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THEORETICAL AND EXPERIMENTAL DETERMINATION OF MECHANICAL
PROPERTIES OF SUPERCONDUCTING COMPOSITE WIRE*

W. H. Gray and C. T, Sunt

ABSTRACT

The object of this research is to characterize the mechanical
properties of a composite- superconducting (NbTi/Cu) wire in terms
of the mechanical properties of each constituent material. For a
particular composite superconducting wire, five elastic material '
constants were experimentally determined and theoretically calculated.

Since the Poisson's ratioé for the fiber and the matrix material
were very close, there was essentially no (less than 1%) difference
among all the thedretical.predictions for any individual mechanical
cohstant. Becaﬁse of the expense and difficulty of producing elastic
constant data of 0.17% accuracy, and therefore conclusively determining

which theory is best, no further experiments were performed.

INTRODUCTION

The objeét of this research is to characterize the mechanical
properties of a composite superconducting (NbTi/Cu) wire in terms of
the mechanical properties of éach constituent material. In 1973; the
Cryogenics Division of the National Bureau of Standards (NBS) published
an interim report1 in which a preliminary investigation of the mechan-
ical properties of a solenoid coil composite was made. The coil inﬁes-
tigatéd consistéd of epoxy, fibergiass, and composite supercondﬁctihg

wire. Both theoretical and experimental elastic constants were tabulated

* This research was sponsored in part by the Engineering Research
Institute, Iowa State University, Ames, IA 50011, and in part
by the Energy -Research and Development Administration under
contract with Union Carbide Corporation.

T Department of Engineering Sciences and Mechanics and Engineering
Research Institute, Iowa State University, Ames, IA 50011,



for a typical piece of coil cut out of a small solenoid. Our report
differs from this NBS work in that we consider only the mechanical
properties of an individual composite superconducting wire.

The theoretical predictions and the experimental procedures to
determine the effective elastic constants of the composite wire are

described in the next two sections of this report.

THEORETICAL INVESTIGATION

Most of the analytical work for predicting the mechanical and
thermal properties of fiber-reinforced composités in terms of volu-
métric composition, geometrical arrangement of the fibers, and con-
stituent material properties was done before 1970. There are five
approaches to predict the micromechanical behavior of fiber-reinforced

composites.* The essential characteristic of each is described below.

1.1 SELF-CONSISTENT MODEL METHODS

This method was originally proposed by Hershey3 and Kroner4 for

crystal aggregates, and was first employed by Hill5

to derive expres-
sions for elastic constants. Hill modeled the composite as a single
fiber embedded in an unbounded macroscopically homogeneous medium,
subjected to a uniform loading at infinity. This uniform loading
produces a uniform strain field in the filament which is then used

to estimate the elastic constants. A similar model proposed by Frohlich
and Sack6 for predicting the viscosity of a Newtonian fluid containing

a dispersion of equal elastic spheres consists of three concentiicA
cylinders, the outer one being unbounded. The ihnermost cylinder is
assumed to have the elastic properties of the filaments; the middle

one has the properties of the matrix; and the outermost has the properties

of the composite. The solid is subjected to homogeneous stresses at

infinity. The resulting elastic fields are determined, and then are

* No attempt is made here to give a comprehensive literature survey
regarding this subject. More references can be found in Ref. 2.



employed to predict the elastic constants of the composite, Applications
of the self-consistent model methods can be found, for example, in

RefS. 7"9.

1.2 VARIATIONAL METHODS

In this method, the energy theorems of classical elasticity are
used to obtain bounds on the mechanical and physical properties of
filamentary composites. The minimum complementary energy theorem
yields a lower bound, while the minimum potential energy theorem yields
the upper bound. Using this approach, boupds for the elastic and ‘
thermal properties of composites have been obtained by many investiga-

tors, 10712

1.3 [EXACT METHODS

By assuming that the fibers are arranged in a doubly periodic
rectangular array, a fundamental or repeating element can be estab-
lished. The resulting elasticity problem can then be solved either
by introducing a stress function using a series development, or by
numerical techniques such as finite difference or finite element
‘methods. Once the problem is solved elastically, the resulting elastic
fields can be averaged to get expressions for the desired elastic con-
stants. Typical applications of this method can be found in Refs.

l3—189

1.4 MECHANICS OF MATERIALS METHOD

' By making simplifying assumptions regarding the mechanical or
thermal behavior of a composite material, the mechanics-of-materials
expressions'for the equivalent elastic or thermal constants of unidi-
rectionally reinforced fibrous composite materials can be derived. For
example, to determine the longitudinal Young's modulus, one assumes
that the longitudinal strains in both the matrix and the fiber are the
same; in order to determine the transverse Young's modulus, one assumes

that transverse stresses in hoth materials are the same. This approach



usually is referred to as the "rule of mixtures." The "rule of mixtures"
expressions for elastic moduli and thermal conductivities can be found in

Refs. 19-21.

