x , -y ) © g(x,y) = / / f<?>j> 6(?+x,^+y) o W (4.7) 

If f(x,y) and g(x,y) are aperture transmission functions of binary 
values, 0 and 1, the correlation function c(x,y) becomes 

*.,y) = sum of all l's of the product f(?.f) g(7+x,£+y) (4.8) 

Now, we assume the pinholes and the entire array are square in shape* 

with the width of each pinhole given by w and the width of the entire 

array given by L. The autocorrelation function a (r_) (or a (r)) and 

the crosscorrelation function c _(r) (or c (r_)) are given by 

a (x,y) = sum of all l's of the product h (>?>/) h (>J+x,£+y) 

c n(x,y)= sum of all l's of the product h (7.f) h n(? + x>f +y} 

It is very clear that a (0,0)=N=the total number of holes in the array 

and c (0,0)=0 because h (7,0 is the negative of h (9<f). As |x| and 

|y| become slightly greater than u, a (x,y) drops suddenly to N/2 and 
c (x,y) increases suddenly to N/2 because half of the holes in h (i?,rf) pn p i o 
are expected to overlap to those in either h W+x,^+y) or h (y+x,f+y). 
As |x| and | y| become larger and larger, both a (x,y) and c (x,y) 
become smaller and smaller, and become zero finally when jx| and |y| 
are greater than L. Thus, the appropriate expressions for a (x,y) 
(or an(x,y)) and c (x,y) (or c (x,y)) are 

ap(x,y> » %NA(x/L)A(y/L) + SjNrect(x/w)reet(y/w) + crp(x,y) («.9> 

c (x,y) ss %NA(x/L)/.(y/L) - %Nrect(x/w)rect(y/w) + ff n(x,y) (4.10) 
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where the rectangle function rect(x/w) is defined by 

' 1 0 , otherwise 

and the triangle function ^(x/L) is defined by 

AW*' \ o, otherwise 

The noise terms of Eqs.(4.9) and (4.10), CT (x,y) and ff (x,y), give 
measures of,,the deviations of the correlation functions from their 
expected values. Since w ̂ £L for a large array of thousands of holes, 
the rectangle function rect(x/w) represents a sharply peaked square 
pulse of small width. The autocorrelation function a(£> of Eq.(4.6) 
is given by 

a(r) « 2N rect(x/w)rect(y/w) +<r(x,y), (4.11) 
where a < „ y > - ( <fi + £ ^ + ^ ) * 

We see that the background term, JlCx/L)yl<y/L), in the auto­
correlation function of a simple random pinhole array is eliminated 
through this complfx process. Since the distribution of a(r) is like 
a delta function, the complex coding technique used for zone plate 
imaging can be applied here too. However, for random pinhole arrays 
of small number of holes, complex coding may not work well because of 
the noise term of £q.(4.11). This noise term is relatively unimpor­
tant when the number of holes in the array is very large, but can be 
important if this number decreases. 

For pinhole arrays other than the random pinhole array* the 
complex coding technique still applies. For example, one of the 



simplest way to do complex coding with a non-redundant pinhole array i s 

to apply Eq.(4.5) using h (r;) = h (-r_) p where h ( r ) i s the original 

non-redundant pinhole array and h ( r ) repres i t s the array obtained by 

rotating the original array IPO"'. Computer simulations of th i s case 

were made and the r e su l t s showed that only small improvements were 

achieved th i s way. Ther*j is a be t t e r way to eliminate the background in 

the reconstruction of NRPA coded shadowgrams. The method wi l l be studied 

in the next section. 

4.2 Decoding by Fourier Transform Deconvolution 

The frequency domair analysis of coded aperture imaging in Section 

2.3 gives us a method of decoding in the freq*ency domain. Eq.(2.19) i s 

a form of the decoding transfer function H'(v^). Two expressions are used 

for H*(^) according to the magnitude of the coding transfer function 

| H ( J , ) | . 5 6 

H'<v) = HCv)/ |H(v-J 2 , i f |HCv)|>e<.Hm ; i x=rtMax(|H<V)|) 

2 2 I I W - 1 2 ) 

The parameter ot should be carefully chosen to supress the amplification 

of statistical fluctuations in the measurement, without losing too much 

fidelity. He define the transfer function H(v) at frequency N to be a 

"zero" if H(v) is smaller than the cut-off value otH . The total i - i max 
number of zeros in j H(\0 j of a coded aperture system gives us a measure 

of the system's response. 



The reconstructed image i(r) in the frequency domain is given by 

I(v) = S*(V) H«(V) = 0(V) H*(V) H'(^> . 

At those frequencies "̂  where |H(V)| <, ctH the frequency components of 

the image are given by I(v) = O N ) H*(v) H(v) / ot H 2 . 

In the spatial domain* the above expression becomes 

iCr) = o(r) © [hC-r) © h(r)] / o t V ^ [o(r) © a(r)] / o t V ^ (4.13) 

Thus, if jH(v)| has large percentage of zeros, the reconstruction with 

Eq.(4.12) is dominated by the autocorrelation. 

An investigation of the total number of zeros in | H ( V ) | as a 

function of ot for a few coded aperture functions was made with a digital 

computer. The fast Fourier transform algorithm was again used to compute 

the transform H(v). The test functions were stored in matrices of 

12S x 128 elements and the transforms of these functions were stored in 

complex matrices of 05 x 128 elements. Three zone plate functions and 

one pinhole array function were used for the investigation. The zone 

plate functions were h (r), h- (r), and h (r) - h (r), which rcpre-zp — zp — zp ~ zp — 
sented a positive zone plate with 9 zones, a negative zone plate with 10 

zonesj and a combined zone plate with 10 zones respectively. All of the 

zone plates have the same r. (radius of the first zone). The diameter of 

the positive zone plate was equivalent to 76 elements (or bins) of the 

matrix usedj and the width of its last annular zone was about 2 bins. 

The pinhole array function was h (r), which represented a non-redundant 

pinhole array with 9 holes.(shown in Fig.4-5a) The size of the array 

was about the same as those of the zone plates and the diameter of each 
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pinhole in the array was slightly less than 2 bins. The results from the 

computer calculations are listed below. 

h(r) = h (r) A fr> h (r)-ff <r) h (r) 
— zp — zp — zp — zp — np — 

Total number of zeros (samples with values < cLH ) 
r ** max 

in 8320 samples of |H(v)| 
et « 0.001 1535 1150 123 

« = 0.01 6784 6483 970 11 

tt. = 0.05 - - — - - 455 

cC= 0.1 - - - - — 1789 

It is seen that, for the samed, | H ( V ) | of the non-redundant 

pinhole array has far fewer zeros than trose of the 2one plates. Because 

of this fact and the good autocorrelation property of the non-redundant 

pinhole array, it is ejected that the non-redundant pinhole array can 

give us better image reconstruction with Eq.(4.12) than the zone plates. 

The non-redundant pinhole array was used to study the decoding 

method given by Eq.<4.12). The initial work was to examine the system's 

behavior under various conditions wit̂ i a point gamma-ray source. 

Computer simulations of the coding-decoding process with different values 

of ot and different levels of input statistical noise were made, and the 

results are shown in Fig.4-3. It is seen that the width of the signal 

peak (or resolution) is smaller for smaller values of ct while the 

magnitude of the noisy background is higher for these ot . 

From Fig.4-3, a compromise between the resolution and the signal 

to noise is probably given by et=0.05. ThiL value of oC was used in a 

test reconstruction of a 2-D source distribution. The test object was a 
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computer generated thyroid phantom with 5% statistical noise in it. This 

5% noise-to-signal ratio was based on that the system received a random 

number of events with an average of 400 from each resolution element of 

the object if the intensity of that element is 1. The result of the 

reconstruction together with the non-redundant pinhole array used are 

shown in Fig.4-5. It is seen that good reconstruction without back­

ground can be obtained with this decoding method. 

Effects of oL on the point reconstructions at planes some distances 

away from the in-focus plane were also studied. The results from 

computer simulations] as shown in Fig.4-4, indicate that the off-plane 

reconstructions are not very sensitive to changes of el . The average 

magnitude of th' .r-kground fluctuatio .s in each off-plane reconstruction 

is very small* aî uut 12 of that of the in-focus signal peak. This back­

ground to signal ratio is much smaller than that of the zone plare system 

in the previous section. 

A computer simulation of the reconstruction of a 3-D source 

distribution, (consisting a cross, a circle, and a triangle) was made and 

the results are shown in Fig.4-6. The input statistical noise was 5% 

for each resolution element of the source object. ct=0.05 was used. It 

is seen that images of Fig.4-6 are much better than those of Fig.4-2. 

One important thing has not been explained yet. The results from 

the computer reconstruction using the method described in this section 

seem to be not as good as those from the optical reconstruction using the 

correlation method (see Figs.3-7, -8, and -9). Since the point recon­

structions from the method given by Eq.(4.12) sxe better than those from 
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the optical correlation method, the reconstructions shown in Figs. 4-5 

and -6 should look better than those shown in Pigs. 3-7, -8, and -9. The 

reason for the better appearance of the reconstructions in Figs.3-7, -8, 

and -9 is because those reconstructions were printed on high contrast 

paper. The biasing action of the paper suppressed the background 

artifacts in those reconstructions. 

4.3 Conclusions 

It was shown in Section 3.2 that a NRFA coded aperture system 

provides us a simple and economical way to obtain the tomographic images 

of an extended 3-D source distribution. It was also shown that both the 

autocorrelation and the crosscorrelation of a non-redundant pinhole array 

are suitable for coded aperture imaging. The non-redundant nature of the 

pinholes results in good image resolution and uniform background witn 

few artifacts in the reconstructed images. 

Improvement of simple coding by complex coding was discussed in 

Section 4.1. By use of a positive and a negative zone plates one can 

effectively remove the background produced by the zero order component 

of the zone plate from the reconstruction. Howeveri background 

artifacts are still present in the reconstruction of a 3-D distribution 

because of the other unwanted components of the zone plate. It is 

expected that by use of three or even more zone plates one may effective­

ly remove a few of the most unwanted components of the zone plate (see 

Section 2.2), but this complicates the imaging and reconstruction process. 



In theory the best coding with zone plates can be obtained if two 

sinusoidal (sine and cosine) zone plates are used. In this case a 

complex coding with the two zone plates can give an equivalent impulse 
. 2 / 2 

response e ' 1 (=cos.zp + isin.zp), which corresponds a constant 

modulation -ransfer function (see Section 2.3), 

The Fourier trar-sform deconvolution method in Section 4.2 appears 

to be very powerful for decoding of NRPA coded shadowgrams. The in-focus 

point reconstructions (Fig.4-3) are very good on the basis of resolution 

and signal to noise. The out-of-focus point reconstructions (Fig.4-4) 

give only a small amount of background which fluctuates above and below 

zero. This results in very few background artifacts in the recon­

structions of 3-D source distributions. Eq.{4.12) is only one of the 

many possible forms for the decoding transform H'(y)' Other forms of 

H'(v) may be found in the future, which can minimize or eliminate the 

background artifacts. 

It was mentioned in the begining that coded aperture imaging is 

only a special branch of tomography. In coded aperture imaging the-

direction of each gamma-ray event can not be determined exactly because 

of the aperture used. A few other tomographic imaging techniques (or 

devices, see Section 0,2), on the other hand, operate on events with 

known directions and form their images by principle of back-projection. 

The advantage of having the direction of each event know is that better 

estimate of X.h*± 3-D source distribution can be made from enough data 

samples cf the distribution using various algorithms (depending on the 

sampling), A new algorithm for 3-D image reconstruction from tomography 
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will be given in Fart I I . The par t i cu la r way of sampling for that image 

reconstruction algorithm wil l also be given. The direct ion of each 

gamma-ray event collected by the detector must be known there . 
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PART I I t THREE-DIMENSIONAL IMAGE RECONSTRUCTION FROM FOCAL-PLANE 

TOMOGRAPHY 

5 . FOCAL-PLANE TOMOGRAPHY AND THREE-DIMENSIONAL IMAGE RECONSTRUCTION 

5 . 1 Gamma Camera Sys tems f o r F o c a l - P l a n e Tomography 

As mentioned in the begining, a number of exist ing radionuclide 

imaging devices other than the coded aperture imaging system can also 

give depth information about a 3-D source d i s t r ibu t ion . These devices 

have in common that they provide tomographic images of the object , tha t 

i s , that images of a given object plane have that plane in focus and a l l 

other object planes contribute an out-of-focus background superimposed 

on the in-focus image. 

