SYSTEMS ANALYSIS GUIDE
FOR 0S910 VERSION 2,
A REAL-TIME OPERATING SYSTEM
FOR THE SDS-910 COMPUTER

- MASTER

Leonard C. Moon
and Anthony P. Lucido

AMES LABORATORY, USERDA
IOWA STATE UNIVERSITY

AMES, IOWA

Date Transmitted: March 1976

PREPARED FOR THE U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

UNDER CONTRACT W-7405-eng-82

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

IS-3860

SYSTEMS ANALYSIS GUIDE FOR 0S910 VERSION 2,
A REAL-TIME OPERATING SYSTEM FOR™THE SDS-910 COMPUTER

P ——

By

‘Leonard C. Moon and Anthony P. Lucido

' s a
is seport was pre_paxcd 8!
::;s;r:d by the United States

oy - f. the;r c:‘:\r\r::{o?s':
. &th emp‘loysees.m m\rhei:nyamuployeu. ma'kes l:;:]
: :l;:::;: °:):p.ress) S:hin;g:i::; of asu:lr:ms :ni
» “ Stb\?;{ulﬂt:es ;f any in{ovm:gn;:xp?‘x:.l:; 3:(‘!.:::(“2(‘
Laboratory, ERDA |mmsidvond e

Ames

Iowa State Universitjr

e e~ -t T

Ames, Iowa 50011

Dat;e Transmitted: March 1976

PREPARED FOR THE U.S. ENERGY RESEARCH AND
DEVELOPMENT ADMINISTRATION UNDER CONTRACT NO. W-7405-eng-82

-~

: NLIMITED

UBTMBUUONCN”HHSDOCUMENTJSU

)

ii

NOTICE-

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy Re-
search and Development Administration, nor any of
their employees, nor any of their contractors, sub-
contractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus,
product or process disclosed, or represents that

its use would not infringe privately owned rights.

Available from: National Technical Information Service
U. S. Department of Commerce.
P.O. Box 1553
Springfield, VA 221061

Price: Microfiche $2.25
Paper Copy $4.50

II.
III.
IV,

VI.
VII.
VIII.

1ii

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
COMMUNICATIONS VECTOR TABLE (CVT)

TRANSIENT STORAGE AREAS

COLD START
DISPATCHER
CLOCKS

TASK SCHEDULING
I/0 SCHEDULING

'REAL-TIME ERROR MANAGEMENT

TRANSTENT STORAGE AREA MANAGEMENT
INTERRUPT BUFFER QUEUE STORAGE AREA MANAGEMENT
INTERFACE COMMUNICATION PROTOCOL

A SDS-910/PDP-15 INTERFACE PROTOCOL

SDS-910 TO PDP-15 TRANSMISSION ROUTINES
READ ROUTINE

FLOATING POINT POPS

FIXED POINT POPS

PAUSE POP

DMA24 POP

TABLE 1 0S910 POPS

TABLE 2 1INTERRUPT VECTOR ASSIGNMENT AT AMES
LABORATORY RESEARCH REACTOR

TABLE 3 ADDRESS ASSIGNMENTS
APPENDIX A
APPENNTX B
APPENDIX C

Page

iv

o 00 ~N =

17
19
20
23
25
26
27
32
33
34
36
38
38
39
40

41
42a
43
62
66

iv

ABSTRACT

- 08910 Version 2 operating system is a real-time experiment
céntrol system for the SDS-910. The SDS-910 is coupled to a DEC
PDP-15 where the PDP-15 is the computation element and the SDS-910
is used as an intelligent interrupt handler. The SDS-910 operating
system along with the communication scheme between the SDS-910 and

the PDP-15 are discussed in detail.

Distribution List

Chicago Patent Office-
USERDA-TIC

Ames Laboratory Library
Leonard C. Moon
Anthony P. Lucido

Total

I. Introduction:

05910, the operating system for experiment control using the
SDS-910 computer, hés been designed to do task management and experiment
~control in an interrupt-driven environment. The Aﬁes Laboratory Research
Reactor has a multitude of experiments on it that need real-time data
collection and control facilities.

The computer systém that is designed to perform the requisite task
management and experiment control consists of an SDS;910, used as an
"intelligent interrupt handler", and DEC PDP-15 used as the computational
element, with the two computers linked by an interface designed at the
Ames Laboratory. Both computers have Ames Laboratory designed operating
systems.

This report will detail the operating system for the SDS-910
computer, 05910. Facilities provided by 0S910 include:

a) SDS-910/PDP-15 communications,

b) task scheduling,

c) scheduling of tasks on clock queues,

d) . fielding of real-time error interrupts.

Also, greét flexibility is allowed the user in managing experiment
communication and experiment derived interrupts.

All SDS-910--PDP-15 communication is handled by 0S910 routines,
as well as the four clocks (12.8 msec. fast clock, 102.4 msec. medium

clock, 1.6384 sec. slow'clock, and 1.6384 sec. real-time clock), and

real-time error interrupts. A real-time error may be generated by
either the user or the operating system, and is, for example,
symptomatic of an invglid experiment address. When a RT error is
encountered the user is terminated.

Under 0S910, tasks may not be transient during execution. The
code for a task must reside completely in storage, and may not be
moved around. Ho&ever, for control purposes, a set tésk/program
format is imposed. A user's program has the form of:

a) iD/KEY table entry for the user (to be explained later),

b) the sequence of tasks for the user. t

As a 'KEY' ié used‘with READ(s)/WRITE(s) in the PDP-15, and
(it is assumed that) the user program is set up to accept one data
length for a specific 'KEY', a table of the 'KEYS' and their related
buffer areas may be maintained. Because of this, when the PDP-15
transmits data to the SDS-910, a predefined buffer area already
exists in the SDS-910 to accept it. Dynamic buffering must exist
for SDS-910 to PDP-15 transmissions, as the user will not know when .
the data are finally sent, nor, when the buffer is empty. 08910
supplies the user with POPs that take care of the buffering problem.

To provide this dynamic buffering, a transient buffer storage
area is system maintained. The transient buffer storage area confains

nodcs-of seven words in length. The format of a buffer will be

shown later.

Also included are POPs to perform queuing of tasks. A task
may be placed on the task queue, or one of the three clocks (fast,
medium, or slow). Also, a parameter list may be referenced in this

call. The format of a node on one of these queues is:

next node pointer

D , entry point
address

parameter list pointer

Here, the next node pointer is a simple forward reference, to create
a linked list of nodes. The ID value (in bits 0-8 of the second word)
is the uéer ID of the task to be invoked with the entry point address
"ANDED' into bits 10-23. If there aren't any parameters, the third
word is set to minus one, else it contains the address of the
parameter list.

A transient storage area is maintained for queue nodes.l'Currently,
there are 30 nodes of three words each for queue nodes. If necessary,
this area can easily be expanded or contracted to accommodate any
run-time needs.

For further instruction as to the use of 05910 the reader is asked
to refer to 'USERS MANUAL FOR 05910, THE SDS-910 OPERATING SYSTEM',

I5-3773. . ’

)

II. Communications Vector Table (CVT):

Included (in the CVT) are (system and user) constanté; an
interrupt idler routine, POPs, intérrupt vectors, user interrupt
handlers, and the table of entry points. We will now ekplain the
different CVT entries.

The interrupt idler routine entry point, DUMMY, is at location 2,
octal, then a regular interrupt entry uses a BRM DUMMY, then the
interrupt level is cleared, and a return to the interrupted program
results,

The real-time ciock counter, TIME, is at location 4, octal. This
counter may be directly referenced by a user. The value at TIME will
not be allowed to exceed 400000, octal. Thus, an 18 bit word will
always be able to hold the counter‘value, in its entirety.