1.5 THE HALPIN-TSAI EQUATIONS

For designers, it is often necessary to have simple and rapid com~
putaﬁional procedures for estimating the macromechanical properties of
a fibrous composite. Such empirical formulas have been developed by
Halpin and Tsai22 based upon modifications of the results discussed
under approaches 1.1 and 1.3. By estimating the value of a factor
which depends on the geometry of the inclusions, spacing geometry, and
loading conditions, the composite elastic moduli can be approximated.
Reliable estimates for this factor can be obtained by comparing the
Halpin-Tsai equation with the numerical micromechanics solutions. If
used appropriately, the Halpin-Tsai equation can yield very reliable
results without elaborate calculations. ‘

All the above methods make the following three basic assumptions:
(1) each constituent material behaves linearly elastically, (2) the fibers
are straight (without twist), and (3) there are no residual stresses.

For this investigation, we use several of the available theoretical equa-
tions to predict the effective elastic mechanical properties of supercon-
ducting composite wire. These equations are listed in Appendix I.

In general, a superconducting composite wire may be twisted to
minimize ac power losses in a superconducting magnet. Twisting of the
wire violates an assumption implicit in the derivation of all the
equations presented in Appendix I. However, we believe that this effect
is small (see Appendix II), and for engineering purposes can be neglected.
Other effects, such as inelastic behavior of the wire at higher loading
levels, and residual stresses in the wire introduced during fabrication,
may influence the results presented in this paper, and should be ana-

lyzed more thoroughly.



EXPERIMENTAL DETERMINATION OF ELASTIC CONSTANTS

Assuming the NbTi/Cu wire behaves like a tfansversely isotropic
material, there are five elastic constants of significance. These
constants are: (1) Young's modulus along the direction of the fiber,

EL or Ell (longitudinal Young's modulus), (2) major Poisson's ratio,

\)L or \)12 ’

E; or E,, (transverse Young's modulus), (4) minor Poisson's ratio, Vo

OT V, 4, and (5) longitudinal shear modulus, GL or G12’ "Since the mate-

rial properties in a plane normal to the fiber direction are assumed to

(3) Young's modulus along the direction normal to the fiber,

be isotropic, the transverse shear modulus GT or G23 can be determined

from the isotropic relation

E

_ T :
Gr = 271 ¥ V) L

The particular superconducting composite wire chosen for our experi-
ment was‘KRYO-ZlO.*+23 This conductor has cross-—-sectional dimensions of
10.16 mm by 5.08 ﬁm with é copper matrix containing 2640 Nb-45 wt % Ti
superconducting filaments. The copper to superconductor ratio is 6.

The elastic constants which were used for the comparisons are tabulated

below. All elastic constant measurements were made at room temperature.

Young's Modulus ' Poisson's Ratio Shear Modulus
Material (GPa) : (GPa)
Cu 123 0,345 45.7
NbTi 84 0.33 31.5

* Registered trademark of Magnetics Corporation of America (MCA).

T Tradenames of material are used in this report for clarity. In no
case does such selection imply recommendations or endorsement by the
authors, nor does it imply that the material is necessarily the best
available for the purpose.



2.1 EXPERIMENTAL DETERMINATION OF E,., AND v

11 12

E1l and v12 can be determined from a simple tension test (see
Fig. 1). The direction of loading is parallel to the fibers of the
conductor. The longitudinal Young's modulus is determined from a 0]

vs €, diagram where gy is equal to the applied load divided by the

crosi sectional area of the specimen, and € is‘the strain along the
fiber direction of the conductor. Figure 2 represents an experimentally
determined plot of this diagram for KRY0-210 superconductor showing a
value for Ell of 119 GPa. A comparison of the theoretical prediction
and the experimental data is shown in Fig. 3 in this graph, as well as
the four normalized comparison graphs which follow; the legend refers

to the theoretical equations presented in Appendix I. Both equations
predict the same behavior, which deviates approximately 3% from the
experimental data.

The major Poisson's ratio is determined from the slope of the €

2
vs £, diagram during the same experiment, where 82 is the strain in

eithir transverse direction. The experimentally determined value was
0.347 (see Fig. 4). The normalized plot (see Fig. 5) showing the
comparison between theoretical prediction and experimental value again
demonstrates little difference between theories with the experimental
data differing from the predictions by about 2%.

2.2 EXPERIMENTAL DETERMINATION OF E AND G

22 23
‘E22 and G23 are determined from a test similar to that-described in
2.1 (see Fig, 6), The direction of the applied load is normal to the
fiber axis. The transverse Young's modulus is determined from the 02
Vs €, diagram where 9, is the stress, and £y is the strain in the direc-
tion of the applied force. Figure 7 represents an experimentally deter-
mined plot of this diagram for KRYO-210 superconductor showing a value
for E22 of 122 GPa. The experimental data are compared to the theoretical
predictions for E22 in Figure 8. An error of approximately 57 is observed.
Analogously the minor Poisson's ratio, and therefore G23, is deter-
mined from an €4 VS €, diagram. The experimental value for G23 is 43.1

GPa (see Fig, 9), Figure 10 compares this data point with the



theoretical predictioﬁs. An error of approximately 2% is observed.

