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PREFACE

The First.ERDA Statistical Symposium was organized to provide a means
for communication among ERDA statisticians. Many of us associated with
ERDA and, formerly, the AEC have been concerned about the role that statistics
plays in research programs. Interlaboratory communication among statisticians
was infrequent and on an individual basis. A list of professional statisticians
within ERDA did not exist. We often faced new problems with the feeling that
elsewhere in ERDA someone had already considered and possibly solved them.

The symposium concept originated with a discussion at the 1974 Gordon
Research Conference among Donald Gardiner, Keith Ziegler and myself. We
learned from Milton Rose of ERDA that people at Los Alamos Scientific Lab-
oratory had similar thoughts and had requested funding. Dr. Rose suggested
we join forces and okganize a meeting of all ERDA statisticians. Donald
Gardiner, Ronald Lohrding, Raymond Waller and I met and decided on a program
consisting of research papers and discussions of research problems with John
Tukey as the keynote speaker. We included the Sandia Laboratory along with
Los Alamos, Oak Ridge and Pacific Northwest Laboratories. We thought that
four laboratories would provide reasonably broad participation in a program .
that could be put together in several months. It was expediency and not
exclusiveness that limited the organizing activity and formal participation.

The organizing committee wanted the symposium to be as useful as possible.
First, we wanted ERDA statisticians to get acquainted with their peers in other
laboratories, their various working environments, programs and professional
interests. Thus we chose to hold the symposium at an ERDA Taboratory.

Second, we wanted the symposium to promote wider use of statistics on
ERDA programs. Therefore, presentations of specific problems followed by
discussion periods were included. Problem selection was based on ERDA goals,
broadness of the applicability throughout the laboratories, and the need for
statistical content for adequate solution.

Third, to learn about the statistical research going on within the ERDA
community, we included research paper sessions. The after dinner talk by Dr.
Jerome Friedman of the Stanford Linear Accelerator Center on graphical display
and analysis of multi-dimensional data was in the framework of the research
papers, since this was joint work with John Tukey under ERDA sponsorship.
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Fourth, we wished to preservé the symposium as a statistical entity
for evaluation by our peers; hence, the publication of these proceedings.

T

The organizing committee selected Oak Ridge National Laboratory for a

1976 symposium and Pacific Northwest Laboratory for a 1977 symposium. PNL
is responsible for editing and publishing the proceedings of the first
symposium, LASL the second, and ORNL the third.

I would Tike personally to thank Ray Waller, the symposium chairman
and the one responsible for local arrangements, and the entire Los Alamos
staff. They deserve the greatest share of credit for the success of the
first symposium. Their detailed attention to all the logistics and their
congeniality and hospitality made this a memorable occasion.

My coeditor of the Proceedings, Judy Harris, worked with authors on
preparation of manuscripts and prepared and edited the written discussion
of problems from taped transcripts. Without her dedicated work the Pro-
ceedings would not be a reality.

Finally, I would like to thank all of the participants. They accepted
the challenge of honest, meaningful interaction, which assured the success
of the symposium.

Wesley L. Nicholson, Editor
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A

USABLE RESISTANT/ROBUST TECHNIQUES OF ANALYSIS

John W. Tukey
Princeton University and Bell Laboratories
Princeton, New Jersey

This account sets out the most useful resistant/robust techniques,
as we presently believe them to be, and gives indications both of what
weknow about them and of how they may well be used. It does not attempt
to review the theory. (For moderately up-to-date background on a large

slice of the field see Andrews, et al. 1972. Hampel, 1973 and 1974.
Huber, 1972 and 1973.) ‘

CONCEPTS

A function of data is "resistant” if changing a small fraction of
the data, possibly arbitrarily greatly, will not change the functional
value greatly. Most analytically simple functions, like y = in,
y = inz, y = Exiz/in, for example, are not resistant. In these examples,
as for the arithmetic mean, changing even one.x enough can make an
arbitrarily large change in y. Other functions, such as the result of
"arrange the X3 according to S and take y as the middle value," which
defines the median, are quite resistant, as it is easy to see.

The term "robust" has been used by statisticians to describe various
types of behavior of a function of values having a probability distribution.
Most often, perhaps, the probability distribution is that of a sample
from a partly known or unknown distribution of individual values (parent
population). 1In all cases,"robust" signifies good behavior in less than
ideal circumstances.

The first usage, whigh will not concern us here, was for significance
tests or confidence intervals relating a sample tn a parameter of the
population from which it came. What we would now call "robustness of
validity" means that the 5%, 1%, 95%, 99%, or the 1like associated with
the test or interval applies, either exactly or to a good approximation,
when the conditions are less than ideal--or, sometimes, that any major
deviations -are in the "conservative" direction. That this is not enough



is shown by a simple example: given a sample of 1000, draw a subsample

of 10 from it at‘random and apply the sign test to the subsample to
generate a 97.85% confidence interval for the median of the parent popula- .
tion. The 97.85% is exact for any parent population, but the interval

uses no more than one-hundreth of the information available.

If we define the efficiency of an estimate in a given situation as

variance of "best estimate" iﬁ that situation
variance of this estimate in that situation

or by the result of replacing "variance" by a more appropriate concept
when advicable or necessary {as, for urgent example, when no estimate
has a finite variance), we will obtain a measure of estimate perfurmance
that )

- is bounded by unity (by 100%) in each situation considered.

- depends, weakly or strongly, upon the sjtuation.

An estimate is "robust of efficiency" if its efficiency is HIGH in an
unusual variety of situations, whatever high may be.

We shall, in this account, say just "robust of efficiency" when the
efficiencies are not necessarily very high but are nothing to be ashamed
about. Using the sample median to estimate the populalion median is a
natural example. We shall say "highly robust of efficiency" or "very
robust of efficiency" when the efficiency is very high in the situations
considered. An example will be given shortly.

' To date, all procedures very robust of efficiency--and, to a lesser
degree, procedures only (but not very) robust of efficiency--arc resistant.
So far as we can see, this is inevitable. Hence the splice-word--
resistant/robust (or robust/resistant).

GOOD PRACTICE

What are today's obligations of good statistical practice? I suggest
they include these two: ‘

-~ where one or more analyses robust of efficiency are available,’
one (or more) of them should be among those. applied (in parallel)
to the data, and its (their) results should be compared with those

of the other analyses used.
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. - where one or more analyses highly robust of efficiency are
», , available, and we are concerned to extract all the information
from the data, one (or more) of them should be among those
applied to the data, and little credence should be given; in
the absence of special considerations, to the result of any
analysis that does not agree reasonably well with the result
of the resistant and high]y robust analysis (analyseé).

This means that any analysis based upon:

arithmetic means
moments

least squares

to name a few standard cases, needs to be at least accompanied by a
resistant/robust analysis if an appropriate one can be found. Some may
think this position goes a long way, but experience--with situations where .
conventional analyses have gone awry without giving warning--suggests that
it is essential to go at least this far.

Let us then turn to specific kinds of analysis and summarize where
we stand. The different problems to be considered, which together represent
most of the foundations of statistical analysis, fall into two broad classes:

- problems where estimated quantities do not affect the identifica-
tion of unusual residuals (these include the naturally simp]er
processes, like -location and univariate scaling).

- problems where thé identification of unusual residuals may depend
critically on the resistance of the estimate of the fit (these
include many important standard problems, including regression,
smoothing, correlation estimation and estimation of vector
dispersion). ‘

We shall take our problems up in this order. Thus an important emphasis on
resistance/robustness for residuals will be delayed to Part II.

~



. PART T
WHERE FITTING IS NOT NEEDED TO IDENTIFY POTENTIAL "WILD SHOTS"

The main problems here are those of scalar (single or multiple)
centering or widthing. In such scalar cases the potential "wild shots"
are clearly the Towest and highest values. We know which points to

[

examine most carefully.

The case of vector centering, which we take up at the close of this
part, is perhaps a transitional case. Actuai]y, of course; we do need
vector centering to identify vector "wild shots", but we need vector
dispersion even more.

~ INDIVIDUAL CENTERING

SYMMETRIC CENTERING

Given values Yis Yos 05 ¥y which we have agrced to analyze as if
they were a sample from a symmetric distribution--or were generated
symmetrically in a somewhat more complicated way--how should we estimate

the center about which the underlying distribution--or underlying process--

is symmetrical?

Not so 1onglago, our answer would have been easy and dangerous: take
the arithmetic mean.

At the height of Lhe nonparametric era we would have been_mucﬁ safer,
though somewhat wasteful--we would have taken the median.

Today we would 1ike to be safe without being sorry.

TRIEFFICIENCY

We have long looked to efficiency, to the ratio

smallest variance deliverable
variance actually delivered ¢

as a criterion of estimate quality. Clearly the answer has to depend on

the situation we are considering, Gaussian samples and Cauchy samples are

unlikely to give the same number. Two remarks and a warning are now
badly needed.

(4]
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First remark: “deliverable" often has to refer to the best we know
‘how to do--in which case we might (and will try td) refer to "apparent
efficiency"--or to a theoretical bound (which we will here avoid). This
is because we do not know exactly what the smallest variance deliverable
is in most situations.

Second remark: "variance" has sometimes to be replaced by a related
measure (as noted above).

Warning: knowing the efficiency--or the apparent efficiency--in just
one situation is almost never enough. We need, at least, to explore extreme
situations that will stress our estimates in each of'the‘recognized ways
we have found to be particularly threatening.’

In the case of symmetric centering--say for batches of 20 values,
the case for which the most extensive calculations have been made,--we
today recognize three kinds of threats. Thus we need to consider at least
three situations. To challenge estimating procedures as severely as we
can, we would like the ché]]enging situations to be rather unrealistically
extreme each in its own way.

The three situations for which most computation has been done, which
do seem about equally unrealistic, are these:

- the pure Gaussian distribution (too nice).

- a situation combining a sample of 19 from one Gaussian with one
observation from another Gaussian with the same center and 10
times the spread (too black-and-white in its non-constant variance).

= the slash distribution, which is representable as the ratio of

a unit Gaussian to an independent unit rectangular (on [0, 1]),
which avoids the unrealistic central peakedness of the Cauchy,
yet whose tails are of Cauchy type (too stretched-tailed).

If a centering procedure works well in all these three situations, we can hope
it works even better for all the more realistic situations that 1ie "between"
them. Thus it is natural to define a "triefficiency" by:

triefficiency = the least of these three efficiencies

and to seek for a centerer that has high triefficiency.



SOME RESULTS--THE BIWEIGHT

The classical centerers are, by now, the (arithmetic) mean, the |
median, and the trimmed means (in which the j highest and j lowest values
are set asidé, and the arithmetic mean of the remainder provides the
estimated center). For batches of 20 observations, the Princeton Robustness
Study (Andrews, et al, 1971) offers us apparent efficiences at the three
corners for these classical estimates, name]j: o

Pure One

Gauss. Wild Slash Triefficiency
Mean ‘ 100% . 179 0% 0%
Trimmed 1 + 1 98% 92% 16% 16%
Trimmed 2 + 2 95% 94% - 41% 41%
Trimmed 3 + 3 94% 94% 60% - 60%
Trimmed 5 + 5 84% 87% 86% 34%
Median (10 + 10) 67% 72% - 87% . 67%
(Now known to be attainable) : - (92 - 93%)

This is a background against which we might seek a centerer that is highly
robust of efficiency. '

Some of theAsimp1est high-performance estimates that we know are of
the form

~ : Zwi yi
center =

Zwi

where each w; depends on the dimensionless or scaled form of y,-y, where
y is the median of the y's, which we take as

Vi Y
Ui 7S

where ¢ is a number and-S a measure of spread of the Yi» usually thc MAD
(median absolute deviation from the median), the H-spread, or the inter-
quartile range. ‘



e
5

-The choices ¢ = 9 and

2

C((1-u®), for u? <1,
w=w(u) =
0, . else. .

give a triefficiency, in samples of 20,.above 90%. (By complicating
matters, we can squeeze out a little more triefficiency, but it may well
not be worth it.) ,
2
~ Since (1 - u2) is sqmetimes called a bisquare, it is perhaps natural
to call the center just described a (one-step) biweight.

Drawing on the general results of the Princeton Robustness Study,

. and the general insights it produced, we can be quite sure that the biweight

does quite well indeed for batches of 10 or more y's--and can be reasonably
sure of its performance down to, or close to five.

Tony Quon, in an almost completed Princeton Ph.D. Thesis, has shown
that there is 1{ttle to gain over using the median for batches of three.
We can expect a similar result for n = 4. Thus a good rule runs as follows:.

Number :

of y's Centerer to be used

up to 4 median

50r6 ' take your choice (biweight favored)
7 or more biweight. |

(It may be of interest that about 103 distinctive estimates have been
tried out, as well as about ]04'5 50-50 linear combinations of the same.

Only a new idea is 1ikely to raise the triefficiency for n = 20 appreciably
above 92-93%.) '

ESTIMATING VARIABILITY

The variably-weighted mean used in the (one-step) biweight can be
regarded as the first step in an iteration

(k)
T - Zwi 1



. where the w.

1(k) are calculated from the (yi - Tk)/cSk. Like the Newton-

Raphson iteration
y.-T
B
K ik
7 ( s, )

LI

where Y(y) = uew(u), this iteration converges to a solution of

Y.-T

iy
ZW( ¢S ) =0
whose asymptotic variance is
=
[zv" 12
or, as is asymptotically equivalent,
2.3
* 0 [zp” J[-1+1p7]

which reduces, for y(u) = u, to |

£(y-T)?
n(-T+n
the classical variance of y which is the solution of

Y(y-T) = 0
for this y(-).

INTERVAL CENTERING

Alan Gross (1973, 1976a) has studied the interval estimation of the
center of a symmetric distribution, finding that, in our present notation *,
the interval

i
p

(biweight - t 5, Sw» biweight + t S, ]

*The inclusion of a -1 in the denominator of sg raises the degrees of

freedom .at least from .5v to .7v. The inclusion of -2, instead, which
may prove helpful, might raise the degrees of freedom to v.

&
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' whére t 79 is the 5% value of t on seven-tenths* the usual number of degrees

of freedom, is quite closely a 95% confidence interval for the population
center, not mereiy for the Gaussian case but for a variety of other situations.
(He tried a variety of alternate centers and width inqiéators. Only those
closely similar to the biweight and s, worked nearly as well.)

His results establish a good performance for n 2 10. He anticipates
satisfactory performance down to n = 8. For smaller n, only nonparametric
procedures like the sign test which can give, non-resistant]y and thus
surely not highly robustly, 98.4% confidence for n = 7, 96.8% for n = 6,

93.8% for n = 5,.and 87.5% for n = 4 or, resistantly, 87.5% confidence for

n =7 and 75% for n = 6--or the one-sample Wilcoxson test, which is some-
what more flexible but has the same extreme % levels, is known to give
reliable interval estimates (of unknown efficiency) for the population center.

A NON-PROBLEM?

We have discussed symmetric centering. What about unsymmetric centering?
What, indeed.

We all know what we are trying to estimate.in the symmetric centering
case--the mean, the median and all the mids (the means of symmetric % points)
coincide, making a unique target. But what is our target in the unsymmetric
case? '

We can take one of two routes:

e We can think about each of as many realistic special cases as we
can find where a -specific target makes specific sense; or

e We can try to find a measure of location--an estimale commuting with
the additiqn‘of a constant--that has high robustness of efficiency,
and then declare that whatever it appears'to estimate is the center
we wanted to estimate. '

Either of these is possible. Neither is what we intuitively thought of on
first meeting the words "unsymmetrical centering." (A similar problem arises
from the beginning in dealing with width as will be discussed later.)

. *See footnote on previous page.



TOTALS
MONTE CARLO--AND INSURANCE

There are situations, two of .the most striking being Monte Carlo
calculation and the insurance business, where our concern is really with
totals. Real Monte Carlo, as distinguished from simple experimental
sampling, operates by a "swindle", by replacement of the original problem
by one that can be demonstrated to have the same answer. Almost always the
answer is an arithmetic mean--essentially a total, since probability theory
almost always deals with such. (Recall that a probability is a mean of
the corresponding indicator function.) Almost always the values to be
totalled are non-negative, but have a stretched-out tail to the right.

We would like to think that we are dealing with a severely asymmetric
problem of centering and use a resistant-robust center. But we dare not.
For the only target we are allowed to shoot at is the arithmetic mean. Any
center that is resistant will be biased downward. We must take full account
of occasional very large values..

NO ESCAPE
We are going to have to summarize our observation by y.

For the present we have little, of anything, better tv do than to use

the conventional 52

and Student's L though we need to do rather better.
To do better we need, overtly or covertly, to make some allawance for both
skewness and elongation of our distribution. Doing this by moments is quite

unsatisfactory (we will soon comment on an alternative).

We need to remark that Student's t for a very elongated sample, for
instance n-1 values close to zero and one value large, comes out close to
unity. Thus confidence intervals got by Student's t (at any usual level)
turn out to be conservalive, not liberal. What we have to fear with Student's
t, so far as validity goes, is the squccied=tail case. Stretched-tail cases,
if recognized and propertly assessed, offer us an opportunity to learn how
to say more than Student's t does. |

10
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G/H TECHNIQUE, PERHAPS?

Suppose z has the unit Gaussian (or unit neutral) distribution--too
often (mis)called the unit normal distribution. A convenient family of
skewed distributions are those of (egz-1)/g for various g. A convenient
family of elongated distributions are those of z exp(hzz/z) for h > 0.

A little rough ca]cu]at%bn based on these examples leads to plotting
(y_p+yp)/2 against zpz, where yp is thg empiriéal upper p% point in our
sample, y_p the lower p% point, and z = the square of the one-sided unit-
Gaussian p% point, with the anticipation that the slope, if we detect
any, will tell us about something like "g". Similarly, a plot of
]og(yp -y ) 1og(22p) against the same zp2 has a hope of telling us,
by its slope, about something like "h".

It is by such techniques that there seems hope for impfoving Student's
t-in the face of skewness and elongation.

COMPARATIVE CENTERING

THE TWO-SAMPLE CASE

How are we to compare the centers -indicated by Yi1> Yy20 oo y]J
and Yp1s Yops --+s Yo in a resistant and robust way? The analogy with
the one-sample case is strong enough for us to be sure of very good per-

formance if we use

2 2
Y1g> Si* .79+ Ypp: Sox > 0-7%

where- Yig and Yog are the biweights and 51*2 and 52*2 are the associated
2'5 and 0. 7\).I and 0. 7v2 are the associated 0.7 of degrees-of-freedom.

The careful analysis, allowing for possible difference in width
in the two situations takes

2 2 2
Spx = Syx 't Sox

242 22 .
I 1, [ e 1
R PGS (TR P B
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t
Sp*
Vv = .7vD
The more off-hand analysis takes ‘ ” -
5 NV, S 2, n,v, S
S 2 _ 171 " 2°2 "2* (l_ +.l_)
D* 2 + V, nnoon,
¢ = 1B " Y28
SD*
v = .7v] + .7v2
and (1) will be tighter than the careful analysis, and (2) can be in trouble
if the widths are not the same.
I would have no hesitation in proceeding along whichever of these routes
seemed appropriate, confident that the answers would be safer and almost
as precise as (therefore probably more accurate than) those obtained from
sample means and sample sz's.
IF THERE MUST BE A REFERENCE
Sometimes it is necessary to have a published reference for the technique
to be used. In the two-sample case, this may, for the present, cause giving
up the (more preferable) bijweight in favor of (less preferable, but more
referable) trimmed t (Yuen and Dixon, 1973, Yuen, 1974).
, MULTIPLICITY
SIMULTANEOUS AND QUANTITATIVE: BONFERRONI
If-we are to make several--or many--quantitative statements with a
requirement of conventional certainty, 95% or 99%, we must make each individual
statement with very much higher certainty. There can be no escape from
this-~-since each statement is free to be wrong separately. ﬁl
72EAN

The basic, simple calculatfon is that associated with the name of
‘Bonferroni. Given a group of K statements, each at an error rate of (p/K)%

12
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we will have, on average, no more than K(p/K)% = p% statements wrong per
group. Therefore, a fortiori, the chance of one or more statements wrong
is no more than p% per group. ‘

’ The need for Bonferroni implies a need for understanding the more
extreme % points of our statistics--e.g. the 0.05% point when K = 100 and
p = 5%. Our information here is quite limited, but what insight we have
suggests that--even far out in the tails--a two-sample biweight comparison
is still much safer than a two-sample arithmetic mean comparison. Here
is a place where more knowledge would be particularly welcome.

BELFERRONI
" If we are prepared to control the ratio

Anumber of batches of statements with at least one error
number of batches of statements

instead of the ratio

number of statements in errors
number of batches of statements

we ought to be éb]é to tighten the statements just a little. In the ideal
case--everything Gaussian of equal variance--when arithmetic means are
used we can ca]cu]ate:fattors to supplement K, so that we use, say, p/KLM
in place of p/K where L and M are less than unity. To do this requires
comparing conventional % points of the Studentized maximum modulus (1imits"
on all values) or the Studentized range (1imits on all simple comparisons)
with the tails of Student's t. Tables in this form are in preparation.

wﬁen aVai]ab]e, I WOuld be quite happy to use these tables in con-
nection with multiple statements about values or comparisons of biweights--
happier, actually, than to use them with values or comparisons of arithmetic
means. (In the long run, of course, we want to know more-about just how
well they apply. Our -uncertainties here, however, must be small compared
to our uncertainties about the far-tails of biweight statistics.)

ONE-HUMP_PHILOSOPHY

The case of qualitative statements ﬁbout all simple comparisons is
a special one. One philosophy that has, more or less tacitly, been building
in recent decades emphasizes the situation where the population centers are
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themselves distributed in a single-humped fashion. The case where popula-
tion centers are samples from a single-humped (pefhaps Gaussian) distribu-
tion seems 1ikely to play a special role in assigning nominal levels of
significance.

There seems no reason to expect difficulty in taking over to biweights
whatever approaches we settle upon for arithmetic means. '

SPLITTING AND MULTI-HUMP

Sometimes what is needed is only to split up the values to be compared
as well as we can, to do as gond a qualitative job as we can. Here unpublished
work of Roy Welsch will soon provide us with a well understood and sharp
tool, at least where arithmetic means are concerned. The writer would have
no hesitation using Welsch's tables on biweight estimates and their associated

5*2.

A 1ittle more concern could arise if either different 52 or different
5*2 are associated with different ones of the values to be compared. But
it should be much better to use Welsch's tables than to wait.

Welsch's techniques should also serve, in any of these four cases,
to decompose multi-humped situations into pieces adequately treatable by
one-humped techniques.

FREE OR BOUND

" We may ask of a measure of width--of scalar dispersion--only that it:

- indicate relative width as between situations differing unly by
scale change. - -

- do so sensitively, perhaps as judged--separately in each of many
situations--by the efficiency of its logarithm.

This is free widthing.

Not all of us have tqought deeply enough about the problem of estimating
width to recognize how often we do not know what we want to estimate. 1In
part, this is because the books concentrate on the Gaussian’ case, where tliere
are fixed ratios among, for instance:
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- the population standard deviation.
- the population mean deviation.

the interquartile spread.

the various other spreads between p% points for different p.
- the limiting case as p% - 50%, namely the reciprocal of central
density.

If we consider a variety of distribution shapes, the interconve}sion
factors among such measures of population spread differ widely from one
shape to another. Yet an estimate that estimates any of them is clearly
an estimate of width.

There are situations where this freedom is removed. If we are
assessing the stability of a simple arithmetic mean, we need to estimate
the population standard deviation. If we are assessing the stability
of a simple median, we need to estimate a p% spread, for p suitably close
to 50. There are, then, many cases where we want to add to the two
requirements with which we started this section a third, namely:

- what is estimated in each of many situations tracks, at least
bearably well, some target value (perhaps the square root of
the variance of some other computed quantity), as the population
shape changes.

When we add this third requirement, we have a bound widthing problem.

NOSE IN THE BUTTER

We now have, in work at Princeton under ARO auspices, some very
useful results on free widthing. We do not yet have the degree of complete-
ness that exists for symmetrical centering, but we have come a long way--and

to a most pleasant result.

If we take the same sample size and three corners that have guided
much of the work on symmetrical centering:

- first, sample of 20 from the pure Gaussian,

- second, samples of 19 from Gau (0,1) combined with samples of 1
from Gau (0,100), '

- third, samples of 20 from the slash distribution, with its Cauchy-
like tails,

15



we are now able to provide an apparent efficiency of estimate of log width
of at least 86% (Lax, 1975) at all three corners. The best that conven-

tional estimates of width seem to do is 35% for the MAD--the median abso]uté

deviation (from the median).

What delivers this great improvement? None other than our friend
Alan Gross's denominator--the natura] asymptotic estimate of the biweight's
sampling standard deviation s,. As the Danes say, we have “fallen with our
nose in the butter". For the present, at least, OUR BEST FREE WIDTHER is
ALSO the BEST WIDTHER BOUND to our BEST CENTERER. How could things be
simpler?

While other estimates of width may prove somewhat better, we are now

~quite certain of a permanent place for a widther that is both:

- excellent as a free widther and
- bound to the variability of an excellent centerer.

The advantages of such a combination, something that does for a variety
of situations what y and s do for the over-utopian Gaussian case, are just
~ too great for us not to seize upon them--hard. '

SOME_OPEN AREAS

A1l our results are for sample size 20. In view of Gross's results,
it seems safe to use theit for yuidance for samples 2 10. What'to do for
smaller suiples is not yat ciear, nor is it clear to what extent building
down to smaller samples may help .us with the interval centering problem
for n < 10. .

The only estimate of variability for s, so far at hand is that offered
by jackknifing, yhere jackknifing the cube-root or log of s, seems natural.

As written down, s, is, roughly, (1//n)th of an estimate of width-—s*a,
after all, estimates the variance of an efficient summary. So lony as we
deal either (a) with only one sample size or (b) with only one use for
widfh--assessing the stability of an efficient centerer--we need have no

concern, But otherwise we need to know just what to multiply by--is it
/n or /Ty~ or what?

Despite all these questions, a rather large-scale use of s, seems
inevitable.
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VECTOR CENTERING

DISTINCTIVE OR AFFINE

The problem of resistant/robust centering of vectors, like so many
problems in the ana]ysis'of vectors, comes in two extremes:

- distinctive centering, where we are to work in a prespecified
coordinate system.

- affine centering, where we are to work in such a manner that the
answer reached is independent of the coordinate system.

There is some ground for suspicion that some intermediate formulation

A

will come to be of real importance, but this has not yet happened.

TODAY'S STATUS

Distinctive point estimation of vector centers requires only point
estimation of centers for each coordinate, something we can do with high
robustness of efficiency.

Distinctive interval estimation of vector centers by parallelopipeds
parallel to the distinctive coordinate planes can be done with equal ease,
using Gross's techniques on each coordinate, but parallelopipedal confidence
intervals are often quite wasteful.

Distinctive interval estimation of vector centers by ellipsoids requires
corresponding techniques for assessing vector dispersion. As discussed
below, resistant/robust techniques are probably well on their way rather
than being ready on the shelf. —

Affine point estimation of vector centers in a resistant/robust way
seems also to require resistant/robust assessment of vector disperion.

Affine interval estimation of vector centers in a resistant/robust way
seems to require resistant/robust assessment of vector disperion, twice over.

AN _EXAMPLE

As an example that resistant vector centering problems need not be
trivial, look at Figure 1, taken from the study reported in Chen,
Gnanadesikan, and Kettenring'(1974). This plot shows the first two principal
components for 14 economic characteristics of 29 chemical companies. (No
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errors, only a maverick chemical company, one that is not noticeable in
any one of the 14 variables aTone.) .Clearly the inclusion or suppression
~ of the company plotted in the lower right corner alters substantially’
both centering and dispersion for this batch of data.

) \;;gdl

SECOND PRINCIPLE COMPCNENT

FIRST PRINCI PLE COMPONENT

" FIGURE 1. First Principal Components of Economic
Characteristics of 29 Chemical Companies

PART II |
PROBLEMS WHERE FITTING IS ESSENTIAL IN IDENTIFYING "WILD SHOTS"

In all these problems, resistant techniques seem e§sentia1, if a good
job of ideh}ifying "wild shots" is to be possible. In a two-way analysis,
for examplc, a few "wild shots" can so distort an analysis by means as tu
easily conceal their own presence, as well as providing a misleading tit.
Thus resistant methods are essential if we want to:

- jdentify likely wild shots, so that their cause may be inquired into,
- identify likely wild shots, so their setting aside will let us see
the actual general pattern,

18
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- make a fit that reveals the desired general pattern.
It is essential to have resistant/robust techniques. There is no substitute.

"The discussion of this part falls naturally into four subparts:

regression

smoothing

patterned fitting

correlation and dispersion

INDIVIDUAL REGRESSION

ITERATED BIWEIGHTS

A number of authors (e.g. Andrews, 1974, Beaton and Tukey, 1974, Hill
and Holland, 1974, Hoaglin, Holland and Welsch, 1975) have made use of
iterative wéighting in regressﬁon situations. The choice of just which
iteration was used has varied somewhat, but there is no reason to believe
that this choice is particularly important. So we will here recommend the
use of a biweight.

The iterative computation then involves:

A

y. = 21" Yoid
i cS(ﬂd

where So]d summarizes, perhaps as the MAD, the sizes of all the Y-Yo14° and

2
{(1—u2) , u?st,

25 (subscript 1 suppressed)
o, u--1,

w:

The'ynew arises by weighted regression, in which the ith data set receives
weight W (If weights wi were inherent in the regression problem, we may
. want either just to use weights wiW; or to replace Y-Yo14d by /W(y-yo]d) in

the calculation of the fitting weights, wi.)

llow many iterations are likely to be needed must, among other things,
depend upon.how many constants are being fitted. We know very little about
this. So we plan to iterate to reasonable stability, which does not usually
require many iterations.
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Where we start is important, mainly as a computational matter. If
we start from an unweighted least-square fit, we are likely to need more
iterations. If we start from, say, a least-absolute deviation fit, we
will have had to expend more computation to get to our start.

THE ANDREWS CASE

The sort of situation illustrated in Figure 2 has been forcefully
called to our attention by David Andrews. We know of no escapé from the
need of two analyses, one corresponding. to each of the Tines in the picturé.
It is then a matter of wisdom, subject-matter knowledge, and inquests over
the bodies of individual exotic déta-sets to decide how to go further and
how to report the result.

This problem is not restricted to the simple case just illustrated.
Turn back to Figure 1, and assume what is shown are two x-variables. However
y behaves, the fit for:

FIGURE 2. An Andrews Configuration: Some Data Points
With Two Fits (either line may be relevant)
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- all data points
- all data points except the exotic one

are certain to be quite different. (Even if the fits resemble one another,
the uncertainties assigned to the fitted coefficiencts will not.) With
several x's even the recognition that we face suéh a case is not easy.

(And ‘the work of N.E. Day, 1969, suggests that rather drastic situations
may not be uncommon when the x-vectors are samples from a Gaussian distri-
bution of vectors.)

A variety of suggestions have been made (e.g. by Andrews and by Mallows)
of ways in which we might be reasonably sure to get the fit setting aside
exotic points. To date there seems to be no procedure which guarantees
us finding all the plausible solutions. '

Using a variety of random starts for the biweight iteration may hélp '
us; but when we do'this, we are unlikely to ever know how many other
solutions we missed. '

WHAT VARIANCE?

Once we have our.robust/resistant regression, which we expect to be
better determined than the least squares regression, how do we judge its
accuracy? A s1mp1e approach is to forget that the weights are relat1ve
and calculate a variance- covar1ance matrix as if the weights were f1xed

A variety of more comp11cated formulas have been proposed for consider-
at1on Work at National Bureau of Economic Research-Cambridge (Hoag]1n,
Hol]and Welsch, et al) has thrown some 1ight on this question. Recent
work by Gross (1976b) on 1nterva1s for linear combinations of a and b,
where a + bx is being fitted, seems to indicate that different "variance"
estimates require different "t" values, but otherwise perform similarly.

If this proves to be so in more general fits, and for "F" as well as
for "t", we will be indeed fortunate.

In the meantime, using the estimated variances and covariances neglecting

the iterative nature of the 'weighting seem a useful guide to the stability

of our results. (Unpublished results of Mallows would suggest expanding
variances and covariances by a factor of (1.07)2 when using biweights with c=9.)
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AN AFFINE OBLIGATION?

When we fit. ’ ‘ _

b] X+ b2 xzt + .00 bk Xi

we may consider (b]’b2""’bk) as a vector. If we do, the carriers SE
Xos «ves Xy determine--mainly by their omission--a set of coordinates in
the space of vectors. Replacement, say, of X4 by

X1=-05 x5 + 13 + f09x

3+... K

introduces a new set of coordinates and represents identically the same’
fit--the same abstract coordinate vector--in a new sel 6f coordinates
'(one where b2, b3, cees bk have all been altered). We could ask for the
estimation of the b-vector to be affine invariant.

Iterative reweighting from an affine invariant start will give an
affine invariant result. So the question of how hard should we work to
obtain an affine invariant result reduces to--

- should we insist on an affine invariant start?
- should we insist on an affine invariant assessment of vector
dispersion for the regression coefficients?

These questions are nol as simple as they seem.

Suppose we start from (0,0, ..., 0) as the initial set of b's, Is
this an affine invariant start? In a narrow sense--invariance under all
HOMOGENEOUS non-singular linear fransformations--yes. In a broader sense--
invariance under all non-singular linear transformations, homogeneous or
not--no. Which sense is appropriate? Can any fit be affine invariant in
the broader sense? '

This whole question is clearly presented as a teaser.

OTHER REGRESSION

COMPARATIVE REGRESSION - _/(E

, . L R
There seems to have been nuthing explicit to report here. We presumably
add together whatever variance-covariance matrices are judged appropriate
for the individual regressions.
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~ AUTOREGRESSION

Work by Douglas Martin and Lorraine Denby, not yet submitted for
publication, indicates that y-w techniques, including iterated biweights,
do well here also.

SMOOTHING _
BASIC IDEAS.

The idea of smoothing a sequence is old; classical performance is at
best poor. There are.two distinct reasons why arithmetic means, simple
or repeated, do not perform well.

The first failure is shown by a clear tendency to pull hills down--
and valleys up--as well as reducing ripples. Repeating the smoothing--
resmoothing--as in

ViV iV Vie

1 5

followed by
R T A M T R b
V. =

i 5

or
G 15 R i
i 3

makes this deficiency worse.
The cure is easy. - Rerough instead of resmooth!

llaving done a first smooth, perhaps

L iV iYin Vis
i 5

form also the "rough", satisfying given data = smooth PLUS rough, namely
9 = ¥i " 7

and SMOOTH THIS ROUGH, finding, perhaps
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9322193211944 442
i 5

or

¢ = 3117947
i 3

AND THEN ADD TOGETHER the TWO SMOOTHS, find z; + ti as one's smoothed
values. (When, as in our examples above, each smoother reproduces every
straight line identica]]y,'the combination will reproduce every cubic
identically,)

Second; as something involving means, smoothing by runniny ieans
is far from resistant. One horribiy wild point, fur example, is smoothed
out into several not quite so horribly wild points. This is often
unbearable. 4

Again a cﬁre is simple. As a first step, replace running means
by running medians. This will supply the resistance, but need not make
things smooth enough. (Monotone sequences, for example, are unaffected.
by smoothing with running medians.)

3RSSH, TWICE

An elementary procedure that is easy to -Tearn, and produces bctter
smooths than you are likely to begin by hoping for, makes use of these
three kinds of components:

- running medians of 3
- the end value rule
zg = median (321-222,y0,21) |
where z, and z, are already obtained smoothed values.
- hanning, forming
2i1*223 244
]
by one algorithm or another.

The rules of procedure are as follows:

- repeat the use of running medians of three--so long as$ this changes
the sequence. During this phase the end values are "copied on"
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until running medians of three have no further effect, at which
point the end value rule is applied to each end. (A1l this is
called 3R, for "three, repeatedly".) :

- identify every flat-topped hill or flat-topped valley of width
exactly two; and act as if the sequence had been split in the
middle of each of these two-flats in turn, applying the end-value
rules to each new end thus formed.

- after this has been done for each two-flat in turn, repeat 3R.
(These two steps are called "S", for splitting.)

- repeat these two steps once more (another S).

- apply hanning, copying.on end values (called H).

- find the rough, and repeat the whole process on the rough, add1ng
the resulting smooth to the original smooth. (When "reroughing"
is by a copy of the original smoother, we speak of “twicing".)

For examp]es,’see Tukey (1976).

The resulting procedure, called, for its components, "3RSSH, twice"
is resistant and moderately effective. '

HIGHLY.EFFECTIVE'SMOOTHERS .

Whether or not it is possible, what would be a utopian dream for an
ideal resiétant smoother? On the one hand, it would chop off isolated
"wild shots", leaving hafd]y a trace. On another, it would fol]ow every',
smooth sequence very, very-closely.

Clearly no linear smoother can come close to this, since its behavior
for any sequence has to be the sum of its behaviors for Lhe sinusoidal
components of that sequence and since a wild shot's sinusoidal components
involve slow (smooth) frequencies as well as high ones.

