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DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
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makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 
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PREFACE 

The F i r s t  ERDA S t a t i s t i c a l  Symposium was organized t o  p rov ide  a means 

fo r  communication among ERDA s t a t i s t i c i a n s .  Many o f  us associated w i t h  

ERDA and, fo rmer ly ,  t he  AEC have been concerned about t he  r o l e  t h a t  s t a t i s t i c s  

p lays  i n  research programs. I n t e r l a b o r a t o r y  communication among s t a t i s t i c i a n s  

was i n f requen t  and on an i n d i v i d u a l  basis .  A l i s t  of profess ional  s t a t i s t i c i a n s  

w i t h i n  ERDA d i d  n o t  e x i s t .  We o f t e n  faced new problems w i t h  the  f e e l i n g  t h a t  

elsewhere i n  ERDA someone had a l ready  considered and poss ib l y  solved them. 

The symposium concept o r i g i n a t e d  w i t h  a d iscuss ion  a t  t h e  1974 Gordon 

Research Conference among Donald Gardiner, K e i t h  Z i e g l e r  and mysel f .  We 

learned from M i l t o n  Rose o f  ERDA t h a t  people a t  Los Alamos S c i e n t i f i c  Lab- 

o r a t o r y  had s i m i l a r  thoughts and had requested funding. D r .  Rose suggested 

we j o i n  fo rces  and organize a meeting of a l l  ERDA s t a t i s t i c i a n s .  Donald 

Gardiner, Ronald Lohrding, Raymond Wal ler  and I met and decided on a program 

c o n s i s t i n g  o f  research papers and d iscussions o f  research problems w i t h  John 

Tukey as the  keynote speaker. We inc luded t h e  Sandia Laboratory along w i t h  

Los Alamos, Oak Ridge and P a c i f i c  Northwest Laborator ies.  We thought t h a t  

f o u r  l a b o r a t o r i e s  would prov ide  reasonably broad p a r t i c i p a t i o n  i n  a program 

t h a t  cou ld  be pu t  together  i n  several months. It was expediency and n o t  

exclusiveness t h a t  l i m i t e d  the  organ iz ing  a c t i v i t y  and formal p a r t i c i p a t i o n .  

The o rgan iz ing  committee wanted the  symposium t o  be as use fu l  as poss ib le .  

F i r s t ,  we wanted ERDA s t a t i s t i c i a n s  t o  ge t  acquainted w i t h  t h e i r  peers i n  o the r  

l abn ra to r i es ,  t h e i r  var ious  working envir.ut.~inents, programs and pro fess iona l  

i n t e r e s t s .  Thus we chose t o  ho ld  t h e  symposium a t  an ERDA labo ra to ry .  

Second, we wanted the  symposium t o  promote wider use o f  s t a t i s t i c s  on 

ERDA programs. Therefore, p resenta t ions  o f  s p e c i f i c  problems fo l l owed  by 

d iscussion per iods  were included. Problem s e l e c t i o n  was based on ERDA goals, 

broadness o f  t h e  a p p l i c a b i l i t y  throughout t he  l a b o r a t o r i e s ,  and t h e  need fo r  

s t a t i s t i c a l  content  f o r  adequate so lu t i on .  

Th i rd ,  t o  l e a r n  about t h e  s t a t i s t i c a l  research going on w i t h i n  t h e  ERDA 

community, we inc luded research paper sessions. The a f t e r  d inner  t a l k  by Dr. 

Jerome Friedman o f  t h e  Stanford  L inear  Acce lera tor  Center on graph ica l  d i s p l a y  

and ana lys i s  of mul t i -d imensional  data was i n  t h e  framework o f  t h e  research 

papers, s ince  t h i s  was j o i n t  work w i t h  John Tukey under ERDA sponsorship. 



Fourth, we wished t o  preserve t h e  symposium as a s t a t i s t i c a l  e n t i t y  

f o r  eval u a t i o n  by our  peers; hence, t h e  pu b l  i c a t i o n  o f  these proceedings. 

The organ iz ing  committee selected Oak Ridge Nat ional  Laboratory f o r  a  

1976 symposium and P a c i f i c  Northwest Laboratory f o r  a  1977 symposium. PNL 

i s  respons ib le  f o r  e d i t i n g  and pub l i sh ing  the  proceedings o f  t h e  f i r s t  

symposium, LASL the  second, and ORNL t h e  t h i r d .  
. 

I would l i k e  pe rsona l l y  t o  thank Ray Waller, t h e  symposium chairman 

and t h e  one respons ib le  f o r  l o c a l  arrangements, and t h e  e n t i r e  Los Alamos 

s t a f f .  They deserve t h e  g rea tes t  share o f  c r e d i t  f o r  t he  success o f  t h e  

f i r s t  symposium. The i r  d e t a i l e d  a t t e n t i o n  t o  a l l  t h e  l o g i s t i c s  and t h e i r  

congenial  i ty  and hosp i ta l  i ty  made t h i s  a  memorable occasior~.  

My c o e d i t o r  o f  t h e  Proceedings, Judy Har r is ,  worked w i t h  authors on . 

p repara t ion  o f  manuscripts and prepared and ed i ted  t h e  w r i t t e n  d iscussion 

o f  problems from taped t r a n s c r i p t s .  .Without her dedicated work t h e  Pro- 

ceedings would n o t  be a  r e a l i t y .  

F i n a l l y ,  I would l i k e  t o  thank a l l  o f  t h e  p a r t i c i p a n t s .  They accepted 

t h e  chal lenge o f  honest, meaningful i n t e r a c t i o n ,  which assured t h e  success 

o f  t h e  sympos i um. 

Wesley L. Nicholson, E d i t o r  
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USABLE RESISTANT/ROBUST TECHNIQUES OF ANALYSIS 

John W. Tukey 
Princeton University and Be1 1 Laboratories 

Princeton, New Jersey 

This account se t s  out the most useful resi  stant/robust techniques, 

as we presently believe them to  be, and gives indications both of what 
we lalow about them and of how they may we1 1 be used. I t  does not attempt 

to  review the theory. (For moderately up-to-date background on a large 

s l  ice of the fie1 d see Andrews, e t  a1 . 1972. Hampel, 1973 and 1974. 

Huber, 1972 and 1973. ) 

CONCEPTS 

A function of data i s  "resis tant"  i f  changing a small fraction of 

the data, possibly a rb i t r a r i ly  greatly,  will not change the functional 

value greatly.  Most analytically simple functions, 1 i ke y = I x i  , 
2 2 

Y = Cxi , y = Exi /Lxi , for  example, are not res i s tan t .  In these examples, 

as for  the arithmetic mean, changing even one. x enough can make an 
a rb i t r a r i ly  large change in y. Other functions, such as the resu l t  of 
"arrange the xi according to  5 and take y as the middle value," which 

defines the median, are quite res i s tan t ,  as i t  i s  easy to  see. 

The term "robust" has been used by s t a t i s t i c i ans  to  describe various 

types of behavior of a function of vzlues having a probability dis t r ibut ion.  
Most often, perhaps, the probability distribution i s  that  of a sample 

from a partly known or unknown dis tr ibut ion of individual values (parent 

population). In a1 1 cases, "robust" s igni f ies  good behavior in less  than 

ideal circumstances. 
v 

The f i r s t  usage, which will not concern us here, was fo r  significance 

t e s t s  or  confidence intervals  relating a sample t n  a parameter of the 

population from which i t  came. What we would now cal l  "robustness of 

validity" means tha t  the 5%, 1%, 95%, 99%, or the l ike  associated with 
the t e s t  or interval applies, e i ther  exactly or to  a good approximation, 

when the conditions are less  than ideal--or, sometimes, tha t  any major 

deviations are  i n  the "conservative" direction. That th i s  i s  not enough 



i s  shown by a  simple example: given a  sample o f  1000, draw a  subsample 

o f  10 from i t  a t  random and apply the  s ign  t e s t  t o  t h e  subsample t o  
X;l 

generate a  97.85% confidence i n t e r v a l  f o r  the  median o f  t he  parent  popul a- . , 1 

t i o n .  The 97.85% i s  exact  f o r  any parent  populat ion,  b u t  t h e  i n t e r v a l  

uses no more than one-hundreth o f  the in format ion  ava i l ab le .  

I f  we de f ine  the  e f f i c i e n c y  o f  an est imate i n  a  g iven s i t u a t i o n  as 

var iance o f  "best  est imate" i n  t h a t  s i t u a t i o n  
var iance o f  t h i s  est imate i n  t h a t  s i t u a t i o n  

o r  by the r e s u l t  n f  rep lac ing  "var iance" by a  more appropr ia te  concept 

when advisable o r  necwsary  (as, f o r  urgent  example, when no est imate 

has a  f i n i t e  variance), we w i l l  o b t a i n  a  measure o f  e s t i n ~ a l c  perlor.~lldr~cc 

t h a t  

- i s  bounded by u n i t y  (by 100%) i n  each s i t u a t i o n  considered. 

- depends, weakly o r  s t rong ly ,  upon the  s  j tuat ion*.  

An est imate i s  " robust  o f  e f f i c i e n c y "  i f  i t s  e f f i c i e n c y  i s  HIGi-l i n  an 

unusual v a r i e t y  o f  s i t u a t i o n s ,  whatever h igh  may be. 

We s h a l l ,  i n  t h i s  account, say j u s t  " robust  o f  e f f i c i e n c y "  when the  

e f f i c i e n c i e s  are  n o t  necessar i l y  very  h i g h  b u t  a re  noth ing  t o  be ashamed 

- about. Using t h e  sample median t o  est imate the pupuld,l;ion median i s  a  

n a t u r a l  example. We s h a l l  say " h i g h l y  robust  o f  e f f i c i e n c y "  o r  "very 

robus t  o f  e f f i c i e n c y "  when the  e f f i c i e n c y  i s  wry h,igh i n  the  s i t u a t i o n s  

considered. An example w i l l  be g iven s h o r t l y .  

To date, a1 1  procedures very  robus t  o f  ef f ic iency--and,  t o  a  1  esser 

degree, procedures o n l y  (bu t  n o t  very)  robust  o f  e f f - i  c i  ency--arc r e s i s t a n t .  

So f a r  as we can see, t h i s  i s  i n e v i t a b l e .  Hence the  spl.ice-word-- 

r e s i  s t a n t i r o b u s t  ( o r  r o b u s t j r e s i  s tan t ) .  

GOOD PRACTICE 

What are today 's  o b l i g a t i o n s  o f  good s t a t i s t i c a l  p rac t i ce?  I suggesl 

they i nc lude  these two: 

- where one o r  more analyses robust  o f  e f f i c i e n c y  are  ava i l ab le ,  

one ( o r  more) o f  them should be among those. app l ied  ( i n  p a r a l l e l )  
t o  the  data, and i t s  ( t h e i r )  r e s u l t s  should be compared w i t h  those 

o f  t he  other '  analyses used. 



. - where one or more analyses highly robust of efficiency are  
available, and we are  concerned to  extract  a l l  the information 
from the data, one (or more) of them should be among those 
applied to  the data, and l i t t l e  credence should be given, in 
the absence of special considerations, to  the resu l t  of any 
analysis tha t  .does not agree reasonably we1 1 with the resu l t  
of the res i s tan t  and highly robust analysis (analyses). 

This means tha t  any analysis based upon: 

- arithmetic means 
- moments 
- l ea s t  squares 

to  name a few standard cases, needs to  be a t  l e a s t  accompanied by a 
resistant/robust analysis i f  an appropriate one can be found. some may 
t h i n k  th i s  position goes a long.way, b u t  experience--with s i tuat ions where 
conventional analyses have gone awry without giving warning--suggests tha t  , 

i t  i s  essential  to  go a t  least. t h i s  f a r .  

Let us then t u r n  to specif ic  kinds of analysis and summarize where 
we stand. The different  problems to be considered, which together represent 
most of the foundations of s t a t i s t i c a l  analysis,  f a l l  into two broad classes:  

- problems where estimated quantit ies do not a f fec t  the identifica- 
tion of unusual residuals  (these include the naturally simpler 
processes, 1 i ke .location and univari a t e  scal i ng) . 

- problems where the identification of unusual residuals may depend 

c r i t i c a l l y  on the resistance of the estimate of the f i t  (these 
include many important standard problems, incl'uding regression, 
smoothing, correlation estimation and estimation of vector 
dispersion). 

We shall  take our probleliis up in t h i s  order. Thus an important emphasis on 

resistance/robustness for  residuals will be delayed to  Part 11. 



PART r 
WHERE FITTING I S  NOT NEEDED TO IDENTIFY POTENTIAL "WILD SHOTS" 

The main problems here are those o f  sca lar  (s ingle o r  mu1 t i p l e )  

center ing o r  widthing. I n  such scalar  cases the po ten t ia l  "w i l d  shots" 

are c l e a r l y  the lowest and highest  values. We know which po in ts  t o  

examine most ca re fu l l y .  
< 

The case o f  vector  centering, which we take up a t  the close o f  t h i s  

par t ,  i s  perhaps a t r a n s i t i o n a l  case. Actua l ly ,  o f  course, we do need 

vector  center ing t o  i d e n t i f y  vector " w i l d  shots", bu t  we need vector  

d ispers ion even more. 

INDIVIDUAL CENTERING 

SYMMETRIC CENTERING 

Given values yl , y2, . . . , yn w l ~  r e  have agrccd t o  analyze a c  if 

they were a sample from a symmetric d i s t r i bu t i on - -o r  were generated 

symmetrical ly i n  a somewhat more complicated way--how should we estimate 

the center about which the unde,rlying d i s t r i bu t i on - -o r  under ly ing process-- 

i s  s y m e t r i  cal ? 

Not so long ago, our answer would have been easy and dangerous: take 

the a r i thmet i c  mean. 

A t  the he'ight o f  Lhe nsnparcliiictric era we would have been much safer, 

though somewhat wasteful--we would have taken the median. 

Today we would 1 l ke t o  be safe wi thout  being sor ry .  

TRIEF . F I  CIENCY 

We have long looked t o  e f f i c iency ,  t o  the r a t i o  

smallest variance del i ve rab le  
variance actual  l y  deli- 

as a '  c r i t e r i o n  o f  est imate qua1 i ty .  C lear ly  the answer has t o  depend on 

the s i t u a t i o n  we are considering, Gaussian samples and Cauchy samples a re .  

u n l i k e l y  t o  g ive  the same number. Two remarks and a warning are now 

badly needed. 



Firs t  remark: I1del iverable" often has to  refer  to  the best we know 
.how to do--in which case we might (and will t r y  to )  refer  to  "apparent 
efficiency1'--or to  a theoretical bound (which we wil-1 here avoid). This 
i s  because we do not know exactly what the smallest variance deliverable 
i s  in most si tuations.  

Second remark: "variance" has sometimes to  be replaced by a related 
measure (as  noted above). 

Warning: knowing the e f f i  ciency--or the apparent efficiency--in just  
one s i tuat ion . i s  almost never enough. We 'need, a t  l eas t ,  t o  explore extreme 
si tuat ions tha t  will s t r e s s  our estimates i n  each of the recognized ways 
we have found to  be part icular ly threatening.'  

In the case of symmetric centering--say for  batches of 20 values, 
the case. .for which the most extensive calculations have been made,--we 
today recognize three kinds of threats .  Thus we need to  consider a t  l eas t  
three s i tuat ions.  To challenge estimating procedures as severely as we 
can, we would 1 i ke the chal lengi ng s i tuat ions to  be rather.  unreal i s t i ca l  ly  
extreme each i n  i t s  own way. 

The three s i tuat ions for  which most computation has been done, which 
do seem about equally unreal is t ic ,  are  these: 

- the pure Gaussian dis t r ibut ion (too nice).  
- a s i tuat ion combining a sample of 19 from one Gaussian w i t h  one 

- observation from another Gaussian with the same center and 10 
times the spread (too black-and-white i n  i t s  non-constant variance). 

- the. slasll distr , ibution, which i s  representable as the r a t io  of 
a u n i t  Gaussian to  an independent uni t  rectangular (on [0, I ] ) ,  

which avoids the unreal is t ic  central peakedness of the Cauchy, 
yet whose t a i  1 s are of Cauchy type (too stretched-tai 1 ed) . 

I f  a centering procedure works well in a l l  these three s i tuat ions,  we can hope 
i t  works even bet ter  fo r  a l l  the more r e a l i s t i c  s i tuat ions tha t  l i e  "between" 
them. Thus i t  i s  natural t o  def ine 'a  " t r ieff ic iency" by: 

t r ieff ic iency = the l eas t  of these three efficiencies 

and to  seek for  a centerer tha t  has high t r ieff ic iency.  



SOME RESULTS--THE BIWEIGHT 

The c l a s s i c a l  centerers are, .by.now, t h e  (a r i t hmet i c )  mean, the  

median, and t h e  trimmed means ( i n  which the  j h ighest  and j lowest  values 

are  s e t  aside, and ' the  a r i t h m e t i c  mean o f  t he  remainder provides the  

est imated center ) .  For batches o f  20 observat ions, t he  Pr inceton Robustness 

Study (Andrews, e t  a1 , 1971 ) o f f e r s  us apparent e f f i c i e n c e s  a t  the th ree  

corners f o r  these c l a s s i c a l  estimates, namely: 

Pure One 
Gauss. Wild S_lash T r i e f f i c i e n c y  

Mean lI)r)% 19% OX 0% 

.' Trimmed 1  + 1  98% 92% 1 6% 16% 

Trimmed 2 + 2 95% 94% . 41% 41 % 

Trimmed 3 + 3 94% 94% 60% . 60% 

Trimmed 5 + 5 84% 97% 86"/0 134% 

Median (10 + 10) 67% 72% ' 87% 67% 

(Now known t o  be a t t a i n a b l e )  (92 - 93%) 

This i s  a background aga ins t  which we might  seek a  centerer  t h a t  i s  h i g h l y  

robust  of e f f i c i e n c y .  

Some o f  t h e  s imples t  high-performance est imates t h a t  we know are o f  

t h e  form 

where each wi depends on t h e ,  dimensionless or scaled form o f  YI-y, where 

y i s  t h e  median o f  t he  y ' s ,  which we take as 

where c  i s  a  number and.S a  measure of spread of t h e  y i ,  u s u a l l y  t h c  MAD 

[median absolute d e v i a t i o n  from the median), t h e  H-spread, o r  the i n t e r -  

q u a r t i  1  e  range. 
, 



.The choices c = 9 and 

g i ve  a t r i e f f i c i e n c y ,  i n  samples o f  20, above 90%. (By compl ica t ing  

matters, we can squeeze o u t  a l i t t l e  more t r i e f f i c i e n c y ,  b u t  i t  may w e l l  

n o t  be worth it. ) 
2 

Sfnce (1 - u2) i s  sqmetimes c a l l e d  a bisquare, i t  i s  perhaps na tu ra l  

t o  c a l l  the. center  j u s t  described a (one-step) b iweight .  

Drawing on t h e  general r e s u l t s  o f  t he  Pr ince ton Robustness Study, 
and t h e  general i n s i g h t s  i t  produced, we can be q u i t e  sure t h a t  t he  b iwe igh t  
does q u i t e  w e l l  indeed f o r  batches o f  10 o r  more y 's- -and can be reasonably 

sure o f  i t s  performance down to ,  o r  c lose  t o  f i v e .  

Tony Quon, i n  an almost completed Pr ince ton Ph.D. Thesis, has shown 

t h a t  t he re  i s  14ttle t o  ga in  over  us ing  the  median f o r  batches o f  three.  

We can expect a s i m i l a r  r e s u l t  f o r  n = 4. Thus a good r u l e  runs as fo l l ows :  

Number 
o f  y ' s  Centerer t o  be used 

up t o  4 median 

5 o r  6 

7 o r  more 

take  your  choice (b iwq igh t  favored) 

b iweight .  

3 ( 1 t  may be o f  i n t e r e s t  t h a t  about 10 d i s t i n c t i v e  est imates have been 

t r i e d  out,  as welll as about 50-50 l i n e a r  combinations o f  t he  same. 
Only a new idea i s  l i k e l y  t o  r a i s e  the  t r i e f f i c i e n c y  f o r  n = 20 appreciably  
above 92-93%. ) 

ESTIMATING VARIABILITY 

The var iably-weighted mean used i n  the  (one-step) b iwe igh t  can be 

regarded as t h e  f i r s t '  s tep  i n  an i t e r a t i o n  



where the wi ( k )  are ca lcu la ted from the (yi - Tk)/cSk. L i ke  the Newton- 

Raphson i t e r a t i o n  

where $(y) r uow(u), t h i s  i t e r a t i o n  converges t o  a so l u t i on  o f  

whose asymptbtl c  variance i s 

or, as i s  asymptot ica l ly  equivalent, 
. . 

which reduces; f o r  $(u) E u, t o  

the c l ass i ca l  variance o f  which i s  the so lu t ion  oP 
. . 

f o r  t h i s  $(.).  

INTERVAL CENTERING 

Alan Gross (1973, 1976a) has studied the i n t e r v a l  est imat ion o f  the 

center  o f  a symmetric distribution, Finding tha t ,  i n  our present no ta t ion  *, 
the i n t e r v a l  I 

(b iweight  - t.7v s*, b iweight  + tSTv s*] 

2 *The i nc l us i on  o f  a -1 i n  the denominator o f  s* ra i ses  the degrees of 
freedom . a t  l e a s t  from .5v t o  .7v. The inc lu.s ion o f  -2, instead, which 
may prove he lp fu l ,  might r a i se  the degrees o f  freedom t o  v. 



where t.7v i s  the  5% value o f  t on seven-tenths* the  usual number o f  degrees 

of freedom, i s  q u i t e  c l o s e l y  a  95% con f idence ' i n te rva l  f o r  the  popu la t ion  

center,  n o t  merely f o r  t he  Gaussian case b u t  f o r  a  v a r i e t y  o f  o the r  s i t u a t i o n s .  

(He t r i e d  a  v a r i e t y  o f  a l t e r n a t e  centers and wid th  i nd i ca to rs .  Only those 

c l o s e l y  s i m i l a r  t o  the  b iweight  and s, worked near l y  as we l l .  ) 

His r e s u l t s  e s t a b l i s h  a  good performance f o r  n  2 10. He an t i c ipa tes  

s a t i s f a c t o r y  performance down t o  n  = 8. For smal ler  n, o n l y  nonparametric 

procedures l i k e  the  s ign  t e s t  which can give, .non- res is tan t ly  and thus 

su re l y  n o t  h i g h l y  robustly,. 98.4% confidence f o r  n  = 7, 96.8% f o r  n  = 6, 

93.8% f o r  n  = 5,.and 87.5% f o r  n  = 4 or ,  r e s i s t a n t l y ,  87.5% confidence f o r  

n  = 7  and 75% f o r  n  = 6--or the  one-sample Wilcoxson t e s t ,  which is 'some- 

what more f l e x i b l e  b u t  has the  same extreme % l e v e l s ,  i s  known t o  g i ve  

r e l i a b l e  i n t e r v a l  est imates ( o f  unknown e f f i c i e n c y )  f o r  t he  popu la t ion  center  

A NON-PROBLEM? 

We have discussed symmetric center ing.  What about unsymmetric center ing? 

What, indeed. 

We a l l  know what we are t r y i n g  t o  es t ima te . i n  the  symmetric center ing  

case--the mean, the  median and a l l  t he  mids ( t h e  means o f  symmetric % po in ts )  

coincide, making a  unique ta rge t .  But what i s  our  t a r g e t  i n  the  unsymmetric 

case? 

We can take' one o f  two routes:  

We can t h i n k  about each o f  as many r e a l i s t i c .  specia l  cases as we 

can f i n d  where a  . s p e c i f i c  t a r g e t  makes s p e c i f i c  sense; o r  

We can t r y  t o  . f i n d  a measure o f  locat ion- -an est in~a' l t !  comut' ing w i t h  

th.e a d d i t i o n  o f  a  constant- - that  has h igh  robustness o f  e f f i c i e n c y ,  

and then declare t h a t  whatever i t  appears t o  est imate i s  the  center  

we wanted t o .  est imate. 

E i t h e r  o f  these i s  possib le.  Ne i the r  i s  what we i n t u i t i v e l y  thought o f  on 

f i r s t  meeting the  words "unsymmetrical center ing."  (A s i m i l a r  problem a r i ses  

from the  beginning i n  dea l ing  w i t h  w id th  as w i l l  be discussed l a t e r . )  

*See foo tnote  on previous page. 



TOTALS 

MONTE CARLO--AND INSURANCE 

There a r e  s i tua t ions ,  two o f . t h e  most s t r i k ing  being Monte Carlo 
calcula t ion and the  insurance business, where our concern i s  rea l ly  w i t h  

t o t a l s .  Real Monte Carlo, as distlnguished from simple experimental 
sampling, operates by a "swindle", by replacement of the original  problem 

by one t h a t  can be demonstrated t o  have the  same answer. Almost always the 
answer i's an ar i thmet ic  mean--essentially a t o t a l ,  s ince probabil i ty theory 
almost always deals w i t h  such. (Recall t h a t  a probabil i ty i s  a mean of 

, t he  correspondi'ng ind ica tor  function.)  Aln~ost always the  values t o  be 
t o t a l l ed  a r e  non-negative, b u t  have a s t re tched-ou t ' t a i l  t o  the  r i g h t .  

We would l i k e  t o  t h i n k  t h a t  we a r e  dealing w i t h  a severely asymmetric 
problem of centering and use a res is tant- robust  center.  B u t  we dare not. 

For the  only t a rge t  we a r e  allowed t o  shoot a t  i s  the  ari thmetic mean. Any 
center  t h a t  i s  r e s i s t a n t  wil l  be biased downward. We must take f u l l  account 
of occasional very large  values. 

NO ESCAPE 

We a r e  going t o  have t o  summarize our observation by y. 
For the  present we have 1 i t t l e ,  of anything, be t t e r  t o  do than t o  use 

2 t he  conventional s and Student 's  1 though wc need t o  do ra ther  be t te r .  
To do b e t t e r  we need, over t ly  o r  covert ly,  t o  make some allowance f o r  both 

skewness and elongation of our d i s t r ibu t ion .  Doing t h i s  by moments i s  qu i te  
unsat is factory (we will soon comment on an a l t e rna t i ve ) .  

We need to  remark t h a t  Student 's  t for a very elongated sample, f o r  

instance n-1 values c lose  t o  zero and one value large ,  comes out c lose  t o  
unity.  Thus 'confidence in te rva l s  got by Studeat ' s  t (dt any usual l eve l )  
turn out  t o  be conservative, not 1 iberal  . What we have t o  f ea r  w i t h  Student 's  

t, so f a r  a s  va l i d i t y  goes, i s  the s q u o c ~ e d ~ t a i l  cace.  Stretched-tai l  cases,  

i f  recognized and propert ly assessed, o f f e r  us an opportunity t o  learn how 
t o  say more than Student ' s  t does. 



G/H TECHNIQUE, PERHAPS? 

Suppose z  has the  u n i t  Gaussian' ( o r  u n i t  neu t ra l  ) d i s t r i b u t i o n - - t o o  

o f t e n  ( m i s ) c a l l  ed the  u n i t  normal d i s t r i b u t i o n  .' A convenient f a m i l y  o f  

skewed d i s t r i b u t i o n s  a re  those o f  ( e g z - l ) l g  f o r  var ious  g. A convenient 
2  fami ly  of elongated d i s t r i b u t i o n s  are  those o f  z  ~ x p ( h z  /2) f o r  h  > 0. 

A  1  i t t l e  rough c a l c u l a t i b n  based on these examples leads t o  p l o t t i n g  .. 
+y ) /2 aga ins t  z  ', where y i s  t he  emp i r i ca l  upper p% p o i n t  i n  our 

(Y-P P P P 
sample, y the  lower p% po in t ,  and z  t h e  square o f  the  one-sided u n i t -  - P P 
Gaussian p% po in t ,  w i t h ' t h e  a n t i c i p a t i o n  t h a t  t he  slope, i f  we de tec t  

any, w i l l  t e l l  us about something l i k e  "g". S i m i l a r l y ,  a p l o t  o f  
L 

l og (yp  - Y - ~ )  - log(2z  ) aga ins t  t he  same z  has a  hope o f  t e l l  i n g  us, 
P  P 

by i t s  slope, about something l i k e  "h". 

It i s  by such techniques t h a t  t he re  seems hope f o r  improving Student 's  

t. i n  the  face o f  skewness and e longat ion.  

COMPARATIVE CENTERING 

THE TWO-SAMPLE 'CASE 

How a re  we t o  compare the centers i n d i c a t e d  by  yll, y12, . . . , yij 

and YZ1, YZ2. ..., Y2k i n  a  r e s i s t a n t  and robust  way? The analogy w i t h  . . 
t he  one-sample case i s  s t rong enough f o r  us t o  be sure o f  very good per-  

formance i f  we use 

2 
where,ylB and yZB are  t h e  b iweights and sl, and s2,' a re  the  associated 

S,~'S and 0 . 7 ~ ~  and 0 . 7 ~ ~  are the  associated 0.7 o f  degrees-of-freedom. 

The care fu l  analys is ,  a l l ow ing  f o r  poss ib le  d i f f e r e n c e  i n  w id th  

i n  the two s i t u a t i o n s  takes 



- The more off-hand analysis takes 

and (1)  w i l l  be t i g h t e r  than the ca re fu l  analysis, and (2.) can be i n  t roub le  

i f  the  wjdths are  no t  the same. 

I would have no hes i t a t i on  i n  proceeding along whichever o f  these routes 

seemed appropriate, conf ident  t h a t  the answers would be safer  and almost 

as prec ise as ( there fore  probably more accurate than) those obtained from 
2 ,  sample means and sample s s. 

I F  THERE MUST BE A REFERENCE 

Sometimes i t  i s  necessary t o  have a publ ished referenee f o r  the technique 

t o  be uscd. I n  t h ~  two-sample case, t h i s  may, f o r ' t h e  present, cause g i v ~ n g  

up the (more preferable) b iweight  i n  favor  o f  ( l ess  preferable,  bu t  more 

re fe rab le )  trimmed t (Yuen and Dixon, 1973, Yuen, 1974). 

MULTIPLICITY 

SIMULTANEOUS AND QUANTITATIVE : BONFERRONI 

I f  - we .are  t o  make several--or many--quanti t a t i v e  statements w i t h  a 
requirement o f  conver~t ional  ce r ta in ty ,  95% or 99%, we must make each ind iv idua l  

statement w i t h  very much higher ce r ta in ty .  There can be no escape from 

th is - -s ince each statement i s  f r e e  t o  be wrong separately. 

The basic, simple ca lcu la t fon  i s  t h a t  associated w i th  the name o f  

Bonferroni.  Given a group o f  K statements, each a t  an e r r o r  r a t e  o f  (p/K)% 



we w i l l  have, on average, no more than K(p/K)% = p% statements wrong per  

group. Therefore, a f o r t i o r i ,  the  chance o f  one o r  more statements wrong 

i s  no more than p% per  group. 

, The need f o r  Bonferroni  imp l i es  a need f o r  understanding the more 

extreme % p o i n t s  o f  our  s t a t i s t i c s - - e . g .  the  0.05% p o i n t  when K = 100 and 

p = 5%. Our i n fo rma t ion  here i s  q u i t e  l i m i t e d ,  b u t  what i n s i g h t  we have 

suggests that--even f a r  ou t  i n  the t a i l s - - a  two-sample b iwe igh t  comparison 

i s  s t i l l  much sa fe r  than a two-sample a r i t h m e t i c  mean comparison. Here 

i s  a p lace  where more knowledge would be p a r t i c u l a r l y  welcome. 

BELFERRONI . 

I f  we are prepared t o  c o n t r o l  the  r a t i o  

'number o f  batches o f  statements w i t h  a t  ' l e a s t  one e r r o r  
number o f  batches o f  statements 

i ns tead  o f  the  r a t i o  . . 

number o f  statements i n  e r r o r s  
number o f  batches o f  statements 

we ought t o  be ab le  t o  t i g h t e n  the  statements j u s t  a l i t t l e .  I n  t he  i d e a l  

case--everything Gaussian o f  equal variance--when a r i t h m e t i c  means a re  
. . 

used w e  can c a l c u l a t e '  f a c t o r s  t o  supplement K, so t h a t  we use, say, p/KLM 

i n  p lace  o f  p/K where L and M a re  l e s s  than u n i t y .  To do t h i s  requ i res  

comparing convent ional % p o i n t s  o f  t he  Student i  zed maximum modulus (1 i m i  ts . .  

on a l l  values) o r  t he  Student ized range ( l i m i t s  on a l l  simpl'e comparisons) 

w i t h  the  t a i l s  o f  S tudent 's  t. Tables i n  t h i s  form a re  i n  p repara t ion .  

'. When ava i l ab le ,  I would be q u i t e  happy t o  use these tab les  i n  con- 

nec t i on  w i t h  m u l t i p l e  statements about values o r  c.omparisons o f  biweights-- 

happier,  a c t u a l l y ,  than t o  use them w i t h  values o r  comparisons o f  a r i t h m e t i c  

means. ( I n  the  l ong  run, o f  course, we want t o  know more,.about jus ' t  how 

we1 1 they apply. Our ' unce r ta in t i es  'here, however, must be smal l  compared 

t o  our  u n c e r t a i n t i e s  about t he  f a r - t a i l  s o f  b iwe igh t  s t a t i s t i c s .  ) 

ONE-HUMP PHILOSOPHY 

The case o f  q u a l i t a t i v e  statements about a l l  s imple comparisons i s  
l 

a spec ia l  one. One phi losophy t h a t  has, more o r  l e s s  t a c i t l y ,  been b u i l d i n g  

i n  recent  decades emphasizes the  s i t u a t i o n  where t h e  popu la t ion  centers  a re  



themsel ves d i s t r i b u t e d  i n  a s i  ng1.e-humped fashion. The case where popul a- 

t i o n  centers are samples from a sing1 e-humped (perhaps Gaussian) d i  s t r i  bu- 

t i o n  seems l i k e l y  t o  p l a y  a spec ia l  r o l e  i n  assigning nominal l e v e l s  o f  

s ign i f f cance .  

There seems no reason t o  expect d i f f i c u l t y  i n  t a k i n g  over t o  b iweights 

whatever approaches we s e t t l e  upon f o r . a r i t h m e t i c  means. 

SPLITTING AND MULTI-HUMP 

Sometimes what i s  needed i s  o n l y  t o  s p l i t  up t h e  values t o  be compared 

as w e l l  as we can, t o  do as gnnd a q u a l i t a t i v e  j o b  as we can. Here unpublished 

work o f  Roy Welsch w i l l  soon prov ide us w i t h  a w e l l  u-nderstood and sharp 

t o o l ,  a t  l e a s t  where a r i t h m e t i c  means are  concerned. The w r i t e r  would have 

no h e s i t a t i o n  us ing  Welsch's tab les ,on  b iwe ight  est imates.and t h e i r  associated 
2 

s* 
2 A l i t t l e  more concern could a r i s e  i f  e i t h e r  d i f f e r e n t  s o r  d i f f e r e n t  

s*' a re  associated w i t h  d i f f e r e n t  ones o f  t h e  values t o  be compared. ~ u t  

i t  should be much b e t t e r  t o  use Welsch's tab les  than t o  wa i t .  

Welsch's techniques should a l so  serve, i n  any o f  these f o u r  cases, 

t o  decompose mu1 ti -humped s i t u a t i o n s  i n t o  pieces adequately t r e a t a b l e  by 

one-humped techniques. 

WIDTH -,.- - 
FREE OR BOUND 

We may ask o f  a measure o f  width--of  s c a l a r  d ispers ion--only t h a t  it: 

- i n d i c a t e  r e l a t i v e  w id th  as between s i t u a t i o n s  d i f f e r i n g  on ly  by 

scale change. 

- do so sensitively, perhaps as judged--separately i n  each o f  many 

s i tua t ions- -by  t h e  e f f i c i e n c y  o f  i t s  1 ogar i  thm. 

Th is  i s  f r e e  w id th ing .  

Not a l l  o f  us have thought deeply enough about t h e  problem o f  es t imat ing  
I 

w id th  t o  recoqnize how o f t e n  we do n o t  know what we want t o  est imate. I n  

pa r t ,  t h i s  i s  because t h e  books concentrate on the  Gaussian'case, where Ltiere 

are  f i x e d  r a t i o s  among, f o r  instance: 



- the popu la t ion  standard dev ia t i on .  

- the  popu la t ion  mean dev ia t i on .  

- the  i n t e r q u a r t i  l e  spread. 

- t h e  var ious  o the r  spreads between p% p o i n t s  f o r  d i f f e r e n t  p. 

- the  l i m i t i n g  case as p% + 50%, namely the  r e c i p r o c a l  o f  c e n t r a l  

dens i ty .  

I f  we consider  a  v a r i e t y  o f  d i s t r i b u t i o n  shapes, t he  in te rconvers ion  

fac tors  among such measures o f  popu la t ion  spread d i f f e r  w ide l y  from one 

shape t o  another. Yet an est imate t h a t  est imates any o f  them i s  c l e a r l y  

an est imate o f  width.  

There are  s i t u a t i o n s  where t h i s  freedom i s  removed. I f  we are  

assessing the  s t a b i l i t y  o f  a  simple a r i t h m e t i c  mean, we need t o  est imate 

the  popu la t i on  standard dev ia t i on .  I f  we are  assessing the  s t a b i l i t y  

o f  a  simple median, we need t o  est imate a  p% spread, f o r  p  s u i t a b l y  c lose  

t o  50. There are, then, many cases where we want t o  add t o  the  two 

requirements w i t h  which we s t a r t e d  t h i s  sec t i on  a  th i . rd,  namely: 

- what i s  est imated i n  each o f  many s i t u a t i o n s  t racks,  a t  l e a s t  

bearably we1 1, some t a r g e t  value (perhaps the  square r o o t  o f  

the  var iance of some o the r  computed q u a n t i t y ) ,  as t h e  popu la t ion  

shape changes. 

When we add t h i s  t h i r d  requirement, we have a  bound w id th ing  problem. 

NOSE' I N  THE BUTTER 

We now have, i n  work a t  Pr ince ton under ARO auspices, some very  

usefu l  r e s u l t s  on f r e e  ,w.idthlng. We do n o t  y e t  have t h e  degree o f  complete- 

ness t h a t  e x i s t s  f o r  symmetrical center ing,  b u t  we have come a  l ong  way--and 

t o  a  most p leasant  r e s u l t .  

I f  we take the  same sample s i z e  and th ree  corners t h a t  have guided 

much o f  the  work on symmetrical center ing :  

- f i r s t ,  sample o f  20 from the  pure Gaussian, 

- second, samples o f  19 from Gau (0 , l )  combined w i t h  samples o f  1  

f rom Gau (0,100) , 
- t h i r d ,  samples o f  20 f rom the  s lash  d i s t r i b u t i o n ,  w i t h  i t s  Cauchy- 

l i k e  t a i l s ,  



we are now able t o  provide an apparent efficiency of estimate of log width 
of a t  l e a s t  86% (Lax, 1975) a t  a l l  three corners. The best t ha t  conven- 
t ional esttmates of w i d t h  seem to  do i s  35% fo r  the MAD--the median absolute 
devi'ation (from the median). 

What delivers t h i s  great improvement? None other than our friend 
A1 an Gross's denomi nator--the natural asymptotic estimate of the biwei ght ' s 
sampling standard deviation s,. As the Danes say, we have "fallen with our 
nose i n  the butter".  For the present, a t  l eas t ,  OUR BEST FREE WIDTHER i s  
ALSO the BEST WIDTHER BOUND t o  our BEST CENTERER. How could things be 
simpler? 

While other estimates of w i d t h  rrlay prove somewhat be t te r ,  w e  are.now 
qui te  certain of a permanent place fo r  a widther tha t  i s  both: 

- excellent as a f ree  widther and 
- bound to  the var iab i l i ty  of an excellent centerer. 

The advantages of such a cornbi'nation, something that  .does for  a variety 

of s i tuat ions what and s do for  the over-utopian Gaussian case, are  jus t  
too great fo r  us not t o  seize upon them--hard.' 

SOME OPEN AREAS . . 

All our resu l t s  a re  for  sample s i ze  20. In view of Gross's resu l t s ,  
4 it seems safe t o  use them for  yuidance for  samples - 10. What to  do f o r  

s r ~ ~ a l l e r  sa~nples i s  not yet  c lear ,  nor  i s  i t  c lear  t o  what extent building 
down to small e r  samples may he1 .us. with the interval centering problem 
fo r  n < 10. 

The only estimate of var iab i l i ty  fo r  s, so f a r  a t  hand i s  that  offered 
by jacltknifing, where .iqckknifing the cube-root or  log of s, seems natural. 

2 As w r i t t e n  down, s, i s ,  roughly, ( 1 / 6 ) t h  of an estimate of width--s, , 
a f t e r  a l l ,  estimates the variance of an e f f i c i en t  summary. So lony as we 

deal e i the r  ( a )  w i t h  only one sample s ize  or (b) w i t h  only one use f o r  
width--assessing the s t a b i l i t y  of an e f f i c i en t  centerer--we need have no 

concern, B u t  otherwise we need to  know jus t  what to  mu1 t ip ly  by--is i t  
fi or or what? 

Despite a l l  these questions, a rather large-scale use of s, seems 

inevitable. 



VECTOR CENTERING 

DISTINCTIVE OR AFFINE 

The problem of resistant/robust centering of vectors, l i ke  so many 
problems i n  the analysi's of vectors, comes i n  two extremes: 

- dist inct ive centering, where we are t o  work i n  a prespecified 
coordinate system. 

- aff ine centeri'ng, where we are  to  work i n  such a manper that  the 
answer reached i s  independent of the coordinate system. 

There. i s  some ground for  suspicion . that some intermediate formulation 
\ 

will come to  be of real importance, b u t  t h i s  has not yet happened. 

TODAY'S STATUS 

Distinctive point estimation of vector centers requires only point 
estimation of centers for  each coordinate, something we can do with high 
robustness of efficiency. 

Distinctive interval estimation of vector centers by parallelopipeds . 

paral le l  t o  the d is t inc t ive  coordinate planes can be done with equal ease, 
using Gross ' s techniques on each coordinate, b u t  paral 1 el opipedal confidence 
intervals  are  often quite wasteful. 

Distinctive interval estimation of vector centers by el l ipsoids requires 
corresponding techniques fo r  assessing vector dispersion. As discussed 
below, resistant/robust techniques are  probably well on the i r  way rather  
than being ready on the shelf .  

Affine point estimation of vector centers i n  a resistant/robust way 
seems also t o  require resistant/robust assessment of vector disperion. 

Affine interval estimation-of vector centers i n  a resistant/robust way 
seems t o  require resi  stant/robust 'assessment of vector disperi on, twice over. 

AN EXAMPLE 

As an example that. res i s tan t  vector centering problems need n o t  be 
t r i v i a l ,  look a t  Figure 1 ,  taken from the study reported in Chen, 
Gnanadesi kan, and Kettenring (1 974). This plot shows the f i r s t  two principal 

4 

components fo r  14 economic character is t ics  of 29 chemical companies. (No 



er rors ,  only a maverick chemical company, one tha t  i s  not noticeable i n  

any one of the 14 variables alone.) Clearly the inclusion or  suppression 
of the company plotted in the lower r ight  corner a1 t e r s  substantially 
both centering and dispersion for  th i s  batch of data. 

- t FIRST PRlNCl  PLE COMPONENT 

JICURE qL =- 1, F i rs t  Prf nc ipal Componcnts o f  Ecdnnmic 
Characteristics of 29 Chemical Compar~ ies 

PART I 1  

PROBLEMS WHERE F I T T I N G  I S  ESSENTIAL I N  I D E N P I F Y l N G  "WILD SHOTS" 

In  a1 1 these p r o b l e ~ ~ s ,  res i s tan t  technique< seem essent ial ,  i f  a good 
j o b  of iden,tifying "wild shots" i s  t o  be possible. In a two-way analysis, 
Tor example, d ,  few "wild shots" can so d i s to r t  an analysis by means as to  
eas i ly  conceal ' their  own presence, as well as providing a misleading fit. 
Thus  res i s tan t  methods are  essential  i f  we want to:  

- identify l ike ly  wild shots, so t h a t  t he i r  cause may be inquired into,  
- identify l ike ly  wild shots, so the i r  se t t ing  aside, will l e t  us see 

the actual general pattern, 



- make a f it t h a t  reveals t h e  des i red  general pa t te rn . .  
. 7. 

It i s  essen t ia l  t o  have resi 'stant/robust techniques. There i s  no subs t i t u te .  

.The d iscussion o f  t h i s  p a r t  f a l l s  n a t u r a l l y  i n t o  f o u r  subparts: 
<- 

- regression 

- smoothing 

- pat terned f i t t i n g  

- c o r r e l a t i o n  and d ispers ion  

INDIVIDUAL REGRESSION 

ITERATED BIWEIGHTS 

A number o f  authors (e.g. Andrews, 1974, Beaton and Tukey, 1974, H i l l  

and Holland, 1974, Hoagl i n ,  Hol land and We1 sch, 1975) have made use o f  

i t e r a t i v e  we ight ing  i n  regress ion s i t u a t i o n s .  The choice o f  j u s t  which 

i t e r a t i o n  was used has va r ied  somewhat, b u t  there  i s  no reason t o  be l i eve  

t h a t  t h i s  choice i s  p a r t i c u l a r l y  important.  So we w i l l  here recommend the  

use o f  a b iweight .  

The i t e r a t i v e  computation then involves:  
A 

where Sold summarizes, perhaps as the  MAD, t h e  s izes  o f  a l l  t he  y-yold, and 

.. 
Z 

(1-u2) , 2< 
u -1, 

w { 2> (subscr- ipt i suppressed) 
0 , u -1, 

The Ynew a r i ses  by weighted regression, i n  which the  i t h  data s e t  receives 

weight wi . ( I f  weights Wi were inherent  i n  the  regression problem, we may 
h A 

want e i t h e r  j u s t  t o  use weights wiWi o r  t o  replace y-yo,, by i n  

t h e  c a l c u l d t i o n  o f  the  f i t t i n g  weights, wi . )  

!low many - i t e ra t j ons  are l i k e l y  t o  be needed must, among o the r  th ings,  

depend upon how many constants are  being f i t t e d .  We know very  l i t t l e  about 

t h i s .  So we p l a n  t o  i t e r a t e  t o  reasonable s t a b i l i t y ,  which does n o t  u s u a l l y  

r e q u i r e  many i t e r a t i o n s .  



Where we s t a r t  is  important, mainly as a computational'matter. I f  
we s t a r t  from an,unweighted least-square f i t ,  we are  l ikely to  need more 
i te ra t ions .  If  we s t a r t  from, say, a least-absolute deviation f i t ,  we 
will have had to  expend more computation t o ' g e t  t o  our s t a r t .  

THE ANDREWS CASE 

The s o r t  of s i tuat ion i l l u s t r a t ed  i n  Figure 2 has been forcefully 
called t o  our attention by David Andrews. We know of no escape from the 
need of two analyses, one corresponding t o  each of the 1 ines in the picture.  
I t  i s  then a matter of wisdom, subject.-matter knowledge, and inquests over 
the bodies of individual exotic data-sets to  decide how to  go fur ther  and 
how to  report  the resu l t .  

T h i s  problem is  not res t r ic ted  t o  the simple case jus t  i l lus t ra ted .  
Turn  back t o  Figure 1, and assume what is shown are two x-variables. However 

y behaves, the f i t  for :  

FIGURE 2. An Andrews Configuration: Some Data Points 
W i t h  Two Fi ts  (e i ther  1 ine may be relevant) 



, 
- a l l  data p o i n t s  

Y\ - a l l  data p o i n t s  except t h e  e x o t i c  one 

a re  c e r t a i n  t o  be q u i t e  d i f f e r e n t .  (Even i f  the  f i t s  resemble one' another, 

.a t he  uncer ta in t i es  assigned t o  the  f i t t e d  c o e f f i c i e n c t s  w i l l  not . )  With. . 

several x ' s  even the  recogn i t i on  t h a t  we face such a case i s  n o t  easy. . . 