2.3 EXPERIMENTAL DETERMINATION OF THE LONGITUDINAL SHEAR MODULUS G12

The simplest way to determine the longitudinal shear modulus G12
is to use a tensile specimen with the fibers oriented at 5-450 direction
to the geometrical axis of the specimen.24 A realistic specimen of
a composite superconductor, however, would be very difficult and expensive

to fabricate, An alternate method to evaluate G experimentally is

12
outlined below.
From the two-dimensional anisotropic stress—strain relation, we

have

4 N M= Y T 1 7 )

€ 511 512 S1e %
< E@w/z? =181 Sy Sy { % ? ' (2)
Yo J  LS16 526 %) ™

. . . | 1 5
where eo.and €9 + m/2 are the axial strains of x' and z' axes. These lie
in the xz plane and make angles 6 and 6 + 7/2 with the x-axis respec-

. . . . ' '
tively; Ye is the shear straln"of x' and z' axes, and Oe, oe + 7/2 and
Tg are the corresponding normal and shear stresses respectively (see
Figure 11). The matrix [S] in Eq. (2) represents the compliance matrix
" of the composite material in x'z' directions. In a simple tension test
with the applied load and the fibers oriented along the x direction, €e

and € can be measured directly and Yg can be computed, using the

6 + m/2
data obtained from strain gage rosette readings. For axial tension,

Oys Oy 4 w2 and Te are gilven by

= 0]
QO Ox cos
. 2
T, = =0 sin@cosO
6] X



where OX is equal to the applied force divided by the cross sectional

S S

area of the specimen, The elastic compliances S 293 Sl6’ 526’

11 "12°

and S66 are related to Ell’ E22, le’ and G12 by the following relations.
4. v . 4
5, =254, (-——Gl - —Elz)sinz(-)coszO ¢ 20l (4)
11 12 11 22
- 1 1 2 2. 2. 12 4 4
S1? =<F + e ) sin“Ocos™ 0O - T (sin '@ + cos Q) (5
R e N § 22 L2 11
_ .4 v 4
S., = sEn © + 2<Gl - E12 )sinZOcosze + cgs © (6)
& 11 12 11 22
AY) Vv .
S16 = (El + E12 - Gl > sin@cos36 + (Gl - ElZ - El ) sin30cosO N
11 11 12 12 11 22
v _ v
SZ6 = (El + ElZ - Gl > sin3®cosO + (Gl - E12 - El ) sinOcos3O (8)
11 11 12 12 11 22
2V
Sgp = (El + El + E12 - G1 )sinchoszﬁ + Zé (SinAG + cosﬁe) (9)
11 22 11 12 12
Since E E and v,, are determined from tests (2.1) and (2.2), and

11’ T2 12
€gs €5 4 m/2° Yg» 06’ Oe + /2 and Tg are obtained either from direct
measurement by strain gages or from Eq. (3), the only unknown in Eq. (2)
12° ‘Thus G12 can be computed from any one ot the three equations in
Eq. (2). 1Its value is found to be 44.8 GPa which is within 5% of the

is G

theoretical predictions (see Fig. 12).

CONCLUSIONS

The goal of this experiment was to determine which theory of com-
posites best predicted the elastic mechanical behavior of a supercon=-
ducting (NbTi/Cu) composite wire. Examination of each elastic mechanical
property reveals that all theories examined are capable of predicting

experimental data to within 5Z.



Since the Poisson's ratios for both the fiber and the matrix material
&ere very close, there was essentially no (less than 1%) difference among
all the theoretical predictions for any individual mechanical constant.
Because of the expense and difficulty of producing elastic constant data
within 0.1% accuracy, and therefore, conclusively determining which
theory is best, no further experimeﬁts were performed.

In conclusion, for a superconducting composite wire, NbTi/Cu, a
simple, fast, and reliable engineering estimate of its elastic mechanical
behavior can be made by using the 'rule of mixtures." It is unnecessary

to use one of the more rigorous theories.
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NOMENCLATURE

Symbol Definition

-~ Young's modulus

- Shear modulus

- Poisson's ratio

— Bulk modulus in plane strain
Volume fraction

— Fiber material (NbTi)

- Matrix matorial (Cu)

- Composite material constants along the fiber direction

H P 8 HhH < R < @ M
1

- Composite material constants along a transverse direction

12



APPENDIX I-

This appendix presents the various theoretical equations which were
used to predict the elastic mechanical propefties for the superconducting
composite wire studied in this report. Their alphabetic index refers to
the legend on the particular graph where a comparison with experimental
data was performed. Also included in this appendix is the reference
in which these equations may be found.