Exactly how close nonlinear smoothers can come to meeting this dream
we do not know But Paul Velleman.(1975) has shown that one can smooth
long sequences so that

- for exact]y s1nuso1da1 “input, whose output must be a mu1t1p1e of
that sinusoid plus multiples.of its harmonics, no harmonic is less
~ than 25 db (a factor of 18) smaller than the input.
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.. - the multiple of each. sinusoid behaves the way we would hope:
close to 1 at low frequency, close to 0 at high frequency, smobth
transition between. o

- stretched-tail or spiky noise is adequately smoothed away.

While not reaching the imbossib]e ideal dream, this goes farther toward
it than many would have deemed possible.

His techniques combine biWeighting with cosine-arch coefficients
and reroughing. "

UNE_APPLICATION

Resistant smoothers work quite well on most unlikely material. if
we have a scatter plot of (x,y) pairs, we can:

- sort on x

- eliminate ties by replacing all pairs with the same x by their
median (if few) or biweight (1f several or many)

- smooth the resulting sequence of y's

- smooth the corresponding sequénce of x's

- plot the broken line through the resulting (x-smoothed, y-smoothed)

. '

pairs.

"What we get from a respectable (hence resistant) smoother, "3RSSH twice",
for example, is often very illuminating and very helpful.

Scatter plots inevitab]y‘direct our attention to the outside points,
not to a good general picture of what is happening.

A scatter plot unsupplemented by one or more resistant smooths is at
best a lost opportunity. At worst it can be a disaster.

"PLUS" ANALYSES

BY MEDTANS

Fitting a; + bj to a table of values of Yij is a very widely used
process. For. complete rectangular arrays (yij) we used to describe it
noniteratively in terms of row means and column means.

~ If we want to describe fitting in terms of medians, which we often
find very useful, it is essential to describe the fitting iteratively.
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The simplest description starts with one set of stripes, either rows or
columns, and proceeds as follows:

- f1nd medians of one set of str1pes (the A- str1pes), 1nc1ud1ng
one str1pe of fits (initially probably zero).

- subtract these from the data (the residuals) and add them to the fit.

- find medians of the other set of stripes . (the B- str1pes), including

- one str1pe of fits.

- subtract them from the residuals and add them to the fit.

- repeat, perhaps for four find-and- subtract steps, perhaps to
apparent convergence

By now there is quite extens1ve exper1ence with th1s process, wh1ch does
very well in being resistant and reasonab]y robust

Since it uses medians, we cannot expect it to show high robustness
of efficiency, unless there are no more than, say four rows and four
columns. (Or perhaps no more than six?)

BY BIWEIGHTS

We canAget high robustness of efficiency for larger numbers of rows
or columns, we are quite sure, by replacing the medians in the iteration

‘process by biWeights I know of no explicit numerical stud1es, but I
-have no apprec1ab1e doubt--this is a high quality process.

GENERALIZATIONS

Extensions to f1tt1ng A ik with a; + b + ¢ or with a; + b + e
+ d1. + sy + f. ik are relatively easy, w1th the latter (surpr1se') the’
easier. "To perform the latter analysis, we can define three kinds of fibers:

- all data points with i and j fixed.
- all data points with i and k fixed.
T all data points with j and k fixed.

and then iterate cyc]1ca11y through transfers from residuals to fit (and
from fit to fit) correspond1ng to A-fibers, B-fibers, and C- fibers.,
Generalization to any unrestricted factorial pattern is easy.

Restricted factorials can be handled without difficulty by using (1)
an unpublished algorithm of P. J. Claringbold to determine which kinds of
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fit are desired and (2) inéertion of mfsSing value indicators to indicate
which fibers are to be omitted from the find-and-transfer process.

ANALYSIS OF VARIANCE--A PROSPECTUS . ' '

By analysis of variance, as distinct from PLUS analysis, I mean the
ideas and techniques that revolve around the classical analysis-of-variance ‘
table and its improvements. These ideas are concerned, on the one hand,
with the breakdown of the variance of an observation into portions (inade-
quately mean squares, more adequately variance components) "assignable" to
different sources, and, on the other and more frequent hand, with the use
" of one mean square--or linear combination of mean squares--as an "error
term" for dfawing conclusions--either of significance or confidence, about
some or all of the values appearing in some effect or interaction. In the
latter case, the classical F test has been replaced, in many cases, by
multiple comparison procedures (compare with multiplicity section).

In this area, we can see the dawn, but not quite the sun, The
serend1p1tous appearance of s, as both an indicator of the variance of
biweights and a high-quality estimate of width suggests qu1te clearly
that each of. our mean squares will need to be replaced by two numbers, one
of which is an 5*2, to be used as--or as part of--an error term. The 5*2' S,
as well as effects/interactions will be based on a resistant/robust analysis

of the sort just described.
Details soon, perhaps.

INDIVIDUAL CORRELATIONS--QUARTER SQUARES

Once upon a t1me, multiplicatiuon was done by squaring, using the
identity: :

| 2
uv = (uw} Gu"zv)
and Tables of Quarler Squares, Today the existence of a good resistant/

robust widthing procedure implies that of a plausible resistant/robust
correlation calculation, based upon

’a
Y
width of y
V=-_.—X—_ L}
‘ width of x

<
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and either

"correlation" = (width of'!%!)z - (width ofAH%! 2
or
{width of u+4) -'(w1dth of u- v)2

(width of u+v) + (width of u- v)

"correlation" =

as used, for example, by Gnanadesikan and Kettenring (1972). (Linear
transformation to avoid large p may be important.)

We do not seem to be clear about what specific estimate to recommend.
(Comparisons of a variety of resistant/robust estimators by Devlin,
Gnanadesikan, and Kettenring are scheduled to appear in the December, 1975
issue of Biometrika.) However, almost any such estimate will be much safer
than the classical estimates in the presence of outliers.

" The usefulness of taking

W= (1-oct)2 |
where
u-u, 24-Z4 -z 2 2
0Ct=maX{(E;')3( )’( )’(CS)
and where z_ = utv, Z_ = u-v, S, 1s derived from the z+-z+,-and S_ is

derived from the z_-z_, for some larger values of ¢, perhaps between 10 and
12, seems not to have been explored.

VECTOR DISPERSION AND CORRELATION AMONG SEVERAL QUANTITIES

DISTINGUISHED CASE

We can assess resistant/robust widths for each coordinate separately,
and then divide out by these estimates, coordinate by coordinate, thus
obtéining new vectors whose dispersion ought, we would think, be best
described by "correlation matrices", by matrices with one's on the diagonal.
Thus we can fairly easily, in the distinguished case, reduce the estimation
of vector dispersion to the estimation of the various correlations among
several quantities.
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Devlin, Gnanadesikan and Kettenring have work in progress in this

direction which seems 1ikely to offer a variety of approaches, all probably

reasonably robust. of efficiency. In due course we should be able to -
identify one or two recommended methods. '

THE AFFINE CASE

If we desire an affine invariant estimate of vector disperions, we
cannot reduce the problem trivially to the estimation of a correlation
matrix. Methods of iterative ellipsoidal truncation and winﬁorizing have,
however, been shown, in unpublished work of Devlin, Gnanadesikan and
Kettenring, to be promising. ‘

It may be a little while before this area has been brought into
reasonable order.
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NOSTALIGIC RUMINATIVE CEREBRATIONS

(A Post-Prandial Presentation)

Roger H. Mbore
. U.S. Nuclear Regulatory Commission
Bethesda, Maryland

My wife and I feel a great pleasure at being invited here tonight.
We usually don't practice astrology or numerology--but this date and
this place have very special meanings to us. Just 10 months ago tonight,
we left the Hill (Los Alamos) and headed for an almost complete change
in our way of life--this time in the far and, to us, almost inscrutable
East Coast. And it was only 268 wonths ago tonight that we settled into
our first very own place after enjoying two days of mid-1950's old Lodge
hospitality. Granted, "our first very own place" was a concrete no-bedroom
Iris Street efficiency apartment. But it seemed 1ike a palace after
those years of hallowed graduate student poverty level living and a long
midsummer desert trek from Qregon in a '47 Kaiser that suffered from
an incredible assortment of circulatory and respikatory ailments.

The last time I addressed a grodp after dinner occurred a 1ittle
over a year ago at a meeting of the Albuyuerque section of the American
Society of Quality Control. I was paired with Bill Mondt who then was
Tooking to his first year as head football coach at the University of
New Mexico. Surely, what has happened to the Lobos of UNM since then is
not a bellwether for the careers of Dr. Tukey and the other invitees at
this symposium.

But a certain freedom is granted an afterdinner speaker’ thal 1%
not afforded those making scientific pronouncements, And that's why
it was so easy to accept the invitation from Ray Waller when her offered
it Tast spring. Besides, the meeting was then months away. Even in July,
when pressed for a title, I willingly accepted a helpmate's help in
arriving at the subtly subliminal appellation attached hereto. (Incidentally, M
Eileen had suggested Noetic as the first word--but I rejected that on the

basis that the first week of November is too early for yuletide references.)

)
28]
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By Tate September, however, a poorly controlled panic set in. What
could I bring to this distinguished assembly that had not been said before?
Was some start]ihgly new insight just beyond my.grasp? How was I to cope
with a title that once seemed so felicitous and now was looming 1ike an
albatross? Maybe, if I waited just one more day....

Procrastination has its rewards. In a studied effort to ignore the
waiting typewriter and the notes I had collected, I settled down beside
them to examine the October 1975 issue of Smithsonian. It carried an
excerpt from All the Strange Hours, the autobiography of Loren Eiseley,

the famed "literary naturalist and scientist." He tells of the "poignant
work of tampering with prehistory," describing how "... some fine day,

the kaleidoscope through which we peer at life shifts ... and'everything is
reordered" and illustates it with a tale about being lost in a Carlsbad

.sinkhole. He was delivered from his predicament by retracing his steps

over fraghents of broken stalagmites, crystals never before touched or
seen by mankind. He writes:

"By the time I stood at the cave entrance I was looking at
life, at my companions, at the traffic below on the road,

. as though I had just-arisen, a frozen man, from a torrent
of melting ice. I wiped a muddy hand across my brow. The
hand was 10,000 years away. So were my eyes, so would they
always be, and ... I could not find a way to speak.

"The modern world was small, I thought, tiny, constricted
beyond belief. A Tost century, a toy ....

"I have never again seen men so minutely clear ... moving
across an infinite ice field into whose glare we finally
vanish. It was like a glimpse through the slitted bone
with which Eskimos protect their eyes from snow blindness.
I have never had occasion in the years since to think upon
us differently. Not once."

Eiseley's eloquence makes ‘things much easier for me. I have a number
of ideas to mention tonight--but I am shorn of any pretense that they
need be earthshaking. Indeed, that realization makes my joy unconfined.
I can now make some chips and see where they fall. |

\
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THE AEC AND THE ASG AND THE NRC AND ME

Just so there's no mistake about it at this point in time, let me
make an initial point: My entire statistical career has been associated
with the Atomic Energy Commission's programs and those of its successors,
the Nuclear Regulatory Commission and the Energy Research and Development
Administration. Successes and failures, joy and déspair, hopes and fears,
dreams and realities--for me all of these are tied up with these three
agencies. So perhaps you will suffer me whatever "Dutch uncleisms" arise
in the sequel. i

As I gradually came to an appreciation of the depth and breadth and
importance of AEC programs in the 1950s, I also came to a feeling of
concern that the discipline we call statistics was under-represented at -
AEC Headquarters. And at the same time I was buoyed by the discovery
that pockets of statistical skill existed among the AEC's laboratories,
even if that skill was il1-distributed. But, I wondered, how could a
spectrum of statistical questions gain a proper appreciation "in
Washington" unless there were a centralized statistical capability in
the AEC, clearly identified, and active in dealing with those questions?

I never did find an answer to that question. But I was most surely
pleased when, in the late summer of 1974, the Commission approved the .
formation of an Applied Statistics Group (ASG) within the then-Directorate
of Regulation with a clearly-stated "missjon" to:

"1. Provide first-class mathematical statistics,
consulting, and policy service to all of REG,
including the Director of Regulation and all
three Directorates [then called Licensing,
Regulatory Standards, and Regulatory Operations].
This in¢ludes both solving prohlems and coming
up with new ideas on the application of statistical
techniques to regulatory problems.

2. Provide a small centralized group for risk

' evaluation...."
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Of course, the Energy Reorganization Act of 1974 was well in the
works by then--but the ultimate mission of the ASG could not be diminished
by the final details of the Act. As things finally worked out, I
boarded the disappearing AEC ship on January 9, 1975, with the under-
standing that the NRC would effect a rescue on January 19, the effective
date of existence for both the NRC and the ERDA; My 10-day AEC tenure
set a new record for personal insecurity--with the enlightening exception

of a highly instructive ditch-digging engagement in the summer of '45..

ABOUT THE NRC

What about the NRC? What about its philosophy, authorities,
responsibilities, activities, functions, and organization. Most of what
follows appears in testimony presented by Chairman William A. Anders
before the Subcommittee on Energy and Environment, House Committee on
Interior and Insular Affairs, April 28, 1975. The full testimony is
worth reading, especially as an example of a new government agency's
statement of purpose.

Chairman Anders states: "The most basic point is this: The business
of Nuclear Regulatory Commission is regulation. We must maintain a
position above the fray, and not allow ourselves to be either apologists
for or antagonists of nuclear power. Development or promotion of nuclear
energy is the function and responsibility of others. Our job is protecting
the health and safety of the public.”

To guide the Commission, four cardinal principles were adopted:
Independence, Openness, Efficiency, and Effectiveness.

The Commissioh's authorities derive from three statutes: The Atomic
Energy Act of 1954 (as amended), the Environmental Policy Act of 1969,
and the Energy Reorganization Act of 1974.

The responsibilities of the Commission are protection of the public
health and safety, protection of environmental quality, safequarding
nuclear materials and facilities, and ensuring conformity with the nation's

antitrust laws.
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Activities cover most of the steps of the nuclear fuel cycle, from
milling of source materials to’either final storage and disposition
(wastes) or reprdcessing and further use (nuclear reactor fuel and radio-
isotope byproducts). The NRC does not regulate uranium mining or govern-
ment enrichment plants.

The functions, described under Title 10 of the Code of Federal Regu-
lations, are supported by broad programs in standards-setting, technical
reviews and studies, licensing actions, inspection and enforcement, evalua-
tion of operating experience, and research. '

The NRC organization, shown in Figure 1, has been set up to accomplish
these functions. Briefly, the five-man Commission is appointed'by the
President. The Executive Director for Operations (EDO) is the coordinating
and directing agent for the Commission. Five major operating offices
provide the day-to-day action: Nuclear Reactor Regulation (NRR), Nuclear
Material Safety and Safeguards (NMSS), Nuciear Regulatory Research (RES),
Standards Development (SD), and Inspection and Enforcement (IE). (Initials
included to assist in further encounters with NRC units.)
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I won't pretend an intimate acquaintanceship with the myriad boards
and associated information that could be cited to flesh out this brief
survey. My only intent is to provide some insight into what is happening
in the NRC and how things are organized. But I can't resist a couple
of statistics: The FY 1976 budget called for 2339 personnel and funds
amounting to $220 million (including contractual support).

ABOUT THE ASG

The Applied Statistics Group doesn't appear on the organization
chart. 1It's not organized as an "Office" and it has not been called a
"Branch." But "Group" conveys both a sense of upbeat modernity and a
feeling of unity of purpose.

Officially, the ASG is responsible to Dr. Stephen H. Hanauer who
is the Executive Director's Technical Advisor. Steve has been especially
helpful in establishing the ASG's focus for statistical activity in the
NRC--sometimes by providing introductions to various segments of the
organization, sometimes by forcing us to sharpen our statistical wits in
order to parry his queries.

We had occasion recently to recount the Group's endeavors. We were
astonished at the number of individual projects to which we had made
contributions with some 18 people-months of effort in about eight calendar
months. They include studies of fuel element behavior, nuclear materials
safeguards information systems, connections among inspection and enforcement
and reactor experience, reviews of Regulatory Guides and regulations,
analysis of data pertaining to a1rcraft-carried'materials, surveillance
of nuclear reactor structures, preparation and review of ANSI-sponsored
standards. Even now we are working on a sampling scheme for the Office
of the Controller to apply to the auditing of travel vouchers.

The second part of the ASG mission, the risk evaluation effort, was
obviated when several members of the Reactor Safety Study (WASH-1400)
were brought together in the Office of Nuclear Regulatory Research to
form the Probabilistic Analysis Branch, now under the direction of Ian Wall.
The skills and training represented in that Branch also are directed at
providing reliability theory and practice for NRC programs.
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Without people, of course;'none of this would be possible. ASG
people deserve spotlighting. "Cookie" Ong has been around the licensing
and regulatory wars longer than any of us; he'joined the ASG in April
and his safeguards knowledge is always on call by new arrivals and old
hands at the NRC. Bob Easterling is well into a two-year hitch as the
ASG's Statistical Advisor; he arrived in June and his contractor-inspired
views provide a fine counterpoint with which to probe the verities of
nuclear statistics. David Rubinstein is our newest permanent staff
member; he joined us in October and his induétria] and governmental
~ experience will provide the ASG with its share of thc added dimension
now so popular with sn many institutions. And we must not slight
Nancy Barr's secretarié] ;ontributions nor her insights into governmental
paper management. o

Bob Easterling expounds a thesis: "The essense of good regulation
is statistics." He and I, most assuredly, have encountered arguments on
that--but its usefulness lies in reminding everybody that data, and its
analysis and interpretation, ought to underpin the strategies and tactics
employed to carry out a regulatory philosophy--irrespective of the thing
being regulated. And we recognize that "ought to" provides us with a
goal whose achievement will forever seem to be just beyond our grasp.

It is important to note that the dismay I expressed earlier about
the under-representation of statistics in the AEC was partially assauged
this past summer by an almost singular event. Six senior AEC staff
members were honored with Distinguished Service Awards. During the
reading of one of the citations, we heard the words "statistics" and -
"statistical" several times. 1It's hard to reject such an indicator, no
matter what level of significance is chosen. '

The conjunction of the authorization of the Applied Statistics
Group and the formation of the Nuclear Regulatory Commission and the
consequent organization choices provide us with a very special oppor-
tunity. Modesty alone cannot account for the feeling of challenge and
excitement that goes with being a part uf this venture....
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A STATISTICAL POTPOURRI

Sometime between the ages of 25 and 79 years, most of us begin each
day with a few more unanswered questions than we had the morning before.
And it's not completely explained by the action of alcohol on little grey
cells. In preparing this talk I spent some time with recent issues of
The American Statistician. Reading them sequentially, in a single sitting,

is an exercise I highly recommend. Articles therein, along with other
signals from many unidentifiable sources, lead me to offer the following
for your consideration. (References provided on request.)

Is a statistician a scientist or a shoe clerk?

What is interaction?

Should there be a certification or Ticensing of statisticians?

How do we cope with a well-established statistician's elementary
text that speaks of "2-sigma" confidence intervals?

Is statistics identically equal to data analysis?

Can uncertainty be expressed as a single number?

When can we expect the first "Chemistry for Statisticians"
book prepared by a statistician?

Can a systematic error be random? Indeed, can it even have a
random component?

Are probability, statistics, and reliability distinguishable
disciplines?

If the formulas for the end points of a confidence interval are
symbols for random variables, what do we call the realiza-
tions computed from the sample data?

Should statistical activists rally around "The Ubiquity of
Statistics" thesis enunciated by William Kruskal?

Should we take cognizance of consonance?

If "statistical science training" is good for government employees,
is it also good for other people?

If mathematics is the "handmaiden of science," then is statistics
not both the taskmaster and stableboy of human endeavor?

If I possessed comforting answers to these questions, I wouldn't have
asked them. Filling the chinks in any system is arduous. But it can
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result in stylish and important energy-saving actions. I submit that
statistics and statisticians have some work to do.

PARTING SHOT

Our country is in the midst of its Bicentennial Celebration.
Washington, D.C. is a splendiferous place to visit any time--now it is
doubly so. For those planning to drive, I have a special, but clearly
unofficial, offer: Visitors will receive no parking tickets--all the
possible parking places will be taken long before anybody arrives from
out of town!

Thank you again for inviting us.
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- RESEARCH ON DATA ANALYSIS TECHNIQUES -
AT STANFORD LINEAR ACCELERATOR CENTER

[An After Dinner Presentation)
Jerome H. Friedman

Stanford Linear Accelerator Center
Stanford, California

INTRODUCTION

To understand the approaches we have taken to data analysis techniques
at Stanford Linear Accelerator Center (SLAC), it is necessary to understand
the types of data that we typically encounter in high energy particle
physics experiments. These data originate with the particlie detectors
associated with scattering experiments. These detectors produce counts
whenever a particle passes through them. The cardinaiity of these counted
data tend to be larger than that usually encountered by statisticians.
Sample sizes from 5,000 to 50,000 are not uhcommon. The data are nearly
always multivariate with typical dimensionalities ranging from 4 to 20.

The data distributions tend to be far from normal. These distributions
are highly structured in the multivariate data space, and location is not
always their most important attribute. Quite often the scale of a dis-
tribution is a much more important characteristic than location.

These characteristics place severe restrictions on the nature of the
procedures that we employ. They also allow for some exciting possibilities.
The non-normality of the distributions requires that we employ nonparametric
procedures. The fact that location is not the most important attribute of
the distributions rules out most of the nonparametric techniques that
are simply robust extensions of normal procedures. Totally general non-
parametric techniques are required. The multi-attribute nature of the
data requires that these procedures be multivariate. The large sample
sizes require that these techniques be computationally efficient. Procedures
in which the computation time grows as the square of the sample size, or
faster, are unacceptable. On the other hand, the large sample sizes allow -
for the possibility that we at Teast have a chance of being successful
with generalized nonparametric multivariate techniques. The so-called
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"curse of dimensionality" requires that the sample size, N, grow with
dimension, p, as‘Np in order to maintain roughly constant precision.
Thus, very large sample sizes are required for even moderate dimension-
alities.

With parametric techniques, the data distribution is assumed to be
described by a small number of parameters that are to be estimated. This
effectively reduces.the‘dimensiona]ity to that of the parameter space,
considerably alleviating the problem. In our applications, however, ‘
models describing the densities are generally not known, ruling out this
approach. In fact, an important problem is validating models that are
proposed by theoretical physicists, given a multivariate data sample.
Although described in a parametric framework, goodness-of-fit testing
is really a nbnparametric problem.

Our first efforts were directed toward searching the literature
for procedures that met the requirements described above. We found
two independent and largely noninteracting bodies of literature addressing
themselves to these types of problems. The first was that of statisticians
and their adherents (biometrics, econometrics, social sciencés, education,
etc.). The second was that of electrical engineers and their associates
(pattern recognition, artificial intelligence, computational geometry, etc.)

' We foﬁnd very litlle Lhat we could apply in the gcneral statistics
literature. Almost all multivariate procedures were based on normality.
Those nonparametric procedures that did exist for multivariate applications
wére usually robust generalizations of normal procedures (for example,
replacing datum locations by correspondiing ranks). The most promising
techniques that we did find were those based on tolerance regions. On

- the other hand, the statisticians tended to take considerable care in
deriving the expected performance of their procedures, at least in the
asymptotic limit. Good asymptotic performance is a necessary but usually
not a sufficient guarantee of a technique's usefulness. This is because
the "curse of dimehsiona]ity“ can require that the sample size become truly
astronomic before asymptotic results are valid.
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We found a great body of work in the engineering literature that
approaches prob]ems'similar to ours, some of which we have found to be
quite useful. The principal drawbacks to much of this work are lack of
demonstrated performance and excessive computational complexity. These
procedures tended to be completely heuristic. Their performance was
usually demonstrated by application to a sihg]e specific problem
(usually two-dimensional) along with speculation as to the general
performance (both statistically as well as computationally). This
speculation usually turned out to be incorrect, as we found by trying
them on more general problems and at higher dimensiona]ity. However,
we did at least find a wealth of innovative ideas in this Titerature.

We learned two lessons from this exercise. First, the state of
the art would probably be much more advanced today if there had been
more communication between these two bodies of literature. Second, if
we wanted solutions to our problems we would, for the most part, have
to find them ourselves. As our efforts progressed, however, we began
to understand the reasons for the lack of advancement in this field.
We soon came to realize that the problems we had set out to solve were
quite difficult. Our approach has been two-fold. First, to try to find

 ways of reducing the computational effort of techniques that otherwise

look promising, and second, try to develop new procedures that fit our
needs. In spite of the difficulty of the problems, we have made some
progress.

REDUCING COMPUTATION COMPLEXITY

The class of existing techniques that appeared most promising to
us were those based on interpoint distances. At the heart of the analysis
of counted data is local density estimation. Density can be estimated

by fixing a small region in the multidimensional data space and counting

the number of data points that lie within the region. The estimate is
then the number of points divided by the volume (Rosenblatt, 1956, or
Parzen estimator, 1962). An alternative is to fix the number of data
points and measure the vo]ume‘that exactly contains that number
(Loftsgaarden and Quesenberry, 1965). A great many general nonparametric
techniques are based either directly or indirectly on this type of density
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estimation. In fact, many procedures require such an estimate for each
data point. Computationally, these procedures reduire searching the
multidimensional data space for data points that are close to a given
prespecified point. From the computer science point of view, this is

a problem in computational geometry or searching on secondary keys.

At the time we began considering these ‘problems, the state of the art

was simply to calculate the distance to all points from the prespecified
point, identifying those that were smallest. This requ{red computation
proportional to the sample size, N. If this was to be done for all

dala points, the computation increased with incrcasing N, as N2. This
limited the application of these procedures to small data samples. One
of our principal accomplishments has been to develop an algorithm that
performed this searching with computation proportional to NlogN (Friedman,
et al., 1975). This reduced, by many orders of magnitude, the computation °
required to obtain density estimates using intefpoint distances and
greatly extended the applicability of these procedures to large data sets.

A somewhat related problem is that of shortest connecting networks
or minimal spanning trees. A minimal spanning tree for a set of points
in a multidimensional.space is a network of links or branches conneéting
them that have minimum total distance while providing a route between:
every pair of points. Methods based on minimal spénning trees have been
proposed for cluster analysis and data summarization [Zahn (1971),
Arkadev and Braverman (1967), Johnson (1967), and Gower and Ross (1969)].
We have found that these graph theoretical methods are among the most
powerful for detecting and describing clustering in multivariate data.
The problem was that .the fastest known algorithms for constructing minimal
spanningAtrees reqﬁired computation proportional to N2 [Kruskal'(]956),
Prim (1957), and Dijkstra (1959)]. This computation limited these
techniques to small data samples. Using the fast searching algorithms
that we developed for density estimation, we were able to develop an
algorithm for constructing minimal spanning trees with computation propor-
tional to.NlogN (Bentley and .Friedman, 1975). This greatly expands the
applicability of these clustering techniques to much larger data bases.
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- NEW PROCEDURES IN MULTIVARIATE DATA ANALYSIS

Our research on new procedures for multivariate data analysis has t
centered on both exploratory and confirmatory techniques. The exploratory
techniques were in large part developed in collaboration with Professor
John W. Tukey of Princeton University and Bell Laboratories at Murray Hill.
These methods center on mapping techniques. That is, the p-dimensional
data is mapped onto one, two or perhaps three-dimensional manifolds in
a manner that preserves, as closely as possible, some aspect of the data
structure in the full dimensionality of the data space. The resulting
data distributions are viewed by a researcher in this lower dimensionality
where the human gift for recognizing data relationships as patterns can
be employed.

Similar techniques for this purpose have been separately proposed
in both the statistics and engineering literature. Statisticians refer
to these as "multidimensional scaling" while the engineers refer to them
as "nonlinear mapping". When they can be applied, these techniques can .
be quite powerful. They suffer from two important limitations. The |
first is astronomical computational complexity and the second is d1ff1cu1ty
in interpreting the resulting maps. E

We have termed our approach ”projection pursuit". As the name implies,
we employ projections or linear mapping techniques. The advantage of
Tinear maps is ease of interpretation and computational simplicity. The
disadvantage is that when generally applied, low dimensional projections
usually preserve very little of the multivariate structurc of the data.

The purpose of projection pursuit is to use the multivariate data set to
find those projections that are most revealing of the multivariate data
structure.

We have implemented this concept in two quite different ways. One
is on an interactive combuter graphics device. We have named this device
PRIM-9 (Steppel, 1973, and Fisherkeller, 1974). It provides the researcher
with ability to rotate the data to any desired orientation, while con-
tinuously vﬁewing a two-dimensional projection of the multivariate data.
These rotations ére,performed in real time and in a continuous manner
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under operator control. This.gives the researcher the ability to perform 4
manual projection pursuit. That is, by controlling the rotations and
viewing the changing projections, he can try to discover those data
~orientations (or equivalently, projections) that reveal to him interesting
structure.

The other implementation of this concépt was as an automatic com-
puter a1gorithm (Friedman and Tukey, 1974). This algorithm automatically
searches the data measurement space for revealing one and two-dimensional
projections. These projections can then be inspected by the researchers
for interpretation. \

We have also made some progress in the area of confirmatory data
analysis techniques. We developed a neneral test for the stochastic _
independence of two multivariate data samples (Friedman, 1974). We have
also developed a general nonparametric procedure for testing whether two
- multivariate point distributions are drawn from the same probability
density function (Friedman, et al., 1973). As well as testing if the
two sample distributions are different, it also can identify the regions
of the multivariate data space where the two distributions most differ,
~and where they are most similar. '

We have developed a whole class of procedures based on the concept
of data driven recursive partitioning. This technique goes as follows:
Consider a set of multivariate observations, 50' Based un these obser-
vations choose by some procedure a direction, d, and a scalar split point, s.
The sample S0 is then divided into two subsamples S1 and S, such that
1 i

S
eS2 if

hY

€ s .

xX$ Xy
Q> Q>

.
.

x4 Xy

> S .

This partitioning proéedure is then reapplied to the subsamples S]
and 82, obtaining four subsamples; each of these are then partitioned
similarly, and so on._  The recursive application of this partitioning o~
procedure is continued until all subsets finally meet a terminating con- '
dition.  These terminal subsets represent mutually exclusive subsamples _
of the complete data sample, and also represent convex subregions (called
buckets) that collectively cover the data measurement space.
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A specific multivariate procedure is defined by providing the
Apreécription for determining the partitioning direction, d, and the
split point, s, for partitioning each subsample, and the terminating
condition that ends the partitioning. These prescriptions are usually
cast in the form of optimizing some figure of merit. The-goal of the
partitioning, and thus, the figure of merit, is to configure the
terminal buckets so that data contained in the same bucket share as
closely as possible some common property.

Computationally, this data partitioning can be represented by a
binary tree. Binary trees are well known to have nice computational
properties. In particular, they can usually be constructed in O(NlogN)
time and be searched in 0(logN) time. By providing various prescriptions
for the partitioning criteria, we have applied this technique to a wide
range of problems. A "variable metric" decision rule for nonparametric.
classification has been developed (Friedman, 1975). This rule is
invariant under monotone transformations of the measurement coordinates;
its performance is unaffected by the presence of coordinates that contain
Tittle or no discriminating information, and it handles data with missing
measurements with minimal information Toss. We have applied this technique
to nonlinear regression problems. The recursive partitioning divides
the dependent variable space into separate regions such that, within each,
the dependence is as 1ihear as possible. It then performs a linear
regression in each such region separately. We have also developed an
algorithm, based on data-driven recursive partitioning, for estimating
intrinsic dimensionality of multivariate data sets and performing
generalized outlier analysis.

" To summarize, we have found the concept of data-driven recursive
partitioning to be a powerful tool for developing effective multivariate
procedures with Tow computational complexity.

CONCLUSTION

As :the above discussion irdicates, we have made some progress toward
the goals outlined in the introduction. We have not yet solved some of our
more important problems. For example, a general multivariate goodness-of-fit
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test that is both powerful and computable has eluded us so far. Effective
and computable nonlinear mapping algorithms are not yet available. But,

I think the progfess that we have made indicates that.these problems may
not be intractable, and that we may seeé their solutions soon.

REFERENCES

Arkadev, A. G., and Braverman, E. M., "Computers and Pattern Recognition",
Washington, DC., Thompson Book Co., 1967. '

Bentley, J. L., andAFriedman; J. H., "Fast Algorithms for Constructing
Minimal Spanning Trees in Coordinate Spaces", SLAC-PUB 1665, Stanford
Linear Accelerator Center, October 1975.

Dijkstra, E. W., "A Note on Two Problems in Connection with Graphs",
Numer. Math 1 No. 5, (1959), 269-271.

Fisherkeller, M. A., Friedman, J. H., and Tukey, J. W., "PRIM-9--An
Interactive Multidimensional Data Display and Analysis. System",
Proceedings of Second Annual AEC Scientific Computer Information
Exchange Meeting, New York City, (May 2-3, 1974), 3-33.

Friedman, J. H., "Data Analysis Techniques for High Energy Particle
Physics", SLAC-176, Standord Linear Accelerator Center, (1974), 73-76.

Friedman, J. H., "A Variable Metric Decision Rule for Nonparametric
Classification", STAN-CS-75-487, Stanford University Computer Science,
(April 1975) (to be published in IEEE Trans. Comput.)

Fr%edman, J. H., Bentley, J. L., and Finkel, R. A., "An Algorithm for
Finding Best Matches in Logarithmic Time", STAN-CS-75-482, Stanford
University Computer Science, (February 1975) (to be published in
ACM Transactions on Mathematical Software). o

Friedman, J. H., Steppel, S., and Tukey, J. W., "A Nonparametric Procedure

For Comparing Multivariate Point Sets", Stanford Linear Accelerator
Center, Computation Research Group Tech. Meme No. 153, 1973.
Friedman, J. H., and Tukey, J. W., "A Projection Pursuit Alogrithm for
Exploratory Data Analysis", IEEE Trans. Comput., C-23 (1974), 881-890.
Gower, J. C., and Ross, G. J. S., "Minimal Spanning Trees and Single
Linkage Cluster Analysis", Appl. Statistics, 18 (1969), 54-64.
Johnson, S. C., "Hierarchial Clustering Schemes", Psychometrika, 32
(September 1967), 241-254.

48



Kruskal, J. B., Jr., "On thé Shortest Spanning Subtree of a Graph and
the Traveling Salesman Problem", Proc. Amer. Math. Soc., 7 (1956), 48-50.
Loftsgaarden, D. 0.; and Quesenberry, C. P. "A Nonparametric Density
Function", Ann. Math. Stat., 36 (1965), 1049-1051.
Parzen, E., "On the Estimation of-a'Probability Density Function and the
Mode", Ann. Math. Stat., 33 (1962), 1065-1076.
Prim, R. C., "Shortest Connection Networks and. Some Generalizations",
Bell Syst. Tech. J., 36 (1957), 1389-1401.

" Rosenblatt, M., "Remarks on Some Nonparametric Estimates of A Density Funétibn",

Ann. Math. Stat., 27 (1956), 832-837.

Steppel, S., editor, "PRIM-9", produced by Stanford Linear Accelerator
Center, Stanford, CA., Bin 88 Productions, April 1973.

Zahn, C. T., "Graph-Theoretical Methods for Detecting and Describing
Gestalt Clusters", IEEE Trans. Comput., C-20 (January 1971), 68-86.

49



RESEARCH PAPERS



LOWER BOUNDS FOR THE MULTIVARIATE NORMAL MILLS' RATIO

G. P. Steck
Sandia Laboratories -
- Albuquerque, New Mexico

Lowen bounds are derdived for the multivariate MLLLS'
natio by expressing it as an expectation of a convex function
and using Jensen's inequality.

INTRODUCTION

Let X = (X{5 Xps ovt s X,) be a vector of standardized normal random
variables with EXin = p%j. Let the positive definite covariance matrix
be £ with M = gf]. The multivariate Milis' ratio, R{a,M), is defined to
be the multivariate normal probabi1ify "beyond" a certain cutoff point

divided by'phe multivariate normal density at that point; that is

R(a,M) = (2m)™2 |2]1/2 exp(aMa‘/2) P(X 2 a).

Savage (1962) generalized the Shenton (1954) formula for the univariate
Mills' ratio obtaining the representation

R(2,M) = fexp(-aMu’ - uMu'/2)du.
u20

Asuming A = .aM > 0, Savage derived upper and Tower bounds for R by using

1-x Se”* <1 on exp(-uMu'/2). His bounds are

n N

- Z
1 - z]:mii(Ai %J.Emij/A].Aj
A-IA2 ves A

n ] 2 * - @ n :
With the same assumption Ruben (1964) carried the expansion to more terms

showing that this lecd to an enveloping asymptotic expansion which gave
alternating upper and Tower bounds of increasing complexity.

More receht]y, Gjanauskas (1973) showed that if a; * for some
i and a; > 0, all i, then

51

(1)



n n
where z = (172)" Il a(;Mx')/axi = Il
1 i=1

ided m, .
prqv e i3

>0 all i, j. For n =1 this result is weaker than the
usual one. S '

If one is interested only in bounding multivariate normal prob-
abilities, there is a result due to Slepian (1962) that may be useful.
S]epidn showed that P(X >a | £ =C) > P(X > a | £ = D) provided

13 > d13 (c 5= 455 = 1, all i). So, for example, if all the correla-
tions are positive, one could bound P(X > a) above and below by prob-
abilities based on the equicorrelated cases for p = max p i3 "and
p = m1n p j? respectively. 1ed

isd

In this paper we derive three approximations from equation (1),
including bounds, two of which are expressed in terms of the univariate
Mills' ratio. These approximations and bounds do not require A > 0
and are all based on Ef(X) = f(EX), with Ef(X) > f(EX) if f is convex
in each argument. '

In the last section we report on the results of a sampling study
carried out to evaluate the accuracy of the approximations. That study
showed the bounds to be reasvnably good and much better than the Savage
bounds which rarely existed. The requirement that A > 0 appears to be
a severe one.