(And 'the. work o f  N.E. .Day, 1969, suggests t h a t  r a t h e r  d r a s t i c  s i t u a t i o n s  

may n o t  be uncommon when the  x-vectors are  samples from a Gaussian d i s t r i -  

bu t i on  o f  vectors. ) 

A v a r i e t y  o f  suggestions have been made (e.g. by Andrews and by Mallows) 

o f  ways i n  which we might be reasonably sure t o  ge t  t he  f i t  s e t t i n g  aside 

e x o t i c  po in ts .  To date the re  seems t o  be no procedure 'which guarantees 

us f i n d i n g  a l l  t he  p l a u s i b l e  so lu t ions .  

Using a v a r i e t y  o f  random s t a r t s  fo r  t h e  b iwe ight  i t e r a t i o n  may help ' 

us; b u t  when we do t h i s ,  we are u n l i k e l y  t o  ever know how many o the r  

so lu t i ons  we missed. 

WHAT VARIANCE? 

Once we have o u r . r o b u s t / r e s i s t a n t  regression, which we expect t o  be 

b e t t e r  determined than the  l e a s t  squares regression, how do we judge i t s  

accuracy? A simple approach i s  t o  f o r g e t  t h a t  t he  weights are  r e l a t i v e  

and c a l c u l a t e  a variance-covariance m a t r i x  as i f  t h e  weights were f i xed .  

A v a r i e t y  o f  more compl i cated formul as have. been proposed f o r  consider- 

a t i  o n .  Work a t  ~ a t i o n a l  Bureau o f  Economic ~ese'krch-Cambridge ( ~ o a ~ l  i n ,  
~ o l i a n d ,  ~ e l s t h , ~  e t  a1 ) has thrown some l i g h t  on t h i s  quest ion. Recent 

work by cross (1976b) on i n t e r v a l s  f o r  l i n e a r  combinations o f  a and b, 

where a + bx i s  being f i t t e d ,  seems t o  i n d i c a t e  t h a t  d i f f e r e n t  "variance" 

est imates requ i re  d i f f e r e n t  "t" values, b u t  otherwise perform s im i l ' a r l y .  

I f  t h i s  proves t o  be so i n  more general f i t s ,  and f o r  "F" as w e l l  as 

f o r  "t", we w i l l  he indeed fo r tunate .  

I n  the  meantime, us ing the  est imated variances and covariances neg lec t ing  

the  i t e r a t i v e  nature  o f  t he  .weight ing seem a useful guide t o  the  s t a b i l i t y  

of our  re.su1 t s .  (Unpubl ished r e s u l t s  of Ma1 lows would suggest expanding 
2 

variances and covariances by a f a c t o r  o f  (1.07) when using b iweights w i t h  c=9.) 



AN AFFINE OBLIGATION? 

When we f i t  * 

we may consider (bl ,b2.. . . .b ) as a vector. If  we do, ' the carr iers  x l ,  k 
x2, . . . , xk determine--mainly by the i r  omission--a s e t  of coordinates i n  

the space of vectors. Replacement, say, of xl by 

in t roduc~s  a new s e t  of coordinates and represents identically the same 

f i t - - the  same abstract coovdlnate vector--in a rlew seL of coordinates 

(one where bps  b3, . . . , bk have a l l  been al tered) .  We could ask for  the 
estimation of the b-vector to  be' aff ine invariant. 

I te ra t ive  reweighting from an aff ine invariant s t a r t  will, give an 
aff ine invariant resul t .  So the question o f  how hard should we work to  
obtain an aff ine invariant resul t  reduces to-- 

- should we i n s i s t  on an aff ine invariant s t a r t ?  
- should we insist on an aff ine invariant assessment of vector 

dispersion for  the regression coefficients? 

These questions are no1 as simple as they seem. 

Suppose we s t a r t  from (0,0, . . . , 0) as the i n i t i a l  s e t  o f  h ' s .  Is  

th i s  an affine invariant s t a r t ?  In a narrow sense--invarlar~ce under a l l  
HOMOGENEOUS non-singular l inear  transformations--yes. In a broader sense-- 

invariance under a l l  non-singular l inear  transfo.mations, homogeneous or  
not--no. Which sense i s  appropriate? Can any f i t  be aff ine invariant i n  

the broader sense? 

T h i s  whole question i s  clearly presented as a teaser.  

OTHER REGRESSION 

COMPARATIVE REGRESSION 

There seems to  have been nu.l;hing expl ici t  ' t o  report here. We presumably 

add together whatever variance-covariance matrices are judged appropriate 
for  the individual regressions. 



AUTOREGRESSION 

Work by Douglas Martin and Lorraine Denby, not yet  submitted for  

pub1 ication, indicates tha t  $-w techniques, including i terated biweights, 

do we1 1 here a1 so. 

SMOOTHING ' 

BAS I C IDEAS.. 
, . .  

The idea of smoothing a sequence i s  old; classical performance, i s  a t  

best poor. There are.two d i s t inc t  reasons why arithmetic means, simple 

or repeated, do not perform well. 

The f i r s t  fa i lure  i s  shown by a clear  tendency to  pull h i l l s  down-- 

and valleys up--as we1 1 as reducing ripples. Repeating the smoothing-- 

resmoothing--as in . . 

fol 1 owed by 

makes t h i s  deficiency worse. 

The cure i s  easy. Rerough instead of resmooth! 

llaviny Jor~e a fj r s t  smooth, perhaps 

form also the "rough", satisfying given data E smooth PLUS rough ,  namely 

and SMOOTH THIS ROUGH, finding, perhaps 



AND THEN ADD TOGETHER the TWO SMOOTHS, f i n d  zi + ti as one's smoothed 

values. (When, as i n  our examples above, each smoother reproduces every 

s t r a i g h t  1 i ne  i den t i ca l  ly, ' t he  combination w i  11 reproduce every cubic 

i d e n t i c a l l y ,  ) , 

Second, as something invo lv ing  means, smoothing, by runniny iileans 

i s  f a r  from res is tan t .  One horr ib ' ly  wl' ld pb ln t ,  fur; exampl'c, i~ smonthed 

out  i n t o  several no t  qu i t e  so h o r r i b l y  w i l d  points.  This i s  o f ten  

unbearable. 

Again a cure i s  simple. As a f i r s t  step, replace running means 

by running medians. This w i l l  supply the resistance, 'but need not make 

th ings smooth' enough. (Monotone sequences, f o r  example; are unaffected 

by smoothing w i t h  runn i  rig medians . ) 
3RSSH, TWICE 

An elementary procedure t h a t  i s  easy t o  ,learn, and pr..oduces b c t t e r  

s~noothq than you are l i k e l y  t o  begin by hoping f o r ,  makes use o f  these 

three kinds of components: 

- running medians o f  3 

- t h e  end value r u l e  

0 = median (3zi-2z2,y0,z, ) 
where zl and z2 are already obtained smoothed values. 

- hanning, forming 

by one a lgor i thm o r  another. 

The ru l es  o f  procedure are as fo l lows: 
i 

f"k< 

- repeat the use o f  running medians of three--so long as t h i s  changes 
A 

the sequence. During t h i s  phase the end values are "copied on' 
' 



u n t i l  running.medians of t h ree  have no f u r t h e r  e f f e c t ,  .a t  which 

' p o i n t  t he  end value r u l e  Ts a p p l i e d ' t o  each' end. ( A l l  , t h i s  i s  

cal l 'ed 3 ~ , '  f o r  " three, repeatedly" . )  

- i d e n t i f y  every f l a t - topped  h i l l  o r  f l a t - topped  v a l l e y  o f  w id th  

e x a c t l y  two; and a c t  as . . i f  the  sequence had been s p l i t  i n  th,e 

middle o f '  each o f  these two-f  1 a t s  i n  ' t u rn ,  apply ing the  end-val ue 

r u l e s  t o  each new end thus formed. 

- a f t e r  ' t h i s  has been done f o r  each t w o - f l a t  i n  tu rn , '  r i pea t ' 3R .  

(These two steps are c a l l e d  "S", f o r  s p l i t t i n g . )  

- repeat  these two steps once mare (another S). 

- apply hanni ng, copying .on end. va l  ues ( c a l l  ed H) . 
- f i n d  the  rough, and repeat  the  whole process on the  rough, adding 

the r e s u l t i n g  smooth t o  the  o r i g i n a l  smooth. (When "reroughi ng" 

i s  by a copy o f  t he  o r i g i n a l  smoother, we speak of " tw ic ing "  .)  

For examples, see Tukey (1976). 

The resu l  ti ng procedure, c a l l  ed, f o r  i t s  components, "3RSSH, tw ice"  

i s  r e s i s t a n t  and moderately e f f e c t i v e .  

HIGHLY EFFECTIVE 'SMOOTHERS R 

Whether o r  no t  i t  . i s  . possib le,  what would be a utopian dream f o r  an 

i dea l  res i s tan ' t  smoother? On the  one hand, i t  would chop o f f  i s o l a t e d  
. 

. ~ 

" w i l d  shots", l eav ing  ha rd l y  a t race.  On another, i t  would f o l l o w  every. 

smooth sequence very, ve ry ,c lose ly .  

C l e a r l y  no l i n e a r  smoother can come c lose t o  t h i s ,  s ince i t s  behavior 

f o r  any sequence has t o  be t he  sum o f  i t s  behaviors f o r  l t ~ e  s inuso ida l  

components o f  t h a t  sequence and's ince a w i l d  sho t ' s  s inuso ida l  components 

i nvo lve  slow (smooth) frequencies as w e l l  as high, ones. 

Exact ly  how c lose non l inear  smoothers can come t o  meeting t h i s  dream 

we do, n o t  know. But Paul Velleman . ( I9751 has shnwn t h a t  one can smooth 

long sequences s o  t h a t  

- f o r  e x a c t l y  s inuso ida l  . i npu t ,  whose output  must be a m u l t i p l e  o f  

t h a t  s inuso id  p l u s  mu1 t i p l e s .  o f  i t s  harmonics, no harmonic i s  l e s s  

than 25 db (a f a c t o r  o f  18) smal le r  than '  the  input .  



- the  mu1 t i p l e  o f  each.. s inuso id  behaves t h e  way ,we would hope: 

c lose t o  1  a t  low frequency, c lose t o  0 a t  h igh  frequency, smooth 

t r a n s i t i o n  between. 

- s t r e t c h e d - t a i l  o r  s p i k y  noise f s  adequately smoothed away. 

While n o t  reaching the  imbossib le i d e a l  dream, t h i s  goes: fa r the r  toward 

i t  than many would have deemed poss ib le .  

H is  techniques combine b iwe igh t i  ng w i t h  cosine-arch c o e f f i c i e n t s  

and reroughing. 

O N t  APPLICATION 

Res is tant  smoothers work q u i t e  w e l l  on most u n l i k e l y  ma te r ia l .  I f  

we have a s c a t t e r  p l o t  o f  (x,y) pa i r s ,  we can: 

- s o r t  on x 

- e l  im inate  t i e s  by rep lac ing  a1 1  p a i r s  w i t h  t h e  same x by t h e i r  

median ( i f  few) o r  b ~ w e l g h t  ( i f  several or  many) 

- smooth t h e  r e s u l t i n g  sequence o f  y ' s  

- smooth the  corresponding sequence o f  x ' s  

- p l o t  t h e  broken l i n e  through t h e  r e s u l t i n g  (x-smoothed, y-smoothed) 
i 

pa i r s .  

What we g e t  f rom a  respectable (hence r e s i s t a n t )  smoother, "3RSSH twice", 

f o r  example, i s  o f t e n  very i l l u m i n a t i n g  and very h e l p f u l .  

Scat te r  p l o t s  i n e v i t a b l y  d i  r e c t  our  a t t e n t i o n  t o  the  outs ide  po in ts ,  

n o t  t o  a  good general p i c t u r e  o f  what i s  happening. 

A  s c a t t e r  p l o t  unsupplemented by one o r  more r e s i s t a n t  smooths i s  a t  

bes t  a  l o s t  oppor tun i ty .  A t  worst  i t  can be a  disaster. .  

. . "PLUS" ANALYSES- 

F i t t i n g  ai + b .  t o  a  t a b l e  o f  values o f  yi i s  a  very w ide ly  used 
J 

process. For .  complete rec tangu lar  a r rays  (yii) we used t o  descr ibe i t  

n o n i t e r a t i v e l y  i n  terms o f  row means and column means. 

I f  we want t o  descr ibe f i t t i n g  i n  terms o f  medians, which we of ten 

f i n d  very  usefu l ,  i t  i s  essen t ia l  t o  descr ibe the  f i t t i n g  i t e r a t i v e l y .  



The simplest description s t a r t s  w i t h  one s e t  of s t r ipes ,  e i ther  rows or 

columns, and proceeds as follows: , . .  

-. find medians of one se t  of s t r ipes  (the A-s t r ipes ) ,  including 

one s t r i p e  of f i t s  ( i n i t i a l l y  probably zero). ' '  

- subtract these from the data (the residual's) and add them t o  the f i t .  
- find medians of the other s e t  of s t r i p e s  (the B-stripes) , including 

. . 
one s t r i p e o f  f i t s .  

, -  subtract them from the residuals and add them to  the ' f i t .  
- repeat, perhaps for  four find-and-subtract steps, perhaps t o  

apparent co.nvergence. . 

By now there i s  quite extensive experience with t h i s  process, which does 
, . 

very well i n  being res is tant  and reasonably robust. 

Since i t  uses medians, we cannot expect i t , t o  show h i g h  robustriess 
of efficiency, unless there are no more than, s a y  four rows and four ' . 

columns. (Or perhaps no more than s ix?)  

B Y  BIWEIGHTS . . . . 

We can get h i g h  robustness of efficiency for  larger numbers of rows 
or'columns, we are qui te  sure, by replacing the medians i n  the i terat ion 
process by biweights. I know of no expl ic i t  numerical studies,  b u t  I 

have no appreciable doubt--this i s  a h i g h  quality process. 

GENERALIZATIONS 

Extensions to f i t t i n g  y.. with ai + b .  + ck o r  w i t h  ai + b .  + ek 
l ~ k  J J 

+ dij  + eik + f i  are relat ively easy, w i t h  the l a t t e r  (surprise !) the'  
easier.  'To perform the l a t t e r  analysis, me ca,n define three kinds o:F f ibers:  

- a l l  data points w i t h  i and j fixed. 
- a l l  data points with i and k fixed. 
- a l l  data points w i t h  j and k fixed. 

and then i t e ra t e  cyclically through transfers from residuals to  f i t  (and 
from f i t '  to  f i t )  corresponding to  A-fibers, B-fibers, and C-fibers. 
Generaltzat'ion to  any unrestricted factorial  pattern is  easy. 

Restricted fac tor ia ls  can be handled without d i f f icu l ty  by us ing  (1) 
an unpublished algorithm of P. J .  Claringbold' t o  determine which kinds of 



f i t  are  desired and (2) i'i~serti.on of missing value indicators t o  indicate 
which f ibers  are t o  be omitted from .the find-and-transfer process. 

ANALYSIS OF VARIANCE--A 'PROSPECTUS . 

By analysis of variance, as d i s t inc t  from PLUS analysis,  I mean the 
ideas and techniques tha t  rev01 ve around the cl assical analysis-of-vari'ance , 

table  and i t s  improvements. These ideas are  concerned,.on the one hand, 
w i t h  the breakdown of the variance of an observation into portions (inade- 
quately mean squares, more adequately variance components) "assignable" to  
d i f fe rent  sources; and, on the other and more frequent hand, with the use 

' of one mean square--or l inear  combination of mean squares--as an "error 
term" f o r  drawing concluslons--ei ther  of significance or  confidence, about, 

. some or  a l l  of the values appearing i n  some ef fec t  or interaction. In the 
4 

l a t t e r ' c a s e ,  the classical F t e s t  has been replaced, i n  many cases, by 
mu1 t i p l e  comparison procedures (compare w i t h  mu1 tip1 i c i  ty  section).  

In th i s  area, we can see the dawr~, b u t  not quite the sun, The 

serendipitous appearance of s, as both an indicator of the variance of 
biweights and a high-qua1 i t y  estimate of width suggests qui te  clearly 
tha t  each of .our  mean squares will need to  be replaced by two numbers, one 

2 2, of which i s  an s, , t o  be used as--or as part of--an er ror  term. The s, s ,  
as well as effects / interact ions will be based on a resls tar~t / robust  analysis 
of the so r t  j u s t  described. 

Deta i  1 s soon, perhaps, 

INDIVIDUAL CORRELATIONS--QUARTER SQUARES 

Once upon a time, multiplicatior~ was done by squaring, using the 
ident i ty:  

and Tables of Quarler Squarcs, Today the existence of a good resis tant /  

robust widthing procedure implies tha t  of a plausible resistant/robust 
correlation calculation, based upon 

. X v = width of x . 



and e i t h e r  

'U+V 2 'u-v 2  correlation" = (width o f  T )  - (width o f  T) 

width  of u+v12 - (width o f  u-v) 2 
"co r re la t ion"  = ( 2 (width of u+v) + (width o f  u-v) 2 

as used, f o r  example, by Gnanadesikan and Kettenr ing (1972). (Linear 

t ransformat ion t o  avoid la rge p may be important.) 

. We do no t  seem t o  be c l ea r  about what spec i f i c  est imate t o  recommend. 

(Comparisons o f  a va r i e t y  o f  res is tant / robust  est imators by Devl i n ,  

Gnanadesikan, and Ket tenr ing are scheduled t o  appear i n  the December, 1975 

issue o f  Biometrika. ) However, almost any such est imate w i l l  be much safer  

than the c lass ica l  estimates i n  the presence o f  o u t l i e r s .  

The usefulness of tak ing 

where 

I .  

and where z+ = u+v, z- = u-v, S+ i s  der ived from the z+-z+, and S- i s  
I 

der ived from the z - -z - , for  some l a r g e r  values o f  c, perhaps between 10 and 

12, seems n o t  t o  have been explored. 

VECTOR DISPERSION AND CORRELATION AMONG SEVERAL QUANTITIES 

DISTINGUISHED CASE 

We can assess res is tan t l robus t  widths f o r  each coordinate separately, 

and then d i v i de  out  by these estimates, coordinate by coordinate, thus 

obta in ing new vectors whose dispers ion ought, we would th ink ,  be best  

described by " co r re l a t i on  matr ices" , by matr i  ces w i t h  one ' s on the diagonal . 
Thus we can f a i r l y  eas i ly ,  i n  the d is t ingu ished case, reduce the est imat ion 

o f  vector  d ispers ion t o  the est imat ion o f  the various co r re la t ions  among 

several quan t i t i es .  



Devl in,  Gnanadestkan and Kettenri:ng have work i n  progress i n  t h i s  

d i r e c t i o n  whi'ch seems 1 i k e l y  t o  o f f e r  a v a r i e t y  o f  approaches, a1 1 probably .i ( 1  
reasonably robust .  o f  e f f i c i e n c y .  I n  due course we should be able t o  I 

- 
i d e n t i f y  one o r  two recommended methods. 

w 

THE AFFINE CASE 

I f  we desi r e  an a f f i n e  i n x a r i a n t  est imate o f  vec tor  d isper ions,  we 

cannot reduce the  problem t r i v i a l l y  t o  the  es t imat ion  o f  a c o r r e l a t i o n  

mat r ix .  Methods o f  i t e r a t i v e  e l l i p s o i d a l  t runca t ion  and w inso r i z ing  have, 

however, been shown, i n  unpublished work o f  Devl in ,  Gnanadesikan and 

It may be a l i t t l e  w h i l e  be fore  t h i s  area has been brought i n t o  

reasonable order .  
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NOSTALIGIC RUMINATIVE CEREBRATIONS - 

Roger H. Moore 
U. S. Nucl ear Regul atory Comrni s s i  on 

Bethesda, Mary1 and 

My wife and I feel a great pleasure a t  being invited here tonight. 
We usually don't  practice astrology or  numerology--but th i s  date and 
t h i s  place have very special meanings to  us. Jus t  10 months ago tonight, 

l e f t  the Hi1 1 (Las Alamos) and headed for a n  a'lmost complete chdnge 
Z i n  our way of l i fe - - th is  time in the f a r  and, to  us, almost inscrutable 

East Coast. And i t  was only 268 ~nonths ago tonight t h a t  we s ~ t l : l ~ d  into 
- our f i r s t  very own place a f t e r  enjoying two days of mid-1950's old Lodge 

hospi tal i ty .  Granted, "our f i r s t  very own place'' was a concrete no-bedroom 
I r i s  S t ree t  efficiency apartment. B u t  i t  seemed l ike  a palace a f t e r  
those years of ha1 lowed graduate student poverty level 1 i v i n g  and a long 
midsummer desert  trek from ,Oregon in a '47 Kaiser tha t  suffered from 
an incredible assortment of circulatory and respiratory ailments. 

The l a s t  time I addressed a group a f t e r  dinner occurred a l i t t l e  

over a year ago a t  a meeting O f  the A1 buquerque section of the American 
Society of Quality Control. I was paired w i t h  Bill Mondt who then was 
looking to  his f i r s t  year as head football coach a t  the University of 
New Mexico. Surely, what has happened to the Lobos of UNM since then i s  

not a bellwether fo r  the careers of Dr. Tukey and the other invitees at. 
t h i s  symposium. 

B u t  a cer tain freedom i s  granted an afterdinner Speaker t h d l  i s  

not afforded those 111ak-ing sc i en t i f i c  pronounc&nents, And t h a t ' s  why 

i t  was so easy to  accept the irlvitation from Ray Waller when hr! offered 
i t  l a s t  spring. Besides, the meeting was then months away. Even i n  July,  

when pressed fo r  a t i t l e ,  I willingly accepted a helpmate's help in 
arriving a t  the subtly sub1 iminal appel la t ion attached hereto. (Incidental l y ,  

Eileen had suggested Roetic as the f i r s t  word--but I rejected that  on the 
basis tha t  the f i r s t  week of November i s  too early for  yuletide references .) 



By l a t e  September, however, a  poo r l y  c o n t r o l l e d  panic s e t  i n .  What 

cou ld  I b r i n g  t o  t h i s  d i s t i ngu i shed  assembly t h a t  'had n o t  been sa id  before? 

Was some s t a r t l i n g l y  new i n s i g h t  j u s t  beyond my grasp? How was I t o  cope 

w i t h  a  t i t l e  t h a t  once seemed so f e l i c i t o u s  and now was looming l i k e  an 

a lba t ross?  Maybe, i f  I waited j u s t  one more day .... 
Proc ras t i na t i on  has i t s  rewards. I n  a  s tud ied  e f f o r t  t o  ignore  the  

w a i t i n g  t y p e w r i t e r  and the  notes I had co l l ec ted ,  I s e t t l e d  down beside 

them t o  examine t h e  October 1975 issue o f  Smithsonian. It c a r r i e d  an 

excerp t  from A l l  t he  Strange Hours, t he  autobiography o f  Loren Eiseley,  

t h e  famed " l i t e r a r y  n a t u r a l i s t  and s c i e n t i s t . "  He t e l l s  o f  t he  "poignant 

work o f  tampering w i t h  p reh is to ry , "  desc r ib ing  how I' . . . some f. ine day, 

t h e  kaleidoscope through which we peer a t  l i f e  s h i f t s  ... and every th ing  i s  

reordered" and il l u s t a t e s  i t  w i t h  a  t a l e  about being l o s t  i n  a  Carl  sbad 

.s inkho le .  He was de l i ve red  f rom h i s  predicament by r e t r a c i n g  h i s  steps 

over  fragments o f  broken sta lagmites,  c r y s t a l s  never be fore  touched o r  

seen by mankind. He w r i t e s :  

"By the  t ime I stood a t  t he  cave entrance I was look ing  a t  

l i f e ,  a t  my companions, a t  the  t r a f f i c  below on the  road, 

, as though I had j u s t  a r isen,  a  f rozen man, from a  t o r r e n t  

o f  me1 t i n g  i c e .  I wiped a  muddy hand across my brow. The 

hand was 10,000 years away. So were my eyes, so would they 

always be, and ... I could  n o t  f i n d  a  way t o  speak. 

"The modern wor ld  was smal l ,  I thought, t i n y ,  c o n s t r i c t e d  

beyond b e l i e f .  A l o s t  century,  a  t o y  .... 
"I have never again seen men so m inu te l y  c l e a r  . . . moving 

across an i n f i n i t e  i c e  f i e l d  i n t o  whose g l a r e  we f i n a l l y  

vanish. I t  was l i k e  a  glimpse through the  s l i t t e d  bone 

w i t h  which Eskimos p r o t e c t  t h e i r  eyes f rom snow bl indness.  

I have never had occasion i n  t h e  years s ince  t o  t h i n k  upon 

us d i f f e r e n t l y .  Not once." 

E i s e l e y ' s  eloquence makes t h i n g s  much eas ie r  f o r  me. I have a  number 

o f  ideas t o  mention ton igh t - -bu t  I am shorn o f  any pretense t h a t  they 

need be earthshaking. Indeed, t h a t  r e a l  i za t ion  makes my j o y  unconfined. 

I can now make some ch ips  and see where they fa1  1  . 
\ 



THE AEC AND THE ASG AND THE NRC AND ME 

Jus t  so there ' s  no mistake about i t  a t  t h i s  point in time, l e t  me 

make an i n i t i a l  point: My en t i r e '  s t a t i s t i c a l  career has been associated 

w i t h  the Atomic Energy Commission ' s programs and those of i t s  successors, 

the Nuclear Regulatory Commission and the Energy Research and Development 

Administration. Successes and fa i lures ,  joy and despair, hopes and fears ,  

dreams and real i t ies--for me, a1 1 of these a re  t ied up with these three 

agencies. So perhaps you will suffer  me whatever "Dutch uncleisms" a r i se  

in the sequel. 

As I gradually came to an appreciation of the depth &nd. breadth and 

importance of AEC programs in the 1950s, I also came to  a feeling of 

concern tha t  the discipl ine we ca l l  s t a t i s t i c s  was under-represented a t  

AEC Headquarters. And a t  the same time I was buoyed by the discovery 

tha t  pockets of s t a t i s t i c a l  ski1 1 existed among the AEC's laboratories,  

even i f  tha t  s k i l l  was i l l -d is t r ibuted .  B u t ,  I wondered, how could a 

spectrum of s t a t i s t i c a l  .questions gain a proper appreciation "in 

Washington" unless there were a centralized s t a t i s t i c a l  capabili ty in 

the AEC,  c lear ly ident i f ied,  and active in dealing with. those questions? 

I never did find an answe,r t o  tha t  question. B u t  I was most surely 

pleased when, i n  the l a t e  summer of 1974, the Commission approved the 

formati on of an Appl i ed S ta t i  s t i  cs Group (ASG) within the then-Di rectorate 

of Regulation wi th  a clearly-stated "mission" to: 

"1. Provide f i r s t - c l a s s  mathematical s t a t i s t i c s ,  

consulting, and policy service to  a l l  of R E G ,  

including the Director of Regulation and a7 1 

t ls~ee Dil-cctor-ates [then ca l l  cd Li ccnsi ng, 

Regul atory Standards, and Regulatory Operations]. 

This includes both solving problems and coming 

up w i t h  new ideas on the application of s t a t i s t i c a l  

techniques t o  regul atory problems. 

"2. Provide a small centralized group for  r i sk  

evaluation.. . ." 



Of course, the Energy Reorganization. Act of 1974 was we1 1 in the 
works by then--but the ultimate mission of the ASG could not be diminished 
by the final details of the Act. As things finally worked out, I 
boarded the disappearing AEC ship on January 9, 1975, with the under- 
standing that the NRC would effect a rescue on January 19, the effective 
date of existence for both the NRC and the ERDA. My 10-day AEC tenure 
set a new record for personal insecurity--with the enlightening exception 
of a highly instructive ditch-digging engagement in the summer of '45. 

ABOUT THE NRC 

What about the NRC? What about its philosophy, authorities, 
responsibilities, activities, functions, and organization. Most of what 
follows appears in testimony presented by Chairman William A. Anders 
before the Subcommittee on Energy and Environment, House Committee on 
Interior and Insular Affairs, April 28, 1975. The full testimony is 
worth reading, especially as an example of a new government agency's 
statement of purpose. 

Chairman Anders states: "The most basic point is this: The business 
of Nuclear Regulatory Commission is regulation. We must maintain a 
position above the fray, and not allow ourselves to be either apologists 
for or antagonists of nuclear power. Development or promotion of nuclear 
energy is the function and responsibility of others. Our job is protecting 
the health and safety of the public." 

To guide the Commission, four cardinal principles were adopted: 
Independence, Openness, Efficfency, and Effectiveness. 

The  omm mission's authorities derive from three statutes: The Atomic 
Energy Act of 1954 (as amended), the Environmental Pol icy Act of 1969, 
and the Energy Reorganization Act of 1974. 

The responsibilities of the Commission are protection of the public . 

health and safety, protection of environmental quality, safeguarding 
.PI nuclear materials and facilities, and ensuring conformity with the nation's 

anti trust laws. 



A c t i v i t i e s  cover most o f  the steps o f  the nuclear f ue l  cycle, from 

m i l l i n g  of source mater ia ls  t o J e i t h e r  f i n a l  storage and d ispos i t i on  

(wastes) o r  reprocessing and f u r t he r  use (nuclear reactor  fue l  and radio-  

i s o t o ~ e  byproducts) . The NRC does not  regulate uranium mining o r  govern- 

ment enrichment p lants.  

The functions, descri.bed under T i t l e  10 o f  the Code o f  Federal Regu- 

la t ions ,  are supported by broad programs i n  standards-setting, technical 

reviews and studies, l i cens ing  act ions, inspect ion and enforcement, evalua- 

ti on o f  operat i  ng experience, and research. 

The NRC organization, shown i n  Figure 1, has been se t  up t o  accomplish 

these funct ions.  B r i e f l y ,  the five-man Commission i s  appointed by the 

President. The Executive D i rec to r  f o r  0perat io .n~ (EDO)' i s  the coordinating 
, 

' and d i r ec t i ng  agent f o r  the Commission. Five major 'operat ing o f f i ces  

provide the day-to-day act ion:  Nuclear Reactor Regulation (NRR) , Nuclear 

Mater ia l  Safety and Safeguards (NMSS), Nuc'iear ~egulatory Resear-ct~ (RES), 

Standards Development (SD) , and Inspection and Enforcement ( IE)  . ( I n i t i a l s  

included t o  ass i s t  i n  f u r t h e r  encounters w i t h  NRC un i ts . )  
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I won't pretend an intimate acquaintanceship with the  myriad boards 
and associated information t ha t  could be c i t ed  t o  f l esh  out t h i s  br ief  

b, 

survey. My only i n t en t  is t o  provide some ins igh t  in to  what i s  happening 
i n  the NRC and how things a re  organized. B u t  I  c a n ' t  r e s i s t  a couple 

- 4  of s t a t i s t i c s :  'The FY 1976 budget cal led fo r  2339 personnel and funds 
amounting t o  $220 m i  11 ion (including contractual support) .  

ABOUT THE ASG 

The Applied S t a t i s t i c s  Group doesn ' t  appear on the  organization 
char t .  I t ' s  not organized as an "Office" and i t  has not been cal led a 
"Branch." B u t  "Group" conveys both a sense of upbeat modernity and a 
feel ing of unity of purpose. 

Of f ic ia l ly ,  the  ASG i s  responsible t o  Dr. Stephen H .  Hanauer who 
is  the  Executive Director ' s  Technical Advisor. Steve has been especia l ly  
helpful in es tabl ishing the ASG's focus f o r  s t a t i s t i c a l  a c t i v i t y  in the  
NRC--sometimes by providing introductions t o  various segments of the a . 

organization, sometimes by forcing us t o  sharpen our s t a t i s t i c a l  wits  i n  

order t o  parry h i s  queries.  

We had occasion recently t o  recount the  Group's endeavors. We were 

astonished a t  the number of individual projects  t o  which we had made 
contributions w i t h  some 18 people-months of e f f o r t  in about e igh t  calendar 
months. They include s tudies  of fuel element behavior, nuclear materials  
safeguards information systems, connections among inspection and enforcement 
and reactor  experience, reviews of Regulatory Guides and regulat ions ,  
atid1ys.i s o f  data pertaining t o  a i rc ra f t -ca r r ied  mater ia ls ,  survei 11 ance 
of nuclear reactor  s t ruc tures ,  preparation and review of ANSI-sponsored 
standards. Even now.we a r e  working on a sampling scheme f o r  the Office 
of the Controller  t o  apply t o  the  audit ing of travel  vouchers. 

The second par t  of the ASG mission, the  r i s k  evaluation e f f o r t ,  was 
obviated when several members of the  Reactor Safety Study (WASH-1400) 
were brought together i n  the  Office of Nuclear Regulatory Research t o  

form the  Probabi l i s t i c  Analysis Branch, now under the  di rect ion of Ian Wall. 
The s k i l l s  and t ra in ing  represented in t h a t  Branch a l so  a r e  directed a t  
providing re1 iabi  1 i t y  theory and pract ice  f o r  NRC programs. 



Without people, of course, none of th i s  would be possible. ASG 
people deserve spotlighting. "Cookie" Ong has been around the licensing 
and regulatory wars longer than any of us; he joined the ASG i n  April 

and his safeguards knowledge i s  always on cal l  by new ar r iva ls  and old 
hands a t  the NRC. Bob Easterling i s  well into a two-year hitch as the 
ASG's S ta t i s t i ca l  Advisor; he arrived i n  June and his contractor-inspired 
views provide a f ine  counterpoint with which to  probe the ver i t ies  of 
nuclear s t a t i s t i c s .  David Rubinstein i s  our newest permanent s t a f f  
member; he joined us in October and his industrial  and governmental 

' experience wjll provide the ASG w i t h  i t s  share of thc added dimension 
now so popular w i t h  sn many ~ns t j eu r lons .  And we must no t  s l igh t  
Nancy Barr' s secretar ial  contributions nor her insights into governmental 
paper management. 

Bob Easter1 i n g  expounds a thesis:  "The essense of good regulation 
i s  s t a t i s t i c s . ' '  He and I ,  most assuredly, have encountered arguments on 
that--but i t s  usefulness l i e s  in reminding everybody tha t  data,  and i t s  
analysis and interpretat ion,  ought to  underpin the s t rategies  and t ac t i c s  
employed to  carry out a regulatory philosophy--irrespective. of the thing 
being regulated. And we recognize tha t  "ought to" provides us with' a 
goal whose achievement will forever seem t o  be jus t  beyond our grasp. 

I t  i s  important to  note tha t  the dismay I expressed ea r l i e r  about . 

the under-represent'ation of s t a t i s t i c s  in the AEC was par t ia l ly  assauged 
t h i s  past summer by an almost.singular event. 'Six senior AEC s ta f f  
members were honored w i t h  Distinguished Service Awards. During the 
reading of one of the c i ta t ions ,  we heard the words " s t a t i s t i c s "  and . 

" s t a t i s t i c a l "  several times. I t ' s  hard t o  re jec t  such an indicator, 'no 
matter what level of significance i s  chosen. 

The conjunction of the authorization of the Appl ied S ta t i s t i c s  
Group and the formation of the Nuclear Kegulatory Comlssiun drld the 
consequent organizatio'n choices provide us w i t h  a very special oppor- 
t u n i  ty .  Modesty alone cannot account for  the feel ing of challenge and 

excitement tha t  goes w i t h  being a part  uf Lhis venture. .. . 



A STATISTICAL POTPOURRI 

Sometime between the ages of 25 and 79 years, most of us begin each 

day with a few more unanswered questions than we had the morning before. 
And it's not completely explained by the action of alcohol on 1 ittle grey 
cells. In preparing this talk I spent some time with recent issues of 
The American Statistician. Reading them sequentially, in a single sitting, 

. 

is an exercise r highly recommend. Articles therein, along with other 
signals from many unidentifiable sources, lead me to offer the following 
for your cons iderati on. (References provided on request . ) 

Is a statistician a scientist or a shoe clerk? 
tlhat i s interaction? 
Should there be a certification or 1 i censing of statisticians? 
How do we cope with a we1 1 -establ ished statistician's elementary 

text that speaks of "2-sigma" confidence interval s? 
Is statistics identical ly equal to data analysis? 

Can uncertainty be expressed as a single number? 
When can we expect the first "Chemistry for Statisticians" 

book prepared by a statistician? 

Can a systematic error be random? Indeed, can it even have a 

random component? 
Are probability, statistics, and re1 iabil ity distinguishable 

di sci pl ines? 
If the formulas for the end points of a confidence interval are 

symbols for random variables, what do we call the real iza- 
tions computed from the sample data? 

Should statistical activists rally around "The Ubiquity of 
Statistics" thesis enunciated by Will iam Kruskal? 

Should we take cognizance of consonance? 
If "statistical science traini ng" is good for government employees , 

is it also good for other people? 

If mathematics is the "handmaiden of science," then is statistics 

not both the taskmaster grid- stab1 eboy of human endeavor? 

If I possessed comforting answers to these questions, I wouldn't have 
asked them. Filling the chinks in any system is arduous. But it can 



r e s u l t  i n  sty1 i s h  and important energy-saving actions. r submit t ha t  

s t a t i s t i c s  and s ta t i s t i c i ans  have some work t o  do. 

PARTING SHOT 

Our country i s  i n  the midst o f  i t s  Bicentennial Celebration. 

Washington, D.C. i s  a splendiferous place t o  v i s i t  any time--now i t  i s  

doubly so. For those planning t o  drive, I have a special, but c lea r l y  

uno f f i c i a l ,  o f fer :  V is i to rs  w i l l  receive no parking t ickets- -a l l  the 

possible parking places w i l l  be taken long before anybody arr ives from 

out o f  town! 

Thank you again f o r  i n v i t i n g  us. 
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INTRODUCTION 

To understand the approaches we have taken to  data analysis techniques 
a t  stanford Linear Accelerator Center (SLAC) , i t  i s  necessary t o  understand 
the types of data tha t  we typically encounter i n  h i g h  energy par t ic le  
physics experiments. These data originate with the part ic le  detectors 
associated with scattering experimen.ts. These detectors pro'duce counts 
whenever a . p a r t i c l e  passes through them. The cardinality of these counted 
data tend to  be larger than that  usually encountered by s t a t i s t i c i ans .  
Sample s izes  from 5,000 to  50,000 are  not uncommon. The data are  nearly 
always multivariate w i t h  typical dimensionalities ranging from 4 to  20. 

The data dis t r ibut ions tend t o  be f a r  from normal. These dis t r ibut ions 
are highly structured i n  the mu1 t iva r i a t e  data space, and location i s  not 
always the i r  most important a t t r ibute .  Quite often the scale of a dis- 
tr ibution i s  a much more important character is t ic  than location. 

These character is t ics  place severe res t r ic t ions  on the nature of the . 

procedures tha t  we employ. They also allow for  some exciting poss ib i l i t ies .  

The non-normality of the dis t r ibut ions requdres tha t  we employ nonparametric 
procedures. The f ac t  that  location i s  not the most important a t t r ibu te  of 
the dis t r ibut ions rules out most of the nonparametric techniques tha t  
are  simply robust extensions of normal procedures. Total 1 y general non- 
parametric techniques are  required. The multi-attribute nature of the 

data requires tha t  these procedures be multivariate. The large sample 

s izes  require tha t  these techniques be computationally e f f ic ien t .  Procedures 

i n  which the computation time grows as the square of the sample s ize ,  or 
f a s t e r ,  are  unacceptable. On the other hand, the large sample s izes  allow 

for  the possibi l i ty  tha t  we a t  l eas t  have a chance of being successful 
with general ized nonparametric mu1 t iva r i a t e  techniques. The so-call ed 



"curse of dimensionality" requires tha t  the sample s ize ,  N ,  grow with 
dimension, p, a s  N~ i n  order t o  maintain roughly constant precision. 
Thus, very large sample4-sizes are  required for  even moderate dimension- 
a l i t i e s .  

With parametric techniques, the data dis t r ibut ion i s  assumed to  be 
described by a small number of parameters that a re  to  be estimated. This 

. effect ively reduces the .dimensionality to  tha t  of the parameter space, 
considerably al leviat ing the problem. In our applications, however, 
models describing the densi t ies  are generally not known, ruling out th i s  

approach.  In f ac t ,  an important problem i s  validating models that  are  
proposed by theoretical physicists,  given a multivariate data 'sample. 
A1 though described i n  a parametric framework, goodness-of-f i t test ing 
- i s  real 1 y a nonparametri c probl em. 

Our . f i r s t  e'fforts were directed toward searching the 1 i terature  
fo r  procedures tha t  met the requirements described above. We found 

two independent and largely noninteracting,bodies of l i t e ra tu re  addressing 
themselves to  these types of problems. The f i r s t  was tha t  of s t a t i s t i c i ans  
and the i r  adherents (biometrics, econometrics, social sciences, education, 
e tc .  ) .  The second was tha t  of e lectr ical  engineers and the i r  associates 
(pattern recognition, a r t i f i c i a l  i n t e l l  igence, computational geometry, e tc .  ) 

We found very 1 i t  llt! lhat we could apply i n  the gcncra'l s t a t i s t i c s  
1 i terature .  Almost a1 1 mu1 t iva r i a t e  procedures were based on normal i ty .  
Those nonparametric procedures tha t  did ex is t  f o r  mu1 t iva r i a t e  appl ications 
were usual ly  robust general i zations of normal procedures (for  example, 
replacing datum locat7ohs By correspur~rl'ii~g ranks),. The most promi sing 
techniques tha t  we did find were those based on tolerance regions. On 
the other hand, the s t a t i s t i c i a n s  tended t o  take considerable care In 
deriving the expected performance of the i r  procedures,,at l eas t  i n  the 
asymptotic 1 imi t. Good asymptotic ,performance i s  a necessary b u t  usually 
not a suf f ic ien t  guarantee of a technique's usefulness. This i s  because 

the "curse of dimensionality" can require tha t  the sample s ize  become t ru ly  
astronomic before asymptotic resu l t s  are val i d .  



We found a great body of work in the engineering l i t e ra tu re  tha t  
approaches problems similar to  ours, some of which we have found to  be 

@ 

quite useful. The principal drawbacks to  much of this work a re  lack of 
demonstrated performance and excessive computational complexity. These 

f procedures tended to be completely heuristic.  Their performance was 
usual ly  demonstrated by appl ication to  a sing1 e specif ic  problem 
(usual l y  two-dimensional ) along w i t h  speculation as to  the general 

performance (both s t a t i s t i c a l l y  as  we1 1 as  computational ly)  . This . 

speculation usually turned out to  be incorrect,  as we found by trying 
them on more general problems and a t  higher dimensionality. However, 
we did a t  l eas t  find a wealth of innovative ideas i n  t h i s  l i t e r a tu re .  

We learned two lessons from th i s  exercise. F i r s t ,  the s t a t e  of 
the a r t  would probably be much more advanced today i f  there had been 
more communication between these two bodies of l i t e ra tu re .  Second, i f  
we wanted solutions to  our problems we would, for  the most par t ,  have 
to  find them ourselves. As our e f for t s  progressed, however, we began 
to understand the reasons for  the lack of advancement in th i s  f ie ld .  
We soon came to  real ize tha t  the problems we had s e t  out to  solve were 
qui te  d i f f i cu l t .  Our approach has been two-fold. F i r s t ,  t o  t r y  to  find 
ways of reducing the computational e f fo r t  of techniques tha t  otherwise 
look promising, and second, t r y  to  develop new procedures tha t  f i t  our 
needs. In sp i t e  of the d i f f icu l ty  of the problems, we have made some 
progress. 

REDUCING COMPUTATION COMPLEXITY 

The, c lass  of existing techniques tha t  appeared most promising to  
us were those based on interpoint distances. A t  the heart of the analysis 
of counted data i s  local density ' estimation. Density can be estimated 
.by fixing a small region . i n  the multidimensional data space and counting 
the number o f  data po in t s  . t h a t  l i e  within t he  region. The estimate i s  

then the number of points divided by the volume (Rosenblatt, 1956, or 
Parzen estimator, 1962). An a l ternat ive i s  t o  f i x  the number of data 

points and measure the volume t h a t  exactly contains tha t  number 
(Loftsgaarden and Quesenberry, 1965). A great many general nonparametric 

techniques a re  based e i ther  direct ly  or  indirectly on th i s  type of density 



estimation. In f ac t ,  many .procedures require such an estimate for  each 

data point. Computational 1 y ,  these .procedures require searching the 

multidimensional data space for  data points tha t  are close to  a given 

prespecified point. From the computer science point of view,.this i s  

a problem i n  computational geometry o r  searching on secondary keys. 

A t  the time we began considering these .problems, the s t a t e  of the a r t  

was simply t o  calculate the distance to  a l l  points from the prespecified 

point, identifying those tha t  were smallest. T h i s  required computation 

proportional t o  the sample s ize ,  N. If  th i s  was to  be done for  a l l  
2 da.J.ii (roJn'ts, the computation increased w i t h  increasing N ,  as N . This 

limited the application of these procedures to  small data samples. One 

of our principal accomplishments has been t o  develop an algorithm tha t  

performed t h l '  s searchi ng w i t h  compu.ta ti  on proportional t o  Nl ogN (Friedman, 

e t  a1 . , 1975). This reduced, by many orders of magnitude, the computation ' 

required to  obtain density estimates using interpoint distances and 

great ly extended the applicabi l i ty  of these procedures to  large data se ts .  

A somewhat related problem i s  tha t  of shortest  connecting networks 

or  minimal spanning t rees .  A minimal spanning t r ee  for  a s e t  of points 

in a mu1 tidimensional . space i s  a network of 1 inks or branches connecting 

them t h a t  have minimum to ta l  distance whi l e providing a route between , 

every pair of points. Methods based on minimal spanning tre'es have been 

proposed for  cluster  analysis and data summari zatjon [Zahn (1 971 ) , 
Arkadev and Braverman (1967), Johnson (1967), and Gower and Ross (1 9C9)]. 

We have found tha t  these graph theoretical methods are arrlong the most 

powerful for  detecting and describing clustering in multivariate data. 

The problem was tha t . the  f a s t e s t  known algorithms for  constructing minimal 
2 spanning ' t rees  required computation proportional to  N [Kruskal (1 956), 

Prim (1 957), and Di j kstra (1959)l. This computation 1 imi ted these 

techniques t o  small data samples. Using the f a s t  searching algorithms 

tha t  we developed. for  density' estimation, we were able to  develop an 

a1 gori t h m  for  constructing minimal spanning t rees  w i t h  computation propor- 

tional t o  Nl ogN (Bent1 ey and .Fri edman, 1975). This greatly expands the 

applicabi l i ty  of these clustering techniques to  much larger data bases. 



NEW PROCEDURES I N  MULTIVARIATE DATA ANALYSIS 

.Our research  on new procedures f o r  m u l t i v a r i a t e  da ta  a n a l y s i s  has I 

cen te red  on bo th  e x p l o r a t o r y  and con f i rma to ry  techniques.  The e x p l o r a t o r y  

techniques were i n  l a r g e  p a r t  developed i n  c o l l a b o r a t i o n  w i t h  Pro fessor  

John W. Tukey o f  P r i nce ton  U n i v e r s i t y  and B e l l  Labo ra to r i es  a t  Murray H i l l .  

These methods cen te r  on mapping techniques.  That  i s ,  t h e  p-dimensional  

da ta  i s  mapped on to  one, two o r  perhaps three-d imensional  man i fo lds  i n  

a  manner t h a t  preserves,  as c l o s e l y  as poss ib l e ,  some aspect o f  t h e  da ta  

s t r u c t u r e  i n  t h e  f u l l  d i m e n s i o n a l i t y  o f  t h e  da ta  space. The r e s u l t i n g  

da ta  d i s t r i b u t i o n s  a r e  viewed by a  researcher  i n  t h i s  lower  d i m e n s i o n a l i t y  

where t h e  human g i f t  f o r  r ecogn i z i ng  da ta  r e l a t i o n s h i p s  as p a t t e r n s  can 

be employed. 

S i m i l a r  techniques f o r  t h i s  purpose have been sepa ra te l y  proposed 

i n  bo th  t h e  s t a t i s t i c s  and eng ineer ing  , l i t e r a t u r e .  S t a t i s t i c i a n s  r e f e r  

t o  these as "mu1 t i d imens iona l  s c a l i n g "  w h i l e  t he  engineers r e f e r  t o  them . 

as "non l i nea r  mapping". When they  can be app l ied ,  these techniques can 

be q u i t e  power fu l .  They s u f f e r  f rom two impor tan t  l i m i t a t i o n s .  The 

f i r s t  i s  ast ronomica l  computat ional  complex i t y  and t h e  second i s  d i f f i c u l 6 :  
,.. . i n  i n t e r p r e t i n g  t h e  r e s u l  t i  ng maps. 