The next four locations contain eﬁtry point address to ;he
allocation/deallocation roqtines. Each routine is invoked via an
indirecf branéh and mark (BRM*). To allocate a queue node, GETNDE 1is
used. To get a buffer node, GETBUF is used. To free-up either a
queue node or buffer node, use FRENDE or FkEBUF, as required. The
servicing routineé, themselves, will be explained later.

At locations 11 and 12, octal, Are the free storage list addresses.
QNDEFQ references the. free storage list for queue nodes, éﬁd BNDEFQ

refercnces the free storage list for buffer nodes.

Next come six numeric constants that may be used by the user,
and are heavily relied upon by the system. These constants are in
locatioﬁs 13 to’20, octal. In order, the constants are -i, o, 1,

2, 3, and 4. These may be symbolically referenced by MINUS1l, ZERO,
ONE, TWO, THREE, and FOUR, respectively. Octal location 21,

is ADRMSK, whichvis an address mask. When used as the operand of an
extract (ETR), ADRMSK Qill set all but bits 10-23 to zero.

Locations 22 throﬁgh 24 octal contain pointers to the COLD START
foutine-(COLD), the dispatcher (TASKER), and RAID (RAID), respectively.
The general user will use these pointers.

Octal locations 25 through 27 contain C510, €210, and CCBP,
rgSpectively. C510 is. the system ID (identifier). £Each task in the
PDP-15 is assigned a unique user ID. The system assumes control of
ID 510. To signify which user currently has control, the variable
CCBP is kept updated by the system. €210 is subtracted from the
user's ID number to obtain an offsét into the User Entry Point table
CCBP contains the ID of the task that is

8’

currently in control of the computer.

which starts at 300

Octal locations 30 through 33 are reserved for.the W and Y buffer
interrupts. These are not used in tﬁe present implementation but fhe.
hardware is attached to these locations.

Octal locations 34 through 36 are system mask variables, BIT9,
IDNUM1, and SKDID, respectively. BIT9 is used to test/set bit

location 9 of an SDS-910 word which tells the system if the particular

user is active (0) or inactive (1). IDNUMl1 and SKDID are both used '
to extract and merge in the user ID number into different parts of
the SDS-910 word.

Locations 40 through 42 octal are the system temporaries QA,

QB, and QC, respectively. These temporaries are saved when an
interrupt of higher priority occurs and restored upon completion of
the interrupt servicing routine.

Location 100 octai begins the POP invocation area. 1Included are
all system and user oriented POPs. This tabi; will change as user/system
requirements change.

Location 200 octal begins the interrupt vector area. The
current interrupt locations should be obtained from the listing of
the operating system code. |

Locations 300 to 327 octal comprise the Entry Point table, which
contains the entry point address value for each user/system task.
Each locafion.in the table is either set to the user's ID/KEY table
address if the user is in core, or to -1 (777777778)f Unless C210 is
suitably modified, moving fhis table will provide catastrophic results.

In order to maintain system integrity, all user interrupts are
first handled by the system so the "old'" environment can be saved.
When a user does an OPEN in the PDP-15 the usef's intérrupt(s) in the

SDS-910 are brought from the idler statc to and active state. This

action is also done when a user does a PON of his/her interrupt.

III. Transient Storage Areas:

Octal location 341 begins the transient storage area for the
system at the reactor. The free queue node uses three words per entry,
and extends from locations 341 through 474, which is 30 three word nodes.
The buffer node free storage area extends from location 475 through
1020, and gives 30 seven word nodes. The interrupt buffer queue is
A20 ten word nodes extéhding from location 1021 through 1333. Each list
is forward linked, with the last node's link field set to minus one.

It should be noted that changing the émount of free storage area
is.very easy, but an ;ppropriate change to the COLD START routine (COLD)

must be made to allow for the change in number of entries,

IV. COLD START:

The COLD START routine will initialize the free storage areas,
set the user interrupts to the idler state (BRM DUMMY for regular
interrupté, the special interrupts are not touched),'set system-oriented
interrupts to the required valﬁes, ground (set to 777777778) all queue
pointefs, and then enaﬂle the interrupts and branch to the dispatcher
(TASKER).

NOTE: 1If the transient storage area locations or sizes are modified,
the appropriate COLD START routine locations must also be modified.
V. Disbatcher:

We now come to the heart of 05910, the dispatcher (TASKERj. Three
queues are managed by the dispatcher, the interrupt and regular write
queues, and the task queue. The interrupt write queue has the highest
priority, with the regular send (write) queue next in priority, leaving
the task queue lowest in priority. All three of thése queues use the
same three word node buffer. Queuing of tasks will be covered 1ater;

As noted earlier, the format of a queue node 1is:

address of next node (if this is the last
node on the queue, the
"address of next node"
field is set to -1)

ID entry point
location

parameter list location

For the write (send) queues, a buffer node or buffef node list is
expected to be referenced by the parameter list field. The entry point
field is assumed to be the routihe to perform the 1/0, either SEND72
(for a 72 bit send), or DMASND (for a DMA transfer). The ID field is
expected to bé that of the user issuing the transfer.

With all tasks, if the user has been set inactive, then the task

is not dispatched. To determine activity, a bit is kept in a preamble

‘to each user's code. The format of a user's task is:

ID/KEY table

section

user's

programs

AN

IR

10

The ID/KEY table, which is supplied by the user, must have

the form:
BIT 0—8 9 10 ~~—————23
WORD
1 ID # a/i # KEY ENTRIES
2 ADDRESS OF INTERRUPT1
3 ADDRESS OF IN'I‘ERRUPT1 HANDLER
4 ADDRESS OF INTERRUPT2
5 ADDRESS OF INTERRUPT2 HANDLER
6 OPEN ENTRY POINT
7 CLOSE ENTRY POINT
8 KEY 1 BUFFER LOCATION
9 KEY 1 ENTRY POINT

2N+6 KEY N BUFFER LOCATION

2N+7 - KEY N ENTRY POINT

Taking each section in order, we have:

1.

WORD 1:

bits 0-8: the ID number (in the range 511-537) assigned
by the system staff.

bit 9: the a/i (active/inactive) flag for the user. If
this bit is set to zero, then the user is assumed to be
in the active (running) state.

11

bits 10-23: maximum key value used.
WORDS 2 and 3:

Addresses of the user's first interrupt location and the
user interrupt handler for it. If the user does not
have an interrupt for his or her experiment, then put:

WORD2 - OCT 77777777
WORD3 . BRM 2.

WORDS 4 and 5:

Addresses of the user's second interrupt location and
the user interrupt handler for it. 1If the user does
not ‘have an interrupt or does not have two interrupts
for his or her experiment, then put:

WORD4 OCT , 777777717
WORDS BRM 2.
WORD 6:

User's OPEN routine entry point.
WORD 7:

User's CLOSE routine entry point.
THE ENTRIES:

These are pairs of data buffer location and entry point
associated with each key used in the PDP-15 ALECS program.
To conserve space in the SDS-910 the user is asked to assign
the keys in numerical order.

This table is used in the following manner.

1.

i .

When the task that resides in the PDP-15 performs an OPEN
for the EXPERIMENT file, the a/i bit is set to zero for that
user. The user's interrupt(s) is(are).connected through the
system and is(are) set active. Finally, the user's open
routine is scheduled for execution,

When a task is to be dispatched, the a/i bit is checked;
If the bit is set to one (inactive) the task is flushed
from the system.