APPROXIMATIONS AND BOUNDS

Make the change of variable u; = v, /Vﬁ' ,1=1,2, ..., nin
equat1on (1) and rearrange the 1ntegrand so that

o]
n z v -V
Ram - 0 -1/2.[ .{ ~vPv /2( 1/2)dvi’
1
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where Q = (m /ﬁﬁ::_;;) P=Q-Iand z; = A;//; . This manipulation
expresses R(a M) as proportional to Eexp( VPV /2) where V = (v1, Vos «ovs

v ) is a vector of independent random variables such that V has a

dens1ty proport1ona1 to exp(- “Z3Vy - Vs /2) An elementary computat1on

shows E; EV = -R (z )/R(z ) E(z ) =z, - 1/R(z ), where

R(x) = /Exp( xt t /2)dt R(x 1) is the un1var1ate M11ls' ratio. Since

P cgnta1ns only crossproduct terms, exp(-VPV'/2) is convex in each argument

and'the resulting approximation is a bound. Thus we have

R(a,M) > H [R(z )/ﬁﬁ~_] exp(-EPE'/2).

In the eva]uat1on4th1s bound is called BOUND.

Another approximation, which is a lower bound for n = 2 and which
appears to be a lower bound for n > 2 as well, is obtained from equation (2)
by integrating out one variable at a time. The result is

R(a ) = 1 [ R |

where
W=z
5 ), ‘
w, =2z + q E(w k =n-1, n-2, ..., 1
k k 12K ki

and q1J = my /Vﬁj1 59 , E(w) = -R'(w)/R(w) as before. In the evaluation
this approx1mat1on is called APPRO. For n = 2, APPRO is a Tower bound for

R(a,M) and
APPRO = (1-p%)max{R(z;)R[2,-0E(2;) 1, R(z,)RIz;-0E(2,) T}

Since APPRO depends on the order in which the variables are integrated out
there are n! different possible values. In the evaluation we considered
three possibilities: (1) integration of the variables in their natural
order, (2) integration of the variables in an order corresponding to the
value of z with the variable with the largest value of z being integrated
out first, (3) same as (2) except that it is the variable with the smallest
"z which is integrated out first. In the cases studied each of these values
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of APPRO was a lower bound, so it is possible that the maximum of the n!
possibilities is also a Tower bound. ‘It is also possible that an algorithm
which minimizes the maximum w or maximizes the minimum w would give w's

for which APPRO approximated the maximum of the n! possibilities reasonably
well.

Another bound can be derived from equation (2) by moving the exp(-zv')
factor over with exp(-vPv'/2). Then the expectation with respect to
independent normal random variables is restricted to (0,»). (Another
possibility, of course, is to move the exp(-vv'/2) factor and take the
expectation with respect to independent exbonentia] random variables, but
this would require A > 0.)

The function exp(-vPv'/2 - zv') is convex in each argument since P

has zero entries on the diagonal and we have
, n R
RGa.M) 2 (V2T )V exp|- /22 - £ EE
1 i T ior S5
J

where, as before, z; = Ai/vﬁii and qij = m, /;/m”mJJ In the evaluation
we have called this bound BDBDB. :

EVALUATION

The multivariate normal integral can be expressed as a single integral
of products of univariate normal integrals when there is a set of constants
bys bys -vs by such that p; = bibs. In that case X; = byY + J1-b% 7
where Y, Z], 22, cees Zn are i.i.d. N(0,1) and the X's are conditionalily
independent given Y = y. Letting G denote the standard normal distribution
function, it follows that

1

£ n —ag + by ‘A
P(X > a) = / I g —————— |G6'(y)dy .
o -l -I - bz ~

Hence, in this particular case, P(x_> a) ‘can be computed by standard
quadrature methods and for purposes of evaluating the approximations and
bounds, we considered only this special case. The exact Mills' ratio and

its approximations were computed for n = 2(2)20 and many combinations of

"{a} and {b} where the b's were chosen independently from a un1form dlstr1but1on
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on (-1,1) and the a's chosen independently so that a range of values of

P(X > a) were obtained. The results are summarized in Table 1.

Values of P(X > a), Mills' Ratio and Approximations BOUND,
APPRO, BDBDB and Savage for n =2, 4, 6, 10, 20

APPRO

SV —-0O0 O—~UI—~N NNOOW

TABLE 1.
Prob- Mills' BOUND

n ability Ratio Approx. %

2 .114391 .8910 .8793 1
.029434 .5327 .5060 5
.009851 .4368 .4368
.001028 .2529 .2460 2.
.000183 1.0942 1.0924 .

4 .104284 2.4349 1.6633 31.
.031878 1.2643 .9212 27.
.010031 .7684 .7572 1
.001031 .1943 .1921 1.
.000183 .0448 .0430 4.

6 .014542 3.0269 2.8439 6.
.005129 1.5196 1.2923 15.
.000981 .5455 .5066 7.
.000537 1777 .1690 4,
.(4)928 .0670 .0609 9.

10 .010030 83.86 25.41 69.
.003145  31.77 29.41 7.
.001042 3.983 3.342 16.
.000108 . 3352 .2610 22.
.(8)273 .2258 .2024 10.

20 .001334  149600. 42280. 7.
.000599 . 45660. 13580. 70.
.000304 10390. 3281. 68.
.{8)496 6089. 4764. 21.
.(4)210 405.3 143.3 64.

*Savage bounds not appropriate because A

DO WN R Y |

IA

Approx.

.8832
.5128
.4368
.2480
1.0934

p—)

.8696
.0194
. 7581
.1935
.0440

p—)

.9332
. 3587
.5290
L1725
.0642

[N RY

38.08
29.56.
3.715
.2884
.2160

58140.
18620.
4480.
5378.
198.4

0.

0.
3.

1.

23.
19.

o, —
ApOND POWO W —_
WO~NOO

—_

— N o
— OO —
O~NOYN —

51.

—~— W0 O N0

P WAN

NWOOoY—

L3

BDBDB
Approx.
.8716 2
.4922 7
. .2672 38
.2035 19
.2254 79
1.6632 31
.8113 35
.6238 18
.0939 51
017N 61
2.8534 5
1.0651 29
.3529 35
1133 36
.0254 62
17.03 79
25.49 19
2.369 40
1210 63
.1059 53
5471. 96
2230. 95
674.4 93
1628. 73
33.9 9

00N

— N WO~ VN OoON

—S O T oo

W U — W

SAVAGE .
Lower Bd. Upper Bd.
AN
-43.5 5.07
-13.3 1.86
-20.8 . 1.80
.033 414
* *
* *
* *
* *
-33.6 2.47
-16680. 5.98
-k *
* *
* *
* *
* *
* *
* *
* *
* *
* %*
* *
* *
* *
* *
* *

It is apparent that APPRO is, in general, é good approximation and

is the best of the three.

in general, a poor approximation.

are poor the few times they are appropriate, i.e., A > 0.

BOUND is almost as good as APPRO and BDBDB is,

Furthermore, the bounds given by Savage
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RANDOM MATRICES AND RANDOM DIFFERENCE EQUATIONS

. V. R. R. Uppuluri
Union Carbide Corporation Nuclear Division
Oak Ridge, Tennessee

In a discrete time model and a one-compartment
system, statistical distribution of the amount of a
substance after m independent trhails can be obtained.
Superimposition of rnandomness helps provide confidence
bands around the expectation cwwes. These Ldeas are
genenalized to multicompartment models with random
matrnices. In a mammillary system with special prob-
ability sthucturnes, closed forms for some distrnibutional
characteristics ane obtained. Model feasibility in
terms 04 parameterns introduced s studied in connection
with data on sthontium-90 retention.

INTRODUCTION

In this papef we discuss mathematical models leading to products of
random matrices and random difference equations. We introduce a one-
compartment model with random behavior and show how the average concen-
tration in the discrete time model converges to the exponential function.
These ideas are then generalized to two-compartment models and mammillary
systems, where products of random matrices appear in a natural way. It
is briefly mentioned how the products of random matrices appear in
applications in demography and control theory. Random sequences motivated
from the following problems are studied:

1) constant pulsing and random decay models,

2) random pulsing and constant decay models, and

3) random pulsing and random decay models.

We discuss some directions for future research in the following
topics: applications to genetic evolution, applications to record values,
applications to Ising models, random operators and random fixed point
theorems. ‘
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" ONE-COMPARTMENT MODEL

In blood-bone systems it is of interest to understand how radio-
activity gets trapped in the bone structure. As one possible approach,
stochastic compartmental analysis was developed. In this section we
develop a discrete time model and a one-compartment system with a valve -
that opens and closes at random. In later sections we extend these '
results to two-compartment models and mammillary systems.

In first order kinetic models, the concentration of a substance,

C(t), as a function of time is described by
dc(t)/dt = -x C(t) or C(t) = c(0) e~*t, (1)

For more details, see Jacquez (1972). We set up a stochastic phenomenon
governing the dynamic hehavior of the system and show that the average
concentration satisfies the above exponential model.

Let the time interval (O,t] be divided into m equal parts so that
AL o AM et Co

denote the concentration at m-At. Let Xm denote a seqdence of independent

t = m-At. For convenience let C(0) =1, a = e
identically distributed Bernoulli random variables with probabilities,
| PIX = 11=pand P[X =0]=1-p=a.
If Xm =‘1, Tet Cm = a me1 and if Xm =0 Tet Cp = Cm—1; or
Cp=aCo g %+ G 1(1-X,). ' ' (2)
Clearly, Ch takesyohe of the values of the set (1, a, ..., a™) and
P = a1 = (M oK™ k=0, 1,2, m (3)
The expected value of Cm is equal to
ElC,] = (a+a )™= (q+p MM, @
Taking limit of E[Cm]_as m > o, At > 0 such fhat m At > t, we obtain
1fm ELC ] = g_pAF. | | (5)

When p = 1, we have the result corresponding to the deterministic process.
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The superimposition‘of randomness on the valve helps us to study the
behavior of the concentration at time mAt in a more detailed manner. For
instance, if we know p, we can obtain the confidence limits on Cm.

. TWO-COMPARTMENT. ‘MODEL

Suppose we have two compartments of the same volume with a valve that -
can be opened or closed at will. Suppose there is provision for an inlet '
and an outlet through compartment 1 which will enable the concentration
(in compartment 1 only if the valve is open) to reduce by a factor of

AL a, in a time interval At.
1
> +H— >
2
C1m ' . .
Let Cm “lc *" 1 denote the vector of concentrations in compartments 1 and 2
2,m ' ’

at time mAt. Let Xm’denote a sequence of independent identica11y distributed
Bernoulli random variables with P[Xm =1] = p and P[Xm»= 0]=1-p=q.
If Xm =1, let

c. a
c - [(Cl,m—1 * G2
m

al> and
Cy 1t Comt)2

if Xm = 0, let
[C a
¢ o[ T ] o
.C2,m-1
— . a
c |8 ,m] [“31 -1 5 Coman 2 Gy a(]-xm)}
m a
-CZ,m (C1,m-1 * C2,m-1)7xm * C2,m-] (]'Xm)
a " a
N 2 *n 2 *m Cm-1
a : a
7% 1-0- ?Jxm 1% ,m1
= T Ciq=TnToqy - TGy (6)
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where

a a
’ 2 2 3 .- .. -
rj = a a = A] with probability p
2 2 ' :
- [a 0]. A with babili _
= = A with probability 1 - p = q.
0 1]
Note: A] A2 # A2 A1 and
a a
[ o i )
E[T] = (7
2 1-00-2p
. Special Case: p = %, Cg = [1,0], a = g At/m,
We can show that the limit as m - =, At - 0 such that m At = t,
Tim E[c,] [p] = x4 [l | (8)

Applications of this result to the retention of Strontium 85 (in dogs) is
discussed in the paper by Uppuluri and Bernard (1967).

MAMMILLARY SYSTEMS

Next, the two-compartment model with a random valve, introduced by
Uppuluri and Bernard, is extended to mammillary systems. (Each peripheral
compartment communicates with the stream. )

4

—H -
Stream

g
-

In each case of a j-compartment mammillary sysfem, we assume that

during a small interval of time At, exactly one of the peripheral compartments

is in communication with the stream. Symbolically we denote this by (E],
EZ’ cees Ej_]), and if the ith peripheral compartment is in communication
with the stream, let-E, = 1 and E, = 0 for i # ¢ (and 2 =1, 2, e j-1).
We may assign a probability P; to this event, so that Pyt ...t pj_1 =1

and Ey + ... ¢ Ej_1 = 1. At any time m At, if the ith
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is in communication with the stream, let us suppose that instantly the
amount in the stream and the ith peripheral compartment becomes

(@)
n

J-1
s,m J a(Cs,m—l +C

1
3 a(c

i,m-1

+ C

O
I

S,m-1 i,m—1) ?

and the amounts in the rest of the compartments remain the same as at time
(m-1)At. This may be written as '

T _ (G-, g1 j-1 j-1 a7

s | 71T TR T % o T | S
a a
d a
S-EZ 0 E-Ez + 1—E2 0

C. LS 0 0 Y. . +1-E .

-1 -1 : -1 -1 -1,m-1
LU R SR B S
or
Cm = Fm Cm-] : (9)

Special Case J = 3: E] =1, E2 0 or E] 0,‘E2 =1

: _ |28 2a - [2a 2a]
Fe{A]——3 3 0 or AZ-[——3— 0 3 }
a a
3 3 0 0 1 0 (10)
0 0 1 L%‘ 0 %

Further specializing to a = 1, we can get a complete description of the
sample space of Cm' And as m > »=, we can obtain the limiting concentration
vector to be (%,%,%); which is reasonable (when a = 1) in a three compart-
ment system, where the volume of the stream is equal to the volume of the

two peripheral compartments.
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MOMENT GENERATING FUNCTIONS

Next, we obtain the functional equation satisfied by the moment
generating function. Let 1' = (ts’t1’t2""’tj-1)’ and ¢ _(t') denote
the moment generating function of the concentration vector Cm’ and E

denote the expectation operator.

o 3=
¢m(T ) = E exp(t Cm) = E exp{kT gg% EiAi)Cm—1} |
il
= E exp'{iz%.(Ei T Ai)cm-1} . (11)
Invoking the principle of independence, we obtain
. i
on(T') = éé% p; E exp(t’ AC )
i=1 ‘
= 24 Pi ot (T'Ai), m=1,2.c.. (12)
]-_-
where
¢0(T') = exp(T'CO) and CO is the vector of initial amounts in

the j compartments.

FIRST MOMENTS

The 'mean' amount at the mth stége is given by
fi=1 . m ,
up = E(C) = Z] PiA; Mo g = ML Cos m= 1,2, (13)
i=
where
-1 .
M= 2; piAi . (18)
1=1 .
COVARIANCES A -

For the covariance (uncorrected) matrix Q, of the amounts in the

th

system at the m~ stage, we have
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2 ]

L
3
n

E[c C']1=E[TC CrqT']

R SR
ELC 20 BiAy) G Goy (fZ% EiA; )]
'l— . N ]:

1 , |
] p.iA_iQm_-IA.i ’ m= ],2--- (]5)

]:
where - 'QO = Colp -
OTHER MODELS

Different models can be considered by changing the connectivity of
the system, or the complex of communication, and/or the probability

" structure associated with the connecting valves. More details can be

found in the paper by Bernard, Shenton and Uppuluri (1967).
APPLICATIONS IN DEMOGRAPHY AND CONTROL THEORY

Products of random matrices were used by Sykes (1967) and Pollard (1966)
in stochastic population models. In order to compute the covariances,
Pollard invoked the concept of the direct producf of -matrices. Grenander (1968)
has shown how products of random matrices arise when one solves a second

“order linear differential equation

2
dX + a%(t) x(t) = 6 (16)
dt

where a(t) is a discrete stochastic process. In the study of the stability
of random linear systems, Bharucha (1962) considered the linear differential

system
x(t) = A x(t), for t,_; St<t, k=1, (17)

where x{(t) is an N x 1 vector, andAk a random N x N matrix. For this

model, the jth moment convergence and almost sure convergence of the .

sequence'{x(tk)} js studicd; this involves products of randem matrices.

CONSTANT PULSING AND RANDOM DECAY MODELS

In this section we study the random sequences defined by

Y= 1+ X Y an=1,2, ., | (18)
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with Y0 =1 and'{Xn} is a sequence of random variables. In a discrete
time model, Yn may refer to the amount of the substance at time nat;
X, denotes the random factor by which the amount at (n-1) At is reduced .
during the interval of time At and 1 and is the constant amount which is
added to the system during At. This may be referred to as a constant

.
pulsing random decay model. ‘It is of interest to know the weakest
assumptions on'{Xn} such that the distributional properties and moments -
of Yn converge. Such results are discussed in the paper by Uppuluri,
Shenton and Feder (1967). We state below a few typical results without
proofs.
Theorem 1: Let YO =1, Yn =1+ Xn Yn—1’ n=1,2, ...,
and '{Xn} be a sequence of independent identically distributed
random variables. )
Then

P[Xn =1]=p=1- P[Xn = 0] if and only if

PIY_ =kl = (1-p) p*, k=1,2, ... . (19)
Theorem 2: Let'{Xn} be a sequence of independent identically distributed
| random variables, Y0 =1, and Yn =1+ Xn'Yn-l’ n=1, 2, ..
Let

PIX = 11=p, P[X, =al=1-p, 0%a <1,

. tYn

3,(t) = E[e "]

Then ' K
o0 ta
o(t) = 1im o (t) = 1 {l=le
N k=0 1fpeta
and -
_ k
Y.= L a Zk’
k=0
where Zk are independent identica]]y distributed random variables with
= ml = m =
P[Zk =m]=(-p)p,m=0,1,2, ... -
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Theorem 3: Under the hypothesis of theorem 2, we have the following type
of central 1imit‘theorem: |

. Y -E(Y)
Tim o Vel < 4]
a1 Py - X = v

We have a more general

et /2 dt.

é.\.x
N

Theorem 4:: Let Y =1+ X Y 4,
dent identically distributed non-negative random variables. Then E(Xn ) <1

Yo =1 and {X .} be a sequence of indepen-

implies that Y converges in distribution to a random variable Y_ and

E(Y ) converges to E(Y ). Furthermore, if X is either a discrete or a
cont1nuous variable with E(XJ) <1,3=1,2, ..., m, then E(Yg) converges
to E(Yi), i=1,2, ..., m In general, we have only convergence in
distribution, but no convergence in probability of the sequence Yn'

The Timiting moments can be calculated by the recursive relationship
. E(Yd) = E[O+x v )31, | (20)

the 1imit distribution function F(x) PLY, S x] satisfies the functional
equation ' '

F(x+1) = f'F(x/t) dG(t), where G(t) = PLX St]. (21)
. V

In a sense, our results establish the existence of unique solutions for
integral equations of special type, by using probabilistic methods.

RANDOM PULSING AND CONSTANT DECAY MODELS

This model is defined by

Y

Yo =0, and 1> >0, (22)

Wo+poY sn=1,2, ...,

and'{wn} is a sequence of independent identically distributed random variables.
This is often used as an econometric model, and is referred to as an auto-
regressive scheme. We used the recursivé methods developed by us to study

the behavior of this sequence. More details may be found in Uppuluri,

Feder and Shenton (1967). We shall present here a few results.
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Theorem 5: If IE(w )| < =, then Y converges in distribution to a random
variable Y_ and E(Y ) converges to E(Y ). Furthermore, if IE(WJ)I < o,

then E(YJ) converges. to E(YJ) j=1,2, ..., m.
r
Theorem 6: If Var(wn) = 02 < », then (1/r) © Y converges in mean square
(as r » =) to E(W)/(1-p). o=} &
. r .
Theorem 7: If E(wﬁ) < o, then (1/r) I Yd Yr—a converges in mean square

. =i+]
(as r » ) to E(2)pl/(1-0)2. i

Let us consider the special case
= 1/k and P[w =3j]l=1/k; j=0,1% 2, ..., (k-1). Then we have
Theorem 8: Y =W = oW

n n n- gt
where P[Y < y] = y/k, for 05ys k

.+ n ]w] converges in distribution to Y_

Conversely, if p = 1/k, and Yn converges in distribution to Y_ where
PLY, s y] = y/k for 0 Sy £ k, then
W =0,1,2, ..., (k-1), each with probability 1/k.

RANDOM PULSING AND RANDOM DECAY MODELS

In this section, we consider the random difference equation

YosU +V Y g, n=1,2, (23)

Y = ] and‘{(U s )} is a sequence of mutually independent random variables
w1th common d1str1but1on Glu, v) = P[U1 < u, V] < v], and Uy and V have

‘marginal distributions G](u) and G2(v) respectively. Let F (y) = P[Y y].

Such random difference equations arise in the study of mathematical
models, where some substance is introduced into the system in random
quantities, and the system periodically eliminates a random proportion of
the substance available during a time interval. We are interested in the
study of the behavior of the amount of the substance in the system after
; a "long" period of time. The mathematical aspects of this problem are
considered in Paulson and Uppuluri (1972). We will present some results ~
below.
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Theorem 9: If for some o > 0, E|U1|a < o, E|V]|“ < 1, then there exists
a distribution F(y) such that F (y) converges to F(y) at every point of
continuity of F( ).

Corollary: There exists a unique solution ¢(t) of the characteristic
functional equation

o(t) = E[e'tY o(vt)] | (28)

where ¢(t) is the characteristic function associated with the distribution
F( ); and the expectation is relative to the measure induced by G(u, v).

In the special case‘{Un} and'{Vn} are mutually independent sequences
with common distribution functions G](u) and Gz(v) respectively; we have

o(t) = ¥(t) E[o(Vt)] ' (25)

itU
has a unique solution ¢(t), where ¥(t) = E[e ]] and E[¢(Vt)] is with

respect to the distribution Gz(v).

In some special cases, we get some interesting mathematical results.
For example, we have

Theorem 10: The solution ¢(t) of the equation
o(t) = w(t) E[o(Vt)]

is the characteristic function of the geometric djstribution, if, and only.
if ¥(t) is the characteristic function of a geometric distribution and
G(v) is such that P[V=0]=p=1-P[V=1] for 0 <p = 1.

DIRECTIONS FOR FURTHER RESEARCH

Some of the results discussed earlier can be extended in several
directions. Some of these results were extended to the vector case by
Paulson and Uppuluri. The distributions of the pulsing mechanisms can
be parametrized, and methods can be developed to do statistical inference
on these parameters. Some of the results could be extended to higher order
random difference equations.

APPLICATION OF GENETICS

Random difference equations with additive and multiplicative structures
were set up as mathematical models for the study of cultural inheritance by

67



Cavalli-Sforza and Peldman (1973). Only the behavior of the first two
moments in such sequences were used in the interpretations. There is a
need to study the behavior of these sequences in the context of cultural
inheritance.

APPLICATIONS TO RECORD VALUES

Certain mathematical aspects of the sequences with additive and
multiplicative structures were also studied recently by Vervaat (1974),
in the context of record values and inter-record times. Vervaat gives
certain sufficient conditions in order that the sequence may converge in
distribution. There is a need to study'the qualitative nature of these
sufficient conditions and those of Paulson and Uppuluri (1972), and
attempt to find necessary and sufficient conditions for the convergence
of these sequences. In the same spirit one should study Kesten (1973)
and Solomon (1975).

MORE GENERAL SCHEMES AND ISING MODELS

Bellman, Soong and Vasudevan (1972) studied the asymptotic behavior
of sequences of the form

Xn+'l = g(an r‘n) (26)

where x s a N-dimensional state vector and the vector sequence'{fn}
is assumed to constitute a time homogeneous simple Markov process. As$ an
appljcation of their approach, they studied the behavior of the partitiun
function QN of an Ising model as the number of spins N becomes large.
They indicated that their approach is promising to the study of higher
dimensional Ising models and said that they would discuss the results
e]sewhere:"Indeed, it will be very exciting to see the teéhniques and
resu1ts,bf random difference equations used in getting a better under-

standing of the higher dimensional Ising models.

RANDOM MATRICES

As é matter of fact, in the one dimensional Ising model with random
impurities; .the results of Furstenberg (1963) were used by McCoy and Wu (1973)
to compyté'the free energy (in the thermodynamic 1imit) in the absence of

FERYEY
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a magnetic field. McCoy and Wu indicated that all aspects of the random
Ising model have not been carefully studied.

~ In 1970, Hammersley and Menon (1970) discussed the classical unsolved

problem of solid-state chemistry, which goes under the name of the monomer-
dimer problem. While discussing about random determinants, on page 348,
they say:

"Some sort of limit .theory for random matrices or random

determinants, and especially products of random matrices,

would be useful here; but the literature (Mehta [15]) seems

virtually silent on the subject; the nearest approach

(Furstenberg and Kesten [7]) is not applicable since our

random matrix contains zeros; and, even if it were applicable,

it would only assert the existence of a limit, rather than

help in evaluating the Timit."
There is a need to study the monomer-dimer problem in view of some of

the recent work on products of random matrices.

For a beautiful expository article on random matrices in physics,
refer to Wigner (1967). At the end of the article, he enumerates a
number of general questions and hopes that the mathematicians will help -
to clear up some of them. For the mathematical aspects of random
operators, refer to the survey article by Pastur (1973).

RANDOM FIXED POINT THEOREMS

While studying the ergodic behavior of the 1og norms of products of
random matrices, Grenander (1968), on page 163, invokes a stochastic
version of the Banach Fixed Point Theorem. Kalman (1962) invokes the
Brouwer fixed point theorem in order to establish the convergence of
the second moments of products of random matrices. Kesten (1973) invokes
the Shauder-Tychonoff fixed point theorem, while establishing a result
about the limiting behavior of the norm of products of random matrices.

~ The theory of random fixed point theorems is not well developed.
The best known result seems to be due to Krasnoselskii, mentioned by
Bharucha-Reid (1972). It should be very illuminating to prove the
existence of solutions of functional equations that arose in the study
of random sequences of this paper, through the corresponding random fixed
point theorems. '
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SIMULATION BOUNDS FOR SYSTEM AVAILABILITY

G.L. Tietjen
R.A. Waller
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

System availability is a dominant factor in the prac-
ticality of nuclear power electrical generating plants. A
proposed model fon obtaining eithern Lowern bounds orn interval
estimates on availability uses observed data on n failure-
to-nepain cycles of the system to estimate the parameterns
in the tilme-to-faillure and time-to-repairn models. These
estimates ane then used in simulating fallure/repair cycles
of the system. The availability estimate is obtained for
each of 5000 samples of n faillunre/repain cycles fo gorm a
distrnibution of estimates. Specific percentile points of
those simulated distrnibutions are selected as Lower simula-
tion bounds on simulation interval bounds forn the system
availability. The method is {Llustrated with operational
data §rom two nuclean plants forn which an exponential time-
to-fallure and a Lognosmal time-to-repair are assumed.

INTRODUCTION AND DEFINITIONS

A useful measure of the performance of a large system is availability. .
We define the avai]abi1ity of a system to be the probability of successful
operation. In that sense we may speak of either "successful operation

at some time t" or "successful operation over a long interval of t." We
refer to the availability at time t as a point or transient availability;
whereas, the availability over a long operating period is called steady-

state or inherent or long-run availability. This papér presents a method
which may be used to generate simulation bounds for either point or steady-
state availability under specific distributional assumptions. However,

the examples preésented are restricted to a study of the steady-state
availability alane.

For illustration we suppose a nuclear power plant is placed in service
and that its performance is followed through n failure/repair cycles. We
use Xy, Xo5 ...s X and Yy, Y,, ..., Y, to denote the observed times-to-
failure and times-to-repair during the observation period. Further, we
assume that the X's and Y's are mutually independent random variables such
that Xi’ i=1, 2, ..., n has an exponential density
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f(x) = Xexp(-Ax), x > 0 | (1)

and that Y:» i=15 2, ..., n has a Tognormal density

) = T e e {dfeny - st yo0 @

STEADY-STATE AVAILABILITY

Using the definition of steady-state availability given by Gray and
Lewis (1967), Gray and Schucany (1969), Neison (1970), and others, we have

A

ux/(”x+”y) - )\_1/“—1 + eXp(oc+82/2)] =1+ kexp(a+82/2)]F] (3)

in which 1, E(X) is the mean time-to-failure and u;, = E(Y) is the mean
time-to-repair, Gray and Lewis (1967) and Gray and Schucany (1969) have
presented methods for obtaining confidence intervals and bounds for A, but
their work assumes that the variance 82 is known. To avoid the restriction
of known 82 we present an ad hoc methodology for using observed data and
computer simulation to derive simulation intervals and bounds for A. The
simulation results for A are compared with confidence intervals provided

by the Gray and Lewis (1967) method to study the usefulness of the proposed
“methodology.

METHODOLOGY FOR SIMULATION BOUNDS

We notice that A is a function of the three parameters A, d, and 8.
Thus, we can obtain an estimatgr of A, say ﬁ, by substituting estimators
of A, a, and B,'say i, &, and 8, into equation (3). The maximum 1ikelihood
estimators are:

A

i

=
IV

e

Q
f

(1/n)i;2n yi,. ’ (4)

a

A n ~
g (1/n) Y (en Y -a)z
1

By substituting those estimators into equation (3), we obtain the maximum
likelihood estimator of A.
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‘To develop simulation intervals for A we proceed as follows:

Step-1:  Use the observed times-to-failure, X{s Xos «ees Xos and Ehe
gbserved times-to-repair, Y], Y2, cees Yn’ to calculate A.
a and,B2 as defined in equation (4).
Step 2: Use X as A in equation (1) to generate a simulated sample
' of n exponent1a1 t1mes to-failure, X s1° st, cees Xsn' Use
a and 82 as o and B in equation (2) to generate a simulated
. sample of n lognormal times-toérepair, s1° 52, cees Y;n.
‘Step 3: Use the s1mu1ated data 1n Step 2 to evaluate parameter
estimators, AS, as, and B by equation (4). The subscript
s indicates simulated data

h Step 4: Evaluate
= [1 + Aexplagt 8.%/2)]7"

Step 5: Repeat Steps 2, 3 and 4 5000 times. to simulate a distribution
of A.

Step 6:  Determine the (1 - v)% simulation intervals for A by using
the (y/2) and (1 - v/2) percent11e values of the simulated
distribution of A

The examples in the next section 111ustrate the proposed methodology.
EXAMPLES

The United States Atomic Energy Commission document WASH 1203-73 (1973)
provides graphical histories for the performance of nuclear-powered '
electrical generating plants operating in the United States. The data used
in the two following ekamp]es are the histories of two such power plants.

In the examples, x denotes the 1th time-to-failure and y denotes the'ith

time-to-repair.
EXAMPLE 1

The data in Table 1 are the times-to-failure and times-to-repair
measured in years for n=19 failure/repair cycles observed for the Yankee
Nuclear Power Plant in Rowe, Massachusetts during operation from December 1960
to May 1973, For these data n=19, 2x; = 9.603, 2tn y; = -52.744, and
2.(2n Y; - a)2 = 18.251. Therefore,
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TABLE 1. Times-to-Failure (x].) and Times-to-Repair (y;) for
19 Failure/Repair Cycles of the Yankee Nuclear Power Plant

+ X Vi
1 0.063 0.027
2 0.055 10.038
3 0.296 0.014
4 0.170 0.036
5 0.822 0.345
6 0.948 0.197
7 0.715 0.096
'8 10.923 0.255
.9 0.899 0.090
10 0.332 0.033
n 0.304 0.049
12 0.658 0.107
13 0.523 0.019
14 0.712 0.148
15 0.485 0.022
16 0.397 0.030
17 0.145 0.101
18 0.912 0.019
19 - 0.244 0.260

Total 9.603 1.886
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19/9.603 = 1.979
-52.744/19 = -2.776 ' - (5)
18.251/19 = 0.961

N >>>
]

B~
Therefore, the maximum likelihood estimate of A as given by the evaluation
of equation (3) is
= (1 + 1.979exp(~2.776 + 0.961/2)]") = 0.834

For comparative purposes we can consider another estimator of A to be
the ratio of the "successful operating time" to "total time." That is,

N

n
Z: §: (x;+y;) = 9.603/11.489 = 0.836 A (6)
: 1 - *

We observe that the estimates A and X are very nearly equal.

-Some selected percentile values for the simulated distributions of A
n
and A as given in Table 2 were determined by the simulation method outlined
earlier.

~ N
TABLE 2. Simulation Percentile Values for A and A

Statistic P = 0.025 0.050 0.500 0.950 0.975
A | 0.716 0.734 0.834 0.899 0.909
"
A

0.711 ~ 0.734 0.836 0.901 0.910

From Table 2 we find that 90% simulation interval for A is either

0.734
0.734

90% SI
or 90% SI

A £ 0.899 ' © (based on A)
A = 0.901 (based on A).
) _

ES
<

WA

= 0.961 is a known value (rather
‘than estimated as in equation (5)) and use interpolation and extrapolation
for the tables in Gray and Lewis (1967) to find that a 90% CI for A is

For comparison, we can assume that B

0.748 = A £ 0.894.

Thus, there is close agreement between the simulation bounds and the con-
fidence intervals based on the estimated variance, 82.

We can use Table 2 to set other level simulation intervals and/or Tlower
bounds for A.
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EXAMPLE 2

The data in~Tab1e:3 are the times-to-failure and times-to-repair
measured in years for 18 failure/repair cycles observed for the operation
of the Humboldt Bay Power Plant, Unit No. 3, Eureké, California, from
October 1963 to December 1974. For these data n = 18, z:xi = 10.055,
'23 gy, = -49.729, and 2. (2n Yi - )2 = 10.496. Therefore,

X = 18/10.055 = 1.790
o = -49.729/18 = -2.763 (7)
82 = 10.496/18 = 0.583

The maximum-1likelihood steady-state availability estimate as given by
the evaluation of equation (3) is

A= [1+1.790 exp(-2.763 + 0.583/2)]"" = 0.869:
Further,
X = 10.055/11.526 = 0.872.

Again, the values of A and X are in close agreement.

Table 4 presents some selected percentile values for the simulated
~ o, "
distributions of A and A.
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. Statistic P

=2 >

Total

TABLE 3. Times-to-Failure (x ) and Times-to-Repair (y )
| . for 18 Fa1]ure/Repa1r Cyc]es of the Humbo]dt ‘
Bay Power Plant, Un1t No. 3
B il i
1 0.523 0.060
2 0.175 0.038
3 0.537 0.074
4 1.019 0.197
5 0.121 0.016
6 0.827 --0.088
7 0.271 0.016
8 0.499 0.066
9 0.940 0.058
10 0.466 , 0.099
11 0.742 0.060
12 0.189 0.058
13 0.422 0.016
14 0.389 0.222
15 1.000 0.118
16 0.003 (0.047
17 0.855 0.085
18 1.077 . 0.153

10.055 1.471

TABLE 4. Percentile Values for S1mu1ated

DPistributions of A and A

0.025 0.050 0.500 0.950
0.779 0.796 0.868 0.915
0.780 0.797 0.868 0.915
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From Table 4 we find

90% SI.= 0.796 = A = 0.915 ~ (based on A)
’ 4V
and 90% SI = 0./97 = A £ 0.915 | (based on A).
By using'B? = 0.583 as a known value the Gray and Lewis (1967) con-

fidence interval procedure gives (with interpolation and extrapolation)

90% CI = 0.778= A < 0.901.

EVALUATION OF THE SIMULATION PROCEDURE

To study the sampling behavior of the simulation procedure and to
investigate a "confidence" level for simulation intervals, we assumed. that
A, o, and 82 were known' to be equal to the estimates provided by the data
in the preceding examples. For Example 1, we set A= 1.979, o= -2.776
and 82 = 0.961. Then the true availability is A = 0.834. Next we generated
1000 samples of nineteen failure/repair cycles. Each of these 1000 samples
provided estimates of A, a, and 82 which were used to determine a 95% simu-
lation interval for A. The interval was determined by the method outlined
earlier except that each interval was based on 100 rather than 5000 esti-
mates of A. The results showed that 94.2% of the s1mu1at1on intervals based
on A and 94% of the simulation intervals based on A included the true value
of A = 9.834. As a second study we followed the above plan to generate
100 95% simulation intervals where each interval was based on 1000 simulated
samp]es Here we observed that 97% of the 95%-s1mu1at1on intervals for
both A and A 1nc1uded A= O 834. ‘

For Example 2, we repeated the above study based on 18 fa11ure/repa1r
cycles, when X = 1.790, a = -2.763, 82 0.583. The "conf1degces based
on 1000 samp]es of 100 95%-simulation intervals were 95% for A and
94.5% for A. Similarly, the "confidences" based on 100 samples of
1000 95%-simulation intervals were 95% for both A and A

Thus, it seems that the simulation intervals are exhibiting confidence
levels which are nearly equal to the difference in percentiles used in
their computation.
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* CONCLUSIONS

The simulation procedure propoéed here is sfmp]e.to dse.énd requires
about 10 seconds of computer time (CDC 6600) to provide any desired per-
centiles of the simulated distribution of R. Further, any brief investi-
gation of the confidence Tevel of the procedure indicates that it performs
very well. These facts along with the fact that we do not need to assume
knowledge of any parameters in the models provide strong support for the
procedure.