Imaging devices which give depth information about a source point 

require radiat ion from the point to be detected from d i s t i nc t ly separate 

d i rec t ions . In these imaging devices the direct ion of each gamma ray 

event is known and, i f separate views of a source d is t r ibut ion have been, 

made, a tomographic ijflage on any plane through the source can be made fay 

back-projecting the gamma rays onto tha t plane. 

Since the direction of each gamma-ray event i s known, the depth 

information content of these imaging devices i s much higher than that of 

a coded aperture imaging system. In f a c t , the tomographic images obtained 

from these imaging devices have some unused information about the original 

3-D source d i s t r ibu t ion . In the following chapters, a method of 3-D 

image reconstruction which u t i l i z e s t h i s unused information to improve 
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the tomographic images wi l l be studied. Three imaging devices which 

give tomographic images are described below. 

Multiple Sin^le-Pinhole Camera 

One such tomographic device uses multiple single-pinhole views (Fig. 

5 - l a ) . The depth-information propert ies of these multiple views i s 

i l l u s t r a t e d in Fig,5-lb where the source d is t r ibu t ion i s a single point . 

An exposure i s made using one pinhole selected from the array. Tomo­

graphic images on a number of planes are made by back-projecting photons 

from th is exposure through the same pinhole and adding the appropriate 

in tens i ty to each tomographic plane at i t s intersect ion with the l i n e . 

The process i s repeated for the other views and the f inal tomographic 

plane image i s the sum of contributions from a l l these views. The plane 

which actually contained the point source has a sharp image while in 

other planes the image of the point source i s blurred out . 

In analyzing image formation i t i s useful to use the point response 

function h. . ( r_,rO. This function, charac te r i s t i c of the imaging device 

used, describes the response at point r_ in plane j to a point source at 

point r_' in plane i . From Fig.5-lb i t i s seen that th i s function, or 

blurring pat tern , for the mult iple single-pinhole camera has a shape 

similar to the original array of pinholes but with a s ize which depends 

upon the geometry. The non-redundant pinhole arrays which were used 

previously for coded aperture imaging can be used to obtain multiple 

projections for th i s camera system, and a 9-hole non-redundant pinhole 

array is shown in Fig.5-2a. 

Rotating Slanted-Hole Collimator Camera 
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Another device used to obtain tomographic images in Nuclear 

Medicine is the rotating slanted-hole collimator(Fig.5-3). The colli­

mator rotates about an axis perpendicular to the detector and the 

parallel holes are slanted at an angle to this axis, generally about 20 

degrees. Hhen the collimator is at a given position the image of a point 

source is a single point on the detector. When the collimator has 

rotated 180° the image of this point source has traveled on the arc of a 

circle to an opposite position. As done previously, tomographic images 

on a number of transverse planes can be made by back-projecting the 

detector image obtained at a given position of the collimator along the 

known direction of the parallel holes and tnsn repeating this process 

for all positions of the collimator. 

In one mode of operation of this camera views are taken at discrete 

positions of the collimator and the blurring patterns have a shape 

similar to Fig.5-2b. In another mode the collimator is rotated 

continuously during data collection and the blurring pattern is a circle 

(Fig.5-2c). 6 3 

Positron Camera 

Positron cameras are currently under intensive development '• 

because of their ability to give tomographic images without the use of 

a collimator and the associated loss of intensity. The two 511 KeV 

annihilation gamma-rays from a positron source radiate from the source 

point at 180 to each other (Fig.5-4). Interactions with two detectors 

determine, as in the previous cases, only a line on which the source lies. 

Projection of events detected onto a transverse plane gives, again, a 
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tomographic image of the source distribution with that plane in focus 

and other planes blurred and superimposed. 

The fraction of detected events from a point source in the midplane, 

say, decreases considerably as the point source moves away from the 

center of the.plane. The three-dimensional image reconstruction method 

which will be studied later requires that the point response function 

remains constant in shape, size, and intensity as the point source moves 

over the camera field of view on a given plane (this is called spatial 

invariance), although it may be different for different planes. This 

blurring pattern can be maintained constant over a given area of a plane 

if the computer which constructs the tomographic image planes accepts 

data only for those events for which Jx--*,! < d and Jy,-/;! | <£ d where 

d is smaller than w, the width of the detectors (square in shape). The 

region of constant detection efficiency for the midplane which results 

is a square of width w-d. The blurring pattern is also a square (Fig. 

5-2d). If the detectors are of disc shape, the appropriate expression 

for the acceptable data is jrj-^l < d . The blurring pattern is 

therefore a disc. 

5.2 Solution for ThreerPimensional Images from TomoRraphic 

Images 

Conventional radionuclide focal-plane tomography produces images 

of radioactive objects within the human body in which structures at a 

chosen depth appear in focus whereas those at other depths are blurred. 
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The inherent limitation of these techniques is their inability actually 

to remove background signal due to objects not in the chosen focal plane. 

Tomography disperses the events from off-plane activity but such events 

are still present as a semi-uniform background that can produce artifacts 

or obscure faint structures even when the structures are located on the 

focal plane of a given tomographic image or tomogram. In Nuclear 

Medicine imaging with its poor resolution and frequently low contrast 

objects it is often not possible to distinguish the in-focus plane from 

the out-of-focus images. Removal of the background would enable 

detection of smaller lesions and lesions of lower contrast. 

A tomographic image of a plane section through an object has a 

finite width slab of the object in focus. The thickness of this slab 

is the depth of field which depends on geometry and detector resolution. 

Also present in this tomographic image is an out-of-focus background 

contributed by the rest of the object. If this background is removed 

from a collection of these tomographic planes which are separated by the 

system depth of field, then the three-dimensional object is known to an 

accuracy determined by the longitudinal and lateral resolution of the 

system. 

Now, the remaining problem is how the out-of-focus background can 

be removed. Let us examine the constituents of a tomographic image 

first > We assume in the following that the object is located in N 

planes and is represented by the functions o*(r), i=l, ..., N . N 

tomograms t.(r) are formed by a computer from camera data using the 

backprojection methods discussed previously* Since the point response 



71 

function h. •(£,»£*) represents the system response at £ on plane j due to 

a point source of unit intensity at £* on plane i, the total contribution 

from plane i to plane j is just the integral of o.(r*)h. ;(£»£*) over all 

r;'. If the imaging system is made to have a constant point response 

function as described previously, then h, .(£,£')-h. .(r_*-r_f) and the above 

integral becomes a convolution integral of o.Cr) and h. «Cr_). The tomo­

graphic image t. .(r) on plane j due to source o.(r') on plane i is then 

given by 

t^.Cr) * ro-(£l)h.j(r-r.,)dr' = o^r) © h^Cr) i,j=l,2,...Np (5.1) 

Since the tomographic image has contribution from a l l object planes we 

have 
N 

t / r ) = £ P o . C r X g J h . ^ r ) j = l , 2 , Np (5.2) 

Taking Fourier transform on both sides of the above equation, we have 
N 

V * ) = L P QiM H-X .̂) 3=1,2 N (5.3) 

The above equation i s l inear and can be solved for 0.(^0 eas i ly i f 

dct( H. X>0 ) ^ 0 for a l l v_. The object d i s t r ibu t ion in spa t i a l domain 

can be obtained by taking inverse Fourier transform of 0. ( ^ ) . A detailed 

description of th i s 3-D image reconstruction process wil l be given in the 

next chapter. 

I t is worthwhile to point out that the tomographic images obtained 

from a coded aperture imaging system can not be used for the above image 

reconstruction because of det< H. .(v.) ) = 0 for a l l V in coded aperture 

imaging. To prove t h i s , we l e t h . ( r ) represent the response of the 
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coding system to a point source on object plane i and let ivj(;r) 

represent the response of the decoding system on image plane j to a point 

on the shadowgram for coded aperture imaging. Assuming the system is 

linear and space-invariant, the point response function h. .(;r) of the 

coded aperture system is then giver by h. .(r) = h.(r) © h.(r_). The 

Fourier transform of h^.Or) is given by H^.C^) = H?(£) H,(^). The 

determinant of ( H. .(v) ) of this system is given by 

det <H i ; j<v» = 

H1H H2N •' , HN H P P P P 

" "??•••"?_ 
44- • , H 1 

44- ..<« 

44-
p p 

-4 
P 

Therefore, det(H. .(v))=0 for all \£ in coded aperture imaging. 
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6. BASIC MATHEMATICS FOR THREE-DIMENSIONAL IMAGE RECONSTRUCTION 

6.1 tomographic Images from Focal-Plane Tomography 

As explained in the previous chapter, the formations of tomographic 

images by the three tomographic imaging camera systems are similar, that 

is, all the tomographic images are made through back-projection. 

Therefore, only the multiple single-pinhole camera system is used to 

illustrate the formation of tomographic images. To produce the tomo­

graphic images for a pinhole cameia system, a number of separate 

exposures of the object are obtained with a pinhole aperture and a planar 

gamma ray detector, and with the pinhole being moved successively to 

different points of an N.^point array (Fig,6-la). The known location of 

tho pinhole and the event positions recorded by the detector determine 

single-pinhole images tomographic images on N transverse planes through 

the object are built up with computer in the following manner (Fig.6-lb). 

The K pinhole image is projected back through the K pinhole onto 

each of N tomographic planes. This is done for all the pinhole images 

and the final tomographic images t., j=l,..., N , are the sum of the 

contributions from each of the N single-pinhole images. These are true 

tomographic images, the image t,, for example, having in-focus ali the 

points of the corresponding object plane o. with all other planes 

contributing out-of-focus background. 

If the three-dimensional object can be approximated by intensity 

distributions o.Cr) on a finite number of planes, i=l,.,., N , then to 
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construct these o.*s from the tomographic images one needs to consider 

the equations which describe the formation of the tomograms. 

He assume here and in the following that the pinholes in the array 

are small (delta functions). The effect of finite width pinholes will 

be discussed later. Let the function h. .(r) be the response of• the j 

tomographic plane to a point source located in the i object plane. 

As discussed previously, the response of the tomogram t.(r_) to o.(r) is 

its convolution with h. .(r), o. (r_) © h. .(r), and t.(r) is the sum of its 

responses to the N object planes. 

We can find the form of n. .(r) and the scale factor in o.(r) from 

Fig.6-lc which shows the response of two tomographic planes to a point 

source located on an object plane. The figure shows that h. .(r_) is a 

delta function of intensify N. and that h..(r) (j=H) is the pattern of 

If h(r) is the function which describes the pinhole array transmission 

h. .(r) = h<r/m..) * E 6Cr-m,.r.) i,j=l,2,...,N (6.1) 
*3 •LJ k = l 1 J ^ " P 

where m. . = (s.-s.)/s. and s. is the distance of t. (and of o.) from the 

pinhole array. The object intensity which contributes to the tomogram 

t.(£) is ^r/ot^jVct^j "here e£ = s./s^. The equation for the j 

tomogram is then 
t.(r) = I P 4 - o.(r/oi. .) © h..(;r) j=l,2, ,N <6.2) 

Eq.(6.2) is a set of N equations in the N variables o-(r_). The t-*s 

are combinations of single-pinhole image data and the h. .*s depend only 
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on geometry, that is, on pinhole locations in the array and on placement 

of the reconstruction planes. All the equations are functions of r_, 

position relative to the of ic axis, and these N equations must be 

solved for each position r_> in digital processing for instance, on a 

64 x 64 matrix. 

The tomographic images of the other two camera systems can be 

expressed by the same formula as above, cf course, with different point 

blurring functions h, .(r_) as shown in Fig.5-2. 