12

3. When information is sent to the SDS-910 for the user,
the key, say i, associated with the data, is used to
find the address of ‘that area of the user's storage
which will contain the data (the storage area must be
large enough to contain both control information
i.e., two words of storage for a read return, and the
data). Associated with the buffer address is a service
routine entry point address. Using the address of the
(user supplied) buffer, the entry point address for the N
service routine, and the user's ID value, a task queue
node is created, thus scheduling the execution of the
‘user's service routine. '

4, When the user incurs a real-time (RT) error (by using an
invalid interface (EOM) address for his experiment) the
RT error servicing routine resets the a/i bit, sends
information to the PDP-15 that the user has incurred an
RT error and then allows the user to finish execution
of the task.

5. When the user's code in the PDP-15 performs a CLOSE of
the EXPERIMENT file, a record is transmitted to the
SDS-910 to indicate this. The SDS-910 system then resets
the a/i bit to inactive, turns off the interrupts
associated with this user, and schedules the usér's CLOSE
routine, :

The'ID/KEY table is user generated. An example follows

for a ID number of 524, and a total of two keys.

OCT 52440002

OCT 242 ADDRESS of INTERRUPT .

BRM CHAR ADDRESS of INTERRUPT HANDLER
ocT - 243 ADDRESS of INTERRUPT,

BRM CHAR ADDRESS of INTERRUPT, HANDLER
HLT OPEN OPEN ENTRY POINT

HLT CLOSE CLOSE ENTRY POINT

HLT BLOCK . KEY ONE BUFFER AREA

HLT READ . KEY ONE ENTRY POINT

HLT DATA KEY TWO BUFFER AREA

HLT SEND KEY TWO ENTRY POINT

The first word, declared OCT 52440002, has the field values: bits

0-8 set to 524, i.e., the user ID number, bit 9 set to 1 (inactive)

8

13 '

and bits 10-23 set to 00002, the total number of keys. The routinme
names have been arbitrarily chosen. The declarations using
HLT name

create a word containing the storage address for 'name'. The buffer
area will hdve to be iarge enough to contain the maximum amount of
data sent, plus whatevér control information must be kept (see the
1/0 roufines).

| When information is sent from the SDS-910 to the PDP-15, it is
placed in a &ynamically acquired buffer‘area,Aand avqueﬁe eﬁtry is

made. The queue entry is of the form:

link field

ID service routine address

address of bgffer

If this is a 72 bit transfer, then the service routine address is to

the SEND72 routine. Otherwise, it is to the DMASND routine. The format

14

of a dynamic bqffér is:

a) for a 72 bit transfer:

word 1 -1 (grounded)
2
3 72 bits of control

‘information and data

4

5 72 bits of unspecified
data

6.

7

b§ for a DMA transfer:

1. First buffer node:

0 1 8 9 10 23
word 1 e # transfers 0 link
2 72 bits of data fo set up

DMA transfer

5 First 72 bits of DMA data

15

where:

e - extent bit. If this is the last node on the list,.
then e=1, else e=0,

transfers - this is the number of 72 bit transfers to be
done, excluding the 72 bits of set-up data.

link - this is the address of the next buffer node, or
undefined if this is the last node on the list.

2, 1Intermediate nodes (full):

0 ' ' 9 10 23
word 1 0o . 0 link
2 72 bits of data
3
4
5 72 bits of data
6
7

where: 1link is the address of the next bhuffer node.

16

3. Final node:

01 9 10 23
word 1 1 0 undefined
2 72 bits of data
3
A
5 either 72 bits of data,
or undefined
6
7

Note that bit 0 (the extent bit) is set to one (1).

Eacﬁ queue has the same form, and each is treated the same.
A two word queue pointer set exists for each queue, consisting of a
head and tail pointer. If the queue is not émpty (head, tail # -1),.
then thé first node on the queue is tested for being from an active
task. If the task is active, then the task is dispatched. Otherwise,
the task is cleared off. This latter operation amounts to releasing
all buffer space, for an I/0 queue entry, and freeing the queue node.

The activation of a task is as follows:

a) the entry point address is extracted from the second word
of the queue node;

b) the A register is loaded with the parameter list address
field contents;

c) a BRM is done relative to the entry pdint pointer.

17

Task deactivation is very simple. For an I/0 queue node, the
. buffer list is assumed to be already freed. Otherwise, the A register
is set to the address of the node. Then, the instruction:

BRM* FRENDE
is executed. This routine will chain the queue node back onto the
queue node free storage list, and return.

The routine ACTIVE tests the a/i bit of\the ;ndicated task. On
entrance, the X register must point to the node to be scheduled. The
ID value is then extracted. The associated ID/KEY tables a/i bit is
checked. If set to 1, then the return address is incremented before
returning. If a/i = 0, then the normal return is performedf The
which maps into location 300

system ID value of 510 points at the

8 8
zero location (ZERO) for its ID/KEY table. This makes the system
always active.

VI. Clocks:

The clocks are used for time-dependent task scheduling. Tasks
may request scheduling onvghe queue for one (or more) of the clocks.
The task chain looks and is used in the same manner as the dispatchef
chains. Also, tasks are subject to the same testﬁland conditions.
There afe three clock signals which are supplied by the interface.

The three clocks have periods of 12.8 ms. (fast clock), 102.4 ms.

(medium clock), and 1.6384 second (slow clock), and are normally

18

employed to provide a set time delay between operations in the SDS-élO.
Shaft movement, charaeter transmission, etc., are some areas where one
might employ the clocks. The slow clock tick is also used to increment
the TIME variable at location 4. Therefore, 'gross' period timing can
be done by the user.

A user may schedule a task onto one of the three clock queues by
using one of three POPs (SKDFST, SKDMED, SKDSLQO). When a task is on a
clock queue, it is executed the next time that clock "ticks'". The
action taken when a clock '"ticks" is:

1. 1If the queue for that clock is empty, then the interrupt
level is cleared and execution resumes where it was 1ncerrupted

2. If there are nodes present, then the contents of the head
pointer for the respective clock queue are copied to the
area referenced by either FCLKQ, MCLKQ, or SCLKQ (fast, medium,
or slow clocks), and the queues' head/tail pointer are both
set to -1. Then,

3. Each task on the queue now referenced by FCLKQ, MCLKQ, or SCLKQ
is, if active, invoked in turn, then deleted from the queue.
Meanwhile, new tasks may be scheduled on this or any other queue.

4. Finally, the interrupt level is cleared and execution resumes
when it was interrupted.

This task dispatching operates with the interrupt system enabled, thus
allowing higher priority interrupts fo hit at any“time, but stopping the
same level interrupt, or any lower one. When all the nodes on the queue
(referenced by FCLKQ, MCLKQ, or SCLKQ) have been treated, the interrupt
level is cleared and execution resumes where the clock "tick" interrupted.
NOTE: The clocks are considered the only 'real-time' experiment and

therefore are high in priority. Only the RT error interrupt 1s higher.

19

ViI. Task Scheduling:
| Using 05910, the facility to cause the scheduling of tasks exists.
- A user may scﬁedule a normal task (managed by the dispatcher), or a clock
task (managed by the respective clock queue manager)L
There are four POPs used for scheduling, SKPFST, SKDMED, SKDSLO,
and SKDTSK. The parameters to each of these POPs is the same:
1. the A register contains the entry point argument,
2. the B register contains the parameter list pointer.
Using these parameters, the routine MAKNDE constructs a queue node and
sets the X register to the address of the newly constructed node.
The MAKNDE routine employs the A and B register, and CCBP, to
fill in the node fields, An attempt is first made to allocate a queue
node frém the free storage list. 1If the list was empty at theAtime of
the request, the X register will have been set to_-l (777777778 octal).
and the MAKNDE routine will halt. Otherwise, the link field (first
word) of the newly allocated node is set to -1 (to ''ground" it); word
two is set to the pair (user ID, entry point address) arranged as:
ID - bits 0-8
Entry Point address - 10-23
Bit 9 is set to zero
The third word is set to the contents of the B register (user parameter
list pointer). When MAKNDE returns to the calling routine, the node may
be added to the required queue 1list. ANofmally, the addition will be to

the tail of the queue.