The proposed procedure may be used to find intervals or bounds for
transient availability so long as an expression for A(t) is available.
The development in Chapter 7 (p. 192) of Barlow and Proschan (1975) can
bé used to obtain A(t). Subsequent studies are planned for this area of
availability estimation.
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RADIOCHEMICAL SPECTRAL ANALYSIS BY MAXIMUM LIKELIHOOD .

W. L. Nicholson
D. L..Stevens, Jr.

Battelle Pacific Northwest Laboratories
Richland, Washington

Maximum Likelihood estimation provides a superion
alternative to weighted Least squares forn Low count
situations. This approach extracts information grom both
sample and background to estimate background Level in each
enengy bin. Congidence intervals forn individual nuclide
estimates can be constructed grom Likelihood contourns. 1§
the precision of the standard spectra 48 of the same order
as that of the gnross sample, maximum Likelihood can model
the nandomness in standarnds and include this additional
varniability in standarnd deviation estimates and confidence
intervals fon individual nadionuclides.

INTRODUCTION

The fitting of a linear combination of energy spectral shapes for
radioactive decay of pure radionuclides to a net sample energy spectrum is
a classical method in quantitative radiochemistry. Weighted least squares
is the usual estimation procedure for resolution of the pure nuclides in
the sample mixture. Many researchers use this technique to resolve mix-
tures of gamma-ray emitting radionuclides from pulse-height distributions
co]]ected in either sodium iodide or lithium-drifted germanium detectors.
While not extensively reported in the literature, the technique is equally
valid for any energy spectrum recorded as a frequency histogram of radio-
activity-generated events versus energy. An example is isotopic resolution
of noble gases by liquid scintillation spectroscopy as done by Horrocks
and Studier (1964). Here, alpha particles, conversion electrons and beta
particles, as well as gamma rays, can contribute to the spectrum. Turkevich,
et al., (1967) determine the chemical composition of the lunar surface at
the Surveyor V site by weighted least squares analysis of backward-scattered
alpha particle and proton spectra. The common ingredient of such radio-
chemical experiments is that the total number of events in a specified eneragy
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range during a fixed time interval follows the Poisson distribution probability
law.* Further, since each event is sensed by a detection system with a con-
stant efficiency, the number of counts, or recorded events in a fixed time
period, also follows a Poisson distribution probability law.

In a sample spectrum of many energy bins, the number of counts per energy
bin may vary over several orders of magnitude. The variance of the Poisson '
distribution is equal to the mean. Hence, by the Gauss-Markov theorem (Rao,
1965), any near efficient least squares procedure must weight individual
net counts as approximately inversely proportional to their variance, which
is a linear combination of gross sample and background means. In practice,
weights are estimated directly from gross sample and background spectra counts.
Slavinskas, et al., (1966) consider alternative ways of determining weights.
Only for low count situations are results highly dependent on the weighting
scheme. When all counts are reasonab]y large, inferences can be based on
asymptotic normal distribution theory. Pasternack and Liuzzi (1966) show
that this asymptotic theory is good enough for residual analysis and use
chi-square and von Neumann ratio (1941) statistics to measure lack of fit.

With few counts in an energy bin of gross sample and background spectra
the weight is poorly determined. This situation is typical of Tow-level
radiochemical analysis at the threshold of detection. Now weighted least
squares estimation may give anomalous results. Weights may emphasize the
wrong portion of the spectrum. Also, with incorrect weights, standard
deviation estimates are poor. Maximum likelihood estimation is an attractive
alternative for low count situations. Even for a zero or one count, maximum
likelihood extracts the information in gross sample and background spectra.
In the weighted least squares analysis, the background spectrum alone is
used td estimate background and a net sample spectrum is obtained by sub-
traction. The maximum likelihood approach uses the information in both
sample and background to estimate the background level in each energy bin.
Confidence intervals for individual nuclide estimates can be constructed
from 1ikelihood contours. This is superior to the weighted Teast squares

*If the event is radioactive decay, the half-life of the nuclide is assumed
long compared to the length of the time period of observation, for otherwise
the correct probability law would be the binomial.
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asymptotic normal theory approach. The non-negativeness of each nuclide
constraint is handled naturally by maximization over the feasible set of
parameter values (i.e., all components non-negative) with likelihood contours
simi]ar1y constrained.

1

In most practical situations the standard spectra are known to a much
greater precision than either sample or background. However, if the’pre-
cision of the standards is of the same order as that of the gross sample,
maximum likelihood can model the randomness in standards and include this
additional variability in standard deviation estimates and confidence
%ntervals for individual radionuclides.

In the next section the radiochemical spectral analysis problem is
expresséd mathematically. Maximum likelihood estimates are derived for the
two situations of standard spectra well-known and standard spectra imprecise.
Next, the maximum 1ikelihood method is applied to.the separation of radio-
jodine isotopes by neutron activation. Here, both sample and standards are
very low level. In the maximum 1ikelihood solutions, the standards are
assumed to be estimates. '

DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATES

Let Yi denote the gross sample counts in the jth energy bin, i = 1,

_ T
2, ..., q, and let Y = (Y], Yoo «ovs Yq) .

be a linear combination of a background spectrum y and p standard spectra

The mean of Y is assumed to

X-I, X2, es ey Xp!
E[Y] = v + 2_x.8.
j JJ
=y + X8
where '
| Y = (yps s 1)
1 q .
X3 = (x]j, cees qu)
Xp7 ee x]p
X =
Xq'l e & & xqp
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and
. T
8 - (813 s ey Bp) .

Thus, Bj Z:xij is the.totél'count attributed to the jth nuclide.
i

Let Z, denote the background counts in the it" energy bin, and let K
be the ratio of the background counting time to the sample counting time,

so that

g E[Z'i] = KoY'i .
or, for Z = (Z], Cees Zq)
E[Z] = Koy.

STANDARD SPECTRA KNOWN -

In-most practical situations the .standard spectra are determined to-a
much greater-precision than either sampie or background. If this is the
case, the X matrix is treated as known. The situation in which the X matrix
is also to be estimated will be discussed later.

The variables Yi and Zi are mutually independent Poisson Variab]es,
so the log likelihood function is

LY.ZI8Y) = ZIZgan(Koyy) + Yaantceryg) - (K#hyg - x'81 + F(Y.2)
q .

).

.. ) 1‘ _ N
where X = (xi], *12’ cees xip

Taking partial derivatives and equating to zero yields the 1ikelihood equations:

Z. Y. " :
STt - (K1) = 0 | (1)
1 ‘ 1 X R+Y1 | = ], 2, cees 4 .
N ‘ Yixi' S : ' -
36, ° 2\ T xij) =0 ' (2)
J Q \x Btyy -
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i

By defining | _

W= diag(x]B+y], x28+Y2, s xq3+yq) (3)
equations (2) can be written as |
e | (4)
Equatiohs (4) are in the form of the normal equations for weighted least

squares, with the exception that the weighting matrix W is a function of the
parameter vector 8.

W (v=y) = X"

By clearing equations (1) of fractions and collecting terms with like
powers of \fE \

2 i ' i, _
(Ko+1 )Yi + [(Ko+'l)x B - Y- Z1.]y1. - Zix g8 =0 (5)
i=1,2, ..., q.

These can be solved for i conditional on an estimate of 8, by using the
quadratic formula. Asymptotic theory indicates that the positive radical
should be used. |

Equations (3), (4), and (5) constitute the basis for an algorithm for
the solution to the likelihood equations. The algorithm has the form

Vi = hax(Yi,.1)

W(O) = diag(vi, cees Vq)

¥(0) = (1/K, 7)

B0 = DXG-D T N1 D e 3 '

W Yy Z - (KB +j[v1.+z1-(|<of1)x"'§(k)]2 +»4(|<0+1)z1.x‘“s‘(k)}”2
¥4 (k) = 2(K_+1) |

. i=1, 2, cees Q3 A o
W) = diaglx'B00) + ¥ (0, .y XK + ¥ (0,

for k=1, 2, ...
) Then the maximum likelihood estimates are

A

y = 1im y(k)
k > o«

and é = 1im aKk).
k »
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'Algorithms of this form are known to converge provided the.ihitia1
estimates are "reasonably" accurate-and the functions involved are
"reasonably" well behaved. A convergence proof for this-particular problem
is difficult because of the number of parameters involved; however, in all
cases tried, convergence has been rapid.

: For.ek, k =1, 2, a vector of,paraheters, define

| T
5(878,) = E[(%)(g_gz) ]

Then trom maximum likelihood theory (e.g., Wilks, 1962, p. 380) the asymptotjc
covariance matrix of the estimates is

A S(,8) 1 S(B.y)\ "
V= Cov(g) | eememee 4f -------

Y S(v,y)
Yeg 1 Vay
=] - .{ _______
]
I
VYB : VYY

Since the primary interest is in the estimated coefficients B and
their associated covariance VBB’ only the matrix VBB is found. By partitioning

v as indicated, it follows that |
Voo = [S(8:8) - S(B,Y)S(Y,v)'7s(v,e)]']}
Define “ ) ' \
uy = ELV ] = vyt x'8 |
M= diag(uys ups -ees 1)
and r = diag(y], Yos «vvs Yq).

Then, from the Poisson étructure of Y and Z,

S(8.8) = XM X
S(8,y) = XM = s(y,8)
S(y>y) = W+ kT
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1 1

x]™!

ey Tyl Tyl =ty =141 -
and Vgg = [X'M7IX = XM (MK I M

T -1,9-1
Ix KO(KOM+F) X]

Ty =Tyy -1
= (XW7'X)
where wo =M+ (1/KO)F;
The maximum likelihood estimate of the asymptotic covariance VBB is
N B T/\ -] .
YBB = (X WOX) with
Wy =M+ (1/K0)P.

The """ notation M and T indicates substitution of Y4 and B in the definition
of My Mand T.

STANDARD SPECTRA TO BE ESTIMATED

If the precision of the standard spectra is approximately the same as
that of the gross sample, this additional variability should be included
in standard deviation estimates. Let Y and Z be as before, and let S
the gross count in the ith energy bin for the jth

J=1, ..., p. Then

i be
standard, 1 = 1, cees Q3

where Kj is the ratio of counting time for the jth standard to the sample
counting time. Let

... S
ql qp

The log likelihood function is
Q'(Y:Z’S!B9Y9 S)

- i ~
= ; {Yizn(x B+Y1~) + JZSijzn[Kj(xij+yi)] + Zizn(Koyi)

i
- xig - %:xij - (% KJ.+K0+1)Y1.} + F(Y,2,5)
J
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and the likelihood equat1ons are

Y =1, 2, veu 5 Ps (6)
985 22 {x — } | .

Z

j

S. . ,
L ‘ J4 Ti - - (Bj+Kj) = 0, (8)

i=1,2, ... » Q,
j=1, 2, cee s Do

Equations (6) are the same as equations (3) and can be written in the
form of normal equations:

T,

X (v=y) = xTw ' xs.

By summing equations (8) over j and subtracting equations (7), there results
a set of quadratic equations in ' ‘

232.__3L= K/+'|-EP, --Z-J—-!(-Zﬁi—])i= 0 (10)
p Dx'ij D"v'.i Y 3 ooy X1B+Yi
1 = ], 2’ 9 q

or

2 i
(|(0+'|-§Bj)y_i + [(Ko'ﬂ-z\]}j)x g+ (ELBj‘])Yi"Zi]Yi

- Z'|X1B = 0, i=1,2, ..., 9. | ' (]])

By solving equations (10) for X1B+Y1 and substituting the result into
equations (8), there results, after some algebra,

S..

B} i] - v
i~ Ko - LIi\ 1 e
Ki + Bf ——=— i=1,2,...,0q;
M W DL i=1,2, . P.
r
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7

Equations (9), (11), and (12) are the basis for an algorithm for the solution
of the likelihood equation. The algorithm has the form

;i = max(Yi, 1)
;(O) = diag(Y], cee s Yq)
Y(0) = /K, Z
" S.. ,‘J
Y = DRk1NCk1) X1 T KT (k1) VY (1)
AGES [Y1(1-Ej§j(k)) +1; - (Ko+1-2:%j(k))%‘(k-])%(k)
+{04u£§4m>+q-w;vi}gm)kwwqﬂwﬁz,
J . J
* alH-TH 0 2K GeDROF 20k, -Ty 1),
i=1, ... 5 Qs
a S'ij n
X]J(k) = K -Z/’\Yv(k) -Y'i(k)’
K. + 8. (k) 22—
IR (K
r
1'=], .,q;j=]a---9p;

k) = diagl¥ (08K, (K), .

and
for k=1, 2, ... .
§ =
X =
and A
B:

' N
- X8O+ (K],
Then the maximum 1ikelihood estimates are
. n,
1im ¥(k)

k » o
n,

1im X(k)

k > o

Tim §(k).

k + e
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The asymptotic covariance matrix of the estimates is

s(8,8)  S(8.v)
y
cod*1) = v = | S(vs8) S(vsv)
P S(X,8) S(X,v)
X
p
Veg Yoy
Ve Vyy
As before, the primary interest is in VBB
partitioning:
Vgg =[5(8.8) - (S(8:)S(8:X)) [S(rsy) S(y,X)
5(X,v)
Define
Aij = EDS45d = Kylxgytyyg)
v 2 s
Ay =Ky d1ag(k]j, Apjs , qu)
A 0
]Aé .
A= .
A
0 p
and
T .
B = = I, s eaes .
| 1428 (8, q 321q gplq)
Then
| S(g,8) = XM X
S(8,X) = XM '8

S(v,y) = TRl Kor'] + 2 A.'1

j J
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S(8,X)
S(v,X)
S(X,X)

Vax

VYX
Vxx

5(X,X)

)

-1

-1

(

S(y,8)
5(X,B)

»-which is'again obtained by
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1

SCraX) = W8+ (a7 8T L AT

s(x,x) = A1+ 8'M'
so that : '

Vg = {XT [M-] - (M-]M’]B)(S(Y,Y) S T A Tx) !

DOINE T -1
S(Xsv) s(x,x)) B'M :

Define .

(S(m) S(y,x))" ] (G, Gz) |

S(x,y) S(X,X) 6y 65/ .

Then

[ep]
1]

L= Ts(v) = S(rX) s060™T s(xa)T]
= 6, S(v,X) S(X,X)7"
SO6X)TT - SOGX)TT S(Xy) 6y S(vaX) LX)

oW o
1] [

It can be shown that
| sOGX) V= a - g™ (19 + Bas™M )T Ba

and that G-I is a diagonal matrix. Carrying out the considerable algebra
involved in the indicated matrix operation leads to

Voo = XT 1

TREN Y

where
B. 2
W, =M+ Z:<fl) Ao+ (KT8, -2 T
iy, v 3
-The maximum 1ikelihood estimate of the asymptotic covariance VBB is obtained

by substitution of """ estimates for parameters in the definition of VBB
-in a manner similar to. that for the known standards case.

The -above result can also be written as
= 1 * * *
W, d1ag(w] s Wo¥s oiis wq )
where

- |
Hi* = wg EJ(_Ki_) Mgt (”Ko)(§8j - 1%y
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If this problem were to be treated as a weighted ieast'gquares problem using
net sample and standard spectra, the appropriaté weight for Yf.wou1d be

VardY., - — - Q2 BA— - — =W*, i=1,2, ...,q.
i K0 i J Kj Ko i

' Thus, the asymptotic covariance of the maximum 1ikelihood estimates is the
same as the covariance of the estimates obtained from an appropriate wéighted
least squares analysis. ' '

AN EXAMPLE WITH THE STANDARD SPECTRAL SHAPES ASSUMED'UNKNOWN

Iodine-129 is present in the environment from natural and man-made
sources. The major man-produced sources are nuclear weapons tests and
irradiated nuclear fuel processing plants. Because of it$ long half-1ife
(1.6 x 107 years), 129

involving other iodine isotopes. Environmental concentrations of
127
(

I is an excellent tracer for environmental processes
]291 and
its ratio to natural iodjne 1) can be studied at very low levels by

neutron activation analysis of chemically separated jodine fractions.

Neutron activation of ]291 and ]271 produtes'1301 and ]261. .These latter
two isotopes decay to radioxenon through a (B,y) reaction. Thus ]291
concentration and the ratio j291/1271 can be estimated by measuring ]261

and ]301 gamma ray emission in an appropriate geometry (Brauer and

Tenny, 1975).

The usual procedufe for the radiochemical analysis of a neutron activated
mixture of ]261 and 1301 is to fit the mixture energy spectrum to a linear
combination of two standard spectra by weighted least squares.. A complication
is ‘the difficulty in obtaining pure ]261 and 1301-standard spectra. Since
]261 hae a 13=-day half-life and ]301 has a-0.52-day half-life, an alternative
to pure'standards is two energy spectral shapes from radiochemical analysis
at distinct points in time of a single solution of the two iodine jsotopes.
Weighted least squares, or in our case maximum 1ikelihood, giVes estimates
of the amounts of the two temporally distinct mixtures in the sample spectrum.
Knowledge of the relative disintegration rates of‘]26I and 1307 40 the
. standard mixture at a specific point in time (for example at reactor discharge

of the iodine sample), the counting instrument geometries for the two
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isotopes, and the isotopes' half-lives allows the writing of a one to one
Tinear correspondence between the two mixture standards and the two pure

standards. Hence, the mixture solution can be transformed into a solution
for 126I and 130

What follows is a simple example of the above iodine radiochemical
analysis for a very low level sample making use of two low .level mixture
standards.

A neutron activated iodine sample was counted for 185 minutes in a
four-segment Na(I) five-inch well crystal using beta-gamma-gamma coincident
circuitry. The resulting gross sample count versus energy spectrum is .
illustrated in Figure 1. A 300-minute background spectrum for this well
crystal geometry is also illustrated in Figure 1. The background counts
have been multiplied by (185/300) for direct comparison with the gross
]261 and 1301 components, a
I qg;u]ting from the neutron activation of
I/

well crystal geometry at 1.249 and 3.060 days after reactor discharge. The

sample counts.. To resolve the sample into
126 and 130

a standard sample of known ]29

mixture sample of
I ratio was counted twice in the f1ve inch

counting intervals were 5 and 10 minutes, respectively. The two mixture
spectra on a counts/minute basis are illustrated in Figure 2. In Figure 2

the two standafd mixtures are almost identical in the first 25 energy bins

and of similar shape but differing by a factor of 10 in energy bins 35 to

55. The low energy half of the spectrum then is primarily due to the 13-day
1261 while the range from 35 to 55 energy bins is due

to the 0.52-day isotope ]301.: in the standard mixture the 130 /]261
disintegration rate ratio at reactor discharge, calculated from reactor
physics equations, was 2.17. The well crystal geometries for the two isotopes

longer lived isotope

were 0.106 and 0.493. Thus the counting rate ratio at reactor discharge
was 0.467.

The sample and background spectra illustrated in Figure 1 and the two
standard mixtures illustrated in Figure 2 were analyzed by the maximum
likelihood procedure in the section on derivation of maximum 1ikelihood
estimates with standard spectra unknown. The counting data in energy bins
2 through 66 inclusive were used in the analysis. The maximum likelihood
estimate of the two mixture spectra in total counts is
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-=~= GROSS SAMPLE
———— BACKGROUND

COUNTS /300 min

0.1 1 ] 1 1 ! 1
0 10 20 30 40 50 60 70
ENERGY BIN NUMBER

FIGURE 1. Gross Spectrum of Neutron Activated Iodine
Sample and Background Spectrum for a Four-
Segment Na(I) Five-Inch Well Crystal.

-

[

‘min
=3

COUNTS

-~ LI DAYS

— 3.069 DAYS
0.1 —1 1 — 1 —_ '
0 10 20 30 40 0 ] n
A ENERGY BIN NUMBER )
FIGURE 2. Spectra of ]261 and ]301 Counted 1.249 and

3.060 Days After Reactor Discharge of Neutron
Activated Iodine Standard Sample.
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A

B]§xﬂ = -17.7 | (13)

Bzz? Xip = 164.

This estimate is on the boundary of the feasib]e space where Xi1 20,
xi2.2 0 and the two pure isotopic components of the mixture spectra ]261
and ]301 are non-negative. The pure isotopic estimates are related to

equation (13) by the equation
n/\ _ N ~ ~ Vel
I = A(n,1)(s]§xﬂ) + A(n,z)(ezzi: X:5) (14)

with n = 126 and 130. Here,

—AnTj . —XnTj -XmTj
A(n,j) = Dne /(Dne + Dme | )‘

where Dn # Dm is the disintegration rate of 1 at reactor discharge and Tj
is the counting time of the jth mixture standard (relative to reactor discharge
time). From equations (13) and (14) the pure isotopic maximum Tikelihood.

estimates are

1267

I =144.7 ¢/m
1301 =0 c¢c/m.

The algorithm based on equations (9), (11) and (12) does not converge because
the likelihood surface is not flat at the boundary point where the maximum
occurs. The.solution ‘is obtained by exhaustive examination of a small region
including the boundary area where the algorithm search exits the feasible
parameter space. Since the 1ikelihood surface is not flat at the maximum
point, the asymptotic covariances, based on surface curvature, are not valid.

To get some idea of the precision of the solution, a section of the
asymptotic 95% joint confidence for all estimated parameters is graphed in
Figure 3. The section is defined by

~ A

y=vy and X =X.

1267

From Figure 3 the I estimate is clearly significant with an approximate

95% precision of 20%%. The approximate 95% upper bound on 1301 is 1.6 c/m.
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FIGURE 3. A Section Through Asymptotic Theory 95% Joint
Confidence for Unknown Parameters Showing '
. Contour for Iodine Isotopes.
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FIGURE 4. Normalized Residuals for Maximum Likelihood
Estimate of Two Iodine Isotopes. '
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' To assay the goodness of the maximum 1ikelihood estimated model for
gross sample counts, normalized residuals r; can be calculated where

ry = ¢uyi+2 - /ﬂui+1 + adjustment . .

This residual formula is suggested by Tukey (1976) for comparing Poisson
counts Yi to fitted counts My The addition of an adjustment term

(Tukey, 1976) gives more appropriate residuals for low count situations.
If no structure is left in the residuals (i.e., the model fits the data

to within experimental error), fhey should vary about zero with standard
deviation close to unity. While no exact distribution theory exists for
determining when a residual is too big, a deviation of more than three

or four from zero or a string of same sign residuals should arouse a
question concerning agreement of data and model. These residuals do not
necessarily behave like residuals from least squares fits to normally dis-
tributed data., Significance tests based on such theory are only approximate.

Adjusted normalized residuals are plotted versus energy bin number in
Figure 4. There is no strong suggestion of model inadequacy. A second.
order effect is the four positive residuals (indicated by a question mark in
Figure 4), all greater than 1.0 in bins 22 through 25. This is the region
of a minor peak'in each of the mixture standard spectra. Thus, there may. -
be some systematic difference between the shape of peaks in standards
and samb]e. ' ‘
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A QUALITY CONTROL PROGRAM FOR 100% INSPECTION
USING NON-DESTRUCTIVE MEASUREMENTS

R. L. Hooper
Battelle Pacific Northwest Laboratories
Richland, Washington

A quality control program that allows the producer some
flexibility in allocating program hesources defines consumen
nisk as the maximum probability of accepiing a defect of
Limiting size. Control chant sample sizes and product accep-
tance cniteria are computed as a function of consumer nisk.
Results appear in a convenient nomograph where the vendor
can optimize the chodice of control chant sample size and
accept crniternia rnelative Lo a particular measurement system
while maintaining the appropriate Level of consumer risk.

A quality control program is deve]obed for the acceptance of individual
items where 100% inspection is accomplished using a non-destructive measure-
ment system. The program is a function of the measurement system's responéé
to defects of a known size (standards), measurement precision and a continuing
plan for demonstrating that the measurement system is in control. Naturally,
the major aim of the quality control program is to protect the quality of
the product delivered to the consumer. However, one of the goals is to
provide the producer with some flexibility in terms of how he dedicates his
resources in support of the program.

The measurement system is initially calibrated hsing certified standards.
The levels of the standard defects should span the limiting levels which are
speéified for the characteristics in question. The calibration exercise is
designed to accomplish the following:

(1) Define the tester response to defects of known size.
(2) Provide information necessary to develop an estimate of tester
precision. ,
* (3) Define the stability of tester response across a time period
" similar to the period that the tester is employed during accep-
tance testing.
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‘Perfodically, at intervals established on the basis of stability and tester
usage, the standard defects will be submitted for measurement and the results
maintained in a eontrol chart format. The data generated during the calibra-
tion exercise can also be used to examine the viability of the assumptions
necessa?y for the development that follows. The assumptions are:

(1) The non-destructive tester response is linear across the range
of defects observed in application. ,

(2) The distribution of tester response for a given defect is normal.

(3) The variance is the same for all defects. -

The consumer risk is defined as the maximum prbbab11ity of a defect of
limiting size. It is computed as the'max'{P]Pé} where:

P1 probability of accepting the tester as being correctly calibrated.
‘P2 probability of accepting a defect of limiting size

Iinder the assumption that the distribution of tester responses to a defect
of given size is normal and the variance of tester responses is the same
for all defects of interest,‘then the probabilities, P] and P2, are computed
directly as shown in Figures 1 and 2.

-

_// ~_ )
~ T 7
c- ko c- 3¢ ' c c+ 3¢9
vm vVm
oo
* - 1 (x-ctko)?
1 20°/m . .
P, = m e dx = n(x|c-ka, g/vm) dx
G - _3_g ' : C - i?_
vm m ~

" ¢ - AVERAGE TESTER RESPONSE TO A STANDARD DEFECT
m - CONTROL CHART SAMPLE SIZE

FIGURE 1. Three-sigma Control chart
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P, = Torg © , dx = | n(x|R-kag, o) dx

=00

R - NOMINAL TESTER RESPONSE TO A DEFECT OF
LIMITING SIZE.

a - ACCEPTANCE CRITERIA APPLIED IN PRODUCTION
TESTING

FIGURE 2. Tester Response to Defect of Limiting Size

Now the maximum probability of accepting a defect of limiting size =

Max'{Ple}. The product is maximum when the aPle/ak is zero
k .

3P, P 9P

12 1 _ :

From above, following simplification, we have

'P.]' = Jvn(xlc-kcr, o/vm) dx =1 - N[vmk - 3]
30
c -8

v/

oo

apP |
e g J"(ch'ko’ o//m) dx = - /@ n[Yim k - 3]0,1]
3
/m

c
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<1}

R-a
Nk - 5

P, = n(x|R-ko, o)dx

1
8

a
__I_(§= 3!%'[ n(x|R-ko, o) dx = n[k - ==

Substitution yields

[i - NG k-3)] n[k - 22 o, 1] - /nT[N(k - &;i)] [/ k - 3]0,1] =
and R
Jiln(v k - 310,1)] "[" -5 o | (2)
1 - N/ k-3) N(k - 222

Equation (2) is solved for a rahge of values of Eéi (the standardized distance
that the acceptance value (a) is removed from the nominal tester response (R)
to a defect of limiting size) and selected values of m. The results are

shown in nomograph form in Figure 3. Consumer risk is describéd on the ordi-
nate axis.

The producer, with a given measurement system, can optimize his choice
of a and m and still maintain the required consumér risk. The producer
should select the largest value of "a" (minimum producer risk) consistent
with the financial penalty associated with an increasing control chart sample
size, m. lhese results plus a number of examples appear as'an KDT Standard
(RDT F 3-13).
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, MAXIMUM PROBABILITY OF ACCEPTING DEFECT OF SPECIFIED SIZE
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FIGURE 3.

Control Chart Sample Size
and Product Acceptance Criteria
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DISTRIBUTION OF SKEWNESS AND KURTOSIS STATISTICS

, K. 0. Bowman
Union Carbide Corporation Nuclear Division
Oak Ridge, Tennessee

and

.~ L. R. Shenton
> University of Georgia .
Athens, Georgia

Tests which alfow for both skewness and hurntosdis
("omnibus" tests) have been studied relative to non-
normal sampling. -These L{nvestigations have Led to
acceptance contours at Levels of 90, 95 and 99% fon
sets of sample Adzes oven populations from both Pearson
system and nonmal mixtures (two-components, equal vari-
ances). Ongoing studies nelate to a closern examination
of the foint distribution of vb, and b, with the possi-
bility of producing contowrs wi%h Less anea and fixed -
probability content.

INTRODUCTION

EARLY_WORK

The skewness (defined as the standardized third central sample moment
/5; = mé/m23/2) and kurtosis (h2 = m4/m22) have a long history as statistical
tests for departures from normality,.spanning the greater part of the last
100 years. In addition, the population values /@?} Bo form the basis of
the orderly used Pearson system of distributions. It is clear that /B?,
depending on cubes of deviation, is a measure of skewness; it is customary
to interpret b2 as a measure of ‘peakedness' or Tack of it ('flatness').

If the Pearson (J@T, 82) diagram of curve types (I, III, IV, V'being the
main members) is recalled, 1arge values of 82 are associated with Type IV
curves (including Student's t for example) which have long tails or a

slow to very slow approach to zero frequency; equivalently, this implies

a relatively large chance of a large deviation from the mean. Similarly,
small values of By are associated with Type I (or Beta) distribution having
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finite range (including, for example, the uniform distribution). The
pivotal distribution is the normal for which JET =0, 82 = 3.

Of the classical test statistics, Student's t, F-ratio, correlation .
coefficient (and perhaps mean and variance), the skewness and kurtosis
statistics are the only ones whose distributions in a normal. sampling
are still not known exactly. Could the reason for this be that the other
quantities are dominated by quadratic forms (including degenerate cases),
whereas JET’,bz involve higher forms?

SERIES DEVELOPMENTS

An important breakthrough came from E. S. Pearson (1930), who used
the work of Fisher (1928) and Wishart (1930) on k-statistics to develop
a Taylor series. expansion in terms of the k-statistic discrepancies
ki - Kys i=2,3,4. To damp-out higher order terms, Pearson used samples
of n 2 50 for vb,, n 2 100 for b2 to assess the Tower and upper 1% and
5% of the distributions in normal sampling. Thirty or so years later
(Pearson, 1965), he gave a set of 'accepted' percentage points; for a
sample of 50 there is no change in the third d.p. entries for VBY'at’
the 1%, 5% levels; for b2 and n=100 there is no change in the second d.p.

entries; in all,. quite a remarkable achievement.

EXACT MOMENTS

The next step forward came from Fisher (1930) who showed that in
normal samp]iﬁg the standardizedvmoments mf/mzr/z, r 2 3, are distributed
independently of the second moment m, (Fisher used k-statistic notation).
Thus, for example, Eb] = Emg/Em3 follows from the independence of m§/m3
and mg In this manner, the exact moments of /5-'and b, can be found.

In fact, Fisher derived the first six cumulants of /E_ and the first four
cumulants of b,. Pepper (1932) derived the eighth moment of /b, , Hsu
and Lawley (1939) the fifth and sixth moments of b2 Later, Geary and
Worlledge (1947) gave the seven noncentral moment of b,; actually they
give E(m4/m2)7 Some of the coefficients are quite large, that of n3
a 13-digit integer multiplied by 25515 (the whole expression has, so far,

had scant usage).

being
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APPROXIMATING DISTRIBUTIONS

Knowing exact moments, it was a natural development to search for
approximating distributions, reaching out towards percentage points of
the distributions. Four-moment fits were studied by Pearson (1963) and
at this time he could use the Pearson system, Gram-Charlier series based
on the normal, and the Johnson SU translation system (Johnson and Kotz,
1970). For n 2 30, the Student-t density gave an acceptab\e approximation
for /5?, the criterion being the c]qséness of agreement between the
standardized sixth and eighth moments for the model and the true values.
Johnson's SU, although being troublesome to fit, seemed to be equally
acceptable to Pearson (1963, p. 106). Recently, D'Agostino (1970) has
shown that Johnson's SU'forsn 2 8 gives a very acceptable approximation
in this case.

For the kurtosis, the problem is more difficult because the statistic
is one-sided and very skew in general; thus for n=25, /ET(bz) = 1.75,
Bz(bz) = 9.90 in comparison to /E;(/B;) =0, BZ(VB;) = 3.58. Briefly,
Pearson Types VI and IV or Johnson's SU can be regarded as acceptable
approximations to the distributions of b2 for n 2 40 according to
unpublished work of C. T. Hsu (quoted by Pearson). Hsu pointed out that
for n 2 30, the’(sl,ez) points for b2 were close to the Type V line
(Pearson, 1963, p. 106). Noting this, Anscombe and Glynn (1975) in a
Technical Report made available at the Atlanta ASA meeting (August 1975),
suggest a linear function of a reciprocal of a'xz-variate as an approximation
to b2 for n > 30 or so; they do not make any comparisons with Johnson's
SU approximation,

OBJECTIVES

For some time, we have been tackling the problem of finding moments of
sample moments which result in Taylor-series developments in powers of the
inverse sample size. The Tirst objeclive was Lu derive a technique tu -
generate the terms, and having dealt with this by a computer approach, the
next problem relates to the use of the locked-in information. This second
phase is still a problem area.
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An obvious application concerns the distributional properties of
JBT, b2 in general sampling, and'pushing this to extremes would involve a
knowledge of the joint distribution. A related problem which has been
considered is to try to decide from sample data whether the sampling
is from a specified Pearson distribution (or other general population).
This would, one imagines, require information on the sampling distribu-
tion of the Pearson criteria Ky = 2b2 - 3b] - 6 and '

2 -
cp = by (by + 3)2[4(4b, -3b,)(2b, -3, - 6)17

where, for example, for Type I, Ky and Ky < 0.

This exp]ains our interest in the marginal q1stributions of vﬁ;} b2
and joint moments in general sampling. In the sequel we refer to various
related topics, and if the account seems somewhat disjointed, it reflects
a natural tendency, when confronted with a seemingly difficult problem.
to try something simpler.

The problem relating to k;, x, is still unresolved, but at least we
have a better understanding of the early phase problems and also some
doubts as ‘to whether it is indeed resolvable.

NON-NORMAL SAMPLING

MOMENTS OF SAMPLE-MOMENTS

The independence property of the skewness (and kurtosis) and variance
breaks down in sampling from Pearson (except the normal) and other distri-
butions, Using Taylor series developments, the present authors along with
D. Sheehan (1971) set up recursive schemes for the moments of sample
moments (such as vm,, Student's-t, etc.) suitable for programming for a
computer. The flavor of the results is contained in the following cases}

(a) Univariate. If ‘

— 1 1\S _ 1\ S
AS = E(m] ‘.U]) s aS = E(X - U]) ’
then

(k) _ S sy (k-r) (k-r)
A "Eéa(r) e Ay 7 7 3 A
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where A( ) =0 for k 2s, k <0; and it refers to the coefficient of
Tk in A . In particular,

A2 U2/n ’ A3 = 113/n2 ’

A

2,2 2y, 3
4 3a2/n + (a4 —~3a2)/n

(b) Bivariate.

k J K
K, - > V) 2y oy, RS ()

(=)

Sy (k=-x-n) .
,u(l)(u)akau AS+] -A t-u’

>
A=0

(k+A+u -s- -t)
)( ) agy t-n M

t
2,8
=0
K s t
‘ g %+1 ) %Z: 2 (

u=0

s, L 5yt (k-A-1)
’}25 5;5 Gk,u(k)(u)a A tﬁ]-u,

where [(s+t+1)/2] S 1 < s+t, A(k) = 0 for k < 0. or k Z s+t, S =1

unless A = u = 0; s, = 0, and [x] indicates the largest 1nteger 5 K.
- A and a have similar meanings as in (a); for example,

p -
1]

Em - u)” (my - u)S

= (X - )" O - )

[+)]
I

would be a possibility, or similar expression involving linear sums of
non-central sample moments and the corresponding expressions for camples n=1.

Using this approach, we have set up, using a computer, the first
eight moments of JB— and the first six moments of b2 up to and nnulud1ng
-8 in the sample size. Momments of JB_'1nvolve four-
dimensional arrays (corresponding to the first three sample moments and’ ,

the term in n

the sample size); similarly those of b2 involve five-dimensional arrays.
As for the moments of the population sampled, the first 40 are needed for
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the eight moments of JET, and the first 44 for the six moments of b,;
it is preferable to set up recursive schemes for these.

ILLUSTRATIONS

(a) Population Uniform Distribution (JET =0,8, = 1.8)

A 5 08 ‘ - | (5)
() & 2:0571 , 2.2629 , 1.8042 . -5.2943
207by n 2 3 8
n n n
oy & L269s0) azeer) 24 6660'5)
4/by 2z T3 8
2) (6)
—  1.3058" 1.0269
b)) =T e g |
n- n :
4 3) (7)
— . 1.8804( 1.8986
u8(/b]) v ————Z————-+ eee -8

n n
(Superscripts in parentheses refer to the power of 10 to be used as

a multiplier.)

(b) Population ~ Pearson Type I, JE; = 0.2, 8, = 3.1

~ 3 (1) (2) (3)
EJB; w0, - 1.4211  6.5992 _ 3.9728 , 3.2971'%7  5.9343

An n2 n3 n4 n5

, 1287 2.7672(6)  g.0796'7)

n6 n7 n8
. - (1) (9
Var /B~ 821873 6.1810° ° . §;§§92;_)
: g n 2 ]
n ' n
. o (5) (15)
- '2.1891( 1.6024
us(;/B;)'\/——;]A.—'—'*'...-———ns——'



(c) Population - .Normal Mikture (2-components, equal variances)
/By = 1.0 .8, =4.0 oL

Eb 2.3142 _ 9.7524'1)  4.0862(8)

’\:4..