6.2 Image Reconstruction by Fourier Transform Deconvolution 

Taking the Fourier transform of Eq.(6.2) we have 

N 
TjCa) - t p OjC^i j* H t jcv>, j=l,2,..., N p (6.3) 

where the quantities T., 0. , H. . are functionsof spatial frequency V 

and are the Fourier transform of the corresponding quantities of £q* 

(6.2). To exhibit these equations as a set of linear equations in the 

quantities 0.(v) we need to evaluate each of the equations for T.(v) at 

a different point yj = s. £ 

r.Cv'/s.) = t ? <Ma*/s.) H,.(v»/s.), 
J J i=\ ^ 

or in matrix form T = H 0 

j=l,2,..., N p (6.A) 

(6.5) 

T 2(v'/s 2) 

T N (v'/s N >, 
P P ' 

(OJCV'/SJ) 

o 2(v/s 2) 

\ p p / 
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V. x<a"/« 1> 
2> N 2 v: 

P (6.5) 

\ H <>,•/*„ ) H (../Sj, ) H,, Cv-/SK ) / 

P P P P P P P 

For those (angular) spatial frequencies V for which the deteminant of 

Kj D(v_') = H. .(v*/s.) , is not zero, an inverse matrix, H~ < exists and 

Eqs.(6.4) can be sloved for 0.(v'/s.). 

H" 1 T = H" 1 H 0 = 0 (6.6) 

Inverse Fourier transformations then give the desired bacKground-free 

images O.Q:), 

J'l0=J'U 

OjCv) 

%W 

0 l(r) ^ 

o 2(r) 

% <E> / P ' 

(6.7) 

If the deteminant function H(V) is zero at some angular spatial 

frequency V 1 then the reconstructed transform images 0.(v) are not 

determined at the spatial frequency v_»/s.. From Eqs.(6.4) and (6.1) 

we can get 

lWv'/s,)= £ h e 
kil 

•i2lV.r.(s.-s.)/s.s. i,j=l,2 « (6.8) 
— —K 1 J 1 J p 

Since H\.(())=N =ccnstant for all i's and j's, the deteminant D(v') 

is always zero at V'^2. This means that the reconstructions o.(r) are 
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undefined by an additive constant. This is not a problem if this is the 

only zero since this constant can be determined by some subsidiary 

condition! for instance, that o.Cr) has no negative value and the 

background outside the field of view is supposed to be zero. 

The general determination of additional zeros of the determinant 

DCv*) is complicated and has not been done yet. The physical reason for 

zeros in the binocular vision case (N =2), for example, is as follows. 

Spatial frequency on each of two input planes can be such as to give the 

same spatial frequency on the detector plane for each of the two single-

pinhole exposures. On reconstruction one is uncertain how much of the 

original frequencies to a ascribe to each plane. A regularly spaced 

array will increase the number of zero. However numerical calculations 

of D(v_') for non-redundant pinhole arrays of 9 to 24 pinholes and for 

2-» 3-, and 4- plane geometries showed no zeros to exist, other than at 

y_*=0. Although no general proof is made it would appear that zeros of 

the determinant can easily be avoided by the use of non-redundant pinhole 

arrays. 

The determinant function D(V*) is characteristically very low near 

V'=0 but rapidly increases to its maximum value. DOd/) varies with the 

shape of the pinhole array as well as with the number and the location 

of the tomographic planes. Fig.6-2 gives the cross-sectional plots of 

the determinant functions as functions of array types (regular and non-

redundant arrays) and plane geometries (2-, 3-, and 4- plane geometries). 

The non-redundant pinhole arrays are seen to give a determinant D(v_*) of 

more uniform magnitude compared to the regular pinhole array. Fig.6-2-1. 

shows the pinhole arrays used for computing those determinant functions. 



6.3 Systems of Finite Spatial Resolution 

To investigate the effect of using an aperture array which has 

finite width pinholes of diameter d we consider the geometry of Fig.6-lc. 

A point source in plane i casts a shadow of a given pinhole onto the 

detector plane which has a diameter d*=d(s +s.)/s.. The diameter of this 

spot cast on the tomographic plane j through the corresponding zero-width 

pinhole on the right of the figure (zero-width because this is a mathe­

matical operation not a physical process) is d..=d*s,/s =d s,(l/s.+l/so). 

The real point response function that occurs in Eq.(6.2) is 

h..(r) = h..(r)© circCr/d..). circ(r/d. .) represents a circle 

function of diameter d.., which is defined by 

rl, if|r|£d /2 
circ(r/d,.) = { 1 J (6.9) 

1 J l 0, if |r| > fly/2 
If we define 

d i = d s^l/Sj + 1/EO) = dyMy (6.10) 

then 
circ(r/it..) = circ(r/dj«tjj) 

Upon replacing n i^£^ i n Eq.(6.2) by h. AT) we have 
N 

t..(r) = 1 - ^ o 1(r/d i j) © h i ; j (r) © circCr/d^ j > 
i = 1 *ij 

J " 1 ' 2 N p 
(6.11) 

If we define a new object distribution function o.(r) by 

of(r) = o.(r) © circ(r/d.) , i = 1, 2, ..., N (6.12) l — I — i p 
the expression of t.(£) in Eq.(6.11) becomes 

N . 
t.(r) = £ P - ^ °?Cr/*,,) © h.,(r) j = 1, 2, .... N (6.13) 
J i=l <*. f J J p 
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Eq.(6.13) has the same form as Eq.(6.2), therefore, the solution 

of o-(r) can be obtained by the same deconvolution method as described 

previously for the infinite resolution system,. 

The reconstructed images of this finite resolution system are 

given by o.(r), which is defined in Eq.(6.l2) as a convolution integral 

of o.(r) and circ(r/d.). The operation of the circle function on o.(r) 

is considered as a blurring operation which occurs whenever an imaging 

system of finite resolution is used. 

Apparently, the image resolution of the entire process, tomographic 

imaging and 3-D image reconstruction, depends only on the first part of 

the process. In other words, the resolution of the image is defined 

when the object is imaged by the camera, and the later image processing 

by the computer makes no change to this resolution (provided that the 

computer has enough memory to represent and process the data from the 

camera). Therefore, the formulas for the lateral and depth resolutions 

of a MPA coded aperture system can still be applied to this 3-D image 

reconstruction system. If a pinhole array of mean radius r (weighted 

by the distribution of pinholes in the array) is used for the tomo­

graphic imaging and 3-D reconstruction, then the lateral and depth 

resolutions for object plane i, at s. from the pinhole array aperture, 

are given by 

A x = d ( 1 + 5 i/s Q ) , (6.14) 

and 
A 2 = d C 1 + s./so ) S i / r m , C6.1S) 

where U l , 2, ...,» . P 
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7. EXPERIMENTS AND RESULTS 

7.1 Construction of Digital Image Read-Out System 

The MWPC system described in Section 3.1 is again used here. Since 

the 3-D image reconstruction method requires the use of fast digital 

Fourier transforms, the analog system is no longer feasible now. Instead, 

a digital computer together with an interface controller and some 

peripheral devices are used to read and store the MWFC output. As shown 

in Fig.7-1 the output signals from the timing and pulse height discrimi­

nators are used to start and stop a Camac digitizer. The function of 

the pile-up rejector used in the analog system (in Section 3.1) is 

replaced by a trigger conditioner. A delay gate sets the busy time 

interval for the trigger conditioner so that any signal pulses coming 

from the central wire plane within that time interval after the first 

one, which turns on the trigger conditioner, will be rejected. 

The prompt output of the trigger conditioner is used to start the 

digitizer and to trigger a pulse generator. . The pulse generator then 

generates two output pulses, both are delayed by a short time interval. 

One pulse is used to set the Look-at-me (LAM) signal for the Camac 

digitizer. A LAM signal is a signal sent by the Camac module to the 

Camac crate controller to indicate request for attention. The other 

pulse is used to stop counting of the digitizer. The time delay of these 

two pulses from the prompt output of the trigger conditioner is about 5 

microseconds while the busy time interval of the trigger conditioner is 
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about 130 microseconds. This long busy time interval of the trigger 

conditioner is required because the PDP-11/10 software takes about 120 

microseconds to read the x and y data, to locate and increase a particular 

memory location according to the x and y data* and to check the status 

of the switch register and the crate controller. 

The timing of the Camac digitizer is provided by a 150 MH clock, 

and the digital information of the x and y signals is transmitted 

through the "read bus" lines of a Camac crate to the crate controller. 

The PDP~11/Camac crate controller serves as an interface between the 

MWPC electronics and the PDP-11/10 computer. This type 1533A Interface/ 

crate controller made by Borer Electronics Ag serves to connect a Caraac 

crate directly to a PDP-11 Unibus. Built as a double width Camac module, 

the crate controller is designed on the principle of offering ,"." sparent 

operation in the reau/vrite mode whereby each crate subaddress appears 

as a separate peripheral on the Unibus. The 1533A has an interrupt 

vector generator for 16 vectors with individual priority selection which 

speeds the handling of LAM's considerably. 

The PDP-11/10 central processor controlls the signal reading, the 

image processing, the data transmission, and the image display of the 

MWPC system. All the computer system components and peripherals of 

PDP-11/10 connect to and communicate with each other on a single high­

speed bus kncwn as the Unibus, see Fig.7-1. The 28K core memory of the 

PDP-11/10 provides enough space for temporary data storage. For more 

processed data and long term storage, the disk unit of a PDP-11/45 system 

is available. Data transmission between the PDP-11/10 and the PDP-11/45 
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i s through a telephone l ine with maximum speed r-» 9600 bauds(bits per 

se-Dnd). The tape unit of the PDP-11/45 system i s also available for 

the permanent storage of processed data on magnetic tapes. The LA36 

DEC-writer i s a f a s t ( r e l a t i v e ^o the teletype) data terminal. I t pr ints 

from a set of 64 characters at speeds up to 30 characters per second. 

Data entry i s made from the 97-character keyboard. The Tektron.ix-4012 

Computer Display Terminal i s used for graphic p lo t t ing and input-output 

characters . Inputs to the computer are made through the Terminal's 

keyboard. Data from the computer can be displayed on the face or screen 

of the Terminal's cathode ray storage tube. Fig.7-2 shows a photograph 

of the en t i r e experimental set-up except the PDP-11/45 system, which i s 

a remote s t a t i o n . 

7.2 Software for Digi ta l Image Processing 

The i n t r i n s i c resolution of the MWPC detector and i t s associated 

electronics is about 2 mil l imeters . Since th/j active area of th is 

chamber i s about 48cm x 48cra, the t o t a l number of resolution elements in 

t h i s chamber i s about 240 x 240 = 57.6K which i s about twice of the 

memory s ize of the PDP-11/10 computer. To run a program with the PDP-

11/10 computer, about 8k memory space is required to s tore the system 

software, and another 4k memory space should be preserved for the program 

and subroutines which read and process the MWPC image data . Only 16k 

out of the 28k memory space i s available for storing tba dig . t ized image 

data of the MWPC system. In other words, the output of the MWPC can be 
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at most represented by a 128 x 128 single-word matrix in the computer 

programming. Because of *;his limitation, the spatial resolution of the 

digital system is at least 2 times worse than the intrinsic resolution 

of the MWPC detector. 

BASIC is used in the digital system because it is convenient. The 

computer program which reads and bins the MWPC image data contains an 

assembly language subroutine which runs a loop with a cycle time about 

120 microseconds. This subroutine commands the computer to chesk the 

LAM signal of the Camac digitizer first. When there is a LAM signal it 

means that an event is digitized by the Camac digitizer and is ready for 

computer to read. The computer then start to read the x and y coordi­

nates of that event through the Camac/PDP-11 interface controller. The 

values of x and y are then used to determine the memory location for that 

event in the 128 x 128 matrix which is assigned to begin at some 

particular memory address. The content of the memory location for that 

event is increased by 1, The subroutine then commands the computer to 

initialize the Camac digitizer through the Caraac/PDP-11 interface 

controller and wait for the next LAM signal. If the last switch register 

on the PDP-11/10 operator's console is raised at this time, the read 

cycle ends, otherwise, the read cycle continues. Since there are only 

16 bits in one memory word of the PDP-11/10 computer and the image 

matrix is represented by single-wore* elements, the maximum permissible 

number of events in cne element is 2 -1 = 65535 which is far above the 

maximum value obtained experimentally. 