A program which numerically tabulates all of these equations is

listed in Appendix III.

13
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1. Longitudinal Young's modulus E_
g 5

= , (10)
(a) E =EV +EJV,

Source: Reference 2

(b) EL = (E V + Efo> ¢ (11)
» - E (D, - D4F;) + E.(D, = D,F,)
E (D, = D;) +E.(D, - D,)
1+ V,
Dl=l—\)f DZ_—T_—+\)m
[}
\
_ 2 _ 2 ' f
Dy = 2v¢ Py = Py T
vV VE. +VVE
P = fm
1 vafo +V E \)f
f
P b1

Soiirce: Reference 10
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2. Major Poisson's ratio v.
S

V.EL + V E \Y L

£f£f71 2 }
(a) v, = (12)
L VfEfL3 + V E L2
_ . 2
Ll = va(l - vm >Vf + vm(l + vm>Vm
L,=(1-v, - 2V 2 \Y
2 f f f i
L,=2{1-v 2 V. + {1 +v |V
3 m f m/ m
Source: Reference 10
(b) v. = vV + vV (13)

L m m f'f

Source: Reference 2



3. Transverse Young's modulus E

16

EfEm
(@ Er=gVv TEV
fm m f

T

fiber

Mf(ZMm + Gm) - Gm(Mf - M:m)vm

Source: Reference 23
1+ ¢nv,
(®) Ep =7y, En
f
%t _
E - =
- _m
E TO
m
¢ = 2 for circular fiber
o = 2(%) for rectangular
y
p /1
. a
/] .3
Source: Reference 2
(c) ET =
2 1-vf+<vf-\)>vm]
Ef

Me = 5@ = Ve) My =

Source: Reference 23

M+ G+ 2(Mf - M)V

E
m

2(1 - vms

(14)

(15)

(16)
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- D
- Eq < Vf) 1J 4 -1 1'(0‘-2Vf/1r)
(d).ETn.= 1-2-1T—+a- 1T-—-————2 tan __?T>(l7)
1~V 1+ oavf/TT
k m - —4)
(5
o 2 —-——l)
Bg
Source: Reference 23
(£ v - ve)
v \Y V.\E "m f
1o, £ __£f_ m
(&) - F *E E V.E (18)
T m £ f ff +1
V E
mim

Source: Reference 23
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4, Transverse shear modulus G

(a) G, (lower bound)

T
21 - v)
G [1 o

“T<-2v Vi
. m

where A,® is obtained by solving the following

T
4
equations
)
Al
)
A
3
(p] 4 €$=
A,
By
B
" 2
® -1
where 1 Y
f
. __L.avm -3
Vf 3 =2V
' 1 1
[p] = 4y =3
0 _m .
3 - 2v
m
3
1 J = 2v
m
1
0 3 - 2v
- m

Source: Reference 10

ri\

0
)
2
ve v, 0
-2v§ Ve 0
l = 2v
m
1 1 -1
1
=2 Ty 0
m
3 1 _ S
1 = 2v G
m
-1
2 1~ 2v 0
m

Gt'/Gm

(1%
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' 1
(b) GT (upper bound) = Gm T4 = vm) -
Lr—=—7% Vel
m
and Az is obtained by solving
rN )
Al _ 1
A2 0
A 0
3
[R]< o) < ?
: A4 0
Bl 0
B 0
2
<) L J
where
g 31 2 Ve
L 35— v, Ve T 0 0
m f m
=V
-1 1 2 £
O FTou ¥ Ve T/ v 0 0
m f m
1 : 1 1 1 -1 -1
[R] = . 4ym.f3 » 1 A 3 - 4y,
3 -2V 1l - 2v ) 3 - 2V
m ) f
L 3 3 1 S 3646,
3 - 2v 1-2v G 2v, - 3
m m m f
0 -1 ) -1 N "
3 -2v 1 -2v 3 - 2v,.
- m m i

Sburce: Reference 10

(20)
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2Gf£Km G >V + 2G GfV + K \' (Gm + Gf>

() Gp =6, 753 G f+2Gc;v TRV [C +C
m m(Km ) f mfm mm(m f) (21)
Source: Reference 7
) Vf
(d) G (lower bound) = G_ + ® F 26 V) (22)
1 ‘4 m m m
Gf - Gm ZGm(Km + Gm)
Source: Reference 11
Vm .
(e) G,, (upper bound) = G_. + (23)
T £ 1 Kf + 2Gf Vf
Gm - f 2G (K + G )

Source: Reference 11
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5. Longitudinal shear modulus GL