2 n | n2 n8
- ~5.5535(3) " 5.2875(5) 5.390(12)
U4(b2) v 2 + 3 + ... - — 8
n n . n
; 6) - (15)
, 2. 2836 2.5635
1—16([)2) "'—“"-n--§——+ ces - ——n'g———-

E(b,/57) & 4 - 2:7966 _ 496128 | 5.7m1307)
2 LN 3 n

n n2

o (2) (3 (10
Var{b,/by) ~ :6987 ", 3.9918 Yoo, 3280

n ) n2 ese n6
— (5) (11)
ug(b,yvby) v 2 99;3 + ... - 80078
n n
— (5) . (‘|3)
ug(by/by) ~ 782670, 2.9578
n n

SAFE SAMPLE SIZE

Our early work in using these expansions to approximate the distributions
of, for example, /BT'and by, relicd on inflating the sample size to damp-out
higher order terms. Thus (Bowman and Shenton, 1975) safe sample sizes are
indicated for ecach moment, using the rather arbitrary rule that the critical
sample size is one which adjusts the size of the highest order to the Towesl
order terms to be approximate]y one-tenth. For example, in sampling from
Type T with /E;'= 0.6, 8, = 3.2, the safe sample size for EJE;'is n =10,
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E/b_] ~ 0.6 - 0.3082 + 0.0444 + 0.0227 - 0.0302
+0.0175 + 0.0186 -.0.0606 + 0.0414 ;

Similarly, in sampling from Pearson Type I with /E; = 1.4, 8, = 3.4, the
critical size is n = 100 for us(bz) and

us(bz) ~ 3.4419 + 3.7942 + 2.5590 + 1.4111 + 0.7088 + 0.3417 .

Clearly, in both cases the sample sizes are only just adequate to damp-out
the n”8 ’
en
example, for normal samples he gave

terms. Pearson (1930) used rather similar damping factors; for

o(/by) ~ 0.3464 (1 - .0600 + .0024 - .0001)

- when n = 50, and
Bz(bz) ~ 3 + 5.4000 - 2.0196 + 0.4704
when n = 100. In the case of o it looks as if a smaller sample size could

have been used.

RATIONAL FRACTION AND OTHER APPROXIMATIONS

Asymptotic or slowly convergent series may be approximated by the
ratio of polynomials in the variable (in our case, n the sample size), and
there aas been a resurgence of interest in the last decade in the subject,
basically initiated by'Padef(his thesis was published in 1892). Briefly,
the domain of convergence of Pade” approximants (which include Stieltjes
continued fractions as a special case) is generally more extensive than is

the case for series developments; for series in 1/n, this suggests the
poséibi]ity that smaller values of n may be valid in Pade‘apbroximants.
‘Genuinely,divergent series (or what appear to he so from the pattern of the
first few terms) seem to be quité common in statistics; at least that is

our expekience, but from a knowledge of a few terms (8, 15, or perhaps 30),
one cannot claim they are authentic examples (Van Dyke, 1974, p. 436).

An account of the recent prolific developments in the subject is to be found
in Baker (1975) and Baker, Jr., and Gammel (1970). ‘ '

We consider a few examples:

-,E/BT from Pearson Type I with /E] = 0.2, B = 3.1
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. The first four approximants p, = Pi(n)/Qi(n), i=1,2,3,4 where Pis
Qi are polynomia]s in n of degrees i-1, i, respectively, are

n = 10: P, 0.0968 P, =0.1016 P, = 0.1018

20: P]

0.1169° P,

3 4

0.1420

0.1415 P

0.1476 P

n 0.1420 P

2 3 4
Simiiar]y, using rational fraction approximants for the n'] term

onwards and adjusting for the constant term, we have:

n=10: pk=0.1029 p§=0.1014 pf=0.1014 p} = 0.1020
n = 20: pf = 0.1423 pE = 0.1419 p§ = 0.1419 pz = (0.1420
For n = 10 the series is useless; for n = 20 it gives 0.1439.
e Eb, from Pearson Type I with ﬁ?{ =1,8, =24
" 7.9069 |, 24.6491 43.1163 1144.60
Eb2 2.4 + - + > + T - T
n n n
_ 34287.9 _ 7.8965%) 1.7720'7)  4.0550!8)
n° n® n’ nS
n = 10: Py = 3.5488 Py = 3.5783 P3 = 3.7228 Py = 3.8332
 Serdes - =3.59
n=20: py=2.8682 p,=2.8765 p,=2.9844 p, = 2.777]

n =50 p, = 2.5680  Series = 2.5680

It is we11 known that just as any finite number of terms of a Taylor
series cannot in Qenera] bound the true value, similarly there are problems
in ihterpretfng Pade” sums. However, the method does hold promise for
making available acceptable (in some sense) approximations to moment
series (when the sample size is relatively small) with seemingly divergent
tendencies. We are studying other methods of summation (generalized Pade”
and Borel-Pade”). =~

112



Y

THE,CORRELATION,BETNEEN‘JE;.AND.bz

ASYMPTOTIC CORRELATION

Early work goes back to Pearson (1902) who gave, for general
sampling, the first-order asymptotics for uz(b]), “2(b2)’ and the correlation

2

2
(236'38184'48263+68182+3B182'683+]281+24B1)

— (3)
[Uz(b])UZ(bz)]]/z

R(b],bz) =

where
_ o, 4 _ ., 3 o 5 - 4
By = u3u5/u2 » By = u6/u2 s Bg = ugugl, B .u8/u2 .
Note, as far as first-order terms, this is the same as the correlation
between JET and b,

MORE EXACT RESULTS

Further coefficients in higher powers of n'] can be used in

E(bz/B;) - EszJB;
o(Ay:b5) = —5T5,T 5(vb,)

by the method of moments of sample moments.

Actually, one of us used a computer to approximate p, the series for
E(bZMB;) being taken as far as n'ﬁ, those for vﬁq'and b, to n8. A
selection of results is given in Table 1. The interesting aspect is the
high correlation for samples of 50 upwards, which increases with sample
size, but not markedly. In addition, although the population sampled does
have an effect, the correlation is still high and quite stable over sample
size.” This raises a question as to the role Tikely to be played by b2
in a test of a hypothesis that a population sampled was a Pearson distribu-
tion with given JE;, Bé. The property does also throw a little Tight on

the joint distribution of vﬁ]} b, in non-normal sampling.
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TABLE 1. Correlation Between /E;'and b,

Sample Size

By By © 50 . 75 100 250 500 . 1000

0.2 1.2 ga)* 0.716 0.775  0.811 0.8971 0.924 0.942
' b) 0.696 0.748 0.779 0.847 0.874 0.889

0.6 2.6 (a)  0.756 0.761 0.764 0.768 . 0.770  0.771
' (b) 0.819 0.824 0.827 =~ 0.832 - 0.834 0.834

0.6 3.4 (a) 0.638 0.642 0.643 0.645 0.645  0.646
(b) 0.834 0.832 0.83  0.845  0.847 0.849

0.6~ 4.0 ga; 0.696 .0.704 0.707 : 0.711  0.711  0.71
b - -- - e --

1.0 2.2 (a) 0.965 0.9%77 0.983 0.992  0.995 0.997
(b) 0.965 0.975 - 0.980 - 0.989 0.992 = 0.993

1.0 2.6 (a) 0.952 0.963 0.968°  0.976 - 0.979 0.980 -
(b) 0.953 0.960 0.964  0.970 0.972 0.973 :

1.0 3.8 (a) 0.768 0.774 0.779 0.778 0.792 0.793
(b): 0.9M 0.913 - 0.914 0.915 0.916 0.916

*Populations sampled: (a) Norma1.Mixture, (b) Pearson Type I. Moments
?ased on asymptotic series); Pearson Type I does not apply to the case
0.6, 4.0). . ‘

SIMULTANEOUS BEHAVIOR OF /Ay b,

OMNIBUS TESTS

If one'accepfé'the notion that Johnson's SU provides a good apbroxima-
tion to the distributions of /5; and. b,, then we are able to derive approxi-
mate equivalent normal deviates- in each case. Now Sy is defined by the
relation

X=y+osinn 55, (e N0 @

where, for example, x refers to. vb] -or b2 The parameters vs & are found
by equating /§;, 82 of x to those of ¢ + A s1nh(—¥1) where X is a standard
normal variate; this reduces to eva]uat1ng 1ntegrals of the form

(2m)" 12 [exp(-1/2 y2) $0)S dy, Cf) =e¥S s =12,
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For z, XA we use

E(x - £)/A = -2

Var (x -z)/x = 1/2(w - i) [wcosh (22) + 1]

sinhQ ,-

where w = exp(1/62) s = v/8 .

It should be clearly understood that X is an equivalent normal deviate
for say /5;; but only as far as the first four moments of /by are taken into
account. In general, SU does a better approximation to /E;'than to b2
(Shenton. and Bowman, 1975).

A natural projection from SU approximations was made by D'Agostino and
Pearson (1973). They suggested that in normal sampling

X2 = ¥(By) + Xo(b,) NG

is approximately distributed as X2 with v = 2 degrees of freedom. However,
they had overlooked the fact of dependence which was pointed out by
Anscombe (D'Agostino and Pearson, 1974). ’

Bowman and Shenton (1975) derived contours at various'probabi1ity
‘levels for accepting normality based on a modified form of equation (5).
They used

v_g = xz(ﬁ]‘) + X (b,) ‘ . (6)

without the X2 assumption, finding the 5%, 10%,..., 90%, 95% values by

" Targe-scale simulation, and mapping the relation back onto the vb;, b2
plane. A scrutiny of the contours (Bowman and Shenton, 1975, p. 247)
‘brings out a discrepancy between the contours and the Monte-Carlo dot '
shape; the contours are flattened ellipses, whereas the dot outline
appears more akin to concentric parabolic arcs. Another aspect of this
is to say that the /5;'arrays become multimodal as b2 increases. (In the
absence of this diagram, readers will find a similar phennomen displayed
in Figure 1-e). ”

A parallel study by Tietjen and Lowe (1975) displays several three-
dimensional- plots of the distribution of /By, b2 along with a set of
contours at the 95% level, sample sizes ranging from 4 to 50, the results
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being mainly based on Monte-Carlo simulations. Their contours do have
shapes similar to concentric parabolic arcs, a]though the grad1ent change
is sharp at the 1ntersect1ons

CONTOURS IN NON-NORMAL SAMPLING

The Johnson S, approximations for /by, b, namely

- X(By) = vy + 6y sinh™! OB - £/
S o (7)
Xp = X(by) = v, + 6, sinh™! (b, - T,)/, | o

S
—
I}

can be set up in non-pormal sampling--artually the first four a§ymptoti§,
moments of /ET, b, are programmed (using terms through order n™™) to1owed
by an iterative scheme to determine the parameters in equation (7).

There will now be correlations between VB;} b, and X,, X,; define
R = correlation (X], X2). To construct contours in this case, replace
equation (6) by the approximate X2 variate

2 _ 2 2 2
Ye = (x] - 2R¥;X, f’xz)/(‘ - R%) | | (8)

whére R is intractable mathematically. For a specified population (Pearson
Type I, normal mixture) Monte-Carlo assessments of R can be found from
equation (7). The results for 50,000 samples are shown in Table 2 along
with other moments of X,, X2. The stability of R for variable sample
-sizes is noteworthy as well as its robustness with respecl to populations.
‘Having assessed R, Monte- Carlo assessments of the percentagc points of

Yg from equation (8) cou]d be found by a second simulation run in each
case; however, since our interest in equation (8) is tn reach a broad
understanding as to the effect of skewness in the parent population on

the shape and spread of Yg contours, we hgve used YS on the assumption

that it is approximately distributed as x~ with two degrees of freedum.
The population§ sampled are given in Table 3, and the contours in Figures 1-a
to 1-e.
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TABLE 2. Mean, Standard Deviation, Correlation for XS(VB—), XS(bZ)
in Sampling from Pearson Type 1 (/E;'= 2/7, 8, = 33/14)
and a Normal Mixture for Various Sample Sizes

ik E(byBy) vy 910 Vo1 01 R
30 (a)* 0.499 -0.006 0.996 -0.004 0.98  0.508
(b)  0.443  0.010  1.001 0.004 1.001  0.442
5O (@)l - 008 0.003 1.003  0.004 1.003 0.548
(b)  0.459  0.002 0.994 -0.002 0.998  0.463
80 (a)  0.565 -0.009 0.996  -0.005 0.999  0.568
(b)  0.466  0.003 1.000  0.006 0.995  0.468
100 (a)  0.567  0.002 0.998  0.003 0.997  0.571
(b) 0.460  0.003 0.998 -0.006 0.999  0.470

*Populations: (a) Type I, (b) Normal mixture with same /B7s B2
Moments based on 50,000 samples. Notation: v]9 = EX], 910 = YVar X],

Vo = EX2, 91 = Var X2, R = correlation (X],Xz
TABLE 3. Populations Used in Yg Contours
Number of (v/by, bp) points
in 1000 outside the contour
Figure Population /E; B, n R 90% 95% 99%

la Type I* 2/ 33/14 100 0.571 89 46 9

1b N.M. 2/7 33/14 100 0.470 85 41 6

le N.M. 1.0 2.2 70 0.998 67 37 16

1d N.M. 1.0 2.6 50 0.979 97 48 i3

le Uniform 0.0 158 50 0.000 100 57 16

*Type I has indices 2 and 3; N.M. = Normal Mixture.
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REMARKS ON THE CONTOURS

There is 1little to choose between the contours in Figures 1-a
and 1-b which refer to two populations with the same first four moments.

When /§; is large and 8, is in the neighborhood of 1 + 8, (the
critical boundary, since in general 8, > 1+ 81), then R is near to unity
and the regions are "narrow" and "long"; as R decreases, the regions fill
out rapidly (Figures 1-c and 1-d) and become more box-shaped, as would be
expected for independence.

JOINT DISTRIBUTION OF /tﬁ » by

PEARSON AND PRETORIUS

At the outset something needs to be said about the order of difficulty
that confronts those who attempt the resolution of bivariate, trivariate
and higher distributions. One may recall the great disparity between
studies of univariate and multivariate situations. For example, there are
scores of univariate discrete models (Poisson, binomial, Neyman's A, B,
C, etc.) but rare cases of bivariate studies and still rarer studies of
trivariate. Indeed bivariate discrete cases frequently revolve around
the Poisson and negative binomial models and are thus fairly obvious
"extensions."

Kar1l Pearson in a series of papers starting around 1905 made an heroic
effort (1925) to fit a bivariate surface using two means, three covariances,
four third-order and five fourth-order moments; the paper was called "The
Fifteen Constant Bivariate Frequency Surface." He was apparently convinced
that no satisfactory results would accrue for anything less than a four-
moment bivariate fit, and actually tried what we should now identify as a
Gram-Charlier series based on the bivariate normal as kernel. He was not
enchanted with the result (p. 269), and one would gather did not expect
good fits to result (as measured by XZ).

Another landmark in the bivariate situation is the work of Pretorius
(1930), who was certainly not hampered by small samples; one example has
n = 631,682. He studied several bivariate surfaces, derived regression
curves, marginal distributions and set up contours of equal probability.
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The present state of the subject is indicated by the scope of the
recent text by Johnson and Kotz (1972). It seems to us, that there are
still very few multivariate cases in which surfaces are successfully
fitted to empirical data, and that, in general, much less is to be expected
once one crosses the univariate boundary.

A MODEL FOR Jtﬁ . b,

Our original aim was to consider samples from general Pearson popula-
tions, but then it was realized that even the normal case has not been
resolved. The extensive study of the simulated (/BT, bz) couplet diagrams
was certainly encouraged by much helpful correspondence with E. S. Pearson.
Let it be said, however, that his interest was in the power of various
tests (Shapiro-Wilks, W', etc.), and we became intrigued by the problem
of finding a bivariate model which at Teast has the "right" shape for its
equi-probability contours. Monte-Carlo simulations (samples of 30, 50
mainly) were made of from 50,000 to 100,000 runs, the couplets being set
out on a two-dimensional grid of values for JET = 0(£0.05) *2, b2 = 1(0.05)7.0.
It was disappointing to notice quite frequent cases of lack of smoothness
in the arrays, even the array for I/ETl < 0.1 being somewhat irregular.
Nonetheless certain broad features were evident. The arrays for /5;
constant were of the form of Type III (gamma), bounded very nearly by the
parahnlic arc b2 = 1% b], while the array means followed a parallel
parabolic arc. The arrays for b2 constant were more problematical, and
became bimodal as b2 increased.

NEW BIVARIATE MODEL

The model finally used was multiplicative, with
f(vbys by) = w(vby) y(b,|vby) (9)

where

£
(/By) = : exp {- Hy + § sinh™' (—=—)1%)
il SR 2 A

is Johnson's SU approximation to the distribution of by and function g is
a conditional gamma distribution with
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p(vby) -1
KIK(b, - 1 - by)]
g(bZJJE;) = TTp(/5,)T exp[-k(b, - 1 - bl)]

and k > 0, p(x) positive for all real x. The bivariate density equation (9)
may be regarded as a crude approximation to the distribution of (/5;, b,)
in general sampling.

A comparison of the 90, 95, 99% contours for the Yg model (see
equation (8)) and new bivariate model equation (9) in samples of 50 from
the normal is shown in Figure 2-a. To bring out the versatility of both
models (Yg and f(/E;, bz)) the contours are also given for samples of
50 from the normal mixture for which /E; i e 82 = 2.6 (two components,
equal variances), see Figures 1-d and 2-b. The fitting of the bivariate
model is discussed elsewhere.

As one simple approach to the goodness-of-fit of the models, we have
drawn one thousand couplets (/E?} bz) for each of these examples. For the
normal case there were 98, 59, 10 points outside the 90, 95, 99% contours
in good agreement, Similarly, the corresponding results for the normal
mixture were 84, 48, 17.

CONCLUSIONS

We have presented some of the problems relating to the distribution
of the JBT, b2‘ A great deal of effort has gone into the problems associated
with the marginal distribution in the normal case during the past half
century. Our present work has produced two simple bivariate models in
general sampling.

At Teast the construction of the models has highlighted the main
difficulties. However, it should be noted that in the normal case there
is an obvious null hypothesis for the departure tests, whereas this aspect
runs inlo conceptual problems in the non-normal case.
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DISCUSSION OF THE PAPER BY BOWMAN AND SHENTON,
. "DISTRIBUTION OF .SKEWNESS AND KURTOSIS STATISTICS"

G. L. Tietjen
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

This paper contains a_good'historica1 introduction to the statistics
vrB;'and b2. These statistics have been widely used (1) to characterize
the shape of a given distribution, (2) as tests of normality or the lack
of it, and (3) as tests for outliers from a normal distribution, particularly
for the case of several outliers. It seems likely to me that they will
find an even wider use in tests of goodness-of-fit for distributions |
other than the normal and in tests for outliers from distributions other
than the normal. Recently, Bob Hogg has discussed adaptive robust es-
timation. In particular, he has recommended estimators of central tendency
(mean, median, etc.) which depend on some vague notion of the shape of
‘the distribution. For one shape, the mean is recommended. For another
shape, he wants us to use the median, etc. I foresee that vrB;'and b2
will be used for this adaptive estimation.

In view of 611 this, isn't it surprising how 1ittle we know about
the distribution of /75; and b2? Peop]e like Pearson, Fisher, Wishart,
and Geary have spent a good deal of time on them, not to mention Bowman,
Shenton, D'Agostino, and Anscombe. I first became interested in this
area when I saw Férguson's table of critical values of /75;'and b2 which’
he used to detect outliers. It had such gaps in it that I did a Monte
Carlo simulation in which I calculated, for normal samples, the two
statistics. I -then ordered the values of /75; and b2 and picked off the
percentiles. I sent this to Biometrika. The editor immediately replied
that he had just accepted a very similar papér by Ralph D'Agostino on
that subject. Could the two of us collaborate to produce a joint paper?
We did write two papers together, and I would still Tike to meet
D'Agostino some day. I tell this to show you how little was known about
the percentiles of these statistics, just five years ago for small
sample sizes.
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Kim Bowman has given an account of the approaches which have been
made toward approx1mat1ng these distributions. .There were;the series
expansions in k-statistics. That, thank heavens, never caught on with

the Americans. Then the moments (up'to the 8th) were developed, and
expressed in series in powers of 1/n. These were used to fit the Pearson
and the Johnson systems of distributions. Reasonable fits for /75;

were made for n 2 8, but samples sizes of at least 40 had to be used to
get good approXimations for b,. Also, using these moments, D'Agostino
found that standardizing /75_ (by subtracting the mean and dividing by
the standard dev1at1on) wou]d do a pretty qood job of transforming /_"_
to norma11ty

Shenton and Bowman- used moments of the sample moments to approximate
the distributions. These came out as Taylor's Series in powers of 1/n.
In doing so, they had made much use of recursive relationships between
the moments which quickly grew very complicated. Only Bowman's per-
sistence at the computer made possible a continuation of their efforts.
Since they were using the sample moments, they could work with whatever
distribution they chose, and they turned out a lot of results, even
generalizing to the bivariate case.

At about this point Victor Lowe and T became interested in using /FBT
and b2 jointly as a test for normality. The big competitor was the W-test
by Wilk and Shapiro. Looking at thc simulation rcsults with which they
justified the omnibus properties of their test, it was evident that in
most of the cases, either J’B;'gg_bz was more powerful than their test.
The W-test was chosen as best because it did better over more alternatives
than did the other statistics; not because it performed better with each
alternative. So, we thbught, a joint test may pick up the desirable
features of both yrB;'and b,. Perhaps it would do well where /_ET did

well and where b, did well. S

To test our theory, we simulated 30,000 normal samples and qa]éu]ated
/Ti; and b2 from each sample. Using‘vrs;'as one coordinate and b, as
another, we plotted these--or rather we countéd how many fell into each

bin on a 100 x 100 array. The result was a bivariate, three-dimensional
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surface which is the empirical joint density of vrB;'and b2 (Figures 1
and 3). On the surface for n = 10, the sharp rise in the rear and the
empty space in front are noted. These statistics are uncorrelated but
dependent. If they were independent, the joint would be product of the
marginals and would Took Tike this Figure 2.

We were paft]y into the project when we noticed an article by
D'Agostino and Pearson. They had standardized both /—ET and b2, then
taken the sum of squares of these two variates which were approximately
normal, and used a X2 distribution with two degrees of freedom to draw
the contours of the joint distribution. We thought we were wrecked,
but decided to continue, since they had said nothing about power studies
on tests of normality. Just then Frank Anscombe wrecked their theory
by pointing out that JFBT and b2 were not independent, hence you couldn't
use the X2 theory.

We then tried to devise contours which were functions of the sample
size n, and the best we could do was to intersect two parabolas. This
crescent-shaped contour was too sharp at the tips.

We finished and sent the paper off to Biometrika. Afterwards,
Kathy Campbell did some Fourier smoothing for us and produced 90, 95 and

99% contours from 100 x 100 arrays (Figure 4). These are contours
of equal elevation. We would like to recommend our techniques for dealing

with bivariate densities in general. Then a letter came from the editor
saying that they had accepted a very similar paper by Bowman and Shenton,
but would we get together and talk anyway? None of us knew quite what
that meant, but we did talk, and some of this today has been an outgrowth
of our discussions.

What had Bowman and Shenton done? They had used Johnson's transfor-
mations to normality, involving the arcsinh. Their contours still
resembled the case of independence. D'Agostino's contours Tooked 1ike
theirs, but his did not have the right content, whereas theirs did.
Nevertheless, they realized that their contours did not have the right
shape. They were not contours of equal elevation on the surface.
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In a second try, they came up with what they have called a crude
approximation toAthe joint density of /—EY‘and bz; It is the product
of Johnson's Su approximation for yrB;'and another function involving
both vrB;'and b2. The latter function is a conditional gamma distribu-
tion. The shape of their contours is now much better, and the content
is correct. This aspect of the problem thus appears to have been solved.
With the contours which Victor and I came up with we could not quite
match the power of the W-test. We await anxiously Kim's Monte-Carlo
investigation of power on her contours. Possibly this may revolutionize
‘tests of normality.
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HOW SHOULD THE LOSS OF COOLANT ACCIDENT BE STUDIED?
SOME BACKGROUND- AND PERSPECTIVE
R. G. Easterling

Nuclear Regulatory Commission
Washington, DC

The total problem in the study of LOCA (loss of coolant accident),
as I understand it, is the following: How does one obtain and use infor-
mation from less than full-scale experiments and from computer models to
make reliable predictions of what would happen to a reactor in the event
of a LOCA? Stating the problem simply does not mean the problem is simply
solved. There are many sub-problems and this and the following presentations
will concentrate on but a few of them.’

As a framework for discussion, consider a general problem, expressed
as follows: There is a characteristic of interest, Y, which is a function
of several arguments. For various reasons there is "uncertainty" about
the arguments. The problem is how to translate that uncertainty into
uncertainty about Y. Symbolically, let the relationship between Y and the
arguments of the function be denoted by:

Y = f(X]i X2, cens Xm; Z], 22’ e Zn),

where the two types of arguménts are used to indicate two different sorts
of uncertainty associated with the arguments. These are: '

1. nonconstant physical characteristics: X], X2, cees Xm;

2. the use of estimated constants: Z], 22, cees Zn.

For example, suppose Y is a characteristic of a reactor at some randomly
selected time during its 1ife. That characteristic might depend on the
power level at which the reactor is operating, say X], and so the uncertainty
in this case is that associated with the presence of a random variable. Not
all nonconstant phyéica] characteristics are random variables. For example,
in another problem, X1 might be the in]et water temperature which is known
to follow a specific seasonal pattern. What one might be interested in is
the resultant pattern in Y, not in what Y might be for a randomly selected
season,
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The second type of uncertainty is that attributable to using estimates
of constants. For example, Y might be the reliability of a system and Z]
the reliability of a component in that system. Not knowing Z], one might
replace it by an estimate, and that estimate might be based at least in
part on data. The X's and the Z's might also be related in that the prob-
ability distribution of some X's might be known except for some constants
which must then be estimated.

Perhaps other sorts of uncertainty could be distinguished, but these
two are ample for the purposes of illustration and the following presentations.
Other uncertainties, such as how well the model agrees with reaiity_must
ultimately be considered but are not the topic here. Note also the fo]]owing
distinction: Statisticians are used to seeing the uncertainty associated
with an equation, such as that given in the opening paragraph, designated
by € added to the end of the equation. Here the uncertainty is inside the
function and is not so simply expressed. In the following paragraphs, the
pkob]em mentioned refers to that set forth on the previous page;

Two quite visible instances in which this problem occurs in the nuclear
industry are the Reactor Safety Study (1974) and the analysis of Loss_qf
Coolant Accident (LOCA) computer codes. 1In the first, Y might be the prob-
ability of exposing 1000 people to a specified amount of radiation in the
event of a nuclear reactor accident. The arguments would include the reli-
abilities of the various safety systems, meteorological conditions, and
population distribution. 1n the second instance, the LOCA computer code
simulates an accident and yields a record of cladding temperature as a
function of time. The peak of that curve is one characteristic of interest
and the arguments of the function (the computer code is the function) are
numerous and fall in both categories given above.

The following presentations will examine that example in more detail.
As a preliminary, let us consider the statistical aspects of the general
problem.

1s it a statistical problem? Perhaps. The uncertainty in -
some instances may be traced to an identifiable set of data.
Also, as we shall see, where the problem involves how to
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choose points at which to evaluate the function, statistical
experimental design ideas can be used.

18 the problem wsually approached from a statistical point of

view? 1 say no. It is amazing-to me how quickly engineers

(or physicists, or chemists, or some statisticians) can go

from a vague expression of uncertainty to a completely specified

probability distribution. (There is some sort of reverse

Central Limit Theorem at work here. The less data, the easier

it is to specify a probability distribution.) Thus the problem
_becomes one of applied probability, not statistics, a distinction

I think we should make.

15 the problem one that statisticians can profitably tackle?
I think so. The problem is essentially one of information
processing: How does one merge the information about the
arguments to yield information about Y? I think information
processing (as opposed to statistical inference or decision
making) is primarily what statisticians do and should do. In
this particular regard, statisticians should be particularly
sensitive to the insertion of artificial information, such as
a completely specified distribution, which could distort or
even determine what one concludes from the analysis.

What wornk has been done on the probLem by statisticians?
Little in general, I think, but there are some special cases
which have been studied. One particular instance is the
following: The Z's are component reliabilities, Y the system
reliability, and the uncertainty about the Z's is due to the
fact that all that is known about them is that n; of component
i have been tested and fi failures occured (the failure infor-
mation could include times to failure). In general, we must
use approximate methods to process this information into con-
fidence (or consonance, see Kempthorne and Folks, 1971) limits
on Y and only in recent years with work by Nancy Mann and
co-authors (1974) have we had generally usable and accurate
approximations.
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In another class of situations which includes statistical
tolerancing, all of the arguments are random variables.. All
that is known about their distributions is the information
contained in samples from each. It is my impression that
statisticians have not progressed beyond point estimation in
this case. We find by some means the "best" fitting distri-
bution for the arguments and then by analysis, error propoga-
tion, or Monte Carlo, depending on the complexity of the
function, obtain the derived distribution of Y. I am not

| aware of any published efforts to quantify the uncertainty

| associated with the derived distribution, such as by obtaining .

statistical tolerance intervals, but it seems worthwhile doing.
(Note that statistical tolerance is used in two distinct ways
in this péragraph--one of our problems in communicating with
nonstatisticians.)

My summary point is that we statisticians are still at the rudimentary
stage in the development of methods to handle this problem. And it is an
important problem. Millions of dollars can be riding on the outcomes of
these functions. Further, as I imagine many readers can attest, it is a
prdb]em which arises repeatedly in the nuclear industry and others. While
I may not always agree with whatever solution is presented, (the usual
approach seems to be to calculate the root sum of squares of something),

I regard it as a healthy sign that people who work with these functions
recognize the existence of uncertainty in them and the need to evaluate
that uncertainty. We should encourage them and help find correct and
credible ways to accomplish. this.
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HOW SHOULD A LOSS OF COOLANT ACCIDENT BE STUDIED?
6. P. Steck | ,

Sandia Laboratories
Albuquerque, New Mexico

INTRODUCTION

Easterling's paper discusses the general problems associated with
studying the uncertainty generated by a function of many variables when
there were attending uncertainties in those variables. MKay's paper
discusses the problem of developing a computer code that models reality
adequately. I will discuss a particular problem and in doing so assume
that I have an adequate code. The problem I will describe is an important
one to the nuclear field. . |

One of the misfortunes that is postulated in analysis ¢f water
reactors is loss of coolant through, for example, a ruptured pipe.
According to the Rasmussen study, such a loss of coolant accident, or
LOCA as it is called, is very unlikely. Nevertheless, it is receiving a
great deal of attention because of the stringent regulatory requirements
for emergency core cooling systems and analyses. ‘

There has not been, and in the immediate future won't be, any full-
scale test of an entire system--it would be prohibitively expensive--so
the effort has been in scale testing and computer model building. Statistical
investigations can help this effort through assessment of experimental and
computer modeling information. I will discuss a portion of the latter subject.

For discussion purposes, I will assume there is a realistic model for
a LOCA in the sense that there is one set of values (unknown) of the engi-
neering parameters such that for the set of parameters defining any accident
the computer code gives a suitably accurate LOCA time history. What kind
of uncertainties will exist in modeling a LOCA? First, there are the uncer-
tainties in the accident parameters themselves: system configuration, oper-
ating history, inlet water temperature, type of pipe break, etc. Second,
there are the engineering "correlations" that exist by the hundreds in the
submodels. These are actually estimated regression parameters and may be

!
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based on data or.engineering judgment. We wish to investigate the effect
of these uncertainties upon the LOCA time history. However, the investi-
gation is seriously complicated by two characteristics of the computer model:

1) It has many variables, possibly thousands. We want fo treat
as many as we can, ' '

2) It can take as many as 8 or 10 hours of computer time to
produce a LOCA history. One is strongly motivated to make
as few evaluations of the function as possible.

‘The immediate problem is how to conduct meaningful LOCA investigations
in light of these conflicting requirements.

© The instructions I received concerning the preparation of papers for
these Problems Sessions contained the injunctign to devote as much time as
possible to the description of the problem. This I think I have done. Now
I will describe some possible solutions as I see them. .Hopefully this will
provide a starting place for the discussion that will follow.

~

~ MONTE CARLO SOLUTION

The conceptually simp]est.method is that of Monte Carlo. Using the
distributions determined for the inputs, one would sample them and evaluate
the function (the computer model).

Repeated evaluations could be utilized in statistical analyses of
LOCA behavior.  For example, one could study peak clad temperature, which
is limited to no greater than 2200°F when analyzed in a conservative manner
- as specified by the Code of Federal Regulations. One could assess the
conservatism by finding an upper conf1dence limit for some percent po1nt
and comparing that with 2200°F or by f1nd1nq a lower confidence Timit for
P(PCT £ 2200°F) and seeing how large it is.

This would be a very satisfying procedure except for three things:

1)  Where do the input distributions come from and what happens
if they are wrong? One must consider the problem of sensitivity
-to the input distributions. ' '
2)  Suppose there are regions where the peak clad temperature is’
- unbounded. Such regions with very high probability will very
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likely be found; regions with very low probability can be ignored.
What happens in between? '

3) A fair1y large number of function evaluations must be made to
get satisfactory results and this may be too expensive. TmaX =
max (T], Tos +ees Tn) is a 90% upper confidence limit for the
95th percentile for n = 45. A similar 90% upper confidence 1imit .
for the 99th percentile requires n = 230, and if T_ < 2200, a
100a percent lower confidence 1imit for P(PCT < 2200°F) is (1 - )1/n
To make 0.1]/"

unsatisfactory for 10 hours/evaluation.

equal to 0.99 requires n = 230. This is clearly

My conclusion is, therefore, that a Monte Carlo solution would be nice--but.

RESPONSE SURFACE ANALYSIS

! Another way of treating the problem is to use the ideas of response
surface analysis. Here the goal is to fit the peak clad temperaiure surface
by function evaluations at a sequence of carefully chosen points, probably
a sequence of fractional factorials. Once a fit is obtainéd it can be
exhaustively studied by Monte Carlo or by numerical integration, since its
running time will be seconds instead of hours. The difficulty with this
method, obviously, is getting a good fit along with some assurance that one
has a good fit.

Obtaining a good fit is, for me at least, too much a question of
artistry and not enough of science. Our modus operandi on some sampie
problems has been to continue evd]ving a model until new evaluations agree
sufficiently well with model predictions to warrant stopping. 1If they don't,
a new regression is done with all runs, old and new, to get a new model,
and the evolution continues.

Another d1ff1cu1ty is that is not possible to make precise probability
statements about how good the fit is. Since any quantification of the degree
of conservat1sm should only refer to the fitted surface actually obtained,
call it: T(X) and not to any ensemble of possible surfaces, one is left with
a precise estimate of P[T(X) < 2200°F] which is obtained by exhaustive
sampling of a surface whose degree of fit is not precisely known.
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These two methods, Monte Carlo and surface fitting, are, to my mind,
the princiba] contenders for attacking the problem and they both have their
‘advantages and disadvantages. Negative feelings about the surface fitting
method can be partly overcome by a history of good performance on practice
problems. Let me now describe briefiy what happened on two practice problems.

~ PRACTICE. PROBLEM 1

The first function on which we compared the Monte Carlo and response
surface techniques is given below as equation (1). It should be emphasized

that while Easterling and 1 were experimenting -with it we did not know what
it was.

. . . 15A
Y - s 2510g(1.3F) .9Be D/10

The-mean, standard deviation, maximum and minimum of each of the six

variables, A, B, ..., F, were specified. A total of 45 evaluations were
made, three of which hit the stop at +3500. The final fit was '

Y - min(3500, 242 + 1.56D + .00391D° - 60.2F + 4.16F - .101DF
2.2

+ .00256D°F2 - 3.938 + .448BE - 399~ /2
+ £-[12.5F - .666F2 + 13.3e'F/21/Qc-15)) :

The degree of fit can be seen from Table 1 which gives some percent points
of both the true function, Y, and the fit, ?. as estimated by 100,000 Monte
Carlo samples. Furthermore, 95% of the errors, Y - Y, ware in the range
-70 to +40.

TABLE 1. Percent Points of the Distributions of Y and Y
- as Estimated by 100,000 Samples in Problem 1.

”~n

Percent Y Yy Difference -
10 -470 -459 -1
20 : -222 -215 -7
30 -139 -134 -5
40 -87 -85 -2
50 3 -5 8
60 132 135 -3
70 187 190 -3
80 271 273 -2
90 514 510 4
95 1001 987 14
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Fof»thé Monte Carlo comparison'ﬁe ran 10,000Aruns of-45 each to obfain

distributions for the percent points. For example, the median of 10,000

95% points of a sample of 45 was 825 and the first and third quakti]es
were 500 and 1355, respectively. Furthermore, the 90% upper confidence
Timit for the 95 percent point exceeded 3000 more than half the time.

It seems to me that the response surface method did a better job on
this problem than Monte Carlo. It found the pole at C = 15, which was in
a high probability region, and although it missed the infinite ridge at
E - B =10, which was in a Tow probability region, the errors are suitably
small. The Monte Carlo method, on the other hand, has a great deal of
variability.