20

VIII. 1I/0 Scheduling:

There are a set of four POPs to queue up data transmission to the
PDP-15. Three POPs, SNDFIX, SNDFLT, and SENDMA, are used to send data
back on a read return (see communication modes Section XI). The fourth,
SNDINT, effects the transmission of an ONCODE resulting from an
experiment interrupt (see the ALECS Language Reference Manual,
15-3339).

Each POP will construct a queue node, and as many buffer nodes _
as required for the amount of data. For all but SENDMA, this will be
one buffer node. In any case, if a node (buffer on queue) is required
and none are available, tﬁe POP will execute a PAUSE instruction and
wait for a node to free¥up. This condition, similarly raised in the
task scheduling POPs, is indicative of a condition of too feﬁ nodes
on that free storage list. Thus, the system programmer response must
be to increase the transient storage area for that type node.

The SNDFIX POP requires an operand to be present. The déta
_referenced by the operand must be the three words:

Word 1: Length of transfer

Word 2: 'Key Loc. in CAL" value

Word 3: Data value
The "Key Loc. in CAL'" value is passed by the PDP-15 on the initial
set-up. This value will be put into the user's desired location by

the system. The above data, along with the current CCBP value will be

used to construct a buffer node. Then, a queue node will be constructed

21

using the address of the buffer node (whose first word has been set to
-1) as the parameter‘list field value, and the entry point to the I/O

routine SEND72 and the CCBP value as the entry point/ID field values.

The link word of the nodé will be set to -1, and the-node chained onto
the tail of the send queue.

SNDFLI is similar to SNDFIX except that the area referenced by
the POPs' operand is the four words of:

Word 1: Length of transfer

Word 2: '"Key Loc. in CAL" value ‘

Word 3: Data value (low order Mantissa and exponent)

Word 4: Data value (high order Mantissa)
The same send queue node format is used, and the buffer is constructed
in the'same fashion.

SENDMA will construct a (possible) list of buffer nodes. The
lengthvof a buffer node is set at seven (7) 24 bit words. This allows
for a link word (word 1), and two 72 bit data sections (words 2-4,
and 5-7). This not only makes filling the buffer area easier, but also
makes the transmission of the data easier, as boundary problemé won't
exist (the SDS49lQ mugt, because of the interface structure, transmit
data in groups of 72 bits).

The operand of the SENDMA POP references an area arranged as:

data entries

"Key Lor. in CAL'" value
data value 1

.

data value N

22

The # data entries field gives the number of data entries to be
transmitted back to the PDP-15. The buffer nodes are set up as:

1. First buffer node:

0 1 9 10 23
word 1 e # words 0 link
2 72 bits of initial data to

start the DMA

5 first 72 bits of DATA

Note: a) if this is the only buffer node on the list,
" e=1l; otherwise, e=0.

b) the # words field gives the number of 24 bit
words to be transmitted in the DMA transfer,
not counting the first 72 bit setup transmission
that prepares the PDP-13 for the transfer. Zerves
are added onto the right of the data as required,
to pad out to 72 bits in a transmission. Thus, if
a DMA transmission were to be for only 54 bits of
data, 18 bits, all zero, would be appended onto
the right of the actual data to get to a 72 bit
transmission. ‘

Other than the possibility of having a list of buffers, and that the
service routine will be DMASND rather than SEND72, the DMA node

creation is the same as the SNDFIX and SNDFLT POPs.

23

NOTE: It takes four (4) words from the SDS-910 (24 bits each),
to compress down to the 72 bits of data (4 PDP-15 words).

The fourth POP in this series will construct an ihterrupt
send queue (INTQUE) entry, and an associated buffer entry. This
POP, SNDINT, assumes that the A register coﬁtains the ONCODE to
be returned to the PDP-15. A dummy operand value must bé present
.én the POP, even though it isn't used. The queue node entry point
field is set to SEND72, the ID field is set to the current CCBP
value, and the parameter list field'points to a buffer node., The
buffer node contains -1 as the first word entry. Then, the 72 bit
field includes the ONCODE value and the system communication
information.

IX. Real-Time Error Management:

A real-time (RT) error is caused by an I/0 operation that incurs
an addressing error using the interface to either the PDP-15 or an
experiment. When an RT error occu;s: |

1. The interface "E" register is read and'stored.

2. An interrupt queue entry with the ONCODE set to
zero is setup to be sent to the PDP-15,.

3. The user is allowed to continue execution at the
statement following the RT-error-causing instruction.

The PDP-15 upon receipt of the RT error indication will shutdown the
user. TIn doing so, the PDP-15 system sends a CLOSE for the user to

the SDS-910. Upon receipt of this.CLOSE the user interrupts are

24

idled. 'thé user is then scheduled for execution to do whatever
shutdown is required. Then a task is scheduled to turn-off the user's
active/inactive bit.

It should be noted that:

1. The queuing priority is (from highest to

lowest): interrupt queue, send queue, and
task queue;

2, To guard against scheduling problems, it

is better to queue up the shutdown action
than to do the work directly;

3. We must send the RT error generated ONCODE

before the routine is shutdown; otherwise,
the a/i bit = 1, and the send will be ignored.

Along with the above queuing of information, the RT error routine
clears the interrupt level and returns to the interrupted program. As
the interrupted program, which incurred the RT error, will have no global
side effects, it appears to be safe to let it complete on its own, rather
than trying to shut the user down immediately and return to the task
previous to the user causing the RT error. This return is effected by
executing the instruction: BRU* RTERR, where RTERR is the entry point
name of the RT error interrupt servicing routine.

If a user generates a second RT error the system will again go to
the RT error handling routine and proceed through the above procedure.

Eventually, the PDP-15 will send a shutdown for thc user which will

cause the SDS-910 system to shutdown this user.

25

X. Transient Storage Area Management:
There are two transient storage areas in 0S910. These provide
nodes for queuing and buffering. Queue nodes are three words long,

buffer nodes are seven. Each transient storage area is arranged as

a simple forward linked list, as:

node node e SR node

head pointer

Note that the value -1 (octal 77777777) is used to dénote a "grounded"
node; i.e., the last node on a list.

AThere are two routines that directly affect the free stofage list
(transient storage area). The routine ALLOC will allocafe a ﬁode from
the free storage list referenced by the X register. On return, the X
register will either be set to -1 (if the list was empty) or feference
a node from the free storage list,

The FREE routine will return the node referenced by the A register
to the free storage list referenced by the X register. No modifications
are made to the registers. |

Neither ALLOC nor FREE is used directly. To allocate a queue or
buffer node, the user employs either GETNDE or GETBUF, respectively.

On returning, these routines have the X register set to -1, if the required

26

free storage list is empty, or to the address of a node, if there is
at least one node left.

To free a node (return it to the required free storage list), the
uéer sets the A register to the address of the surplus nodé, and executes
either DALNDE or DALBUF to deallocate a queue or buffer node, respectively.
XI, Interrupt Buffer Queue Storage Area Management:

This area is used by the SAVE and RESTOR routines and the PAUSE POP.
It is used to retain the working environmentlof the interrupted user.
Initially, the queue is set up by the COLﬁ START routine (COLD) as a
simple forward linked list of ten word nodes.

Associated with the buffer queue is a set of pointers (BUFQE)
which are 'héad' and 'tail' pointers for the nodes. When the buffer
queue is in use because of an interrupt or a user or the system using

the PAUSE POP, the queue looks like:

head pointer ///1 -1 'grounded'

tail pointer

The PAUSE POP and SAVE routine add nodes to the queue. The
. i
RESTOR ‘routine takes nodes off the queue, The queue is set up

as folloﬁs:

27

WORD . CONTENTS
1 link pointer
2 _ MA" register
3 "B" register
4 "X" register
5 ' location 0O
6 location 1
7 system temporary QA
8 system temporary QB
9 ~ system temporary QC
10 user ID CCBP.