] Gf a+ Vf) + Vm

L Gf

—V +1+V
m

G
m

(a) G

f

Source: Reference LO

Gme
() G, = ———————
L Vme + Vme

Source: Reference 23

1+ ¢nvf
(c) GL -1 - an Gm

G G
(£ _t
= (- e+ o)
m m
o = <§> for rectangular fiber
y
— /3 L » ¥
b—— —
a

¢ = 1 for circular fiber
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G. -G 2G
f m m
Reference 11
Vm
(upper bound) = Gf +
\'
1 + f
Gm - Gf 2G
Reference 11
_ Eg 4-m+ T
2 4 $h =m) + 7

_ Gf (r + 4Vf) + (Gm T - 4Vf)
Gf (r - 4Vf) + (Gm n o+ 4Vf)

Reference 23

(27)

(28)

(29)

(30)



APPENDIX II

Whitney25 has investigated the influence of twist on graphite fibers
in an epoxy matrix. He derived an equation for the ;eduction of the
longitudinal elastic Young's modulus for graphite as a function of the
geometry of the fibers. This equation is directly applicable in esti-
mating how twisting affects a superconducting wire.

If the initial and reduced moduli are EI and ER’ respectively, then

their ratio can be expressed as:25

|4

1
I 1+ 4n2N§R2 ,

=1

where No is the number of twists per centimeter and R is the radius of
‘the fiber in centimeters.
For the superconducting wire analyzed in this report,

N .132 em T

[o}

R 3.17 X 10"3cm,

which yields

-..—-—-——l——-—— = 1 ~l
1+ 4w2N§R2 1+ 6.87 x 107° '

Clearly, the effect of twist for this superconducting wire can be

neglected.

23
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PROGRAM FIBERC.ViA
LAST UPDATED:. 1APR?6
AUTHOR: UW. H. GRAY

P. 0. BOX Y 9204~-1
0AK RIDGE NATIONAL LABORATORY
DAK RIDGE. TN, 37838

LANGUAGE: DECSYSTEM-18. FORTRAN-10
SUBROUTINES REQUIRED:
MINV - STANDARD IBM SCIENTIFIC SUBROUTINE PACKAGE.

IMPLICIT REAL (K) *

REAL NUF.NUM

DIMENSION U(6.6) .RES(6).L(6).M(6).A(6)
DIMENSION UINV(E.6)

DIMENSION ELEM(2).XNULT(2),GLGM(?),GTGM(S),
KTKM(4) , ETEM(S) .

DATA P1/3.1415926/

DATA IORED. IOWRT/S,57

BEGIN PROGRAM FIBERC.VIR
QUERY THE USER FOR THE MATERIAL PROPERTIES

DNOUNHALN -

LRITECIOWRT, 11> )
FORMAT (/7 FI1BERC.VIA DOCUMENTED IN UKNL/IM-5331° /s
* INPUT IN THE FOLLOWING ORDER:’~

EF (FIBER YOUNGS MODULUS)’~

EMCMATRIX YOUNGS MODULUS) */

NUF (FIBER POISSONS RATI0)*/

NUMCMATRIX POISSON RATIO)*/

VF (FIBER VOLUME FRACTION)” ./~

ORDER IS EF.EM.NUF.NUM,VF FORMAT(SF)”~/

» REMEMBER A SPACE DELIMITS THE INPUT VARIABLES®~)
READ( IORED. 18) EF , EM, NUF  NUM, VF

FORMAT(SF)

CONT INUE

D L )

CALCULATE THE SHEAR MODULII

GF=EF7(2.%(1,+NUF))
GM=EM/(2.%(1.+NUM))

CALCULATE THE MATRIX VOLUME FRACTION

=1.-

CALCULATE THE BULK MODULII

KF=EF/(3.%(1.-2.%NUF))
KM=EM/(3.%(1,-2.%NUM))

CALCULATE THE FIBER-MATRIX RATIOS.

GMGF =GMGF
GF GM=GF /GM
EFEM=EF /EM
EMFF =EM/EF
GMEM=GM/EM
KMGM=KM/GM
KFGF =KF /GF
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KFGM=KF /GM
C ECHO INPUT DATA
WRITECIOWRT.29) EF.EM.NUF,NUM, VF,GF.GM, EFEM.KF.KM, GFGM
29 FORMAT(/7* INPUT DATA"~/.
1° EF = “.T10.1PE11.4,/.
2° EM = *,T1B.1PE11.4./.
3° NUF = °,T18.1PEl11.4./.
4" NUM = °,T10.1PEll.4,/.
5° VW = *,T18.1PE11.4./.
6” GF = *,Tl0, 1PE11.4./,
?" GM = °,T10.1PE11.4./.
8° EF/EM = °,T18.1PEl11.4./,"
9’ KF = *,T10.1PE11.4. .
.* KM = *,T10.1PE11.4.7.° GF/GM = °.T10.1PE11.4)