PRACTICE PROBLEM 2

The second problem we used for comparing the response surface and
Monte Carlo methods was a nineteen variable code designed by Warren Lyon
(Nuclear Regulatory Commission) to produce representative LOCA temperature
histories quiékly. For this problem the dependent variable was peak clad
temperature and the fitting process stopped after 165 runs of which 28 were
unbounded.

The degree of fit attained in this problem can be seen from Table 2
which gives some percent points of the true and fitted responses as estimated
by 7000 and 70,000 runs respectively. Furthermore, very nearly 90% of the
absolute differences, |Y - ?I, are less than 300°F, and 95% are less than 465°F.

This time, though, from the 7000 runs on the true response we could
only simulate 42 sets of 165 for the Monte Carlo comparison. In these
samples, the first, second and third quartiles of the distribution of the
95% point estimator were 1790, 1810 and 1840, respectively. Similarly,
the first, second and third quartiles of the distribution of the 99% point
estimator were 1910, = and », respectively. Thus, it seems that, on this
problem, ? overestimates and Monte Carlo underestimates.

139



TABLE 2. Percent Points of the Distributions of .
Y and Y as Estimated by 7000 and 70,000
" samples, respectively, in Problem 2. o

A

Percent . Y Difference =
10 866 866 -0
20 939 966 -27
30 1000 1047 -47
40 1065 1125 -60
50 1141 1205 -64
60 1238 1290 -52
70 1344 1390 -46
80 1495 1524 -29

.90 1710 1748 =38
95 1846 1984 -138
98 1938 ' ® ‘

99 ) o
SUMMARY

Let me now summarize what I have presented. First,~what:is my problem?
My}problem'is how to find the distribution of a random variable thatuis a
function of many other random variables, say 20 to 50, when the underlying
distributions are knoWn‘with varying degrees of precision and when each
functional evaluation is expensive. ;

Second, what are some possible methods of attack? There are several
and 1 discussed two in particular. These were simulation and surface fitting.
I hope you can suggest others we haven't thought of.

Third, how do simulation and surface fitting perform on sample problems?
It is our conclusion that surface fitting is a promising method of atfack.
It worked well on two sample problems and has the distinct advantage of
" being adaptive.

Finally, for the benefit of those who want mare specific problems let

me offer a few.

e Can the basic problem be approached in such a way that probability
statements can be made about the degree of fit in surface fitting?
Perhaps a hybrid of simulation and surface fitting is appropriate.

eIt is time to make the stopping rule more precise. What are good
stopping rules for surface fitting?
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e What i{s the effect of sequential fractional factorial experimentation
when the factor levels are adaptive? | 4

* Fgr validation purposes 1t would be nice to know the distribution of
/’[x(t) - u(t)] dt for some suitably large class of stationary processes
where EX(t) = u(t), t 2 0. ;

e What are the confidence limits for u(t) for this class of nonstationary -
processes?

141



"ON THE STATISTICAL ANALYSIS OF AN OUTPUT OF A
LARGE COMPUTER CODE AS A FUNCTION OF THE INPUTS

M. D. McKay
' L. A. Bruckner
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

INTROBUCTION

The purpose of this presentation is to describe some statistical
applications areas in our work related to the development and application
of computer codes used by the United States Nuclear Reyulalury Coimission
(NRC), Division of Water Reactor Safety Research. These codes, which
employ state of the art techniques in hydrodynamics and thermodynamics,
are used to study potential accidents and accident-related phenomena in
nuclear feactors. The mathematical models in these codes are rarely
perfect: either they depend upon quantities often imperfectly derived
from experimental data or they employ approximations to not-quite-understood
physics. Hence, the need for critical evaluations. ’

Throughout this dicussion the term output or response variable refers
to a quantity calculated by the computer code. The term input or input
variable is used in a very general sense to refer to noncalculated data
or parameters. Also, the terms model and code are used interchangeably.

A code, or model, is treated as a realization of a conceptual model.

We will look at some stages in modeling and how statistics might
enter in, a classification of applicable statistical techniques, and ex-
amples of "sensitivity" analysis.

STAGES IN MODELING

To try tu pul what follows into perspective, T would like to consider
some stages of a model's development: systems analysis, system synthesis,
model verification, model validation, model analysis, and model application
(Mihram, 1972). The first two, systems analysis and system synthesis,
cover the initial study of the problem and the formulation of a structure,
or computer code, which is assumed to adequately mimic reality. The third
stage, model verification, is the determination of the correctness of the
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model as compared to its intended structure. Model validation is a
comparison of the output of the model with data. Model analysis consists
of "shakedown" testing where the outputs, or responses, of the model are
contrasted under various input conditions.

Model development is dynamic, passing.back and forth through the
stages and incorporating feedback until, finally, the model is accepted
and is ready for application.

STATISTICS AND STAGES OF MODELING

MODEL VALIDATION

‘ Where can, or should, statistical and probabilistic techniques come
into play? I think the most obvious place is in model validation, the
comparison of model response with experimental data. This application

looks very much like the usual goodness of fit tests in regression problems.
However, in depth considerations should be given to "error terms".

With regard to the experimental data, it is a good assumption that
some error is involved. There are several possible sources of error.
One occurs in the detection phase. As an example, suppose that an experi-
ment is set up to determine an air flow in a pipe. In many cases the mere
insertion of a flow meter into the pipe is enough to change the flow pattern
so that valid determinations cannot be made. In this particular case,
laser instrumentation seems to eliminate the problem, but the point remains.
A second and obvious source of error is in the measurement of the response.
Calibration error is an example. Finally, the process itself may be intrin-
sically stochastic: perfectly replicated experiments may produce different
results because of the process itself.

Now let us look at sources of error related to both the experiment and
the computer code. Initial conditions must be physically set up and/or
determined before the experiment is carried out. The numerical values of
these initial conditions are input to the code. Errors here mean that the
code is not mode1ing the same problem that the experimenter is performing.
A judgment of the validity of a code is difficult to make under these
circumstances.
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Lastly, with regard to the computer code, the response is calculated
not as the evaluation of a regression function but, usually, as a series
of algorithmic cbmputations. Error or variation in the calculated response
can be attributed to three causes. First, the algorithm itself might not
be valid in the sense that it will not produce correct answers even with
accurate input data. That is to say that the computational structure
might be wrong. On this point, one would probably want to say a model is
invalid if the discrepancy between observed and calculated responses 1is
due to the computational structure of the code. Secondly, the values
chosen for nonphysical inputé, 1ike convergence criteria, time steps, etc.,
might lead to incorrect answer%. In this case one could assume that best
values are used for nonphysical inputs. Thirdly, the values used for
physical and pseudophysical inputs could be wrong. Here a new question
arises: Is a model "valid" if there exists a set of values (realistic or
not) of the physical inputs such that the calculated response agrees with
the observed response?

It is our opinion that a test of model validity should yield more than
a yes or no answer. It should also attempt to pinpoint the cause of invalidity
if the model fails the test.

MODCL _APPLICATION

Statistical and probabilistic teéhniques can be used in the application
of the verified/validated model. -Steck (1975) covers examples in this area.

MODEL VERIFICATION

The area where we are concentrating our efforts extends into both the
verification stage and the analysis stage. The problem is to locate troubles
in the code and isolate the causes. In general, series of diagnostic or
“structural analyses (computer runs) are made with selected values of the
inputs. If errors or inconsistencies are encountered, the physicist examines
the results with the hope of identifying the cause. We are looking-at this
problem from the viewpoint of sensitivity aha]ysis. The objective is to aid
the physicist in his study by pointing out "important" inputs. As the number
of inputs increases (it can easily pass 20) we feel that statistical techniques
should take on an important role. A clarification of the definition of
sensitivity and examples of some of our work are given later.
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SOME CONSIDERATIONS

Before the statistician studies any of these problem areas, I think
he should consider the following four points. First of all, the response
variable may be a (parametric) function of time. If this is the case,
statements related to verification, validation, analysis and application
will have to be made both at specific time points and over the entire time
history in general. In our work we have found codes that work very well
in some time intervals and not so well in others. Secondly, the response
is likely to be a very complicated nonlinear function of the inputs:
ekperimenta] data is used to estimate parameters (inputs) in fitted functional
relationships which subsequently appear in simultaneous partial differential
equations which are solved numerically to obtain the respohse. Thirdly,
when the code is applied to a "real" problem, the nuclear engineers may not
know the precise values of inputs to use. Instead they can specify a prob-
"ability distribution on the inputs which will change as better information
is obtained. The final po1nt is that the codes may be very costly to run.

A STATISTICAL MODEL AND OBJECTIVES

At this time I want to abstract the problem slightly and rephrase
the statements of the areas of interest. Let Y(t) denote the response
(output) variable as a function of time, with Y(t) = h(x;t) the computed
values. Let X denote the vector of inputs to the code, and assume that they
‘have a joint probability density function f(x) for x € S, the set of allowed
values. The points the statistician might want to address are as f0110ws

(1) How.well do the calculated values Y agree with exper1menta1 data?
(2) What is the probabilility distribution of Y? .What is a (95%)
confidence interval on the mean of Y? What is an upper, one-sided
(5%) tolerance interval on the distribution?
(3) What is the sensitivity of Y to X? That is, how is a change in
" the value of X reflected in the value of Y and in the (conditional)
_ probability distribution of Y? ‘

" The first of these three points has been d1scussed earlier and, although
I th1nk 1t is interesting and. important, I will not address it again d1rect1y,
Cont1nu1ng then, one might ask if it is possible, or practical, to attempt
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to answer both (2) and (3) simultaneously, in the sense that the same set
of computer runs can be used to obtain information relevant to both points.
With this question in mind, let us briefly look at three classes of tech-
niques that might be emp]byed.

CLASSES OF TECHNIQUES

PROPAGATION

In propagation techniques the moments of the:distrfbution of the
inputs are assumed given so that the moments of the distribution of the
response can be obtained. (For example, in its simplest form linear propa-
gation of error assumes that the moments -of response can be adequately
approximated by a first order Tay]or-sefies expansion about the mean of
the inputs.) . Derivatives are most otten obtained numer1ca11y; The estimated .
moments of the response can be used to fit a distribution, and the derivatives
can be used as an indication of sensitivity. An advantage of the procéddre
is that it requires assumptions on only the moments of the distribution of
the inputs. The drawbacks occur in the complete process of approximating
~the distribution of the resbonse variable.

ANALYTICAL APPROXIMATION

In analytical approximation techniques, a sufficient number of computer
runs is made'to enable a (nonlinear) response surface to be fitted to the
output. Then, all analyses are performed on the fitted surface. The prin-
cipal advantage of this procedure is that it allows for extensive investiga-
tions because of ease of evaluation of the new response variable. This is
‘particularly important when one wants to study the effects of changes in
distributional assumptions on the inputs. Drawbacks arise when good fits
" cannot be obtained. ‘

SIMULATION

In simulation techniques the (transformed) probability distribution
of the inputs is sampled to select values to use in computer runs. The
resulting values of the response variable can be used to study the probability
questions using standard statistical techniques. In addition, quantities
related to sensitivity can be calculated. »(Ekamp]es are given later). An
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advantage of simulation techniques is that no specific functional relation-
ship relating inputs and outputs need be assumed. A drawback is the pos-
STBTITty that an excessive number of runs may be required to obtain a
specified degree of precision.

STRATIFIED SAMPLING

I am not discounting propagation techniques but, for what follows, I
would Tike to focus on analytical approximation and simulation. In both
techniques one of the first questions one might ask is how to choose the
values of the inputs for the computer runs. In analytical approximation
it is necessary to get a good picture of the response variable over the
ranges of the inputs. Hence one mibht select a number of points within
the range of each input via a classical experimental design such as a
fractional factorial. In simulation techniques one should be aware that
the range of each input might not be covered sufficiently to allow sensi-
tivity analysis.

In our work in simulation techniques, we are using stratified sampling.
The sample space S (the set of allowed values for the inputs) is partitioned
into disjoint subsets which are then sampled according to some well defined
rule. The reasons we are using this procedure are twofold. First, if the
subsets are appropriately chosen, an adequate picture of the response can
be obtained over the entire range of the input space with no regions "missed."
Secondly, questions relating to the probability distribution of the response
variable can also be answered.

Tn intrnduce the type of sampling schemes we are using, two examples
will be given. As a first example, consider a case when the response Y(t)
is treated as a function of a single input X, with associated density function
f(x) for X <X <X Assume that n simu]étion runs of the computer code
are to be made. Define constants

'XL = 3, <ay < ... <a =X
such that

. . _l .
PY‘{X E(ai_],ai)}'—n 1"], 2, ...,n.
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The intervals (a; i, af) are called equal probability intervals for'X. The
n values Y (t) of the response variable are obtained by sampling once from
each of tﬁe intervals (a 10 ). Note that Y{ is a "random" 'Y for X on
interval 1.

For the second example consider a case where the response Y(t) is a
function of two inputs Xys X,. Let the range of each Xi be divided into
a lower interval Li and an upper interval HT where ‘

PriX; e L3} = PriX, e H;} = l-.

The four "random" va]ues of Y are obtained by sampling (X], X ) from the
four subsets LLys Lods [hys HoL THys Lo, [Hy, Byl

A generalization is clear: Take a fractional factor1a1 des1gn and
instead of using fixed values for the factor levels, use intervals for . .
sampling purposes. . Following this procedure for K observations yields
K values of the response at K distinct values of each input. In addition,
although the design is not completely symmetric in the input space, it
should still allow for reasonably good fitting of surfaces for analytical
approximation techniques. o

I conclude this section on stratified sampling with a few questions.
("Level" refers to an interval which is sampled each time a value comes
from it.) Since we are free to choose the number of levels for each input
- variable, how should this be done? What specific fractional factorials
should be used? Given the total number of simulation runs that are allowed,
are there optima] designs? (Some work has been done in this area by Conover,
1975.) What about "random" factorial designs (see Zacks, 1963, 1964, and
Ehrenfeld and Zacks, 1967)? Can anything be gained by using other ‘than
equal probabi]ify 1ntervals, as in importance sampling?

EXAMPLES OF SENSITIVITY ANALYSIS

At his point I would like to show some of the results from the applica-
tion of statistical techniques to a computer code developed at the Los Alamos
Scientific Laboratory by Hirt (1975) in the Hydrodynamics Group.
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The problem is one of sensitivity anaiysis with the objective being
to see if statistical techniques can be used to aid the physicist in his
investigations and evaluations of the code. We carried out analyses of
several response variables recorded at 0.1 millisecond (ms) intervals
from 0 ms to 500 ms. We had four input variables and used a complete
24 factorial design. The low and high levels of each input were sampled
using a uniform distribution. The statistics computed were the mean and
(ordinary) standard deviation for the response variables, and, to measure
sensitivity, partial rank correlation coefficients. (At each time poiht
the 16 values of the response variables and the 16 values of each input
variable were transformed to 1, 2, 3, ..., 16.) Using only these statistics
we were able to identify the times at which the code was "active" and which
of the inputs predominate as a functicn of time.

ADDITIONAL RESEARCH AREAS

In closing I would 1like to suggest a few more areas where resear;h is
needed: (1) General measures of sensitivity and ways of comparing them;
(2) Sequential sampling plans.which "learn" from previous simulation runs;
(3). Methods for identifying important segments of input ranges; (4) Appli-
cation of multivariate analysis techniques.
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DISCUSSION: LOSS OF COOLANT

Conover: I have a question for George Steck. Your estimated function ¥ is
remarkably similar to the unknown function Y.. This indicates to me either
great insight or tremendous luck. Could you describe the process you used
to arrive at this function ¥?. Also, could this method be converted into an
algorithm that can be put on the computer? -

Steck: We ran 45 observations and three of them were at 3,500. That made
us think right away that since the largest one was 3,500 and we got three of
those, we would pick 3,500 as the Targest and try to fit the rest. So we
threw away those and did our regression analysis on the remaining 42.

Now as for as the C-15 goes, in the beginning we had a series of levels of

the factor C that fortunately'straddled 15. 1In the second fractional factorial
we narrowed those ranges and still straddled 15. When we plotted the func-
tional values as a function of C alone, it looked 1ike it might blow up
somewhere around 15. I don't think we bothered to look at 14.9 or 15.1 to
verify that; but we came in a Tittle closer and it still looked 1ike 15, so

we just put down the C-15 in our regression model. It fit well enough so we
left it.

We found the 3,500 just because that's the largest one that we observed; we
found the C-15 by plotting techniques. As far as generalizing it, we did
have an interactive computer graphics program written so that we could plot
the functional values or the residuals against any kind of FORTRAN stateable
function of the input, including the reciprocal of C-15 if we desired. But
it never seemed to be quite as useful in the second problem as it was in the
first one because we didn't have a pole in the second problem.

Conover: How did you pick your different values for your parameters, a, b,
¢, d?

Steck: At the beginning, we had an input range for each one. Assuming a
uniform distribution over that range, we picked a 5% and a 95% point as
lattice points in the fractional factorial. We do that for each of the six
variables. Then the main effect regression shows that certain ones are more
important than others. In a second factorial we brought the 1imits in by a
factor of 3/4 or 1/2 around the nominal value. Why pick 3/4 or 1/2 or what-~
ever it was? I am not sure; it just seemed a reasonable thing to try.

What is the effect on the regression procedure of the adaptive factor levels
that we employed? We looked at the main effects, which suggested what the
more important parameters were. Then we would try to complete a larger
fraction on those important ones. Perhaps some interactions were aliased or
looked 1ike they might be important. So, we picked a few more points to try
to get rid of the aliasing, or confounding, or whatever it was that we were
being plagued with. We never took very many observations at a time. It was
a sequential procedure, maybe a couple more here and a couple more there.
Then we completed this fraction and completed that one until Warren Lyon
came to visit us and we stopped.
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Lyon: Steck didn't bring out one portion of his surface fittings that I
think should be mentioned. I took a look at the behavior of his fit to the
actual function in the vicinity of that pole. I threw out the 3,500 and
Jjust looked at the overall behavior. The fit was phenomenal: Even close to
15 where the function was in the million range the fit only missed by something
like 0.7%. I was just astonished. What hasn't been mentioned is there was
a second pole in the function that was missed. We took a quick look there
as well and the behavior was quite different. It's easy to understand how
it was missed. In the case of the pole with the variable at 15, the function
behaved in a rather nice asymptotic manner and took off smoothly. In the
case of the other pole, where one of the other variables, I believe, was
equal to ten, there was an extremely sharp spike. The dependent variable
was almost identical on both sides of the spike, so it was easy to see how
they missed that. The overall implications probably were negligible, but I
thought there was an extremely satisfactory fit on the first try. On the
second function, which more c%oseTy approximated the behavior we will be
investigating, again the fit seems to be very promising with an error on the
order of a few hundred degrees. We are going to have to do much better, but
I think overall the approach does look quite good.

\

Conover: I would like to comment on Mike McKay's presentation. I think
Mike minimized his use of the partial rank correlation coefficient. He
didn't explain it and I don't think its well understood since this is the
first time I have seen anybody use it. He merely followed the same procedure
that one would follow with reqgular partial correlation. You've got the
Pearson product-moment correlation coefficient. You can form your matrices
of correlation coefficients and get your partial correlation coefficients,

as explained in many textbooks. Rank correlation follows the same procedure.
The reason he used rank correlation, I think, is because he wasn't sure
about some of the distributional properties of the input. He correlated
inputs with outputs using rank correlation. Some of the inputs may be
correlated with other inputs. Consequently, he may pick up an extraneous or
superfluous correlation just because it is built-in; i.e., where X, may

not be related to the output at all but X, happened to be correlated with

X1. The rank correlation coefficient then was put into the same formulas
that you usually have for partial correlation to get this partial rank
correlation,

One of the striking features I noticed in the output was that the rank
correlation for one particular input was rather high and then it would drop
off. Another rank correlation was rather Tow and it might go up to a
certain point, which suggests to me a procedure for choosing your inputs
going into the system. Steck used a sequential method for choosing inputs.
I think that it is probably optimal to go with some kind of a sequential
method; but, if you don't have the opportunity to use a sequential method or
if you are forced to rely on intuition, which many of us are forced to do,
it may not be quite as sharp as George's. You may want to choose your
inputs in such a way to follow some sort of a pattern ahead of time.

Consider a one variable situation where you have Y as a function of X. In

.these computer codes, you can assume a monotonic function. This simp]ifies
things considerably, particularly regarding the division by zero situations
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~that may arise. Suppose you have a monotonic function and the question is
how big should X be in order to get the best Y value estimate as a Y function.

The range for the X values may be given as a piece of information that you
know. Rather than take a random sample of X values, it seems that to get

the best information regarding the Y value, you'd want to make sure that you

were taking a value of X from each region as you go along. Then you can
observe some Y values and get a pretty good range on your function. In a

one variable situation it seems intuitive that you would want to take a

$omp1ete range of input values to get the most information regarding your
unction.

Now when you have two variables, the question comes up, "How can you do
this?" Well, if you have a second variable involved here, you can follow
the same procedure. But how do you pair X; and X, together? You have so
many different combinations and you don't have that many runs available.
This would suggest some kind of a random pairing, randomly pairing one value
of X; with one value of X, and running them through. Repeat this so that
you end up with say ten pairs. The result is you have sampled the entire
range for X; and for X,. If it turns out that X; is a variable that is
jmportant (such as may show up in your correlogram), then you have sampled
the entire range for X;. Later on if X, is the important variable, you've
got the entire range for X,. I just throw this out as a suggestion for a
method for picking input variables to go into the system.

Friedman: Relative to techniques of statistical analysis of the output from
large computer codes, you essentially have a problem of multivariate inter-
polation; namely, you extract a series of responses from your computer codes
from various inputs. These of course are very expensive. What you would
like to do once you have these responses is interpolate between them to
understand the nature of your function over a full multivariate space.

These techniques are referred to in the engineering literature as repro-
modeling, mainly pioneered by Bill Misell. He approaches this exact problem,
has ‘an algorithm for doing continuous piece-wise linear approximation to
arbitrary muitivariate functions, and has achieved dramatic successes.

Beggs: The problem is how to investigate loss of coolant accidents.

Coolant loss causes a problem with temperature. We ought to address our-
selves to find out how high the temperature will go. Two problems were
presented: McKay deals with how to verify the model and sticks with the
extremes. How well can you reproduce what happens in practice? McKay
talked about stratified sampling and factorial design applications, using
input variables to try to find out how the model itself is verified. You
are concerned about how well you can predict maximum temperature. The only
way you can do that is to try to search in the X space to find those X
values which will give you the high-temperature readings. To do that efficiently,
since we only have so much data, you use a steepest ascent or snme kind of
optimization search routine to try to find that region of X's that will give
you Lhe high temperatures. You can then look at the tail of the temperature
distribution. : ‘

Easterling: I just want to emphasize what George (Steck) said about changing
levels on our factorials. In the literature, we are used to seeing sequential
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fractional factorials. There are certain ways in which you can build them

up, i.e., to find sequences which do things in the ways you want them to.

But in doing sequential factorials, we have to take the same levels. So if

we have two variables, each at two levels, the standard way to run a sequential
factorial would be to run the two corners of a square and then follow it

with the other two corners. We changed these levels. The concept is that ®
we might run two corner points and then come in and run two other corners

of an interior square. Now the question of interest is when is this a good

thing to do and when is it a bad thing to do. For example, suppose the -
effect of one variable, X,, is not important. With this design, if we

change levels, we now have a design which can pick up curvature with respect

to X;, whereas, if we had run the standard sequence we could not pick up

curvature. I think this is an area for research - to consider sequential

factorials with changing factor levels. Under what conditions is this a

good idea, and under what conditons is this a bad idea?

Conover: There is one comment I have to make on comparison of the two
methods. In one method, you look at a set of points, see what values you -
get for your function, and then take another set of points and so on. This
is a superior method for finding the best function to fit the points. I
dori' L see how you can use it to make probability statements concerning the
mean. To make some confidence interval statements or other probability
statements, you almost have to go to a preset design where you have the
design planned ahead and there is some random sampling involved - sampling
in such a way that every possible input has some known probability of being
selected.

Easterling: We are not even thinking about the probabilistic properties of
the output or how to evaluate functions, but rather how best to explore the
X space to find this approximate function.

Tukey: Antithetic sampling is a regression sampling game that's due to
John Hammersley. -One approach might be to break your interval up into
subintervals. Take two within each of these subintervals, one at random
and the other symmetrically. This is the simple version and we get a
certain amount of balance and also randomness.

Let me comment on a couple of minor points in the two papers and then I
will make a general comment. We will see how much furor we can stir up.
George Steck states, "This time though from 7,000 runs on the true response
we could only simulate 42 sets of 165 for Monte Carlo comparison ..." One
was really interested in average values here. He talks about quartiles of .
the 95% point estimated, but really those are average values too. I just
think, George, you were a little bit timid. I would have been tempted to
draw a Tot more than 42 sets of 165 from 7,000 sampling with replacement.

I don't see why I have to sample without replacement when I've got a
population of 7,000 to play with. Now variability questions are a little
bit touchy. I think there are ways to handle it. But it seems to me, one
ought not to tie oneself down compietely to independent repetitions.
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McKay asked in his paper, "Can anything be gained in using other than
equal probability intervals?" My main feeling-about these three papers
taken together.is that people have not quite focused their ideas as to
what they really wanted to find out and whether they were willing to pay
what it took to find that out. If we believe things are monotone,
roughly middle-humped or something, we certainly ought to concentrate
our sampling accordingly. There's probably one end we don't care much
about, except to know if it is Tow or high. We can't concentrate toward
the other end and some in the middle just to be sure. I'm not arguing
for concentrating everything. There is some merit to giving probability
almost everywhere. But that merit is just a little bit limited. This
sort of problem goes through a very complete change, somewhere between
two and five dimensions. If you are going to do a problem with more
than five parameters, the space is just not like anything you are used
to thinking of. You will probably be stuck no matter what you do and if
you talk about 50 input variables, your only hope is that four of them,
you know not which, will be important. Then maybe you can get out and
find something. Otherwise you will have to have a fairly large number
of samples.

I would like to suggest that you ought to have a full code and a short
code and a fitted function. The short code is something hopefully you

get made up by the man who wrote the full code. Tell him he isn't
supposed to get the right answers but he's only supposed to have 3% of

the running time and to do as well as he can. Then on a sampling basis,
you are in a position to look at the difference between the full code

and the short code. You can run the short code well enough to do a
reasonable job of fitting the function and you can run the fitted function
to death if need be.

Our real problem is how to assess things out of a combination of values.
For the fitted function, you can know what the distribution is as well
as you might want to. Nobody is ever going to know any one hundredth of

1% points. You need to know how te apply the differences between the
short code and the fitted function to say how is this going to be changed.
At that point, you will probably have to go at least as far as to look

at a plot of differences against fitted function values and be prepared
for the fact that they show a considerable trend and some kind of spread
around this trend as, for example, in Figure A. Here, you have lots of
points and it isn't too difficult a job. But this smoothing technology,
mentioned briefly yesterday, is going to be important to pick up things
1ike this wiggly trend.

FIGURE A
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We saw this morning, in a different kind of context, what happens to
people who fit polynomials. Their necks usually end up on the block. A
good smoothing technology will keep your neck from being chopped off. I
don't believe there is any good polynomial technology. One can take
whatever you fitted out here, look at the residuals, get some idea as to
whether the spread of the residuals is reasonably constant, and try to
use that part of the information to transform this distribution into

- what you think the short code distribution ought to be. "You have some
chance to check that one and see if your technology is working.

At the question of dealing with the differences between the full code
and the short code, 1ife is worse. But I don't see anything better to
do than what was just discussed. If you can't run the full code a good
many times, the only thing you can do is to bootstrap somehow. It seems
to me this is the sensible sort of bootstrapping. If the short code is
any good maybe you can run the short code enough so that then you can
use the answers of the short code to determine the proubability that you
will run the full code, and then be in a position of weighing things
accordingly. To me that is quite playable, certainly at the fitted
function-short code intarface.

The two points of view I would stress strongly are: (1) Let's put in
another step or two, if we can get somebody to produce something reasonable
for us at that point; and (2) Let's try to build up and look for things a
little bit wilder than we thought they were, and try to use each of the
more manageable things to guide what we do with the next less manageable
things.

Steck: That's a good idea. In this problem it might be possible to get
a short code because part of the long running time is the fact that you
have numerical solutions to differential equations and small time steps.
You can take a coarser time step and get something that is less realistic
but shorler.

Tukey: 1In the case of onc of those examples where there were data available
from 0 to 500 milliseconds on .1 millisecond intervals, I think a logarithmic
time step would probably work. All.the fast action was in the first few
milliseconds. After that, things got more and more systematic. You

would shock people a little if you integrated the differential equations
with respect to log t. But you might get a pretty good short code if

you went that route.

Steck: I would like to return to Conover's comment. Somebody I knew
made up the function, and 1 know something about him. He's in a hurry,
so when I see 15, maybe I lock in un 15. He said afterwards that if you
were going to do the problem again you might choose a random uniform
number to put after 15, so it will be 15.4753 or something. But he had
picked an integer and in checking the fit, I tried 15 and 15.1 and 14.9
jn the fit. Fifteen was better than either of the other two and so I
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picked 15; but if I had known in advance that it was a random process to
produce this function, I wouldn't have settled on 15. I would have tried
to search in the neighborhood to find the best one. But since a human had
done it, I settled on 15.

Lyon: I have heard several excellent suggestions, some of which we are
already trying or plan to do. First, what do we want? To establish that,

I need to define two items.” We have two basic computer programs. One we
call best estimate, which is an attempt to predict as accurately as possible
what happens. The second we call an evaluation model program, which is

very similar but which contains a number of conservatisms which make it over-
predict temperature. We use this to evaluate license applications and to
evaluate analyses and compare against the regulatory requirements. What we
want first is a quantification of the best estimate program. Secondly, we
want to be able to compare the best estimate and evaluation model programs
in some sort of a quantified manner. Thirdly, we want to be able to make
quantitative statements in the application of these programs to accident
investigations. I think we have an idea of what it is we want. I am not
sure we know how to get there.

On the comments of the short code, I am not sure we are bright enough to
write a computer program that is shorter than the monstrosity that we
presently have with the knowledge that we have available to us and still
put in the incredibly complex phenomena that are taking place. That does
not say that we cannot have a shorter version, because there are a couple
of things available to us. One possibility is the time step. There is
another possibility. Let's call it a mesh size or a nodalization, the
number of items you choose to represent the system. In the time step, one
of the problems is that in order to maintain numerical stability you are
stuck with a time step. We do indeed use a very fine time step in many
portions of the investigation and we use a gross time step when we can get
away with it. Fortunately, when you simplify the nodalization in general
you can increase the time step. Of course accuracy suffers, principally
because of the nodalization selection. The next step in our investigation,
already under way, is the use of many fewer nodes, so that the program runs
much more rapidly. In an overall investigation we are still talking in the
order of 1/2 hour to an hour per point, so while we may be saving a lot of
time it's still quite expensive. (Post Conference Comment: We are modifying
the computer program so that different time steps can be used for different
nodes. This should improve running time but not to the point that the problem
is eliminated.)

One advantage of the Steck and Easterling approach to response surface
generation is the use of many different types of functions. They have not
limited their approach to X and X2, but also use logs and exponentials.

We also had a comment on a desirabi]ity to investigate all variables. I

wish I knew how to do this. Literally there are thousands of independent
variables in this problem. We have variables associated with the input,
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such as what times are we going to investigate during the history when
events are occurring? At what power level are we operating? What is the
time power history? What are the dimensions of many of the items within
the system we are simulating? We have dozens of correlations built into
this program. We have uncertainties associated with these correlations,
both in their fit to the original experimental data and in their fit when
they are used outside of ranges for which they originally were derived.

I don't know how the statistician can help us with that one. The approach
we probably will follow is going to depend somewhat on an engineering feel
for what is important and what is not, backed up by some investigations.
And hopefully with a 1ot of help from people 1ike Bob Easterling and
George Steck.

Tukey: From what I heard of your comment. you don't seem to know what you
want to know. Do you want to control the 50% point, the 90% point, or the
85% point? You are going to want to take the data differently depending

on those. It just isn't feasible in a messy problem to take the data so as
to get high grade information about a lot of different answers. The answers
have to be more refined. Regretable but true! s

Let me just remark for the benefit of the statisticians present, that the
word correlation in your comment was, 1 think, used in the engineer's sense
and not the statistician's sense. That maybe needs to be cleared up. I
think for something like a short code to be helpful, you need not get the
right answer. That's the difficult point to get across to the man who's
writing the code. It's supposed to get answers that are well correlated with
the right answer in the statistician sense. But it doesn't have to be right.
That means you can probably do a lot more violence to it. You would be
surprised how much violence I'd be willing to try and see how it did.

Uppuluri: At times, one needs to resort to Monte Carlo methods to study
distributional properties of functions f(X,, X, ...X,) of n random vari-
ables. In general, one has information about the moments of X;, Xo, ...Xp.
It may be a good practice to compute the moments of f and compare with those
based on the Monte Carlo.

Relative to remarks about using no more than three to five parameters to make
the whole scheme depend on them, I would Tike to know whether this is based
on the catastrophe theory proposed by René Thom. ‘

Tukey: I am afraid I don't know the references I am asked to comment on.
The sort of trouble I am talking about is that large dimensional spaces

are larger than you think they are. Trying to do things regularly gets you
in trouble because of the number of puinls that you have to use. It's a
nasty business. Let me also comment that I take it Monte Carlo here today
means what I call experimental sampling rather than more sophisticated
Monte Carlo.
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Lyon: I agree with your comment regarding messing up the code by highly
simplifying it. However, to be useful we still have to have some semblance
to reality and we are already stretching it. The work going into the code
itself plus the changes might be very expensive. So far, we are just
following the route of reducing the number of nodes to describe the problem,
until we start to deviate so far from reality that we figure we'd better stop.
If we 1imit ourselves to only four or five independent variables, I person-
ally feel that we cannot accomplish the things that we need to do. We have
to have an approach that lets us look in the realm of 20 to 50 variables.

That is a tough assignment. I am not sure we really know how to do that yet.

Tukey: I think one point is perhaps slipping by and let me make myself
clear on another one. If you have a short code and you use it with the
full code, you are not relying on the short code any more than you are
the fitted function. You are relying on the full code and you are trying
to get every darn ounce you can out of each one of the full code points.
It seems to me that this is what we are trying to do. I would be willing
to cut those nodes down below physical reality and see whether it helped
me enough. '

On the number of variables, I was not arguing for putting few variables

in. What I was saying was that unless you are lucky enough after you put
50 variables in to find out that too many of them make big effects at the
back end your neck is probably on the block anyway. By all means put the
50 in and let's hope that four of them do most of the trick. Then the rest
of the 46 can be sort of picked up as a blur. That's what you have to do.
I don't think we have any real difference of opinion here. But I do think
that if there are 12 equally important variables, the chances that you get
a good answer with a small number of runs of the full code are not very
good.

Lyon: Thank you. Your first suggestion is an excellent one. 1 think we
will probably try that during our investigations. On the second one, I
have an engineering feel that we are going to be stuck with a number of
variables which are quite important. We'll find out.

Steck: The basic output of the codc is not just a peak temperature but
rather a time history. I showed a little drawing of a two humped thing,
1ike a camel without a head. One thought that I had was to fit each transient,
each double hump thing, with maybe 11 nodes in splines. We actually carried
that out very successfully. You express the transient then as a sum of
splines with coefficients that are determined and the polynomials are
‘fixed. You can imagine doing a regression on the coefficients of the
spline. At the end you will be able to samplc from the inputs and get a
function out rather than just a peak temperature. Then you can maybe
formally differentiate the spline and find out where its maximums are and
pick the largest one of those. Has anybody had experience with tackling

any problem like that where you fit with splines and then do a regression

on the spline coefficient?
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Tukey: MWere you .regressing something else on the spline coefficients or
were you regressing the spline coefficients on the input data?

Steck: Regressing the spline coefficients on the input data.

Tukey: I don't have experience with splines in this, partly because I am
pessimistic about them. I don't 1ike a fitting procedure which will change
things over here at the maximum in order to make a better fit over here at
the minimum or over beyond the minimum somewhere. That's what the continuity
constraints on the splines lead you to do. It doesn't seem to me they are
really localized enough to make me happy. I foresee some difficulties, but
maybe you will come out all right.

Steck: I think in this case I come out all right. I have maybe a dozen
plots of the transient produced by the full code and comparable results
obtained from regressing the spline coefficients on the input data. You
are hard put to see any difference between them. It fits very well, The
thing you are fitting is smooth enough and I guess I picked enough nodes so
that there wasn't any problem.

Pool: 1 direct the mathematical and computer science research programs at
the Argonne. I am here trying to find ways that statistics can interact
with some of the things we are doing. For the last several years we have
had a research program in the evaluation of numerical software. Not an
evaluation of hydrodynamic codes or anything like that. We are much more
pedestrian than that. We started out with elementary functions, special
functions and worked our way up to numerical linear algebra where you have
a backward error analysis to depend upon. We moved away from that case to
where you do not have an error analysis. The first step is quadrature,
where you have a user supplied function that the quadrature subroutine must
use. So all the error analysis techniques go out the window, unless you
know the general analytical form of the functions that the user 1is going to
supply. You usually don't. We've started to Took at the minimization
software where you have the same kind of complications plus the fact that
the algorithms interact themselves in a relatively soph1st1cated way. We
started to look at ordinary differential equations software in conjunction
with people from Livermore and Sandia.