The SAVE and RESTOR routines are called by the READ routine,
RTERR roﬁtine, and all system user-interrupt-handlers. The PAUSE POP
is used extensively by the system to wait for nodes to free-up when
the queues are full. The PAUSE POP can also be invoked by users.

As in the transient storage area management, the ALLOC and FREE
routines are used to allocate and free the nodes in the buffer space.
XII. Interface Communication Protocol:

The SDS-910/PDP-15 interface protocol developed by D. Anderson,
J. Campbell, B; Carter, W. Thomas, B. Helland, and M. Conley was to
establish the most feasible communications mode possible between the
two computers. The SDS;910 uses a 24 bit wo;d and the DEC PDP-15 uses
an 18 bit word. Thus, to minimize waste and for other hardware con-

sideration, a 72 bit transfer was decided upon, The following

28

description of the types of transfers were detailed by B. Helland.

They are in terms of the 18 bit word format, i.e., using four words
to create a block of data.

Each transfer, whether it is a DMA transfer or not, starts with
some status and identifying information. Bits 0-8 of the first word
constitute the status portion. The explanation of this part is:

1. On a DEC PDP-15 to SDS-910 transfer:

shutdown indication

+ read operation

: write operation :

: DMA transfer-only in case of write .
2 word write (bit 2 = 1)

1 word write (bit 2 = 1)
: system task send

bit:

AV PLUNRO
[}
Ll e e e e

2. On a SDS-910 to DEC PDP-15 transfer:
bit: : interrupt

. four word read from SDS-910

: DMA read from SDS-910

: RT error, only if bit 0 =1
if bit 3 = 1, then this indicates software problem
system task response '

: unused

oM PwWNORO
]
e el

Also, bits 7,8 of the first word are currently unused.

Bits 9Y-17 give the ID of the user/system doing -the I/0 operatioh.
The ID value, in the range of 510-537 (octal) is a unique.code assigned
to a user by system personnel. "

The buffer forms for theldifferent 1/0 operatioﬁs are: .

1. On a transmission from the PDP-15 to the SDS-910:

~a) Write

i.

ii.

iii.

iv.

29

One word
word 1: bits: 0-5: 001001
6-8; unused
9-17: 1ID value
word 2: Key value
word 3: Data value
word 4: Unspecified
Two words:
word 1: bits: 0-5: 001010
: 6-8: unused
9-17: 1D value
word 2: Key value
word 3: Data value
word 4: Data value
DMA transfer:
word 1: bits: 0-5: 001100
6-8: wunused
9-17: 1ID value
word 2: Key value
word 3: Length of the DMA transfer
word 4: Unused
Then, 'the data will follow
SHUTDOWN:
word 1: bits: 0-5: 100000
6-8: wunused

9-17: 1ID.value

words 2-4: Unspecified

30

b) Read:

A read is generated by a read of an experiment
file from the PDP-15. It generates a read return
transmission that asks the SDS-910 to transmit
data back to the PDP~15. The transfer form is:

word 1: bits: 0-5: 010000
6-8: unused
9-17: ID value

word 2: Key value
word 3: Length value (in terms of 18 bit words)
word 4: ‘“key location in CAL" value. This field

is used for a check on returning to the
PDP-15.

This read request is for a one or two word transfer, or
a DMA transfer.

On a transmission from the SDS-910 to the PDP-15:

-a) Read Return:

i.

ii.

One word of data:
word 1: bits: 0-5: 010000
6-8: unused
9-17: 1ID value
word 2: Address of key location in CAL
word 3: Data value

word 4: TUnspecified

Two words of data:

\ word 1: bits: 0-5: 010000
/ 6-8: unused
9-17: 1ID value

word 2: Address of key location in CAL

31

word 3: Data value
word 4: Data value
iii. DMA transfer:
word 1: bits: 0-5: 001000
' 6-8: unused
9-17: 1ID value
word 2: Address of key location in CAL
words 3, 4: Unspecified
b) Interrupt transmission:
This results from an interrupt generating
an interrupt signal containing data required
by the PDP-15, or from incurring a real-time
error (in which case the ONCODE is forced to
be zero).
word 1: bits: 0-5: 100000
' 6-8: wnused
9-17: 1ID value
words 2, 3: Unspecified
word 4: ONCODE value

The layout of these first transfers is, in detail, and in terms of

the SDS-910 word format:*

0 ~ 8 9 | 17 18 23

STATUS ‘ - |ID value first part
of key -

0 ’ 11 12 .23

rest of key : upper part of value in a 1

or 2 word write, or length
in a read or DMA

-0 5 6 23
rest of addr. at key loc in
value or : CAL, second data value,
length or ONCODE

32

XIII. SDS-élO/PDP-lS Interface Protocol:

This section will discuss the machine interface from the point
of view of the SDS-910. The PDP-15 side is discussed in another
manual. The task of the interface is to allow the exchange of data
-between the two computers., It does so by allowing 72 bit at a time
transfers. This was determined to be the most efficient method of
transfer for many reasons. For a more complete discussion see B. Carter's
M.S. thesis.

Both computers have access to certain registers and indicators in
the interface. To communicate with the interface, and allow data
transmission, a SDS-910 system employs the three instruction set
combinations of:

1. To read from a register, buffer,: etc.:

EOM 30(A,,B.)
PIN 1oc£.§XY Z

2. To write to a register, buffer, etc.:

EOM 32(A,,B.)
POT locl?XY z

3. To test an indicator:

EOM 36(AXYBZ)
SKS 300(mask)

The AXYBZ value is an experiment/machine interface address. The mask
is a six bit value. It is set to test the control register, buffer
full, etc. Table 3 gives the indicator addresses, functions, and

what operations are allowed.

33

At present, the iny times the computer to computer interface will
cause an interrupt of the SDS-910 is when an RT error is incurred,
and when the fDP-lS wants the SDS-910 to read some data. A; all
other times, interrupts are not generated for the SDS-910, by said
interface.

XIV. SDS-910 To PDP-15 Transmission Routines:

There are two prégrams in 0S910 to handle data transmission from
the SDS-910 to the PDP-15. They are SEND72 and DMASND. Both are
used as tasks in the system, and are invoked because of having been
placed onto either -the interrupt or regular send queues (INTQUE or
SNDQUE) .

SEND72 will only transmit 72 bits of information across the
interface. It is employed b& all interrupt transmissions, and by one
and two word read retu£ns.

DMASND will be executed only when a regular send queue entry must
perform a DMA-type read return. Any amount of data desired may be sent.

\
The system also may employ DMASND for other purposes, for example, as
a debugging tool.
ABoth SEND72 and DﬁASND will have their data presented to them as
a (possible) 1list of buffer nodes. After all the information from a
buffer node has been sent, the node must be freed. Each I/O routine

encountering buffer nodes does this management.

34

XV. READ Routine:
This routine handles all transfer from the PDP-15 to the SDS-910.
These transfers are one of the following:
1. System send.
2, Read request
a) oﬁe word
b) two words
c) DMA.
3. Write of information to the SDS-910
a) one word
b) two words
c) DMA.
Note: A one’&ord transfer (eithér read request or
write) is one FIXED or BIT data. A two word transfer is
one FLOAT data. A DMA transfer is an array of FIXED, BIT,
FLOAT, or CHARACTER data or a character string or a

structure of data items.

4., OPEN of experiment file
(i.e., awaken user's programs in the SDS-910).