We have termed ou r  approach " p r o j e c t i o n  p u r s u i t " .  As t h e  name i m p l i e s ,  

we employ p r o j e c t i o n s  o r  l i n e a r  mapping techniques.  The advantage o f  

l i n e a r  maps i s  ease o f  i n t e r p r e t a t i o n  and computat ional  s i m p l i c i t y .  The 

disadvantage i s  t h a t  when g e n e r a l l y  app l i ed ,  low dimensional  p r o j e c t i o n s  

u s u a l l y  p reserve  v e r y  l i t t l e  o f  t h e  mu1 t i v a r i a t e  s t r u c t u r c  o f  t h e  da ta .  

The purpose o f  p r o j e c t i o n  p u r s u i t  i s  t o  use t h e  mu1 t i v a r i a t e  da ta  s e t  t o  

f i n d  those p r o j e c t i o n s  t h a t  a re  most r e v e a l i n g  o f  t h e  mu1 t i v a r i a t e  da ta  

s t r u c t u r e .  

We have implemented t h i s  concept i n  two q u i t e  d i f f e r e n t  ways. One 

i s  on an i n t e r a c t i v e  computer g raph ics  dev ice .  We have named t h i s  dev ice  

PRIM-9  (Steppe1 , 1973, and F i  s h e r k e l l  e r ,  1974).  It prov ides  t h e  researcher  

w i t h  a b i l i t y  t o  r o t a t e  t h e  data t o  any desi ' red o r i e n t a t i o n ,  w h i l e  con- 

t i n u o u s l y  v iew ing  a  two-dimensional p r o j e c t i o n  o f  t h e  m u l t i v a r i a t e  data.  

These r o t a t i o n s  a re  performed i n  r e a l  t ime  and i n  a  cont inuous manner 



under operator  c o n t r o l .  Th is  g ives t h e  researcher t h e  a b i l i t y  t o  perform 

manual p r o j e c t i o n  pu rsu i t .  That is,, by c o n t r o l  1  i n g  t h e  r o t a t i o n s  and 

v iewing t h e  changing pro jec t ions ,  he can t ry t o  d iscover those data 

o r i e n t a t i o n s  (or  equ iva len t l y ,  p r o j e c t i o n s )  t h a t  reveal  t o  him i n t e r e s t i n g  

s t ruc tu re .  

The o ther  implementation o f  t h i s  concept was as an automatic com- 

p u t e r  a lgo r i t hm (Friedman and Tukey, 1974). Th is  a lgor i thm automat ica l ly  

searches the  data  measurement space f o r  revea l i ng  one and two-dimensional 

p r o j e c t i o n s .  These p ro jec t i ons  can then be inspected by the  researchers 
\ 

f o r  i n te rp re ta t ' f on .  

We have a l s o  made some progress i n  the  area o f  conf i rmatory  data 

analysis techniqucs, We developed a g ~ n e r a l  t e s t  f o r  t he  s tochast ic  , 

independence of two mu1 t i v a r i  a t e  data sampl es ( F r i  edman , ,1974) . We have 

a l so  developed a  general nonparame'tric procedure f o r  t e s t i n g  whether two 

m u l t i v a r i a t e  p o i n t  d i s t r i b u t i o n s  are drawn from t h e  same p r o b a b i l i t y  

dens i t y  f u n c t i o n  (Friedman, e t  a1 . , 1973). As we'll as t e s t j n g  i f  t h e  

two sample d i s t r i b u t i o n s  a re  d i f f e r e n t ,  i t  a lso  can i d e n t i f y  the  regions 

o f  t h e  m u l t i v a r i a t e  data space where the  two d i s t r i b u t i o n s  most d i f f e r ,  

, , and where they a re  most s i m i l a r .  

We have developed a  whole c lass  o f  procedures based on t h e  concept 

o f  data drive11 recu rs i ve  p a r t i t i o n i n g ,  Th is  technique goes a s  fill 1  clws: 

Consider a  s e t  of m u l t i v a r i a t e  observat ions, S o .  Based or1 these obser- 

va t i ons  choose by some procedure a  d i r e c t i o n ,  a ,  and a  sca lar  s p l i t  po in t ,  s. 

The sample So i s  then d i v ided  i n t o  two subsamples S1 and S2 such t h a t  

Th is  p a r t i t i o n i n g  procedure i s  then ,reappl i e d  t o  the  subsamples S1 

and S2, ob ta in ing  four subsamples; each o f  these are  then p a r t i t i o n e d  

s i m i l a r l y ,  and so on.. The recu rs i ve  a p p l i c a t i o n  o f  t h i s  p a r t i t i o n i n g  

procedure i s  cont inued u n t i l  a1 1  subsets f i n a l l y  meet a  te rminat ing  . . con- 

d i  ti on. , These te rmina l  subsets represent  mutual l y  excl  us i ve  subsampl es 

o f  t h e  complete data sampl e, and a1 so represent  convex subregions ( c a l l  ed 

.buckets) t h a t  c o l l e c t i v e l y  cover t h e  data measurement space. 



A specific mui tivariate procedure is defined by providing the 
prescription for determining the partitioning dire'ction, 2, and the 
split point, s, for partitioning each subsample, and the terminating 
condition that ends the partitioning . These prescriptions are usual ly 
cast in the form of optimizing some figure of merit. The,goal of the 
partitioning, and thus, the figure of merit, is to configure the 
terminal buckets so that data contained in the same bucket share as 
closely as possible some common property. 

Computational ly, this data partitioning can be represented by a 
binary tree. Binary trees are well known to have nice computational 
properties. In particular, they can usual l-y be constructed in O(N1ogN) 
time and be searched in O(1ogN) time. By providing various prescriptions 
for the partitioning criteria, we have applied this technique to a wide a 

range of problems. A "variable metric" decision rule for nonparametric 
classification has been developed (Friedman, 1975). This rule is 
invariant under monotone transformations of the measurement coordinates; 
its performance is unaffected by the presence of coordinates that contain 
little or no discriminating information, and it handles data with missing 
measurements with minimal information loss. We have applied this technique 
to nonlinear regression problems. The recursive partitioning divides 
the dependent variable space into separate regions such that, within each, 
the dependence is as linear as possible. It then performs a 1 inear 
regression in each such region separately. We have also developed an 
algorithm, based on data-driven recursive partitioning, for estimating 
intrinsic dimensional i ty of mu1 tivari at.e d a t a  sets and performing 
general ized out1 ier analysis. 

To summarize, we' have found the concept of data-driven recursive 
partitioning to be a powerful tool for developing effective mu1 tivariate 
procedures with 1 ow computational complexity. 

CONCLUSION 

As -the above discussion iridicates, we hav,e made some progress toward 
the goals outlined in the introduction. We have not yet solved some of our 

more important problems. For 'example,, a general mu1 tivariate goodness-of-fi t 



t e s t  t h a t  i s  bo th  powerful  and computable has eluded us so f a r .  E f fec t i ve  

and computable nonl i n e a r  mapping a1 g o r i  thms a re  n o t  y e t  avai 1 able.  But, 

I t h i n k  the  progress t h a t  we have made i n d i c a t e s  t h a t .  these problems may 

n o t  be i n t r a c t a b l e ,  and t h a t  we may see t h e i r  s o l u t i o n s  soon. 
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 LOW^ bouncb m e  d d v e d  doh ithe rnuLtLvaniate Mil.& 

&o b y  exphuning a6 an e x p e M o n  06  a convex dundon  

w d  uning Jm en ' 4 ineq M y .  

INTRODUCTION 

L e t  - X = (XI , X2 . . . . . Xn) be a vec tor  o f  s tandardi  zed normal random 

va r iab les  w i t h  EXiXj = pij. L e t  t he  p o s i t i v e  d e f i n i t e  covariance m a t r i x  

be - C w i t h  - M = - 2-I .  The m u l t i v a r i a t e  ~ i l l s l  r a t i o ,  €I(&,!), i s  defined t o  

be the  m u l t i v a r i a t e  normal p r o b a b i l i t y  "beyond" a c e r t a i n  c u t o f f  p o i n t  

d i v ided  b y ' t h e  m u l t i v a r i a t e  normal dens i t y  a t  t h a t  po in t ;  t h a t  i s  

R(g,M) = ( 2 ~ ) ~ "  lC11/2 exp (a~a '12 )  - P(X - 1 - a). 

Savage (1 962) general ized the  Shenton (1954) formula f o r  t he  u n i v a r i a t e  

M i l  1 s ' r a t i o  ob ta in ing  the  representa t ion  

R(2.M) = /exp(-a~u'  - - - uMu1/2)du. 1 
u>o - -  . 

Asuming - A = - aM > 0, Savage der ived upper and lower bounds f,or R by us ing  
< -x < 1 -x --- e - 1 on exp(-uMu1/2). - His bounds a re  

With the  same assumption Ruben (1964) c a r r i e d  the  expansion t o  more terms 

showing t h a t  t h i s  I c d  t o  an enveloping i ~ s y ~ ~ ~ p t o t l c  expansion wtilch gave 

a l t e r n a t i n g  upper and lower bounds o f  increas ing complexity.  

&! More recent ly ,  ~ja;jauskas (1973) showed t h a t  i f  ai + fo r  some 

i and ai > 0, a l l  i, then - 



n 
where z = ( 1 1 2 ) ~  a(&lx_')/axi = fl xmi j ~ j  , 

1 ' O I n  i = l  j=1  1 
provided mi > 0 a l l  i ,  j. For n = 1 this r e s u l t  i s  weaker than the 

\ 
usual  one. 

I f  one i s  i n t e r e s t e d  on ly  i n  bounding m u l t i v a r i a t e  normal prob- 
a b i l i t i e s ,  t h e r e  is  a r e s u l t  due t o  S lep ian  (1962) t h a t  may be u s e f u l .  
s l e p i a n  showed t h a t  P ( X  - > - a I . -  L = - C) > P(X ' - - -  a I L = D) provided 
c > d i j  ( c i i  = d i i  = 1 ,  a l l  i ) .  S o ,  f o r  example, i f  a l l  t h e  c o r r e l a -  j 
t i o n s  a r e .  p o s i t i v e ,  one could bound P(X - > - a )  above and below by prob- 
a b i l i t i e s  based on the e q u i c o r r e l a t e d  ca se s  f o r  p = max . . p. ' and - - 1,j 
p = mi! pi , j ,  r e s p e c t i v e l y .  I r J  

In t h i s  paper  we d e r i v e  three approximations from equat ion  ( I ) ,  
i nc lud ing  bounds, two of which a r e  expressed i n  terms o f  t h e  u n i v a r i a t e  
M i l l s '  r a t i o .  These approximations and bounds do no t  r e q u i r e  a > - 0 

and a r e  a l l  based on Ef(X) - = f(EX), - with  Ef(lj) >.  EX) - i f  f ' i s  convex 
i n  each argument. 

In t h e  l a s t  s e c t i o n  we r e p o r t  on 'the r e s u l t s  o f  a sampling s tudy  
c a r r i e d  o u t  t o  e v a l u a t e  t h e  accuracy o f  the approximations.  That s tudy  

showed the bounds t o  be reasorlably good and much b e t t e r  than t h e  Savage 
bounds which r a r e l y  e x i s t e d .  The requirement  t h a t  - A > g a p p e a r s  t o  be 
a s e v e r e  one. 

APPROXIMATIONS AND BOUNDS 

Make the change o f  v a r i a b l e  ui = v i / q ,  i = 1 ,  2 ,  . .;, n i n  
equa t ion  (1 )  and r ea r r ange  t h e  in tegrand  s o  t h a t  



where Q =, ( m i j / ~ ) ,  1.1 J J - P = Q - - I and zi = nil% This  manipulat ion 

expresses R(a,M) - - .  as propor t iona l  t o  Eexp(-VPV'l2) - where - = (V1 , V2, . . . , 
Vn) i s  a  vec tor  o f  independent random var iab les  such t h a t  Vi has a  

2  dens i t y  p ropor t iona l  t o  exp(-zivi - vi/2). An elementary computation 

shows Ei : EVi = - R '  ( z j  )/R(zi ) = E(zi ) '  = zi, - 1  /R(zi ) , where 
03 2  R(x) = (exp(-xt-t / 2 )d t  I ~ ( x , l )  i s  t he  u n i v a r i a t e  M i l l s '  r a t i o .  Since 

or P cpnta ins on ly  crossproduct terms, exp(-VPV1/2) i s  convex i n  each argument - - 
and the  r e s u l t i n g  approximation i s  a  bound. Thus we have 

I n  the  eva luat ion  . t h i s  bound i s  c a l l e d  BOUND. 

Another approximation, which i s  a  lower bound f o r  n  = 2 and which 

appears t o  be a  lower bound f o r  n  > 2  as w e l l ,  i s  obtained from equation (2) 

by i n t e g r a t i n g  o u t  one v a r i a b l e  a t  a  t ime. The r e s u l t  i s  

where 

and qij = m i j / c ,  E(w) = -R1(w)/R(w)as before.  I n  the  eva luat ion  
11 J J .  

t h i s  approximation i s  c a l l e d  APPRO. For n  = 2, APPRO i s  a  lower bound f o r  

R(a,M), - - and 

APPRO = (1 -p2)max{~(zl ) R [ z ~ - ~ E ( z ~  11, R(z2)R[zl-~~(z2)j}  

Since APPRO depends on the  order  i n  which t h e  var iab les  are  i n teg ra ted  o u t  

the re  are n! d i f f e r e n t  poss ib le  values. I n  the  eva luat ion  we considered 

th ree  p o s s i b i l  i t i e s :  (1 ) i n t e g r a t i o n  o f  t h e  var iab les  i n  t h e i r  na tu ra l  

order, (2) i n t e g r a t i o n  o f  t he  va r iab les  i n  an order  corresponding t o  the  

value o f  z  w i t h  the  v a r i a b l e  w i t h  the  l a r g e s t  value o f  z  being in teg ra ted  

o u t  f i r s t ,  (3) same as (2) except t h a t  i t  i s  t h e  v a r i a b l e  w i t h  the  smal les t  

z  which i s  i n teg ra ted  o u t  f i r s t .  I n  the  cases s tud ied each o f  these values 



o f  APPRO was a lower bound, so i t  i s  poss ib le  t h a t  t h e  maximum o f  t h e  n! 

p o s s i b i l i t i e s  i s  a l so  a lo&er bound. .It i s  a l so  poss ib le  t h a t  an a lgor i thm 

which minimizes t h e  maximum w o r  maximizes the  minimum w would g ive  w's 

f o r  which APPRO approximated the  maximum o f  the  n! p o s s i b i l i t i e s  reasonably 

we1 1. 

Another bound can be der ived from equation (2) by moving the  exp(-zv ' )  - 
f a c t o r  over  w i t h  exp(-vPv1/2). - Then the expecta t ion  w i t h  respect  t o  

independent normal random va r iab les  i s  r e s t r i c t e d  t o  (0 ,a). (Another 

p o s s i b i l i t y ,  o f ,  course, i s  t o  move t h e  exp(-vv1/2) - f a c t o r  and take the  

expecta t ion  w i t h  respect  t o  independent exponential  random var iab les ,  b u t  

t h i s  would r e q u i r e  - A. > - 0.) 

The f u n c t i o n  exp(-vPv1/2 - - - z v ' )  i s '  convex i n  each argument s ince - P 

has zero e n t r i e s  on the  diagonal and we have 

where, as before, zi = A ~ / $  and qi 
= mi j/m. I n  the  eva luat ion  

we have c a l l e d  t h i s  bound BDBDB. 

EVALUATION -- - - 

The mu1 t i v a r i a t e  normal i n t e g r a l  can be expressed as a s i n g l e  i n t e g r a l  

o f  products o f  u n i v a r i a t e  normal i n t e g r a l s  when the re  i s  a s e t  o f  constants 

bl, be, ... , bn such t h a t  pij = b.b. .  I n  t h a t  case X.i = b jY  + /- 7, 
J 

where Y, Z1, Z2, . . . , Zn a re  i. i.d.  N(0,l) and the  X's are c o n d i t i o n a l l y  

independent g iven Y = y. L e t t i n g  G denote the  .standard normal d i s t r i b u t i o n  

func t i on ,  i t  f o l l o w s  t h a t  

Hence, i n  t h i s  p a r t i c u l  a r  case, P(& > a) can be computed by standard 

quadrature methods and f o r  purposes o f  eva luat ing  the  approximations and 

bounds, we consldered on ly  t h i s  specia l  case. The exact  M i l  1 s ' r a t i o  and 

i t s  approximations were computed f o r  n = 2(2)20 and many combinations of 

{a) and {b) where t h e  b ' s  were chosen independently from a uni form d i s t r i b u t i o n  



on ( -1, l )  and the  a ' s  chosen independently so t h a t  a range o f  values o f  

P(& > - a)  were obtained. The r e s u l t s .  a re  summarized i n  Table 1. 

TABLE 1 .  Values o f  P(& > a), M i l  1s ' R a t i o  and Approximations BOUND, 
APPRO, BDBDB and Savage f o r  n = 2, 4, 6, 10 ,  20 

Prob- 
n a b i l i t y  - 

M i l l s '  
R a t i o  

BOUND APPRO 
Approx. - % Approx. - % 

B DB DB 
Approx. % 

SAVAGE 
Lower Bd. Upper ~ d .  

\ 

*Savage bounds n o t  a p p r o p r i a t e  because 5 2. 

It i s  apparent t h a t  'APPRO i s ,  i n  general, a good approximation and 

i s  t he  bes t  o f  t he  three.' BOUND i s  almost as good as APPRO and BDBDB i s ,  

i n  general, a poor approximation. Furthermore, t h e  bounds g iven by Savage 

a re  poor t he  few times they a re  appropr iate,  i .e., A >  - 0. 
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INTRODUCTION 

In th i s  paper we discuss mathematical models leading to  products of 
random matrices and random difference equations. We introduce a one- 
compartment model w i t h  random behavfor and show how the average concen- 
t ra t ion  i n  the discrete  time model converges to  the exponential function. 
These ideas are then generalized to  two-compartment models and mammillary 
systems, where products of random matrices appear i n  a natural way. I t  

i s  br ief ly  mentioned how the products of random matrices appear in 
appl ications i n  demography and control theory. Random sequences motivated 
from the following~problems are  studied: 

1 ) constant pulsing and random decay models, 
2 )  random pulsing and constant decay models, and 

3) random pulsing and random decay models. 

We discuss .some directions for  future research i n  the following 
-3 topics: appl ications t o  genetic evolution, appl ications to  record values, 

applications to  Ising models, random operators and random fixed point 
theorems. 



ONE-COMPARTMENT MODEL 

In blood-bone systems i t  i s  of in te res t  to  understand how radio- 
ac t iv i ty  gets trapped in the bone s t ruc ture .  As one possible approach, 
stochastic compartmental analysis was developed. In t h i s  section we 

develop a discrete  time model and a one-compartment system w i t h .  a .valve 
tha t  opens and closes a t  random. In l a t e r  sections we extend these 
resu l t s  t o  two-compartment model s and mammi 11 ary systems. 

In f i r s t  order kinetic models, the concentration of a. substance, 

C( t ) ,  as a function of time i s  described by 

d ~ ( . t ) / d t  = -I ~ ( t )  or ~ ( t )  = C(O) e-It. (1 

For more de ta i l s ,  see Jacquez (1972). We s e t  up a stochastic phenomenon 
governing the  dynamic behavior of the system and show that  the averaqe 
concentration s a t i s f i e s  the above exponential model. 

Let the time interval (O,t] be divided into m equal parts so tha t  
t = m o a t .  For convenience l e t  C(0) = 1 ,  a = e - A * A t  = ,-Itlm. L e t  Cm 

denote the concentration a t  m o A t .  Let X,,, denote a sequence of independent 
ident ical ly  distributed Bernoulli random variables w i t h  probabili t ies,  

PIXm = I ]  = p and P[Xm = 01 = 1 - p = q .  

I f  Xm = 1,  l e t  Cm = a 'm-1 and i f  Xm = 0 l e t  Cm = C ; or 

c m = J, c - x + em ,(l-x,). m-1 m - (2) 

Clearly, Cm takes one of the values of the s e t  (1, a ,  . . . , am) and 

P[C, = ak] = pkqm-k, k = 0, I ,  2, ..., m. 
- 

The expected value of Cm i s  equal to  

[[c,] = (q + a p)m (g  + p e -~t/m)m . 
Taking l imit  of E[Cm] as  m -+ a, A t  + 0 such tha t  m A t  + t ,  we obtain 

- p h t  lirn E[Cm] = e . (5) 

When p = 1 ,  we have the r e su l t  corresponding to  the deterministic process. 



The superimposition o f  randomness on the valve helps us t o  study the 

behavior o f  the concentrat ion a t  t ime m A t  i n  a more de ta i led  manner. For 

instance, i f  we know p, we can obtain the confidence 1 i m i t s  on Cm. 

- TWO-COMPARTMENT MODEL 

Suppose we have two compartments o f  the same volume w i t h  a valve t h a t  

can be opened o r  closed a t  w i l l .  Suppose there i s  prov is ion f o r  an i n l e t  

a l d  an o u t l e t  through compartment 1 which w i l l  enable the concentrat ion 

( i n  compartment 1 on ly  i f  the valve i s  open) t o  reduce by a fac to r  o f  

e = a, i n  a time i n te r va l  ~ t .  

Let  Cm = [El 9m]  denote the vector o f  concen t r~ t i ons  i n  compartments 1 and 2 
2 ,m 

a t  t ime  m A t .  Let  Xm'denote a sequence of independent i d e n t i c a l l y  d i s t r i bu ted  

Bernoul l i  random var iables w i t h  P[Xm = I] = p and PLX = 01 = 1 - p = q. 
m 

I f  Xm = 1, l e t  

cm = 1 1 ' '2,m-1 17 , and 
a 

('1 ,m-1 + '2 ,m-1 

if X,,, = 0, l e t  



where 

a O = A2 with probability 1 - p = q. 
= [o 1 1  

Note: Al A2 # A2 Al and 

T -1 t/m Special Case: p = 1/E, C = [1,0], a = e (I 

We can show that the limit as m + At +- 0 such that m At = t, 

Applications of this result to the retention of Strontium 85 (in dogs) is 
discussed in- the paper by Uppul uri and Bernard '(1 967). 

MAMMILLARY SYSTEMS 

Next, the two-compartment model with' a random valve, introduced by 
Uppul uri and Bernard, is extended to mamnill ary systems. (Each peripheral 
compartment communicates with the stream. ) 

Stream 

In each case of a j-compartment mammillary system, we assume that 
during a small interval of time At, exactly one of the peripheral compartments - 

is in comnunication with the stream. Symbolically we denote this by (El, 

Ep, .... Ej-l ) and if the ith peripheral compartment is in .comnunication 
with the stream, let Ei = 1 and EQ = 0 for i # 2 (and e = 1, 2, . . . , 5-1). 
We may assign a probability pi to this event, so that pl + . . . + pjel = 1 

and El + . . . + E j-1 1. At any time m At, if the ith peripheral compartment 



i s  i n  communication w i t h  t h e  stream, l e t  us  suppose t h a t  i n s t a n t l y  the  

amount i n  t he  stream and t h e  ith per iphe ra l  compartment becomes 
I 

and the  amounts i n  t he  r e s t  o f  t h e  compartments remain the  same as a t  t ime 

(m-1 )~ t .  Th is  may be w r i t t e n  as 

Special  Case j = 3: El = 1, E  2  = 0  o r  El = 0 , E 2  = 1  

Fur ther  s p e c i a l i z i n g  t o  a  = 1, we can g e t  a  complete d e s c r i p t i o n  o f  t h e  

sample space o f  Cm. And as m - a, we can o b t a i n  t h e  l i m i t i n g  concent ra t ion  
- vec to r  t o  be (%,%,%); which i s  reasonable (when a  = 1) i n  a  th ree  compart- 

ment system, where t h e  volume o f  t he  stream i s  equal t o  t he  volume o f  t he  

two per iphera l  compartments. 



MOMENT GENERATING FUNCTIONS . ' 

Next, we obta in  the funct iona l  equ.ation s a t i s f i e d  by the moment 

generat ing funct ion.  Le t  T '  = (t,,tl ,t2,. . . ,t j -1  ) ,  and $ (T I )  denote 

the moment generating func t ion  o f  the concentrat ion vector C,, and I? 

denote the expectat ion operator. 
j -1  

+,,,(TI) = E exp(r'Cm) = E exp EiAi)Cmel i = 1 

Invoking the p r i n c i p l e  o f  independence, we obtain 

where 

+ 0 ( ~ ' )  = exp(r1C0) and Co i s  the vector o f  i n i t i a l  amounts i n  

the j compartments. 

FIRST MOMENTS 

The 'mean' amount a t  the mth stage i s  given by 

where 

COVARIANCES - 

For the covariance (uncorrected) matr ix  Qm o f  the amounts i n  the 

system a t  the mth stage, we have 



where QO = COCA . 
OTHER MODELS 

D i f f e r e n t  models can be considered by changing the c o n n e c t i v i t y  o f  

t he  system, o r  the  complex of communication, and/or t he  p r o b a b i l i t y  

s t r u c t u r e  associated w i t h  the  connect ing valves. More d e t a i l s  can be 

found i n  the  paper by Bernard, Shenton and Uppulur i  (1967). 

APPLICATIONS I N  DEMOGRAPHY AND CONTROL THEORY 

Products o f  random mat r ices  were used by Sykes (1967) and Pol l a r d  (1966) 

i n  s tochas t i c  popu la t ion  model s. I n  order  t o  compute the  covariances , 
Pol l a r d  invoked the  concept o f  t he  d i r e c t  product  of .matr ices.  Grenander (1968) 

has shown how products o f  random matr ices a r i s e  when one solves a second 

o rde r  l i n e a r -  d i f f e r e n t i a l  equat ion 

where a ( t )  i s  a d i s c r e t e  s tochas t i c  process. I n  t he  study o f  the  s t a b i l i t y  

o f  random 1 i n e a r  systems, Bharucha (1 962) considered the  1 i near d i f f e r e n t i a l  

sys tem 
< 

x ( t )  = Ak ~ ( t ) ,  f o r  tk-l - t < tk, k = 1 ,. ,. . r (17) 

where x ( t )  i s  an N x 1 vector ,  and Ak a random N x N ma t r i x .  For t h i s  

model, t he  jth moment convergence and almost sure convergence o f  t h e  , 

sequence' { x ( t k ) )  i s  studied; t h i s  invo lves  products o f  random mat r i ces .  

CONSTANT PULSING AND RANDOM DECAY MODELS 

I n  t h i s  sec t i on  we study the  random sequences def ined by 



with Yo = 1 and' (Xn}  i s  a sequence of random variables. In a discrete  

time model, Yn may refer  to  the amount of the substance a t  time n A t ;  

Xn denotes the random factor by which the amount a t  (n-1) A t  i s  reduced 

during the interval of time A t  and 1 and i s  the constant amount which i s  

added to  the system during A t .  This may be referred to  as a constant 

pulsing random decay model. I t  is. of i n t e re s t  to  know the weakest 

assumptions on  X such tha t  the distributional properties and moments 

of Yn converge. Such resul ts  ape discussed in the paper by Uppuluri, 

Shenton and Feder (1967). We s t a t e  below a few typical resu l t s  without 

proofs . 
Theorem 1: Let Yo = 1 ,  Yn = 1 + X n  Y n - l ,  n = 1 ,  2 ,  ..., 
and ' { X I  be a sequence of independent identical ly  distributed 

random vari abl es . 
Then 

PIXn = 11 = p = 1 - P[Xn = 01 i f  and only i f  

Theorem 2: Let{Xn} be a sequence of independent identically distributed 

random variables,  Yo = 1 ,  and Y n  = 1 + X n Y n-1' n = 1 ,  2, ... . 
Let 

< PIXn = 11 = p, PIXn = a] = 1 - p ,  0 - a <  1 ,  

Then k 
" 11-Pkta @(t) = lim @,(t) = ll F , 

t a  n--~ k=O 1 -pe 

and 
" k  Y L D =  C a Zk, 

k=O 

-, where Zk are independent ident ical ly  distributed random variables with 



Theorem 3:  Under the hypothesis of theorem 2 ,  we have the following type 
of central l imit  theorem: 

We have a more general 

Theorem 4: Let Y n  = 1 + Xn Yn-l  , Yo = 1 and' X be a sequence of indepen- 

dent identically distributed non-negative random variables. Then E(Xn ) < 1 
implies tha t  Y n  converges in dis t r ibut ion to  a random variable YQ) and 

E(Yn) converges to  E(Y_). Furthermore, i f  X i s  e i ther  a discrete  or a 

continuous variable with E(xJ) < 1 ,  j = 1 ,  2 ,  . . . , m ,  then E(Y:) converges 

to  E ( Y ~ ) ,  j = 1 ,  2 ,  .. . , m.' In general, we have only convergence i n  

dis t r ibut ion,  b u t  no convergence in probability of the sequence Y n .  

The 1 imi t ing moments can be calculated by the recursive relationship 

< the 1 imi t dis t r ibut ion function F(x) = P[Y, - x] s a t i s f i e s  the functional 

equation 
Q) 

F(x+l) = /F(x / t )  dG(t), where G(t) = P [ X , Z ~ ] .  (21 
0 

In a sense, our resu l t s  establish the existence of unique solutions for  
integral equations of special type, by using probabil i s t i c  methods. 

RANDOM PULSING AND CONSTANT DECAY MODELS 

This model i s  defined by 

Yn = Wn + p Y n - l ,  n = 1 ,  2, ..., 
Yo = 0, and 1 > p > 0, 

and' {Wnl i s  a sequence of independent identical l y  distributed random variables. 

This i s  often used as an econometric model, and i s  referred to  as an auto- 

regressive scheme. We used the recursive methods developed by us to  study 

the behavior of th i s  sequence. More de ta i l s  may be found in Uppuluri, 

Feder and Shenton (1967). We shall present here a few resul t s .  



Theorem 5: If  I ELMn) 1 < Q), then Yn converges i n  d is t r ibut ion to  a random 
j variable . Y Q) and E(Yn) converges to  E(YQ)). Furthermore, i f  I E(W,) I < Q), 

then E(Y$ converges. t o  E ( Y ~ ) ,  j = 1 ,  2 ,  . . . , m. 

2 r 
Theorem 6: If  Var(Wn) = o < Q), then ( l / r )  1 Y converges i n  mean square 

(as r + Q)) t o  E(W)/(l -p) . a=1 a 

4 r 
Theorem 7: If  E(Wn) < Q), ,then ( I l r )  1 Y Y converges i n  mean square 

a= i +l a r-a 
2 i 2 (as r + Q)) t o  E(W )p / ( l -p)  . 

Let us consider the special case 

p = 1/k and P[Wn = j] = 1/k; j = 0 2 . ( - 1 )  Then we have 

- n-1 Theorem 8 :  Yn = Wn - pWn-l + ... + p W1 converges in dis t r ibut ion to  Y_ 
< < where PLYQ) 5 y ]  = y/k, fo r  0 - y - k. 

Conversely, i f  p = I lk ,  and Y n  converges i n  dis t r ibut ion to  Yawhere 
C < 

P[Y_ y] = y/k for  0 - y - k ,  then 

W, = 0, 1 ,  2 ,  ..., ( k - 1 ,  each with probability I l k .  

RANDOM PULSING AND RANDOM DECAY MODELS 

In t h i s  section, we consider the random difference equation 

Yo = 1 and' { ( U n ,  Vn)} i s  a sequence of mutually independent random variables 
< < 

w i t h  common dis tr ibut ion G(u, v) = PIUl - u ,  V1 - v], and Un and Vn have 
< 

marginal dis t r ibut ions Gl(u) and G2(v) respectively. Let Fn(y) = PLYn - y]. 

Such random difference equations a r i se  in the study of mathematical 

models, where some substance i s  introduced into the system'in random 

quant i t ies ,  and the system periodically eliminates a random proportion of 

the substance available during a time interval.  We are  interested in the 

study of the behavior of the amount of the substance in the system a f t e r  

a "long" period of time. The mathematical aspects of th i s  problem are  

considered in Paul son and Uppul uri (1 972). We wi 11 present some resul ts  

be1 ow. 



Theorem 9: I f  f o r  some a  r 0, E I  ul la < ', E Ivl l a  < 1  , then there  e x i s t s  

a  d i s t r i b u t i o n  ~ ( y )  such t h a t  ~, (y)  converges t o  F ( ~ )  a t  every p o i n t  o f  

c o n t i n u i t y  o f  F( ).  

Coro l la ry :  There e x i s t s  a  unique s o l u t i o n  $ ( t )  o f  t he  c h a r a c t e r i s t i c  

funct ional  equation 

where $ ( t )  i s  t he  c h a r a c t e r i s t i c  f u n c t i o n  associated w i t h  the  d i s t r i b u t i o n  

F( ); and t h e  expectat ion i s  r e l a t i v e  t o  the  measure induced by G(u, v ) .  

I n  the  specia l  case' {Un} and' {Vn} a re  mutua l ly  independent sequences 

w i t h  common d i s t r i b u t i o n  func t i ons  Gl (u) and G2(v) respect ive ly ;  we have 

$ ( t >  = ~ ( t )  EC$(Vt)l (25) 
i tU l  

has a  unique s o l u t i o n  $ ( t ) ,  where ~ ( t )  = E[e ] and E[$(Vt)] i s  w i t h  

respect  t o  the  d i s t r i b u t i o n  G2(v). 

I n  some spec ia l  cases, we g e t  some i n t e r e s t i n g  mathematical r e s u l t s .  

For example, we have 

Theorem 10: The s o l u t i o n  $ ( t )  o f  t he  equation 

$ ( t )  =. ~ ( t )  E L @ ( V t ) l  

i s  t h e  c h a r a c t e r i s t i c  f u n c t i o n  o f  t h e  geometric d i s t r i b u t i o n ,  i f ,  and on ly  

i f  ~ ( t )  i s  t he  c h a r a c t e r i s t i c  f u n c t i o n  o f  a  geometric d i s t r i b u t i o n  and 

G(v) i s  such t h a t  P[V = 01 = p  = 1  - P[V = 11  f o r  0  < p  5 1. 

DIRECTIONS FOR FURTHER RESEARCH 

Some o f  t he  r e s u l t s  discussed e a r l i e r  can be extended i n  several 

d i r e c t i o n s .  Some o f  these r e s u l t s  were extended t o  t h e  vec tor  case by 

Paulson and Uppulur i .  The d i s t r i b u t i o n s  o f  t he  pu ls ing  mechanisms can 

be parametrized, and methods can be developed t o  do s t a t i s t i c a l  in fe rence 

on these parameters. Some o f  t h e  r e s u l t s  could be extended t o  h igher order  

random d i f f e r e n c e  equations. 

APPLICATION OF GENETICS 

Random d i f f e r e n c e  equations w i t h  a d d i t i v e  and m u l t i p l i c a t i v e  s t ruc tu res  

were s e t  up as mathematical models f o r  t h e  study o f  c u l t u r a l  i nhe r i t ance  by 



Cavall  i -S forza and Peldman (1973). Only the behavior o f  the f i r s t  two 

moments i n  such sequences were used i n  .the in te rp re ta t ions .  There i s  a 

need t o  study the behavior o f  these sequences i n  the context  o f  c u l t u r a l  

inher i tance.  

APPLICATIONS TO RECORD VALUES 

Cer ta in  mathematical aspects o.f the sequences w i t h  add i t i ve  and 

mu1 t i p 1  i c a t i v e  s t ruc tures were a1 so studied r ecen t l y  by Vervaat (1 974), 

i n  the context  o f  record values and in te r - record  times. Vervaat gives 

c e r t a i n  s u f f i c i e n t  cond i t ions i n  order t h a t  the sequence may converge i n  

d i s t r i b u t i o n .  There i s  a need t o  study the q u a l i t a t i v e  nature o f  these 

s u f f i c i e n t  condi t ions and those o f  ~a 'h l son  and Uppuluri (1972), and 

attempt t o  f i n d  necessary and s u f f i c i e n t  condi t fons  f o r  the convergence 

o f  these sequences. I n  the  same s p i r i t  one should study Kesten (1973) 

and Sol omon (1975). 

MORE GENERAL SCHEMES AND I S I N G  MODELS 

Be1 lman, Soong and Vasudevan (1 972) studied the asymptot-i c behavior 

o f  sequences o f .  the form 

where x i s  a N-dimensional s t a te  vector  and the vector  sequence {rn} n 
i s  assumed t o  cons t i t u t e  a t ime homogeneous simple Markov process. As an 
appl j c a t i o n  o f  t h e i r  approach, they studied the behavior o f  the p a r t i t i o n  

f unc t i on  QN o f  an I s i n g  model as the  number of spins N becomes large.  

They ind ica ted  t h a t  t h e i r  approach i s  promising t o  the study o f  h igher 

dimensional I s i n g  models and sa id  t h a t  they would discuss the r e s u l t s  

elsewhere. Indeed, i t  w i l l  be very e x c i t i n g  t o  see the techniques and , :. ' 

r e s u l t s  o f  random d i f fe rence  equations used i n  ge t t i ng  a be t t e r  under- 

standing o f  the higher dimensional I s i n g  model s. 

RANDOM MATRICES 

As a matter  o f  f ac t ,  i n  the one dimensional I s i n g  model w i t h  random 

impurities;, . . . .  , the r e s u l t s  o f  Furstenberg (1963) were used by McCoy and Wu (1 973) 

t o  compute 'the f r e e  energy (1.n the thermodynamic l i m i t )  i n  the absence o f  
' ,  
% .  . \ ;. 



a magnetic f i e l d .  McCoy and Wu ind i ca ted  t h a t  a l l  aspects of the  random 

I s i n g  model have n o t  been c a r e f u l l y  studied. 

I n  1970, Hammers1 ey and Menon (1 970) discussed t h e  c l a s s i c a l  unsolved 

problem o f  s o l i d - s t a t e  chemistry, which goes under the  name of the  monomer- 

dimer problem. While d iscussing about random determinants, on page 348, 

they say: 

"Some s o r t  o f  l i m i t  theory  f o r  random matr ices o r  random 
determinants, and espec ia l l y  products o f  random matr ices, 
would be usefu l  here; b u t  t h e  1 i t e r a t u r e  (Mehta [I 51) seems 
v i r t u a l l y  s i l e n t  on the  subject ;  the  nearest approach 
(Furstenberg and Kesten [7]) i s  n o t  app l i cab le  s ince our  
random m a t r i x  conta ins zeros; and, even i f  i t  were appl icable,  
i t  would on ly  asse r t  t he  exis tence o f  a l i m i t ,  r a t h e r  than 
help i n  eva luat ing  the  1 i m i t . "  

There i s  a need t o  study the  monomer-dimer problem i n  view o f  some o f  

t he  recent  work on products o f  random matr ices.  

For a b e a u t i f u l  expos i to ry  a r t i c l e  on random mat r ices  i n  physics, 

r e f e r  t o  Wigner (1967). A t  t h e  end o f  the a r t i c l e ,  he enumerates a 

number o f  general quest ions and hopes t h a t  t he  mathematicians w i l l  he lp  

t o  c l e a r  up some o f  them. For the  mathematical aspects o f  random 

operators, r e f e r  t o  t h e  survey a r t i c l e  by Pastur  (1973). 

RANDOM FIXED POINT THEOREMS 

While s tudy ing t h e  ergodic behavior o f  the  l o g  norms o f  products o f  

random matr ices , Gren,ander (1 968) , on page 163, invokes a s tochas t i c  

vers ion o f  t he  Banach Fixed P o i n t  Theorem. Kalman (1962) invokes the  

Brouwer f i xed  p o i n t  theorem i n  order  t o  e s t a b l i s h  the  convergence of 

the  second moments o f  products o f  random matr ices.  Kesten (1973) invokes 

t h e  ~ h a u d e r - ~ ~ c h o n o f f  f i x e d  p o i n t  theorem, wh i l e  es tab l i sh ing  a r e s u l t  

about the  1 i m i t i n g  behavior of the  norm o f  products o f  random matri:ces. 

The theory o f  random f i x e d  p o i n t  theorems i s  n o t  we l l  developed. 

The best  known r e s u l t  seems t o  be due t o  Krasnoselsk i i ,  mentioned by 

Bharucha-Reid (1 972). It should be very i l l u m i n a t i n g  t o  prove t h e  

exis tence o f  so lu t i ons  o f  f unc t i ona l  equations t h a t  arose i n  the  study 

o f  random sequences o f  t h i s  paper, through the  corresponding random f i x e d  

p o i n t  theorems. 
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SIMULATION BOUNDS FOR SYSTEM AVAILABILITY 

G.L.. Tietjen 
R .A.  Wall e r  
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Sydtem a v a i e a b U y  h a dominant dadoh in Jthe put- 
IticaLiAy 0 6  nudeah powen &e&caL g e n d n g  p h & .  A 
pxopo~ed mod& 604 obltaining & h a  Lowen  bound^ oh LnXavaL 
eclkitnatu on a v a i e a b m y  mu' obdaved data on n &ulW.e- 
.to-hepdih c y d a  06 ithe system .to u-timaXe .the pahameh im  
in f i e  %&-;to- 6aieune and fie-Xo-rtepaitr. mod&. IThue 
uhhclnu m e  then u l ~ d  .itt h&&aL&q 6aiewre/&cpait c y d u  
06 .the byb;tem. The a v ~ 6 ~ y  ultimate h ob;t&ed don 
each 06 5000 samplu oh n ' 6dieuhe/hepain c q d a  Xo dorun a 
din;tnibu/tion o 6 u;eima/teb. Sceclidic pgncuu%e, p o w  o 6 
fiobe shLLea;ted d&.thibu/tion?l atre &decked an Lowen himuta- 
t i o n  bound oh a h W o n  LntmvaL bounch doh lthe sys.tem 
a v ~ ~ q .  The m h o d  .b iUusRhated w a h  opena;tionat 
data bhom .&uo nudeah p l u m 2  doh wkich an e x p o n e w  h e -  
t o -  &zitme and a Lognomd Xime-Xo-hepah m e  ans wned. 

INTRODUCTION AND DEFINITIONS 

A useful measure of the performance of a large system i s  ava i lab i l i ty .  . 

We define the ava i lab i l i ty  of a system to  be the probability of successful 

operation. In that  sense we may speak of e i ther  "successful operation 

a t  some time t" or  "successful operation over a long interval of t ." We 

refer  t o  the ava i lab i l i ty  a t  time t as a point or t ransient  - availability; 

whereas, the ava i lab i l i ty  over a long operating period i s  called steady- 
s t a t e  or  inherent or  long-run avai labi l i ty .  This paper presents a method 

which may be used to  generate simulation bounds for  e l  ther pOStIt or steady- 

s t a t e  ava i lab i l i ty  under specif ic  distributional assumptlons. However, 

the examples presented are  res t r ic ted  to  a study of the steady-state 

ava i lab i l i ty  alone. 

For i l l  ustration we suppose' a nuclear power plant i s  placed i n  service 

and tha t  i t s  performance i s  followed through n fa i lure/repair  cycles. We 

use X I ,  X 2 ,  ..., Xn and Y 1 ,  Y p ,  ..., Y n  t o  denote the observed times-to- 
f a i lu re  and times-to-repair during the observation period. Further, we 

assume tha t  the X's and Y's are mutually independent random variables such 

that  X i ,  i-1, 2, . . . , n has an exponential density 



and t h a t  Yi, i -1,  2, . . . , n has a  lognormal dens i t y  

MY) = (a BY)-' exp  fin y - c t ) / ~ ] ~ )  , y > o 

STEADY-STATE AVAILABILITY 

Using the  d e f i n i t i o n  o f  s teady-state a v a i l a b i l i t y  g iven by Gray and 

Lewis (1967), Gray and Schucany (1969), Nelson (1 970), and others, we have 

i n  which px = E(X) i s  the  mean t i m e - t o - f a i l u r e  and p  = E(Y)  i s  the  mean 
Y 

t ime-to-repair ,  Gray and Lewis (1967) and Gray and Schucany (1969) have 

presented methods f o r  ob ta in ing  confidence i n t e r v a l  s  and bounds f o r  A, b u t  
2  

t h e i r  work assumes t h a t  t he  var iance fi i s  known. To avo id  the  r e s t r i c t i o n  
2 o f  known B we p resen t  an a'd hoc methodology f o r  us ing observed data and 

computer s imula t ion  t o  de r i ve  s imula t ion  i n t e r v a l s  and bounds f o r  A. The 

s imu la t i on  r e s u l t s  f o r  A a re  compared w i t h  confidence i n t e r v a l  s  provided 

by t h e  Gray and Lewis (1967) method t o ,  study t h e  usefulness of the  proposed 

method01 ogy. 

METHODOLOGY FOR SIMULATION BOUNDS - 

We n o t i c e  t h a t  A  i s  a  f u n c t i o n  o f  t h e  th ree parameters A, a, and B .  
Thus, we can ob ta in  an es t imator  o f  A, say i, by s u b s t i t u t i n g  est imators 

A A A .  

o f  A, a, and @, say A, a, and B, i n t o  equation (3 ) .  The maximum 1 i k e l  ihood 

est imators are: 

By s u b s t i t u t i n g  those est imators i n t o  equation (3) ,  we ob ta in  the  maximum 

l i k e l i h o o d  es t imator  o f  A. 



,TO develop simulation intervals  for  A we proceed as follows: 

S t e p l :  Use.the observed times-to-failure, X I ,  X 2 ,  ..., X n ,  and the 
A 

observed times-to-repair, Y 1 ,  Y 2 ,  ..., Y n ,  
A 

t o  calcul.ate X .  
"2 a and ,@ as defined i n  equation (4) .  

A 

Step 2: Use X as X in equation (1) to  generate a simulated sample 

of n exponential times-to-failure, X s l ,  X s 2 ,  . . . , X S n .  Use 
A 

A 2 2 
a and B as a and B in equation (2) to  generate a simulated 

sample of n lognormal times-to-repair, YS1 , Y S 2 ,  . . . , Y S n .  

.Step 3: Use the simulated data in Step 2 t o  evaluate parameter 
h h "CI 

estimators, A S ,  as, and 6: by equation (4 ) .  fhe subscript 

6 .  

s indicates simulated data. 

Step'4:  Evaluate 

Step 5: Repeat Steps 2, 3 and 4 5000 t imes. to  simulate a distribution 
A 

of A. 

Step 6: Determine the (1 - y)% simulation intervals  for  A by using 

the (y/2) and (1 A - y/2) percentile values of the simulated 

dis t r ibut ion of A.  

The examples i n  the next section i 1 1  ustrate  the pro'posed method01 ogy. 

' 

-- EXAMPLES - -. ..--- 

The United States  Atomic Energy Commission document WASH 1203-73 (1 973) 

provides graphical h is tor ies  f o r  the performance of nuclear-powered 

e lec t r ica l  generating plants operating i n  the United States. The da ta  used 

i n  the two following examples are the his tor ies  of two such power .plants. 

In the examples, x denotes the i th  time-tarfailure and y denotes the ' i  t h  

time-to-repair. 

The data in Table 1 are  the times-to-failure and times-to-repair 

measured i n  years fo r  n=19 fai lure/repair  cycles observed ,for the Yankee 

Nuclear Power Plant i n  Rowe, Massachusetts during operation from December 196U 

t o  May 1.973: A For these data n.19, Exi = 9.603, Zen yi = -52.744, and 

z ( e n  yi - a ) 2  = 18.251. Therefore, 
. . 



TABLE 1. Times-to-Fai 1 ure  (xi) and Times-to-Repai r (yi ) f o r  

19 F a i l  ure/Repair Cycles o f  t h e  Yankee Nuclear power P lan t  

Tota l .  