The image of the MWPC output can be displayed on the screen of the 
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Tektronix 4012. The 6" x 8" display area of the Tektronix 4012 contains 

780 x 1024 points for the cathode ray beam. Since the width of a light 

spot on the screen is about 2 points, the total number of resolution 

elements on the display screen is 390 x 512. To display the intensity 

distribution of an image which is stored in an N, x N_ matrix, we divide 
390 512 

the display screen into N. x N- squares. Each square contains -rr- x -==-

gray-shade elements which are used to represent the contents of a matrix 

element. If an image of the MWPC output i s stored in a 128 x 128 square 

matrix, the maximum number of gray shades for each matrix element i s 

3 x 3 = 9. For a bet ter gray-shade display, the image should be rebinned 

into a 64 x 64 matrix. The gray-shade level i s then 6 x 6 = 36. 

To make tomographic images for the 3-D image reconstruction, a 

number of image matrices are needed. The PDP-11/10 computer can take 

only one 128 x 128 matrix and the r e s t of the matrices must be stored 

temporarily in a d i rec t accessible medium. The disc unit of the FDP-11/ 

45 computer i s used for th i s purpose. The data processing i s done by 

transmitting data in and out between the PDP-11/10 computer and PDP-

11/45 d i sc , and the f ina l r esu l t i s transmitted to the PDP-11/45 tape 

unit and stored on a magnetic tape permanently. 

I t i s very time consuming and inconvenient to have to transfer 

data in and out from one system to another. To avoid this inconvenience, 

the l a s t par t of the 3-0 image reconstruction which involves the use of 

Fourier transforms and matrix inversion and mult ipl icat ions i s done by 

a large off- l ine computer (CDC-7600). The formation of tomographic 

images for the 3-D image reconstruction is s t i l l done by the on-line 
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PDP-11/10 computer and the resulting tomograms are recorded on a 

magnetic tape using the PDP-ll/45 tape unit. The magnetic tape is then 

used as an input to the CDC-7600 computer. Tape conversion is necessary 

because that a PDP-11 computer word contains 16 bits while a CDC-7600 

computer word contains 60 bits. The 9—track magnetic tape obtained 

from the PDP-11 system must be decoded and recoded into CDC-7600 words 

before it can be used for the second part of the image reconstruction. 

The formation of tomographic images from a set of projections is 

the most time consuming operation in the entire 3-D image reconstruction 

process. Because it requires N coordinate shiftings for each event 

received by the detector and the total number of events in each 

projection is usually quite large (about 10 -10 ). If a computer with 

storage capacity larger than the PDP-11/10 computer is available) the 

formation of tomograms can be done while the MWPC data is being taken 

(provided that the data taking rate is low). In this case* no extra 

time is required to produce the tomograms. The image reconstruction of 

the tomograms takes very little time if the inverse matrix H is pre­

determined (H may be predetermined because it does not depend on the 

input object)* To illustrate the total computing time required to make 

a reconstruction we let N - 3 and let the three tomograms be stored in 

matrices of size 66 x 64. 

The first step of the 3-D image reconstruction process is Fourier 

transformation of the three tomograms. The fast Fourier transform (FFT) 

algorithm described in Section 2.3 is used here to perform the digital 

transforms. It takes less than 20 milli-seconds for a large computer 
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(CDC-7600) to do one fast Fourier transform using an assembly language 
subroutine of FFT, 

The second step is to perform the complex multiplications and 
additions of H and the transformed tomograms T (both H and T are 
complex matrices) 

0 1(V) \ , » u ^ » 1 2 v ^ « uvv. 0,Cv) \ / HjJ<*> H~*0o) \q\M \ I T,(v) ' 
o2Cv) I - o = u'h = [ H*M H~*(N) H'̂ Ci) 
°J*> / \ H;}(i) H^Oo) H~\<.-±) ) \ T 3 ( N ) v3^- / \ "31v-' 32 

°i<£> = H i i ^ T
x ^ > + H i 2 C i ) T 2 ( ^ + H t 3 C i ^ 3 ^ ' i = 1, 2, 3 (7.1) 

It takes three complex multiplications and two complex additions 
to evaluate each O-CNJ.) at one of the 64 x 64 frequencies v_. If we 
neglect the computing time of complex additions, which is small compared 
to that of complex multiplications, we have 3 x 64 x 64 complex multi­
plications in the second step. Since the Fourier transform of a real 
function has a property that the real part is even and the imaginary 
part is odd, all the frequency components can be represented by complex 
matrices of size 33 x 64. The above number of complex multiplications 
is therefore reduced by a factor of 2. On a large computer (CDC-7600) 
the time required for doing those complex multiplications is much less 
than a FFT of 64 x 64 elements (less than 10 milli-second). 

The last step is the inverse Fourier transformation of 0-(v). It 
takes also about 20 milli-seconds for each inverse FFT. Thus, the total 
computing time required for the reconstruction of three images from 
three tomograms is roughly given by 20 ms x Z + 10 ms x 3 + 20 ras x 3 
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= 150 ms = 0,15 second. It is seen that this computing time is propor­

tional to the total number of tomograms used. 

7.3 Computer Simulations and Experimental Results 

Computer Simulations 

A 9-pinhole array was used in a computer simulation in order to 

test the 3-D image reconstruction method. The pinhole array is shown in 

Fig.5-2a. The object (Fig.7-3b) was located in three planes, s_=S cm, 

s.=l0 cm, and s =12 cm. The computer generated the tomographic images 

of Fig.7-3c in the same three planes. The reconstructions produced, 

using these tomographic images as input, are given in Fig.7-3d. The 

results show excellent agreement with the original object. The tomo­

graphic images were produced, however, with no statistical variation in 

intensity of the picture elements of the object from one single pinhole 

exposure to the next. 

In the more realistic case when the object picture elements vary 

statistically it is found that there occurs a small component of 

background in the reconstructed images in addition to the expected 

variation in the intensity of the image elements. This is shown in Fig. 

7-4 where an average of 400 events total from each object picture element 

has been collected, distributed statistically over the N =9 single 

pinhole exposures. This gives a 52 statistical fluctuation in otject 

picture element intensities. The corresponding fluctuation measured in 

the images is 6%. Thus, the reconstruction method introduces a small 

amount of noise. If the total number of events collected is held fixed 
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it is found that the amount of introduced noise increases slightly as 

the number of pinholes is decreased. 

In another case, a five-plane object was imaged and reconstructed 

by the same system. Again, 52 statistical fluctuation was generated in 

the object picture elements, and the tomographic images of Fig.7-5a were 

formed. The reconstructions are shown in Fig.7-5b. Only a small amount of 

noise is seen, A study on statistical noise in the image reconstruction 

process will be given in Section 8,2 and also in Appendix B. 

Experiments with Radioactive Sources 

Radioactive sources were used to test the reconstruction method. 

The detector and the associated digital image read-out system were 

described in Section 7.1. The software for the image processing was 

discussed in the previous section. In all the experimental tests,nine 

projections of the object distribution were taken with a circular pinhole 

array (like the one shown in Fig.5-2b) for the fomation of focal-plane 

tomograms. For a given object field of view a circular pinhole array 

gives the best depth resolution among the multiple pinhole arrays of 

the same size. The 9-hole circular array used was of diameter 9 cm and 

each pinhole of the array was of diameter 4 mm. 

The first test object, consisting of three geometric patterns, was 

located on three object planes, s-«20 cm, s =25 cm, and. s,=30 cm. S 

was 39 cm. This test object was labelled with 1-125 (average photon 

energy about 30 Kev). There were about 10 events in each object plane 

and the spitial resolution was about 6,5 mm. The tomograms and their 

reconstvuctions are shown in Fig.7-6. Although the choice of objects 



was such as to make their nature readily apparent from the tomograms 

alone, the reconstruction method has clearly removed artifacts and 

background successfully from the tomograms. No effort was made to 

improve the image reconstruction by correcting the non-uniformity of 

the MWPC detector and thi variation in transmissions of the pinholes. 

The second test object consisting of five numerical patterns vas 

located on five object planes, s.=20 cm, s

2~2^ c r a» s„=30 cm, s =35 cm, 

and s5=40 cm. All other imaging parameters were unchanged. The point 

responses of the system were obtained first. They were then used to 

compute the inverse frequency matrix, H . A rough correction of the 

detector non-uniformity and pinhole transmission was made so that about 

the same total number of events was found in each pinhole projection. 

In this test the background events due to scattering and cosmic 

radiation were about 10% of the sirvial events received by the MWPC 

detector. Angular (spatial) tomogLams were formed on line with the 

PDP-11/10 computer (also with the PDP-11/45 computer). The recon­

struction of these tomograms was performed by the CDC-7600 computer at 

the Lawrence Herkeley Laboratory. The tomograms and their reconstruc­

tions are shown in Fig.7-7 f+he tomograms are shown in their ordinary 

way to avoid confusion). 

As a demonstration, an object consisting of five point sources was 

used in place of the previous object. The point sources were regularly 

spaced at 5 cm intervals in depth. The tomograms and their reconstruc­

tions are shown in Fig.7-8. The point blurring patterns of the imaging 

system (multiple single-pinhole camera) can be sjen clearly in the last 

3 tomograms- Fig.7-8b shows that the 3-D reconstruction method has 
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removed all the off-plane point blurring patterns from the tomograms. 

Prom Eqs.C6.14) and (6.15) we can calculate the lateral and depth 

resolutions of the imaging system (5-plane geometry)* using d=4 mm and 

r =4.5 cm. Both the lateral and the depth resolutions are worse for m 
object planes further from the pinhole array aperture. The calculated 

lateral resolutions are 6.1 mm, 6.6 mm, 7.1 mm, 7.6 mm, and 8.1 mm on 

object plane 1, 2, 3, 4, and 5 respectively. The calculated depth 

resolutions are 2.7 cm, 3.6 cm, 4.7 cm, 5.9 cm, and 7.2 cm on object 

plane 1, 2, 3, 4, and 5 respectively. It is seen that the imaging 

system can not resolve the last two object planes well because the 

system's depth resolutions are greater than the plane spacing (5 cm) on 

the last two object planes. This may be the reason that the recon­

structed images on the last three object planes are not as good as those 

on the first two object planes (see Figs. 7-7b and 7-8b). 
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8. FURTHER STUDIES AND CONCLUSIONS 

8.1 Determinant Function 

The discussion given in section 6.2 showed that the determinant 

function D(v^) is always zero at zero spatial frequency for the multiple 

pinhole camera systems. In facts D(V*) is zero at ̂ ,'=0 for all the 

camera systems which perform focal-plane tomography. This general 

property, D(0_)=0, arises from the fact that only a projection at 90° will 

give the total intensity of an object plane. All other projections for 

an object distribution which has, sayf N planes of uniform intensity 

(o.(r_)-I.) give the same value ( £ 1.) and assignment of a given plane's 

intensity is not possible. 

DC^ 1) for various multiple single-pinhole camera systems has been 

discussed previously. The calculations of D(v/) for the positron camera 

and the rotating slanted-hole collimator camera (or the tomocamera) 

systemsare as follows: The point response function, h. .(r), of a 

tomocamera system is either a delta function (i=j) or a ring-shaped 

function (i*j» for the continuous type). The Fourier frequency function* 

H. .(v), of a ring-shaped function is a Bessel function of order zero 

(J 0 0 ) while that of a delta function is a constant. o 
As discussed in section 5.1, data from the positron camera should 

be taken with some maximum allowable difference in the coordinate values, 

d^max(|x--X2[) andd^max( y.-yJ). If the detectors of the positron 

camera are of disc shape* the appropriate expression for the above 

difference in coordinate values is d Jvmax( | r, -r~ [ ), where r, and r~ are 
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positions on the two detectors of the positron camera respectively. 

When the above is done, in each object plane which is sufficiently near 

the midplane there is an area where point sources are detected with 

constant efficiency. The point response function, h . A T ) with i^j* is 

then given either by a 2-D rectangle function (rect(x)rect(y)) or by a 

circle function (circ(r)), according to the shape of the detectors of 

the positron camera. The corresponding Fourier frequency functions, 
sin(Vx) sin(v ) 

H..(v), are a sine function (—— r^~) an*1 a Bessel function of 
J ~ tfx **y 

o r d e r o n e ( i £ ^ . 
Fig.8-1 shows D(V*) as a function of spatial 

frequency for the tomocamera system and the positron camera system, 

based on a regularly spaced 4-plane geometry. The n(N£*) of two pinhole 

camera systems are also shown in Fig.8-1 for comparison. They are based 

on a regularly spaced 3-plane geometry. 