5. CLOSE"
(i.e., shutdown all user's programs in the SDS-910).

6. Handle the loading of tasks.into the SDS-910 by connecting
the SDS-910 operating system to the SDS-910 loader.

On a system send, the status word is changed to show it is a
SDS-910 to PDP-15 transfer and the key and "Key.in Cal Location" are
placed in the appropriate positions for the transfer. The information
is sent back immediately so the PDP-15 can see if the interface is still

awake and reliable.

35

With a read request the '"Key in Cal Location'", which the PDIP-15
system needs back so it can match up the transfer with the right user,
and the length of transfer desired are put into the user's data area
as specified in the ID/Key tables. The first word put into the user
data area is the length of transfer desired. The second is the '"Key
in Cal Location". The read'routine will then schedule the user's taék
for execution.

A write of information moves the data from the PDP-15 into the user
specified data area and then schedules that user's service routine
associated with that particular KEY. The three SDS-910 interface data
words & PDP-15 words) are translated into four SDS-910 words. If the
fifth bit of the new SDS-910 word (the sign bit in the PDP-15 represen-
tation) is set, the system will propagate this to the left so the number
will be the same in the SDS-910. If the user is not transferring fixed
numbérs he must make the necessary adjustment to his data for the above
modification.

On an OPEN the user's interrupt vector(s) is(are) routed through
the system user interrupt handlers, The user active/inactive bit is
set active. The user is then scheduled for execution to do whatever
initialization‘is necessary for his/her experiment.

On a CLOSE the user's jiulerrupt veétor(s) is(are) idled. The user
is then scheduled for cxecution tu do whatever shutdéwn is required.

Then a task is scheduled to turn-off the user's active/inactive bit.

When a user wants to load a program into the SDS-910 from the
PDP-15 the READ routine in 0S910 passes the length of the traﬁsfer
to the SDS-910 loader and then passes control to the loader to load
the program.
XVI. FLOATING POINT POPS

All of the floating point routines, except the conversion routines,
have been taken from the SDS-910 POPs Manual and modified to work with
0S910. The ones which are available are addition (FSA), subtraction (FSS),
multipliéation (FSM), division (FSD), and negation (FSN). Two other POPs
fi#ed to float conversion (FFL) and float to fixed conversion (FFI) (for
SDS-910 numbers onlyj are available. All of the above POPs are for
single precision fléating peint numbers.

The conversion routines assume the value to be converted is in
the A register (for fixed values) or the A and B registers (for
float valueé) and return with the value converted in the A or A and
B registers. |

.The A and B régisters should be loaded with the value the user
wants negated (in the case of FSN) or with the first operand, the A
register should contain the mantissa and the B register should
contain the exponent. The address field specified in the POP
inctruction should reference the second operand field (EXPONENT,

MANTISSA). The result of the Operatidh will be in the A and B registers.

37

EXAMPLE A/B:
LDB A
LDA A+l
" FSD B
A OCT /EXPONENT for A
OCT , /MANTISSA for A
B OCT /EXPONENT for B
oCT . /MANTISSA for B.

The result of the division will be in the A and B registers when

control is given back to the user's program.

38

XVII. FIXED POINT POPS

All of the fixed point routines, have been taken from the
SDS-910 POPS manual and modified to Qork with 08910, Multiplication
(MUL), Diviéion (DIV) and a branching routine, skip if equal.(SKE)
are available to the user.

The first operand should be in the A register and the second
operand in the addresé field of the POP.

EXAMPLE A/B:

LDA A

DIV - B
A OCT /FIXED VALUE for A
B OCT /FIXED VALUE for B.

The result is in the A register when control is given'back to the user.
XVIII. PAUSE POP
This routine is designed to allow a user to cause a delay in

- execution. The address field Qill allow the user to return to some
other point in his or her code when control is restored to the program.
EXAMPLE:

SKN VALUE

BRU *+2

PAUSE *-2

39

This example will cause a delay in execution until some other
code (presumably in an interrupt routine) sets VALUE negative.
PAUSE is a variable delay dépending on the numbe; of users in the
system at the time.

The user is asked to use the PAUSE POP instead of an iﬁfinite
loop so other users of the system can be executing codes while the
user is waiting for -the desired event to happen. NOTE: The PAUSE
POP cannot be uséd in an interrupt routine.

XIX. DMA24 POP

This POP can be used to transfer SDS-910-wofds_to the PDP-15
directly from the user's buffer area. This POP shouid be used when
a large amount of data ig to be transferred to the PDP-15. Proper
invocation is

DMA24 DMABLK
where DMABLK is a three word area set-up as
1. number of data words to be transferred,

2. "Key Location in Cal" value,
3. address of the start of the data.

LOCATION
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124

125

POP
SKDFST
SKDMED
SKDSLO
SKDTSK
SNDFIX
SNDFLT

SENDMA

'SNDINT

FFL
DIV
MUL
FSN
FSD
FSM
FSS
FSA
FFI
PAUSE
SKE
PON
POFF

DMA24

40

TABLE 1
0S910 POPS

PURPOSE

Schedule a task on the fast clock.

Schedule a task on the mediﬁm clock.
Schedule a task on the slow clock.

Schedule a task for execution.

Send PDP-15 a fixed value on a read return.
Send PDP-15 a float value on a read return.
Send PDP-15 a DMA transfer on a read return,
Send PDP-15 an interrupt.

Fixed to float conversion.

Fixed divide.

Fixed multiply.

Float negate.

Float divide.

Float multiply.

Float subtract.

Float add.

Float to fixed conversion.

Create pause in execution,

Skip on equal,
Turn~-on user interrupt.
Turn-off user interrupt.

Sends 24-bit information to PDP-15 directly
from user's buffer area,.

41

TABLE 2

INTERRUPT VECTOR ASSIGNMENT AT AMES
LABORATORY RESEARCH REACTOR

OCTAL ADDRESS DEFINITION OF INTERRUPT LEVEL
200 SPECIAL 1.6 SECOND CLOCK
201 AVAILABLE SPECIAL INTERRUPT LOCATION
202 HILGER WATTS THETA DECREMENT
203 | HILGER WATTS THETA INCREMENT
204 ’ HILGER WATTS OMEGA DECREMENT
205 HILGER WATTS OMEGA INCREMENT
206 ’ HILGER WATTS PHI DECREMENT
207 HILGER WATTS PHI INCREMENT
210 - HILGER WATTS CHI DECREMENT
211 ‘HILGER WATTS CHI INCREMENT
212 DATEX THETA INCREMENT
213 DATEX THETA DECREMENT
214 DATEX OMEGA INCREMENT
215 DATEX OMEGA DECREMENT
216 DATEX PHI INCREMENT
217 DATEX PHI DECREMENT
220 DATEX CHI INCREMENT
221 DATEX CHI DECREMENT

222 AVAILABLE SPECIAL INTERRUPT LOCATION

223 RT ERROR

OCTAL ADDRESS

42

TABLE 2 (Continued)

DEFINITION OF INTERRUPT LEVEL

224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243

244-277

9

FAST CLOCK (12.8 MS.)
INTERMEDIATE CLOCK (102 MS.)
SLOW CLOCK (1.6 SECONDS)

PDP-15 TO SDS-910 INTERFACE

'HILGER WATTS LIMIT

HILGER WATTS COUNT
DATEX LIMIT

DATEX COUNT
ISOTOPE SEPARATOR
ISOTOPE SEPARATOR
THUMB CHARACTER
THUMB BLOCK
FINGER CHARACTER
FINGER BLOCK
TRIPLE AXIS
PLOTTER