Therefore, the maximum 1 i ke l  ihood est imate o f  A as g iven by t h e  eva luat ion  

o f  equat ion (3) i s  
A 

A = (1 + 1.979exp(-2.776 + 0.961/2)]-~ = 0.834 

For comparative purposes we can consider  another es t imator  o f  A t o  be 

the  r a t i o  of t he  "successful  opera t ing  t ime" t o  " t o t a l  t ime." That is; 
, 

A 

We observe t h a t  t he  est imates A and 1 are very near l y  equal. 
A 

Some se lec ted percentile values f o r  t h e  simulated d i s t r i b u t i o n s  o f  A 
CL 

and A as given i n  Table 2 were determined by the  s imula t ion  method o u t l i n e d  

e a r l  i er .  
A CL 

TABLE 2. S imula t ion  Percen t i l e  Values f o r  A and A 

S t a t i s t i c  P = 0.025 0.050 0.500 0.950 0.975 
A 

. A  , o . l i u  0.734 0.834 0.899 0.909 

From Table 2 we f i n d .  t h a t  90% s imu la t i on  i n t e r v a l  f o r  A i s  e i t h e r  
A 

90% S I  = 0.734 A 0.899 (based on A) 
< < r\, 

o r  90% S I  = 0.734 = A = 0.901 (based on A). 

For comparison, we can assume t h a t  B' = 0.961 i s  a known value ( r a t h e r  

than est imated as i n  equat ion ( 5 ) )  and use i n t e r p o l a t i o n  and ex t rapo la t i on  

f o r  t he  tab les  i n  ~ r a ;  and Lewis (1967) t o  f i n d  t h a t  a 90% C I  f o r  A i s  

Thus, the re  i s  c lose  agreement between t h e  s imu la t i on  bounds and the  con- 
^ 2 f idence i n t e r v a l s  based on the  est imated variance, B . 

. We can use Table 2 t o  s e t  o ther  level~simulation'intervals and/or lower 

bounds f o r  A. 



EXAMPLE 2 

The data i n  .Table ' 3  a r e  the  t imes - to - fa i l u re  and t imes- to - repa i r  

measured i n  f o r  18 f a i l u r e l r e p a i r  cyc les  observed f o r  t h e  opera t ion  

o f  t he  Humboldt Bay Power P lan t ,  U n i t  No. 3, Eureka, C a l i f o r n i a ,  f rom - 
October 1963 t o  December 1974. For these data n = 18, t xi = 10.055, 

A 

C en yi = -49.729, and' C ( i n  yi, - a)' = 10.496. Therefore, 

The maximum- 1 i k e l  ihood steady-state ' a v a i l a b i l i t y  est imate as given by 

the  eva lua t i on  o f  equat ion (3) i s  

= [I + 1 .790. exp(-2.763 + 0.583/2)]-~ = 0.869: 

Fur ther ,  

A 

Again, t he  values o f  A and 1( a r e  i n  c lose  agreement. 

'Table 4 presents some se lec ted  p e r c e n t i l e  values f o r  t he  s imulated 
A 'L 

d i s t r i b u t i o n s  o f  A and A. 



TABLE 3. Times-to-Fai 1 ure  (xi) and Times-to-Repai r (yi ) 

. . for 18 ~ a i l u r e l ~ e p a i r  C y c l e s - o f  t h e  Humboldt 

Bay Power Plant ,  U n i t  No. 3 

Tota l  ' 

TABLE 4. Pe rcen t i l e  Values A f o r  Simulated 'L 

Dlst r . ibuLions o f  A and A 

S t a t i s t i c  p = 0,025 0.500 0.050 - 0.950 0.975 



From Table 4 we f i n d  
A 

90% S I . =  0.796 5 A 2 0.915 (based on A) 

< . < .  'L 
and 90% S I  = 0.197 = H = u.315 , (based un A). 

By using '  8' = 0.583 as a known value the  Gray and Lewis (1967) con- 

f idence i n t e r v a l  procedure g ives ( w i t h  i n t e r p o l a t i o n  and ex t rapo la t i on )  
< < 

90% C I  = 0.778= A = 0.901. 

EVALUATION OF THE SIMULATION PROCEDURE 

To study the  sampling behavior o f  t he  s imula t ion  procedure and t o  

i n v e s t i g a t e  a "confidence" l e v e l  f o r  s imu la t i on  i n t e r v a l s ,  we assumed t h a t  
2 A ,  a, and B were known- t o  be equal t o  the  est imates provided by t h e  data 

i n  t h e  preceding examples. For Example 1, we s e t  A= 1.979, a= -2.776 

and 8* = 0.961. Then the  t r u e  a v a i l a b i l i t y  i s  A = 0.834. Next we generated 

1000 samples o f  nineteen f a i l u r e i r e p a i r  cyc les.  Each o f  these 1000 samples 
2 provided est imates o f  A, a, and 0 which were used t o  determine a 95% simu- 

l a t i o n  i n t e r v a l  f o r  A.  The i n t e r v a l  was determined by the  method o u t l i n e d  

e a r l i e r  except t h a t  each i n t e r v a l  was based on 100 r a t h e r  than 5000 e s t i -  

mates o f  A. The r e s u l t s  showed t h a t  94.2% o f  the  s imula t ion  i n t e r v a l s  based 
h % 

on A and 94% o f  the  s imula t ion  i n t e r v a l s  based on A inc luded t h e  t r u e  value 

of A = 0..834. As a second study we fo l lowed t h e  above p lan  t o  generate 

100 95% s imu la t i on  i n t e r v a l s  where each i n t e r v a l  was based on 1000 s imulated 

samples'. Here we observed t h a t  97% o f  t h e  95%-simulat ion i n t e r v a l s  f o r  
h 'L 

both A and A inc luded A =,0.834. 

For Example 2, we repeated the  above study based on 18 f a i l u r e / r e p a i r  

cycles, when . A . = 1.790, a = -2.763, 8* = 0.583. The "cbnfidences" based, 
h 

on 1000 samples o f  100 95%-simulat ion i n t e r v a l s  were 95% f o r  A and 
'L ' 

94.5% f o r  A. S i m i l a r l y ,  t he  "confidences" based on 100 samples o f  
h 'L 

1000 95%-simulat ion i n t e r v a l s  were 95% f o r  bo th  A and A. 

Thus, i t  seems t h a t  t he  s imu la t i on  i n t e r v a l s  a re  e x h i b i t i n g  conf idence 

l e v e l s  which are  near l y  equal t o  the  d i f f e r e n c e  i n  pe rcen t i l es  used i n  

t h e i r  computation. 



CONCLUSIONS 

. . 
The stmulation procedure proposed here i s  simple t o  use and requires 

about 10 seconds of computer time (CDC 6600) t o  provide any desired per- 
h 

cen t i l e s  of the simulated d i s t r ibu t ion  of A. Further, any br ief  invest i -  

gation of the  confidence level  of the  procedure' indicates  t h a t  i t  performs 

very well.  These f a c t s  along w i t h  the  f a c t  t h a t  we do not need t o  assume 

knowledge of any parameters i n  the  models' provide strong support f o r  the 

procedure. 

The proposed procedure may be used t o  f ind in te rva l s  o r  bounds f o r  

t r ans i en t  availabi1it.y so long as  an expression f o r  A(t )  i s  avai lable .  

The development i n  Chapter 7 (p. 192) of Barlow and Proschan (1975) can 

be used t o  obtai'n A(t) . Subsequent s tudies  a r e  planned f o r  t h i s  area of 

a v a i l a b i l i t y  estimation. 
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RADIOCHEMICAL SPECTRAL ANALYSIS BY MAXIMUM LIKELIHOOD 
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Maxhum fihc&hood a f i a t i o n  phovida a s u p d o h  
a e t m a t i v e  Xo weighted Lea;t ncjuaheh doh Low count 
a.i.tua;tio~n. Tk in  apphoach ex/thac/tn indotunation ahom b0Xh 
sample and 'backgt~ound Xo a f i a X e  bachghound Lev& i n  each 
enmgy bin. Condidence i n t a u a h  doh indiv idud n u d d e  
afiaXa can be c o n s ~ c t e d  dh0m fihd.ihood c o n t o w .  16 
.the phecinion 0 6  f ie a t a n h d  spec;Dux. A 0 6  ithe aame ohdm 
a. .thaX 0 6  f ie ghoas sample, mahum f i k ~ h o o d  can mod& 
;the mdomnaa i n  aXandmch and indude  ;tkin addi;tiona.t 
vaniabd5Lty i n  atandw~d deviation a f i a ; t a  and condidence 
i n t m v a h  don indiv idud nadionudida . 

INTRODUCTION 

The f i t t i n g  of a l inear  combination of energy spectral shapes fo r  

radioactive decay of pure radionuclides to  a net sample energy spectrum i s  

a classical method i n  quantitative radiochemistry. Weighted leas t  squares 

i s  the usual estimation procedure fo r  resolution of the pure nuclides in 

the sample mixture. Many researchers use th i s  technique to  resolve mix- 

tures of gamma-ray emitting radionuclides from pulse-height distributions 

collected in e i the r  sodium iodide or lithium-drifted germanium detectors. 

While not extensively reported in the l i t e ra tu re ,  the technique i s  equally 

valid for  any energy spectrum recorded as a frequency histogram of radio- 

activity-generated events versus energy. An example i s  isotopic resolution 

of noble gases by l iquid sc in t i l l a t ion  spectroscopy as done by Horrocks 

and Studier (1 964). Here, a1 pha par t ic les ,  conversion electrons and beta 

par t ic les ,  as well as gamma rays, can contribute to  the spectrum. Turkevich, 

e t  a l . ,  (1967) determine the chemical composition of the lunar surface a t  

the Surveyor V s i t e  by weighted l eas t  squares analysis of backward-scattered 

alpha par t ic le  and proton spectra. The common ingredient of such radio- 

chemical experiments i s  that  the total  number of events in a specified energy 



range du r ing  a f i x e d  t ime i n t e r v a l  f o l l o w s  t h e  Poisson d i s t r i b u t i o n  p r o b a b i l i t y  

law.* Fur ther ,  s ince  each event i s  sensed by  a de tec t i on  system w i t h  a con- 

s t a n t  e f f i c i e n c y ,  t he  number o f  counts, o r  recorded events i n  a f i x e d  t ime 

per iod ,  a l s o  f o l l o w s  a Poisson d i s t r i b u t i o n  p robab i l  i t y  law. 

I n  a sample spectrum o f  many energy b ins,  the  number o f  counts per  energy 

b i n  may vary  over several  orders of  magnitude. The var iance o f  t he  Poisson 

d i s t r i b u t i o n  i s  equal t o  t he  mean. Hence, by the  Gauss-Markov theorem (Rao, 

1965), any near e f f i c i e n t  l e a s t  squares procedure must weight  i n d i v i d u a l  

n e t  counts as approximate ly  i n v e r s e l y  p ropo r t i ona l  t o  t h e i r  variance, which 

i s  a l i n e a r  combination o f  gross sarl~plt! drld bdckyround means. I n  p rac t i ce ,  

weights a re  est imated d i r e c t l y  from gross sample and backgPound spectra counts. 

Slavinskas, e t  a1 . , (1966) consider  a1 t e r n a t i v e  ways o f  determin ing weights. 

Only f o r  low count s i t u a t i o n s  are  r e s u l t s  h i g h l y  dependent on the  w e i y t ~ t i r ~ y  

scheme. When a l l  counts a re  reasonably large,  in ferences can be based on 
I 

asymptot ic  normal d i s t r i b u t i o n  theory. Pasternack and L i u z z i  (1966) show 

t h a t  t h i s  asymptot ic theory  i s  good enough f o r  res idua l  ana lys i s  and use 

chi-square and von Neumann r a t i o  (1941) s t a t i s t i c s  t o  measure l ack  o f  fit. 

With few counts i n  an energy b i n  of  gross sample and background spectra 

t h e  weight  i s  p o o r l y  determined. This  s i t u a t i o n  i s  t y p i c a l  o f  low- leve l  

radiochemical ana lys i s  a t  t h e  thresh01 d o f  de tec t ion .  Now weighted ' least 

squares es t ima t ion  may g i v e  anomalous r e s u l t s .  Weights may emphasize the  

wrong p o r t i o n  o f  t h e  spectrum. Also, w i t h  i n c o r r e c t  weights, standard 

d e v i a t i o n  est imates a re  poor. Maximum 1 i k e l  i hood est4matfon i s  an attractive 

a l t e r n a t i v e  f o r  low count s i t u a t i o n s .  Even f o r  a zero o r  one count, maximum 

1 i k e l  i hood e x t r a c t s  the  i n fo rma t ion  i n  gross sample and background spectra. 

I n  t h e  weighted l e a s t  squares analys is ,  the background spectrum alone i s  

used t o  est imate background and a n e t  sample spectrum i s  obta ined by sub- 

t r a c t i o n .  The maximum l i k e l i h o o d  approach uses the  i n fo rma t ion  i n  both 

sample and background t o  est imate the  background l e v e l  i n  each energy b in .  

Confidence i n t e r v a l  s  f o r  i n d i v i d u a l  nucl  i d e  est imates can be constructed 

from l i k e l i h o o d  contours. Th is  i s  super io r  t o  the  weighted l e a s t  squares 

*If t h e  event i s  r a d i o a c t i v e  decay, t he  h a l f - l i f e  o f  the  n u c l i d e  i s  assumed 
l o n g  compared t o  the  l e n g t h  o f  the  t ime pe r iod  o f  observat ion, f o r  otherwise 
t h e  c o r r e c t  p r o b a b i l i t y  law would be the  b inomial .  



asymptot ic normal theory approach. The non-negativeness of each nuc l i de  

c o n s t r a i n t  i s  handled n a t u r a l l y  by .maximization over the  f e a s i b l e  s e t  o f  

parameter values (i .e., a1 1 components non-negative) w i t h  1 i ke l  i hood contours 

s i m i l a r l y  constrained. 
' 

I n  most p r a c t i c a l  s i t u a t i o n s  the  standard spectra a re  known t o  a much 

greater  p r e c i s i o n  than e i t h e r  sample o r  background. However, i f  the '  pre- 

c i s i o n  o f  t he  standards i s  o f  the same order  as t h a t  o f  t h e  gross sample, 

maximum l i k e l i h o o d  can model the  randomness i n  standards and inc lude t h i s  

a d d i t i o n a l  v a r i a b i  1 i ty i n  standard dev ia t i on  est imates and confidence 

i n t e r v a l s  f o r  i n d i v i d u a l  rad ionuc l  ides.  

I n  t h e  next  sec t i on  the  radiochemical spect ra l  ana lys is  problem i s  

expressed mathematical ly.  Maximum 1 i ke l  ihood est imates are  der ived f o r  t h e  

two s i t u a t i o n s  o f  standard spectra well-known and standard spectra imprecise. 

Next, t he  maximum l i k e l i h o o d  method i s  app l ied  t o . t h e  separat ion o f  rad io -  

i od ine  isotopes by neutron a c t i v a t i o n .  Here, both sample and standards are  

very low 1 eve1 . I n  ' t he  maximum 1 i ke l  i hood so lu t ions ,  t he  standards are 

assumed t o  be estimates. 

DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATES 

L e t  Yi denote the  gross sample counts i n  the  ith energy b in ,  i = 1, 

2, ..., q, and l e t  Y = (Y,, Y2, ..., 
Yq) 

T. The mean o f  Y i s  assumed t o  

be a l i n e a r  combination o f  a background spectrum y and p standard spectra 

XI, X2, ... ' X ' 
P ' 

where 



and 

I .  

Thus, B j  C x i  i s  t he  t o t a l  c o u n t  a t t r i b u t e d  t o t h e  jth nuc l ide .  
i 

L e t  Zi denote the  background counts i n  t he  ith energy b in,  and l e t  KO 

be t h e  r a t i o  o f  t h e  background count ing t ime t o  the  sample count ing time., 

so t h a t  

. E[Zi] = Koyi 

or,  f o r  z = (zl, .' . . , zqlT 

E[Z] = Kay. 

STANDARD SPECTRA KNOWN- 

. . - .  ' In..most p r a c t i c a l  s i t u a t i o n s  the .s tandard  spectra 'are determined t o - a  

muc.h g r e a t e r . p r e c i s i o n  than e i t h e r  sample o r  background. I f  t h i s  i s  t he  

case, t he  X m a t r i x  i s  t r e a t e d  as known. The s i t u a t i o n  i n  which the  X m a t r i x  

i s '  a l s o  to,  be est imated w i l l  be discussed l a t e r .  

The va r iab les  Yi and Zi a re  mu tua l l y  independent Poisson var iab les ,  

so t h e  l o g  l i k e l i h o o d  f u n c t i o n  i s  

where xi = (xil , xi2, . . ., x .  ).  
1 P  

Taking p a r t i  a1 d e r i v a t i v e s  and equat ing t o  zero y i e l d s  the  1  i ke l  i hood equations: 



0y d e f i n i n g  

1  2  9  
W = d iag(x  B+yl, x B+y2. .... x B + ~ ~ )  ( 3  

equations (2) can be w r i t t e n  as 

T -1 T -1 X W . (Y-y) = X W XB. (4) '  

Equations (4 )  a re  i n  the  form o f  the  normal equations f o r  weighted l e a s t  

squares, w i t h  the  exception t h a t  the  we ight ing  m a t r i x  W i s  a  f u n c t i o n  o f  the  
I , 

parameter vec tor  B. 

By c l e a r i n g  equations (1)  o f  f r a c t i o n s  and c o l l e c t i n g  terms w i t h  l i k e  

powers o f  yi: 

These can be solved f o r  yi, cond i t i ona l  on an est imate o f  B, by us ing  t h e  

quadra t ic  formula. Asymptoti c  theory i nd i ca tes  t h a t  t he  p o s i t i v e  r a d i c a l  
I should be used. 

Equations ( 3 ) ,  (4), and (5)  c o n s t i t u t e  the  bas is  f o r  an a lgor i thm f o r  

t h e  s o l u t i o n  t o  the  l i k e l i h o o d  equations. The a lgo r i t hm has the  form 

f o r  k  = 1, 2, ... . 
Then t h e  maximum l i k e l i h o o d  est imates are 

' c. 
A 

y = 1  i m  $(k)  
k + m  

- A 

and B = l i m  8(k) .  



A1 gorithms of t h i s  form are  known t o  converge provided the i n i t i a l  

est imates a re  "reasonably" accurate.and the  functions involved are  

"reasonably" we1 1 behaved:. A convergence proof f o r  t h i s  par t i cu la r  problem 

i s  d i f f i c u l t  because of the number of parameters involved; however, i n  a1 1 

cases t r i e d ,  convergence has been rapid. 

For .ek,  k = 1 ,  2, a vector o f .  parameters, define 

.I hen from maximum 1 i kel i hood theory ( e .  g . , W l l  ks, 1962, p. 380) , t h e  asymptotic 

covariance matrix of the  estimates i s  

h 

Sinw the primary i n t e r e s t  i s  i n  the  estimated coeff ic ients  t3 and 

t h e i r  associated covariance V only the  matrix V H B  i s  found. By par t i t ioning 
Be' 

V-I as  indicated,  i t  follows t h a t  

= [ s ( B , B ~  - S ( B , ~ ~ S ( ~ , ~ ) - ~ S ( Y , B ~ I - ~ .  "66 

, Def i ne 1 

i 
IJ i = E[Yi]  = yi .+ x B 

. . M = diag(v,,  up.  .... IJJ 
and r = di,ag(y,, y?, .... 

Y,. ) 
Then, from the Poisson s t ruc ture  of Y and Z ,  



and T -1 T -1 -1 -1 ,-I,,-1 
"BB = [x M x - x M (M-'+K,T 1 

= [ x ~ K ~ ( K ~ M + ~ ) - ~ x ] - ~  

T -1 = (X  Wo x ) - I  

where 
0 

= M + (l/Ko)T; 

The maximum l i k e l i h o o d  est imate o f  t he  asymptot ic covariance VBB i s  
. . 

A 

T A 

"BB = ( X  W ~ X ) - '  w i t h  

o = M + ( l /Ko ) r .  
A A A A 

The "^" n o t a t i o n  M and r ind ica tes  s u b s t i t u t i o n  o f  yi and B i n  the  d e f i n i t i o n  

o f  pi, M and r .  

STANDARD SPECTRA TO BE ESTIMATED 

I f  the  p r e c i s i o n  o f  t h e  standard spectra i s  approximately the  same as 

t h a t  o f  t he  gross sample, t h i s  a d d i t i o n a l  v a r i a b i l i t y  should be inc luded 

i n  standard dev ia t i on  est imates. L e t  Y and Z be as before, and l e t  Sij be 

the  gross count i n  t h e  ith energy b i n  f o r  the  jth standard, i = 1, . . . , . q; 
j = 1, . p. Then 

where K .  i s  the  r a t i o  o f  count ing t ime f o r  t he  jth standard t o  the  sample 
J 

count ing time. L e t  

The l o g  l i k e l i h o o d  func t i on  i s  



and t h e  l i k e l i h o o d  equat ions  a re  

j = 1, 2, ... , p. 

Equat ions (6) a r e  t h e  same as equat ions (3).  and can be wr4 t t e n  i n  t h e  

f o rm  o f  normal equat ions:  

T -1 T -1 X W (Y-y) = X W XB. . . 

By summing equat ions (8) ove r  j and s u b t r a c t i n g  equat ions (7), t h e r e  r e s u l t s  

a s e t  o f  q u a d r a t i c  equa t ions  i n  yi: 

( ~ , + l - ~ ~ ) y ~ ~  + [(K + l - ~ ~ ) x ~ $  + ( C B j - l  )yi-ziIyi 
j 

0 
J j 

By s o l v i n g  equat ions  (10)  f o r  xidtyi and s u b s t i t u t i n g  t h e  r e s u l t  i n t o  

equa t ions  (8) ,  t h e r e  r e s u l t s ,  a f t e r  some a lgebra,  .#. 



Equations (9) ,  ( l l ) ,  and (12) a re  the  bas is  f o r  an a lgo r i t hm f o r  the  s o l u t i o n  

of t he  l i k e l i h o o d  equat ion. The a lgo r i t hm has the  form 
'L 

Yi = max(Yi, 1)  

+ 4(K o +I-= J (k ) )  z ~ ? ~  (k - l )~ (k ) )1 /2 ] /2 (~o+ l  -CB~ (k ) )  , 
j j 

and 
'L 'L 

W(k) = diab[P1(k)f3(k)+Tl (k ) ,  . . . . 2q(k) ; (k)+~q(k)~,  

f o r  k  = 1, 2, ... . Then the  maximum l i k e l i h o o d  est imates a r e  

and 



  he asymptot ic covariance m a t r i x  o f  t h e  est imates i s  
, .  , . 2 .  1. 

"BY ::;I 
= vYB C:: vv "xY "xx 

As before,  the pr imary  i n t e r e s t  i s  i n  V ,. which i s  again obta ined by 
$6 

p a r t i t i o n i n g :  

Def ine  

x i  = E[S.  .] = K.(x..+yi) 
1 J  . J 1 J  

and 
T B = Ip = (B I 9 B21q'. . . ., 

1 q ?PI;). 
Then 

T -1 
S(B,B)  = X M X 

T el 
S(B,Y) = X M 

T -1 S(8,X) = X M B 

- 1 .S(y,y) = M + KOr-' + C Aj 
j 



- 1 - 1 S(y,X) = M-'B + (A, . A2 , .... "-') 

so t h a t  
-1 -1 VBB = IT [M-I - (M . M 8) 

Define 

Then 

G1 = .[s(y,y) - S(y.X) s(x,x)-' s ( x y Y ) l - '  

It can be shown t h a t  

T -1 q T -1 -1 BA s (x ,x ) '~  = A  - AB M ( I  + BAB M 

and t h a t  G1 i s  a diagonal ma t r i x .  Carry ing o u t  the  considerable algebra 

invo lved i n  the  i n d i c a t e d  m a t r i x  operat ion leads t o  

where 

The  maximum l i k e l i h o o d  est imate o f  t h e  asymptot ic covariance VBB i s  obta ined 

by s u b s t i t u t i o n  o f  "*" est imates f o r  parameters i n  t h e  d e f i n i t i o n  o f  V BB.  
i n  a manner s i m i l a r  to .  t h a t  f o r  t he  known standards case. 

The .above r e s u l t  can a l so  be w r i t t e n  as 

where 



I f  t h i s  problem were t o  be t rea ted  as a weighted l e a s t  squares problem using 

n e t  sample and standard spectra, t he  appropr ia te  weight f o r  Yi would be 

Thus, the  asymptot ic covariance o f  t he  maximum l i k e l i h o o d  est imates i s  . the  . .  

same as t h e  covariance o f  t he  est imates obta ined from an appropr iate weighted 

l e a s t  squares ana lys is .  

AN EXAMPLE WITH THE STANDARD SPECTRAL SHAPES ASSUMED'UNKNOWN 

Iodine-129 i s  present  i n  the  environment from na tu ra l  and man-made 

sources. The major man-produced sources are nuclear  weapons t e s t s  and 

i r r a d i a t e d  nuc lear  f u e l  processing p lan ts .  Because o f  i t s  long h a l f - l  i f e  
7 (1.6 x 10 years) ,  '''1 i s  an exce l l en t  t r a c e r  f o r  environmental processes 

i n w l  v i n q  o ther  i o d i n e  isotopes. Environmental concentrat ions o f  '"1 and 

i t s  r a t i o  t o  n a t u r a l  i o d i n e  (""I) can be s tud ied a t  very low l e v e l s  by 

neutron a c t i v a t i o n  , ana lys i s  o f  chemica'l ly separated fodine f r a c t i o n s .  

~ i u t r b n  a c t i v a t i o n  o f  '"1 and lZ71 produles I 3 O I  and lZ61.  These l a t t e r  

two isotopes decay t o  radioxenon through a ( 6 , ~ )  reac t ion .  Thus 1 2gI 

concent ra t ion  and the r a t i o  1 2 9 ~ / 1 2 7 ~  can be est imated by measuring 1 261 

and I 3 O 1  qamma r a y  emission i n  an appropr ia te  geometry (Brauer and 

Tenny, 1975). 

The usual procedure f o r  the r a d i  oche l~~ i  cal ana1ys.i s o T a ~ l e u t r o n  a c t i  vatcd 

m ix tu re  of lZ61 a i d  i s  t o  f i t  t h e  mix ture  energy spectrum t o  a l i n e a r  

coinbinati on o f  two standard spectra by  weighted 1 east  squares.. .A compl i c a t i o n  

i s  ' the d i f f i c u l t y  i n  o b t a i n i n g  pure lZ61 and I3'I standard spectra ... S ince  

1 2 6 ~  has a 13-day h a l f - l i f e  and 1 3 0 ~  has  a.0.52-day h a l f - l i f e ,  an a l t e r n a t i v e  

t o  pure standards i s  two energy spec t ra l  shapes from radiochemical ana lys is  

a t  d i s t i n c t  p o i n t s  i n  t ime o f  a s i n g l e  s o l u t i o n  o f  t he  two i o d i n e  'isotopes. 

Weighted l e a s t  squares, o r  i n  our case maximum 1 ike l ihood,  gives est imates 

of t h e  amounts o f  t h e  two temporal ly  d i s t i n c t  mixtures i n  the  sample spectrum. 

Knowledge o f  t h e  r e l a t i v e  d i s i n t e g r a t i o n  ra tes  o f  1 2 6 ~  and I 3 O l  i n  the  
k 

f 

standard m ix tu re  a t  a s p e c i f i c  p o i n t  i n  t ime ( f o r  example a t  reac to r  discharge 

o f  t h e  i o d i n e  sample), t h e  count ing inst rument  f o r  t he  two - 



isotopes,  and the  isotopes '  half- l ives allows the  writ ing of a one to  one 

l i nea r  correspondence between the  two mixture standards and the  two pure 

standards. Hence, the  mixture solution can be transformed in to  a solution 

f o r  and. 1 301 

What follows i s  a simple example of the  above iodine radiochemical 

analysis  f o r  a very 1 ow 1 eve1 sample making use of two low .level mixture 

standards. 

A neutron activated iodine sample was counted f o r  185 minutes in a 

four-segment Na(1) five-inch we1 1 crysta l  using beta-gamma-gamma coincident 

c i r cu i t ry .  The resul t ing gross sample count versus energy spectrum i s  

i l l u s t r a t e d  i n  Figure 1. A 300-minute background spectrum f o r  t h i s  well 

crys ta l  geometry i s  a l so  i l l u s t r a t e d  i n  Figure 1. The background counts 

have been mu1 t ip1 ied by (185/300) f o r  d i r ec t  comparison with the  gross - - - 

samole counts. . To resolve the  samol e i n to  2 6 ~  and 3 0 ~  components, a 

mixture sample of lZ61 and 130i resu l t ing  from the  neutron act ivat ion of 
. ' I .  

a standard sample of known 1 2 9 ~ / 1 2 7 ~  r a t i o  was counted twice i n  the  fi've-inch 8. 

! 

well crys ta l  geometry a t  1.249 and 3.060 days a f t e r  reactor discharge. The 

counting in te rva l s  .were 5 and 10 minutes, respectively.  The two mixture 

spectra on a counts/minute basis  a re  i l l u s t r a t e d  in  Figure 2. In Figure 2 

the two standard mixtures a r e  almost ident ical  i n  the  f i r s t  25 energy bins 

and of s imi la r  shape but d i f fe r ing  by a f ac to r  of 10 in energy bins 35 t o  
55. The low energy half  of the  spectrum then i s  primarily due t o  the  13-day 

longer 1 ived isotope 2 6 ~  while the range from 35 t o  55 energy bins i s  due 

t o  the  0.52-day isotope 3 0 ~ .  1, the standard mixture the  130i/1 261 

dis integrat ion r a t e  r a t i o  a t  reactor  discharge, calculated from reactor  

physics equations, was 2.17. The well crys ta l  geometries f o r  the two isotopes 

were 0.106 and 0.493. Thus the  counting r a t e  r a t i o  a t  reactor  discharge 

was 0.467. 

The sample and background spectra i l l u s t r a t e d  i n  Figure 1 and the  two 

standard mixtures i l l u s t r a t e d  i n  Figure 2 were analyzed by the  maximum 

1 i kel i hood procedure i n  the  section on derivation of maximum 1 i kel i hood 

est imates with standard spectra unknown. The counting data i n  energy bins 

2 through 66 inclusive were used i n  the analysis .  The maximum likelihood. 
. estimate of the  two mixture spectra  i n  t o t a l  counts i s  
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FIGURE 1.  Gross Spectrum of Neutron Activated Iodine 
Sample and Background Spectrum f o r  a Four- 
Segment Na(1) Five-Inch We1 1 Crystal . 
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FIGURE 2. spec t ra  of ' 1 2 6 ~  and 1301 Counted 1.249 and 
3.060 Days After  Reactor Discharge of Neutron 
Activated Iodine Standard Sample. 



A 

This est imate i s  on the  boundary o f  the f e a s i b l e  space where xil 2 0, 
A 

. I  0 and t h e  two pure i s o t o p i c  components o f  t he  m ix tu re  spectra 1263 
2 

and 130; a re  non-negative. The pure i s o t o p i c  est imates a re  r e l a t e d  t o  

equat ion (13) by t h e  equat ion 

w i t h  n = 126 and 130. Here, 

where Dn # Dm i s  t h e  d i s i n t e g r a t i o n  r a t e  o f  '1 a t  r e a c t o r  discharge and T 
j 

i s  t h e  count ing t ime o f  t he  jth mix tu re  standard ( r e l a t i v e  t o  r e a c t o r  discharge 

t ime) .  From equations ' (1  3)  and (14) t he  pure i s o t o p i c  maximum 1 i kel  i hood 

est imates a re  

' 

The a1 g o r i  thm based on equat ions (9),  (1 1 ) and (12) does n o t  converge because 

the  l i k e l i h o o d  sur face i s  n o t  f l a t  a t  t h e  boundary p o i n t  where the  maximum 

occurs.   he sol u t i o n  i s  obta ined by exhaust ive examination o f  a smal l  r eg ion  

i n c l u d i n g  the  boundary area where the  algori . thm search e x i t s  t h e  f e a s i b l e  

parameter space. s ince  the  l i k e l i h o o d  sur face i s  n o t  f l a t  a t  the  maximum 

po in t ,  t h e  asymptot ic covariances, based on sur face curvature,  a re  n o t  v a l i d .  

To ge t  some idea o f  t he  p r e c i s i o n  o f  t he  s o l u t i o n ,  a ' s e c t i o n  o f  t he  

asymptot ic 95% j o i n t  conf idence f o r  a l l  est imated parameters i s  graphed i n  

F igure  3. The sec t i on  i s  de f ined by 
A A 

y = y  and X = X :  

From F igure  3 the  est imate i s  c l e a r l y  s i g n i f i c a n t  w i t h  an approximate 

95% p r e c i s i o n  o f  20+%. The approximate 95% upper bound on 3 0 ~  i s  1 .6 clm. 



FIGURE 3. A Section ~hrough Asymptotic Theory 95% Jolnt 
Confi  dence for Unknown Parameters Showing 
Contour for Iodine Isotopes. 
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FIGURE 4; Normalized Residuals for Maximum Likelihood 
Estimate of Two Iodine Isotopes. 



To assay the goodness of the  maximum likelihood estimated model f o r  

gross sample counts, normal ized residual s ri can be calculated where 

ri = I - I + adjustment . 

This residual formula i s  suggested by Tukey (1976) f o r  comparing Poisson 

counts Yi  t o  f i t t e d  counts u i .  The addition of an adjustment term 
(Tukey, 1976) gives more appropriate res iduals  f o r  low count s i tua t ions .  

I f  no s t ruc ture  is l e f t  i n  the  res iduals  ( i  .e . ,  the  model f i t s  the  data 

t o  w i t h i n  experimental e r r o r ) ,  they should vary about zero w i t h  standard 

deviation c lose  t o  unity. While no exact d i s t r ibu t ion  theory ex i s t s  f o r  

determining when a residual i s  too b i g ,  a deviation of more than three 

o r  four from zero or a s t r i n g  of same sign res iduals  should arouse a 

question concerning agreement of data and model. These res iduals  do not 

necessari ly behave 1 ike res iduals  from l e a s t  squares f i t s  t o  normally dis-  

t r ibu ted  data.  Significance t e s t s  based on such theory a r e  only approximate. 
. I 

Adjusted normalized res iduals  are  plot ted versus energy bin number i n  

Figure 4. There i s  no strong suggestion of model inadequacy. A second. 

order e f f ec t  i s  the four posi t ive  res iduals  ( indicated by a question mark i n  

Figure 4 ) ,  a l l  greater  than 1.0 i n  bins 22 through 25. This i s  the  region 

. of a minor peak i n  each of the mixture standard spectra .  Thus, there  may 

be some systematic difference between the  shape of peaks in standards 
and sample. 
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A QUALITY CONTROL PROGRAM FOR 100% INSPECTION 
USING NON-DESTRUCTIVE MEASUREMENTS 

R. L. Hooper 
B a t t e l l e  P a c i f i c  Northwest Laborator ies 

Rich1 and, Washington 

A q U y  contml p h o g m  ItCza;t allows the  phoducuz some 
i l e x i b W y  in ~ o c ~ g  pmgm huouhca de6inu' conhumuz 
&k an lthe maximum phobabWy 06 accepfing a debeclt 06 
W n g  s ize .  Con;ttrol charr;t sample s i z a  and pnoduclt accep- 
h c e  uitur.ia m e  computed an a &nu5on 0 6  conhumm hink. 
R u u h 2  appeah i n  a convenient nomogtraph whuze t he  vendoh 
can o p M z e  f ie  choice 0 6  con;t/rol charr;t sample s i z e  and 
accept h M u e  t o  a patLticuRah mmwrentevllt sys.tem 
wkiee m a i W n g  .the apphophiate lev& 0 6  conhwna d k .  

A q u a l i t y  con t ro l  program i s  developed f o r  t he  acceptance o f  i n d i v i d u a l  

i tems' where 100% inspec t ion  i s  accompl ished using a non-destruct ive measure.- 

ment system. The program i s  a func t i on  o f  the  measurement system's resp0ns.e 

t o  defec ts  o f  a known s i z e  (standards), measurement p r e c i s i o n  and a cont inu ing 

plan'  f o r  demonstrating t h a t  t he  measurement system i s  i n  c o n t r o l .  Natura l ly ,  

t he  major aim o f  t he  qua1 i t y  contro l '  program i s  t o  p r o t e c t  t h e  q u a l i t y  o f  

t h e  product  de l i ve red  t o  the  consumer. However, one o f  t he  goals i s  t o  

prov ide  the  producer w i t h  some f l e x i b i l i t y  i n  terms o f  how he dedicates h i s  

resources i n  support o f  the  program. 

The measurement system i s  i n i t i a l l y  c a l i b r a t e d  using c e r t i f i e d  standards. 

The l e v e l s  o f  t he  standard defec ts  should span the  l i m i t i n g  l e v e l s  which are 

spec i f ied  f o r  t he  c h a r a c t e r i s t i c s  i n  quest ion. The c a l i b r a t i o n  exerc ise  i s  

designed t o  accompl i s h  the  f o l l  owing: . . 

(1) Def ine the  t e s t e r  response t o  defects o f  known s ize.  

(2 )  Provide informat ion necessary t o  develop an est imate of t e s t e r  

p rec is ion .  

(3) Def ine the  s t a b i l i t y  o f  t e s t e r  response across a t ime pe r iod  

s i m i l a r  t o  the  pe r iod  t h a t  t he  t e s t e r  i s  employed du r ing  accep- 

tance t e s t i n g  . 



.Periodically, a t  intervals  established on the basis of s t a b i l i t y  and t e s t e r  
usage, the standard defects will be submitted fo r  measurement and the resul ts  

maintained in a control chart  format. The data generated during the calibra- 
t ion exercise can also be used to  examine the v iabi l i ty  of the assumptions 
necessary f o r  the development that  follows. The assumptions are: 

(1) The non-destructive t e s t e r  response i s  l inear  across the range 
of defects observed i n  application. 

(2) . The dis t r ibut ion of t e s t e r  response fo r  a given defect i s  normal. 
(3 )  The variance i s  the same fo r  a l l  defects. 

The consumer r i sk  is  defined as the-maximum probability of .a defect of 
limiting s ize.  I t  i s  computed as the max { P ~ P ' ~ )  where: 

PI  = probabil i ty  of accepting the t e s t e r  as being correctly calibrated. 
P2 = probability of accepting a defect of 1 i m i  t ing s ize  

llnder t he  assumption tha t  the dis t r ibut ion of t e s t e r  responses to  a defect 
of given s ize  i s  normal and the variance of t e s t e r  responses i s  the same 
fo r  a l l  defects of in t e re s t ,  then the prclbablll t i e s ,  PI  CIIILI P 2 ,  are computed . . 
di rec t ly  as shown i n  Figures 1 and 2.  

c - AVERAGE TESTER RESPONSE TO A STANDARD DEFECT 
m - CONTROL CHART SAM'PLE S!_ZE 

F I G U R E  1 . Three-sigma Control chart  



R - NOMINAL TESTER RESPONSE TO A DEFECT OF 
LIMITING SIZE. 

a - ACCEPTANCE CRITERIA APPLIED I N  PRODUCTION 
TESTING 

. , 

FIGURE 2. Tester Response t o  Defect o f  L i m i t i n g  Size 

Now the  maximum p r o b a b i l i t y  o f  accepting a de fec t  o f  1 i m i t i n g  s i z e  = 

Max' (PIP2]. The product  i s  maximum when the  aP1P2/ak i s  zero 
k 

From above, f o l  lowing simp1 i f i c a t i o n ,  we have 



Subs t i tu t ion  y i e l d s  

' and 

Equation ( 2 )  i s  solved f o r  a  range of va lues,o f  !?$ (the standardized distance 

t h a t  the acceptance value (a )  i s  removed from the nominal t es te r  response (R) 

t o  a  defect  o f  1  i m i t i n g  s i ze )  and selected values o f  m. The resu l t s  are 

shown i n  nomograph form i n  Figure 3. Consumer r i s k  i s  described on the o rd j -  

nate axis.  

'The producer, w i t h  a  given measurement system, can optimlze h i s  choice 

o f  a  and m and s t i l l  maintain the required consumer r lSk.  The producer 

should se lec t  the la rges t  value o f  "a" (minimum producer r i s k )  consistent  

w i t h  the f i nanc ia l  penal ty associated w i th  an increasing cont ro l  char t  sample 

size, m. l hese resu'l t s  p lus a ilirrnber o f  examples appear as 'ari RUT Statitlard 

(RDT F 3-13). 



FIGURE 3 .  Control Chart Sample Size 
and Product Acceptance Cr i t e r i a  
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T a b  I A J ~ U ~ L  a t l o w  both 3 k a v ~ m ~ h  and huktobib 
("omni6un" tua2 ) have been atudied t r d d v e  .to non- . , 

n o m d  aampfig. . T h u e  &vhna%ga/tiovln have led t o  . . 
accep.tmce c o n t a m  at Lev& o b  9 0 ,  95 md 9 9 %  doh .. ' 

a& 0 6  sample a i z u  o v a  popuRcuXov~?~ &om b0.th P e m o n  . , 

aqatem and n o m d  m i x t w u  (.two-componevu2, e y d  v h -  
a n c u )  . Ongoing b f u d i e ~  aeXa;te t o  a daam examindon 
0 5  ithe j o A  dinfibu;tion 0 6  Jb and b2 with the  ponai-  
b U y  06 pkoclucing contolv~l w d h  la6 mea and ,$ixec! , 

pho b a b W q  covLtenX. 

INTRODUCTION . . . . 

EARLY WORK 

The skewness (defined as the standardized' t h i r d  central sample moment 
"; = y3/m2 2 312)  and kurtosis (h2 = m4/m2 ) have a lonq hfstory as s t a t i s f i ca l  
t e s t s  for  departures from normality,.spanning the greater part  of the l a s t  
100 years; In addition, the population values 6, B2 form the basis of 
the orderly used Pearson system of d i s t r i b u t i o n s .  1 t - i s  c lear  tha t  Jb;, 
depending on cubes of deviation, i s  a measure of skewness; i t  i s  customary 
t o  interpret  b2 as a measure of 'peakedness' or lack of i t  ( ' f l a t n e s s t ) .  
I f  the Pearson ( ,  p2) diayra1.11 of curve types ( I ,  I1 I ,  IV, V being the 
main members) i s  recal led, large values u t  B2 are  &ssociated w i  Lh Type IV 
curves (including Student's t fo r  example) which have long t a i l s  o r  a 
slow to.  very slow approach to  zero frequency; equivalently, t h i s  imp1 ies  
a re la t ive ly  larye chance of a large deviation from the mean. Similarly, 

small values of B2 a re  associated w i t h  Type I (or Beta) dis t r ibut ion having 



f i n i t e  range ( inc lud ing ,  f o r  ixample, t he  uniform d i s t r i b u t i o n ) .  The 

p i v o t a l  d i s t r i b u t i o n  i s  t he  normal f o r  which Jij; = 0, B2 = 3. 

O f  t h e  c l a s s i c a l  t e s t  s t a t i s t i c s ,  Student 's  t, F- ra t i o ,  c o r r e l a t i o n  

c o e f f i c i e n t  (and perhaps mean and variance),  t he  skewness and k u r t o s i s  

s t a t i s t i c s  a re  the  o n l y  ones whose d i s t r i b u t i o n s  i n  a  normal. sampling 

a re  s t i l l  n o t  known exac t l y .  Could the  reason f o r  t h i s  be t h a t  t he  o ther  

q u a n t i t i e s  are  dominated by quadra t ic  forms ( i n c l u d i n g  degenerate cases), 

whereas h:, , b2 i n v o l v e  h igher  forms? 

SERIES DEVELOPMENTS 

An impor tan t  breakthrough came f rom E. S. Pearson (1930), who used 

t h e  work o f  F isher  (1928) and Wishart  (1930) on k - s t a t i s t i c s  t o  develop 

a  Tay lor  ser ies .  expansion i n  terms o f  the  k - s t a t i s t i c  d iscrepancies 

ki - K i=2,3,4. To damp-out h igher  o rder  terms, Pearson used samples i ' 
o f  n  50 f o r  5, n 100 f o r  b2 t o  assess the  lower and upper 1% and 

5% of t h e  d i s t r i b u t i o n s  i n  normal sampling. T h i r t y  o r  so years l a t e r  

(Pearson, 1965), he gave a  s e t  o f  'accepted'  percentage po in ts ;  f o r  a  

sample of 50 the re  i s  no change i n  the  t h i r d  d.p. e n t r i e s  f o r  5 a t  

t he  1%, 5%. l e v e l s ;  f o r  b2 and n=100 the re  i s  no change i n  the  second d.p. 

en t r i es ;  i n  a1 1  ,. q u i t e  a  remarkable achievement. 

EXACT MOMENTS 

The nex t  s tep forward came from F isher  (1930) who showed t h a t  i n  

normal sampl.inb the  standardized moments m,/m2r/2, r 3, a re  d i s t r i b u t e d  

independently o f  t he  second moment m, (F isher  used k - s t a t i s t i c  n o t a t i o n ) .  
2  3  L -  2 3  Thus, f o r  example, Ebl = Em3/Em2 f o l l o w s  from the  independence o f  m3/m2 

3 and mp. I n  t h i s  manner, t he  exact  moments o f  5 and b2 can be found. 

I n  f a i t ,  F isher  de r i ved  t h e  f i r s t  s i x  cumulants o f  $ and the  f i r s t  f o u r  

cumulants of b2. Pepper (1932) der ived the  e i g h t h  moment o f  6, Hsu 

and Lawley (1 939) t h e  f i f t h  and s i x t h  moments o f  b2. La ter ,  Geary and 
Worlledge (1947) gave t he  seven noncentra l  moment o f  b,; a c t u a l l y  they . ' 

' 7 L 

g i v e  E(m4/m;) . Some o f  the c o e f f i c i e n t s  a re  q u i t e  la rge ,  t h a t  o f  n3 being 

a  1 3 - d i g i t  i n t e g e r  mu1 t i p 1  i e d  by 25515 ( the  whole expression has, so f a r ,  

had scant usage). 



APPROXIMATING DISTRIBUTIONS 

Knowing exac t  moments, i t  was a na tu ra l  development t o  search f o r  

approximating d i s t r i b u t i o n s ,  reaching ou t  towards'percentage po in t s  of 

t h e  d i s t r i b u t i o n s .   our-moment f i t s  were s tud ied  by Pearson (1 963) and 

a t  t h i s  t ime he cou ld  use the  Pearson system, Gram-Charlier se r i es  based 

on the  normal, and the  Johnson SU t r a n s l a t i o n  system (Johnson and Kotz, 

1970). For n 2 30, t he  Student- t  dens i t y  gave an acceptab e approximation 1 
f o r  , the  c r i t e r i o n  being the  closeness o f  agreement between the  

standardized s i x t h  and e i g h t h  moments f o r  t h e  model and the  t r u e  values. 

Johnson's SU, a l though being troublesome t o  f it, seemed t o  be equa l l y  

acceptable t o  Pearson (1 963 ,- p. 106). Recently, R '  A g o ~ L i t ~ u  (1 970) has 
shown t h a t  Johnson's S,,for n 8 g ives a very  acceptable approximation 

i n  t h i s  case., 

For t he  k u r t o s i s ,  the  problem i s  more d i f f i c u l t  because the  s t a t i s t i c  

i s  one-sided and very  skew i n  general ; thus f o r  n=25, 5 ( b 2 )  = 1.75, 

B2(b2) = 9.90 i n  comparison t o  $(q = 0, B2(V = 3.58. B r i e f l y ,  

Pearson Types V I  and I V  o r  Johnson's SU can be regarded as acceptable 

approximations t o  the  d i s t r i b u t i o n s  o f  b2 f o r  n 2 40 according t o  

unpubl ished work o f  C. T. Hsu (quoted by Pearson). Hsu po in ted  o u t  t h a t  
> f o r  n - 30, t he  (B1 ,B2) p o i n t s  f o r  b2 were c lose  t o  the  Type V 1 i n e  

(Pearson, 1963, p. 106). No t i ng  t h i s ,  Anscombe and Glynn (1975) i n  a . 

Technical Report made a v a i l a b l e  a t  t h e  A t l an ta  ASA meeting (August 1975), 
2 suggest a l i n e a r  f u n c t i o n  o f  a r e c i p r o c a l  o f  a x - v a r i a t e  as an approximation 

t o  be f o r  n > 30 o r  so; they  do not  make any comparisons w i t h  Johnson's 

SU approximation. 