Because the slope of D(V_*) is also zero at V/=0, the determinant 

function has small values near the origin, for instance, at the first 

harmonic of spatial frequency, V ' Since the reconstruction £>..(>>•) has 

terms in it proportional to T.CvO/DCv')* j=l,..., N . T.<V) depends 

on data from the camera and therefore has statistical fluctuations in 

it which are magnified by 1/D(V/)» giving rise to incorrect values for 

0.(v*). These low frequency fluctuations have not been a problem so far 

for up to 5-p3ane reconstructions but they may turn out to be a limi­

tation of this reconstruction method. One simple way which can give us 

estimations of the zero and low frequency components of an object 

distribution from its reconstructed images is described below. The 

inverse frequency matrix, H , is undetermined at V^-0 only, and 
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therefore, it is set to be zero at V'*0. A computer reconstruction 

produces a set of images which arc stored in N image matrices (for 

example, N 6'i by 64 square matrices). These imarjo matrices contain 

images with wrong zero spatial frequencies and perhaps a few low spatial 

frequency components. Xn most of the cases* it is Known that the imag<?s 

of an object distribution are located only in the central portions of 

the matrices (Tor example, only in the central 48 by 48 area), the rest 

of the matrices should contain no events (or a few background events 

which in General are relatively small). The presence of larco non-zero 

values and fluctuations in the marginal areas of the image matrices is 

clearly due to the undetermined zero frequency components and the noisy 

low frequency components. Least squares estimations of the zero «id low 

frequency components can now be made in such a way that the estimated 

values give minimum background activity in the marginal areas of the 

image matrices. Experiments and computer simulations with N =3 and 5 

have showed that the zero and first few frequency components of the 

object distribution can be estimated well enough this way. 

8.2 Statistical Noise 

The calculation of the output signal-to-noise ratio for the 3-D 

image reconstruction method is rather complicated because many 

transforms and a matrix inversion are involved. Since more than one 

projection is needed for the construction of tomographic images, the 

input statistical noise is not only a function of time and space but 

also a function of the projections. For the same counting interval, one 
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of Che projections aay receive more counts than soae of the others froa 
the sane resolution element of the source object due to countins 
statistics. When the 3-D iaagc reconstruction aethod is applied to a 
sec of tomographic images, Che spatial noise in these iaa&cs is 
transformed arid amplified at the Intermediate stages of the recon­
struction process. At low spatial frequencies the determinant function 
D(v) is snail (see Section 8.1), therefore, the amplification or noise 
is larec. To suppress the amplification of noise, nodifications of D(v) 
aay be needed at low spatial frequencies. 

An attempt was made to relate the output signal-to-noisc ratio of 
the 3-D image reconstruction process to the input parameters of the 
system. The calculations and the result are given 1 Appendix B. 
Although the result of Appendix B is derived from a multiple pinhole 
camera system, it con be applied to other similar tomographic imaging 
systems as well. The pinhole owners system uses N h separated pinhole 
projections to form the tomographic images. The input signal-to-noisc 
ratio of this system is given by, from Foisson statistics. 

( S 

O^lnput •» V °iCX> • <••» 

where o.yr) i s the total detected gama-ray events from one resolution 

element of the object distribution at r_. 

The output signal-to-noisc ratio at image plane k i s given by, 

from Appendix B» 

"'outpuT Y Hp Ck " ^ ' i n p u t ' Y V K ^ o u t p S 5 l / T r - c - " <-=•><.,„.., ' - > / « A ( * • » 
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-m 

and lh.(u) is on clement of the inverse matrix of H(u) (see Appendix B). 
A 2 

•— is given as the area of one resolution element of the object divided 

by the maximum number of detected gamma-ray events from each resolution 

element. Since there is no simple formula for ll" (u) t C. can not be 

further simplified. Eq.(6.3) indicates that C is a function of at least 

pattern h. ,(jr), and the imagine geometry (number of object planes and 

plane separations). The order of magnitude or C. was estimated to be 

about 1. 

Monte-Carlo calculations of the sicnal-to-noiso ratio of the image 

reconstruction process have been made with a computer. The input object 

distribution was a uniformly distributed N x 2S x 25 point array with 

a lateral point separation given by the system resolution (0.5 cm). The 

camera received on an average of 400/N. counts from one object point for 

each pinhole in the imagine pinhole array aperture. Since there were N 

pinholes in the array aperture, the input statistical noise was 1/V500=5Z. 

The number of object planes was chosen to be 3 and 5 for this calculation* 

The object plane to aperture distances s,, i=l, 2, .... N , were given by 

s.=20 cm, s_=25 cm, s-t-30 cmt for N »3, 

and st=20 cm, s2=22.5 cm, s_=25 cm, 8^=27.5 cm, s5=30 cm, for K »5. 

The output noise-to-signal ratio of the 3-D image reconstruction 

process was calculated as follows. 
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3 object plane 1 output noise 

<i 3 ii 

8 » 5 object viaue \ 

2 

3 

" 4 

5 

output noise 

average noise 7.4.S 

average noise 9.3Z 

It is very difficult to relate the results of N =3 to the results 

of N »5 because their C^ are hard to calculate. If we let Ck=0.7 for 

all k in both cases, we have, from Eq.(8.2), 

C-f°output * 5* & x °- 7 ' 7- 2 S*< f o r » p = 3 
S 'output = 52 -/I x 0.7 = 9.352, for N = 5 

It is seen that the above values agree with the results from the 

computer simulations. 

6.3 Spatial Invariance and Self-Attenuation 

The basic assumption of the 3-D image reconstruction method is 

that the point response function, h,,(j_), must be a space-invariant 

function, that is, h, .(r_,r_') « h,,(r_-r/) for any point source located 

at £' on object plane i.- and r is a location on the tomographic plane 

j. Due to the inverse-square law and self-attenuation (mostly of tissue 

in organ imaging), the point response function is actually nor. a space-
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invariant function, the expression h,.(£»£*) = hii(£-£*) is only an 

approximation which works well when the imaging solid angle is small. 

When the imagine solid angle is very large, as shown in Fig,8-2, the 

point blurring pattern for a point source at I:* - cjCpoint 2) is quite 

different from that for a point source at r' = £ (point 1) because the 

photon attenuation of paths L. and Li is different from that of paths 

Lj and L£. 

The correction of the deviation due to the Inverse-square law =an 

be dor.e at the same time when correction of the detector nonunifortuity 

and pinhole transmission is made. Each pinhole image in the detector 

requires a correction matrix for making corrections. By moving a point 

source from poir.t to point on the middle object plane in a constant time 

interval, a pinhole projection can be obtained, and the reciprocal cf 

this projection (normalized to 1) is the desired correction matrix. 

The correction matrices made this way give exact correction only to 

those gamma-ray events from the middle object plane. For object planes 

other than the middle one, the correction is only an approximation. 

When tomographic imaging devices such as the tomocamera and the 

positron camera are used, the inverse-square law does not give spatial 

variance problems in the imaging system* Since the tomocamera uses a 

slanted parallel-channel collimator, the response of the camera is the 

same for point sources at different locations (within the field of view) 

on a given object plane. In the positron camera case, if data selection 

is inade according to Section 5.1, the response of the camera is also the 

same for point sources at different positions on an object plane, 
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although all the point responses fell off at larger values of |£"£'| 

because of 'he inverse-square law. 

The correction of self-attenuation due to the source Cor the 

tissue, in organ imaging) itself is very hard to make because the source 

distribution is supposed to be unknown. Usually the effect of self-

attenuation is neglected in focal-plane tomography for imaging of high 

energy gamma emitters since it is not serious as compared to that in 

transverse axial tomography. For imaging of low energy photon emitters# 

however, the effect of self-attenuation may not be neglected in focal-

plane tomography. Additional effort is needed for the 3-D image recon­

struction from focal-plane tomography. 

He may apply an iterative least-squares technique to the recon­

structed images of the 3-D image reconstruction method to improve the 

image quality. The iterative least-squares technique is used mostly 

in transverse axial tomography for x-ray transmission imaging as 

mentioned in Section 0.2. A detailed description of this technique is 

given in Ref.28. Using this iterative technique we improve the esti­

mation of the object distribution o.(r) in a least-squares sense, with 

the reconstructed images (from the focal-plane tomograms) being the first 

set of estimated o.(r), i=l, 2, ...» N . The self-attenuation is taken i — p 
into account by the weighting factors used in the iterative least-

squares technique. 
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8.4 Object Distribution and Image Processing 

To study further the 3-D image reconstruction method, a few test 

reconstructions were made by computer simulation. The purpose of these 

test reconstructions is to find out what may happen in more realistic 

Situations, for instance, that the number of object planes N and the 

object plane to aperture distances s. used in the image processing may 

differ from their true values by certain amounts. These test recon­

structions may give us some idea of how sensitive the 3-D image recon­

struction is to the imaging parameters. 

A 7-plane object distribution was used to maXt the first test 

reconstruction. The original object distribution was in 7 regularly 

spaced planes located at s,=7, s =8, s 3=9, s =10, sg*ll, sfi=l2, s_=13. 

The iinage processing for the 3-D reconstruction used N*=3 and s.*=8,10,l2. 

The pinhole camera system was used, and the pinhole projections of the 

7-plane object were used to form three nomographic images at sl=8, 10,12. 

Thus, only three images were reconstructed from theit tomographic images. 

Fig.8-3 shows pictures of the input object (a)» one of the 9 pinhole 

projections of the object (b), the tomographic images (c), and the 

reconstructed images (d) of this computer simulation. If one examines 

the three reconstructed images carefully he will find that each recon­

structed image consists of only the images of the object at planes on or 

near the assigned tomographic plane of that reconstructed image. That 

is, for instance, the last image of Fig.8-3d (located at s'=12) consists 

of only the image of the object at s 5=ll, sfi=12, anc s7=13. This 

indicates that, aside from a little noise in the resulting images, 
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all the off-plane background images in the thrpe tomograms of Fig.8-3c 

we:e removed by the 3-D image reconstruction method. 

The same test reconstruction was performed again with another 

7-plane object. This time the object was made of 7 small square sources 

located on 7 regularly spaced object planes just like the first test 

object. Each square source was assigned to a particular location on its 

plane in such a way that the normal projection of the sources on the 

detector contained no overlapping images. Fig,8-4a shows the relative 

positions of these small sources. After going through the same imaging 

and reconstruction process as in the first test, three tomographic images 

and three reconstructions were obtained, and they are shown in Fig.8-4b 

and c. It is seen that, aside from the noise, the 3-D image recon­

struction method had clearly removed the off-plane background images 

from the three tomograms of Fig.8-4b. ( Notet In these two test recon­

structions, images of the object at s!-l, si, and s!+l are considered as 

the in-focus images of the tomogram at s! and all other images are 

considered as the off-plane background images of that tomogram). The 

noise in the reconstructed images of Fig.8-4c is somewhat high, which is 

probably due to the sharp changes in source distribution of the object. 

A sharply varying distribution has wide frequency bandwidths and 

therefore requires small sample spacings for digital image processing 

according to the 3-D sampling theorem (to be described later). 

Another test reconstruction was made with a correct N and 
P 

incorrect s., i=l,2,..., N . The test object was three numerical 

patterns (1, 2, and 3) located at s-=8, s_=10, s-=l2. The image 
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processing used object plane locationss! = s.+z to form the tomographic 

images and perform the 3-D imago reconstruction, where z is a variable 

parameter used to moke s! different from s.. The results of this '.est 

are shown in Fig.8-5 with z = -0.5 in (a), z=0.S in (b), 2=1.0 in (c), 

and z*1.5 in (d). It is seen that false object plane locations for the 

image processing result in deformation in the reconstructed images. 

However* the images of the object can still be seen clearly when z is 

small. 