THE EQUATION NUMBERS GIVEN IN THE REST OF THIS CODE REFER
TO ORNL-TM-5331

CALCULATE THE LONGITUDINAL YOUNG’S MODULUS

EQUATION 18
ELEM( 1) =VFAEFEM+VM

EOURT{ONVéIHE a.8) 6A T 21
M

GO TO 20
CONTINUE
F 1 = C(NUMKVFREF EMH{UF %VM) ~ (NUF *VFkEF EMHNUF %)
F2=NUF»F | /NUM
Di=1.-NUF
D2= (1. +VF) A/M+NUM
D3=2 . sNUF»xNUF
D=2 kNUFRNUMKVE ~H
ALPHA=D 1-D3%F 1 +EFEMK(D2-D4%F2)
ALPHA=ALPHA/(D1-D3+EFEMK(D2~D4))
20 ELEM(2) =ELEM( 1) *ALPHA
WRITE ( IOWRT, 25)
25 FORMAT(/7,* LONGITUDINAL MODULUS”~)
C OUTPUT DATA ON DATA FILE
DO 8081 J=1.2
881 ELEM(J) =ELEM(J) *EM
DO 38 J=1.,2
JJ=J+9
LRTTF( TNLRT.24) JJ,ELEM(JT)
9 CONTINUE )
1 FORMHTYULX, "EQU. *,12,4X.IPE11.4)

3
¢
E CALCULATE THE MARJOR POISSON RATIO
c

EQUATION 12
XL 122 kNUF*C 1 . ~NUMINUM) SVF +NUMKC ] . HNUM) XYM
XL2=VF&(1.-NUF-2,%NUF*NUF)
XL3=22, % (1, -NUMKNUM) HVF+C 1. +NUM) ¥Vt
XNUL TR=VFREFEPMXL 1 +VIMKNUMKXL 2
XNULTC1) =XNUL TR~ (VP XEFEMKXL 3+VIMKXL2)

EQUATION 13
XNUL T (2) sVFRNUF +VIMxNUM
WRITE (IOWRT. 225)
225 FORMAT(,7.” MAJOR PDISSONS RATIO’ /)

0O ONOOOnOn

N
-

no
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C OUTPUT DATA ON DATA FILE
D0 31 Je=i,
JJ=J+11
WRITE (I0WRT,.24) JJ.XNULT(J)
! CONTINUE

CALCULATE THE TRANSVERSE YDUNG’S MODULUS

EQUATION 14
ETEM(1) =1,/ (VMHEMEFXVF)

EQUATION 15
ETA=(EFEM-1.)7(EFEM+2,)
ETEM(2) = (1. 42. %ETAKVF) /(1. -ETAXVF)

EQUATION 16
XHMF=EFEM/(2.%(1.~NUF))
XM=1.7(2,.%(1.-NUM))
PART=2,%( 1, ~NUF+(NUF-=NUM) »VM)

00 0000w

o0

PART=PAR TR (XMF % (2 . ¥XMMHGMEM) ~GME MK (OMF - XMM) xVM)
.ETEH(3)=PQRT/(2.*XHM+GHEH+2.*(XHF-XHN)*VH)

EQUATION 17
ALPHA=2. % (EMEF-1.)

CHECK FOR A POSITIVE RADICAL FOR SQRT
IF (1. -ALPHAXALPHAYVF/P1.LE.B.) GO TO 160
X¥NMR=SART(1,~ALPHAKALPHANXVF /P1)

o000 OO0

TANSTF =ATANZ (XNMR. (1,45 RT(RLPH?*RLPHQ*VF/PI)))

SQ=4./SART( 1, -ALPHAXALPHA

ETEM(4) =1,-2 4SART (VF/P1) +(PI-SAXTANSTF) 7ALPHA

GO 10 161
160 CONTINUE

ETEM(4)=-1.
) 161 CONTINUE

C EQUATION 18
SQ= (EFEM*NUM-NUF ) %oi2uVF /EF
ETEM(S) sVIVEMVF /EF-50/ (VF*EF AM/EM+HL L)
ETEM(S) =1./7(ETEM(5) %EM)
WRITECIOWRT, 625)
625 ° FORMAT(//,’ TRANSVERSE YOUNGS MODULUS’ )
c OUTPUT DATA ON DATA FILE
EHG=AMAX1 (EF.EM)
ELW=AMIN] (EF.EM)
DO 885 J={.5
685 ETEM(J) sETEM(J) %EM
DO 32 Jei1.5
. JJ=J+13

IF (ETEMCJ) .GT.EHG.OR.ETEM(J) .LT.ELW) GO TO B2

WRITE(IOWRT.24) JJ.ETEM(D)

GO TO 32 : : .
82 WRITE(IOWRT.B83) JJ
83 FORMAT(” EQU. “.I12.° NOT APPLICABLE’)
32 CONTINUE

c .
E CALCULATE THE TRANSVERSE SHERR MODULUS
g EQUATION 1S

[N
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BEGIN P THE COEFFICIENT MATRIX

.

bl
Wm0
c e . C

N
O T I A I R |

SETTTTSTm
—_—— . — D
fal

3)=~2.
»3)=-3.
(6.3) =4,
3.4)=1, \
1.3)=0.
2.5) =0,
3.5)=-1.
4.5)=0,
6.5)=0.
1.6)=0.
2,6)=8.
3.6)=-1.