OBJECTIVES 

For some time, we have been tack1 i n g  the  problem of f i n d i n g  moments o f  

sample moments which r e s u l t  i n  Tay lor -ser ies  developments i n  powers o f  t he  

i nve rse  sample s i z e .  The ,l:i rst objec'l ' ive wds l u  der ive  a ,I;ecllr~.ique . t u  . 

generate t h e  terms, a n d  having d e a l t  w i t h  t h i s  by a computer approach, t h e  

nex t  problem r e l a t e s  t o  the  use o f  t h e  locked- in  in fo rmat ion .  This  second 

phase i s  s t i l l  a problem area. 



An obvious a p p l i c a t i o n  concerns the  d i s t r i b u t i o n a l  p rope r t i es  o f  

, b2 i n  general sampling, and pushing t h i s  t o  extremes would i n v o l v e  a 

knowledge o f  t he  j o i n t  d i s t r i b u t i o n .  A r e l a t e d  problem which has been 

considered i s  t o  t ry t o  decide f rom sample data whether the  sampling 

i s  f rom a s p e c i f i e d  Pearson d i s t r i b u t i o n  ( o r  o the r  general popu la t ion) .  

Th is  would, one imagines, r e q u i r e  i n fo rma t ion  on the  sampling d i s t r i b u -  

t i o n  o f  the  Pearson c r i t e r i a  r1 = 2b2 - 3bl - 6 and 

where, f o r  example, f o r  Type I, r1 and K* < 0.. 

Th is  exp la ins  our  i n t e r e s t  i n  t he  marginal d i s t r i b u t i o n s  o f  q, b2 

and j o i n t  moments i n  general sampling. I n  the  sequel we , re fe r  t o  var ious  

r e l a t e d  top i cs ,  and i f  the  'account seems somewhat d i s j o i n t e d ,  i t  r e f l e c t s  

a na tu ra l  tendency, when confronted w i t h  a seemingly d i f f i c u l t  problem. 

t o  t ry  something simpler.  

The problem r e l a t i n g  t o  rl , r2 i s  s t i l l  unresolved, b u t  a t  l e a s t  we 

have a b e t t e r  understanding o f  t he  e a r l y  phase problems and a l so  some 

doubts as ' t o  whether i t  i s  indeed reso lvab le .  

NON-NORMAL SAMPLING 

MOMENTS OF SAMPLE-MOMENTS 

The independence proper ty  o f  t he  skewness (and k u r t o s i s )  and var iance 

breaks down i n  sampling from Pearson (except t he  normal) and o ther  d i s t r i -  

but ions.  Using Tay lor  se r i es  developments, t h e  present  authors a long wi.th 

D. Sheehan (1 971 ) s e t  up recu rs i ve  schemes f o r  t he  moments o f  sample 

.. moments (such as 5, Student 's- t ,  e tc . )  s u i t a b l e  f o r  programming f o r  a 

computer. The f l a v o r  of t he  r e s u l t s  i s  conta ined i n  t h e  fo l l ow ing  cases: 

(a) Un ivar ia te .  I f  

S 
As = - p i )  , as = E ( X  - p i ) S  , 

then 
S 

= c (a - a A (k - r )  1 
, r = l  r+l s- r  r s-r+ l  



where Afk) = 0 for k 2 r ,  k c 0; and it refers to the coefficient of 
- k n in A,.. In particular, 

(6) Bivariate. 

s t (9 ( k-I-, 1 - C %,,, A ,, A,,, *S-A,t+l-p, &I ,=o 
. . 

where [(sit+l )/PI 5 1 5 s+t, A:!; = 0 for k < 0. or k 2 s+t, = 1 
91-I 

unless A = p = 0; 6- = 0, and [x] indicates the largest integer 5 x .  
A and a have similar meanings as in (a ) ;  for example, - 

would be a possibility, or similar expression involving-linear sums of 
non-central sample moments and the corresponding expi,.essions for samples n=l. 

Using this approach, we have set up, using a computerj the first 
eight moments of 5 and the first six moments o f  b2 up 'to and irlcluding 
the term in n-8 in the sample size. Moments of 5 involve four- 
dimensional arrays (corresponding to the first three sample moments and 
the sample size) ; simi 1 arly those o f  b2 involve five-dimensional arrays. 
As for the moments of the population sampled, the first 40 are needed for 



t he  e i g h t  moments of , and t h e  f i r s t  44 fo r  t h e  s i x  moments o f  b2; 

i t  i s  p re fe rab le  t o  s e t  up recurs ive .  schemes f o r  these. 
?- 

ILLUSTRATIONS 

(a) ~ o p u l a t i o n  Uniform D i s t r i b u t i o n  .(% = 0, B 2  = 1.8) 

I # - \  

(Superscr ipts i n  parentheses r e f e r  t o  the  power o f  10 t o  be used as 

a  m u l t i p l i e r . )  

(b) Populat ion Pearson Type I, = 0.2, B2 = 3.1 

6.7573 _ 6 . 1 ~ l n ( l )  (9) Var Q + ... - 8.5303 - 

n  n  2  n  9  



(c)  Population , . Normal Mixture (2-components , equal. variances) 

q= 1.0 . B2 = 4.0 . . 

8. 5535(3)+ 5. ~ 8 7 8 ( ~ )  
w4(b2) % 3 4- .., - 8 

-5. 390(12) 

n 2 n n 
. + 

2.2836 (6) ' . 
.cl ( b  ) 'L - ~ . 5 6 3 5 ( ' ~ )  ; 

6 2 3+ ... 
n n 8 

(d) Population Pearson Type I ,  5 = 1 . O ,  B2 = 4.0 

9.7966 4 . 9 6 1 2 ( ~ )  + ~(b,$) L % 4 - - ... + 5 . 7 4 1 3 ~ ~ )  
n n 

5.6987") + 3 .9918(~ )  + 3:4s,2(10) var(b2hb)  n 2 ... + 
n n 6 

SAFE SAMPLE SIZE 

Our ear ly  work i n  using these expansions t o  approxi,mate t he  d i s t r ibu t ions  

o f ,  f o r  example, $'and b2, r e l i e d  on i n f l a t i ng  the sample s i z e  t o  damp-out 

higher nrder terms. Thus (Bowman and Shenton, 1975) sa fe  sample s i ze s  a r e  
i r~d ica ted  f o r  cach moment, using the ra ther  a rb i t r a ry  ru l e  t h a t  the  c r i t i c a l  

sample s i z e  i s  one which adjusts  the  s i z e  of the  highest eider t o  the  lowest 

order terms t o  be approximaeely one-tenth. For example, i n  sampling from 

Type I w i t h  % =  0.6, B2 = 3.2, the  s a f e  sample s i z e  f o r  ~ q i s  n = 10, 
b 



F. 

Similarly, i n  sampling from Pearson Type I with = 1.4, B2 = 3.4, the 
. . 

c r i t i ca l  s ize  i s  n = 100 for  p5(b2) and 

Clearly, i n  both cases the sampl-e s izes  are only jus t  adequate to' damp-out 

the n-8 terms. Pearson (1,930) used rather similar damping factors;  fo r  

example,', fo r  normal samples he gave 

when n = 50, and 

when n = 100. In the case of a i t  looks as i f  a smaller sample s ize  could 
have been used. 

RATIONAL FRACTION'AND OTHER APPROXIMATIONS 

Asymptotic or slowly convergent ser ies  may be approximated by the 

r a t i o  of polynomials in  the variable ( in  our case, n the sample s i ze ) ,  and 
\ 

there has been a resurgence of in te res t  in the l a s t  decade in the subject, 

basically in i t i a t ed  by Pad& (h is  thesis  was published in 1892). Briefly, 

the domain of convergence of Pad< approximants (which i ncl ude St iel  t j e s  

continued fractions as a special case) i s  generally more extensive than i s  

the case fo r  ser ies  developments; for  ser ies  in l /n ,  t h i s  suggests the 

poss ib i l i ty  tha t  smaller values of n may be valid in Padgapproximants. 

Genuinely divergent ser ies  (or what appear t a  he so from the pattern of the 

f i r s t  few terms) seem to  be quite common in s t a t i s t i c s ;  a t  l eas t  tha t  i s  

our experience, b u t  from a knowledge of a few terms (8, 15, or perhaps 30) , 
one cannot claim they are  authentic examples (Van Dyke, 1974, p.  436). 

An account of the recent p ro l i f i c  developments in the subject i s  t o  be found 

in Baker (1 975) ar~d Bdker, J r .  , and tiamme l (1 970). 

We consider a few exa~~ipl es : 

E q  from Pearson Type I with = 0.2, B2 = 3.1 



The f i r s t  four approximants pi = Pi(n) /q i (n) ,  i=1,2,3,4 where P i ,  

Qi a r e  polynomials i n  n of degrees i-1 , i ,  respect ively ,  a r e  

n = 10: P1 = 0.1169 P2 =0 .0968  P3 = 0.1016 P4 = 0.1018,  

n = 20: PI = 0.1476 P2 = 0.1415 P3 = 0.1420 P4 = 0.1420 

s imi la r ly ,  using ra t iona l  f rac t ion  approximants f o r  the  n-' t e n  

onwards and adjus t ing f o r  the  constant term, we have: 

For n = 10 the  s e r i e s  i s  useless ;  f o r  n = 20 i t  gives 0.1439. 

. Eb2 from Pearson Type I with 6 = 1 ,  B 2 =  2.4 

Ser ies  - -3.59 

n = 20: "1 = 2.8682 p2 = 2.8765 p3 = 2.9844 p4 = 2.7771 

n = 50: p4 = 2.5680 Ser ies  = 2.5680 

rt i s  well known t h a t  just as any f i n i t e  number of terms of a Taylor 

serie's cannot i n  general bound the  t r u e  value,  s imi la r ly  there  a re  problems 

i n  i ri,terpretl ng ~ a d e '  sums. However, the method does hold promi s e  for 
making avai 1 ab le  acceptable ( i n  some sense) approximations t o  111u111ent 

s e r i e s  (when the  sample s i z e  i s  r e l a t i ve ly  small ) w i t h  Seemingly d.iverqent 

tendencies . We a re  studyf ng other methods of summation (general i i ed  Pade' 
and Borel-Pade'). * 

. . 



THE. CORRELATION. BETWEEN .&.AND. b, 

ASYMPTOTIC CORRELATION 

Ear ly  work goes back t o  Pearson (1902) . . who gave, f o r  general 

sampl ing, the f i r s t - o rde r  asymptotics f o r  u2(b1 ) , "(b2) , and the' cor re l  a t i  on 

( 286-361 B4-4B2B3+6B1 6:+3~~ B2-6B3+12B~+24Bl 
R(bl ,b2) = 112 (3) 

tv2(b1 )"(b2)1 

where , 

Note, as' f a r  as f i r s t -o rder  terms, t h i s  i s  the same as the co r re l a t i on  

between and b2 

MORE EXACT RESULTS 

Further coef f ic ients i n  higher powers of n-' can be used i n  

by the method of moments o f  sample moments. 

Actual ly ,  one o f  us used a computer t o  approximate p, the ser ies f o r  

E ( b 2 q  being taken as f a r  as n-6, those f o r  5 and b2 t o  nw8. A 

se lect ion o f  r esu l t s  i s  given i n  Table 1. The i n te res t i ng  aspect i s  the 

high co r re l a t i on  f o r  samples o f  50 upwards, which increases w i th  sample 

size, but  no t  markedly. I n  addi t ion,  although the populat ion sampled does 

have an e f f ec t ,  the co r re l a t i on  i s  s t i l l  h igh and qu i t e  s tab le  over sample 

size. This ra ises a question as t o  the r o l e  l i k e l y  t o  be played by b2 

i n  a t e s t  o f  a hypothesis t h a t  a populat ion sampled was a Pearson d i s t r i b u -  

t i o n  w i t h  given q, 6;. The property does also throw a l i t t l e  l i g h t  on 

the j o i n t  d i s t r i b u t i o n  o f  , b? i n  non-normal sampling. 



TABLE 1. C o r r e l a t i o n  Between and b2 

Sample S ize  

0.2 1.2 * 0.716 [a61 0.696 

0.6 ' 2.6 '(a); 0.756 
(6) 0.819 

0.6 3.4 (a)  0.638 
(6) 0.834 

0.6 . , 4.0 ' (a)  0.696 
(b - - 

1.0 2.2 (a) 0.965 
(6) 0.965 

1.0 2.6 (a )  0.952 
(6) 0.953 

1.0 3.8 (a )  0.768 
( b ) ?  0.911 

*Populat ions sampled: (a )  Normal Mi,xture, (6) Pearson Type I. Moments 
based on asymptot ic se r i es ) ;  Pearson Type I does n o t  apply t o  the  case 
(0.6, 4.0). 

SIMULTANEOUS BEHAVIOR OF , b2 
-. . . .. . - 

OMNIBUS TESTS . . . .  

If one accepts the  n o t i o n  t h a t  Johnson's SU prov ides a good approxima- 

t i o n  t o  t h e  d i s t r i b u t i o n s  o f  and bp, then we are  ab le  t o  de r i ve  approxi -  

mate equ iva len t  normal .deviates i n  each case. Now SU i s  de f ined by the  

r o l  a t i o n  

-1 x - 5 )  X = y + 6 s i n h  ( , ( X  F N(0.1)) (4 

where, f o r  example, x r e f e r s  t o , . h ~ : o r  b2. , The p a r a ~ ~ ~ e t e r s  y, 6 arc Pound 

by equat ing 5, B2 o f  x t o  those o f  5 + A s i n h ( y )  w h q e  X i s  a standard 

normal va r i a t0 ;  t h i s  reduces t o  eva lua t ing  i n t e g r a l s  o f  the  form 



For 5,  X we use 

Var (x - < ) / A  = 1/2(w - 1 )  [wcosh (2R) + 1 1  

where 2 
w = exp( l /6  ) , R = y/6 . 

rt should be c l e a r l y  understood t h a t  X i s  an equ iva l en t  normal d e v i a t e  

f o r  s a y  $, but on ly  a s  f a r  a s  t h e  f irst  f o u r  moments o f  a r e  taken i n t o  
account .  In general  , SU does a b e t t e r  approximation t o  5 than t o  b2 

(Shenton. and Bowman, 19750. 

A na tu ra l  p r o j e c t i o n  from SU approximations was made by D'Agostino and 
Pearson (1973). They suggested t h a t  i n  normal sampling 

2 is  approximately d i s t r i b u t e d  a s  x with v = 2 degrees  o f  freedom. However, 

they  had overlooked t h e  f a c t  o f  dependence which was pointed o u t  by 

Anscombe ( D '  Agostino and Pearson, 1974). 

Bowman and Shenton (1 975) der ived  contours  a t  var ious '  probabi 1 i t y  
l e v e l s  f o r  accept ing  normal i ty  based on a modified form o f  equa t ion  ( 5 ) .  

They used 

2 without  t h e  x assumption, f i nd ing  t h e  5%, l o % ,  ..., 90%, 95% va lues  by 

' l a r g e - s c a l e  s imu la t i on ,  and mapping t h e  r e l a t i o n  back onto  t h e  , b2 
plane.  A s c r u t i n y  o f  t h e  contours  (Bowman and  hent ton, 1975, p. 247) 

, b r i n g s  o u t  a d i sc repancy  between t h e  contours  and t h e  Monte-Carlo d o t  

shape; t h e  contours  a r e  f l a t t e n e d  e l  1 i p s e s ,  whereas t h e  d o t  o u t l i n e  

appears  more ak in  t o  c o n c e n t r i c  pa rabo l i c  a r c s .  Another a s p e c t  o f  t h i s  

is  t o  say  t h a t  t h e  5 a r r a y s  become multimodal a s  b2 inc reases .  ( In  t h e  

absence o f  t h i s  diagram, r eade r s  w i l l  f ind a s i m i l a r  pheonomen d isp layed  

i n  Figure 1 -e) . 
.1 

A p a r a l l e l  s tudy  by T i e t j e n  and Lowe (1975) d i s p l a y s  s eve ra l  t h r ee -  
d imens iona l  p l o t s  of t h e  d i s t r i b u t i o n  of , b2 along wi th  a set o f  

contours  a t  t h e  95% l e v e l ,  sample s i z e s  ranging from 4 t o  50, t h e  r e s u l t s  



being main ly  based on Monte-Carlo s imu la t ions .  The i r  contours do hate 

shapes s i m i l a r  t o  concen t r i c  pa rabo l i c  arcs, a l though the  g rad ien t  change 

i s  sharp a t  t he  i n t e r s e c t i o n s .  

CONTOURS IN  NON-NORMAL SAMPLING 

The Johnson S,, approximations fo r  , b2, namely 

, 

can be $pt. I J ~  ir, rl~n-norm;ll sampl i ng - -ac tua l l y  the  f i r s t  f o u r  asymptot ic 

moments o f  , b2 a re  programmed (using terms through order  rim') lollowed 

by an i t e r a t i v e  scheme t o  determine t h e  parameters* i n  equat ion -C7). 

There w i l l  now be c o r r e l a t i o n s  between , h2 and XI , Xp; d e f i n e  

R = c o r r e l a t i o n  (XI, X 2 )  To cons t ruc t  contours i n  t h i s  case, rep lace , 

2 equat ion (6) by  the  approximate x v a r i a t e  

where R i s  i n t r h c t a b l e  mathematical l y .  For a s p e c i f i e d  popu la t ion  (Pearson 

Type I, normal m ix tu re )  Monte-Carlo assessments o f  R Cdn be found from 

equat ion  ( 7 ) .  The r e s u l t s  f o r  50,000 samples a re  shown i n  Table 2 along 

w i t h  o the r  moments o f  XI, X2. The s t a b i l i t y  o f  R fnr v a r i a b l e  sample 

s i zes  i s  noteworthy as w e l l  as i t s  robustness wit11 respec l  t o  populat ions.  

Having assessed R, Monte-Carlo assessments o f  t h e  percentage po in t s  o f  
2 YS f rom equat ion (8) cou ld  be found by a second s imu la t i on  r u n  i n  each 

case; however, s ince  our  1ntur.es.t i n  e q i ~ a t i o n  (8)  i s  t n  .reach a broad 

understanding as t o  the ef fec t  o f  skewness i n  the  parent  popu la t ion  on 
2 2 t h e  shape and spread o f  YS contours, we have used YS on the  assumption 

2 
l ; t~dt i t  i s  approximately d i s t r i b u t e d  as x w i t h  two degrees o f  freedom. 

The popu la t ions  sampled a re  g i ven '  i n  Table 3, and the  contours i n  Figures I - a  



TABLE 2. Mean, Standard Deviation, Correlation for x S ( q ,  XS(b2) 
i n  Sarnpl i n g  from Pearson Type 1 ( = 2 7  fi2 = 33/14) 

and a Normal Mixture for Various Sample Sizes 

*Populations: (a) Type 1, (6) Normal mixture w i th  same 6, B2 
Moments based on 50,000 samples. Notation: vl = EX1 , 0, = d V F  XI , 

vO1 = EX2, aO1 = Var X2, R = corre lat ion (XI ,x2?. 

2 TABLE 3. Populations Used i n  YS Contours 

Number o f  (K, b2) points 

90% 
a i n  1000 outsi  e the contour 

Figure Population B2 n R 3% 99% - - - - - - 
l a  Type I* 217 33/14 100 0.571 89 46 9 

l c  N.M. 1 .O 2.2 70 0.998 67 37 16 

l e  Uniform 0.0 1.8 50 0.000 1 00 57 16 

:.. , , - ' . . .,ia b'P?Type I has indices 2 and 3; N .M. = Normal Mixture. 
I. , , , - ' .= 

..+ .. ,. 7.1.q , . : - 8r -*,.?;? 7 ./ :A -p-;, . i , d ~ - l j - .  f- , -'jd .Jpr;21 F; l ,  ~ y - - - A - l , ~ y , . , . y '  . .. ; -:,.,.\ . ' 8  T',. '- I*-\ - -  > / ; , y - - . ,  px .- . '  . ., ,.,7 .:::,: . ' , , ' n , ' ' '  7-., -r,;.L-m;$ ,!.,- ,, ,fy: ~ ~ ~ ~ ~ : ~ . ' . ~ ~ ~ ~ . . ~ ~ ! ~ ~ * , - ~ 2 ~ . ' ~  . .  . 



VERTICAL AXIS:  b2  

A .  TYPE I; & = 2 / 7 ;  
~ ~ 1 3 3 1 1 4 ;  n = 1 0 0  

HORIZONTAL AXIS:  ,/ bl 

3.s 

I.. 

s.0 

1.. 

a s  

I.. 

a,* 

3.0 

I.. 

O .  NORMAL MIXTIIRE & = 2 / 7 ;  

. B2=33 /14 ;  n = 1 0 0  

C .  NORMAL MIXTURE: &=I;  D .  NORMAL MIXTURE, &= 1; 

E .  UNIFORM, n = 5 0  

y L  C o n t o u r s  a t  9 0 , 9 5  and 991 S 



REMARKS ON THE CONTOURS 

There is l i t t l e  to  choose between the contours i n  Figures 1-a 
and 1-b which refer to  two populations w i t h  the same f i r s t  four moments. 

When 5 is large and B2 is i n  the neighborhood of 1 + B1 (the 
cr i t ica l  boundary, since i n  general B2 > 1 + B1), then R is near to unity 
and the regions are HnarrowH and "long"; as R decreases, the regions f i l l  
out rapidly (Figures 1-c and 1-dl and become more box-shaped, as would be 
expected for independence. 

JOINT DISTRIBUTION OF $, bp 

PEARSON AND PRETORIUS 

A t  the outset something needs to be said about the order of difficulty 
that  confronts those who attempt the resolution of bi  vari ate, t r ivari  a te  
and higher distributions. One may recall the great disparity between 
studies of univariate and multivariate situations. For example, there are 
scores of univariate discrete models (Poisson, binomial, Neyman Is A,  B ,  
C,  etc.) b u t  rare cases of bivariate studies and s t i l l  rarer studies of 
tri variate. Indeed bi vari ate discrete cases frequently rev01 ve around 
the Poisson and negative binomial models and are t h u s  f a i r ly  obvious 
"extensions. " 

Karl Pearson i n  a series of papers starting around 1905 made an heroic 
effort  (1925) to  f i t  a bivariate surface using two means, three covarfances, 
four third-order and five fourth-order moments; the paper was called "The 
Fi fteen Constant Bivariate Frequency Surface. " He was apparently convinced 
that  no satisfactory results would accrue for  anything less than a four- 
moment bivariate f i t ,  and actually tr ied what we should now identify as a 
Gram-Charlier series based on the bivariate normal as kernel. He was not 
enchanted w i t h  the result  (p. 269), and one would gather d i d  not expect 

2 good f i ts  to result  (as measured by x ). 

Another landmark i n  the bivariate situation is the work of Pretorius 
(1 930), who was certainly not hampered by small samples ; one example has 

I 

n = 631,682. He studied several bivariate surfaces, derived regression 
curves, marginal d l  stributions and s e t  up contours of equal probabi 1 i t y  . 



The present s ta te  of the subject i s  ind icated by the scope of the 

recent t e x t  by Johnson and Kotz (1972). It seems t o  us, t h a t  there are 

s t i l l  very few mu l t i va r i a te  cases i n  which surfaces are successful ly  

f i t t e d  t o  empir ical  data, and that ,  i n  general , much 1 ess i s  t o  be expected 

once one crosses the  un ivar ia te  boundary. 

A MODEL FOR 5, b2 
Our o r i g i n a l  aim was t o  consider samples from general Pearson popul a- 

t ions,  bu t  then i t  was rea l i zed  t h a t  even the normal case has no t  been 

resolved. The extensive study o f  the simulated (q, b2) couplet diagrams 

was c e r t a i n l y  encouraged by much he lp fu l  correspondence w i t h  E. S. Pearson. 

Le t  i t  be said, however, t h a t  h i s  i n t e r e s t  was i n  the puwer o f  various 

t es t s  (Shapiro-Mi 1 ks, W '  , etc. ) , and we became in t r igued  by the problem 

o f  f i n d i n g  a b i va r i a te  model which a t  l e a s t  has the " r i gh t "  shape f o r  i t s  

equi -probabi 1 i ty contours. Monte-Carl o simul at ions (samples o f  30, 50 

mainly) were made of from 50,000 t o  100,000 runs, the couplets being se t  

ou t  on a two-dimensional g r i d  of values f o r  5 = O(t0.05) t2, b2 = 1 (0.05)7 .O. 

It was disappoint ing t o  no t i ce  qu i t e  frequent cases o f  lack  of smoothness 

i n  the arrays, even the array f o r  1 ql < 0.1 being somewhat' i r r egu la r .  
Nonethrl ass ce r ta i n .  broad features were evident. The arrays for  5 
constant were o f  the form o f  Type I11 (gamma), bounded very near ly by the 
parahol i c  arc be = 1 + bl , whi le  the array means f o l l  owed a para1 l e l  

parabol ic arc. The arrays f o r  bp constant were more problematical, and 
became bimodal as b2 increased. 

NEN BIVARIATE MODEL 

The model f i n a l l y  used was mu1 t i p 1  i ca t i ve ,  w i t h  

f be) = w ( q )  y ( b 2 1 q  

where 

8 e x p ' ( - k y +  6 sinh"( 

i s  Johnson's SU approximation t o  the d i s t r i b u t i o n  o f  bl and function g i s  

a condi t ional  gamna d i s t r i b u t i o n  w i t h  



and k > 0, p(x) p o s i t i v e  for a l l  real x. The b i v a r i a t e  dens i ty  equation (9) 
may be regarded as a crude approximation t o  t h e  d i s t r i b u t i o n  of (5, bp) , 

i n  general sampl ing . 
2 A comparison of t h e  90, 95, 99% contours f o r  t h e  YS model ( s e e  

equation (8))  and new b i v a r i a t e  model equation (9) i n  samples of 50 from 
the  normal is shown i n  Figure 2-a. To bring ou t  t h e  v e r s a t i l i t y  of  both 

2 models (YS and f ( K ,  b ) )  t h e  contours a r e  a1 s o  given f o r  samples of  
1 2  

50 from t h e  normal mixture f o r  which 6 = 1.0, B p  = 2.6 (two components, 
equal variances)  , see Figures 1 -d and 2-b. The f i t t i n g  o f  the bivar i  a t e  

model is discussed el sewhere. 

As one simple approach t o  t h e  goodness-of-fi t of t h e  models, we have 
drawn one thousand couple ts  (6, b2) f o r  each o f  these examples. For t h e  

normal case t h e r e  were 98, 59, 10 points  ou t s ide  t h e  90, 95, 99% contours 
i n  good agreement, S imi lar ly ,  t h e  corresponding results f o r  t h e  normal 
mixture were 84, 48, 17. 

CONCLUSIONS 

We have presented some of t h e  problems r e l a t i n g  t o  t h e  d i s t r i b u t i o n  
of the  5, b2. A g r e a t  deal of e f f o r t  has gone i n t o  t h e  problems associa ted  
with t h e  marginal d i s t r i b u t i o n  i n  t h e  normal case during t h e  pas t  ha l f  
century. Our present  work has produced two simple b i v a r i a t e  models i n  

general sampl ing. 

A t  1 east t h e  cons t ruct ion  of t h e  models has high1 ighted t h e  main 
d i f f i c u l t i e s ,  However, it should be noted t h a t  i n  the  normal case t h e r e  
is an obvious null hypothesis f o r  the depar ture  tests, whereas t h i s  aspect  
rzlrrls i rr lo conceptual probl ems i n  t h e  non-normal case. 



V E R T I C A L  A X I S :  b 2  H O R I Z O N T A L  A X I S :  fi 

F I G U R E  2 - a .  

F I G U R E  2 - b .  B i V a r i a t e  Contours  a t  9 0 , 9 5  a n d  99% 
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DISCUSSION. O'F THE PAPER BY BOWMAN AND SHENTON, 
"DISTRIBUTION OF .SKEUNESS AND KURTOSIS STATISTICS" 

G. L. T i e t j e n  
Los A1 amos Sc i  e n t i  f i c Laboratory 

Los Alamos, New Mexico 

This' paper conta ins a good h i s t o r i c a l  i n t r o d u c t i o n  t o  the  s t a t i s t i c s  

J and b2. ~ h e s e :  s t a t i s t i c s  have been w ide l y  used (1') t o  cha rac te r i ze  

the  shape o f  a g iven d i s t r i b u t i o n ,  (2)  as t e s t s  o f  no rma l i t y  o r  t h e  l a c k  

o f  it, and (3) as t e s t s  f o r  o u t l  i e r s  f rom a normal d i s t r i b u t i o n ,  p a r t i c u l a r l y  

f o r  t h e  case o f  several  o u t l  i .ers. It seems 1 i k e l y  t o  me t h a t  they w i l l  

f i n d  an even wider  use i n  t e s t s  o f  goodness-of-f i t  f o r  d i s t r i b u t i o n s  

o ther  than the  normal and i n  t e s t s  f o r  o u t l i e r s  f rom d i s t r i b u t i o n s  o t h e r  

than t h e  normal. Recently, Bob Hogg has discussed adapt ive robust  es- 

t ima t ion .  I n  p a r t i c u l a r ,  he has recommended es t imators  o f  c e n t r a l  tendency 

(mean,. median, etc .  ) which depend on some'vague n o t i o n  o f  the  shape of  

. the d i s t r i b u t i o n .  For one shape, the  mean i s  recommended. For another 

shape, he wants us t o  use the  median, e t c .  I foresee t h a t  and b2 

w i l l  be used f o r  t h i s  adapt ive es t imat ion .  

I n  view o f  a l l  t h i s ,  i s n ' t  i t  s u r p r i s i n g  how l i t t l e  we know about 

the  d i s t r i b u t i o n  o f  and b2? People 1 i ke Pearson, F isher ,  Wishart, 

and Geary have spent a good deal o f  t ime on them, n o t  t o  mention Bowman, 

Shenton, D' Agostino, and Anscombe. I f i r s t  became i n t e r e s t e d  i n  t h i s  

area when I saw Ferguson's t a b l e  o f  c r i t i c a l  values o f  J and b2 which 

he used t o  d e t e c t  o u t l i e r s .  It had such gaps i n  i t  t h a t  I d i d  a Monte 

Car lo s imu la t i on  i n  which I calcu la ted ,  f o r  normal samples, t he  two 

s t a t i s t i c s .  I then ordered the  values o f  and b2 and p icked o f f  the  

pe rcen t i l es .  I sent  t h i s  t o  Biometr ika. The e d i t o r  immediately r e p l i e d  

t h a t  he had j u s t  accepted a very s i m i l a r  paper by Ralph DIAgostino on 

t h a t  subject .  Could t h e  two o f  us co l l abo ra te  t o  produce a j o i n t  paper'? 

We d i d  w r i t e  two papers together ,  and I would s t i l l  l i k e  t o  meet 

D'Agostino some day. I t e i l  t h i s  t o  show you how l i t t l e  was known about 

t hc  p e r c e n t i l e s  o f  these s t a t i s t i c s ,  j u s t  f iv 'e years ago fo r  small 
' 

sample sizes. 



Kim Bowman has g iven an account o f  t he  approaches which have been 

made toward approximating these d i s t r i b u t i o n s .  There were the  se r ies  

expansions i n  k - s t a t i  s t i c s  . That, thank heavens, never caught on w i t h  

the  Americans. Then t h e  moments (up t o  the  8 th )  were developed, and 

expressed i n  se r i es  i n  powers o f  l / n .  These were used t o  f i t  the  Pearson 

and t h e  Johnson systems o f  d i s t r i b u t i o n s .  Reasonable f i t s  f o r  J6; 
were made f o r  n Z 8, b u t  samples s izes  o f  a t  l e a s t  40 had t o  be used t o  

g e t  good approximations f o r  b2. Also, us ing  these moments, DIAgostino 

found t h a t  s tandard iz ing  (by sub t rac t i ng  the  mean and d i v i d i n g  by 

t h e  standard d e v i a t i o n )  would do a p r e t t y  good j o b  o f  t ransforming 

t o  normal i t y  . 
Shenton and ,Bowman. used moments o f  t he  sample moments t o  approximate 

the  d i s t r i b u t i o n s .  These came out  as T a y l o r ' s  Srv.iw i n  pnwers of l/n,, 

I n  doing so, they  had made much u s e  o f  recu rs i ve  re1 a t ionsh ips  between 

the'moments which q u i c k l y  grew very  complicated. Only Bowman's per- 

s i s tence  a t  t he  computer made poss ib le  a con t i nua t i on  o f  t h e i r  e f f o r t s .  

Since they  were us ing  the  sample moments, they  cou ld  work w i t h  whatever 

d i s t r i b u t i o n  they chose, and they turned o u t  a l o t  o f  r e s u l t s ,  even 

genera l i z i ng  t o  the  b i v a r i a t e  case. 

A t  about t h i s  p o i n t  v i c t o r  Lowe and I became i n t e r e s t e d  i n  us ing  

and b2 j o i n t l y  as a t e s t  f o r  normal i ty .  The b i g  compet i tor  was t h e  W-test 

by Wilk  and Shapiro. Looking a t  t h c  s imu la t i on  r c s u l t s  w i t h  which they 

j u s t i f i e d  the  omnibus p rope r t i es  o f  t h e i r ' t e s t ,  i t  was ev jdent  t h a t  i n  

most o f  t h e  cases, e i t h e r  q or b2 was more powerful  than t h e i r  t e s t .  

The W-test was chosen as b e s t  because i t  d i d  b e t t e r  over - more a l t e r n a t i v e s  

than d i d  the  o the r  s t a t i s t i c s ;  n o t  because i t  performed , b e t t e r  w i t h  each 

a l t e r n a t i v e .  So, we thought,  a j o i n t  t e s t  may p i c k  up t h e  des i rab le  

fea tu res  o f  bo th  5 and b2. Perhaps i t  would do w e l l  where J6; d i d  
, . .  

we1 1 where b2 d i d  we1 1. 

To t e s t  our  theory, we s imulated 30,'OOO normal samples and ca l cu la ted  

and b2 f rom each sample. Using Jbl as one coordinate and b2 as 

another, we p l o t t e d  these--or r a t h e r  we counted how many f e l l  i n t o  each 

b i n  on a 100 x 100 ar ray .  The r e s u l t  was a b i v a r i a t e ,  three-dimensional 



surface which i s  the empirical j o i  n t  density o f  and b2 (Figures 1 

and 3). On the surface for n = 10, the sharp r i s e  i n  the rear  and the 
empty space i n  f r o n t  are noted. These s t a t i s t i c s  are uncorrelated but 

dependent. I f  they were independent, the j o i n t  would be product o f  the 

marginals and would look 1 i ke  t h i s  Figure 2. 

He were pa r t l y  i n t o  the pro jec t  when we noticed:an a r t i c l e  by 

D'Agostino and Pearson. They had standardized both and b2, then 

taken the sum o f  squares o f  these two variates which were approximately 
r) 

normal, and used a XL d is t r i bu t i on  w i th  two degrees o f  freedom t o  draw 
the contours o f  the j o i n t  d is t r ibu t ion .  We thought - we were wrecked, 
but decided t o  continue, since they had said nothing about power studies 

on tests  of normality. Just then Frank Anscombe wrecked t h e i r  theory 

by point ing out t ha t  J6; and b2 were not independent, hence you couldn' t  
2 use the x theory. 

We then t r i e d  t o  devise contours which were functions o f  the sample 

size n, and the best we could do was t o  in te rsec t  two parabolas. This 

crescent-shaped contour was too sharp a t  the t ips.  

We f in ished and sent the paper o f f  t o  Biometri ka. Afterwards, 

Kathy Campbell d id  some Fourier smoothing f o r  us and produced 90, 95 and 
99% contours from 100 x 100 arrays (Figure 4). These are contours 
of equal elevation. We would l i k e  t o  recommend our techniques f o r  dealing - 

w i th  b ivar ia te  densit ies i n  general. Then a l e t t e r  came from the edi tor  

saying tha t  they had accepted a ve.ry s imi la r  paper by Bowman and Shenton, 

but would we get together and t a l k  anyway? None o f  us knew qu i te  what 

t ha t  meant, but  we d id  ta lk ,  and some o f  t h i s  today has been an outgrowth 

o f  our discussions. 

What had Bowman and Shenton done? They had used Johnson's t ransfor-  

mations t o  normality, involv ing the arcsinh. Their contours s t i l l  
resembled the case o f  independence. D' Agostino 's contours 1 ooked 1 i ke 

theirs,  but h i s  d id  not have the r i g h t  content, whereas the i r s  did. 

Nevertheless, they real ized tha t  t h e i r  contours d i d  not have the r i g h t  

shape. They were not  contours o f  equal elevation on the surface. 



J ~ w H ~  i . ~ ~ I r i t  ~ensl ty ot 5 and 
bp,  Normal Samplfng, N=10. 

FIGURE 3. Joint Density for N-40 
Effect of Increasing N. 

F I W H ~  2. Jojnt Uenslty Under 
Assumption of Independence, N=10. 

FIGURE 4. 90, 95, and 99% Contour 
Interval s , N=10. 



.. I n  a second t r y ,  they came up wi th.what they have ca l led  a crude 

approximation t o  the j o i n t  dens i ty  o f  and b2. I t  i s  the product 

o f  Johnson's Su approximation f o r  J6; and another funct ion invo lv ing  

both J and b2. The l a t t e r  function i s  a condi t ional  gamma d i s t r i b u -  

t ion.  The shape of t h e i r  contours i s  now much bet ter ,  and the content 

i s  cor rect .  This aspect of the problem thus appears t o  have been solved. 

With the'contours which V i c to r  and I came up w i t h  we could no t  qu i t e  

match the power of the W-test. We await anxiously Kim's Monte-Carlo 

inves t iga t ion  of power on her contours. Possibly t h i s  may revolut io 'n ize 

t e s t s  o f  normal i ty .  





HOW SHOULD THE LOSS OF COOLANT ACCIDENT B E  STUDIED? 

SOME BACKGROUND.AND PERSPECTIVE 

R .  G. Easterl ing 
Nuclear Regul atory Commi ssion 

Washington, DC 

The t o t a l  problem i n  the  study of LOCA (1 oss of cool an t  acc iden t ) ,  
as  I understand i t ,  i s  the  following: How does one obtain and use infor-  

mation from l e s s  than fu l l - sca le  experiments and from computer models t o  

make r e l i a b l e  predictions of what would Rappen t o  a reactor  i n  the event 

of a LOCA? Stat ing the  problem simply does not mean the  problem i s  simply 

solved. There a re  many sub-problems and t h i s  and the  following presentations 

will  concentrate on b u t  a few of them. 

As a framework f o r  discussion, consider a general problem, expressed 

as follows: There i s  a cha rac t e r i s t i c  of i n t e r e s t ,  Y ,  which i s  a function 

of several arguments. For various reasons there  i s  "uncertainty" about 

the arguments. The problem i s  how t o  t r ans l a t e  t ha t  uncertainty i n to  

uncertainty about Y .  Symbolically, l e t  the  re la t ionship  between Y and the  

arguments of the  function be denoted by: 

where the  two types of arguments a re  used t o  indicate  two d i f fe ren t  s o r t s  
of uncertainty associated w i t h  the arguments. These are:  

1. nonconstant physical charac te r i s t i cs :  X I ,  X 2 ,  ..., Xm; 

2. the  use of estimated constants: Z1 ,  Z2 ,  ... , Z n .  

For example,.suppose Y i s  a cha rac t e r i s t i c  of a reactor a t  some randomly 
selected time during i t s  1 i f e .  That cha rac t e r i s t i c  might depend o n  the  

power level a t  which the  reactor  i s  operating, say X I  . and so the  uncertainty 
i n  t h i s  case i s  t h a t  associated w i t h  the  presence of a random variable.  Not 

a1 1 nonconstant physical charac te r i s t i cs  a r e  random variables.  For example , 
in  another problem, X I  might be the  i n l e t  water temperature which i s  known 

t o  follow a spec i f i c  seasonal pat tern .  What one might be in teres ted i n  i s  

the resu l tan t  pattern i n  Y ,  not in  what Y might be f o r  a randomly selected 

season. 



The second type o f  u n c e r t a i n t y  i s  t h a t  a t t r i b u t a b l e  t o  us ing  est imates 

o f  constants.  For example, Y might  be the  r e l i a b i l i t y  o f  a  system and Z1 

t h e  r e l i a b i l i t y  o f  a  component i n  t h a t  system. Not knowing Z1, one might  

rep lace i t  by an est imate, and t h a t  est imate might  be based a t  l e a s t  i n  

p a r t  on data. The X 's  and the  Z ' s  might  a l s o  be r e l a t e d  . in t h a t  t he  prob- 

a b i l i t y  d i s t r i b u t i o n  o f  some X's might  be known except f o r  some constants 

which must then be est imated. 

Perhaps o the r  s o r t s  o f  unce r ta in t y  cou ld  be d is t ingu ished,  b u t  these 

two a re  ample f o r  the  purposes o f  i l l u s t r a t i o n  and the  . f o l l ow ing  presentat ions.  

Other unce r ta in t i es ,  sueh as how w e l l  t he  model agrees w i t h  r e a l i t y  must 

u l t i m a t e l y  be considered b u t  a re  n o t  t he  t o p i c  here. Note a l s o  the  f o l l o w i n g  

d i s t i n c t i o n :  S t a t i s t i c i a n s  are used t o  seeing the  unce r ta in t y  associated 

w i t h  an equat ion, such as t h a t  g iven i n  t he  opening paragraph, designated 

by  E added t o  t h e  end o f  t h e  equat ion. Here the  unce r ta in t y  i s  i n s i d e  the  . 

f u n c t i o n  and i s  n o t  so s imply expressed. I n  t he  f o l l o w i n g  paragraphs, the  

problem mentioned r e f e r s  t o  t h a t  s e t  f o r t h  on the  prev ious page. 

Two q u i t e  v i s i b l e  instances i n  which t h i s  problem occurs i n  t he  nuclear  

i n d u s t r y  a re  the  Reactor Safe ty  Study (1974) and the  ana lys is  o f  Loss . of . 

Coolant Accident  (LOCA) computer codes. I n  the  f i r s t ,  Y might  be the  prob- 

a b i l i t y  o f  exposing 1000 people t o  a  s p e c i f i e d  amount o f  r a d i a t i o n  i n  t he  

event o f  a  nuclear  r e a c t o r  acc ident .  The arguments would i nc lude  the  r e l i -  

a b i J i t i e s  o f  t he  var ious  sa fe ty  systems, meteorological  condi t ions,  and, 

popu la t i on  d i s t r i b u t i o n .  I n  the  second instance, the  LOCa computer code 

s imulates an acc ident  and y i e l d s  a  record  o f  c ladd ing  temperature as a  

f u n c t i o n  o f  t ime. The peak o f  t h a t  curve i s  one c h a r a c t e r i s t i c  o f  i n t e r e s t  

and t h e  arguments o f  t he  f u n c t i o n  ( t h e  computer code i s  t h e  func t i on )  a re  

numerous and f a l l  i n  bo th  ca tegor ies  g iven above. 

The fol.1owing presenta t ions  w i l l  examine t h a t  example i n  more d e t a i l .  

As a pre l im inary ,  l e t  us consider  t he  s t a t i s t i c a l  aspects o f  t he  general 

problem. 

76' AX a staa%ficd phoblem? Perhaps. The unce r ta in t y  i n  ' 

some instances may be t raced  t o  an I d e n t i f i a b l e  se t  o f  data. 

Also, as we $ h a l l  see, where the  problem invo lves  how t o  



choose points a t  which t o  evaluate the  function, s t a t i s t i c a l  
experimental, design ideas can be used. 

16 t h e  phoblem u n u a U y  approached bhom a hlta/tin;ticaL point 06 

v i . ~ ?  I say no. I t  i s  amazing . to  me how quickly engineers 

(o r  physic is ts ,  o r  chemists, or  some s t a t i s t i c i a n s )  can go 
from a vague expression of uncertainty t o  a completely specified 
probabi 1 i t y  d i s t r ibu t ion .  (There i s  some s o r t  of reverse 
Central L i m i t  Theorem a t  work here. The l e s s  data ,  the  eas?er  

i t  is t o  specify a probabil i ty d i s t r ibu t ion . )  Thus the  problem 
4becomes one of applied probabi l i ty ,  not s t a t i s t i c s ,  a d i s t inc t ion  

I t h i n k  we should make. 

14 t h e  p m b l m  one RhaX ~tahh;ticim can p h o ~ L t a b & y  ;tackle? 

I t h i n k  so. The problem i s  e s sen t i a l l y  one of information 
processing: How does one merge the  information about the  
arguments t o  y ie ld  information about Y ?  I t h i n k  information 
processing (as  opposed to  s t a t i s t i c a l  inference o r  decision 
making) i s  primarily what s t a t i s t i c i a n s  do and should do. In 

t h i s  par t i cu la r  regard, s t a t i s t i c i a n s  should be par t i cu la r ly  
sens i t ive  t o  the  inser t ion of a r t i f i c i a l  information, such as  
a completely specif ied d i s t r ibu t ion ,  which could d i s t o r t . o r  
even determine what one concludes from the  analysis .  

WhaX wohh h a  been done on lthe phobLem by ~.&&h; t i c icuzn? 

L i t t l e  i n  general,  I t h i n k ,  . b u t  there  a re  some special cases 
which have been studied.  One pa r t i cu l a r  instance i s  the 
followlng: The Z ' s  are coniponent r e l i a b i l i t i e s ,  Y the system 
r e l i a b i l i t y ,  and the  uncertainty about the  Z ' s  i s  due t o  the  
f a c t  t h a t  a l l  t ha t  i s  known about them i s  t h a t  n i  of component 
i have been tes ted  and f i  f a i l u r e s  occured ( t he  f a i l u r e  infor-  
mation could include times t o  f a i l u r e ) .  In general,  we must 
use approximate methods t o  process t h i s  information i n to  con- 
f i dence (o r  consonance, see Kea~p.Lhcsrne and Fol ks, 1971 ) 1 imi t s  
on Y and only i n  recent years w i t h  work by.Nancy Mann and 
co-authors (1 974) have we had general l y  usable and accurate 
approximations. 



In another c l a s s  of s i tua t ions  which includes s t a t i s t i c a l  

tolerancing,  a l l  of the  arguments a re  random variables.  All 

t h a t  i s  known about t h e i r  d i s t r ibu t ions  i s  the  information 

contained i n  samples from each. I t  i s  my impression t h a t  

s t a t i s t i c i a n s  have not progressed beyond point estimation in 

t h i s  case. We f ind  by some means the  "best" f i t t i n g  d i s t r i -  

bution f o r  the arguments and then by analysis ,  e r ro r  propoga- 

t i on ,  or  Monte Carlo, depending on the  complexity of the  

function, obtain the  derived d i s t r ibu t ion  of Y .  .I am not . 

aware of any published e f f o r t s  t o  quantify the  uncertainty 

associated w i t h  the  derived d i s t r ibu t ion ,  such as  by obtaining 

s t a t i s t i c a l  tolerance in te rva l s ,  but i t  seems worthwhile doing. 

(Note t h a t  s t a t i s t i c a l  tolerance i s  used i n  two d i s t i n c t  ways 

in  t h i s  paragraph--one of our problems i n  communicating w i t h  

nonstat i  s t i c i ans .  ) 

My summary point is t ha t  we s t a t i s t i c i a n s  a r e  s t i l l  a t  the  rudimentary 
s tage i n  the  development of methods t o  handle t h i s  problem. And i t  i s  an 

important problem. Millions of do l la r s  can be r id ing on the outcomes of 

these  functions. Further, as  I imagine many readers can a t t e s t ,  i t  i s  a 
problem which a r i s e s  repeatedly i n  the  nuclear industry and others .  While 

I may not always agree w i t h  whatever solution i s  presented, ( the  usual 

approach seems t o  be t o  ca lcu la te  the  root  sum of squares of something), 

I regard i t  as a healthy sign t h a t  people who work w i t h  these functions 
recognize the exis tence of uncertainty i n  them and the  need t o  evaluate 
t h a t  uncertainty.  We should encourage them and help f ind correct  and 

credible  ways t o  accomplish t h i s .  
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INTRODUCTION 

E a s t e r l i n g ' s  paper discusses t h e  general problems associated w i t h  

s tudy ing the  uncer ta in ty  generated by a  func t i on  o f  many va r iab les  when 

there  were a t tend ing u n c e r t a i n t i e s  i n  those var iab les .  TkKay's paper 

discusses t h e  problem o f  developing a  computer code t h a t  models r e a l i t y  

adequately. I w i l l  d iscuss a  p a r t i c u l a r  problem and i n  doing so assume 

t h a t  I have an adequate code. The problem I w i l l  descr ibe i s  an important  

one t o  the  nuc lear  f i e l d .  C 

One o f  t he  misfor tunes t h a t  i s  pos tu la ted i n  ana lys is  s f  m t e r  , 

reac tors  i s  l o s s  o f  coo lant  through, f o r  example, a  ruptured pipe. 