Practically, all the object distributions for radionuclide imaging 

are continuous. The use of discrete distributions in the 3-D image 

reconstruction method is not only because of its simplicity! the 

requirement of digital image processing is also a reason. An object 

distribution imaged by a finite resolution system is bandlimited by 

the system's frequency pass-band, and therefore it is considered as a 

bandlimited function. The 3-0 sampling theorem says that exact recovery 

of a bandlimited function can be achieved from an appropriately spaced 

3-D array of its sample values (the maximum x, y, and z spacings of the 
1 1 1 

sample lattice are -==, —., and -=77 respectively, where ZW • 2W , and 2W 
X V Z 

represent the bandwidths of its frequency spectrum). Therefore> it is 

all right to use discrete distributions in the 3-D image reconstruction 

method, as long as enough samples of the distributions are obtained. 

In focal-plane tomography, the samples of an object distribution 

are obtained by taking projections of the object from one side only. 

The sampling in the x and y directions may be appropriate this way if 

many projections of the object are taken at different angles (^90 from 
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th-̂  z axis). However, it is likely that the sampling in the z direction 

is not appropriate because the imaging system can not "see" the depth of 

the object well this way. This relates somehow to the fact that the 

determinant functions D(\0 of all focal-plane tomographic imaging systems 

are small and zero at low spatial frequencies (see Section 8.1)* It may 

be possible to make a relatively uniform DM if we modify the point 

response functions h. AT} of the tomographic imaging system with a few 

projections of the object distribution obtained at 90 angles from the 

z axi?. A study on this is needed in the future. 

8.5 Conclusions 

The principle of operation of the 3-D image reconstruction method 

studied in Part II is based on Fourier transform deconvolution, which is 

in turn based on a set of linear combinations of convolution integrals. 

Therefore, the basic assumption of this method is that the imaging 

system is linear and space-invariant. This image reconstruction method 

can be applied to all tomographic imaging systems which perform focal-

plane tomography, as long as they are linear and space-invariant. 

On the basis of spatial invariance, the tomocamera system is 

better than the other two camera systems described in Section 5,1, for 

the application of this image reconstruction method (because the response 

of the collimator used by a tomocamera is roughly constant for all 

d<3pths). The positron camera system with its high detection efficiency 

and good point blurring characteristic offers a strong poten. -I 

application of this method. However, in order to apply this method to 
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a positron camera system, some effort is needed to make the system 

space -invariant (described in Section 5,1), As discussed in Section 8.3, 
Johere is no simple way to make the multiple pinhole camera system exactly 

space-invariant. Therefore, application of the 3-D image reconstruction 

method to this camera system is limited. 

It was shown in Section 7.2 that the iraag reconstruction of a 

3-plane object takes very little computing time. For an object 

distribution with 5 x 64 x 64 resolution elements the total computing 

time required for the image reconstruction with a large computer (CDC-

7600) is about one quarter of a second (5 FFT's, complex additions and 

multiplications, and 5 inverse FFT's). The same image reconstruction 

may also be performed by a small computer together with an associated 

disc system. Due to constraints of the core memory size and the speed 

for performing complex arit'imetic, a small computer system usually 

requires more time to do a reconstruction. However, as explained in 

Section 7.2, this increase in computing time is still much less than 

the time required to accumulate the gamma-ray events and construct the 

tomographic images. 

Although there has not yet been an attempt to examine this image 

reconstruction method under clinical situations, results from experi­

ments and computer simulations indicate that better image contrast and 

fewer background artifacts over the original focal-plane tomographic 

images can be achieved without too much effort and computing time. 

Future studies of this method based ori theorems of sampling and 

projection are necessary for the improvement of int. ige reconstruction. 
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APPENDIX A. 

Background and Statistical Noise in Non-Redundant Pinhole Array Coded 

Aperture Imaging 

The discussions given below are for the coded aperture imaging 

systems in which a non-redundant pinhole array (NRPA) coded aperture is 

used and the reconstruction is done using the correlation method of 

Section 2.2. Because of its simplicity, an incoherent optical system 

is often used to perform the reconstruction. A detailed description of 

this type of coded aperture imaging is given in Section 3.2. Fig* A-l 

shows a schematic diagram of the imaging and reconstruction of a point 

source with a 3-hole coded aperture. The pattern on the image plane is 

given by the autocorrelation function of the pinhole array used because 

the mask for decoding is a replica of that pinhole array, (see Eq.(2.3)) 

The image of a single point source using an N-hole coded aperture 

and incoherent optical reconstruction has a central intensity N 

correspending to the matching of the coded shadow of the i aperture 

hole with the i hole in the mask for each of the N holes. Surrounding 

this image is background which is produced when the coded shadow of the 

i aperture hole combines with the j mask hole (j=%i). The total 

amount of background for a point source is thus seen to be N(N-l) 

points, each of intensity 1 as in the non-redundant pinhole array, or 

over correspondingly fewer points of higher intensity* as for the 

redundant array (Fig.3-6b). 

Background and statistical noise for NRPA coded aperture imaging 
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can be calculated with the following assumptions t 

(1) The object lies in a single transverse plane and consists of M point 

sources of equal intensities C where C is the number of detected gamma 

ray events which pass through one of the N aperture holes. The point 

sources are located on an equilateral triangular grid with separation 

given by the resolution length A x (Eq.(2.21)). A triangular grid is 

used because the non-redundant pinhole arrays are composed on such a 

grid to make more compact. 

(2) The autocorrelation function is approximated by a spike of intensity 

N surrounded by a dise of radius r and intensity 1. r is chosen so as 

to contain the same number of background points, N(N-l) as does the 

exact autocorrelation function but packed tightly on the triangular grid. 

Thus, the approximate function is just a compact version of the exact 

function. 

(3) The pinhole diameters are equal to the minimum spacing between holes 

in the array. This is the least resolution usable with a given non-

redundant pinhole array. 

The image obtained in the double process of shadowgram exposure and 

incoherent optical reconstruction is equivalent to the single step 

i(r) = o(r_) ® a(r). In order to provide a common scale we express the 

convolution in the detector plane (Fig.A-1) by projecting the object 

through a point in the center of the aperture plane onto the detector 

planes. This has been done in Fig.A-2. Assumption 3 assures that the 

spacing of the object points (Fig.A-2b) is the same as the spacing of 

the autocorrelation points (Fig.A-2a). The convolution is performed by 

centering the autocorrelation function on each object point and summing 
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the results over the M object points. The signal at the center point 0 

of the object has a value NC . This signal is superimposed on a 

background B at point 0 due to the overlapping of the autocorrelation 

functions from neighboring object points. Those neighboring points, 

such as point 1 in Fig,A-2b which are closer than the distance r s each 

contribute 1C to the background intensity at 0, Those which are 

farther away than r , such as point 2, contribute nothing to the 

background at 0 since the autocorrelation function is assumed zero 

outside r . Since a maximum of N(N-l) points occur in the autocorre­

lation function and therefore lie within the distance r of the central 

point we have the following equation for the intensity of background at 

the center of the image depending on whether the actual number of 

object points M is greater than N(N-l) or not. 

B=MC if M i N(N-l) 
° (A.l) 

B=N(N-l)Co if M > N(N-l) 

The background is maximum in the center of the image of the M 

point sources and falls to some finite vaiu" on its edges. 

Noise C in the image is due to statistical fluctuations in the 

number C of gamma-ray events and comes from independent fluctuations 

in the signal and in the background. Thus we have 

CX = J N+M JT" if M^.K(N-1) 
— ° CA.2) 

0" = N-Jc if M >N(N-1) 
we obtain the following values for the ratio of signal to background 
and of signal to noise at the center of the image 
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£ » •£• and 1 * -J~2 , i f M ^N(N- l ) 
B M ff -̂ WM^ 

(A.3) 
f * ^ and A , JT . i f M > • » - ! ) 

APPENDIX B. 

Statistical Noise in Three-Dimensional Image Reconstruction from Focal" 

Plane Torooflrapby 

The multiple pinhole camera system described in Section 5.1 will 

be used here for the calculations of the statistical noise in the 3-D 

image reconstruction process described in Section 6.2. The pinhole 

camera system uses Nft separated pinhole projections to form the tomo­

graphic images. We assume the activities of the source object are in 

N separated object planes and are represented by the functions o.(r), 

i=l, 2,..., N . Function o*(r) is used to represent the events detected 

by the detector from a resolution element at r_ on the object plane i 

through the Xth imagine pinhole aperture. The point response function* 

h.*(£-£*)* of the tomographic imaging system is defined as the response 

of the system at £ on the tomographic plane j from a point source at r* 

on the object plane i through the Xth pinhole aperture. The normalized 
1 r$h system point response function* h. .(r-r*)» is defined as 73- J* h* (r-r 1). 

U - - %^x *J - -

To find an expression for the input signal and noise* we le t the t rue 

mean of o^ir) be given as m^xVNh and the s ta t i s t i ca l f luctuation of 
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cfr(r) from its mean be given as n,(ir). The detected object distribution 
from one pinhole projection, o*(r), is then given by 

o*(r) = m i(r)/N h + n*(r) (B.l) 
The BUS value of the input noise, which is given as the standard 
deviation of the input signal, is calculated by Foisson statistics as 

< n^r/j?* y T c n p T = -yjm^r)/^ (B.2) 
The input signal-to-noise ratio to this pinhole camera system is then 

given by 

° input nr * ~~ nc 4^u*f°& 
(B.3) 

N 
where o.(r) = £ o.Cr) is the total detected object distribution (while 

1 a=l l ~ 
m.(r) is the hypothetic true distribution). 

The output sienal-to-noise ratio is calculated as follows: The 
tomographic images t.(r_)» formed by the back-projection method, are 
given by 

Substituting o^(r) by Ecj.(B.l), we have 

t,<E> • Z £ - ^ ©•£<£> + * n i ^ ® h i j < ^ 
(J, H r N k 

= £•»!<£) @ hCr ) + £ X "tCr) © h*(r) (B.5) 

Taking Fourier transforms to both sides of Eq.(B.5) , we have 
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Si & rtk-
T.(v) = > M.(V)H,,(M) + £ Z «ftv)Hj-,0>> (B.6) 

As was given in Section 6.2, an inverse frequency matrix H (>0 with 
N SP _! 
._,Eij(v)Hik(^3 = g.. is required to reconstruct the object distri­
bution. If we ignore the fact that H~ (0) doesn't exist, we may 
multiply both sides of Eq.(B.6) by H.^Cv) and sum them over all j. 

JK — 

Thus, we have the following expression for the frequency components of 

the reconstruction. 
n, N, N f N , M f H k 

£ T.(v)H-J;(v) = £ M^XH.jWtt:^) + E H N^H^CiW^Ci) 
3=1 I 3 1 j=i t = 1 j"iA?t 

Kr N, Hi, 

= \<y + Z I £ Mi^^ i «>- 7> 
Upon taking the inverse Fourier transform of Eq.(B.7), we have 

The first term of the right side of Eq.(B.8) is the output signal, and 
the last term which contains n̂ "(r) is clearly the output noise. Let 
the output noise be represented by 

N N iJk 
g.CO = I h 1. n*Cr) © h^(r) © hTj(r) (B.9) 

k ~ i=lj=lA=l x ~ X J ~ J R ~ 
The calculation of the IMS value of the output noise, ̂ 6|,(£) \ 

requires an understanding of how the noise is trans feted through the 
system. It is necessary to define a few quantities for Che random 
process which gives rise to the noise. First we define a stochastic 
process j J ( , t 6 T > as a family of random variables indexed by 
points t in a subset T of the real line. We define the covariance 
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function of Z„ as E((Z -m„)(Z_-iO) = K(t,s), where m, = E(Z,.). A 
c t t s s c c 

process \z.» -oo<t<»i is called widesense stationary if E(Z )=m 

(independent of t) and R(t,s) = R(t-s). The spectral density function 

of a widesense stationary process $ Z , -• < t <o»Jis defined as 

StV) = J? ( RCt)) = J e"12*"*^) dt, (B.10) 
"here , . 

R(t) = E « Z t + t - mXZ t - m)) =Jfi [ S(V)J (B.ll) 
If a widesense stationary process t Z t > -"» < t<°» } is the input to a 

linear and time invariant system with transfer function H(v), then the 

output process j Y = Z © h > - « < t < » f is also widesense stationary 

and the spectral density function of the output process is given by 

S y(V) = | H(v) | 2 S z(v) (B.12) 

The proof of Eq.(B.12) can be found in many textbooks of system 

analysis. 