1.2)=1./V¥F
4.2)=-(3.-4.*NUH)/(3.-2.*NUH)
2.2)=il{d.2VAF
6.2)=-1.7(3.-2.%NUM)
5.2)1=-3.4I(A. 2N
13 ) =WFRVF
2,3)°-2.%U(1.3)
1.4)=VF
4,4)=1.7(1.-2 NUM)
2.4)=VFxJ(4,4)
5.4)=U(4.4)
(6.4)=~U(4,.4)
U(5.5) =-GFGM
U(4,6)=(3.-4.%NUF) 7 (3. 2 *NUF)
U(6.6) =GFGM~/ (3.-2.¥NUF
U(5.6)=-3.%xU(6.6)

STORE THE COEFFICIENT MATRIX INTO UINV
DO 71 IH=1.6
DO 71 JH=1.6
UINVCIH, JHY =UCIH, JH)

FORMULATE RIGHT HAND SIDE
Al =1,

Hi{2)3y,
A(3) =0,
AfdY=0,
A(5)=-0.
A=,

UIAWWAUIDWN—O
~

CCcCccCccocooccCccccccccococcococcccocecacccoccoe
P e e e Y o e e D ol e o o e N N o e o)

INVERT THE COEFFICIENT MATRIX. SUBROUTINE MINY IS THE STRNDARD
IBM SCIENTIFIC SUBROUTINE MARTRIX INVERTER.

CALL MINV(UINV.6.D.L.M

OBTAIN THE SOLUTION VECTOR
DO 69 MK=1.6
RES (MK) =0.
DO A9 Mirl &
RES (MK) =A (ML) *U INV (MK, ML) +RES (MK)

30

4}



31

GTGMC1) @1, =2, % (1, =NUM) #VFARES (4) /(1. =2 MNUMY
EQUATION 20
BEGIN TO SET UP THE COEFFICIENT MATRIX

1,1)=4,

(glglelg]

-

ENE Y

.3)e2.
.5)e-1,

IR IR
(101485
(VR Rw RS
s 08
100
-

5.6)=0,

U(6.6)=8.
U4,2)=-1,7(3.-2.%NUM)
U(3.2)=-3.%J(4,2)
U(2,2)=(3.-4.xNUM)»J (4, 2)
UIS.21alI(3.2) /VF .
U(6,2)=U(4,2) /¢

U(S, 3) ==3 . kVFXVF

U(6. 3) =2, %VF %VF
Ut2.4)=1.7(1,-2.%NUM)
U(3.4)=U(2.4)
U(4,4)=-4(2.4)
U(S,4)=VFal(2.4)

UG, =-U(5.4

U(3.5) =-GFGM
U(2,6)=(3,.-4,.*NUF)/7(3,-2.%NUF)
U(4,6) =GFGM/ (3. -2. *NUF)
U(3.6)=-3.xJ(4.6)

C
C STORE THE COEFFICIENT MATRIX INTO UINV.
DO 81 IH=1.6

DO B1 JH=1.6
1 UINV(IH. JH) «UCIH, JH)

FORMULATE THE RIGHT HAND SIDE.
AC1)=0.
A(2)=8.
A(3) =0,
A(4) =8,
AR(S) =1,
A(B) =0,

INVERT THE MATRIX.
CALL MINV(UTINV.R.D.L.M}

OBTAIN THE SOLUTION VECTOR.
D0 83 MK=1.6

8
c
c

o0 OO
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RES (MK) =8.
DO 89 ML=1.6

89 RES (MK) =A (ML) xJ INV(MK, ML) +RES (MK)
GTGM(2)=1./(1.42.%(1.-NUM) /(1. -2 . xNUM) *¥VF*RES (4) )

EQUATION 21
KMGM1 = (KMGM+1 . ) wVF %2,
GFGM1=(GFGM+1., ) ¥k MGM
GTGMC =GFGMXKMGM1+2 . %GF GM*VM+GFGM1
GTGM(3) =GTGMC/ (KMGM1+2 . *GFGMKVIM+GFGM1 )

EQUATINN 22
GTGM(4) =1 . +VF/(1,/(GFGM-1.) +(KMGM+2. ) %VM/ (2, x(KMGMH1.)))