According t o  the  Rasmussen study, such a  l o s s  o f  coo lant  accident,  o r  

LOCA as i t  i s  ca l led ,  i s  very u n l i k e l y .  Nevertheless, i t  i s  r e c e i v i n g  a  

great  deal o f  a t t e n t i o n  because o f  t he  s t r i n g e n t  regu la to ry  requirements 

f o r  emergency core coo l i ng  systems and analyses. 

There has n o t  been, and i n  the  immediate f u t u r e  won ' t  be, any f u l l -  

scale t e s t  o f  an e n t i r e  system--i t  would be p r o h i b i t i v e l y  expensive--so 

the  e f f o r t  has been i n  scale t e s t i n g  and computer mode1,bui lding. S t a t i s t i c a l  

i nves t i ga t i ons  can he1 p  t h i s  e f f o r t  through assessment o f  experimental and 

computer modeling in format ion .  I w i l l  discuss a  p o r t i o n  o f  t h e  l a t t e r  subject .  

For d iscussion purposes, I w i l l  assume there  i s  'a r e a l i s t i c  model fo r  

a  LOCA i n  the  sense t h a t  there  i s  one s e t  o f  values (unknown) o f  t h e  engi- 

neer ing  parameters such t h a t  f o r  t he  s e t  o f  parameters d e f i n i n g  any accident  

the  computer code gives a  s u i t a b l y  accurate LOCA t ime h i s t o r y .  What k i n d  

of unce r ta in t i es  w i l l  e x i s t  i n  modeling a  LOCA? F i r s t ,  there  are the  uncer- 

t a i n t i e s  i n  the  accident  parameters themsel ves : system conf igura t ion ,  oper- 

a t i n g  h i s to ry ,  i n l e t  water temperature, type o f  p ipe  break, e tc .  Second, 

the re  are t h e  engineering "co r re la t i ons "  t h a t  e x i s t  by the  hundreds i n  the  

submodel s  . These are ac tua l  1  y est imated regression parameters and may be 



based on data o r  engineer ing judgment. We wish t o  i n v e s t i g a t e  the  e f f e c t  

of these u n c e r t a i n t i e s  upon the LOCA t ime h i s t o r y .  However, the  i n v e s t i -  

ga t i on  i s  s e r i o u s l y  complicated by two c h a r a c t e r i s t i c s  o f  t he  computer model: 

1 )  It has many var iables,  poss ib l y  thousands. We want t o  t r e a t  

as many as we can, 

2) It can take as many as 8 o r  10 hours o f  computer t ime t o  

produce a LOCA'history. One i s  s t r o n g l y  mot ivated t o  make 

as few eva luat ions  o f  the  func t i on  as possib le.  
, . .  

The immediate problem i s  how t o  conduct meaningful LOCA inves t iga t i ons  

i n  l i g h t  o f  these c o n f l i c t i n g  requirements. 

The i n s t r u c t i o n s  I received concerning the  prepara t ion  o f  papers f o r  

these Problems Sessions contained the  i n j u n c t i o n  t o  devote as much t ime as 

poss ib le  t o  the  d e s c r i p t i o n  o f  the  problem. This I t h i n k  I have done. Now 

I w i l l  descr ibe some poss ib le  so lu t i ons  as I see them. Hopefu l ly  t h i s  w i l l  

p rov ide  a s t a r t i n g  p lace f o r  t he  d iscussion t h a t  w i l l  f o l l o w .  

, MONTE CARLO SOLUTION 

The conceptual ly  s imp les t  method i s  t h a t  o f  Monte Carlo. Using the  

d i s t r i b u t i o n s  determined f o r  t he  inputs,  one would sample them' and. evaluate 

t h e  f u n c t i o n  ( t h e  computer model). 

Repeated eva luat ions  could be u t i  1 i z e d  i n  s t a t i s t i c a l  analyses o f  

LOCA behavior. For example, one could study peak c l a d  temperature, which 

i s  l i m i t e d  t o  no greater  than 2200°F when analyzed i n  a conservat ive manner 

' . as s p e c i f i e d  by the  Code o f  Federal Regulations. One could assess the  , , 
conservat ism by f i n d i n g  an upper confidence l i m i t  f o r  some percent p o i n t  

and comparing t h a t  w i t h  2200°F o r  by f i nd ing  a lower confidence 1 i m i  t f o r  

,P(PCT 5 2200°F) and seeing how l a r g e  i t  i s .  

This would be a very s a t i s f y i n g  procedure except f o r  th ree t h i ngs :  

1 ) Where do t h e  i n p u t  d i s t r i b u t i o n s  come from and what 'happens 

i f  they are  wrong? One must consider the '  problem o f  sensi t i v f  ty 

t o  the  i n p u t  d i s t r i b u t i o n s .  

. 
. 2) . . Suppose. t h e r e a r e  regions where the  peak c l a d  temperature i s  ' 

unbounded. Such regions w i t h  very h igh  probabi 1 i ty  w i l l  , very 



l i k e l y  be found; regions w i t h  very  low p r o b a b i l i t y  can be ignored. 

What happens i n  between? 

3) A  f a i r l y  l a r g e  number o f  f u n c t i o n  eva lua t ions  must be made t o  

g e t  s a t i s f a c t o r y  r e s u l t s  and t h i s  may be too  expensive. Tmax 
- - 

max (TI , T2, . . . , Tn) i s  a  90% upper conf idence 1  i m i  t f o r  t he  

95 th  p e r c e n t i l e  f o r  n  = 45. A s i m i l a r  90% upper conf idence l i m i t  . 

f o r  t he  99Sh p e r c e n t i l e  requ i res  n  = 230, and i f  Tmax 5 2200, a  
1  I n  1  OOcl percent  lower conf idence 1  i m i t  f o r  P(PCT 5 2200°F) i s  (1 - a) . 

To make 0 . 1 ' ' ~  equal t o  0.99 requ i res  n  = 230. Th is  i s  c l e a r l y  

u n s a t i s f a c t o r y  f o r  10 hours/evaluat ion.  

My conclus ion i s ,  there fore ,  t h a t  a  Monte Car lo s o l u t i o n  would be n ice--but .  

RESPONSE SURFACE ANALYSIS 

I Another way o f  t r e a t i n g  the  problem i s  t o  use the  ideas o f  response 

sur face ana lys is .  Here the  goal i s  t o  f i t  the  peak c l a d  temperature sur face 

. by func t ion  eva lua t ions  a t  a  sequence o f  c a r e f u l l y  chosen po in ts ,  probably 

a  sequence o f  f r a c t i o n a l  f a c t o r i a l s .  Once a  f i t  i s  obta ined i t  can be 

exhaust ive ly  s tud ied  by Monte Car lo  o r  by numerical i n t e g r a t i o n ,  s ince  i t s  

running t ime w i l l  be seconds i ns tead  o f  hours. The d i f f i c u l t y  w i t h  t h i s  

method, obviously,  i s  g e t t i n g  a  good f i t  along w i t h  some assurance t h a t  one 

has a  good fit. 

Obta in ing  a  good. f i t  i s ,  f o r  me a t  l e a s t ,  t o o  much a  quest ion .of 

a r t i s t r y  and n o t  enough o f  science. Our modw opaandi on some sample 

problems has been t o  cont inue evo l v ing  a  model u n t i l  new eva lua t ions  agree 

s u f f i c i e n t l y  w e l l  w i t h  model p r e d i c t i o n s  t o  warrant  stopping. I f  they don ' t ,  

a  new regress ion  i s  done w i t h  a l l  runs, o l d  and new,' t o  ,get a  new model, 

and the  e v o l u t i o n  cont inues. 

Another d i f f i c u l t y  i s  t h a t  i s  n o t  poss ib le  t o  make p rec i se  p r o b a b i l i t y  

statements about how good t h e  f i t  i s .  Since any q u a n t i f i c a t i o n  o f  the  degree 

o f  conservat ism should o n l y  r e f e r  t o  t he  f i t t e d  sur face a c t u a l l y  obtained, 
A 

c a l l  i t : .T (X )  and n o t  t o  any ensemble o f  poss ib le  surfaces, one i s  l e f t  w i t h  
A 

a p rec i se  est imate o f  P[T(X) 5 2200°F) which i s  obta ined by exhaust ive 

sampl i n g  o f  a  sur face whose degree o f  f i t  i s  n o t  p r e c i s e l y  known. 



These two methods, Monte Car lo  and sur face f i t t i n g ,  are, t o  my mind, 

t h e  p r i n c i p a l  contenders f o r  a t t a c k i n g  the  problem and they  bo th  have t h e i r  

advantages and disadvantages . Negative f e e l  i ngs about the  sur face f i t t i n g  
x 

method can be p a r t l y  overcome by a  h i s t o r y  o f  good performance on p r a c t i c e  

problems. L e t  me now descr ibe b r i e f l y  what happened on two p r a c t i c e  problems. 

PRACTICE PROBLEM 1. 

The f i r s t  f u n c t i o n  on which we compared the  Monte Car lo  and response 

s i r f a c e  techniques i s  g iven below as equat ion'  (1).  I t  should be emphasized 

t h a t  w h l l e  Easter1 i n s  and 1 were exper iment inq .w i th  i t  we d i d  n o t  know what 

i t  was. 

The-mean, standard dev ia t i on ,  maximum and minimum o f  each o f  t he  s i x  

var iab les ,  A, B, ..., P, were spec i f i ed .  A t o t a l  o f . 4 5  eva lua t ions  were 

made, t h ree  o f  which h i t  t he  s top  a t  +3500. The f i n a l  f i t  was 

The degree o f  f i t  can be seen f rom Table 1  which g ives some percent  p o i n t s  
A 

o f  bo th  t h e  t r u e  func t ion ,  Y. and the  fit, Y. as est imated A b,v 100,1)00 Monte 
Car lo  samples. Furthermore, 95% o f , t h e  er rors ,  Y - Y, wzre i n  t he  range 

A 

TABLE 1. Percent Po in ts  o f  t h e  D i s t r i b u t i o n s  o f  Y and Y 
as Est imated by 100,000 Samples i n  Problem '1. 

Percent 
10 
20 
30 
4  0  
50 
60 
70 
80 
90 
95 

D i f f e rence  - . 

-1 1  
- 7 
- 5 
-2 
8 

- 3  
-3 
- 2  
4  

14 



. . 
-, . . . . . 

F &  the MOnte Carl o comparison' he ran 10,00d runs of 45 each to  obtain 

'distribiitions for  the percent poi'ntst ' For example, the median 'of 10,000 
. . 

95% points. of a sample o f 4 5  was 825 and the f i r s t  and third quart i les  

were 500 and 1355, respectively. Furthermore, the 90% upper confidence 

l imit  fo r  the 95 percent point exceeded 3000 more than half the time. 

I t  seems t o  me tha t  the response surface method did a bet ter  job on 

t h i s  problem than Monte Carlo. I t  found the pole a t  C = 15, which was in 

a high probability region, and a1 though i t  missed the in f in i t e  ridge a t  

E - B = . l o ,  whfch was i n  a low probability region, the errors  are  suitably 

small. The Monte Carlo method, on the other hand, has a great deal of 

variabil i ty. 

PRACTICE PRQBLEM 2 

The second problem we used for  comparing the response surface and 

Monte Carlo methods was a nineteen variable .code designed by Warren Lyon 

(Nuclear Regulatory Commission) to  produce representative LOCA temperature 

his tor ies  quickly. For th i s  problem the dependent variable was peak clad 

temperature and the f i t t i n g  process stopped a f t e r  165 runs of which 28 were 

unbounded. 

The degree of f i t  attained i n  this problem can be seen from Table 2 

which gives some percent points of the t rue and f i t t e d  responses as estimated 

by 7000 and 70,000 runs respectively. Furthermore, very nearly 90% of the 
A 

absolute differences, I Y  - Y I ,  a re  less  than 300°F, and 95% are l e s s  than 465°F. 

T h i s  time, though, from the 7000 runs on the t rue response we could 

orily simulate 42 sets o f  165 for the Monte Carlo comparison. In  thest! ' 

sampl'es, the f i r s t ,  'second and third quart i les  of the dis t r ibut ion of the 

95% point estimator were 1790, 1810 and 1840, respectively. Similarly, 

the f i r s t ,  second and third quart i les  of the dis t r ibut ion of the 99% point 

estimator were 1910, and -, respectively. T h u s ,  i t  seems tha t ,  on th f s  
A 

problem, Y overestimates and Monte Carlo underestimates. 



TABLE 2. Perceng Points of the  Distr ibutions of , ,  

Y and Y as  Estimated by 7000 and 70,000 
samples, respectively,  i n  Problem 2. 

-* 
A 

Percent - Y Y - Difference 
10 866 866 0 ... 
20 ' . 9 39 966 -27 
30 1000 1047 -47 
40 1065 1125 -60 
50 1141 1205 -64 
6 0 1238 1290 -52 
.70 . 1344 1390 -46 
80 1495 1524 -29 ' 

. . 

. . 90 9710 1748 - 30 
9 5 1846 1984 -1 38 
98 1938 m 

99 m m 

SUMMARY 

Let me now summarize what I have presented. F i r s t ,  what i s  my problem? 

My problem i s  how t o  f ind the  d i s t r ibu t ion  of a random variable t h a t  i s  a 

function of many other  random variables,  say 20 t o  50, when the  underlying 

d i s t r ibu t ions  a r e  known w i t h  varying degrees of precision and when each 

functional evaluation i s  expensive. 

Second, what a r e  some possible methods of at tack? There a re  several 

and 1 discussed two i n  pa r t i cu la r .  These were simulation and surface f i t t i , ng .  
. . 

1 hope you can suggest others we haven"t thought o f .  

Third, how do simulation and surface f i t t i n g  perform on sample problems? 

I t  i s ,  our concl'usion t ha t  surface f i t t i n g  i s  a promising method of a t tack.  

I t  worked well on two sample problems and has t h e  d i s t i n c t  advantage of 

Lei  ng adaptive. 

Final ly ,  f o r  the  benefi t  of those who want more s p e c i f i c  prnblems l e t  

me o f f e r  a few. 

~ a \ n  the  basic  problem be approached i n  such a way t h a t  probabil 1 t y  

statements can be made about the  degree of f i t  i n  surface f i t t i n g ?  Y 

Perhaps a hybrid of simulation and surface f i t t i n y  i s  dppropriate. 

I t  i s  time t o  make the  stopping r u l e  more precise.  What a r e  good +. 

stopping ru les  f o r  surface ' f i t t i ng?  



l What i s  the  e f f ec t  of sequential fracti'onal fac to r ia l  experimentation 
when the  f ac to r  l eve l s  a r e  adaptive? 

F o r  validation purposes it would be nice t o  know the d i s t r ibu t ion  of 
03 

2 / [x ( t )  - ~ ( t ) ]  d t  f o r  some sui tably  large  c l a s s  of s ta t ionary processes 

where EX(t) = ~ ( t ) ,  t ? 0. 

What a re  the  confidence 1 imits  f o r  ~ ( t )  f o r  t h i s  c lass  of nonstationary . 

processes? 
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INTRODUCTION 

The purpose of t h i s  presentation i s  t o  describe some s t a t i s t i c a l  

appl icat ions  areas  i n  our work re la ted to  the development and application 

of computer codes used by the  United Seates Nuclear. Reyul d lur-y' Cornmi ssS on 
(NRC), Division of Water Reactor Safety Research. These codes, which 

employ s t a t e  of the a r t  technfques I n  hydrodyna~rrics and thermodynamics, 

a r e  used t o  study potential  accidents and accident-related phenomena in  

nuclear reactors .  The mathematical models i n  these codes a r e  ra re ly  

perfect :  e i t h e r  they depend upon quan t i t i es  often imperfectly derived 

from experimental data o r  they employ approximations to  not-qui te-understood 

physics. Hence, the need f o r  c r i t i c a l  evaluations. 

Throughout t h i s  dicussion the term output o r  response variable r e f e r s  

t o  a quant i ty  calcula ted by the computer code. The term input or  input 

var iable  i s  used in a very general sense t o  r e f e r  t o  noncalculated data 

o r  parameters. A1 so, the  terms model and code a r e  used interchangeably. 

A code, o r  model, i s  t r ea ted  as a rea l iza t ion  of a conceptual mode I .  

We will  look a t  some stages i n  modeling and how s t a t i s t i c s  might 

en t e r  i n ,  a c l a s s i f i c a t i on  of applicable s t a t i s t i c a l  techniques, and ex- 
amples of " s ens i t i v i t y "  analysis .  

. .. - 
STAGES IN MODELING 

To t r y  .to p u l  whdt rollows i n to  p e ~ s p e c t i v e ,  T would l i k e  t o  consider 

some s tages  of a model's development: systems analysis ,  system synthesis ,  

model ver i f i ca t ion ,  model val idat ion,  model analysis ,  and model application 

(Mi hram, 1972). The f i r s t  two, systems analysis  and system synthesis ,  

cover the  i n i t i a l  study of the problem and the  formulation of a s t ruc ture ,  
o r  computer code, which i s  assumed t o  adequately mimic r e a l i t y .  The t h i rd  

s tage,  model ver i f i ca t ion ,  i s  the  determination of the  correctness of the  



model as compared to  i . ts  intended structure.  Model validation i s  a 
comparison of the output of the model w i t h  data. Model analysis consists 

of "shakedown" t e s t ing  where the outputs, or responses, of the model are  
contrasted under various i n p u t  conditions. 

Model development i s  dynamic, passing .back and forth through the 
stages and incorporating feedback u n t i  1 , f ina l ly ,  ' the model i s  accepted 
and i s  ready for  application. 

STATISTICS AND STAGES OF MODELING 

MODEL VALIDATION 

Where can, or  should, s t a t i s t i c a l  and probabilist ic techniques come 
into play? I think the most obvious place i s  in model validation, the 
comparison of model response with experimental data. This application 
looks very much l ike  the usual goodness of f i t  t e s t s  i n  regression problems. 
However, i n  depth considerations should be given to  "error terms". 

W i t h  regard to  the experimental data, i t  i s  a good assumption tha t  
some er ror  i s  involved. There a re  several possible sources of error .  
One occurs i n  the detection phase. As an example, suppose tha t  an experi- 
ment i s  s e t  up to  determine an a i r  flow i n  a pipe. In many cases the mere 
insertion of a flow meter into the pipe i s  enough t o  change the flow pattern 
so tha t  valid determinations cannot be made. In th i s  particular case, 

laser  instrumentation seems to  eliminate the problem, b u t  the point remains,. 
A second and obvious source of e r ror  i s  i n  the measurement of the response. 
Calibration er ror  i s  an example. Finally, the process i t s e l f  may be intrin- 

s i ca l ly  stochastic: perfectly replicated experiments may produce different  . 

resu l t s  because of the process i t s e l f .  

Now l e t  us look a t  sources of error  related to  both the experiment and 
the computer code. In i t i a l  conditions must be physically s e t  up and/or 

determined before the'experiment i s  carried out. The numerical values of 
these i n i t i a l  conditions are  input to  the code. Errors here mean tha t  the 

code i s  not model i n g  the same problem tha t  the experimenter i s  performing. 
A judgment of the val idi ty  of a code i s  d i f f i c u l t  t o  make under these 
ci  rcun~stances . 



/ 

L a s t l y ,  w i t h  regard t o  the  computer code, t h e  response i s  ca l cu la ted  

n o t  as t h e  eva luat ion  o f  a  regression func t i on  but,  usua l ly ,  as a  se r ies  

of a1 gor i thmic  E r r o r  o r  v a r i a t i o n  i n  the  ca l cu la ted  response 

can be a t t r i b u t e d  t o  th ree  causes. F i r s t ,  t h e  a lgor i thm i t s e l f  might  n o t  

be v a l i d  i -n  the  sense t h a t  i t  w i l l  n o t  produce c o r r e c t  answers even w i t h  

accurate i n p u t  data. That i s  t o  say t h a t  t he  computational s t r u c t u r e  

might  be wrong. On t h i s  po in t ,  one would probably want t o  say a  model i s  

i nval  i d  i f  the  discrepancy between observed and ca lcu la ted  responses i s  

due t o  t h e  computational s t r u c t u r e  o f  the code. Secondly, the  values 

chosen f o r  nonphysical inputs,  l i k e  convergence c r i t e r i a ,  t ime steps, etc.,  

might  l e a d  t o  i n c o r r e c t  answer;. I n  t h i s  case one could agsume t h a t  bes t  

values a re  used f o r  nonphysical inputs .  Th i rd l y ,  the  values used f o r  

phys ica l  and pseudophysical i npu ts  could be wrong. Here a  new quest ion 

a r i ses :  I s  a  model " v a l i d "  i f  there  e x i s t s  a  s e t  o f  values ( r e a l i s t i c  o r  
i 

n o t )  o f  t h e  phys ica l  i npu ts  such t h a t  the  ca l cu la ted  response agrees w i t h  

the  observed response? 

It i s  our op in ion  t h a t  a  t e s t  o f  model v a l i d i t y  should y i e l d  more than 

a  yes o r  no answer. It should a l s o  attempt t o  p i n p o i n t  t he  cause of i n v a l i d i t y  

i f  t h e  model f a i l s  t he  t e s t .  

MODEL APPLICATION 

S t a t i s t i c a l  and p r o b a b i l i s t i c  techniques can be used i n  t h e  a p p l i c a t i o n  

o f  t h e  v e r i  f i e d / v a l  i d a t e d  model. .Steck (1 975) covers )exampl.es i n  t h i s  area. 

MODEL VERIFICATION 

The area where we are  concentrat ing our  e f f o r t s  extends i n t o  bo th  t h e  

v e r i f i c a t i o n  stage and the  ana lys is  stage. The problem i s  t o  l o c a t e  t roub les  

i n  t h e  code and i s o l a t e  the  causes. I n  general, se r ies  o f  d jagnost ic  o r  

s t r u c t u r a l  analyses (computer runs)  a re  made w i t h  selected values o f  t he  

inputs .  I f  e r r o r s  o r  incons is tenc ies  are encountered, the  physic1 s t  examines 

t h e  r e s u l t s  w i t K  the  hope o f  i d e n t i f y i n g  t h e  cause. We are  l o o k i n g ' a t  t h i s  

problem from the  v iewpoint  o f  s e n s i t i v i t y  analys is .  The o b j e c t i v e  i s  t o  a i d  

t h e  p h y s i c i s t  i n  h i s  s'tudy by p o i n t i n g  ,out  " important"  inputs .  As the  number 

o f  i n p u t s  increases (it can e a s i l y  pass 20) we f e e l  t h a t  s t a t i s t i c a l  techniques 

should take on an important  r o l e .  A c l a r i f i c a t i o n  o f  t h e  d e f i n i ' t i o n  of 

s e n s i t i v i t y  and examples o f  some of our  work are given l a t e r .  



SOME CONSIDERATIONS , 

4 .  

Before the  s t a t i s t i c i a n  s tud ies  any o f  these problem areas, I t h i n k  

he should consider  t he  f o l l o w i n g  f o u r  po in ts .  F i r s t  o f  a l l ,  t he  response 

v a r i a b l e  may be a  (parametr ic)  f u n c t i o n  o f  t ime. I f  t h i s  i s  the  case, 

statements r e l a t e d  t o  v e r i f i c a t i o n ,  v a l i d a t i o n ,  ana lys i s  and a p p l i c a t i o n  

w i l l  have t o  be made both a t  s p e c i f i c  t ime p o i n t s  and over t he  e n t i r e  t ime 

h i s t o r y  i n  general.  I n  our  work .we have found codes t h a t  work very  w e l l  

i n  some t ime i n t e r v a l s  and n o t  so w e l l  i n  others.  Second,ly, t he  response 

i s  l i k e l y  t o  be a  very  complicated non l inear  f u n c t i o n  o f  the  i npu ts :  ' 

experimental data i s  used t o  est imate parameters ( i npu ts )  i n  f i t t e d  func t i ona l  

r e l a t i o n s h i p s  which subsequently appear i n  simultaneous p a r t i a l  d i f f e r e n t i a l  

equat ions which are  solved numerical l y  t o  o b t a i n  the  response. T h i r d l y ,  

when the  code i s  app l i ed  t o  a  " r e a l "  problem, t h e  nuc lear  engineers may n o t  

know t h e  prec tse  values o f  i npu ts  t o  use. I n s t e a d ' t h e y  can s p e c i f y  a prob- 

a b i l i t y  d i s t r i b u t i o n  'on the  i n p u t s  which w t l l  change as b e t t e r  i n fo rma t ion  

i s  obtained. The f i n a l  p o i n t  i s  t h a t  the  codes may be very c o s t l y  t o  run. 

A  STATISTICAL MODEL AND OBJECTIVES 

A t  t h i s  t ime I want t o  a b s t r a c t  the  problem s l i g h t l y  and rephrase 

the  statements o f  t he  areas o f  i n t e r e s t .  L e t  Y ( t )  denote the  response 

(ou tput )  v a r i a b l e  as a  f u n c t i o n  o f  t ime, w i t h  Y ( t )  = h (x ; t )  t h e  computed 

values. L e t  X denote t h e  vec tor  o f  i npu ts  t o  the  code, and assume t h a t  they  

have a  j o i n t  p r o b a b i l i t y  dens i t y  f u n c t i o n  f ( x )  f o r  x  E S, t he  s e t  o f  a l lowed 

values. The p o i n t s  the  s t a t i s t i c i a n  might  want t o  address a re  as fo l l ows :  

' 

(1 ) How. we1 1  do t h e  ca l cu la ted .  values Y agree w i t h  experimental data? 

(2) What i s  t he  p r o b a b i l i l i t y  d i s t r i b u t i o n  o f  Y? .What i s  a (95%) 

conf idence i n t e r v a l  on the  mean o f  Y? What i s  an upper, one-sided 

(5%) to1  erance i n t e r v a l  on the  d i s t r i b u t i o n ?  

(3)  What i s  t h e  s e n s i t i v i t y  o f  Y t o  X? That i s ,  how i s  a  change i n  
' 

t he  value o f  X r e f l e c t e d  i n  the  value o f  Y and i n  t he  ( c o n d i t i o n a l )  

. . 
p r o b a b i l i t y  d i s t r i b u t i o n  o f  Y ?  . . 

The f i r s t  o f  these th ree  p o i n t s  has been discussed e a r l i e r  and, a l though 

I t h i n k  i t  i s  . i n t e r e s t i n g  and. important,  I w i l l  n o t  address i t  again d i r e c t l y ,  

Cont inuing then, one might  ask i f  i t  i s  possib le,  o r  p r a c t i c a l ,  t o  attempt 



t o  answer' bo th  (2) and (3) simultaneously, i n  t he  sense t h a t  t he  same s e t  

o f  computer runs can be used t o  obta.fn i n fo rma t ion  r e l e v a n t  t o  both po in t s .  

Wi th  thi:s questi'on i'n mind., l e t  us b r i e f l y  l ook  a t  t h ree  classes o f  t ech -  

niques t h a t  might  be employed. 

CLASSES OF TECHNIQUES 

PROPAGATION 

I n  propagat ion technl'ques the  moments o f  t he  d i s t r i b u t i o n  o f  t he  

i n p u t s  a r e  assumed given so t h a t  t he  moments o f  t h e  d i s t r i b u t i o n  o f  t he  

response can be obtained. (For example, i n  i t s  s imp les t  form l i n e a r  propa- 

g a t i o n  o f  e r r o r  assumes t h a t  the  moments-of response can be adequately 
approximated b y  a f i r s t  o rder  Tay lor  se r i es  expansion about themean o f  

t he  i nputs . ) . Der i va t i ves  a re  m0s.t o f  t en  o b t a i  ned numeri ca i  1 y . =I Re esrlmaeed 

moments o f  the response can be used t o  f i t  a d i s t r i b u t i o n ,  'and the d e r i v a t l v e s  

can be used as an indl 'cat ion o f  sensl ' t iv i  ty. An advantage o f  t he  procedure 

i s  t h a t  i t  requ i res  assumptions on o n l y  the  moments o f  t he  d i s t r i b u t i o n  o f  

t he  i npu ts .  The drawbacks occur i n  t he  complete process o f  approximating 

t h e  d i s t r i b u t i o n  o f  t he  response va r iab le .  

ANALYTICAL APPROXIMATION 

I n  a n a l y t i c a l  approximation techniques, a s u f f i c i e n t  number o f  computer 

runs i s  made t o  enable a (non l inear )  response sur face t o  be f i t t e d  t o  the  

ou tput .  Then, a l l  analyses are  performed on the  f i t t e d  surface. The p r i n -  

c i p a l  advantage o f  t h i s  procedure i s  t h a t  i t  a l lows f o r  extensive i nves t i ga -  

t i o n s  because o f  ease o f  eva lua t i on  o f  t h e  - new response va r iab le .   his i s  

' p a r t i c u l a r l y  impor tan t  when one wants t o  s tudy the  e f f e c t s  of changes i n  

d i s t r i b u t i o n a l  assumptions on the  inputs .  ' Drawbacks a r i s e  when good f i t s  
. . 

cannot be obtained. 

SIMULATION 

I n  s imu la t i on  techniques the  (transformed) p r o b a b i l i t y  d i s t r i b u t i o n  

o f  t h e  i n p u t s  i s  sampled t o  s e l e c t  values t o  use i n  computer .runs. The 

r e s u l t i n g  values o f  t h e  response v a r i a b l e  can be used t o  s tudy the  p r o b a b i l i t y  

quest ions us ing  standard s t a t i s t i ' c a l  techniques. I n  add i t i on ,  q u a n t i t i e s  

r e l a t e d  t o  sensi t i ' v i t y  can be ca lcu la ted .  (Examples a re  g iven-  l a t e r ) .  An 



advantage of simulation techniques i.s that  no specif ic  functional relation- 
s h i p  re lat ing i'nputs and outputs need be assumed. A drawback i s  the pos- 

k l ' b l ' l ~ t ~  tha t  an excessive number of runs may be required to  obtain a 

specified degree of precision. 

STRATIFIED SAMPLING 

I am not discounting propagation techniques b u t ,  f o r  what foll,ows, I 
would l ike  to  focus on analytical approximation and simulatl'on. In both 

techniques one of the f i r s t  questions one m i g h t  ask i s  how t o  choose the 
values of the inputs for  the computer runs. In analytical approximation 
i t  i s  necessary to  get a good picture of the response variable over the 
ranges of the inputs. Hence one m i g h t  se lec t  a number of points w i t h i n  

the range of each input via a classical experimental design such as a 
fractional fac tor ia l .  In simulation techniques one should be aware tha t  
the range of each i n p u t  m i g h t  not be covered suff ic ient ly  to  allow sensi- 
t i v i t y  analysis. 

In our work i n  simulation techniques, we are  using s t r a t i f i e d  sampling. 
The sample space S (the s e t  of allowed values fo r  the inputs) i s  partitioned 
into d is jo in t  subsets which are then sampled according to  some well defined 

rule. The reaso'ns we are using th i s  procedure are twofold. F i r s t ,  i f  the 
subsets a re  appropriately chosen, an adequate picture of the response can 
be obtained over the en t i re  range of the input'space w i t h  no regions "missed." 
Secondly, questions relat ing to  the probability dis t r ibut ion of the response 
variable can also be answered. 

Tn i ntrnd~lce the type of sampl ing schemes we are ,  using, two exampl es 
will be given. As a f i r s t  example, consider a case when the response Y(t) 
i s  treated as a function of a single input X, w i t h  associated density function 
f ( x )  fo r  xL < x c xu. Assume tha t  n simulation runs of the computer code 

are  to  be made. Define constants 

such tha t  



The in te rva l s  (ai-, , a t )  a r e  cal led equal probabil i ty in te rva l s  f o r  X. The . 

n values Yf( t )  of the response variable a r e  obtained by sampling once from 
each of t he  l'ntervals a i )  Note t h a t  Yi is  a "random" ' Y  f o r  X on 
in terval  i. 

  or the  second example consider a case where the response Y(t) i s  a 
function of .- two inputs X I ,  XZ .  Let the  range of each X i  be divided in to  
a lower in terval  L i  and an upper in terval  Hi where 

The four "random" . . values of Y a re  obtained by sampling (XI, X p )  from the  

four subse t s ,  [L1, L21 .  EL1 , Hz] ,  [HI  , , L 2 1  , [HI  . H21. 

A generalization i s  c lea r :  Take a f ract ional  f ac to r i a l  design and 
instead of using fixed values fo r  the  f ac to r  l eve l s ,  use in te rva l s  f o r  . 
sampling purposes. Following t h i s  procedure f o r  K observations y ie lds  
K values of the  response a t  K d i s t i n c t  values of each i n p u t .  In addi t ion,  

although the  design i s  not completely symmetric i n  the i n p u t  space, i t  
should s t i l l  allow f o r  reasonab1.y good f i t t i n g  of surfaces f o r  analyt ical  
approximation techniques. 

. I conclude t h i s  section on s t r a t i f i e d  sampling w i t h  a few questions.. 

("Level" re fe rs  t o  an in terval  which i s  sampled each time a value comes 
from i t . )  Since we a r e  f r e e  t o  choose the  number of levels  f o r  each input 
var iable ,  how should t h i s  be done? What spec i f ic  f ract ional  f ac to r i a l s  
should be used? Given the  to ta l  number of simulation runs t ha t  a r e  .a1 lowed, 

a r e  there  ~ , ~ t i m a l  designs? (Some work has been done in t h i s  area by Conover, 
1975: ) what about "random" f ac to r i a l  designs (see  Zacks,  1963, 1964, and 
Ehrenfel d and Zacks, 1967)? Can anything .be gained by using other, than 
equal probabi 1 i t y  in te rva l s  , as  in importance sampl ing? 

EXAMPLES OF SENSITIVITY ANALYSIS 

A t  h i s  point I waul d 1 i ke to  show some of the r e su l t s  from the  appl ica- 
t ion  of s t a t i s t i c a l  techniques t o  a computer code developed a t  the  Los Alamos 

Sc i en t i f i c  Laboratory by Hirt (1975) i n  the  Hydrodynamics Group. 



P 

i.. 

The problem i s  one o f  sens i t i v l ' t y  ana lys is  with t h e  o b j e c t i v e  being.  

t o  see i f  s ta t i s t l ' ca l  tech.ni'ques can be used t o  a i d  t h e  p h y s i c i s t  i n  h i s  

i nves t i ga t tons  and eva luat ions  o f  t he  code. We c a r r i e d  o u t  analyses o f  

several response va r iab les  recorded a t  0.1 m i l  1 isecond (ms) i n t e r v a l  s , 

from 0 ms t o  500 ms. We had f o u r  i n p u t  , va r iab les  and used a complete 
4 2 f a c t o r i a l  design. The low and h igh  l e v e l s  o f  each i n p u t  were sampled . 

us ing  a un i fo rm d i s t r i b u t i o n .  The s t a t i s t i c s  computed were t h e  mean and 

(ord inary)  standard dev ia t i on  f o r  t h e  response var iables,  and, t o  measure 

s e n s i t i v i t y ,  p a r t i a l  rank c o r r e l a t i o n  c o e f f i c i e n t s .  [A t  each t ime p o i n t  

t h e  16 values o f  t h e  response var iab les  and the  16 values o f  each i n p u t  

v a r i a b l e  were transformed t o  1, 2, 3, . . . , 16.) Using o n l y  these s t a t i s t i c s  

we were ab le  t o  i d e n t i f y  the  times a t  which the  code was "ac t i ve "  and which 

of t h e  i npu ts  predominate as a f u n c t i c n  o f  t ime. 

ADDITIONAL RESEARCH AREAS 

I n  c l o s i n g  I would l i k e  t o  suggest a few more areas where research i s  . I . ", ,A 

needed: (1 )  General measures o f  s e n s i t i v i t y  and ways o f  comparing them; . ;.>: .,. 

(2) sequent ia l  sampl i n g  p lans .  which " learn"  from previous s imu la t i on  runs; . . fa-% &- 

(3). Methods f o r  i d e n t i f y i n g  important  segments o f  i n p u t  ranges; (4) App l i -  

c a t i o n  o f  mu1 t i v a r i a t e  ana lys is  techniques. 
$ . '3 
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DISCUSSION: LOSS OF COOLANT 

Conover: I have a question f o r  George Steck. Your estimated funct ion ? i s  
remarkably s i m i l a r  t o  the unknown func t ion  Y.. This ind icates  t o  me e i t h e r  
great  i n s i g h t  o r  tremendous luck. Could you describe the process you used 
t o  a r r i v e  a t  t h i s  func t ion  Q?. A l s o , - c o u l d  t h i s  method be converted i n t o  an 
a lgor i thm t h a t  can be pu t  on the computer? 

Steck: We ran 45 observations and' three o f  them were a t  3,500. That made 
us t h i nk  r i g h t  away t h a t  since the la rges t  one was 3,500 and we got  three o f  
those, we would p i ck  3,500 as the l a rges t  and t r y  t o  f i t  the res t .  So we 
threw away those and d i d  our regression analysis on the remaining 42. 

Now as f o r  as the C-15 goes, i n  the beginning we had a ser ies  o f  l e ve l s  o f  
the f ac to r  C t h a t  f ~ r t u n a t e l y ~ s t r a d d l e d  15. I n  the second f r ac t i ona l  f a c t o r i a l  
we narrowed those ranges and s t i l l  s t raddled 15. When we p l o t t e d  the func- 
t i o n a l  values as a func t ion  o f  C alone, i t  looked l i k e  i t  might blow up 
somewhere around 15. I don ' t  t h i nk  we bothered t o  look a t  14.9 o r  15.1 t o  
v e r i f y  that ;  but  we came i n  a l i t t l e  c loser  and i t  s t i l l  looked l i k e  15, so 
we j u s t  pu t  down the C-15 i n  our regression model. It f i t  we l l  enough so we 
l e f t  i t. 

We found the 3,500 j u s t  because t h a t ' s  the . largest  one t h a t  we observed; we 
found the C-15 by p l o t t i n g  techniques. As f a r  as genera l iz ing it, we d i d  
have an i n t e r a c t i v e  computer graphics program w r i t t e n  so t h a t  we could p l o t  
the funct iona l  values o r  the res idua ls  against any k ind  o f  FORTRAN stateable 
funct ion o f  the input ,  i nc lud ing  the rec iproca l  o f  C-15 i f  we desired. But 
i t  never seemed t o  be qu i t e  as useful  i n  the second problem as i t  was i n  the 
f i r s t  one because we d i d n ' t  have a pole i n  the second problem. 

Conover: How d i d  you p i ck  your d i f f e r e n t  values f o r  your parameters, a, b, 
c, d? 

Steck: A t  t he  beginning, we had an inpu t  range fo r  each one. Assuming a 
uniform d i s t r i b u t i o n  over t h a t  range, we picked a 5% and a 95% po in t  as 
l a t t i c e  po in ts  i n  the f r ac t i ona l  f ac to r i a l .  We do t h a t  f o r  each o f  the s i x  
var iables.  Then the main e f f e c t  regression shows t h a t  ce r t a i n  ones are more 
important than others. I n  a second f a c t o r i a l  we brought the l i m l t s  i n  by a 
f ac to r  o f  314 o r  112 around the nominal value. Why p i ck  314 o r  112 o r  what- 
ever i t  was? I am n o t  sure; i t  j u s t  seemed a reasonable t h i ng  t o  t r y .  

What i s  the e f f e c t  on the regression procedure of the adaptive f ac to r  l e ve l s  
t h a t  we employed? We looked a t  the main e f fec ts ,  which suggested what the 
more important parameters were. Then we would t ray  t o  complete a l a rge r  
f r ac t i on  on those important ones. Perhaps some in te rac t ions  were a l  lased or 
looked 1 i ke t h ~ y  might be important. So, we picked a few more po in ts  t o  t r y  
t o  get  r i d  o f  the a l i as ing ,  o r  confounding, o r  whatever i t  was t h a t  we were 
being plagued wi th .  We never took very many observations a t  a time. It was 
a sequential  procedure, maybe a couple more here and a couple more there. 
Then we completed t h i s  f r a c t i o n  and completed t h a t  one u n t i l  Warren Lyon 
came t o  v i s i t  us and we stopped. 



Lyon: Steck d i d n ' t  b r i n g  o u t  one p o r t i o n  o f  h i s  sur face f i t t i n g s  t h a t  I 
t h i n k  should be mentioned. I took a  look a t  the behavior o f  h i s  f i t  t o  the  
ac tua l  f u n c t i o n  i n  the  v i c i n i t y  of t h a t  pole. I threw ou t  the  3,500 and 
j u s t  looked a t  t h e  o v e r a l l  behavior. The f i t  was phenomenal ! Even c lose t o  -c 

15 where the  f u n c t i o n  was i n  the  m i l  1  i o n  range the  f i t  on ly  missed by something 
l i k e  0.7%. I was j u s t  astonished. What h a s n ' t  been mentioned i s  there  was 
a  second po le  i n  t h e  f u n c t i o n  t h a t  was missed. We took a  qu ick  look there  • 

as w e l l  and t h e  behavior was q u i t e  d i f f e r e n t .  I t ' s  easy t o  understand how 
i t  was missed. I n  the  case of t he  po le  w i t h  the  va r iab le  a t  15, t he  func t ion  
behaved i n  a  r a t h e r  n i c e  asymptot ic manner and took off  smoothly. I n  the  
case o f  t h e  o ther  pole, where one o f  t he  o ther  var iab les ,  I bel ieve,  was 
equal t o  ten, t he re  was an extremely sharp spike. The dependent v a r i a b l e  
was almost i d e n t i c a l  on both sides o f  t he  spike, so i t  was easy t o  see how 
they missed tha t .  The o v e r a l l  imp l i ca t i ons  probably were n e g l i g i b l e ,  b u t  I 
thought the re  was an extreme1 s a t i s f a c t o r y  f i t  on the  f i r s t  t r y .  On the  
second func t ion ,  which more c  f ose ly  approximated the  behavior we w i l l  be 
i n v e s t i g a t i n g ,  again t h e  f i t  seems t o  be very promising w i t h  an e r r o r  on the  
order  o f  a  few hundred degrees. We are  going t o  have t o  do much be t te r ,  b u t  
I t h i n k  o v e r a l l  t he  approach docs look  q u i t e  good. 

\ 

Conover: I would 1  i k e  t o  comment on Mike McKay's presentat ion.  I t h i n k  
Mike minimized h i s  use o f  t h e  p a r t i a l  rank c o r r e l a t i o n  c o e f f i c i e n t .  He 
d i d n ' t  exp la in  i t  and I d o n ' t  t h i n k  i t s  we l l  understood s ince t h i s  i s  t he  
f i r s t  t ime I have seen anybody use it. He merely fo l lowed the  same procedure 
t h a t  one would f o l l o w  w i t h  r e g u l a r  p a r t i a l  c o r r e l a t i o n .  You've go t  the  
Pearson product-moment c o r r e l a t i o n  c o e f f i c i e n t .  You can form your matr ices 
of c o r r e l a t i o n  c o e f f i c i e n t s  and g e t  your  p a r t i a l  c o r r e l a t i o n  c o e f f i c i e n t s ,  
as expla ined i n  many textbooks. Rank c o r r e l a t i o n  f o l  lows the  same procedure. 
The reason he used rank c o r r e l a t i o n ,  I th ink ,  i s  because he wasn't  sure 
about some o f  t h e  d i s t r i b u t i o n a l  p roper t i es  o f  t he  i npu t .  He co r re la ted  
i n p u t s  w i t h  outputs us ing  rank c o r r e l a t i o n .  Some o f  the  i npu ts  may be 
c o r r e l a t e d  w i t h  o the r  inputs.  Consequently, he may p i c k  up an extraneous o r  
superf luous c o r r e l a t i o n  j u s t  because i t  i s  b u i l t - i n ;  i .e., where X 2  may 
n o t  be r e l a t e d  t o  t h e  output  a t  a l l  b u t  X 2  happened t o  be co r re la ted  w i t h  
XI. The rank c o r r e l a t i o n  c o e f f i c i e n t  then was p u t  i n t o  the  same formulas 
t h a t  you u s u a l l y  have f o r  p a r t i a l  c o r r e l a t i o n  t o  g e t  t h i s  p a r t i a l  rank 
c o r r e l a t i o n .  

One o f  t h e  s t r i k i n g  fea tures  I not i ced  i n  the  output  was t h a t  the  rank 
c o r r e l a t i o n  f o r  one p a r t i c u l a r  i n p u t  was r a t h e r  h igh  and then i t  would drop 
o f f .  Another rank c o r r e l a t i o n  was r a t h e r  low and i t  might go up t o  a  
c e r t a i n  po in t ,  which suggests t o  me a  procedure f o r  choosing your i npu ts  
going i n t o  the system. Steck used a  sequent ia l  method f o r  choosing inputs .  
I t h i n k  t h a t  i t  i s  probab'ly opt imal  t o  go w i t h  some k i n d  o f  a sequent ia l  
method; but ,  i f  you d o n ' t  have t h e  oppor tun i t y  t o  use a  sequent ia l  method o r  
i f  you a re  fo rced t o  r e l y  on i n t u i t i o n ,  which many o f  us are fo rced t o  do, 
i t  may n o t  be q u i t e  as sharp as George's. You may want t o  choose your 
i n p u t s  i n  such a  way t o  f o l l o w  some s o r t  o f  a  p a t t e r n  ahead of time. 

Consider a  one v a r i a b l e  s i t u a t i o n  where you have Y as a  f u n c t i o n  o f  X. I n  
.these computer codes, you can assume a  monotonic func t ion .  This s i m p l i f i e s  
th ings  considerably, p a r t i c u l a r l y  regarding the  d i v i s i o n  by zero s i t u a t i o n s  



t h a t  may a r i se .  Suppose you have a monotonic f u n c t i o n  and the  quest ion i s  
how b i g  should X be i n  order  t o  ge t  the  best  Y value est imate as a Y func t ion .  
The range f o r  t he  X values may be g iven as a p iece o f  in format ion  t h a t  you 
know. Rather than take a random sample of. X values, i t  seems t h a t  t o  ge t  
t he  best  i n fo rma t ion  regarding the  Y value, you'd want t o  make sure t h a t  you 
were t a k i n g  a value o f  X from each reg ion  as you go along. Then you can 
observe some Y values and ge t  a p r e t t y  good range on your func t ion .  I n  a 
one v a r i a b l e  s i t u a t i o n  i t  seems i n t u i t i v e  t h a t  you would want. t o  take a 
complete range o f  i n p u t  values t o  g e t  the  most in format ion  regarding your 
func t ion .  

Now when you have two var iables,  t he  quest ion comes up, "How can you do 
t h i s ? "  Well, i f  you have a second v a r i a b l e  invo lved here, you can f o l l o w  
t h e  same procedure. But how do you p a i r  X1 and X2 together? You have so 
many d i f f e r e n t  combinations and you d o n ' t  have t h a t  many runs ava i l ab le .  
This would suggest some k ind  o f  a random pa i r i ng ,  randomly p a i r i n g  one value 
o f  X1 w i t h  one value o f  X 2  and running them through. Repeat t h i s  so t h a t  
you end up w i t h  say t e n  pa i r s .  The r e s u l t  i s  you have sampled the  e n t i r e  
range f o r  XI and f o r  X2. I f  i t  turns  ou t  t h a t  X1  i s  a va r iab le  t h a t  i s  
important  (such as may show up i n  your correlogram), then you have sampled 
the  e n t i r e  range f o r  X1. La te r  on i f  X2 i s  the  important  var iable,  you've 
g o t  the  e n t i r e  range f o r  X2. I j u s t  throw t h i s  o u t  as a suggestion f o r  a 
method f o r  p i c k i n g  i n p u t  v a r i a b l e s ' t o  go i n t o  the  system. 