AVAILABLE REGULAR INTERRUPTS

42a

TABLE 3

SDS-910 ADDRESS ASSIGNMENTS

FLIP FLOP(S) Axy Bz INSTRUCTIONS THAT APPLY
CLEAR 910 INTERRUPT 30 0 POT

BUFFER FULL 30 0 SKS

DATA WORD 1 30 1 PIN POT

DATA WORD 2 30 2 PIN POT

DATA WORD 3 30 3 PIN POT

REQUEST 30 4 POT

BUSY 30 5 POT SKS

15 INTERRUPT 30 5 . PIN

910 OK ‘ 30 6 POT

CONTROL WORD 30 7 PIN POT

43

APPENDIX A

System Flowcharts

SYSTEM TASKER (DISPATCHER)
SNDFIX AND SNDFLT POPS
SENDMA POP

SNDINT POP

READ ROUTINE

SEND72 AND GETINT ROUTINES
DMASND ROUTINE

FAST, MEDIUM, AND SLOW CLOCK HANDLERS
RT ERROR ROUTINE

ACTIVE ROUTINE

MAKNDE ROUTINE

COLD START ROUTINE

SAVE ROUTINE

RESTORE ROUTINE

46

48

49

53

54

55

56

57

58

59

60

61

gr—ereenped CCBP ¢~ 5103

(TaskER)

ENABLE

INTERRUPTS

SET 910 OK BIT

REMOVE THE
FIRST NODE

FROM THE CHAIN

GULAR °
SEND QUEUE
EMRFY

CHAIN

REMOVE THE
FIRST NODE
FROM THE

REMOVE THE
FIRST NODE
FROM THE
CHAIN

FREE THE
BUFFER NODE

FREE THE
QUEUE NODE

DISABLE INTS.

TASK
?

ACTIVE

NO

YES

YES

i

FREE THE LIST
OF BUFFER

NODES

®

A REG.~PARAMETER
LIST ADDRESS

INVOKE THE TASK
W/INTERRUPTS ON

" SYSTEM TASKER (DISPATCHER)

%

CSNDFIX, SNDFLT)

SAVE USER'S
ENVIRONMENT

DISABLE INTERRUPTS|

L

GET A BUFFER
NODE

QA ~ ADDR. OF
BUFFER NODE

NODE'S LINK FIELD ~ -1
X REG. « ADDR. OF DATA

1

STORE CONTROL
INFORMATION AND
COMPRESSED DATA

1

B REG. «~ ADDR.
OF BUFFER

A REG. ~ ADDR,
OF SEND72

|

CALL MAKNDE
ENTER THE NODE
ON THE SEND
QUEUE

RESTORE
ENVIRONMENT

o)

PAUSE)—J

SNDFIX AND SNDFLT POPS

Cmor)

SAVE
ENVIRONMENT

1 ~ADDR. OF DATA

46

GET A QUEUE
NODE

QA « ADDR.
OF NODE

WAS

FREE QUEUE

EMPTY
?

NO

LINK NODE ONTO
SEND QUEUE. LINK
FIELD « (-1)
ENTRY POINT FIELD

GETS DMASND LOC.

A

CALCULATE THE
NUMBER OF 72 BIT
TRANSFERS

GET A BUFFER NODE
AND SET QB TO TTS
LOCATION

WAS
THE QUEUE
EMPTY-

PAUSE

\/

QC ALSO GETS THE VALUE OF THE
ADDRESS OF THE BUFFER FIELD

SENDMA POP

CONSTRUCT THE
FIRST BUFFER
CONTENTS

ADJUST POINTERS

LENGTH

47

*DATA COMPRESSED TO 18 BIT FORMAT

SET EXTENT
BIT TO 1
RESTORE
ENVIRONMENT

.

RETURN .

)

GET A BUFFER
NODE

QB ~ ADDR.
OF THE NODE

WAS
THE QUEUE

EMPTY
?

PAUSE)

LINK THE BUFFERS

INSERT DATA%*
ADJUST POINTERS
AND LENGTH

SENDMA POP (CONT.)

48

(j SNDINT i)
'

QB +~ ONCODE

SAVE ENVIRONMENT

-

GET A BUFFER NODE
QA ~ ADDR. OF NODE

PAUSE

LINK FIELD «~ -1
INSERT CONTROL
INFORMATION AND

ONCODE

A REG. + ADDR.

OF SEND72

B REG. < ADDR. OF
BUFFER NODE

v
CREATE A QUEUE
NODE

LINK THE NODE
ONTO INT. QUEUE

3

RESTORE
ENVIRONMENT

T
o)

SNDINT POP

49

C READ)
1

DISABLE INTERRUPTS

SAVE ENVIRONMENT

1

CLEAR OUTBOARD
910 INTERRUPT AND
READ INTERFACE

EXTRACT
ID AND
KEY OF
USER
SEND BACK GET USER
INFORMATION ADDRESS
WANTED BRY FROM TABLE
PDP-15 N AT 300-327

RESTORE
ENVIRONMENT
CLEAR
INTERRUPT
LEVEL
C RETURN) , TEST USER
SHUTDOWN - :
ALREADY ‘ ,
lNo -
READ ROUTINE ‘
SHUTDOWN
ALL ROUTINES
AND INTERRUPTS

EXTRACT LENGTH
(THIRD PDP-15

WORD)

EXTRACT
MKEY IN CAL
LOCATION"

(FOURTH PDP-15 WORD)

50

GET_BUFFER _
FILL BUFFER
WITH CONTROL
INFO. ONLY

l

GET A NODE
AND PLACE

ON INTERRUPT
QUEUE

Z FOR OPEN

GET USER'S ENTRY
POINT AND

BUFFER

LOCATION

READ
REQUEST?

READ ROUTINE (CONT.)

YES

?
CALL

LOADER .

STORE LENGTH
AND "KEY IN
CAL TOCATION"
INTO USER
BUFFER AREA

T

SCHEDULE
USER'S
TASK

51

ONE STORE DATA |
WORD WRITE? " WORD INTO — : |
USER AREA
TWO STORE DATA .
WORD WRITE? WORDS INTO ————-.{:::]
USER AREA

LOAD CONTENTS
OF INTERFACE
.INTO A, B AND

X REGISTER

(ir HALT j)
READ NEXT
INTERFACE
TRANSFER
PUT DATA ‘
INTO USER'S . READ ROUTINE (CONT.)
AREA

OF USER'S
INTERRUPTS

GET ADDRESSES

1

LINK
INTERRUPTS
THROUGH
SYSTEM

L

SCHEDULE
THE USER'S
OPEN
ROUTINE

READ ROUTINE (CONT.)

53

SEND72 - ‘ ' GETINT

DISABLE ' SET REQUEST

INTERRUPTS
GET INTERFACE GETINT

CALL GETINT

:

FREE BUFFER .

CLEAR
REQUEST

!
G

SET BUSY
° L o SET 910
INITIATE
LINK CURRENT ' : l
NODE ONTO
INTERRUPT SEND FIRST
QUEUE 72 BIT
TRANSFER
BRANCH TO
TASKER RETURN

.

SEND72 AND GETINT ROUTINES

54

‘("' DMASND)

ISABLE
INTERRUPTS

ET THE INTERFACE
(GETINT)

ﬁﬁACNT~LENGTH-1

SEND 72 BITS

‘-DMACNT-DMACNT -1

GET ADDR. OF
THE. NEXT BUFFER 414

REE THE CURRENT
UFFER NODE

SEND THE NEXT
'72 BITS
DECREMENT THE
COUNT -

FREE THE BUFFER

NODE p—

CLEAR REQUEST

e
(_ RETURN

DMASND ROUTINE

55

CLEAR INTERRUPT
LEVEL

No (RETURN)

DISABLE INTERRUPTS

SAVE INTERRUPTED
ENVIRONMENT

CCBP « 510,
"IRETAIN OLD QUEUE

POINTERS -
GROUND NEW QUEUE
POINTERS

1

REMOVE A NODE FROM
THE QUEUE, AND
CHAIN AROUND IT

CLEAR INTERRUPT
LEVEL

il

(reTURN)

CCBP « 5108

FREE QUEUE NODE

TASK
ACTIVE

A REG. + PARAM. —
FIELD

INVOKE THE TASK

FAST, MEDIUM, AND SLOW CLOCK HANDLERS

56

(:%‘ RTERR 4:)

SAVE ENVIRONMENT

PUT E-REG. VALUE
INTO TABLE

D

CREATE A NODE
ON THE FRONT OF
THE INT. QUEUE

1

LINK A BUFFER
NODE ONTO THE
ABOVE INT. QUEUE
ENTRY, WITH
"ONCODE = 0

RESTORE ENVIRONMENT

(G D)

RT ERROR' ROUTINE

C

ACTIVE : >

T

SAVE A, B REGS.