I really wonder whether the step between things 1ike optimization and
minimization software to a hydrodynamics code isn't a bit of a giant step.
I was wondering whether any of the people have tried to do something
intermediate, where perhaps some of the numerical analysts error analysis
capabilities would allow you to verify the kind of inferences you are
making with statistical techniques. It makes me very nervous to hear an
analysis of loss of coolant codes. For example, 1ittle is known about
something as simple as the coupling of linear algebra codes. I know we've
never done anything like that, although we know a great deal about indi-
vidual linear algebra codes.

Tukey: On the forward integration differential equation codes, the backward
error analysis to the initial condition is really what you want.
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DIELECTRIC BREAKDOWN IN LIQUID HELIUM
F. L. Miller, Jr.

Union Carbide Corporation Nuclear Division
Oak Ridge, Tennessee

THE PHYSICAL SETTING

Reduction in the cost of underground electrical transmission is impor-
tant if the utility industry is to meet the nation's needs for electric
energy without undue cost while preserving the amenities in and near load
centers and power plants. Cryogenic and superconducting cables are being
developed and the problem which is discussed here arises from an attempt
to understand engineering aspects of dielectric breakdown in 1iquid helium.

The experimental apparatus consists of a 130 KvV(dc)/80 KV(ac) inter-
mediate voltage unit and a 600 KV(dc)/700 KV(ac) high voltage unit under .
construction. The data discussed here come from the intermediate voltage
unit. Leaving aside the necessary measuring equipment and electronics,
the experimental devices consist of an insulated container, or dewar, in
which two electrodes are placed, one above the other. The shapes of these
electrodes can be altered to experiment with different magnetic fields
and the distance between the electrodes can be varied to suit the experi-
menter. The dewar is then filled with 1liquid helium and after the equip-
ment has reached temperature equilibrium the measurement process can begin.
A voltage is built up in one electrode until an arc occurs to the other
electrode. This is also called a flashover and the voltage attained when
the arcing occurs is called the breakdown voltage. Conceptually, this
process can be repeated an arbitrarily large number of times. Practically,
there are limitations of time, personnel, buildup of impurities and damage
to the electrodes.

Experiments like these have been performed many times on transformer
0oils. It was found that the first few measurements needed to be discarded
to allow for breaking in the system and after a series of "good" measure-
ments (commonly about 20) the breakdown voltages decreased as a result of
impurity buildup and electrode damage. Much the same scenario occurs here.
A few measurements are taken and discarded during a system checkout phase
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and a degradation of later measurements has been noticed in rapidly boiling
liquid helium. This has been stopped by carefully maintaining the helium
Tevel and by slightly pressurizing the dewar to inhibit bubble formation.

THE PROBLEM

Figure 1.shows a typical set of data. Our "standard" practice is to
check for evidence of decrease in breakdown voltage with time and occasionally
to run a set of data through a fast fourfer transform to see if any peri-
odicities appear. Then as in Figure 2, the data is plotted. on several prob-
ability papers. '

ORNL-DWG 75-13873
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- FIGURE 1. Data Taken at 0.5 mm Gap Width on
March 11, 1974, with Sphere Positive, dc.

Sevaral distributions for voltage breakdown have appeared in lilerature.
They range from the normal (Henning and Wartman, 1957) and lognormal (Gerhold,
1972) to extreme value distrihutinons Tike the Weibull (Occhini, 1971) and
" the extreme value (Weber and Endicott, 1956). The normal distribution is
a poor candidate as the data are usually skewed to the left. A case can be
made for using one of the asymptotic extreme value distributions on the qroundé
. that the voltage at which the breakdown occurs is the minimum voltage necessary,
at this pafticu]ar instant in time, to force an arc across one of the large
number of possible arc paths between the electrodes. We have found that the
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plot on log extreme value probability paper seems adequately linear for
most sets of data. This is a somewhat subjective observation, one that I

am not entirely happy with, but at least it is a starting point.
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FIGURE 2. Probability Plots for 2 mm Gap, Point Positive, dc.

_ There are three asymptotic types of distributions for the smallest
order statistics (Fisher and Tippett, 1928). Below are left-skewed forms
of these distributions and some of their names .

Type 1, exlreie value, Gumbel, log Weibull, double exponential:

RS
Filx) =1 —‘eXp[-e o ] - < X <
, 6>0
1) ol )]
fi(x) =ge exp|-e - < f <
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Type 2, log extreme value, Rosin-Rammler:

_(XEyk
Fo(x) =1 - e 6 ES X <w
L (587K 0
fplx) = T (XEHT 70 k>0

Typé 3, Weibull:

_(XE)k

Falx) =1 - ° ES x <w
S(XEyk #>0

falx) = k(BT e O K> 0

The Type 1 distribution is a sort of transition from Type 2 to Type 3 dis-
tributions. Useful references for extreme value theory are Gumbel (1958),
Epstein (1960) and Johnson and Kotz (1970). '

The Tocation parameter £ is troublesome. It is dear to the hearts
of fhe experimenters as it implies the existence of a voltage below which
breakdown cannot occur. There seems to be no physical justification for
such a parametef and the left-skewed observations provide evidence against
its existence. Values for it have not yet been estimated for these reasons,
but the idea is attractive. Figure 3 is a log extreme value probability
plot of data taken during March 1974 at various gap widths. Reversing
the polarity does have an effect on breakdown strength, contrary to physical
theory. It is suspected that the placement of the eélectrodes one above the
other is responsible for this effect. Another striking. thing about this
figure is the discontinuity near 90%,in>the data. The equipment was running
well and there is no explanation for this phenomenon. The number of .
observations for each gap width and polarity are listed below:

Gap Width (MM) Sphere + Sphere -

.25 : 30
.5 120 180
1.0 60
1.25 160 30
1.5 120 120
2.25 120 30
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This apparent mixture of distributions does not occur in every set of data
and no pattern for its occurrence has been detected. It is quite trouble-
some as engineering considerations for the design of cryogenic cables depend
on probability statements about minimum breakdown strength.

ORNL-OWG 74-6545R
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'FIGURE 3. Log Extreme Value Probability Plots
‘ of Data Taken Duriny March 1974, dc.

TOWARD A SOLUTION

‘The use of probability plots to determine the distributional form of
voltage breakdowns cannot be considered definitive because.of the nature of
the method. However, when you consider the totality of the evidence it
is more persuasive. What is needed is a test which distinguishes between
the extreme value distributions. New experimental evidence must be found
before the existence of a minimum breakdown voltage can be accepted. The
factors which produce the contamination of the primary response need to be
identified.
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DISCUSSION: DIELECTRIC BREAKDOWN IN. LIQUID HELIUM

Editor's Note: The problem being considered concerns deciding between one
of three extreme value distributions on the basis of probability plotting.
Something is needed that is more satisfying and perhaps more repeatable
than merely seeing if the set of dots are on a straight line. Are there
techniques that would allow discrimination among these three distributions?
Are there nonparametric techniques that would help in a situation like
this?

Lohrding: Have you tried the goodness-of-fit, Kolmogorov-Smirnoff type
test? There are probably more powerful tests on the market now, but it
seems that that would be one of the first things to look at instead of
looking to see if you have a straight line on the probability graph plot
paper.

Miller: 1If you get into Kolmogorov-Smirnoff statistics, Lilliefors published
papers on Kolmogorov-Smirnoff type tests in normal situations where the

mean and variances are unknown and the exponential. I suspect that to

create the necessary tables would be a heavy computing job. But it is one
method that is open for pursuit. I'd Tike something a 1ittle better than
Kolmogorov-Smirnoff tests because they are notoriously weak in the tails,

the area of greatest concern. '

Lohrding: There have been some recent tests that do pick up the tail
difference much better than the Kolmogorov-Smirnoff.

Tukey: I don't think that a statistician should allow himself to be
caught trying to decide between these extreme value distributions with
data of the general character or even ten times better than that shown
here. It isn't going to be settled that way. You can never find out
about the far tails of things from small amounts of data. And in this
business and for this far tail, 5,000 values is still a small amount of
data. So my recommendation is do your best to avoid trying to solve that
problem, because you aren't going to do it.

Bloomfield: 1 was looking al Figure 2. The sharp discontinuities and the
small number of these graphs mask the gentle curvature that isn't in some
of the others. These data are probably consistent with the observation
that the logarithmic transforms have been a bit too powerful on the curves
of higher voltages. The lower ones look as if they have been straightened
out fairly well. The other ones look as if they have been turned over and
are now convex, whereas before they were concave. Possibly a transform
that looks 1like a logarithmic transform at the Tower voltages and something
closer to a cube root at the higher voltages would succeed in linearizing
all these things at the same time. A1l three of these distributions are
extreme value and essentially the same distribution. If you have a
variable and take any one of those distributions and apply homogeneous
power transforms to it or a logarithmic transform, then you get one of the
others. This occurs because the extreme value problem that Fisher and
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Tippett solved was phrased in the same way as the central 1limit theorem.
But there is no real reason to stay within that particular class of trans-
formations unless there is some natural invariance that you wish to
preserve. The thing about those transformations is the homogeneity of
them. If you make a scale change to one variable then it comes out as a
scale change in the transformed variable, or shift in the special case of
the logarithmic transform. In the present case, the data are collected on
equipment which has some characteristic geometry and some characteristic
scales. It is not necessarily reasonable to expect that sort of invariance
to be a natural requirement. It would be quite reasonable to look for
other types of transforms that may do a job on these data of simultaneously
linearizing several of the plots.

Miller: The jumps do not appear in all the data that I have seen. This
is "the best data" according to the physicists. Some of the earlier data
and some of the later data do not show this discontinuity between 90 and
95% at all. I am really assuming that the physicists, with some help from
concommitant observations perhaps, can find a way to eliminate this
"contamination.”" I don't see any way to handle mixtures of distributions

in a situation like this.

Tukey: I would rather look at better plots than the plots we are looking
at here. I want to take out a linear fit from these things and look at-
the residuals. Then maybe I can tell better what seems to be going on.
This is an engineering problem and the physical solution might not be the
right answer. The properties of chemically pure copper are of no interest
to the telephone business, because the copper in the telephone business is
not chemically pure and never will be. The properties of liquid helium
flash-over, to use the nasty word, that are going to be relevant to
transmission lines are those that apply in the circumstances really in the
transmission line. If the physicist can find out how to get rid of this
jump here, the next question is, will that technique apply in the trans-
mission line or will the transmission line have worse jumps for the same
reason? I think you have to understand the phenomenon and not just clean
it up. The phenomenon of Chile copper is still not yet understood.

Kao: Although I am in the Department of Applied Mathematics, I get involved
with data analysis for probability distribution of pipe bursting. That is
very similar to the problem of dielectric breakdown that we are now talking
about. I will mention the procedure I suggested and have been doing for

the problem that I have. First, I would search for the physical reason

for using any kind of theoretical model like the extreme value distribution.
There are three types of extreme value distributions; the three types are
different. These three types of extreme value distribution are limiting

" distributions based on different assumptions. You have to check into the
basic assumptions. I found out the Weibull distribution fit the basic
assumption. Now the pipe burst and pipe bursting pressure are all positive,
so it is bounded from below. If you check the smallest extreme value, it

is bounded from below all right. I developed what I call densitygrams.

The width of interval for plotting the step function is not fixed; it's
determined by the sample values. Using that technique, I came up with a
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curve close to a largest value extreme, not the smallest.value extreme.

That curve also Tooks Tike Weibull. For pipe bursting pressure there is

no reason to take the largest value, so Weibull turned out to be the right
choice. I used the Weibull and am now doing an estimate for the parameters.
So far the results seem to.turn out all right. It is almost impossible from
an empirical point of view, as Professor Tukey just mentioned, to use just

17 points to evaluate tail probabilities. I don't really agree that we can
never solve this problem. If there is a physical reason to justify picking
some theoretical model, I think we still can try our best and find some
results which may give us some insight in the preliminary stages.

Conover: One needs to decide what is the purpose of making a decision as
to .which probability distribution to choose. If you are looking for the -
best fit, then I would just use a likelihood ratio. Figure the likelihood
function of one distribution, compare it with the Tikelihood function for
another distribution for the points you have, and pick the distribution
that comes up with the largest likelihood function.

If you are really interested in examining what is going on-in the tails,
an examination of your graphs indicates that none of these distributions
is working well in the tails. Perhaps you should go with some kind of a
polynomial function to fit the tails.

You mentioned the method used by Lilliefors. I don't think it would be
too difficult to use it for your problem here. I am not sure that the end
purpose is what you want. The end purpose will be merely a measure of
goodness of fit. But if you want to go ahead with the procedure it is
simple enough to do. Just estimate the parameters using some good method
such as maximum likelihood. Generate samples of the same size from the
distribution in question with those parameters. Do this repeatedly

5,000 times, however many you feel you can afford. This doesn't take up
much computer time to come up with these numbers and see how many of these
empirical distribution functions are further away from the theoretical
function than your observed points are. I really don't think it will take
much time. Lilliefors used a lot of time because he tried to generate
complete tables that anybody can use. You are just interested in a par-
ticular set of values, a particular sample size. You only have to go
through it once.

Kao: I didn't understand what Conover said about using the maximum Tikeli-
hood ratio comparison for picking some probability distribution, could you
elaborate?

Conover: .I was suggesting fitting the unknown parameters using some
reasonably good method that is not too difficult. Then compute the Tikeli-
hood function. Put the observed values into the density function. Compute
your likelihood function for the Gumbel distribution. Then do the same
thing for the Weibull distribution. See which distribution gives you the
larger likelihood function.
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Tukey: I was not arguing against the use of physical insight and physical
theory to try to do the extrapolations here. I would argue in favor of
it. But I think the wise statistician will make sure that the physicist .
is the man who is doing it.

If you put polynomials into the kind of problem here, you are guaranteed
either to get a nonmonotone curve for extreme extrapolat1ons and somebody
will extrapolate out there. Or else you will get an answer on the finite
probability of failure at zero stress and somebody will extrapo]ate out
there So don' t try the polynomial.
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EXPERIMENTAL DESIGN FOR HTGR FUEL RODS

: C. K. Bayne
Union Carbide Corporation Nuclear Division
O0ak Ridge, Tennessee

PROBLEM

A screening experiment can be completed in three months in a High
Flux Isotopic Reactor (HFIR) to test factors affecting particle coating
breakage in fuel rods. This knowledge will be used to design fuel rods
for the High Temperature Gas Reactor (HTGR).

HTGR fuel rods are formed into cylinders by injecting a pitch-graphite
matrix over coated fuel particles. The fuel rods are then carbonized,
with some of the pitch volatilizing. The amounf of gas released is indirectly
measured by the Pitch-Coke ratio (P-C ratio) of the weight of the carbonized
matrix to the weight of the original matrix. Four matrices are examined
which have P-C ratios ranging from 20% to 40%. Matrix A has a high P-C
ratio and is expected to cause high coating breakage. Matrices B, C and
D have Tow P-C ratios with matrix B being a standard matrix and matrices
C and D alternatives to matrix A.

To test fuel coating breakage, two holes are available in a HFIR with
each hole containing sixteen fuel rods (Figure 1). One hole is run for
one cycle and the other hole is run for two cycles. The middle eight fuel
rods in each hole contain enough fissionable material to create a temper-
ature of 1250°C, while the four rods at each end contain enough fissionable
material to create a temperature of 900°C. The amount of fissionable material
in each fuel rod will depend on its position in the reactor.

An additional factor in the experiment is the flux (n/cm2-sec) which

varies parabolically over the length of each hole. The highest flux value
is about 12 x 10'% MeV for the middle fuel rods and the Towest flux value
is about 6 x 10]4 MeV for the fuel rods at each end of the hole.
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FIGURE 1. Horizontal Diagram of Sixteen Fuel Rods in One Hole
The experimental variables and their levels are given in Table 1.

TABLE 1. Levels of Experimental Variables

Variable Level
Cycle Cycle I (one'cycle); Cycle II (two cycles)
Temperature annec, 12450°C
Particle Coating High strength, Low strength
Matrix A(High P-C ratio); B,C,D (Low P-C ratio)
Flux Continuous

An experimental design is desired to analyze the effect of the variables
on particle coating breakage. The solution is divided into three parts.
First an experimental design is discussed for the factorial (discrete) vari-
ables: cycle, temperature, particle coating and matrix. Then the flux
variable and the response variable are considered separately.

FACTORIAL VARIABLES

The experihéntal design for this problem must be constructed to satisfy
several aims. Three aims which are considered most importént are: (1) comparing
the matrix A with high P-C ratio with the matrices B, C and D with low P-C
ratios; (2) comparing the effects of the three low P-C ratio matrices; and
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(3) testing the main effects and the two factor interactions of the four
factors: particle coating (P), matrix (M), temperature (T) and cycle (C).

The effects of the factors with two levels are estimated as the
difference between the response at the high and low levels. This means the
parametefizations of factors C,‘T, and P are as shown in Table 2. The
matrix factor is parameterized intd.three effects M1, M2, and M3 defined
by the contrast of responses from fuel rods containing matrices A, B, C,
and D given in Table 3. |

TABLE 2. Parameterization of the Two-Level Factors

- Variable ‘ Parameterization

Cycle +1 (cycle II), -1 (cycle I)
Temperature +1 (1250°C), -1 (900°C)

Particle Coating +1 (high strength), -1 (low strength)

TABLE 3. Response Contrasts of Matrix Factor

Matrix
Variable A B € D
M1 +1 -1 -1 -1
M2 0o -1 -1 +#
M3 0 -1 +1 0

The M1 contrast is a comparison of a matrix with high P-C ratio with
matrices with a low P-C ratio. Since this comparison is of great importance,
matrix A will be used in sixteen fuel rods while matrices B, C and D will
occupy the remaining sixteen fuel rbds. The second most important matrix
contrast M2 is between a commercially made matrix D and matrices B and C.
Therefore, matrix D will be assigned to eight fuel rods and matrices B
and C each will be assigned to four fuel rods. The last contrast‘M3 is a
comparison of matrix C with the standard matrix B.

The main effects are represented by the letters C, T, and P, and the
contrast by M1, M2, and M3. The two-factor interactions of the main effects
are represented by: CT, CP, CM1, CM2, CM3, TP, TM1, TM2, TM3, PMI, PM2, and PM3.
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The experimental design for the factorial variables is constructed by
first considering the matrix variable at two levels. The two levels are -
"high P-C ratio and low P-C ratio. A 24 factorial design can then be con-
structed with two replicates. This design will indicate the Tevel of the
cycle, temperature, and particle coating variables for each fuel rod, and
matrix A will be assigned to the sixteen fuel rods that are to receive the
high level of the matrix variable. To complete the design, the low P-C
ratio matrices B, C and D must be placed in the sixteen fuel rods assigned
to the low-level of the matrix variable. To accomplish .this, this part of
the design is considered to be a 3 x 23 asymmetrical fractional factorial
design in 16 runs. The low P-C ratio matrices are considered to be a
three-level variable coded B =0, C =1, and D = 2. For construction pur-
poses, the high and low-levels of the two-level factors are identified as
1 and 0, respectively.

To construct a 3 x 23 design in 16 runs, Addelman's (1962) replacement
and collapsing method is used. Addelman's method utilizes the proportional
frequency condition, n.. = n. n_j/N for two factors X and Y, where N = number

iJ. i
of treatment combinations, ni_'= number of times the ith level of factor X
level of factor Y occurs, and n.. =

th
1]

level of X occurs with the jth level of Y. The
proportional frequency condition was shown by Plackett (1946) to be a

occurs, n.j = number of times the j

number of times the ith

necessary and sufficient condition for two factors to be orthogonal to each
other and to the mean ().

First a 26 design in 16 runs is constructed with the three variables:
C (cycle), T (temperature}, P (particle coating), and three dummy variables
X, Y, and Z. The 26//16 design is constructed using the identity relation:
I = CPTX = CTYZ = PXYZ (Table 4). This relationship forms a resolution IV
design which is the maximum possible resolution. In resolution IV designs,
the mean and main effects are orthogonal but the two factor interactions
are confounded.
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TABLE 4. A 2%//16 Design with T = CTPX

The three two-level dummy variables are now replaced with a four-Tevel
variable .S by the correspondence shown in Table 5. This correspondence ié
used because an orthogonal main effects plan for three two-level factors |
‘can be replaced by a single four-level factor and the proportional frequency

(ap]
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condition is preserved (Table 6).
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CTYZ = PXYZ

TABLE 5. The Correspondence used to Replace Three Two-Level
Variables with One Four-Level Variable.

Two-Level Variables 3 Four-Level Variable

X

0
0
1
1

—Oo—-0O |<

O——=0O |N

and
and
and
and

X

1
1
0
0

Y

o -0 -

175

—_—o O — N

Vi by

wWr—O |



TABLE 6. A 4 x 23 Design in 16 Runs

OO A A d T OO O —t— —— |
CO~N—00QO=—O00O0—~—00—~— |T
O = OWNNWWNNWO ——0O |\

For example, the proportional frequency relationships for the factors.
P and S are:

N]b = 2= Ny N /N =8+ 4/16 = Ny N o/N =2 =Ny

Nyp = 2= NN/ = 8- 8716 = N N (/N = 2 = Ny

Npp = 2= Ny N/N = 80 8716 = Ng N /N =2 = N,

Nyg = 2= Ny N /N =8 4/16 = Ng.N.3/N.. =7 = Npq
3

The final step in constructing a 3 x 2* design in 16 runs is to coliapse

the four-level variable S to the three-level matrix variable M. Collapsing
is done by a many to one cdrrespondeﬂce. The proportional frequency con-
dition is preserved no matter what mapping scheme is used. However, the

hias properties of the estimated parameters will depend on the correspondence.

Consider the two correspondence schemes shown in Table 7. These
two mapping place matrices B, C, and D in the sixteen fuel rods in the
manner given in Table 8. There are other possible mappings but they all
give matrix patterns which are equivalent to correspondence 1 or to cor-
respondence II.
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TABLE 7. Two Correspondences for Collapsing a
‘ Four-Level Variable to a Three-Level Variable

1 | 11

Four-Level Three-Léve] Four-Level Three-Level
0 D=2 0 B=20
1 B=0 1 cC=1
2 C=1 2 D=2
3 D=2 3 D=2

TABLE 8. Positions in the Experiment of the Low P-C Ratios
- Matrices for Correspondences I and II

Correspondence I Correspondence I1

Temp. °C Particle Cycle (I) Cycle (II) Cycle (I) Cycle (II)
900 high B - C C D
900 high D D B D
900 Tow B C c D
900 Tow D D B D
1250 high C B D C
1250 high D D D B
1250 Tow C B D - C
1250 . Tow D D D B

Correspondence I was chosen as the mapping scheme to complete the
design after examining how the main effects were biased by the two-factor
interactions for each correspondence. Each correspondence has the temperature
variable and one of the matrix contrasts confounded by two-factor inter-
actions. But correspondence I has the advantage that the least important
contrast M3 is the contrast confounded. In addition, three of the two-
factor interactions TM1, TM2, and TM3 are not estimable for- correspondence II,
while only two of the two-factor interactions TM2 and TM3 are not estimable
for correspondence I. Table 9 summarizes the bias properties of correspondence
I and II.
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TABLE 9. Bias Properties of Correspondence I and II

~

Cdrrequndence I Correspondence 11
E(u] = n - E[ul =
E[C] = ¢ _ E[CT = ¢
E[T] = 3/2T +2 CM3 - 1/2TM1 E[T] =2 T + 2 CM2
E[P] = P | ELP] = P
E[M1] = M1 E[MI] = M1
E[M2] = M2 E[M2] = 2 M2 + CT
E[M3] = 4/3 M3 + 1/3 CT E[M3] = M3
TM2 not estimable TM1 not estimable
TM3 not estimable TM2 not estimable

TM3 not estimable

FLUX YARIABLE

The flux variable is a continuous variable which varies parabolically
over the length of a hole in the reactor. This variable is a function of
the reactor and is independent of the cycle, temperature, particle coating
and matrix variables. A measurement of the flux can be made at the center
]4‘Mev to a high value

\

of each fuel rod and varies from a low value of 6 x 10
of 12 x 10'% mev.

To statistically control the flux influence, the range of the flux
values could be stratified and used as a blocking variable. This procedure
would add another variable to the factorial portion of the design and would

,furthef complicate the construction of the experimental design. I think

a better solution would be to use the flux variable as a covariate with'

the value of the flux at the center of each fuel rod as the realization of

the covariate. In the absence of additional information, I would assume

‘that the response is linearly related to the covariate. This Jinear relation-
ship can be tested because the flux varies symmetrically about the midp]éne
of the reactor giving two measurements for each flux value. The residual
error can then be partiticned into the error between dup]icétes and the error
due to lack of fit of the model. By comparing the two error terms with an
F-test, the adequacy of a linear model may be tested.
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The model used to describe the vector of responses Y can be partitioned
into the factorial variables and the covariate variable. Let the mean,
main effect andAtwo-factor interactions of the factoria1~9ariab1es.be
represented by the vector o with the corresponding design matrix X, and Tet
B represent the regression coefficient for the flux values F. With this
notation, the model is written as

Y=Xa+FB+e

where the error vector, e, is assumed to be normally distributed with E[e] = 0
and var(g) = 021 in the customary manner. The analysis of this covariate
model can be found in Linear Models by S. R. Searie (1971).

RESPONSE VARIABLE

The observed response is the proportion of particle coatinglehich have
broken. This type of response is usually transformed by arcsin /Y to stabilize
the variance for the analysis of variance.

A potentiai problem with this type of response is that the number of
particles in each fuel rod may be inadequate to detect any significant results
among the treatments. The expected failure rates for the matrix and particle
coating variables are shown in Table 10.

TABLE 10. Expected Failure Rate

Particle Coating
Matrix Low Strength High Strength

A >1% 1%
B w1k : <1%
c 1% <1%
D 1% <1% -

Because of the high flux in the HFIR, only 100 to 400 fuel particles can
be loaded into a fuel rod. The expected hreakage then is only one to four
broken particles per fuel rod which would not be adequate to detect any sig-
nificant differences among the treatments. - The experiment is still useful,
however, as a screening experiment for detecting unexpected large proportions
of particle breakage.
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DISCUSSION: DESIGN PROBLEMS FOR THE HTGR

Tietjen: My experience has been that one nearly always gets wiped out in
something that is as hot as one of these high temperature gas reactors.
The elements stick together. They get broken up in analysis later. A1l
sorts of things happen that one doesn't anticipate. My approach would be
to be much less ambitious trying nothing more complicated than a 22
factorial. If a fourth of your results get wiped out you can salvage
something from your experiment. Do replication so that you have some kind
of error against which to judge the results. If you don't, your whole
experiment gets destroyed. There is nothing left!

Bayne: To do replications, we will have to convince the experimenter to
not be as ambitious. I am not sure how to replicate and, at the same
time, answer all the questions the experimenter wanted answered. Have you
been successful in convincing the experimenter not-to be so ambitious?

Tietjen: I haven't been successful. The other complication is that you
are treating these fuel elements with what you suppose is a constant
temperature, flux, etc., but by putting in different treatments you change
the treatment to the fuel elements themselves.

Gluckman: If the engineer really wants that many variables with that fine
of testing, tell him to give you more rods for your test. If he is that
ambitious, you can point out the trade-~off of giving you more rods with
some sort of assurance that he will get his test run, rather than just the
two he offered.

Bayne: It still goes back to the problem of trying to convince the experi-
menter that he can't get something for nothing. This complicated experiment
was accepted because it was able to give the information he wanted just
using the two holes.

Miller: 1 don't think that the experiment was all that overly ambitious.
[ have designed and have had fuel type experiments run in reactors that
were highly fractionated and were successfully implemented. It may depend
upon the man you are working for. It is obvious that this man did not
anticipate the problems that were inherent in running in a high flux
environment.

Prairie: I am concerned about the response variables. We are thinking
about the 0, 1, 2, 3, and 4 powers. Based on this you really can't learn
too much about the effects of these factors, but you are hoping to do some
screening. My question is, if you find the combination that gives you a
particularly high proportion of fractures, then what would you do? What
is the next step? If one of the combinations gave two or three times as
high a number of fractures as this one percent range you are talking
about, would you do. some additional experimentation tuv verify?

Bayne: Actually, once the screeningrexperiment was done, the engineers
were planning to eliminate certain factors and add other selected variables
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to complete a larger experiment. Higher density fuel particles would
preclude the use of the high temperature reactor for this experiment.

Hooper: If the full experiment had worked, how long would it have taken?
Have you considered using sequential procedures in the design? In an
experiment that runs through very long exposures, you don't have that sort
of option, but in shorter experiments you do. In a high flux environment
sequential design procedures will often save you a lot of agony.

Beggs: I wonder if temperature and flux aren't highly correlated. If so,
you probably ought to use both temperatures and flux as covariates.

Bayne: Yes, they are highly correlated. Actually in order to produce the
temperature, each fuel rod loading was calculated based on a flux profile.

In other words, the higher the flux the fewer number of fuel particles per
rod. This was done to make temperature constant, i.e., like a step function.
There were no thermocouples in the reactors to measure actual temperature,
so it is hard to say what the actual distribution was. The temperature -

was controlled by the number of fuel particles. It would be difficult to
use temperature as a covariate because there were no readings of actual
temperatures during the experiment.

Griffing: I was going to bring up a similar question about temperature.

You said that the temperature and the flux varied in a similar manner. In

a particular class of 900°C, there is as much variation in temperature as
there is between the 900° and the 1250° class. That is, you get as much
temperature variation within the 900° class as you would get with some

members within the 900° and the 1250° class. So treating them as discrete
variables would not necessarily be the most valid way to go. I don't know
what alternative you would have, being as limited as you are in the experiment.

Bloomfield: There is nothing that is going to protect you against total
losses of your experimental data. But the general idea of setting up
des1gns in such a way that they are robust against small amounts of
missing data is starting to get some attention.

Baxne: Peter John has done some work on missing data in fractional
factorial designs and his results indicate that if you do have missing
data in fractional factorial des1gns, then your estimates are h1gh1y
confounded with other parameters in the experiment.

Tukey: There is a general comment that needs to be made and that is we
now have computers. Orthogonality is not the wonderful thing that it used
to be. It was never that wonderful anyway. Bi-orthogonality is important.
Orthogonality is a decorative way to get there. The distinction is that
the way you calculate the answers from the data is bi- orthogona] to the
things you don't want to find if when they happen it doesn't affect this
particular combination of experimental results. And once you face up to
resistant/robust techniques, nothing is ever going to be orthogonal again.
As soon as you have one soft value that you treat differently from the
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others, any perfect orthogonality is gone. You only need approximate
orthogonality. . The result quoted from Peter John has to do with using the
estimate that is as close to what we would have done if we had had all the
data. This is probably the wrong thing to do. Certainly, if you have a
fractional factorial with missing data and you analyzed it as a regression
problem, you will have no more confounding than you will have in any other
regression problem. ‘

Nicholson: There are no thermocouples in the individual fuel elements?

Bayne:  No, I don't believe the experimenter placed thermocouples in the
reactor. There are flux monitors.

Nicholson: So the situation then is that we have three ANOVA variables

that we can set supposedly at two nominal levels each and they will stay
there. We have two temperature levels that we can set based on heat
transfer calculations and a theoretical flux distribution. If these are

not correct, the temperatures will be at undetermined levels which hopefully
fluctuate around the two nominal levels. And then we have estimated flux
‘Tevels that go along with each element. -

Bayne: Yes, except for the fact that they can take a flux profile before
the experiment is even run and get flux values for the reactor. I think
the problem is that we are talking rods or of fuel elements. There is a
profile for each hole of the reactor, and we can measure these at the

- center of each of the two-inch fuel rods.

" Tukey: You mean this is a profile before the rod is even inserted?

Bayne: Yes.

Tukey: And there is no flux measurement in the rod itself so whatever
change in flux that the rod caused is unmeasured?

Bayne: True. I still would like any comments from any one who has experience
with reactor designs on how they have handled the flux variable, whether

they have treated it as a covariate or used some kind of blocking scheme

or whdalever.

'Tukez: Why not use the general maxim - when in doubt, do both?

Gardiner: I handled the flux variable in the same way you intended to
handle it, Chuck, in an experiment in the Oak Ridge research reactor.
This was long before HIFR was built. Unfortunately, I didn't have that
nice symmetric profile that you had. The calculations were a little
messier, but that's the way I handled it.

Bennett: I have done several reactor experiments of this kind. In every
instance, in one way or another - and not always quite as directly as you
imply - flux was used as a correcting variable. Usually you can get a
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computation of flux that is at least as good as the measurement you are
going to get out the other end. The thing that bothers me most about the
whole experiment is the fact that you have a fairly ambitious and saturated -
experiment which is not quite consistent with the ability to measure the

1% failure rate on a relatively small number of elements. In other words,
I don't see why you expect to get very much distinction between the design
factors and the measurable results.

Bayne: 1 th1nk that is correct. The experimenters feared that there
would not be any results coming out. They wanted to use it as a screening
experiment in case the predicted failure rates were grossly in error.

Bennett: One of the essentials of the highly complicated, or highly
saturated, designed experiment is an error estimate sufficiently small and
sufficiently well determined to measure significance and/or establish the
existence of true effects.

Ba ne: The cost for these experiments is very high; it might run as high
100,000 or more. When you are working with this kind of price tag,

the experimenter feels he should get the most for his money. That is why

I think he is hesitant to not be ambitious in these types of experiments.

Nicholson: 1Is there enough symmetry around the center of the reactor as
far as the flux profile is concerned to pair things and get some sort of
error measurement by putting in duplicate situations.

Bayne: Yes, there is. At least the profile that the experimenter showed
me had duplicate measurements for each of the positions in the fuel rod in
the reactor near the midpoint.

Prairie: I am still worried about the response. Can you do something to
make some sort of stress testing where you can beef up some factors? Flux
you can't beef up. Can other factor levels be used in such a fashion as
to increase the fracture proportion or would that not tell you anything?

I am concerned about setting up a factorial type.of experiment to look for
effects on the response variable. It is going to be hard to find out
anything unless something very strange is going on compared to what you
think is going on.

Bayne: I don't know the answer to that question. Are you talking about
using more diverse levels for the variables in order to get a higher
expected failure rate?

Prairie: I am th1nk1ng of d1gg1ng into the fracture distribution a Tittle
bit deeper to learn what is going on. Unless there are almost thousands
of replications when you talk about a 1% fracture proportion, it's going
to be hard to detect any differences at all. In an experiment 1ike this,
I don't even know what it means to estimate experimental error,

Baxnef I agree. But the levels were set by the experimenter and I really
don't know how they affect the particles.

)
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Bloomfield: I gather that the expected number of breakages is really
quite small. What is. the response - a mass of uranium or a mass of
plutonium released by the fracture? Would you leave it as a continuous
response or categorize it? '

Bayne: They dissolved the fuel rod and used a chlorine leach method to
calculate the amount of uranium leached from the broken particles. In

that sense they could calculate the weight relative to the original weight.

Bloomfield: I am wondering whether, if the mass of the pellets is given,
you can convert back to an integer number of fractures. In that case
presumably you would be close to a Poisson distribution and couid get some
ideas of error magnitudes.
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SAMPLING THE ENVIRONS FOﬁ CONTAMINATION

L. L. Eberhardt
R. 0. Gilbert
Battelle Pacific Northwest Laboratories
Richland, Washington

INTRODUCTION

In the last decade or so, the general public has become very conscious
of environmental affairs, and use of the word "ecology" no longer evokes
puzzled expressions from laymen or students. The broad responsibilities
of the Enefgy Research and Development Administration include studies of
a wide range of contaminants in environments ranging from the sub-tropics
to the Arctic zone. Under Atomic Energy Commission sponsorship, a wealth
of information accumulated on the behavior of a variety of substances in
both biological and physical systems, including much attention to "fallout"
radionuclides, in the earlier years.

Inasmuch as many contaminants may exhibit a highly dynamic behavior
in both abiotic (atmosphere, water, and soil) and biotic systems, a good
deal of attention has been paid to various kinds of mathematical models
for that behavior. In the substantial literature dealing with the "kinetics"
of various substances, one is hard put to find any guidance for the design
of a sampling program for the study of a trace substance (a‘"contaminant“)
in any system. About all we have observed is that most laboratory workers
tend to take observations equally spaced on the time axis, but occasionally
one sees plots that apparently result from the use of equal spacing on a
Togarithmic scale. Collections made out-of-doors seem mostly made at con-
venient "sampling stations," but sometimes a grid system is suggested, or
stations may be concentrically patterned on a "point source." For an im-
pression of the current state of analysis of pollution data, the reader
is referred to two volumes presumably directed towards statistical aspects
of such studies (LeCam, et al, 1972; Pratt, 1974).

Since there is a rather substantial body of survey sampling theory,
and because contaminants are seldom found to be uniformly spread over the
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landscape, it has seemed to us that more attention to sampling design might
yield worthwhile benefits. Two kinds of practical problems come Up immedi -
ately. One is that the process of actually locating and sampling items of
the biota is rather more time consuming that most of us realize. In short,
no one has yet found a way to take a random sample of the fish in a river.