Friedman: Re la t i ve  t o  techniques o f  s t a t i s t i c a l  ana lys is  o f  t he  output  from 
l a r g e  computer codes, you e s s e n t i a l l y  have a problem o f  m u l t i v a r i a t e  i n t e r -  
po la t ion ;  namely, you e x t r a c t  a se r ies  of responses from your computer codes 
from var ious inputs.  These o f  course are  very expensive. What you would 
l i k e  t o  do once you have these responses i s  i n t e r p o l a t e  between them t o  
understand t h e  nature  o f  your  f u n c t i o n  over a f u l l  m u l t i v a r i a t e  space. 
These techniques a re  r e f e r r e d  t o  i n  the  engineering l i t e r a t u r e  as repro-  
modeling, main ly  pioneered by B i l l  M i s e l l .  He approaches t h i s  exact  problem, 
has 'an a lgo r i t hm f o r  doing continuous piece-wise 1 i nea r  approximation t o  
a r b i t r a r y  mu1 t i v a r i a t e  funct ions,  and has achieved dramatic successes. 

Beggs: The problem i s  how' t o  i n v e s t i g a t e  l oss  o f  coo lant  accidents. 
Coolant l o s s  causes a problem w i t h  temperature. We ought t o  address our-  
selves t o  f i n d  o u t  how h igh  the  temperature w i l l  go. Two problems.were 
presented: Mclcay deals w i t h  how t o  v e r i f y  the  model and s t i c k s  w i t h  the  
extremes. How w e l l  can you reproduce what happens i n  p rac t i ce?  McKay 
ta l ked  about s t r a t i f i e d  sampling and f a c t o r i a l  design app l ica t ions ,  using 
i n p u t  va r iab les  t o  t r y  t o  f i n d  o u t  how the  model i t s e l f  i s  v e r i f i e d .  You 
a re  concerned about how we l l  you can p r e d i c t  maximum temperature. The on ly  
way you can do t h a t  i s  t o  t r y  t o  search i n  the  X space t o  f i n d  those X 
values which w i l l  g i v e  you the  high-temperature readings. To do t h a t  e f f i c i e n t l y ,  
slnce we on ly  have so much data, you use a steepest ascent or znme k ind  o f  
op t im iza t i on  search r o u t i n e  t o  t r y  t o  f i n d  t h a t  reg ion  o f  X's t h a t  w i l l  g i v e  
you the h igh  temperatures. You can then look  a t  t he  t a i l  o f  the  temperature 

I d i s t r i b u t i o n .  

Easter1 ing :  I j u s t  want t o  emphasize what George (Steck) sa id  about changing 
l e v e l s  on our  f a c t o r i a l s .  I n  the  l i t e r a t u r e ,  we are  used t o  seeing sequent ia l  



f r a c t i o n a l  f a c t o r i a l s .  There are  c e r t a i n  ways i n  which you can b u i l d  them 
up, i.e., t o  f i n d  sequences which do th ings  i n  the  ways you want them to.  
But  i n  doing sequent ia l  f a c t o r i a l s ,  we have t o  take the  same leve ls .  So if 
we have two var iables,  each a t  two leve ls ,  t he  standard way t o  run  a sequential  
f a c t o r i a l  would be t o  run  the  two cbrners o f  a square and then f o l l o w  i t  
w i t h  t h e  o ther  two corners. We changed these leve ls .  The concept i s  t h a t  c 
we might  run  two corner  p o i n t s  and then come i n  and run two o the r  corners 
o f  an i n t e r i o r  square. Now the  quest ion o f  i n t e r e s t  i s  when i s  t h i s  a good 
t h i n g  t o  do and when i s  i t  a bad t h i n g  t o  do. For example, suppose the  
e f f e c t  o f  one var iab le ,  X2, i s  n o t  important.  With t h i s  design, i f  we 
change l e v e l s ,  we now have a design which can p i c k  up curvature w i t h  respect  
t o  XI, whereas, i f  we had run  the standard sequence we could n o t  p i c k  up 
curvature.  I t h i n k  t h i s  i s  an area f o r  research - t o  consider sequent ia l  
f a c t o r i a l s  w i t h  changing f a c t o r  l eve ls .  Under what cond i t ions  i s  t h i s  a 
good idea, and under what conditons i s  t h i s  a bad idea? 

Conover: There i s  one comment I have t o  make on comparison o f  t he  two 
methods. I n  one method, you look  a t  a s e t  o f  points,  see what values you 
g e t  f o r  your  func t ion ,  and then take another s e t  o f  po in ts  and so on. This 
i s  a super io r  method f o r  f i n d i n g  the best  f u n c t i o n  t o  f i t  the  po in ts .  I 
J U I I '  1 see how you can use i t  t o  make probabj 1 i t y  ststcmcnts concerning thc  
mean. To make some confidence i n t e r v a l  statements o r  o the r  p r o b a b i l i t y  
statements, you almost ,have t o  go t o  a preset  design where you have the  
design planned ahead and there  i s  some random sampling invo lved - sampling 
i n  such a way t h a t  every poss ib le  i n p u t  has some known p r o b a b i l i t y  o f  being 
se l  ected. 

Eas te r l i ng :  We a re  n o t  even t h i n k i n g  about the  p r o b a b i l i s t i c  p roper t i es  o f  
t he  output  o r  how t o  evaluate funct ions,  b u t  r a t h e r  how best  t o  explore the  
X space t o  f i n d  t h i s  approximate func t ion .  

Tukey: A n t i t h e t i c  sampling i s  a regression sampling game t h a t ' s  due t o  
John Hamrnersley. ,One approach might  be t o  break your i n t e r v a l  up i n t o  
sub in terva ls .  Take two w i t h i n  each o f  these sub in terva ls ,  one a t  random 
and the  o ther  synimetr lcal ly.  Thls i s  the  simple v e r s i o r ~  dnd we g e t  a 
c e r t a i n  amount o f  balance and a l so  randomness. 

L e t  me comment on a couple o f  minor p o i n t s  i n  the  two papers and then I 
w i l l  make a general comment. We w i l l  see how much ' f u r o r  we can s t i r  up. 
George Steck states,  "This t ime though from 7,000 runs on the  t r u e  response 
we could o n l y  s imula te  42 se ts  o f  165 f o r  Monte Carlo comparison . . ." One 
was r e a l l y  i n t e r e s t e d  i n  average values here. He t a l k s  about q u a r t i l e s  o f  
t h e  95% p o i n t  estimated, b u t  r e a l l y  those are  average values too. I j u s t  
th ink ,  George, you were a l i t t l e  b i t  t im id .  I would have been tempted t o  
draw a l o t  more than 42 se ts  o f  165 from 7,000 sampling w i t h  replacement. 
I d o n ' t  see why I have t o  sample w i thou t  replacement when I ' v e  go t  a 
popu la t ion  o f  7,000 t o  p lay  w i th .  Now v a r i a b i l i t y  quest ions a re  a l i t t l e  
b i t  touchy. I t h i n k  there  a r e  ways t o  handle it. But i t  seems t o  me, one 
ought n o t  t o  t i e  onese l f  down completely t o  independent r e p e t i t i o n s .  



McKay asked i n  h i s  paper, "Can anyth ing be gained i n  using o ther  than 
equal probabi 1 i ty  i n t e r v a l  s?" My main f e e l  i ng , about these th ree papers 
taken t 0 g e t h e r . i ~  t h a t  people have no t  q u i t e  focused t h e i r  ideas as t o  
what they r e a l l y  wanted t o  f i n d  o u t  and whether they were w i l l i n g  t o  pay 
what i t  took t o  f i n d  t h a t  out. I f  we be l i eve  th ings  a re  monotone, 
roughly middle- humped o r  something, we c e r t a i n l y  ought t o  concentrate 
our sampling accordingly. There's probably one end we d o n ' t  care much 
about, except t o  know i f  i t  i s  low o r  high. We c a n ' t  concentrate toward 
the  o the r  end and some i n  the  middle j u s t  t o  be sure. I ' m  n o t  arguing 
f o r  concentrat ing everything. There i s  some m e r i t  t o  g i v i n g  p r o b a b i l i t y  
almost everywhere. But- t h a t  m e r i t  i s  j u s t  a l i t t l e  b i t  l i m i t e d .  This 
s o r t  o f  problem goes through a very complete change, somewhere between 
two and f i v e  dimensions. I f  you a re  going t o  do a problem w i t h  more 
than f i v e  parameters, the  space i s  j u s t  no t  l i k e  anyth ing you a re  used 
t o  t h i n k i n g  o f .  You w i l l  probably be stuck no matter  what you do and if 
you t a l k  about 50 i n p u t  var iables,  your  on ly  hope i s  t h a t  f o u r  o f  them, 
you know n o t  which, w i l l  be important.  'Then maybe you can ge t  o u t  and 
f i n d  something. Otherwise you w i l l  have t o  have a f a i r l y  l a r g e  number 
o f  sampl es. 

I would l i k e  t o  suggest t h a t  you ought t o  have a f u l l  code and a sho r t  
code and a f i t t e d  func t ion .  The shor t  code i s  something hope fu l l y  you 
ge t  made up by the  man who wrote the  f u l l  code. T e l l  him he i s n ' t  
supposed t o  g e t  t h e  r i g h t  answers b u t  he 's  on ly  supposed t o  have 3% o f  
t he  running t ime and t o  do as w e l l  as he can. Then on a sampling basis, 
you are  i n  a p o s i t i o n  t o  l ook  a t  t he  d i f f e r e n c e  between the  f u l l  code 
and the  sho r t  code. You can run the  sho r t  code we l l  enough t o  do a 
reasonable j o b  of f i t t i n g  the  f u n c t i o n  and you can run the  f i t t e d  f u n c t i o n  
t o  death i f  need be.' 

Our r e a l  problem i s  how t o  assess th ings  o u t  o f  a combination o f  values. 
For the  f i t t e d  funct ion,  you can know what the  d i s t r i b u t i o n  i s  as we l l  
as you might  want to.  Nobody i s  ever going t o  know any one hundredth o f  
1% po in ts .  You need t o  know how t o  apply the  d i f f e rences  between the  
sho r t  code and t h e  f i t t e d  f u n c t i o n  t o  say how i s  t h i s  going t o  be changed. 
A t  t h a t  po in t ,  you w i l l  probably have t o  go a t  l e a s t  as f a r  as t o  l ook  
a t  a p l o t  o f  d i f f e rences  against  f i t t e d  f u n c t i o n  values and be prepared 
f o r  t he  f a c t  t h a t  they show a considerable t rend and some k ind  o f  spread 
around t h i s  t rend  as, f o r  example, i n  F igure A. Here, you have l o t s  o f  
po in ts  and i t  i s n ' t  too  d i f f i c u l t  a job. But t h i s  smoothing technology, 
mentioned b r i e f l y  yesterday, i s  going t o  be important  t o  p i c k  up th ings  
l i k e  t h i s  w igg ly  trend. - 
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We saw t h i s  morning, i n  a  d i f f e r e n t  k i n d  o f  context ,  what happens t o  
people who f i t polynomials.  The i r  necks u s u a l l y  end up on the  b lock.  A 
good smoothing technology w i l l  keep your  neck from being chopped o f f .  I 
d o n ' t  be1 i eve  the re  i s  any good polynomial technology. One can take 
whatever you f i t t e d  o u t  here, l ook  a t  t he  res idua ls ,  ge t  some idea as t o  
whether t he  spread o f  t he  res idua ls  i s  reasonably constant,  and t r y  t o  
use t h a t  p a r t  o f  t he  in format ion t o  t ransform t h i s  d i s t r i b u t i o n  i n t o  
what you t h i n k  the  s h o r t  code d i s t r i b u t i o n  ought t o  be. 'You have some 
chance t o  check t h a t  one and see i f  your ' techno logy  i s  working. 

A t  t he  quest ion  o f  dea l i ng  w i t h  the  d i f f e rences  between the  f u l l  code 
and t h e  s h o r t  code, l i f e  i s  worse. But  I d o n ' t  see anyth ing b e t t e r  t o  
do than what was j u s t  discussed. I f  you c a n ' t  r un  the f u l l  code a  good 
many times, t he  o n l y  t h i n g  you can do i s  t o  boots t rap  somehow. I t  seems 
t o  me t h i s  i s  t he  sens ib le  s o r t  o f  bootst rapping.  I f  the  s h o r t  code i s  
any good maybe you can run  the  s h o r t  code enough so t h a t  then you can 
use the answers o f  the  s h o r t  code t o  determine the p r u b a b i l r i l y  t h a t  you 
w i l l  r u n  the  f u l l  code, and then be i n  a  p o s i t i o n  o f  weighing th ings  
accord ing ly .  To me t h a t  i s  q u i t e  playable, c e r t a i n l y  a t  t he  f i t t e d  
f u n c t i o n - s h o r t  code i n t e r f a c e .  

The two p o i n t s  o f  view I would s t ress  s t r o n g l y  are: (1) L e t ' s  p u t  i n  
another s tep  o r  two, i f  we can g e t  somebody t o  produce something reasonable 
f o r  us a t  t h a t  po in t ;  and (2 )  L e t ' s  t ry  t o  b u i l d  up and l ook  f o r  th ings  a  
l i t t l e  b i t  w i l d e r  than we thought  they were, and t r y  t o  use each o f  the  
more manageable th ings  t o  guide what we do w i t h  the  nex t  l e s s  manageable 
th ings .  

Steck: That 's  a  good idea. I n  t h i s  problem i t  might  be poss ib le  t o  ge t  
a  s h o r t  code because p a r t  o f  the  l ong  running t ime i s  t he  f a c t  t h a t  you 
have numerical  s o l u t i o n s  t o  d i f f e r e n t i a l  equations and smal l  t ime steps. 
You can take a  coarser  t ime s tep  and ge t  something t h a t  i s  l e s s  r e a l i s t i c  
bu't st~ur~les.. 

Tukey: I n  the case o f  onc o f  those examples where the re  were d a t a  a v a i l a b l e  
f rom 0 t o  500 m i l l i seconds  on .1 m i l l i s e c o n d  i n t e r v a l s ,  I t h i n k  a  l oga r i t hm ic  
t ime s tep  would probably work. A l l  . t h e  f a s t  a c t i o n  was i n  t he  f i r s t  few 
mi l l i seconds.  A f t e r  t ha t ;  t h ings  go t  more and more systematic.  You 
would shock people a  l i t t l e  i f  you i n t e g r a t e d  the  d i f f e r e n t i a l  equati.ons 
w i t h  respect  t o  l o g  t. But  you might  ge t  a p r e t t y  good s h o r t  code if 
,you went t h a t  rou te .  

Steck: I would l i k e  t o  r e t u r n  t o  Conover's comment. Somebody I knew 
made-up t h e  func t ion ,  and 1 know something about hirn. He's i n  a hurry, 
so when I see 15, maybc I look  . in u1.1 15. He s a i d  af terwards t.hat i f  you 
were going t o  do the  problem again you might  choose a  random un i fo rm 
number t o  p u t  a f t e r  15, so i t  w i l l  be 15.4753 o r  something. But he had 
p icked an i n t e g e r  and i n  checking t h e  fit, I t r i e d  15 and 15.1 and 14.9 
i n  t he  fit. F i f t e e n  was b e t t e r  than e i t h e r  o f  t he  o the r  two and so I 



picked 15; b u t  i f  I had known i n  advance t h a t  i t  was a  random process t o  
produce t h i s  func t ion ,  I wouldn ' t  have s e t t l e d  on 15. I would have t r i e d  
t o  search i n  t h e  neighborhood t o  f i n d  the  best  one. But s ince a  human had 
done it, I s e t t l e d  on 15. 

Lyon: I have heard several e x c e l l e n t  suggestions, some o f  which we are 
a l ready t r y i n g  o r  p lan  t o  do. F i r s t ,  what .do we want? To e s t a b l i s h  tha t ,  
I need t o  def ine two i tems: We have two basic computer programs. One we 
c a l l  bes t  estimate, which i s  an attempt t o  p r e d i c t  as accura te ly  as poss ib le  
what happens. The second we c a l l  an eva luat ion  model program, which i s  
very s i m i l a r  b u t  which c0n ta ins .a  number o f  conservatisms which make i t  over- 
p r e d i c t  temperature. We use t h i s  t o  evaluate l i c e n s e  app l i ca t i ons  and t o  
evaluate analyses and compare aga ins t  the regu la to ry  requirements. What we 
want f i r s t  i s  a  q u a n t i f i c a t i o n  o f  t h e  best  est imate program. Secondly, we 
want t o  be ab le  t o  compare the  best  est imate and eva luat ion  model programs 
i n  some s o r t  o f  a  q u a n t i f i e d  manner. Th i rd l y ,  we want t o  be able t o  make 
q u a n t i t a t i v e  statements i n  the  a p p l i c a t i o n  o f  these programs t o  accident  
i nves t i ga t i ons .  I t h i n k  we have an idea o f  what i t  i s  we want. I am n o t  
sure we know how t o  g e t  there. 

On the  comments of t h e  sho r t  code, I am n o t  sure we are  b r i g h t  enough t o  
w r i t e  a  computer program t h a t  i s  sho r te r  than the  monst ros i ty  t h a t  we 
p resen t l y  have w i t h  the  knowledge t h a t  we have a v a i l a b l e  t o  us and s t i l l  
p u t  i n  the  i n c r e d i b l y  complex phenomena t h a t  a re  tak ing  place. That does 
n o t  say t h a t  we cannot have a  sho r te r  version, because there  a re  a  couple 
o f  t h ings  a v a i l a b l e  t o  us. One p o s s i b i l i t y  i s  t he  t ime step. There i s  
another p o s s i b i l i t y .  L e t ' s  c a l l  i t  a mesh s i z e  o r  a  noda l iza t ion ,  t he  
number o f  i tems you choose t o  represent  the  system. I n  the  t ime step, one 
o f  t he  problems i s  t h a t  i n  order  t o  main ta in  numerical s t a b i l i t y  you are  
stuck w i t h  a  t ime step. We do indeed use a  very f i n e  t ime s tep i n  many 
po r t i ons  o f  t h e  i n v e s t i g a t i o n  and we use a  gross t ime step when we can ge t  
away w i t h  it. Fortunate ly ,  when you s i m p l i f y  the  noda l i za t i on  i n  general 
you can increase the  t ime step. O f  course accuracy su f fe rs ,  p r i n c i p a l l y  
because o f  t h e  noda l i za t i on  se lec t ion .  The next  s tep i n  our i nves t i ga t i on ,  
a l ready under way, i s  t h e  use o f  many fewer nodes, so t h a t  t h e  program runs 
much more r a p i d l y .  I n  an o v e r a l l  i n v e s t i g a t i o n  we are  s t i l l  t a l k i n g  i n  the  
order  o f  112 hour t o  an hour per  po in t ,  so w h i l e  we may be saving a  l o t  of 
t ime i t ' s  s t i l l  q u i t e  expensive. (Post Conference Comment: We are  modifying 
the  computer program so t h a t  d i f f e r e n t  t ime steps can be used f o r  d i f f e ren t  
nodes. This should improve running t ime b u t  n o t  t o  the  p o i n t  t h a t  t he  problem 
i s  eliminated.) 

One advantage o f  t h e  Steck and Eas te r l i ng  approach t o  response surface 
generat ion i s  the  use o f  many d i f f e r e n t  types o f  funct ions.  They have n o t  
1 i m i t e d  t h e i r  approach t o  X and X2, b u t  a l so  use logs  and exponentials.  

We a l so  had a  comment on a  d e s i r a b i l i t y  t o  i n v e s t i g a t e  a l l  var iab les .  I 
wish I knew how t o  do t h i s .  L i t e r a l l y  there  are  thousands o f  independent 
va r iab les  i n  t h i s  problem. We have var iab les  associated w i t h  the  i npu t ,  



such as what t imes a re  we going t o  i n v e s t i g a t e  du r ing  the  h is to ry .when 
events a r e  occur.r ing? A t  what power l e v e l  a re  we operat ing? What i s  the  
t ime power h i s t o r y ?  What a re  the  dimensions o f  many o f  the  i tems w i t h i n  
t h e  system we a r e  s imu la t ing? We have dozens o f  c o r r e l a t i o n s  b u i l t  i n t o  
t h i s  program. We have u n c e r t a i n t i e s  associated w i t h  these co r re la t i ons ,  
bo th  i n  t h e i r  f i t  t o  t h e  o r i g i n a l  experimental  data and i n  t h e i r  f i t  when 
they  a r e  used ou ts ide  o f  ranges f o r - w h i c h  they o r i g i n a l l y  were der ived.  
I d o n ' t  know how t h e  s t a t i s t i c i a n  can he lp  us w i t h  t h a t  one. The approach 
we probably w i l l  f o l l o w  i s  going t o  depend somewhat on an engineer ing f e e l  
f o r  what i s  impor tan t  and what i s  not,  backed up by some inves t iga t ions . .  
And h o p e f u l l y  w i t h  a  l o t  o f  he lp  from people l i k e  Bob E a s t e r l i n g  and 
George Steck. 

Tuk,ey: From what T heard of  your  comment, you d o n ' t  seem t o  know what you 
want t o  know. Do you want t o  c o n t r o l  the  50% po in t ,  the  90% po in t ,  o r  t he  
95% p o i n t ?  Yo11 a r e  going t o  want t o  take the  data dlPPerent1.y deper~diny 
on those. I t  j u s t  i s n ' t  f e a s i b l e  i n  a  messy problem t o  take the  data so as 
t o  g e t  h i g h  grade i n fo rma t ion  about a  l o t  o f  d i f f e r e n t  answers. The answers 
have t o  be morc re f i ned .  Kcgretable b u t  t rue !  

L e t  me j u s t  remark f o r  t h e  b e n e f i t  o f  the  s t a t i s t i c i a n s  present,  t h a t  the  
word c o r r e l a t i o n  i n  your  comment was, 1 t h i n k ,  used I n  the  engineer 's  sense 
and n o t  t h e  s t a t i s t i c i a n ' s  sense. That maybe needs t o  be c leared up. I 
t h i n k  f o r  something l i k e  a  s h o r t  code t o  be h e l p f u l ,  you need n o t  g e t  t he  
r i g h t  answer. Tha t ' s  t h e  d i f f i c u l t  p o i n t  t o  ge t  across t o  the  man who's 
w r i t i n g  t h e  code. I t ' s  supposed t o  g e t  answers t h a t  a re  w e l l  c o r r e l a t e d  w i t h  
t h e  r i g h t  answer i n  t he  s t a t i s t i c i a n  sense. But i t  doesn ' t  have t o  be r i g h t .  
That means you can probably do a  l o t  more v io lence t o  it. You would be 
su rp r i sed  how much v io lence  I ' d  be w i l l i n g  t o  t ry  and see how i t  d id .  

Uppu lur i :  A t  t imes, one needs t o  r e s o r t  t o  Monte Car lo  methods t o  study 
d i s t r i b u t i o n a l  p r o p e r t i e s  o f  f unc t i ons  f (X1, X2, . . .Xn) o f  n  random v a r i -  
ables. I n  general,  one has i n fo rma t ion  about t he  moments o f  X1, X2, ... Xn. 
I t  may be a  good p r a c t i c e  t o  compute the  moments o f  f and compare w i t h  those 
based on t h e  Monte Carlo. 

R e l a t i v e  t o  remarks about us ing  no more than th ree  t o  f i v e  parameters t o  make 
t h e  whole scheme depend on them, I would l i k e  t o  know whether t h i s  i s  based 
on t h e  catastrophe theory  proposed by Rent? Thole. 

Tukey: I am a f r a i d  I d o n ' t  know the  references I am asked t o  comment on. 
The s o r t  o f  t r o u b l e  I am t a l k i n g  about i s  t h a t  l a r g e  dimensional spaces 
a r e  l a r g e r  than you t h i n k  they are. T ry ing  t o  do th ings  r e g u l a r l y  ge ts  you 
i n  t r o u b l e  because o f  t h e  numbcr o f  pu ir1t.r; Ltldt you have t o  use. I t ' s  a 
nasty business. L e t  me a l s o  comment t h a t  I take i t  Monte Car lo here today 
means what I c a l l  experimental  sampling r a t h e r  than more soph is t i ca ted  
Monte Carlo. 



Lyon: I agree w i t h  your  comment regard ing  messing up the  code by h i g h l y  
s i m p l i f y i n g  it. However, t o  be use fu l  we s t i l l  have t o  have some semblance 
t o  r e a l i t y  and we a r e  a l ready  s t r e t c h i n g  it. The work going i n t o  t h e  code 
i t s e l f  p l u s  the  changes might  be very expensive. So f a r ,  we a re  j u s t  
f o l l o w i n g  the  r o u t e  o f  reducing the  number o f  nodes t o  descr ibe the  problem, 
u n t i l  we s t a r t  t o  dev ia te  so f a r  f rom r e a l  i t y  t h a t  we f i g u r e  we'd b e t t e r  stop. 
I f  we l i m i t  ourselves t o  on l y  f o u r  o r  f i v e  independent var iab les ,  I person- 
a l l y  f e e l  t h a t  we cannot accomplish the  th ings  t h a t  we need t o  do. We have 
t o  have an approach t h a t  l e t s  us l ook  i n  the  realm o f  20 t o  50 var iab les .  
That i s  a  tough assignment. I am n o t  sure we r e a l l y  know how t o  do t h a t  y e t .  

Tukey: I t h i n k  one p o i n t  i s  perhaps s l i p p i n g  by and l e t  me make mysel f  
c l e a r  on another one. I f  you have a  s h o r t  code and you use i t  w i t h  the  
f u l l  code, you a r e  n o t  r e l y i n g  on the  s h o r t  code any more than you a re  
the  f i t t e d  func t ion .  You a re  r e l y i n g  on the  f u l l  code and you a re  t r y i n g  
t o  ge t  every darn ounce you can o u t  o f  each one o f  the  f u l l  code po in t s .  
I t  seems t o  me t h a t  t h i s  i s  what we a r e  t r y i n g  t o  do. I would be w i l l i n g  
t o  c u t  those nodes down below phys ica l  r e a l i t y  and see whether i t  helped 
me enough. 

On the  number o f  var iab les ,  I was n o t  arguing f o r  p u t t i n g  few va r iab les  
i n .  What I was saying was t h a t  unless you a re  l u c k y  enough a f t e r  you pu t  
50 va r iab les  i n  t o  f i n d  o u t  t h a t  too  many o f  them make b i g  e f f e c t s  a t  the  
back end your  neck i s  probably on the  b lock  anyway. By a l l  means pu t  the  
50 i n  and l e t ' s  hope t h a t  f o u r  o f  them do most o f  t he  t r i c k .  Then the  r e s t  
o f  t he  46 can be s o r t  o f  p icked up as a  b l u r .  Tha t ' s  what you have t o  do. 
I d o n ' t  t h i n k  we have any r e a l  d i f f e r e n c e  o f  op in ion  here. But I do t h i n k  
t h a t  i f  the re  a r e  12 equa l l y  important  var iqb les ,  t he  chances t h a t  you ge t  
a  good answer w i t h  a  small number o f  runs o f  t he  f u l l  code a r e  n o t  very 
good. 

Lyon: Thank you. Your f i r s t  suggest ion i s  an e x c e l l e n t  one. I t h i n k  we 
w i l l  probably t r y  t h a t  du r ing  our  i n v e s t i g a t i o n s .  On the  second one., I 
have an engineer ing f e e l  t h a t  we a r e  going t o  be stuck w i t h  a  number o f  
va r i ab les  which a r e  q u i t e  important .  We ' l l  f i n d  out .  

Steck: Ihe  bas ic  ou tpu t  o f  t he  codc i s  n o t  j u s t  a  peak temperature b u t  
r a t h e r  a  t ime h i s t o r y .  J showed a  l i t t l e  drawing o f  a  two humped th ing ,  
l i k e  a  camel w i t h o u t  a  h t v d .  One thought t h a t  I had was t o  f i t  each t rans ien t ,  
each double hump th ing ,  k i t h  maybe 11 nodes i n  sp l ines .  We a c t u a l l y  c a r r i e d  
t h a t  o u t  very  success fu l l y .  You express the  t r a n s i e n t  then as a  sum o f  
sp l i nes  w i t h  c o e f f i c i e n t s  t h a t  a re  determined and the  polynomials a re  
f i x e d .  You can imagine doing a  regress ion  on the  c o e f f i c i e n t s  o f  the  
sp l i ne .  A t  t he  end you will be db le  t o  samplc from the  i npu ts  and g e t  a 
f u n c t i o n  o u t  r a t h e r  than j u s t  a  peak temperature. Then you can maybe 
f o r m a l l y  d i f f e r e n t i a l e  the  s p l i n e  and f i n d  o u t  where i t s  maximums a re  and 
p i c k  t h e  l a r g e s t  one o f  those. Has anybody had experience w i t h  t a c k l i n g  
any problem l i k e  t h a t  where you f i t  w i t h  sp l i nes  and then do a  regress ion  
on the  s p l i n e  c o e f f i c i e n t ?  



Tukey: Were you . regressing something e l s e  on the  sp l  i n e  c o e f f i c i e n t s  o r  
were you regressing the  s p l i n e  c o e f f i c i e n t s  on the  i n p u t  data? 

Steck: Regressing the  s p l i n e  c o e f f i c i e n t s  on the  i n p u t  data. 

Tukey: I d o n ' t  have experience w i t h  sp l ines  i n  t h i s ,  p a r t l y  because I am 
pess im is t i c  about them. I d o n ' t  l i k e  a  f i t t i n g  procedure which w i l l  change 
th ings  over here a t  t he  maximum i n  order  t o  make a  b e t t e r  f i t  over here a t  
t h e  minimum o r  over  beyond the  minimum somewhere. That 's  what the  c o n t i n u i t y  
c o n s t r a i n t s  on the  sp l i nes  lead you t o  do. It doesn ' t  seem t o  me they are  
r e a l l y  l o c a l i z e d  enough t o  make me happy. I foresee some d i f f i c u l t i e s ,  bu t  
maybe you w i l l  come o u t  a l l  r i g h t .  

Steck: I t h i n k  i n  t h i s  case I come o u t  a l l  r i g h t .  I have maybe a  dozen 
p l o t s  o f  t h e  t r a n s i e n t  produced b y , t h e  f u l l  code and comparable r e s u l t s  
obta ined from regress ing the  s p l i n e  c o e f f i c i e n t s  on the  i n p u t  data. You 
a re  hard p u t  t o  see any d i f f e r e n c e  between them. I t  f i t s  very we l l ,  The 
t h i n g  you are  f i t t i n g  i s  smooth enough and I guess I picked enough nodes so 
t h a t  t he re  wasn' t  any problem. 

Pool: I d i r e c t  t h e  mathematical and computer science research programs a t  
t he  Argonne. I am here t r y i n g  t o  f i n d  ways t h a t  s t a t i s t i c s  can i n t e r a c t  
w i t h  some of t h e  th ings  we a re  doing. For the  l a s t  several years we have 
had a  research program i n  t h e  eva luat ion  o f  numerical software. Not an 
eva lua t ion  o f  hydrodynamic codes o r  anyth ing l i k e  t h a t .  We are  much more 
pedest r ian  than t h a t .  We s t a r t e d  o u t  w i t h  elementary funct ions,  spec ia l  
f unc t i ons  and worked our  way up t o  numerical l i n e a r  algebra where you have 
a  backward e r r o r  ana lys i s  t o  depend upon. We moved away from t h a t  case t o  
where you do n o t  have an e r r o r  ana lys is .  The f i r s t  step i s  quadrature, 
where you have a  user suppl ied f u n c t i o n  t h a t  t he  quadrature subrout ine must 
use. So a l l  t h e  e r r o r  ana lys i s  techniques go o u t  the  window, unless you 
know t h e  general a n a l y t i c a l  form o f  t h e  funct ions t h a t  t he  user i s  going t o  
supply. You u s u a l l y  don ' t .  We've s t a r t e d  t o  l ook  a t  t h e  min imiza t ion  
sof tware where you have the  same k ind  o f  compl icat ions p lus  the f a c t  t h a t  
t h e  a1 g o r i  thms i n t e r a c t  themselves i n  a  r e l a t i v e l y  soph is t ica ted way. We 
s t a r t e d  t o  l ook  a t  o rd ina ry  d i f f e r e n t i a l  equations software i n  con junc t ion  
w i t h  people from Livermore and Sandia. 

I r e a l l y  wonder whether the  step between th ings  l i k e  op t im iza t i on  and 
m in im iza t ion  sof tware t o  a hydrodynaniics code i s n ' t  a  b i t  o f  a  g i a n t  step. 
I was wondering whether any o f  the  people have t r i e d  t o  do something 
intermediate,  where perhaps some o f  t he  numerical ana lys ts  e r r o r  ana lys is  
c a p a b i l i t i e s  would a1 low you t o  v e r i f y  the  k i n d  o f  in ferences you are  
making w i t h  s t a t i s t i c a l  techniques. It makes me very nervous t o  hear an 
ana lys i s  o f  l oss  o f  coo lant  codes. For example, l i t t l e  i s  known about 
something as simple as the  coup l ing  o f  l i n e a r  algebra codes. I know we've 
never done anyth ing l i k e  tha t ,  a l though we know a  g rea t  deal about i n d i -  
v idua l  l i n e a r  a lgebra codes. - 

Tukey: On the  forward i n t e g r a t i o n  d i f f e r e n t i a l  equation codes, the  backward 
e r r o r  ana lys i s  t o  the  i n i t i a l  cond i t i on  i s  r e a l l y  what you want. 
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THE PHYSICAL SETTING 

Reduction i n  the cost of underground e lec t r ica l  transmission i s  impor- 
tant  i f  the u t i l i t y  industry i s  to  meet the nation's needs fo r  e l ec t r i c  
energy without undue cost while preserving the amenities in and near load 
centers and power plants. Cryogenic and superconducting cables a re  being 
developed and the problem.which i s  discussed here ar ises  from an attempt 
to understand engineering aspects of d ie lec t r ic  breakdown i n  l iquid helium. 

The experimental apparatus consists of a 130 KV(dc)/80 ~ ~ ( ' a c )  inter-  
mediate voltage u n i t  and a 600 KV(dc)/700 KV(ac) high voltage u n i t  under ... 

construction. The data discussed here come from the intermediate voltage 
u n i t .  Leaving. aside the necessary measuring equipment and electronics,  
the experimental devices consist of an insulated container, or dewar, i n  

which two electrodes a re  placed, one above the other. The shapes of these 

electrodes can be altered to  experiment w i t h  d i fferent  magnetic f ie lds  
and the distance between the electrodes can be varied to  s u i t  the experi- 
menter. The dewar i s  then f i l l e d  w i t h  liquid helium and a f t e r  the equip- 
ment has reached temperature equilibrium the measurement process can begin. 
A voltage i s  bu i l t  up i n  one electrode unti 1 an arc  occurs to  the other 
electrode. This i s  a1 so called a\ flashover and the voltage attained when 
the arcing occurs i s  cal led the breakdown vol tage. Conceptual ly ,  t h i s  
process can be repeated an a rb i t r a r i ly  large number of times. Practically,  

there are l imitations of time, personnel, b u i l d u p  of impurities and damage 
t o  ,the electrodes. 

Experiments l i ke  these have been performed many times on transformer 
o i l s .  I t  was found tha t  the f i r s t  few measurements needed t o  be discarded 

to  allow for  breaking i n  the system and a f t e r  a ser ies  of "good" measure- 

8 
ments (commonly about 20) the breakdown .vol tages decreased as a resu l t  of 

impurity buildup and electrode damage. Much the same scenario occurs here. 

A few measurements are taken and discarded during a systen~ checkout phase 



and a degradat ion o f  l a t e r  measurements,has. been no t i ced  i n  r a p i d l y  b o i l i n g  

l i q u i d  helium. Th i s  has been stopped by c a r e f u l l y  ma in ta in ing  the  hel ium 

l e v e l  and by s l i g h t l y  p r e s s u r i z i n g  the  dewar t o  i n h i b i t  bubble format ion.  

THE PROBLEM 

F igure  1 shows a t y p i c a l  s e t  o f  data. Our "standard" p r a c t i c e  i s  t o  

check f o r  evidence o f  decrease i n  breakdown vo l tage w i t h  t ime and occas iona l ly  

t o  run  a s e t  o f  data through a f a s t  f o u r i e r  t rans form t o  see i f  any p e r i -  

o d i c i t i e s  appear. Then a s  i n  F i g i ~ r e  2, t he  data i s  p l o t t e d  on several prob- 

a b i l i t y  papers. 

ORNL-DWG 75-13873 

FIGURE 1. Data Taken. a t  0.5 mm.Gap Width on 
March 11, 1974, w i t h  Sphere Pos i t i ve ,  dc. 

Several d i  E tri b u t i  ons f o r  vo l  tage breakdown have appeat5ed =in 1 ' i  Leva Lure. 

They range from the  normal (Henning and Wartman, 1957) and lognormal (Gerhold, 

1972) t o  extreme value d i s t r i h ~ ~ t i n n s  l i k e  t h e  Weibul l  (Occhini  , 1971) and 

' t he  extreme value (Weber and End ico t t ,  1956). ,The normal d i s t r i b u t i o n  i s  

a poor  candidate as the  data are  u s u a l l y  skewed t o  t h e  l e f t .  A case can be 

made f o r  us ing  one o f  t h e  asymptot ic extreme value d i s t r i b u t i o n s  on the  grounds -2 

t h a t  t h e  vo l tage a t  which the  breakdown occurs i s  the  minimum vo l tage necessary, . 

a t '  t h i s  p a r t i c u l a r  i n s t a n t  i n  t ime, t o  f o r c e  an a r c  across one o f  t h e  l a r g e  I 

number o f  poss ib le  a r c  paths between the  e lec t rodes.  We have found t h a t  the  



p l o t  on l og  extreme va lue  p r o b a b i l i t y  paper seems adequately 1 i n e a r  f o r  

most sets o f  da t a .  This  i s  a somewhat s u b j e c t i v e  obse rva t ion ,  one t h a t  I 

am no t  enti r e l y  happy wi th ,  bu t  a t  l e a  it is a s t a r t i n g  pobnt. 
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FIGURE 2. P r o b a b i l i t y  P l o t s  f o r  2 mm Gap, Po in t  P o s i t i v e ,  dc.  

There a r e  t h r e e  asymptot ic  types  of d i s t r i b u t i o n s  f o r  t h e  s m a l l e s t  

o r d e r  s t a t i s t i c s  ( F i s h e r  and T i p p e t t ,  1928).  Below a r e  left-skewed forms 

o f  these d i s t r i b u t i o n s  and some o f  t h e i r  names. 
I 

Type 1 ,  exlre~iie value ,  Gumbel , 1 og Wci bu l l  , double exponent ia l  : 

[ 
Fl(x)  = 1 - exp -e - w < x < ~  



Type 2, 1 og extreme value, Rosin-Ramrnler: 

Type 3, Weibul l :  

The Type 1 d i s t r i b u t i o n  i s  a s o r t '  o f  t r a n s i t i o n  from Type 2 t o  Type 3 d i s -  

t r i b u t i o n s .  Useful references f o r '  extreme value theory a re  Gumbel (1958), 

Epste in  (1960) and Johnson and Kotz (1970). 

The l o c a t i o n  Darameter < i s  troublesome. I t  i s  dear t o  the  'hear ts  

o f  t h e  experimenters as i t  imp l ies  the  exis tence o f  a vo l tage below which- 

breakdown cannot occur. There seems t o  be no phys ica l  j u s t i f i c a t i o n  f o r  

such a parameter and the  lef t -skewed observat ions prov ide  evidence aga ins t  

i t s  existence. Values f o r  i t  have no t  y e t  been est imated f o r  these reasons, 

b u t  t h e  idea i s  a t t r a c t i v e .  F igure 3 ' i s  a l o g  extreme value p r o b a b i l i t y  

p l o t  o f  data taken du r ing  March 1974 a t  var ious gap w id ths . .  Reversing 

t h e  p o l a r i t y  does \ .  have an e f f e c t  on breakdown strength,  con t ra ry  t o  phys ica l  

theory; It i s  suspected t h a t  the  placement o f  t h e  e lectrodes one above t h e  

o t h e r  i s  respons ib le  fir t h i s  e f f e c t .  Another s t r i k i n g t h i n g  about t h i s  

f i g u r e  i s  t h e  d i s c o n t i n u i t y  near 90% , in  the  data. The equipment was running 

w e l l  and the re  i s  no explanat ion f o r  t h i s  phenomenon. The number o f  

observat ions f o r  each gap w id th  and p o l a r i t y  a re  l i s t e d  below: 

Gap Width (MM) sphere .+ Sphere - 
.25 I . 30 
.5 120 180 

1 .O 60 
1.25 160 30 . 
1.5 120 120 
2.25 - 120 30 



This  apparent mix ture  o f  d i s t r i b u t i o n s  does n o t  occur i n  every s e t  o f  data 

and no p a t t e r n  f o r  i t s  occurrence has been detected. It i s  q u i t e  t roub le -  

some as engfneering considerat ions f o r  t he  design of cryogenic cables depend 

on .probabi 1 i ty  statements about minimum breakdown strength.  

ORNL-DWG74-654% 

CUMULATIVE PROBABILITY 

FIGURE 3. Log Extreme Value P r o b a b i l i t y  P l o t s  
o f  Data Taken Duriny March 1974, dc. 

TOWARD A SOLUTION 

The use o f  p r o b a b i l i t y  p l o t s  t o  determine the  d i s t r i b u t i o n a l  form o f  

vo l  tage breakdowns cannot be considered d e f i n i t i v e  because. o f  t h e  nature  o f  

t h e  method. However, when you consider  the  t o t a l i t y  o f  t h e  evidence i t  

i s  more persuasive. What i s  needed i s  a t e s t  which d is t ingu ishes between 

the  extreme value d i s t r i b u t i o n s .  New experimental evidence must be found 

before  the  exis tence o f  a minimum breakdown vo l tage can be accepted. The 

fac tors  which produce t h e  contaminat ion o f  t he  pr imary response need t o  be 

i d e n t i f i e d .  
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DISCUSSION: DItLECTRIC BREAKDOWN I N  LIQUID HELIUM 

E d i t o r ' s  'Note: ' The problem being considered concerns deci d i  ng between one 
o f  t h ree  extreme value d i s t r i b u ' t i o n s  on t h e  basis  o f  p r o b a b i l i t y  p l o t t i n g .  
Something i s  needed t h a t  i s  more s a t i s f y i n g  and perhaps more repeatable 
than merely seeing i f  the  s e t  o f  dots a re  on a s t r a i g h t  l i n e .  Are the re  
techniques t h a t  would a l l ow  d i s c r i m i n a t i o n  among these th ree  d i s t r i b u t i o n s ?  
Are the re  nonparametric techniques t h a t  would he lp  i n  a s i t u a t i o n  l i k e  
t h i s ?  

Lohrding: Have you t r i e d  t h e  goodness-of- f i t ,  Kolmogorov-Smirnoff type 
t e s t ?  There a r e  probably more powerful  t e s t s  on the  market now, b u t  i t  
seems t h a t  t h a t  would be one o f  t he  f i r s t  t h ings  t o  l ook  a t  ins tead o f  
l ook ing  t o  see i f  you have a s t r a i g h t  l i n e  on the  p r o b a b i l i t y  graph p l o t  
paper. 

M i l l e r :  I f  you ge t  i n t o  Kolmogorov-Smirnoff s t a t i s t i c s ,  L i l  l i e f o r s  pub1 ished 
papers on Kolmogorov-Smirnoff type t e s t s  i n  normal s i t u a t i o n s  where the  
mean and variances a r e  unknown and the  exponential .  1 suspect t h a t  t o  
c rea te  t h e  necessary tab les  would be a heavy computing job. But i t  i s  one 
method t h a t  i s  open f o r  pu rsu i t .  I ' d  l i k e  something a l i t t l e  b e t t e r  than 
Kolmogorov-Smirnoff t e s t s  because they a r e  n o t o r i o u s l y  weak i n  t he  t a i l s ,  
t he  area of g rea tes t  concern. 

Lohrding: There have been some recent  t e s t s . t h a t  do p i c k  up the  t a i l  
d i f f e r e n c e  much b e t t e r  than the  Kolmogorov-Smirnoff. 

Tukey: I d o n ' t  t h i n k  t h a t  a s t a t i s t i c i a n  should a l l o w  h imse l f  t o  be 
caught t r y i n g  t o  decide between these extreme value d i s t r i b u t i o n s  w i t h  
data o f  t he  general character  o r  even t e n  times b e t t e r  than t h a t  shown 
here. I t  i s n ' t  going t o  be s e t t l e d  t h a t  way. You can never f i n d  o u t  
about t he  f a r  t a i l s  o f  t h ings  from small amounts o f  data. And i n  t h i s  
business and f o r  t h i s  f a r  t a i l ,  5,000 values i s  s t i l l  a small amount o f  
data. So my recommendation i s  do your  bes t  t o  avo id  t r y i n g  t o  so lve  t h a t  
problem, because you aren '  t going t o  do i t .  

Bloomf ie ld:  1 was l ook ing  d l  Figure  2. The sharp d i s c o n t i n u i t i e s  and the  
small number o f  these graphs mask the  gen t l e  curva ture  t h a t  i s n ' t  i n  some 
o f  t he  others.  These data a r e  probably cons i s ten t  w i t h  the  observat ion 
t h a t  t he  l oga r i t hm ic  t ransforms have been a b i t  too  powerful  on the  curves 
o f  h igher  vo l tages.  The lower ones l ook  as i f  they have been s t ra igh tened 
o u t  f a i r l y  w e l l .  The o the r  ones l ook  as i f  they have been turned over and 
a re  now convex, whereas before  they were concave. Poss ib ly  a transform 
t h a t  looks l i k e  a l o g a r i t h m i c  t ransform a t  t he  lower vol tages and something 
c l o s e r  t o  a cube r o o t  a t . t h e  h igher  voltages would succeed i n  l i n e a r i z i n g  
a l l  these th ings  a t  t h e  same time. A l l  t h ree  o f  these d i s t r i b u t i o n s  are  
extreme value and e s s e n t i a l l y  t he  same d i s t r i b u t i o n .  I f  you have a 
v a r i a b l e  and take any one o f  those d i s t r i b u t i o n s  and app ly  homogeneous 
power transforms t o  i t  o r  a l oga r i t hm ic  transform, then you g e t  one o f  t h e  
others.  This  occurs because the  extreme value problem t h a t  F isher  and 



T i p p e t t  solved was phrased i n  t h e  same way as the  cen t ra l  l i m i t  theorem. 
But  the re  i s  no r e a l  reason t o  s tay  w i t h i n  th.at p a r t i c u l a r  c lass  of t rans-  
format ions unless the re  i s  some na tu ra l  invar iance t h a t  you wish t o  
preserve. The t h i n g  about those t ransformat ions i s  the  homogeneity o f  
them. I f  you make a  scale change t o  one v a r i a b l e  then i t  comes ou t  as a  
sca le  change i n  t h e  transformed var iab le ,  o r  s h i f t  i n  the  specia l  case o f  
t h e  l o g a r i t h m i c  transform. I n  the  present case, the  data are  c o l l e c t e d  on 
equipment which has some c h a r a c t e r i s t i c  geometry and some c h a r a c t e r i s t i c  
scales. It i s  n o t  necessar i l y  reasonable t o  expect t h a t  s o r t  of invar iance 
t o  be a  na tu ra l  requirement. It would be q u i t e  reasonable t o  look  f o r  
o t h e r  types o f  transforms t h a t  may do a  j o b  on these data o f  simultaneously 
l i n e a r i z i n g  several o f  t h e  p lo ts .  

M i l l e r :  The jumps do n o t  appear i n  a l l  t he  data t h a t  I have seen. This 
i s  " the  best  data"  according t o  the  phys ic i s t s .  Some o f  t he  e a r l i e r  data 
and some o f  t h e  l a t e r  data do n o t  show t h i s  d i s c o n t i n u i t y  between 90 and 
95% a t  a l l .  I am r e a l l y  assuming t h a t  the  phys ic i s t s ,  w i t h  some help from 
concommitant observat ions perhaps, can f i n d  a  way t o  e l im ina te  t h i s  
"contamination." I don' t see any way t o  handle mixtures o f  d i s t r i b u t i o n s  
i n  a  s i t u a t i o n  l i k e  t h i s .  