EQUATION 23
FRAC=((KFGF+2.)%VF 2, /7 (KFGMGFGM)+1./(1.~GFGM))
100 GTGM(5) =GFGM+VM/FRAC
WRITE(IOWRT. 425)
425 FORMAT(/7.” TRANSVERSE SHEAR MODULUS” /)
C OUTPUT DATA ON DATA FILE
DO 883 J=1.5
803 GTGM(J) =GTGM(J) *GM
b0 33 J=1.5
JJI=J+18
WRITECIOWRT.24) JJ.GTGM(J)
CONTINUE

CALCULATE THE MINOR POISSON RATIO USING THE RULE OF MIXTURES
TRANSVERSE YOUNG’S MODULUS AND EACH OF THE PREVIOUSLY CALCULATED
TRANSVERSE SHERR MODULII.

E22=ETEM(1)
WRITE (I0WRT.79)
Do 75 J=1.5
JJ=J+18

EQUATION 1
P0O123=(E22/(2.%GTGM(J)))-1.
IF(POI23.L7.9.0.0R.P0OI23.GT.8.5) GO TO 76
WRITECIOWRT.7?7) JJ.POI23
GO T0.75
WRITECIOWRT.?8) JJ
CONTINUE
FORMAT(* EQU. 1 USING EQU. ~.I2.4X.1PE11.4)
FORMAT(* EQU. 1 USING EQU. “.T12.” NOT APPLICABLC)
FORMAT(~~,- MINOR POISSONS RATIO’/)

CALCULATE THE LONGITUDINAL SHEAR MODULUS

EQUNTION 24
GLGMC 1) =(GFGMK (1, +VF) +VM) Z (GFGMEVIME-1 . +VF)

EQUATION 25
GLGM(2) =1, 7/ (VMHGMGF*VF)

EQUATION 26
- ETA=VFX(GFGM-1.)/(GFGM+1.)
GLGM(3) =(1.+ETA) /(1. ~ETR)

EQUATION 27

00

aon no

[ lwle]edelil]
w

(gly]

OO0 00 ODOONNNNNY
OONUI

O
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GLGMD =2 . xGFGM- (GFGM-1. ) %VM
GLGM(4) =GLGMD/ (2. +(GFGM-1.) VM)

c

C EQUATION 28
FRAC=1./(GFGM-1.)

c GLGM(S) =1 . +VF/(FRAC+V2.)

C EQUATION 29
FRAC=1./(1.=GFGM) +VF/ (2, *GFGM)

c GLGM(6) =GFGM+VM/FRAC

C EQUATION 36

ALPHA=GFGMK(4.%VF+P 1) +P1-4.%VF
ALPHA=ALPHA/ (GFGMk(PI-4,%VF) +P I+4. %VF)
GLGM(?7) = ,S5%( (4, ~PI+PI¥ALPHA) /4. +4. *RLPHR/(RLPH9*(4.-PI)+PI))
URITE(IOURT' 325)
FORMAT(~~.* LONGITUDINAL SHERR MODULUS’~)
C OUTPUT DATAR ON DATA FILE
GHG=RMAX1 (GF . GM)
GLL=AMINt (GF.GM)
DO 882 J=1,7
802 GLGM(J) =GLGM(J) *GM
DO 34 J=1.7
JJ=J+23
IF (GLGM(J) . GT. GHG . OR.GLGM(J) .LT.GLW) GO TO 85
WRITE(IOWRT,24) JJ,GLGM(D)

! GO TO 34
a5 WRITE (IOWRT.83) JJ
84 CONTINUE
C MORE DATA
WRITECIOWRT. 998)

990 FORMAT(/~* MORE DRTR?’/
: 1 * INPUT EF.EM.,NUF.NUM.VF FORMAT(SF)*7
2 ’ NEGATIVE EF STOPS THE PROGRAM®)
RERD (IORED. 18)EF , EM. NUF , NUM, VF
IF(EF.GT.8.) GO TO 989
STOP
END
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FIGURE CAPTIONS

Direction of loading for the determination of the longitudinal
Young's modulus and the major Poisson's ratio.

Ol vs El diagram for Kryo-210 superconductor.

Normalized plot of the longitudinal Young's Modulus versus
volume fraction of the fiber (NbTi): 1In this graph, as
well as the other normalized comparison graphs, the legend
refers to the theoretical equations presented in Appendix I.

€, vs €, diagram for Kryo-210 superconductor.,

2 1
Normalized plot of the major Poisson's ratio vs volume
fraceion of the tiber (NbTi).

Direction of loading for the determination of the transverse
Young's Modulus and the minor Poisson's ratio.

g, vs € diagram for Kryo-210 superconductor,

2
Normalized plot of the transverse Young's Modulus versus
volume fraction of the fiber (NbTi).

€4 Vs €, diagram for Kryo-210 superconductor.
Normalized plot of G2

vs the volume fraction of the
fiber (NbTi). )

3

Coordinate system for the determination of the longitudinal
shear modulus.

Normalized plot of the longitudinal shear mndulus vs wvolume
fraction of the fiber (NbTi).
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