In order to change the 2D spatial coordinates into ID real 

numbersi we define a one-to-one mapping which transforms a point, 

r=(x,y) into an area, t, given by 

' < £ > 3 <*-W<™„i„> + < " - A - W < W ° <B-13> 
Where x , , x , y . , and y „ give the boundary of the object min max m m "max 
distribution, and A is the width of a resolution element of the object. 

For the purpose of evaluating the statistical noise, we assume the 

input object distribution is uniform so that the noise is not affected 

by the distribution of the object. We let a random process / Z /_\i 

0<t(r>)<x(naxy|n l be the total number of events detected from the 

resolution elements of the object in area t(r). Further more, Z t is a 
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Foisson process with parameter ffit/N. • The derivative of Z , Z (events 
per unit area), can be used to describe the input signal* O£(JT). Fig-
B-l. shows an example of the distributions of Z and Z.. Note that 2 

is actually a series of delta functions. 
We can now relate Z to c£(r) by 

rt(r)+4?# ft(r)+A* 

^ = z ^ - ^ > -/«© z< * = / t ( i ) £ 5 c t ~ t k , d ; B . w 

To check the above expression, we evaluate the mean function of o. (r) 
as follows : 

«<te» = E< w - v • - lr ( t + A 2 ) " TC 1 = x *2 <B'15) 

h h n 
From Eq,(8.1), we have 

m (r) 
E(o»(r» = - J j — { B # 1 6 ) 

Since the object distribution is assumed to be uniform, m.(r) becomes 
a constant, m., and is given by m.̂ nfA • It can be shown that the 
covarianee function of Z is given by R_(t,s) = -sn-Ct+s-j t-s| ) and the 

• h ~ 
mean and the covariance function of Z are given by E( 2

t) = ~u~ and 

V t . s ) - 4 ; 8Ct-a>-»j(t-.). for 0 < t , . < W • . 
h 

Note that the random process Z t is widesense stationary if the 
range of t is extended to the entire real line. If we define a process, 
n , by n = Z -E(Z ) = Z — 5 - , then n is also widesense stationary 

h 
because E ( n ^ = „ a j d ^ a , ^ = R £( t, s) = J3L $(t-s) = Rn(t-s). 

h 
The relationship between n and the noise term, ri^Cir) in Eq.(B.l), 
is as the following > 
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m. f&** . ». ,*<E>**2 

n x<r) = o ^ r ) - ^ l = / ( 2 * _1) d.t = f „ dt CB.17) 
1 x N h •/ t(r) ' A 2 N h J t(r) ' 

If the original delta function representation of Z is replaced 
by a more realistic square-pulso function, p(t) with width-^ and 
magnitude -r* (where L is a large integer, large enough to prevent the 

A 2 

occurrence of more than one event within -r-), Eqc(B.17) can then be 
written in the following form. 

L 2 

Making a change of variable and substituting n^(^) by Eq.(B.18), the 
output noise g. given by Eq.(B.S) becomes 

6 * = i | i i p s k *»# ® h « < o • * ° CB-I9) 

The term n. ® h?*.(t)@ h".(t) in Eq.(B.19) may be viewed as the output 
C 1J JK 

process of a linear system with impulse response h^.(t) © hT.(t> to an 
input random process n f c. As an approximation* the random process n is 
still widesense stationary and the spectral density function of n t is 
given by 

S n(v) = J .-"** R nCt) dt = J e - 1 2 * 1 -f S C O dt . f- CB.20) 

By the previous assumption, the delta function 6(t) in Eq.(B.20) should 

be replaced by the square-pulse function p(t) and the actual spectral 

V v >= /»" l 2 1 w t p<Odt- f 
— J-. 

a2/2L 
e - 1 2 " " f <-i.)dt 

A2/2L "» ** 
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= - f t »m6WA 2/L) ) ( B . 2 1 ) 

Note that Eq.(B.21) reduces to Eq.(B.20) as h~f> because 

Um ( J ^ ^ Z i - ) = 1. 

From Eq.(B.12) and Jfi f h ^ ( t ) @ hT^(t) J = H £ . ( V ) H7£<V), the 

spectral density function of n © h . - C t ) © h . . ( t ) i s given by t I J JK 

smM= \»uwatM\2 s n w < B - 2 2 > 
Ideal ly , h . . ( r ) i s a de l ta function centered at a point r . The 

one-to-one mapping of h . . ( r ) , h. . ( t ) , i s also a del ta function and 

therefore, 

I H i j C V ) I - | / e - i 2 1 t V t 5(t-t o) dt| = | eT«™o | . x <•,.», 

Eq.(B.22) can then be written as 

4>> • v*> -1 H > I2 *«™ - K H 2 l h ^f$r> ' j « JK | JB. | n I JK I » h fa 

(B.2<0 

He defind a random process f. (t) by 

ft«- ) h*(t) © h'hf) (B.25) 

The spectral density of the random process £'t^ is calculated as 
follows I 

8,00 = Z P I P I" •*»> = N Nh £» S.k(V) 
1 1=1 pi xSi 1 J R p " j=i 3 k 
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V v > = N ffi r |H-J<V)|2 ( S I " ^ / L } ( B < 2 6 ) 
f P j = l I J l t I *Vi?/L 

variance or mean-square value of f can be obtained as follows i 

< f k ( t ) a > = E ( f k ( t ) - EfkCt) ) 2 = S f ( o ) = J S f 0 O dM 

< L C t A = N « f |P | H : k (V) | 2 S i M W - A 2 / L dV 
k / p J j=i I 3 I n»A2/L 

< f R < t ) S > = B p 9 i c k (B.27) 

* / £ !H^ 7CA2/L 
(B.28) 

-1 Since there is no simple formula for H.-XM) and the computation of C. 

is rather complex, no at ten has been made to relate the numerical 

values of C. to its parameters such as the total number of projections, 

the imaging pinhole distribution, and the imaging geometry. The order 

of magnitude of C. was e 

with k, the image plane. 

From Eq.(B.19) and Eq.CB.25), we have, for the output noise, 

«*-f i f k<"*E> < B - 2 9 > 

. 2 .2 
, _ _ E f„(t+* < 0 ' E< W 2 = 75 k 1 E V«*£ > V*^"> ( B- 3 0> 

Since the random processes { n t + Jif/L } and { nt+i'i?/L J are of zero mean 

http://Eq.CB.25
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2 
and independent if Jl^/.> we may at l eas t assume that f\St+X-7~y and 

fk(t+Jl'^ ) are uncorrelated if X%A'» t n a t i s» 

< « • ? > - $ ^ <( fk < t + J»T J * > " A" Np ™ CR • Np mi CR C B - 3 1 ) 

The RMS value of the output noise is given by 

<«E>*"V"p B i c k < B - 3 2 ) 

The output s ignal- to-noise r a t i o at image plane k i s given by 

o u t p u t >• 
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FICWE CAPTIONS 

A Multichannel Collimator Gamma Camera 

The gamma-ray photons emitted by the source pass through the 

channels of the coll iaator and impinge on the detector. A dot 

image i s formed through the electronic systoa of the camera and 

can be displayed on the screen of a CRT. 

A Pinhole Aperture Gamma Camera 
A Coded Aperture Imaging System 
The single-pinhole aperture of Fig. 1-2 is replaced by an 
aperture plate containing 27 pinholes. 
Examples of Coded Aperture Patterns 
(a ) A random pinhole array 

(b) A non-redundant pinhole array 

( c ) A Fresnel zone pla te 

Examples of the Autocorrelation Functions of a Feu Coded 

Aperture Patterns 

The 2-D gray-shade plots and cross-sectional plots of the 

autocorrelation functions were generated by computer from the 

following pa t t e rn s : 

(a ) A random pinhole array (SO holes) 

(b) A non-redundant pinhole array (9 holes) 

Cc) A posi t ive zone pla te (h ( r ) , 9 zones) zp — 
(d) A combined zone p la te (h (r)-Ti ( r ) , 10 zones) 

zp — zp — 
Examples of the Correlation Functions of Two Patterns 
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The autocorrelation functions (ln-focus point reconstructions by 

the correlation method) and the crosscorrelation functions (out-

of-focus point reconstructions, on planes 2 en and A cm apart from 

the focal plane) were obtained fro* the foliowine two patterns) 

(a) A non-redundant pinhole array (27 holes) 

(b) A combined zone plate (h (r) - S (j), *° w>" e s) 

a-1 ani b-1 are autocorrelation functions and the rest are cross-

correlation functions, a-1, 2, and 3 were obtained optically and 

b-1, 2, and 3 were obtained by computer. 

2-3 Plots Showing the Constructions of Two Composite Zone Plate 

Patterns 

(a) A composite zone plate made from 1) a positive zone plate and 

2) a negative zone plate 

(b) A composite zone plate made from 1) a -60°-phase-shifted zone 

plate, 2) a 60 -phase-shifted zone plate, and 3) a 180 -phase-

shifted zone plate Cor a negative zone plate) 

2-4 Schematic Diagram Showing the Coding and Decoding Process 

The input-output relationship of coded aperture imaging is shown 

in both the spatial domain and the frequency domain. 

2-5 Plots of Modulation Transfer Functions | H(v) | of a Few Coded 

Aperture Systems 

The 2-D gray-shade plots and cross-sectional (along x=y line) 

plots of |H(v)| were generated by computer from the following t 

(a), (b), (c) A non-redundant array, a regular (or redundant) 
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array, and a random array respectively 

The transfer functions of the pinhole arrays do not vanish 

at high spatial frequencies because the pinholes in the 

arrays are of narrow widths (also because of the property of 

FET used). 

(d),(e) A positive zone plate (h (jr), 9 zones) and a combined 

zone plate (h (r)-1i (x'» 1° zones) respectively 

(f) A random array of large number of holes 

2-6 Imaging of Two Point Sources with a Circular Pinhole Array 

Coded Aperture 

(a) Formation of the shadowgram (showing only two pinholes) 

(b) Reconstruction of the shadowgram with a replica of the 

original pinhole array (with smaller pinhole size) 

3-1 Schematic Diagram of a Multiwire Proportional Chamber 

(a) A side view. The x- and y- wire planes are mutually 

orthogonal 

(b) A top view showing the wire planes and the delay lines 

3-2 Electromagnetic Delay Line 

(a) A 3-view engineering drawing of the delay line 

(b) Pulse-shape characteristics of a signal coupling into and 

out of the delay line 

3-3 Electronics Block Diagram of a Multiwire Proportional Chamber 

Camera -System 

Only part of the digital image reconstruction system is shown 

in this figure 
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3-4 Coded Aperture Used with Wire Chamber Camera for the Study of 

Coded Aperture Imagine 

(a) A non-redundant: pinhole array (27 holes) 

(b) A reduviiant pinhole array (27 holes) 

Cc) A randan pinhole array ( 27 holes) 

(d) A Fresnel zone plate (9 zones) 

3-5 Autocorrelation Functions of the Aperture I-at terns Used 

The autocorrelation functions of the previous four patterns 

were obtained optically, and they are shown in the same order 

as in the previous figure. 

3-6 Sketches of the Previous Autocorrelation Functions 

The previous autocorrelation functions are drawn schematically 

to show their important features, 

3-7 Simple Decoding System for Non-redundant Array Coded Shadowgrams 

(a) A schematic diagram of the decoding system 

(b) Construction of Picker Thyroid Phantom. The lobe on the 

left has twice the activity of that on the right and 

contains two cold spots of zero activity. The right 

lobe has an upper cold spot and a lower hot spot of the 

same activity as that on the left. 

3-8 Imaging of 3-D Source Distribution with Non-Redundant Pinhole 

Array 

A radioactive phantom consisting of three geometrical patterns 

(a triangle, a cross, and a circle) was imaged with a 27-hole 

non-redundant pinhole array coded aperture. 
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(a) The coded shadowgram 

( b ) , ( c ) , and (d) The reconstructed images 

3-9 Imaging of 3-D Source Distribution with Non-Redundant Pinhole 

Array 

The previous radioactive source was moved toward the aperture 

p l a t e so that the pinhole projections of the source dis t r ibut ion 

on the detector plane spread more. The shadowgram and the 

reconstructed images are shown in the same order as those in 

the previous f igure . 