GET THE ID VALUE

)

GET - THE
ENTRY POINT
VALUE FOR

' THE USER

ENTRY POINT
= -1
?

TASK
ACTIVE

57

NO

RETURN TO
NORMAL LOC,
PLUS 1- '

‘*F—*

C

. RETURN
NORMALLY

)

ACTIVE ROUTINE

< MAKNDE

|

DISABLE INTERRUPTS

EXTRACT ADDR.
IN A REGISTER

SAVE A; B AND
X REGISTERS

GET A QUEUE
NODE

SKDT1 « ADDR.
OF THE NODE

58

LINK FIELD « -1
ID FIELD « CCBP

ENTRY PT. - (A)
PARAM. FIELD - (B)

‘ RETURN

HALT

MAKNDE ROUTINE

59

DISABLE INTERRUPTS

INITIALIZE THE
FREE STORAGE LISTS

1

INITIALIZE THE
INTERRUPT VECTORS

I

INITIALIZE ALL
QUEUE POINTERS

T

" BRANCH TO THE
DISPATCHER

COLD START ROUTINE

- 60

WITH INTERRUPTS
DISABLED, GET A
NODE FROM THE
INTERRUPT BUFFER
'QUEUE

- NO

HALT -

STORE THE

REGISTERS, LOCATIONS
0 AND 1, SYSTEM

TEMPORARIES QA, QB, QC,

*AND CCBP

_J

LINK THE NODE
ONTO THE QUEUE

SAVE ROUTINE

61 -

RESTOR

DISABLE INTERRUPTS

FREE-UP THE NODE

{

RESTORE THE
ENVIRONMENT

RESTORE ROUTINE

62

APPENDIX B

Priority Scheduling#:

0S910 employs a priority scheduling and queuing technique
that, although simple in'nature, insures a useful priofity rankiﬁg.

Two places exist where task dispatching may take place. First is in>
the dispatchér routine, TASKER, where transmissions (SENDS) from the
SDS-910 to the DEC PDP-15 are arranged and regular user task scheduling
is handled. Secondly, the clock may have tasks scheduied‘gn their
queues for execution at the time of é clock "tick".

In lighf of theif volatile nature, the transmission of interrupt
deriv§d info;métion must be handled in a high priority fashion. fhus,
"interrupt queue (INTQUE) transmissions are managed first. Regular
data transmissions are next in imp;rtance for the dispatcher, and are
haﬁdled after all queued inte;rupt transmissions have taken plaée.

Lést in'linelfor dispatcher handling are the user tasks that have
been scheduled for execution. The clock queue management will be
covered later.

The above method eﬁsures that transmissions are handled with the
greatest speed. Although using a scheme where there muét be a specified
(threshdld) number of nodes present in a set of queﬁes beforé anyAnode
scﬁeduling,is done scems desirable, the pitfalls preseﬁted by this
metho& are many. Included in the pitfalls are the'following:

1. Interrupt transmissions will be unnecessarily held up;

*The reader should consult the appropriate flowcharts in Appendix A.

63

Transmissions may never be scheduled if the threshold
value is too high;

No discernable difference between having the threshold
and not having it can occur if the threshold value is
too low; :

Since the DEC PDP-15 will normally be waiting for data
from the SDS-910, it is necessary that the data are sent

"~ without interruption.

Thus, the queues available to the dispatcher are handled

sequentially from the interrupt send queue (INTQUE), to the regular

send quéue (SNDQUE), to the task queue (TSKQUE). The first non-empty

queue, in order, is handled in the following fashion (the interrupts

are first disabled):

1.

The front node on the queue'(queues are arranged as a
front linked list, and with a front/back pointer pair
available that references the list) is unchained from

‘the list, and the list is rechained to exclude this node;

.- 1f the ID present in the node is for a currently inactive
" task, then:

a) 1if this is not a TSKQUE entry, all the acquired
buffer storage is freed,

b) the queue node free storage is released,
c) start over on checking the queues;
If' the task is active:)

a) set the A register contents to the value of the
parameters pointer field, and

b) execute'the task.
When the taskbreturns:

a) disable the interrupts,

64

b) free the queue node entry,
c) enable the interrupts,
d) and start over again on scanning the queues;
Thus, a rudimentary priority. ranking is maintained.‘
- The clock queues are managed somewhat.differently, as each clock‘
has only a single queue associated with it. A cloék queue's entries
are collected until that clock "ticks".

The form of a clock queue is:

front queue pointer) -\\\‘ ////rw -1

‘back queue pointer

When the clock '"ticks":

1. the queue pointer contents are copied to a working
area, allowing later reference to the queue;

2. the queue pointer value is set to "empty" (-1);

3. the tasks on the queue are sequentially dispatched
" (1f active);

4. when the queue is empty, the clock manager returns to
the interrupted environment by executing an indirect
branch, thus clearing the interrupt level.

Obviously, the algorithm used prevents the same clock level from
"hitting" during executlon of the tasks on that clock's queue.
Also, all lower priority iuterrupts are excluded from being reccognized

until the clock queue is emptied, and all higher interrupt levels are

allowed to hit, as tlie interrupt system is enabled.

65

It‘is anticipafed that all tasks queued onto a clock queue are
kept small (no more than 50-100 instructions, each), and perform only
absolutely essential time-dependent processing. Any operation that
usurps a great amount Af time will seriously degrade the performance

of the complete system.

P

66

APPENDIX C

Round-Robin Scheduling:

The ta;k scheduling technique employed in 0S910 is the most A
rudimentary of all (multiprogramming) méthéds available., Called the:
round-robin approach it is a scheduling technique based on the
"trust thy neighbor” éoncept.

‘First, we will cénsider all tasksAto be on a simple (forward

linked) list, as:

head pointer

)
/
A\

tail pointer

Beginning with the first task on the list, we:
" 1. chain around the first node on the list,

2., execute the code for the task that was just
unchained from the list,

3. upon completion of execution of that code
(indicated by a return from the code), free
up the list node storage, and
4. start over on the above process.
As can be seen, the amount of time allocated to each task is that
amount of time the task needs to completely execute, If a task were

to get into an "infinite loop", then no subsequent tasks would be

scheduled for execution.

67

'At.this boint, the reader may wonder why anyone would even egploy
such' a naive scheduling technique 55 the round-robin. As 08910 assumes
relatively short tasks will be scheduled (300-500 inétructions, téking,
at most, about 5 msec.), the use of even the fast clock (12.8 ﬁs.) is
too siow to cause a resolution.

Another problem avoided by using a round-robin technique is that
of rather extensive queuing and data structuring proBlems. Interrupts
wbuld be more difficult for users to directly service under a time-sliced
method (using a clock to interrupt,the‘execution of one task and go bn to
the next); and would force thé operating system to do more of the pro-
cessing than is really‘required by the problém. ‘Because of the queuing

difficulties, a more extensive set of data structures would be needed.