The second problem is that most sample survey methodology seems to
center on estimation of a mean or a total. In many caées, such an estimate
seems to be useful and worth having. However, we have the uncomfortable
feeling that it is really the spatial pattern of distribution of some
contaminant that is of most interest. In a general way, then, this is our
problem: What are the elements of a sampling theory concerned with ascer-

taining spatial pattern, as contrasted with present emphasis on estimating

totals or means? We are particularly concerned here with the allocation

of sampling effort for the purpose of determining pattern.

It can immediately be objected that we ought also to be concerned
with the temporal pattern. Unquestionably this is so. We will, however,
avoid that issue here for several reasons:

e The complications in dea]ing’with space and time together are obviously
a bit too much in the beginning. '

e Many of the more obvious practical problems can be dealt with in a
static frame of reference. _

e There don't seem to be many generally accepted models for spatial
pattern of contaminants; whereas there are a host of kinetic models
for variations over time. Furthermore, we believe that there is a
body of theory directly applicable to "sampling in time," given a
particular model. Much of the recent work has been done in industrial
experimentation and stems from a paper by Box and Lucas (1959). For
a recent review, see Cochran (1973).

A FRAME OF REFERENCE

In order to stay roughly withjn a static situation, we here mostly
assume that some contaminant (heavy metal, pesticide, radionuclide,
petroleum, etc.) is released to the environment and builds up there. By
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far the buik of most such substances accumulates in surface soils and
sediments and is redistributed by physical forces (erosion of one sort or
another). In terms of total quantities, p1ants and animals generally will
contain a negligibly small fraction, just because the biota constitute a
very small mass relative to the physical environment. We can thus suppose
that a really thorough sampling survey will initially include fairly exten-
sive sampling of substrate (surface soil or'sediment), followed by a study
of vegetation, and finally a survey of animals feeding on the vegetation,
predators on those herbivores, and so on. The fact that sampling is some-
times confined to the higher tropic levels (e.g., predators such as trout
or pike) simply reflects an understandable preoccupation with hazards to
people, which are often best evaluated by sampling as close to the dinner
table as is feasible. Such studies serve to evaluate immediate hazards,
but cannot provide the understanding required for full analysis.

Our problem can best be stated in terms of sampling soil. Conceptually
the simplest scheme is deposition of some substance from a single “point
source," from which emissions either stopped some time in the past, or for
which the current rate of release is small relative to the quantity accumu-
lated over time. However, one might suppose the situation not to be too
different for, say, the accumulated record for air sampling devices, if the
problem is posed as one of the "best" pattern for arraying such instruments.

The data can be regarded as values of some positive, continuous random
variable, expressed as quantities per unit area of surface. For simplicity
we assume soil cores to penetrate deeply enough so that subsampling by
depth is not needed. We also sweep under the rug such problems as "instru-
ment" (counting) errors, "laboratory errurs," pooling, aliquoting, com-
positing and the like. In practice one must, of course, spend a lot of
time trying to be sure variance components due to these sources are small
relative to between-sample variances, or are accurately measured. Normally,
the samples will be very small fractions of the area sampled, and thus
presumably can be regarded as coming from an indefinitely large population
(for variance calculations and the like). Strictly speaking, the population
is finite, is defined by the coordinate system used to locate samples, and
the sampling is usually without replacement, inasmuch as samples are removed
from the area.
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Some kinds of vegetation (mainly densely growing crops) might be
regarded in the same frame of reference as soils. Most noncrop vegetation
is irregularly distributed so that a unit area sample may frequently yield
no individuals of a given species or group of species. Enough is known
about differences in interception of particles by various kinds of plants,
and about plant physiology, to dictate that simply sampling whatever vege-
tation is present is not suitable for any but the crudest of "surveys."

For estimating totals or means of contaminants on vegetation, one can
use a two-stage sampling scheme, where the first stage is a sizable plot
(quadrat) within which individual plants (elements) of the selected species
are selected at random. If one is instead mainly concerned with the distri-
butional pattern of a contaminant, it will evidently be necessary to also
consider the spatial pattern of the plants. Possibly two goals might be
distinguished, one being that of ascertaining pattern of the burdens of
contaminant on individual plants (as in a "food-chain" study) and the other
being concerned with deposition or redistribution over space (so that the
plants serve mainly as collectors).

Our most recent and most extensive éxperience in sampling soils and
vegetation for a contaminant has been in connection with a study of pluto-
nium at the Nevada Test Site conducted by the Nevada Applied Ecology Group
over the last several years. We are thus inclined to view the problem in
the framework of that study, but it is, of course, of much wider scope.
Presumably it extends far beyond contamination, in the sense that rational
evaluation of the present "energy crisis" requires knowledge of both the
total quantity and the location of our oil and uranium reserves.

It is, in fact, in the area of "geostatistics" where we have found
most of the references that seem most relevant to our problem. Since we
have really only just started to look at some of these sources, we can
only suggest some impressions here. The main tool in common use for dealing
with distributional pattern is the contour map, which shows isopleths or
lines of constant value for the variable of interest. In petroleum explora-
tion, the contours of interest may be mainly elevations of some subsurface
rock stratum (sinée 0il is found in "folds" or "anticlines" in such forma-
tions), while mining geologists will generally be interested in mapping the
extent of "grades" of ore (i.e., concentrations of certain minerals).
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In both fields, the observations usually are made in an.irregular
spatial pattern. The computerized contouring programs with which we are
familiar use these irregularly spaced observations to estimate concentra-
tions at the grid nodes of a uniform grid pattern. The grid-node values
are estimated using polynomial surface fitting, moVing average, or both methods
in sequence. (Davis, 1973, gives an elementary discussion of the techniques ‘in
use; also see Agterberg, 1974, the colloquium volume edited by Merriam, 1970,
and the recent exchange between Olea, 1974, 1975, and Akima, 1975.)

In designing a survey for contaminants in soil, it would seem entirely
feasible to take the samples directly on a grid pattern, but some kind of
smoothing will nonetheless ordinarily be required before contouring is
possible (contours are obtained by interpolation between the estimated
grid-node values). Two statistical problems then come into view. One is
the well-known issue of systematic vs. random sampling (see, e.g. Cochran,
1946, Quenouille, 1949, Matern, 1960). The second question is whether a
simple systematic sample will be efficient in terms of our problem (esti- 4
mating distributional pattern). The two issues are evidently inter-related,

" but need to be discussed in terms of "variance-laws" (see below) to approach

the problem of allocation of sampling effort.

In many of the cases where vegetation is to be sampled, the irregular
distributional pattern of individual plants prevents the use of systematic
sampling, so that we are then immediately in a similar frame of reference
to that described above for petroleum and mining exploration.

VARTANCE LAWS

Nearly all of the data that we have thus far located on contaminants
in environmental samples show a strongly right-skewed distribution. Much
of the data that we have studied suggests that the sample coefficient of
variation (s/x) is approximately constant over a wide range of concentrations.
Coefficients of variation for many of the "fallout" radionuclides fall in
the range-bf 0.1 to 0.4 (Eberhardt, 1964; Remmenga and Whicker, 1967). In
reviewing data on DDT concentrations we found half of 74 sets of data (mostly
quite small samples) exhibited coefficients of variation between 0.3 to 0.5.
Gilhert, et al, (1975) tabulated coefficients of variation for 80 sets of

data (sample sizes 5 to 50) obtained in stratified random sampling for
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plutonium 239-240 in soil and vegetation at the Nevada Test Site. The
modal value is 1.0 for both soil and vegetation, while the median for soil
is somewhat higher (about 1.2) but Tower (about 0.9) for vegetation. Some
limited data for petroleum in the marine environment suggest values of the
coefficient of variation to be roughly unity for that substance (National
Bureau of Standards, 1974). |

Frequency distributions commonly used as models for this kind of data
include the gamma, lognormal and Weibull distributions. For plutonium,
at least, the distribution of particle sizes no doubt plays an important
role in the extreme variability observed in both soil and vegetation samples.
With the exception of the plutonium data, most of the studies summarized
above were based on rather uncertain sampling schemes. For this reason,
and in consequence of the strong skewness and small sample sizes available,
we do not suppose there is much point in trying to decide on a specific
frequency distribution model. The important points seem to us to be the
substantial skewness of the data and approximate constancy of the coefficient
of variation over a wide'range of concentrations. From this we suppose it
to be desirable to consider a "variance-law" of o2 = y?u? where y is the
coefficient of variation.

It should be noted that the plutonium data exhibit a very marked
spatial trend, crudely concentric about the "ground zero" of the "safety-
shots" giving rise to much of the data (cf. Gilbert., et al.. ibid.). MWe
ordinarily used four to six strata to keduce the effect of the sharp
~gradient on between-sample variability, but obviously this "trend-effect"
nonetheless contributes to the within-stratum variances from which the
coefficients of variation were computed. As yet we have not had time to
try to sort out a trend component, but there seems to be ample evidence
that a substantial pért of the variation observed within strata is not due
to trend. "

SOME_ALLOCATION SCHEMES

When some prior or auxiliary information is available for establish-
ment of strata, three schemes are commonly considered for allocating a ”
fixed total sample (n) among strata. These may be listed as equal, pro-

portional, and optimal allocation. Equal allocation might be considered
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for "analytical" comparisons (i.e., testing for significant differences
between stratum means), if one assumes the underlying frequency distribu-
tion to be lognormal and transforms accordingly, and if no particular set
of contrasts is deemed more important a priori. Cochran (1963: 145-146)
deals with allocation for comparisons between strata (or "domains of study")
when within-stratum variances are not equal. Quite reasonable arguments
might be raised for dealing with the problem proposed here in terms of com-
parisons between subareas, but we have viewed it entirely as a matter of
location--"where is the contaminant?"

If Ah denotes the area of the hth

proportional allocation we have:

stratum, and E:Ah = A, then in

_

L

In optimum a]location'(assuming the finite population correction negligible,
and assuming cost per unit is the same in all strata) we have:

S NS\
DY MDD
where the right-hand quantity results from assuming the variance law above,
i.e., Sh = YW It is interesting thét optimum allocation thus amounts to
allocation in proportion to the fraction of the total quantity of the sub-
stance falling in the stratum.

Another candidate for an allocation scheme may be postulated by supposing
each stratum to be comprised of a number of subareas or cells, all of the
same area. If it is required that the quantity within each such cell be

estimated within a common, constant standard error, &, then:
YU 2
= —L and thus nsp = (%) 15

where "jh is the sample size required within each cell ot stratum h, and
thus " is proportional to Ahuﬁ. Consequently the several allocations
proceed as proportional to Ah’ Ah“h’ and Ahuﬁ. The last scheme might also
be regarded as a restricted randomization, or as two-stage sampling.
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One immediately evident difficu]ty with systematic sampling under the
variance law mentioned above is that systematic sampling presumably
corresponds roughly to proportional allocation, and thus may not offer
sufficient precision in high concentration areas while "oversampling" the
low concentration regions. We are thus tempted to propose systematic
(grid) sampling within strata, but using a variable grid mesh, so that
the strata having high concentrations have a fine mesh, while those with
the lowest concentrations have a much coarser mesh. However, it is not
clear that such a scheme will be compatible with the available contouring
algorithms (we expect trouble at stratum boundaries).

While the contouring schemes offer a neat graphical representation of
concentration data, it is by no means certain that contouring is the best
way to deal with the problem posed here. Two-stage sampling with stratifi-
cation of the first stage units may well be a desirable alternative, and
perhaps our "problem" only expresses a need for better definition of objec-
tives. Certainly this has been a major problem for us in trying to help
investigators and administrators decide on survey designs.

CONCLUSION

Our purpose here has been to express a concern about surveys for
contaminants that focus on estimation of means or totals, and to suggest
a need for some theoretical and practical emphasis on sampling for distri-
butional pattern. We have postulated a static system to avoid the rami-
fications introduced by kinetic models and to direct attention to spatial
patterns. In effect, we are assuming a system that changes rather slowly
over time, and we presume that a theory suitable for our "problem" will
ultimately need also to be examined for its relevance to patterns of change
over time.

It should be emphasized that our main present concern is with sample
allocation, a priori. In the situation where one is given a set of obser-
vations and asked to produce a map, then it may be mostly a matter of
judgment as to which of the several available schemes for data smoothing
-~ are used.
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DISCUSSION: SAMPLING THE ENVIRONS FOR_CONTAMINATION

£y

Easterling: Was the laying of the grid done after the contaminant was
relfeased? How about experiments where you don't mark your contaminant
deposition as it happens? Have you looked at that or are you going to
provide us with references? I am thinking in terms of a nuclear power
plant. If we want to monitor a possible effect on fish 1ife, how do we
place stations in the river or the lake? I was wondering if there was any
related work that you looked at that might be of help.

Eberhardt: We worried about that (power plants), too. I think it would
be a whole 1ot harder in the sense that the kinetics of what happens over
time has to be considered. I did mention in the paper some schemes that
have been developed,- in industrial experimentation, to guide sampling in
time or sampling of some continuous variable that influences the outcome
of the response. Those things undoubtedly need to be looked into for just
that kind of problem.

Here, we would like some discussion relative to a theory of sampling for
distributional pattern, given nonhomogeneity of variance and some prior
information. We would like to contrast it with the usual designs which
seek to optimize estimates of totals or means. In other words, "What

are the distinctions between sampling for pattern and sampling.to estimate
how much there is?" Such sampling is not so difficult if the variance is
homogeneous over the field. Then, I would settle for systematic grid
patterns. If the variances aren't too bad, one can go to the contouring
routines and come up with a nice map. I suppose it should be said, too,
that we don't know that the contour scheme is "the" answer. It is just
that it is a neat description of the pattern that we infer from the data
we collect. There may be some other entirely different way of doing it.

Ferris: Rocky Flats has been doing experimentation and data analysis,
even some experimental design, in soil sampling for quite some time. Our

“situation is somewhat different. We do have a point source. We pretty

much know how it was dispersed - mostly through the wind. We have covered
all fronts in that we use both a systematic grid as you showed and, in
case that doesn't work, we also have a polar design. Don Michaels from
Aerojet has been doing a lot of work on grid sampling of the soil. In
fact, he designed our standard sampler that we use at Rocky Flats. As I
understand it, it is patterned after the one that the Colorado State
Department of Health uses. We have many people monitoring as well as
ourselves - the State Department of Health, the universities, and interested
ecology groups. Relative to movement of plutonium in the soil, John Minor
at Rocky Flats is doing”a lot of work and is publishing on how plutonium
gets from here to there in the soil. Does it go radiologically, does it
dissolve, or does it get carried along with another particle? I am not
talking about linearly; I am talking about going down into the earth. You
might find his work interesting also. Another thing I have noticed is
that, in all soil work, the log normal distribution is used. I don't know
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why. It seems to be convenient. I hear the story that it is used because
it is there and that is what has always been used. I wonder if anybody
has done any work to see if there is another distribution that is better.
Is this something that is empirically derived or do we just know that
plutonium in soil is distributed 1og normally?

Crain: We at Lovelace are interested in distributions of plutonium and

other radionuclides, but at a different level. We are interested in the
distribution of spatial patterns of inhaled particles. When the investigators
came to discuss this problem with me in connection with alpha emitting
particles last spring, I looked at what had been done by the ecologists.

I rummaged through their literature and found quite a bit of material.
Foresters are interested in problems of spatial pattern and also problems

of density of estimation, which seems similar to the kind of problem you

are getting into of not only total inventory but the spatial pattern. The
reason we are interested in it is that it has to do with microdosimetry
problems and the hot particle problem. But ultimately we would be interested
in the question of time because we feel that there is a possibility that
either inhaled particles are annihilated in a specific way or are moved
around by some sort of clearance process. To return to your problem, it
would be interesting to look at the size distributions of these particles.
You can probably get some of that from your autoradiograph studies. 1

think it would be interesting to relate those to some kind of theory about
how they might be blown- around. Perhaps the heavier particles are not
distributed the same as the lighter ones.

Eberhardt: The problem in forestry or plant ecology generally has to do
with discrete individuals that are readily identified, readily seen.

Here we must take a sample and send it to the laboratory for analysis, and
even then we have "counting" errors and various biases to contend with.

But I agree there are very similar sorts of angles that are indeed inter-
esting. We have a related situation on the Test Site because we are very
much interested in the relationship between the concentration in soil at a
spot and the concentration in vegetation near thal spot. Those two factors
certainly are important in human exposure problens.

As far as the application of the log normal distribution is concerned, we
worried about that several years ago. We contrasted the gamma and the log
normal as possible models. We did not look at the Weibull, which seems to
be another possibility. We found that it would take tremendous samples to
distinguish the two distributions. The big problem of course is in the
tails of the distributions. We simply don't have samples adequate to
distinguish between such similar distributions. We tried various tests
for kurtosis, skewness, and so on. We then went to simulation. If we
considered the gamma and log normal as alternatives and decided to use one
and picked the wrong one, it didn't make much difference in the outcome.
Log transforms of the gamma, interestingly enough, behave pretty well.
That's mostly approximation by simulation, but partly built on some other
early work with tests for homogeneity of variance by Barlett and others.
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Bloomfield: The gamma distribution with coefficient of variation one is
the exponential distribution, and the Togarithm of an exponential distribu-
tion is pretty heavily skewed. A gamma with larger shape parameter
necessitates a smaller coefficient of variation.

It is unfortunate that our maps use a rectangular grid system. Barocentric
coordinates would be better since a hexagonal grid gives more uniform
coverage than a rectangular grid. But I guess it is hard to get people to
go out to barocentric coordinates and take samples.

You mentioned that Kriging is different from moving averaging. It is
different in that the weights in the averages are determined from the
semi-variogram, rather than being determined on some ad hoc basis. But it
still shares the moving averages property of being a linear function.of
the data. Therefore it is sensitive to bad values. The technology that
John Tukey mentioned earlier of adaptively weighting things based on the
size of residuals can be applied to Kriging to get resistance to the
occasional bad value, or generally long-tailed errors. You hear it said
of Kriging that it allows for an infinite or nonconstant variance. That
is absolutely true. But it is still true that it is a technique that is
designed for use with Gaussian distribution. The infinite variance part
should not lead one to beleive that it is good with stably distributed
Cauchy errors or such. It is still fundamentally a procedure designed for
Gaussian data.

When you applied one of the smoothing procedures to the raw data before
taking the logarithm, the gross disparity in the sizes gave you a rather
uncomfortable amount of smearing out of the peak. That gave a strongly
sloped residual versus smooth plot. If you fit a straight line to this
plot, you get a function that says residuals tend to look like a linear
function of the smooth values. If you then subtract that from the
residuals, which is equivalent to adding it to the smooth values, you get
a new smooth value which necessarily gives you a zero slope in that par-
ticular plot. It might remove all the smoothing. I don't know. But it
does get rid of the slope. '

Eberhardt: We haven't tried it (smoothing) and it is worth looking into.

I do think we should say again that if we transform to logarithms then

things smooth out and look pretty nice. It's just that we will then have
to talk to people in terms of logarithms which we are not always successful

in doing. :

Steck: It occurs.to me that if you are satisfied with the contours then
you might design your experiment just to find particular contours. If
something like stochastic approximations exist in two dimensions, then you
could zigzag around on a contour and define it and then go on to a different

contour.
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Eberhardt: That's an interesting idea. One of the things that we need is
a situation where the variance is not so unreasonable, where the sampling
is not so expensive, so we can get more experience with larger samples.

Tietjen: Perhaps the ultimate objective in looking at this is to determine
where it is so we can decontaminate the area where it is Tocated. With
that in mind, I would think that in the peripheral area, for instance, one
would say there is an upper threshold number of counts in that first
contour. Consequently, suppose we do not want to investigate that area at
all, but we decide that the close-in area, inside a specific contour, will
have to be cleaned up. If we think that there is more plutonium in the
middle area than in the peripheral area, we perhaps should just move
toward the source until we get to something that we decide is intolerable.
We won't investigate the extremes at all but simply see where the high
contamination begins and where it ends, i.e., discover what part has to be
cleaned up. Is that an objective of the ultimate experiment?

Eberhardt: Yes. That is one of the objectives. I hesitate to take that
as a primary objective and to sample accordingly. One of the troubles is
that people have to decide to what degree they want to-clean up an area.
They would need to know the concentrations over the whole field to find out
how much dirt they would have to pick up. How many tons of dirt would

have to be moved. to reach the 100 pci/g level, for example? You really
need the whole picture before. you make your decision. If you are given a
guideline that says go down to a certain level and that is the sole purpose,
fine. Suppose we go ahead and make a decision to remove soil out to a
specific contour. We clean up the dirt out to that point and take it

away. The first question then asked is, "What contaminated soil did we
miss in the removal process?" We-then have rather a different sampling
problem, I am afraid. One of the reasons I am worried about the grid
pattern is that it appears that the machine, perhaps a grader, that we use
to clean up an area will probably windrow the dirt. I am concerned that,
when I am now told to come back and again sample this cleaned-up area,
those windrows may cause problems. You can take out dirt once and go

back, do another survey and find that you didn't get it all and go back
again, and so on.

Ferris: You are talking about only taking out the contaminated soil.
Perhaps a better concept would be to control the contamination. If you
blade it and then scoop, you hope that you will do that on a nonwindy day.
Otherwise the people downwind may not be as enthusiastic about your
cleaning up as you are. Let's think more in terms of locating and
controlling it. If the best way to control it is to blade it, scoop it,
~and bury it or whatever, fine. Otherwise, an asphalt path over it would
be better.

Hooper: It seems important, particularly where you want to try to estimate
distribution, that in deciding on a sample plan you characterize the o
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source term. In a more complicated situation 1ike Rocky Flats, substantial
amounts of material that you might expect to find there are the result of

a single discrete incident in time, as opposed to material that was distrib-
uted there from day to day operations. If you conclude, based upon pre-
lTiminary analysis, that the bulk of material is due to an accident of some
kind, then the micrometeorology at the point of that accident would be
pretty compelling as far as a sample plan is concerned.

Eberhardt: We do have advance data on the site we have studied, collected
with field instruments, which are insufficient to do the final work but do
give us information on the pattern. We would also like to know, of course,
much more about distribution, as you are suggesting.

Martz: You mentioned earlier in your presentation one of the problems
with the moving average isopleths construction procedure is the inability
to get a handle on the variance associated with the isopleths themselves.
Is that correct? Once enough data are obtained from a certain portion of
the grid to establish one of these isopleths, is it then possible to do
sampling along that isopleth to verify the quality of the fit? Do you
then modify the fine line that you have with some sort of a band or some
sort of a fuzzy wide line to represent the error associated with these
contours? Sort of sequentially sampling in the sense of establishing the
accuracy of the isopleths fitting themselves?

Eberhardt: That is not something we have tried. It apparently is part of
the geologists approach to get some sort of confidence measure. What they
come up with is a map showing the relative variability over the field.

Griffing: I am not sure about the validity of this next idea. I am
suggesting the possibility of coming up with an initial density to use in
sampling. It may be based on data you already have or on some theory as
to how the particles might be released. If it comes from data, it would
be rather grainy like the data you presented earlier. In that case you
would smooth to get a density function. Then you would do a random
simulation of a grid based on the density function that you get from this
jnitial knowledge or from an idea as to where your particles would be. 1In
the areas where you thought you would have a larger number of particles
you would be just shrinking down your grid. You wouldn't be using any
kind of arbitrary grid pattern 1ike a polar grid or rectangular grid. But
the grid spacing on the average would be proportional to the expected
amount of particles at any particular point.

Eberhardt: It is intriguing to think about varying grid meshes over the
field. I have no idea how I can translate that into a real sampling

scheme. One thing that intrigues me about simulating the situation is

that it constitutes a way to get some experience with various schemes. As
yet we know almost nothing about the possible auto-correlation function.
There is a marked trend, which is this hill-shaped concentration pattern.
The very substantial variation about this pattern possibly makes a "signal".
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But as to whether there really is any relationship other than this gradual
to steep change in concentration between adjacent samples I do not know.
Probably not in this case.

Lohrding: I have wandered around on that test site. One thing I noticed
was that in a Tot of areas you have problems where there is very little
vegetation. Where there is vegetation you tend to have soil building up
under the vegetation. Is it possible that a lot of the heterogeneity in
“your data is due to the fact that you are close to sagebrush? Concentration
of plutonium .in pockets could introduce a lot of the variance to your data
in local areas. In other words, maybe your measuring techniques are too
good and yielding data which are too good. Perhaps you need to be up in

the air about 100 feet and be averaging over a much broader area. Then
maybe the plots will be much smoother.

Eberhardt: You are yuite correct. There arec little "blow sand" mounds
that appear under the bushes and there- are differences in concentration
associated with these features. As far as we can tell, these are not
major differences. That is one of the things, again, that we swept out of
sight so as to get to the central issue here.

Conover: It is the central issue that I was wondering about. If your
central issue is one of inventory, as you have originally stated, then it
seems natural to want to sample much more heavily in areas where concen-
tration is higher, much more so than what was indicated. Also it would

seem natural to give the person collecting the sample a certain amount of
leeway in the way of, say, wild card samples. As he goes from one specified
spot to another, if he finds a 1ikely site for high concentration he

should have the authority to take an extra sample now and then and mark in
some way ‘where this was obtained in an effort to obtain an accurate inventory.
Finally, as was pointed out, he should state the covariates that are
available. This is cheap information. What is the terrain 1ike where he
obtained his sample? Are there some peculiar characteristics that would
indicate that this might tend to be an area of high or low concentration?

As long as this is cheap information, why not write it down? -

Eberhardt: Covariates we have used are in the form of FIDLER instrument
measurements. It is not quite good enough to do a double sampling kind of
job, i.e., to use a cheap field instrument and expensive laboratory
determinations together to get a better inventory estimate. There is an
intermediate stage in which we use a laboratory crystal to make a quick
determination rather than going through the chemistry. So we have looked
at double-sampling, but again I put it aside for the presentation here. 1
would indeed 1ike to see a good theory of adaptive stratified or other
optimum sampling for inventory. I won't, from bitter experience, let the
field man make decisions in quite the way you have suggested, but 1 think
we should consider that possibility in other contexts.

Let me reinforce the inventory point. We use an objective of "inventory"
because that is the one loud and clear thing we could get from the people
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who were responsible for this whole effort. We used stratified random
sampling with optimum allocation which does indeed put most of the effort
in the high concentration areas. But, as an afterthought, we began to
wonder, "Isn't there another way to look at this?" What I would like to
see is a clear cut theory for sampling for pattern on one extreme, with
the existing theory of survey sampling on the other side, because I know
full well that in the natural field situation we are going to have a mixed
bag of objectives and we will be forced to compromise. But it would be
nice to look at this other business as a model on one extreme to help in
Jjudging the right level of compromise.

Zeigler: I am curious because of an incident that happened not too long
ago at Los Alamos. We found a few particles of plutonium over in the
townsite area that was possibly from some time long ago. As a consequence
of this, we were surveyed by a Tow flying helicopter with on-board
detection equipment. I am curious if such equipment has been used in
either the Nevada test site or Rocky Flats. This is'a very good smoothing
type of “instrumentation. When you go over these areas, it tends to smooth
the data because you are seeing an area on the ground, rather than a point
source. ‘Secondly, if such surveys have been made, how do they correlate
with the ground data? I would think that in the long run it would be much
cheaper and much more desirable to do an airborne survey than a-ground
survey.

Eberhardt: Airborne surveys have been used at the Test Site and at Rocky Flats.
There are all sorts of intermediate stages, starting with our FIDLER

instrument, moving up to a much larger field integrating instrument, and

on to the aerial array. A1l of these integrate and show nice contour

patterns. I can't answer accurately as to the correlations between those

and the ground samples where we- took dirt and did a chemistry analysis.

For the FIDLER, the correlations were good but not good enough to be the

only thing we Tooked at before predicting inventory. Certainly we need to

look more at the interrelationships between various scans.

Gilbert: -The FIDLER integrates and is held a foot above the ground. The
correlations, which Eberhardt indicated were not very good, are between the
FIDLER and a 10 gram sample of soil located underneath the FIDLER's crystal.
In a hot particle situation you wouldn't necessarily expect a very good
correlation with that configuration. I am not quite sure what we want to
look - for there. Just because you don't get a good correlation doesn't

mean you can't get a reasonably good estimate of the surface.

Eberhardt: Téchnica]]y, the particle problem is an important facet_of.the
particular problem we are talking about here, i.e., surveys for radiation.
Tt should eventually be brought into the theory we are talking about here.

Zeigler: The detection equipment that I am familiar with use mostly gamma
type scans. Gammas penetrate quite a distance through the atmosphere and
the energy levels can cover a wide range. Some of the detection equipment
that we have looked at have airborne computers with analog-to-digital
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devices on the aircraft itself. You can get a complete spectrum on that.
With a helicopter, you can hover if you have to.

Ellesson: It seems to me we-are falling victim to the tyranny of exactness.
I don't think you really need to know as much as our comments indicate.

A very coarse grid may be more than you will need to develop the kind of -
contours that will allow the field man to make the type of decision he is
going to make. You don't have to have every little wrinkle in there. He
is not going to direct the bulldozer to leave that sagebrush and take this
one. He is going to go out there and cut a very broad swath. Unless you
are estimating the total amount, the proportional Neymann allocation of
samples may not be applicable to distributional estimating since they were
designed for estimating mean values. As soon as you leave estimating
procedures like that, stratification comes under some question.

Eberhardt: I would like to comment on the need to be careful in our use

of the word "cleanup". We were talking here as 1f we were actually cleaning
up an area. What we are doing is taking dirt containing plutonium, hauling
it someplace else, and perhaps burying it a little deeper. If we must
remove plutonium from the surface soil in a particular place, I would like
to do that with a very minimum of dirt that would create a problem somewhere
else. There is a need for real accuracy in our work.

Martz: One thing we talked about a moment ago is alternative ways to
analyze data that we might get from an experiment such as this. In regression
analysis, if I had two design variables x; and x,, and sample points over

a grid in two dimensions on the surface, I would consider that to be a
pretty hot dog experiment. Are there any advantages to using regression
analysis as a tool in fitting surfaces to describe the amount of observed
plutonium? One of the problems that we talked about earlier with moving
average procedures is that only neighboring points give rise to the surface.
In regression analysis you have all data points supporting each other in
some sense plus the other advantages of variances and so forth. Has there
been any experience with drawing these contours from fitted regression
curves based on this much data? You would think that they would be pretty
good.

Eberhardt: We should say we don't have an absolute measure of either
quantity. If you think of regression in the sense of chemical determination
of soil plutonium, which has error, and the radiological reading with a
field instrument, then I might rephrase what you are saying in the sense

of a linear combination or a weighted combination of the two sources, one
much cheaper than the other. That is an interesting idea. We had used
‘regression in the sense of double'sampling for inventory. ‘

Martz: I was just thinking of simply regressing the observed amount of
plutonium versus the longitude and latitude or whatever the coordinate i
measures are for location of where the sample was taken.
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Eberhardt: You run out on a polar ray. It's worth looking info.

" Tukey: I will begin by responding to a little of this last discussion.

Qur Tovely six-degree polynomial that went swooping up into the sky is
what happens when you regress things on simple functions of x; and x,.
The good thing about the local methods is that they are local and you
can't be ruined by irrelevant data somewhere else. ‘And if you don't know
what the shapes of things ought to be, fixing the functions in advance is
likely to get you in just that trouble.

I have about three different sets of things to say. One of these involves
the pattern problem. I would certainly want to work on a logarithmic
basis. I don't see any excuse for not using the logarithm. It seems to
me that most of the decisions you make go that way, the chemistry goes
that way, the finite part of the biology goes that way, and maybe even
some of the physics goes that way. Nothing goes in linear concentration
that I know of except inventorying to find how much total is there. This
is mostly a minor problem and certainly is not very often a high precision
problem, unless you are supposed to inventory how much is there and then
determine whether one percent or three percent blew away. In which case
you have my sympathy.

I think we need to make a distinction between the-processes of smoothing
or, if you have data at irregular points and are recovering something at
the good points, which is really a smoothing procedure. We're separating
that from contouring. You can deal with them somewhat separately. There
is a very major issue here about a repetitive approach. For anything that
is as vigorous and as relatively well behaved as what you have here, it
seems to me that it is very different than some of the things I have seen
in geological mapping.. It is wrong to expect anybody's procedure to work
on a once-through basis. What you want to do is go once through, smooth
that, and then come back and work on either the difference or the ratio.
If you are in logarithms you would, of course, use difference. In actual
units, you would almost certainly use ratios, which is another reason for
taking logarithms. In other words, now you are in a place where you can
do your choice, say two times.

Let's consider another major point; i.e., the FIDLER versus the analysis.
You were saying that you didn't think that the FIDLER was good enough for
the double sampling. Now I am not quarreling with that if you want to do
inventory. But if you want to do pattern I think you missed a very large
opportunity. What is the relative cost of FIDLER measurement versus an
analysis? I would argue that the efficient way to do this sort of thing
would be to go out and do the FIDLER measurements and smooth the FIDLER
measurements in a good way. That is going to require repetitian. Other-
wise you pull the very skirts up as you are very well aware. Then go into
the field where the purpose of the wet analysis is to get the ratio of the
analysis to the smooth FIDLER measurements. Let me do a one dimensional
version of this. We go out and we get a lot of FIDLER measurements and
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they look as shown in Figure A. I am on a log scale so they don't look so
horrible as they would otherwise and they aren't as horrible. I will
smooth them with some basis or other. :

I now go out and get a few analytical measurements such as the dots in ‘
Figure A. I should be looking at how these compare with the smoothing I -
have of the FIDLER measurements. So I smooth the analytical measurements

(Figure B). Then I can put the two together. Instead of using the FIDLER

as a covariate afterwards, I am essentially using it as a reference base

from which to make my measurements. As long as this is a good set of

samples and I have a decent process for reducing things, I can take advantage

of everything the FIDLER measurement has told me about the structure. Now

when I come back, I probably will have to deal with things repetitively

again. If you have anything decently structured, you cannot expect anybody's
analytical techniques to do a good job on one pass, with the possible

exception of some Kriging techniques.

o)

FIGURE A

FIGURE B

On the question of grids, I don't see any reason why I shouldn't use an

elliptical polar grid here. These are supposed to be concentric ellipses

whatever they look like. When I want to contour, I am going to be perfectly R
happy to contour as if it were rectangular, subject to the fact that I

have gone around the circle by going on out and repeating the measurements :
on each side. I am perfectly willing to use the surface program on polar : v \
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or elliptical grids, tell it is a rectangular grid and tell it to go and
do the best it can. And then I can always make a change of coordinates.
It seems to me that I have to expect to make a profit out of doing this.
The distances that naturally come into most of these programs ought not to
be ground distance. They ought to take account of what is going on. If
from FIDLER measurements you think an elliptical thing is going to be
reasonable, then you have to say that moving across concentric ellipses is
moving a long way but moving around is not very much. Instead of drawing
ellipses, what I should probably be telling the contouring device is that
I have got circular patterns. This gets repeated on each side as I go
round and round the circle and the distance around the circle is short,
but the distance out radially is long. I want things to be analyzed in
that way. If I go to random allocation within strata or within cells or
something like that, I have irregular locations. I want to get that
washed out. The nature of the atmosphere, for example, is very anisotropic.
Things in the atmosphere change much more rapidly going up than going
sideways. If you want to divide the atmosphere into cells, they have to
be shaped 1ike pancakes. I am saying that if you want to divide this area
into cells they would tend to be long pieces out of elliptical annulae.
That is the sensible way to divide it in terms of what you want to understand
about the things from the preliminary approach. Let's cellulate it that
way and take advantage of all we know. And also let's make use of a
preliminary fit and work with the corrections to the preliminary fit. The
preliminary fit doesn't have to be right. As long as it is better than a
constant you will probably do a better job of analyzing things overall if
you deal with the differences from the preliminary fit. I am sure that
what the smooth FIDLER values will give you is a darn sight better than a

constant in terms of predicting what the plutonium situation will be.

A word or two about Kriging. There exists two books by a Frenchman named
Matheron. I can't quote the titles. But that ought to be enough to get
you moving. Don't take the structure of these books too seriously. It
reflects the structure of French science and not the true state of affairs.
If you are to be a legitimate scientist in France, you must have lots of
theory and high powered mathematics. So you will find these books talk
about higher order stationary processes and so on for 12 chapters. In the
last two or three chapters you get some of the meat. I think the universal
Kriging more or less is following Matheron's lines, but don't feel that
you have to have the high powered machinery in order for it to be useful

to you. If you have irregular points, then let me require that I will not
make an error if these points 1ie perfectly on a plane. If the data
points 1ie perfectly on a plane, I would not Tike to make an error.

Subject to that and subject to what the semivariogram says on how differences
go with distance, then I will try to do the best I can. But saying that I
require the planes to behave properly, or conceivably quadratic surfaces,
takes an awful lot of points. I am now allowing for large scale trends
which are not in any sense stationary and separating these slow changes
that can't be stationary in many problems. They can't be stationary in
yours. You've got one high hill and there aren't any others around. But
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it might be that, if you take out that high hill, the other variations,
particularly in the logarithm, might be reasonably stationary. The
variogram plots an average of yi - yj against the distance between these
.two things. 1It's a common thing t0‘¥ind situations that behave 1ike this -
where the variogram does not start from 0. This is the sort of hot particle
problem. The jump at the origin is the contribution to variance that you
get if you take another 10 gram sample next to this one. And that may be i
fairly large.. It seems to me the correct picture here is the variogram

picture that is associated with one of your hypotheses.

(=)
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