3-10 Reconstructions Showing Lateral Resolution of the System 

(a ) Image of four point sources. The four point sources having 

a minimum spacing 5 mm were imaged with a 27-hole non-redundant 

pinhole array coded aperture. 

(b) Image of a bar pat tern, 5 mm bars spaced 5 mm apart were 

imaged with the previous coded aperture, 

3-11 Sequential Image Reconstructions Showing Depth Resolution of 

the System 

Coded aperture imaging of 3 objects separated by 25 mm in depth 

was made with the system of Fig, 3-6 5 Images were reconstructed 

sequentially at in tervals of 6.25 mm along the opt ica l axis 

(z axis) of the incoherent opt ical decoding system. The 

parameters for imaging and reconstruction were S =175 mm, 

d=2 mm, D=22 mm, and 

W V * $i - 100 mm, a ( c a l c . ) = 14 mm. 
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(8) X » Sj = 125 an, A s ( c a l c . ) - T9 mm. 

(12) O* S- • 150 ran, A (calc*) = 25 mm. 

3-12 Image Produced by Point Gamma-Ray Sources Using Various 

Apertures 

Coded apertures of Fig.3-4 were used to image point gar.ma-ray 

sources. The images obtained with wire chamber camera and 

opt ica l reconstruction are shown in the same order .is the i r 

apertures in Fig.3-4, 

3-13 Images of Picker Thyroid Phantom with 27-Hole Array Coded 

Apertures 

The images were obtained with (a ) a non-redundant array, 

(b) a redundant array, and ( c ) a random array. 

3-14 Graphical Interpretat ion of Eq.(3.6) Showing Intensi ty 

Distribution of Fresnel Diffraction of a Posit ive Zone Plate 

Only the diffract ion pat terns of n=0, +1 , +3, and - 5 are shown. 

The magnitudes of the diffract ion pat terns shown in the figure 

are not exactly proportional to the i r actual values. 

3-15 Fresnel Diffraction Amplitude of a Posi t ive Zone Plate 

The diffracted amplitude of a posi t ive zone p la te (9 zones) 

was generated by computer and i s shown as a function of r . 

3-16 Coherent Optical Reconstruction System for Zone Plate 

Shadowgrams 

Ca) A schematic diagram of the coherent opt ica l system 

(b) A photograph of the e n t i r e reconstruction system 



130 

3-17 Optical Reconstruction of Point Sources with a Positive Zone 

Plate 

(a) A shadowgram of 4 point sources separated at least by 2 

resolution lengths of the imaging system. 

(b) The reconstructed image using the system of Fig.3-16b. 

3-18 Image of Picker Thyroid Phantom Obtained with a Positive Zone 

Plate and Coherent Reconstruction 

The reconstruction was performed by computer using the Fresnel 

diffraction formula* 

4-1 Image of Picker Thyroid Phantom from Complex Coding with Two 

Zone Plates 

A positive zone plate (9 zones) and its negative zone plate were 

used to make this computer simulation of complex coded aperture 

imaging. The decoding was done by autocorrelation with 

h (r> -S (r). zp — zp — 
4-2 Image of 3-D Object from Complex Coding with Two Zone Plates 

The computer generated 3-D object was a triangle, a cross, and 

a circle, which were separated by 2 cm in depth. The recon­

structed tomographic images of the object are shown in this 

figure. They were obtained from the same system and decoding 

method as those described previously. 

4-3 In-f. ••.us Point Reconstructions Using Non-Redundant Pinhole 

Array and Fourier Transform Deconvolution Method 

The reconstruction of a point source at the in-focus plane were 

made using the Fourier transform deconvolution method and a 9-
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hole non-redundant ninhole array coded aperture (shown in Fig. 

4-5a)» The resulting images* under various conditiona (given 

below), are plotted cross-sectionally along the y = 0 line. 

(a) No input statistical noise i 

1) ot = 0.01, 2) ot = 0.05, and 3) * = 0.1 

(b) Input noise- to-s ignal r a t i o (N/S). = 10% t 

1) «t = 0 .01, 2) ot = 0.05, and 3) ct = 0.1 

(c) Input noise-to-signal r a t i o (N/S). = 20% t 

1) °t = 0 .01, 2) <A = 0.05, and 3) ot = 0.1 

4-4 Out-of-Focus Point Reconstructions Using Non-Redundant Pinhole 

Array and Fourier Transform Deconvolution Method 

The reconstructions of a point source at two out-of-focus planes 

were made under various conditions (given below), using the 

pinhole array and decoding method described previously 

(a) <* = 0.01 : 1) 2 era out of focus, 2) 4 cm out of focus 

(b) at = 0.05 : 1) 2 cm out of focus, 2) 4 era out of focus 

(c) «t = 0.1 : 1) 2 era out of focus, 2) 4 cm out of focus 

4-5 Image of Picker Thyroid Phantom with Fourier Transform 

Deconvolution Method 

The Picker Thyroid Phantom was generated by computer with 5% 

statistical noise in each picture element. The parameter used 

for the Fourier transform deconvolution was ot = 0.05. 

(a) The 9-hole non-redundant pinhole array used 

(b) The reconstructed image 



Reconstruction of a 3-D Source Distribution with Fourier 

Transform Deconvolution Method 

The 3-D source distribution consisting a cross, a circle, and 

a triangle was generated by computer with 5X noise in each 

picture, element. The object planes were separated by 2 cm in 

depth. The parameter ot was 0.05 and the pinhole array was the 

same as in Fig.4-5. The reconstructed images are shown in (a), 

(b), and (c). 

Multiple Single-Pinhole Camera 

(a) Making the different views with the multiple single-pinhole 

camera 

(b) Response to a point source* The tomographic images of the 

point source are shown as the sum of back projections of the 

single-pinhole views. 

Point Blurring Patterns 

(a) For multiple pinhole array 

(b) For rotating slanted-hole collimator with discrete rotations 

(or for circular multiple pinhole array) 

(c) For rotating slanted-hole collimator with continuous 

rotation 

(d) For positron camera with data selection (square detectors) 

Rotating Slanted-Hole Collimator Camera - Response to a Point 

Source 
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The tomographic images of the point source are shown for two 

posit ions of the collimator, 0 and 180 . 

5-4 Positron Camera - Response to a Point Source 

The tomographic images of the point source are shown for two 

positron events. 

6-1 Schematic Diagram Showing the Formation of Tomographic Images 

from Pinhole Projections 

(a ) Exposure of the K image using the K pinhole of the 

(b) The contribution of the K single pinhole image to the 

N =3 tomographic planes. The final images on t . , t ? , and t~ 

are sura of the contributions from each of the N. pinholes. 

(c ) The response of tomographic planes t . and t . to a point 

source in object plane o. 

6-2 Plots of the Determinant Functions D(v') of Three Pinhole 

Arrays 

The determinant functions were computed by computer with 

different imaging geometries and pinhole arrays. Both 2-D 

gray-shade p lo t s and cross-sectional (along y=0 l i ne ) plots 

are shown with v* = 0 at the l e f t bottom of each p l o t . The 

imaging geometries were i ) s,=8cm, and s_=10cm for N =2; 1 2 p 
i i ) s.=8cm, sv=10cm, and s_-12cm for N =3, i i i ) sn=8cm, L 4 J p i 
s_=10cm, s,=12cm, and s,=14cm for N =4. 2 3 <S p 
(a) For a (Y-type) non-redundant pinhole array 

(b) For a c i rcular pinhole array of odd number of holes 
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(non-redundant) 

(c) For a regular pinhole array (redundant) 

7-1 Schematic Diagram of the MHPC Digital Imaging and Data 

Processing System 

Both the on-l ine computer POP-11/10 and -he remote s ta t ion 

PDP-11/45 are shown. 

7-2 Photograph of the On-Line Digital Ima^e Processing System 

7-3 3-D Image Reconstruction - Computer Simulation Assuming No 

S t a t i s t i c a l Variation of Object Picture Elements 

(a) Projected view of the object as i t would be seen by a 

multichannel collimator 

(b) The 3-D object located in three planes s,=8cm, s2=10cm, 

and s3=12cm 

(c ) Tomographic images constructed using 9 pinhole projections 

with point blurring pa t te rn of Fig.5-2a 

(d) Reconstruction of the object using the tomographic images 

V V a n d t3 
7-4 3-D Image Reconstruction - Computer Simulation Assuming 5% 

Statistical Variation of Object Picture Elements 

The object and all the parameters for imaging used in Fig.7-3 

wert used to product the reconstructions shown in this figure. 

However* 5% input noise in each object picture element was 

assumed. 

7-5 3-D Image Reconstruction - Computer Simulation Assuming 5% 

Statistical Variation of Object Picture Elements 
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(a) Tomographic images on the five planes of a five plane 

object using the point blurring pattern of Fig.5-2a 

(b) Reconstructions of these planes showing a small amount of 

background introduced by photon statistics 

7-6 3-D Image Reconstruction - Experiment Using MHPC Digital 

System and Radioactive Source 

A circular pinhole array of 9 holes (similar to the one shown 

in Fig.5-2b) was used to construct the tomographic images 

t,, t_, and t 3 > The reconstructions of the tomograms are 

o_» Oj, and o*« 

7-7 3-D Image Reconstruction - Experiment Using MWPC Digital 

System and Radioactive Source 

(a) Tomographic images of five numerical patterns separated 

by 5 cm in depth, obtained with a 9-hole circular array 

(b) The reconstructed images 

7-8 3-D Image Reconstruction - Experiment Using MHPC Digital 

System and Radioactive Source 

(a) Tomographic images of five point sources separated by 

5 cm in depth, obtained with a 9-hole circular array 

(b) The reconstructed images 

8-1 Plots of the Determinant Functions D(t>') of a Few Tomographic 

Imaging Camera Systems 

Rsmall t is the radius of the smallest point blurring 

pattern produced by each camera system, ox represents the 

lateral resolution length of each camera system. 



2 Schematic Diagram Showing a Cause of Spatial Variance 

Because of the inverse-square law, the blurring pattern of a 

point source at point 2 is different from that of a point 

source at point 1. 

3 Image Reconstruction Showing Effect of Fewer Planes for Image 

Processing 

(a) A 3-D object consisting of seven numerical patterns (each 

of size 23cra x 23cm) located at s.=7cm, 8cm, 9cm, 10cm, 11cm, 

12cra, and 13cm from the pinhole array 

(b) One of the 9 single-pinhole projections of the object 

obtained with a circular array 

(c) Three tomograms formed at s.=8cm, 10cm, and 12cm 

(d) Reconstructions of the above three tomograms 

4 Image Reconstruction Showing Effect of Fewer Planes for Image 

Processing 

(a) Normal projection of the object showing the relative 

positions of the square sources. The small square sources 

were in place of the previous 3-D object, each source was in 

one of the seven object planes. 

(b) Three tomograms formed at s! = 8cm, 10cm, and 12cra 

(c) Reconstructions of the above three tomograms 

5 Image Reconstruction Showing Effect of Wrong Plane Locations 

for Image Processing 

A 3-D object insisting of three numerical patterns was imaged 

with a 9-hole circular array. The correct object plane 
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locations were Sj=6cm, s2=10cm, and s3=12cm. Three tomograms 
and their reconstructions were made at planes s! = s. + z» 
i » 1,2,3. 
(a) Reconstructions with z = -0.5 cm 
(b) Reconstructions with z = 0.5 cm 
(c) Reconstructions with z = 1.0 cm 
(d) Reconstructions with z - 1.5 cm 

1 Point Response for 3-Hole Non-Redundant Pinhole Array Coded 
Aperture Imaging 
The decoding is done by optical correlation. Dotted lines 

are background. 
2 Analysis of Image Using the Autocorrelation Function 

(a) Sketch of approximate autocorrelation function of a 6-hole 
non-redundant array as measured in the detector plane 
(b) Object points, spaced by the system resolution, projected 
onto the detector plane 

1 Example of the Distributions of Random Processes Z and Z t 

(a) Random process Z 

(b) Random process Z 
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