Tukey: I would r a t h e r  look  a t  b e t t e r  p l o t s  than the  p l o t s  we a r e  l ook ing  
a t  here. I want t o  take o u t  a  l i n e a r  f i t  from these th ings  and look  a t  
t h e  res idua ls .  Then maybe I can t e l l  b e t t e r  what seems t o  be going on. 
Th is  i s  an engineering problem and the  physical  s o l u t i o n  might no t  be the  
r i g h t  answer. The p roper t i es  o f  chemical ly  pure copper a re  o f  no i n t e r e s t  
t o  t h e  telephone business, because the  copper i n  the  telephone business i s  
n o t  chemical ly  pure and never w i l l  be. The p roper t i es  o f  l i q u i d  hel ium 
f lash-over,  t o  use the  nasty word, t h a t  a r e  going t o  be re levan t  t o  
t ransmission l i n e s  a re  those t h a t  apply i n  t h e  circumstances r e a l l y  i n  t h e  
t ransmission l i n e .  I f  the  p h y s i c i s t  can f i n d  o u t  how t o  ge t  r i d  of t h i s  
jump here, t he  next  quest ion i s ,  w i l l  t h a t  technique apply i n  t h e  t rans-  
miss ion  l i n e  o r  w i l l  t h e  t ransmission l i n e  have worse ,jumps f o r  t he  same 
reason? I t h i n k  you have t o  understand t h e  phenomenon and no t  j u s t  clean 
i t  up. The phenomenon o f  C h i l e  copper i s  s t i l l  n o t  y e t  understood. 

Kao: A1 though I am i n  the  Department o f  Appl ied Mathematics, I get  invo lved - 
w i t h  data ana lys is  f o r  p r o b a b i l i t y  d i s t r i b u t i o n  o f  p ipe  burs t ing .  That i s  
very  s i m i l a r  t o  the  problem o f  d i e l e c t r i c  breakdown t h a t  we are  now t a l k i n g  
about. I w i l l  mention the  procedure I suggested and have been doing f o r  
t h e  problem t h a t  I have. F i r s t ,  I would search f o r  the  phys ica l  reason 
f o r  us ing any k i n d  of t h e o r e t i c a l  model l i k e  the  extreme value d i s t r i b u t i o n .  
There are  th ree types o f  extreme value d i s t r i b u t i o n s ;  t he  th ree  types are  
d i f f e r e n t .  These th ree  types o f  extreme value d i s t r i b u t i o n  are  1  i m i  t i n g  
d i s t r i b u t i o n s  based on d i f f e r e n t  assumptions. You have t o  check i n t o  the  
bas ic  assumptions. I found o u t  t h e  Weibul'l d i s t r i b u t i o n  f i t  t h e  basic 
assumption. Now t h e  p ipe  b u r s t  and p ipe  b u r s t i n g  pressure are a l l  p o s i t i v e ,  
so i t , i s  bounded from below. I f  you check t h e  smal les t  extreme value, i t  
i s  bounded from below a l l  r i g h t .  I developed what I c a l l  densitygrams. 
The w i d t h  of i n t e r v a l  f o r  p l o t t i n g  the  step func t i on  i s  no t  f i xed;  i t ' s  
determined by t h e  sample values. Using t h a t  technique, I came up w i t h  a  



curve c lose  t o  a  l a r g e s t  va lue extreme, n o t  t he  s m a l l e s t  value extreme. 
That curve a l s o  looks l i k e  Weibul l .  For p ipe  b u r s t i n g  pressure the re  i s  
no reason t o  take the  l a r g e s t  value, so Weibul l  turned ou t  t o  be the  r i g h t  
choice. I used t h e  Weibul l  and am now doing an est imate f o r  the  parameters. 
So fa r  t he  r e s u l t s  seem t o .  t u r n  o u t  a l l  r i g h t .  I t  i s  almost impossib le f rom 
an emp i r i ca l  p o i n t  o f  view, as Professor  Tukey j u s t  mentioned, t o  use j u s t  
17 p o i n t s  t o  evaluate t a i l  p r o b a b i l i t i e s .  , I d o n ' t  r e a l l y  agree t h a t  we can 
never so lve  t h i s  problem. I f  the re  i s  a  phys ica l  reason t o  j u s t i f y  p i ck ing ,  
some t h e o r e t i c a l  model, I t h i n k  we s t i l l  can t r y  our  bes t  and f i n d  some 
r e s u l t s  which may g i v e  us some i n s i g h t  i n  t he  p re l im ina ry  stages. 

Conover: One needs t o  decide what i s  the  purpose o f  making a  dec i s ion  as 
t o  which p r o b a b i l i t y  d i s t r i b u t i o n  t o  choose. I f  you a re  l ook ing  f o r  t he  ' 

bes t  fit, then I would j u s t  use a  l i k e l i h o o d  r a t i o .  F igure  the l i k e l i h o o d  
f u n c t i o n  o f  one d i s t r i b u t i o n ,  compare i t  w i t h  the  l i k e l i h o o d  f u n c t i o n  f o r  
another d i s t r i b u t i o n  f o r  the  p o i n t s  you have, and p i c k  the  d i s t r i b u t i o n  
t h a t  comes up w i t h  the  l a r g e s t  l i k e l i h o o d  func t ion .  

I f  you a r e  r e a l l y  i n t e r e s t e d  i n  examining what i s  going o n . i n  t he  t a i l s ,  
an examinat ion o f  your  graphs i nd i ca tes  t h a t  none o f  these d i s t r i b u t i o n s  
i s  working w e l l  i n  t he  t a i l s .  Perhaps you should go w i t h  some k i n d  o f  a  
polynomial f u n c t i o n  t o  f i t  the  t a i l s .  

You mentioned the  method used by L i l l i e f o r s .  I d o n ' t  t h i n k  i t  would be 
too  d i f f i c u l t  t o  use i t  f o r  your  problem here. I am n o t  s u r e ' t h a t ,  t he  end 
purpose i s  what you want. The end purpose w i l l  be merely a  measure o f  
goodness o f  fit. But  i f  you want t o  go ahead w.ith the  procedure i t  i s  
simple enough t o  do. Jus t  est imate the  parameters usi.ng some good method 
such as maximum l i k e l i h o o d .  Generate samples of t he  same s i z e  f rom the  
d i s t r i b u t i o n  i n  quest ion w i t h  those parameters. Do t h i s  repeatedly  
5,000 times, however many you f e e l  you can a f f o r d .  This  doesn ' t  take up 
much computer t ime t o  come up w i t h  these numbers and see 'how many o f  these 
emp i r i ca l  d i s t r i b u t i o n  func t i ons  a r e  f u r t h e r  away from the  t h e o r e t i c a l  
f u n c t i o n  than your  observed p o i n t s  are. I r e a l l y  d o n ' t  t h i n k  i t  w i l l  take 
much time. L i l l i e f o r s  used a  l o t  o f  t ime because he t r i e d  to ' genera te  
complete tab les  t h a t  anybody can use. You a re  j u s t  i n t e r e s t e d  i n  a  par- 
t i c u l a r  s e t  o f  values, a  p a r t i c u l a r  sample s ize.  You o n l y  have t o  go 
through i t  once. 

Kao: I d i d n ' t  understand what Conover s a i d  about us ing  the  maximum l i k e l i -  
hood r a t i o  comparison f o r  p i c k i n g  some p r o b a b i l i t y  d i s t r i b u t i o n ,  cou ld  you 
e l  a  bora t e ?  

Conover : . I was s,ugges t i ng f i t  t i ng the  unknown parameters us ing  some 
reasonably good method t h a t  i s  n o t  t oo  d i f f i c u l t .  Then compute the  l i k e l i -  
hood func t i on .  Put  t he  observed values i n t o  the  dens i t y  f unc t i on .  Compute 
your  l i k e l i h o o d  f u n c t i o n  f o r  t he  Gumbel d i s t r i b u t i o n .  Then do the same 
t h i n g  ' f o r  t he  Weibul l  d i s t r i b u t i o n .  See which d i s t r i b u t i o n  g ives you the  
l a r g e r  l i k e l i h o o d  func t i on .  



Tukey: I was not arguing against the use of physical insight and physical 
theory. to  t ry  to  do the extrapolations here. I would argue i n  favor of 
i t .  B u t  I t h i n k  the wise s t a t i s t i c i a n  will make sure that  the physicist 
i s  the man who i s  doing i t .  

If  you p u t  polynomials into the kind of problem here, you are guaranteed 
e i the r  . to get a nonmonotone curve fo r  extreme extrapolations and somebody 
will extrapolate out there. Or e lse  you will get an answer on the f i n i t e  
probabi 1 i ty  of f a i  1 ure a t  zero s t r e s s  and somebody will extrapolate out 
there. So don't  t r y  the polynomial. 
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Union Carbide Corporat ion Nuclear D i v i s i o n  

Oak Ridge, Tennessee 

PROBLEM 

A screening experiment can be completed i n  t h ree  months i n  a  High 

F lux  I s o t o p i c  Reactor (HFIR) t o  t e s t  f a c t o r s  a f f e c t i n g  p a r t i c l e  coa t i ng  

breakage i n  f u e l  rods. This  knowledge w i l l  be used t o  design f u e l  rods 

f o r  the  High Temperature Gas Reactor (HTGR). 

HTGR f u e l  rods a re  formed i n t o  c y l i n d e r s  by i n j e c t i n g  a  p i t ch -g raph i te  

m a t r i x  over coated f u e l  p a r t i c l e s .  The f u e l  rods a re  then carbonized, 

w i t h  some o f  the  p i t c h  v o l a t i l i z i n g .  The amount o f  gas re leased i s  i n d i r e c t l y  

measured by the  Pitch-Coke r a t i o  (P-C r a t i o )  o f  t he  weight  o f  the  carbonized 

m a t r i x  t o  t he  weight  o f  t he  o r i g i n a l  ma t r i x .  Four mat r ices  a re  examined 

which have P-C. r a t i o s  ranging from 20% t o  40%. ~ a t r i x  A has a  h igh  P-C 

r a t i o  and i s  expected t o  cause h igh  coa t i ng  breakage. Mat r ices  B, C and 

D have low P-C r a t i o s  w i t h  m a t r i x  B being a  standard m a t r i x  and mat r ices  

C and D a l t e r n a t i v e s  t o  m a t r i x  A. 

TO t e s t  f u e l  coa t i ng  breakage, two holes a r e  a v a i l a b l e  i n  a  HFIR w i t h  

each ho le  con ta in ing  s i x teen  f u e l  rods (F igure  1 ) .  One ho le  i s  run  f o r  

one cyc le  and the  o t h e r  ho le  i s  run  f o r  two cyc les.  The middle e i g h t  f u e l  

rods i n  each ho le  con ta in  enough f i s s i o n a b l e  ma te r ia l  t o  c rea te  a  temper- 

a t u r e  o f  1250°C, w h i l e  the  f o u r  rods a t  each end con ta in  enough f i s s i o n a b l e  

m a t e r i a l  t o  c rea te  a temperature o f  900°C. The amount o f  f i s s i o n a b l e  ma te r ia l  

i n  each f u e l  r o d  w i l l  depend on i t s  p o s i t i o n  i n  , t h e  reac to r .  

2  An a d d i t i o n a l  f a c t o r  i n  t he  experiment i s  t h e  f l u x  (n/cm asec) which 

va r ies  p a r a b o l i c a l l y  over  t h e  l e n g t h  o f  each hole. The h ighes t  f l u x  value 

i s  about 12 x  1014 MeV f o r  the  middle f u e l  rods and the  lowest  f l u x  value 

i s  about 6 x  1014 MeV f o r  t he  f u e l  rods a t  each end of  t he  hole. 



FIGURE 1. Horizontal Diagram of Sixteen Fuel Rods in One Hole 

The experimental var iables  and the i r  1 eve1 s a re  given in Table 1. 

TABLE 1 . Level s of Experimental Variables 

Variable Level 

Cycle Cycle I (one'cycle); Cycle I1 (two cycles) 

Part ic le  Coating High strength, Low strength 
Matrix A(High P-C r a t io ) ;  B , C , D  (Low P-C r a t io )  

F l  ux Continuous 

An experimental design i s  desired to  analyze the e f fec t  of the variables 

on par t ic le  coating breakage. The solution i s  divided into three parts.  
F i r s t  an experimental design i s  discussed for  the factor ial  (discrete)  vari- 

ables: cycle, temperature, par t ic le  coating and matrix. Then the flux 

variable and the response variable are  considered separately. 

FACTORIAL VARI ABL,ES 

The experimental design fo r  t h i s  problem must be constructed.to sa t i s fy  

several aims. Thrcc aims which are  considered most important are: (1) comparing 

the matrix A with high P-C r a t io  with the matrices 0 ,  C and D with low P-C ,* 
ra t ios ;  (2 )  comparing the effects  of the t h r i e  low P-C r a t io  matrices; and 



(3 )  t e s t i n g  t h e  main e f f e c t s  and the  two f a c t o r  i n t e r a c t i o n s  o f  the  f o u r  

factors:  p a r t i c l e  coa t i ng  (P), m a t r i x  (M) , temperature (T) and cyc le  (C). 

The e f f e c t s  o f  t he  f a c t o r s  w i t h  two l e v e l s  a re  est imated as the  

d i f fe rence between t h e  response a t  the  h igh  and low l e v e l s .  This  means the  

parameter izat ions o f  f a c t o r s  C, T, and P a re  as shown i n  Table 2. The . . 

m a t r i x  f a c t o r  i s  parameterized i n t d  th ree  e f f e c t s  M I ,  M2, and M3 def ined 
- by the  c o n t r a s t  o f  responses f rom f u e l  rods conta in ing  mat r ices  A,. B, C, 

and D g iven i n  Table 3. 

TABLE 2. Parameter izat ion o f  the  Two-Level Factors 

Var iab le  Parameter izat ion 

. Cycle +1 ( cyc le  11), -1 ( cyc le  I )  

Temperature +1 (1250°C), -1 (900°C) 

P a r t i c l e  Coating +1 (h igh  s t rength) ,  -1 ( low s t rength)  

TABLE 3. Response Contrasts o f  M a t r i x  Factor  

M a t r i x  
Var iab le  A B C D  

M I  +1 -1 -1 -1 

The M1 c o n t r a s t  i s  a  comparison o f  a  m a t r i x  w i t h  h igh  P-C r a t i o  w i t h  
\ 

mat r ices  w i t h  a  low P-C r a t i o .  Since t h i s  comparison i s  o f  g rea t  importance, 

m a t r i x  A w i l l  be used i n  s i x teen  f u e l  . rods w h i l e  mat r ices  B, C and D w i l l  

occupy the  remaining s i x teen  f u e l  rods. The second most impor tan t  m a t r i x  

con t ras t  M2 i s  between a  commercially made m a t r i x  D  and mat r ices  B  and C. 

Therefore, m a t r i x  D w i l l  be assigned t o  e i g h t  f u e l  rods and mat r ices  B 

and C each w i l l  be assigned t o  f o u r  f u e l  rods. The l a s t  con t ras t  M3 i s  a  

comparison o f  m a t r i x  C w i t h  t h e  standard m a t r i x  B. 
,*' 

The main e f f e c t s  a re  represented by the  l e t t e r s  C, T, and P, and t h e  

con t ras t  by M I ,  M2, and M3. The two- fac tor  i n t e r a c t i o n s  o f  the  main e f fec ts  

a re  represented 'by: CT, CP, CM1, CM2, CM3, TP, TM1, TM2, TM3, PM1, PM2, and PM3. 



The experimental design f o r  t he  f a c t o r i a l  va r iab les  i s  constructed by 

f i r s t  cons ider ing  the  m a t r i x  v a r i a b l e  a t  two l e v e l s .  The two l e v e l s  are  
4  h igh  P-C r a t i o  and low P-C r a t i o .  A 2  f a c t o r i a l  design can then 'be con- 

s t r u c t e d  w i t h  two r e p l i c a t e s .  Th is  design w i l l  i n d i c a t e  t h e  l e v e l  o f . t h e  

cycle,  temperature, and p a r t i c l e  coat ing  var iab les  f o r  each f u e l  rod, znd 

m a t r i x  A  w i l l  be assigned t o  the  s ix teen f u e l  rods t h a t  a re  t o  rece ive  the  

h i g h  l e v e l  o f  t he  m a t r i x  var iab le .  To complete the  design, t h e  low P-C 

r a t i o  matr ices B, .C and D must be plac.ed i n  the  s i x teen  f u e l  rods assigned 

t o  the  low- leve l  o f  t he  m a t r i x  var iab le .  To accomplish - th i s ,  t h i s  p a r t  o f  
3 t h e  design i s  considered t o  be a  3 x  2 asymmetrical f r a c t i o n a l  f a c t o r i a l  

design i n  16 runs. The low P-C r a t i o  matr ices are  considered t o  be a  

th ree - leve l  v a r i a b l e  coded B  .= 0, C = 1, and D = 2. For cons t ruc t i on  pur- 

poses, t h e  h igh  and low- leve ls  o f  t he  two- level  f a c t o r s  are  i d e n t i f i e d  as 

1  and 0, respec t i ve l y .  

3 To cons t ruc t  a  3 x  2  design i n  16 runs, Addelman's (1962) replacement 

and co l l aps ing  method i s  used. Addelman's method u t i l i z e s  the  propor t iona l  

frequency condt t ion,  ni j, = n  ./N f o r  two f a c t o r s  X and Y, where N = number "i. :J 
of t reatment  combinations, n, = number o f  t imes the  ith l e v e l  o f  f a c t o r  X 

- 1 '  

occurs, n  = number o f  t imes t h e  jth l e v e l  o f  f a c t o r  Y occurs, and ni = 
*j 

number o f  t imes t h e  ith l e v e l  o f  X occurs w i t h  the  jth l e v e l  o f  Y .  The 

p ropor t i ona l  frequency cond i t i on  was. shown by P lacke t t  (1946) t o  be a  

necessary and s u f f i c i e n t  c o n d i t i o n  f o r  two f a c t o r s  t o  be orthogonal t o  each 

,other  ancl t o  t h e  mean (u) 
6  F i r s t  a 2 design i n  16 runs i s  constructed w i t h  t h e  th ree  var iab les :  

C (cyc le) ,  T  (temperaturL), P ( p a r t i c l e  coat ing) ,  and th ree dummy var iab les  
6  X, Y, and Z. The 2  1/16 design i s  constructed using the  i d e n t i t y  r e l a t i o n :  

I  E CPTX = CTYZ = PXYZ (Table 4).  Th is  r e l a t i o n s h i p  forms a  r e s o l u t i o n  I V  

design which i s  t h e  maximum poss ib le  reso lu t i on .  I n  r e s o l u t i o n  I V  designs, 

t he  mean and main e f f e c t s  a r e  orthogonal b u t  t h e  two f a c t o r  i n t e r a c t i o n s  

a re  confounded. 



TABLE 4. A ~ ~ 1 1 1 6  Design w i t h  I = CTPX = CTYZ = PXYZ 

The th ree  two-level dumy var iables  a r e  now replaced with a four-level at . . 
. .' 

var iable  S by the correspondence shown in Table 5. This correspondence i s  

used because an orthogonal main e f f e c t s  plan f o r  three  two-level f a c to r s  

can be replaced by a s ing le  four-level f a c to r  and the proportional frequency 

condition i s  preserved (Tab1 e 6 ) .  

TABLE 5. The Correspondence used t o  Replace Three Two-Level 
Variables w i t h  One Four-Level Variable. 

Two-Level Variables $   our-~evel Variable 

. X .  - Y . z  - X Y Z  S' 
- 7 -  - 

0 0 0 and 1 1  1 ......... . . . +  O 
0 1 1  and 1 0  - - +  1 
1 0  1 and 0 1 0  .-t 2 
1 1 0 and 0 0 1 . -- . . . .  -+ -3 



3 TABLE 6. A 4 x 2 Design in 16 Runs 

For example, the proportional frequency re1 ationshi ps fo r  the factors ,  

P and S are: 

N10 = 2 = N 1 . N . O / N . .  = 8 4/16 = N o  . N . O / N , .  = 2 = NO0- . . 

N l l  = 2 = N 1 . N - l / N s .  = 8 4/16 = N O . N a 1 / N . .  = 2 = NO1 

The f inal  step in constructing a 3 x design in 16 runs is to collapse 
the four-level variable S t o  the three-level matrix variable M .  Collapsing 

* 

i s  done by a many t o  one correspondence. The proportional frequency con- 

di t ion i s  preserved no matter what mapping scheme i s  used. However, the 

h i a s  p r n p ~ r t i ~ z  o f  the estimated parameters will depend on the correspondence. 

Consider the two correspondence schemes shown i n  Table 7. These 

two mapping place matriccs 0,  C ,  and D i n  the sixteen fuel rods i n  the 

manner given i n  Table 8. There are other possible mappings but they a l l  

give matrix patterns which are  equivalent to correspondence 1 or  to  cor- 

respondence 11. 



TABLE 7. Two Correspondences f o r  Collapsing a 
Four-Level Variable t o  a Three-Level Variable 

Four-Level Three-Level Four-Level Three-Level 
0 D = 2  0 B = O  
1 B = O  1 C = 1 
2 c = I  2 D = 2  
3 D = 2  3 D = 2  

TABLE 8. Positions i n  the  Experiment of the  Low P-C Ratios 
Matrices f o r  Correspondences I and I1 

Correspondence I Correspondence I1 
Temp. "C Pa r t i c l e  Cycle ( I )  Cycle (11) Cycle ( I )  Cycle (11) 

900 h i g h  B C C D 
9 00 h i g h  bD D B D 
900 1 ow B C C D 
900 1 ow D D B D 

1250 h i g h  C B D C 
1250 high D D D B 
1250 1 ow C B D - C 
1250 1 ow D. D D B 

Correspondence I was chosen as  the  mapping scheme t o  complete the  
design a f t e r  examining how the  main, e f f ec t s  were biased by the  two-factor 
in teract ions  f o r  each correspondence. Each correspondence has the  temperature 

variable and one of the  matrix contras ts  confounded by two-factor i n t e r -  
actions.  B u t  correspondence I has the  advantage t ha t  the  l e a s t  important 
contras t  M3 i s  the  contras t  confounded. In addi t ion,  three of the  two- 

f ac to r  in teract ions  TM1, TM2, and TM3 are  not estimable f o r  correspondence 11, 

while only two of the  two-factor in teract ions  TM2 and TM3 a re  not estimable 
f o r  correspondence I .  Table 9 summarizes the  bias propert ies of correspondence 

I and 11. 



TABLE 9. ~ i a s  Properties of Correspondence I and I1 
. 

correspondence I Correspondence I1 
A A 

E[lJJ = p EIlJ1 =lJ 

E[;] = C E[;] = C 

E[?].= 312 T + 2 CM3 - 1/2TM1 . 
A '  

E[?] = 2 T + 2 CM2 
A 

E[P] = P E[P] = P 

~ [ i l ]  = MI 
h 

 mil I\ = MI 

ELM21 = M2 

E [ M ~ ]  = 413 M3 + 113 CT 

TM2 not estimable 
TM3 not estimable 

.,E[M2] = 2 M2 + CT 

~ [ i 3 ]  = M3 
TM1, not estimable 
TM2 not estimable 
TM3 not estimable 

The flux variable i s  a continuous variable which varies parabolically 
over the length of a hole i n  the reactor. This variable i s  a function of 
the reactor and i s  independent of the cycle, temperature, par t ic le  coating 
and matrix variables. A measurement of the flux can be made a t  the center 
of each fuel rod and varies from a low value of 6 i MeV t n  a h i g h  value 
nf 12 x MeV. 

? 

To s t a t i s t i c a l l y  control the flux influence, the range of the flux 
values could be s t r a t i f i e d  and used as a blocking variable. This procedure 

would add another variable t o  the factor ial  portion of the design and would 
fur ther  complicate the construction of the experimental design. I t h i n k  

a be t te r  solution would be to  use the flux variable as a covariate w i t h  

the value of the flux a t  the center of each fuel rod as the realization of 
the covariate. In the absence of additional information. T would assume 
tha t  the response is l inear ly  related to  the covariate. This l inear  relation- 

ship can be tested because the flux varies symmetrically about the midplane 
of the reactor giving two measurements fo r  each flux value. The residual 

e r ro r  can then be partitioned into the error  between duplicates and the error  
due t o  lack of f i t  of the model. By comparing the two error  terms w i t h  an 

F-test ,  the adequacy of a 1 inear model may be tested. 



The model used t o  describe the  .vector of responses 1 can be par t i t ioned 
in to  the fac tor ia l  variables and the  covariate variable.  .Let the mean, 

main e.ffect and two-factor in teract ions  of the fac tor ia l  .var iables .  be 
represented by the  vector % w i t h  the corresponding design matrix x, and l e t  
B represent t he  regression coef f ic ien t  f o r  the  f lux values E. W i t h  t h i s  - 
notation,  the  model i s  writ ten as 

where the  e r r o r  vector, 5, i s  assumed t o  be normally dis t r ibuted w i t h  EL€]  = 0 
2 and var(g) = 0 I i n  the customary manner. The analysis  of t h i s  covariate . 

model can be found , i n  Linear Models by S. R.  Searle (1971 ) .  

RESPONSE VARIABLE 

The observed response i s  the  proportion of pa r t i c l e  coatings which have 
broken. This type of response i s  usually transformed by arcs in  fi t o  s t a b i l i z e  
the variance f o r  the analysis  of variance. 

A potenti.al problem w i t h  t h i s  type of response i s  t ha t  the  number of '  
pa r t i c les  i n  each fuel  rod may be inadequate t o  de tec t  any s ign i f ican t  r e su l t s  
among the treatments. The expected f a i l u r e  r a t e s  f o r  the  matrix and pa r t i c l e  
coating variables a re  ihown i n    able 10. 

TABLE 10. Expected Failure Rate 

Pa r t i c l e  Coating 
Matrix Low Strength High Strength 

A >1% Q1% 
B lb1% <I % 
C ?.I % <1% 
D ~ 1 %  <1% \ 

Because of the  high f lux i n  the HFIR, only 100 t o  400 fuel  pa r t i c l e s  can 
be loaded i n to  a fuel rod. The expected breakage then is only one t o  four 
broken pa r t i c l e s  per fuel rod which would not be adequate t o  detect  any s ig -  
n i f i can t  differences among the  treatments. The experiment i s  s t i l l  useful ,  

however, as  a screening experiment f o r  detecting unexpected large  proportions 
of pa r t i c l e  breakage. 
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DISCUSSION: DESIGN PROBLEMS FOR THE HTGR 

T ie t j en :  My experience has been t h a t  one near l y  always gets wiped o u t  i n  
something t h a t  i s  as h o t  as one of these h igh  temperature gas reactors.  
The elements s t i c k  together. They g e t  bro'ken up i n  ana lys is  l a t e r .  A l l  
s o r t s  o f  t h ings  happen t h a t  one doesn' t a n t i c i p a t e .  My approach would be 
t o  be much less  ambit ious t r y i n g  noth ing  more complicated than a 22 
f a c t o r i a l .  I f  a f o u r t h  o f  your  r e s u l t s  ge t  wiped o u t  you can salvage 
something from your experiment. Do r e p l i c a t i o n  so t h a t  you have some k ind  
o f  e r r o r  aga ins t  which t o  judge the  r e s u l t s .  I f  you don ' t ,  your  whole 

. experiment gets destroyed. There i s  no th ing  l e f t !  

Bayne: To do r e p l i c a t i o n s ,  we w i l l  have t o  convince the  experimenter t o  
n o t  be as ambitious. I am n o t  sure how t o  r e p l i c a t e  and, a t  the  same 
time, answer a l l  t he  quest ions t h e  experimenter wanted answered. Have you 
been successful  i n  convinc ing the  experimenter n o t - t o  be so ambit ious? 

T ie t j en :  I haven' t  been successful. The o ther  compl icat ion i s  t h a t  you 
are  t r e a t i n g  these f u e l  elements w i t h  what you suppose i s  a constant  
temperature, f l u x ,  etc., b u t  by p u t t i n g  i n  d i f f e r e n t  treatments you change 
the  t reatment  t o  the  f u e l  elements themselves. 

Gluckman: I f  the  engineer r e a l l y  wants t h a t  many var iab les  w i t h  t h a t  f i n e  
o f  t e s t i n g ,  t e l l  him to, g i ve  you more rods f o r  your  t e s t .  I f  he i s  t h a t  
ambitious, you can p o i n t  o u t  t he  t r a d e - o f f  o f  g i v i n g  you more rods w i t h  
some s o r t  o f  assurance t h a t  he w i l l  g e t  h i s  t e s t  run, r a t h e r  than j u s t  t he  
two he o f fe red.  

Bayne: It s t i l l  goes back t o  the  problem o f  t r y i n g  t o  convince t h e  exper i -  
menter t h a t  he c a n ' t  g e t  something f o r  nothing. This complicated experiment 
was accepted because i t  was ab le  t o  g i ve  the  in format ion  he wanted j u s t  
us ing the  two holes. 

M i l l e r :  I d o n ' t  t h i n k  t h a t  t h e  experiment was a l l  t h a t  o v e r l y  ambitious. 
I have designed and have had f u e l  t j lpe experiments run  i n  reac tors  t h a t  
were h i g h l y  f rac t i ona ted .  and were successfu l ly  implemented. It may depend 
upon t h e  man you a re  worki,ng f o r .  It i s  obvious t h a t  t h i s  man d i d  n o t  
a n t i c i p a t e  the  problems t h a t  were inherent  i n  running i n  a h igh  f l u x  
environment. 

P r a i r i e :  I am concerned about t h e  response var iab les .  We are  t h i n k i n g  
about the  0, 1, 2, 3, and 4 powers. Based on t h i s  you r e a l l y  c a n ' t  l e a r n  
too  much about the  e f f e c t s  o f  these fac tors ,  bu t  you are hoping t o  do some 
screening. My quest ion i s ,  i f  you f i n d  the  combination t h a t  g ives you a 
p a r t i c u ' l a r l y  h igh  p ropor t i on  o f  f rac tures ,  then what would you do? What 
i s  t h e  next  step? I f  one ,o f  t h e  combinations gave two o r  th ree times as 
h igh  a number o f  f r a c t u r e s  as t h i s  one percent  range you are  t a l k i n g  
about, would you do. some a d d i t i o n a l  experimentat1 on t o  ver-i f y ?  

Bayne: Ac tua l ly ,  once the  ~ c r e e n i n g ~ e x p e r i m e n t  was done, the  engineers 
were p lanning t o  e l im ina te  c e r t a i n  f a c t o r s  and add o ther  selected va r iab les  



t o  complete a l a r g e r  experiment. Higher dens i t y  f u e l  ' p a r t i c l e s  would 
prec lude the  use o f  t he  h igh  temperature r e a c t o r  f o r  t h i s  experiment. 

Hooper: I f  t h e  f u l l  experiment had worked, how long would i t  have taken? 
Have,you considered us ing  sequent ia l  procedures i n  the  design? I n  an 
experiment t h a t  runs through very long exposures, you d o n ' t  have t h a t  s o r t  
o f  op t i on ,  b u t  i n  s h o r t e r  experiments you do. I n  a high. f l u x  environment 
sequent ia l  design procedures w i l l  o f t e n  save you a l o t  of agony. 

Beggs: I wonder i f  temperature and f l u x  a r e n ' t  h i g h l y  co r re la ted .  If so, 
you probably ought t o  use both temperatures and f l u x  as covar ia tes .  

Bayne: Yes, they  a r e  h i g h l y  co r re la ted .  A c t u a l l y  i n  order  t o  produce the  
temperature, each f u e l  r o d  load ing  was ca l cu la ted  based on a f l u x  p r o f i l e .  
I n  o t h e r  words, t he  h ioher  t he  f l u x  the  fewer number o f  f u e l  p a r t i c l e s  per  
rod. Th i s  was done t o  make temperature constant, i .e., l i k e  a s tep  func t i on .  
There were no thermocouples i n  t he  reac to rs  t o  measure ac tua l  temperature, 
so i t  i s  hard t o  say what the  ac tua l  d i s t r i b u t i o n  was. The temperature . 
was c o n t r o l l e d  by the  number o f  f u e l  p a r t i c l e s .  I t  would be d i f f i c u l t  t o  
use temperature as 'a cova r ia te  because the re  were no readings o f  ac tua l  
temperatures du r ing  the  experiment. 

G r i f f i n g :  I was going t o  b r i n g  up a s i m i l a r  quest ion about temperature. 
You s a i d  t h a t  t h e  temperature and the  f l u x  va r ied  i n  a s i m i l a r  manner. I n  
a p a r t i c u l a r  c lass  o f  900°C, the re  i s  as much v a r i a t i o n  i n  temperature as 
the re  i s  between t h e  900" and the  1250" c lass.  That i s ,  you g e t  as much 
temperature v a r i a t i o n  w i t h i n  the  900" c lass  as you would g e t  w i t h  some 
members w i t h i n  the  900" and the  1250" c lass.  So t r e a t i n g  them as d i s c r e t e  
v a r i a b l e s  would n o t  necessa r i l y  be the  most v a l i d  way t o  go. I d o n ' t  know 
what a l t e r n a t i v e  you would have, being as l i m i t e d  as you are  i n  t he  experiment. 

B loomf ie ld :  There i s  no th ing  t h a t  i s  going t o  p r o t e c t  you aga ins t  t o t a l  
losses o f  your  experimental  data. But t he  general i d e d  u f  s e t t i n g  up 
designs i n  such a way t h a t  they a re  robust  aga ins t  s111dl1 alllounts of 
miss ing  data I s  s t a r t i n g  t o  y e t  some a l t e n t l o n .  

Bayne: Peter  John has done some work on miss ing data i n  f r a c t i o n a l  
f a c t o r i a l  designs and h i s  r e s u l t s  i n d i c a t e  t h a t  i f  you do have miss ing 
data i n  f r a c t i o n a l  f a c t o r i a l  designs, then your  est imates a re  h i g h l y  
confounded w i t h  o ther  parameters i n  t he  exper'iment. 

Tukey: There i s  a general comment t h a t  needs t o  be made and t h a t  i s  we 
now have computers. Or thogona l i t y  i s  n o t  t he  wonderful t h i n g  t h a t  i t  used 
t o  be. It was never t h a t  wonderful  anyway. B i -o r thogona l i t y  i s  important .  
0r thoyor ia l i . ty  i s  a deco ra t i ve  way t o  ge t  there. The d i s t l n c t . i u r ~  i s  t l ~ t  
the  way you c a l c u l a t e  the  answers from the  data i s  b i -or thogonal  t o  the  
t h i n g s  you d o n ' t  want t o  f i n d  i f  when they happen i t  doesn ' t  a f f e c t  t h i s  
p a r t i c u l a r  combinat ion o f  experimental  r e s u l t s .  And once you face up t o  
r e s i s t a n t / r o b u s t  techniques, no th ing  i s  ever going t o  be orthogonal again. 
As soon as you have one s o f t  va lue t h a t  you t r e a t  d i f f e r e n t l y  from the  



. .. 

others, any p e r f e c t  o r thogona l i t y  i s  gone. You on ly  need approximate 
or thogona l i ty .  . The r e s u l t  quoted from Peter John has t o  do w i t h  us ing the  
est imate t h a t  i s  as c lose  t o  what we would have done i f  we had had a l l  t he  
data. This i s  probably the  wrong t h i n g  t o  do. Cer ta in ly ,  i f  you have a 
f r a c t i o n a l  f a c t o r i a l  w i t h  miss ing data 'and you analyzed i t  as a regression 
problem, you w i  11 have no more 'confounding than you w i l l  have i n  any o ther  
regression problem. 

Nicholson: There a re  no thermocouples i n  the  i n d i v i d u a l  f u e l  elements? 

Bayne: No, I d o n ' t  be l i eve  t h e  experimenter placed thermocouples i n  the  
reac tor .  There are  f l u x  monitors. 

Nicholson: So the  s i t u a t i o n  then i s  t h a t  we have th ree ANOVA var iab les  
t h a t  we can s e t  supposedly a t  two nominal l e v e l s  each and they w i l l  s tay  
there. We have two temperature l e v e l s  t h a t  we can s e t  based on heat 
t r a n s f e r  c a l c u l a t i o n s  and a t h e o r e t i c a l  f l u x  d i s t r i b u t i o n .  I f  these are 
no t  cor rec t ,  t h e  temperatures w i l l  be a t  undetermined l e v e l s  which hopefu l ly  
f l u c t u a t e  around the  two nominal l eve ls .  And then we have est imated f l u x  

. l e v e l s  t h a t  go along w i t h  each element. 

Bayne: Yes, except f o r  t he  f a c t  t h a t  they,can take a f l u x  p r o f i l e  before 
the  experiment i s  even run and g e t  f l u x  values f o r  the  reac tor .  I t h i n k  
the  problem i s  t h a t  we are  t a l k i n g  rods o r  o f  f u e l  elements. There i s  a 
p r o f i l e  f o r  each ho le  o f  t he  reac tor ,  and we can measure these a t  the  
center  o f  each o f  t h e  two-inch f u e l  rods. 

Tukey: You mean t h i s  i s  a p r o f i l e  before t h e . r o d  i s  even inser ted? 

Bayne: Yes. 

Tukey: And there  i s  no f l u x  measurement i n  the  rod  i t s e l f  so whatever 
change i n  f l u x  t h a t  t he  rod  caused i s  unmeasured? 

Bayne: True. I s t i  11 would 1 i ke any comments. from any one who has experience 
w i t h  reac to r  designs on how they have handled the  f l u x  var iab le ,  whether 
they have t r e a t e d  i t  as a cova r ia te  o r  used some k ind  o f  b lock ing  scheme 
u r  ~ h d k v e t ' .  

Tukey: Why n o t  use the  general maxim - when i n  doubt, do both? 

Gardiner: I handled t h e  f l u x  v a r i a b l e  i n  the  same way you intended t o  
handl'e i.t, Chuck, i n  an experiment i n  the  Oak Ridge research reac tor .  
This was long before HIFR was b u i l t .  Unfor tunate ly ,  I d i d n ' t  have t h a t  
n i c e  symmetric p r o f i l e  t h a t  you had. The c a l c u l a t i o n s  were a l i t t l e  
messier; bu t  t h a t ' s  the  way I handled it. 

Bennett: I have done several r e a c t o r  experiments o f  t h i s  kind. I n  every 
instance; i n  one way o r  another - and n o t  always q u i t e  as d i r e c t l y  as you 
imply  - f l u x  was used as a c o r r e c t i n g  var iab le .  Usua l ly  you can ge t  a 



computation o f  f l u x  t h a t  i s  a t  l e a s t  as, good as the  measurement you are  
going t o  ge t  o u t  t h e  o the r  end. The t h i n g . t h a t  bothers me most about t he  
whole experiment i s  t h e  f a c t  t h a t  you ha've a  f a i r l y  ambit ious and saturated ' 

experiment which i s  n o t  q u i t e  cons i s ten t  w i t h  the  a b i l i t y  t o  measure the  
Y 1% f a i l u r e  r a t e  on a  r e l a t i v e l y  smal l  number o f  elements. I n  o ther  words, 

I d o n ' t  see why you expect t o  ge t  very  much d i s t i n c t i o n  between the  desig,n 
f a c t o r s  and t h e  measurable r e s u l t s .  . . . 

.r 

Bayne: I t h i n k  t h a t  i s  cor rec t .  The experimenters feared t h a t  there  
would n o t  be any r e s u l t s  coming out. They wanted t o  use i t  as a  screening 
experiment i n  case the  p red i c ted  f a i l u r e  r a t e s  were g ross l y  i n  e r r o r .  

Bennett: One o f  t he  e s s e n t i a l s  o f  t he  h i g h l y  complicated, o r  h i g h l y  
saturated,  designed experiment i s  an e r r o r  est imate s u f f i c i e n t l y  smal l  and 
s u f f i c i e n t l y  w e l l  determined t o  measure s i g n i f i c a n c e  and/or e s t a b l i s h  the  
ex is tence o f  t r u e  e f f e c t s .  

Ba ne: The c o s t  f o r  these experiments i s  very high; i t  might  run  as h igh  
100,000 o r  more. When you a re  working w i t h  t h i s  k i n d  o f  p r i c e  tag,  S F -  

t he  experimenter f e e l s  he should ge t  the  most f o r  h i s  money. That i s  why 
I t h i n k  he i s  h e s i t a n t  t o  n o t  be ambit ious i n  these types o f  experiments. 

Nicholson: I s  t he re  enough symmetry around the  center  o f  the  reac to r  as 
f a r  as the  f l u x  p r o f i l e  i s  concerned t o  p a i r  t h ings  and ge t  some s o r t  o f  
e r r o r  measurement by p u t t i n g  i n  d u p l i c a t e  s i t u a t i o n s .  

Bayne: Yes, t he re  i s .  A t  l e a s t  the  p r o f i l e  t h a t  t he  experimenter showed 
me had d u p l i c a t e  measurements f o r  each o f  t he  p o s i t i o n s  i n  the  fuel  rod  i n  
t he  r e a c t o r  near t h e  midpoint .  

P r a i r i e :  I am s t i l l  wo r r i ed  about t he  response. Can you do something t o  
make some s o r t  o f  s t r e s s  t e s t i n g  where you can beef up some f a c t o r s ?  F lux  
you c a n ' t  beef up. Can o the r  f a c t o r  l e v e l s  be used i n  such a  fash ion  as 
t o  increase t h e  f r a c t u r e  p r o p o r t i o n  o r  would t h a t  n o t  t e l l  you anyth ing? 
1' am concerned about s e t t i n g  up a  f a c t o r i a ' l  , t y p e . o f  experiment t o  look fo r  
e f f e c t s  on t h e  response var iab le .  It i s  going t o  be hard t o  f i n d  ou t  
any th ing  unless something very  s t range i s  going on compared t o  what you 
t h i n k  i s  going on. 

Bayne: I don' t know t h e  answer t o  t h a t  quest ion. Are you t a l k i n g  about 
us ing  more d i ve rse  l e v e l s  f o r  t he  va r iab les  i n  o rder  t o  g e t  a  h igher  
expected f a i l u r e  r a t e ?  

P r a i r i e :  I am t h i n k i n g  o f  d igg ing  i n t o  the  f r a c t u r e .  d i s t r i b u t i o n  a  l i t t l e  
b i t  deeper t o  l e a r n  what i s  going on. Unless . there are  almost thousands 
o f  r e p l i c a t i o n s  when you t a l k  about a  1% f r a c t u r e  propor t ion ,  i t ' s  going 
t o  be hard t o  de tec t  any d i f f e rences  a t  a l l .  I n  an experiment l i k e  t h i s ,  
I d o n ' t  even know what i t  means t o  est imate experimental  e r r o r .  

Bayne: I agree. But t h e  l e v e l s  were s e t  by the  experimenter and I r e a l l y  
d o n ' t  know how they  a f f e c t  t h e  p a r t i c l e s .  



Bloomfield: I gather that .the expected number of breakages i s  really 
quite small. What i s , t h e  response - a mass of uranium or a mass of 
plutonium released by the fracture? Would you leave i t  as a continuous 
response or categorize i t ?  

Bayne: They dissolved the fuel rod and used a chlorine leach method to 
calcul'ate the amount of uranium leached from the broken particles. In 
t h a t  sense they could calculate the weight relative to the original weight. 

Bloomfield: I am wondering 'whether, i f  the mass of the pellets i s  given, 
you can convert back to an integer number of fractures. In that case 
presumably you would be close to a Poisson distribution and could get some 
ideas of error magnitudes. 
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SAMPLING THE ENVIRONS FOR CONTAMINATION 

L. L .  Eberhardt 
R .  0. Gilbert  

Bat te l l  e Pacif ic  Northwest Laboratories 
Richland, Washington 

INTRODUCTION 

In the l a s t  decade o r  so,  the  general public has become very conscious 
of environmental a f f a i r s ,  and use of the  word "ecology" no longer evokes 
puzzled expressions from laymen o r  students.  The broad respons ib i l i t i e s  
of the Energy Research and Development Administration include s tudies  of 
a wide range of contaminants i n  environments ranging from the  sub-tropics 
t o  the  Arctic zone. Under Atomic Energy Commission sponsorship, a wealth 
of information accumulated on the  behavior of a var ie ty  of substances i n  

both biological and physical systems, including much a t t en t ion  to  " fa l lou t"  
radionuclides, i n  the  e a r l i e r  years.  

Inasmuch as many contaminants may exh ib i t  a highly dynamic behavior 
i n  both ab io t i c  (atmosphere, water, and s o i l )  and b i o t i c  systems, a good 
deal of a t t en t ion  has been paid t o  various kinds of mathematical models 
f o r  t h a t  behavior. In the  substant ia l  1 i t e r a t u r e  dealing w i t h  the  "kinet ics"  
of various substances, one i s  hard put t o  f ind any guidance f o r  the  design 
of a sampling program f o r  the  study of a t race  substance (a  "contaminant") 
i n  any system. About a l l  we have observed i s  t h a t  most laboratory workers 
tend t o  take observations equally spaced on the time ax i s ,  b u t  occasionally 
one sees p lo t s  t ha t  apparently r e s u l t  from the use of equal spacing on a 
logarithmic scale .  Col lec t ions  made out-of-doors seem mostly made a t  con- 
venient "sampling s t a t i ons , "  but sometimes a gr id  system i s  suggested, o r  
s t a t i ons  may be concentrically patterned on a "point source." For an i m -  

pression of the  current  s t a t e  of analysis  of pollution data ,  the  reader 
is referred t o  two volumes presumably directed towards s t a t i s t i c a l  aspects 

of such s tudies  (LeCam, e t  a l ,  1972; P ra t t ,  1974). 

Since there  i s  a ra ther  substant ia l  body of survey sampling theory, 
and because contaminants a r e  seldom found t o  be ~lniformly spread over the  



landscape, i t  has seemed t o  us t h a t  more a t t en t ion  t o  sampling design might 

y i e ld  worthwhile benef i ts .  Two kinds of pract ical  problems come ;p immedi- 

a t e ly .  One i s  t h a t  the  process of ac tua l ly  locating and sampling items of 

t he  biota i s  ra ther  more time consuming t h a t  most of us rea l ize .  In shor t ,  

no one has ye t  found a way t o  take a random sample of the. f i s h  i n  a r i ve r .  

The second problem i s  t ha t  most sample survey methodology seems t o  

center  on estimation of a mean o r  a t o t a l .  In many cases,  such an estimate 

seems t o  be useful and worth having. However, we have the uncomfortable 

fee l ing  t ha t  i t  i s  r e a l l y  the  spa t ia l  pat tern  of d i s t r ibu t ion  of some 

contaminant t h a t  i s  of most i n t e r e s t .  In a general way, then, t h i s  i s  our 

problem: What a re  the  elements of a samplinq theory concerned with ascer- 

ta ining spa t ia l  pat tern ,  as  contrasted with present emphasis on estimating 

t o t a l s  o r  means? We a r e  par t i cu la r ly  concerned here w i t h  the a l locat ion 

o f  sampl i r ig  e f f o r t  f o r  the  purpose of determining pattern.  

I t  can immediately be objected t h a t  we ought a l so  to  be concerned 

w i t h  the  temporal pat tern .  Unquestionably t h i s  i s  so. We w i l l ,  however, 

avoid t h a t  i ssue here f o r  several reasons: 

@The complications i n  dealing w i t h  space and time together are  obviously 

a b i t  too much i n  the beginning. 

Many of t he  more obvious pract ical  problems can be dea l t  with i n  a 

s t a t i c  frame of reference. 

There don ' t  seem t o  be many generally accepted models f o r  spa t ia l  

pat tern  of  contaminants, whereas there are a h o s t  of k inet ic  models 

f o r  var ia t ions  over time. Furthermore, we believe t ha t  there is a 

body o f  theory d i r ec t l y  applicable,  t o  "sampling in  time," given a 

par t i cu la r  model. Much of the  recent work has been done i n  indust r ia l  

experimentation and stems from a paper by Box and Lucas (1959). For 

a recent review, see Cochran (1973). 

A FRAME OF R E F E R E N C E  

In order t o  s t ay  roughly within a s t a t i c  s i t ua t i on ,  we here mostly 

assume t h a t  .some contaminant (heavy metal , pest ic ide ,  radionucl ide,  

petroleum, e tc .  ) i s  released to  the  environment and builds up there.  By 



f a r  the bulk of most such substances accumulates i n  surface s o i l s  and 
sediments and i s  , r ed i s t r ibu ted  by physical forces (erosion of one s o r t  or  

another). In terms of total .  quan t i t i es ,  and animals generally wil l  
contain a negligibly small f rac t ion ,  j u s t  because the  biota cons t i tu te  a 
very small mass r e l a t i v e  t o  the  physical environment. We can thus suppose 
t h a t  a r ea l l y  thorough sampling survey wil l  i n i t i a l l y  include f a i r l y  exten- . 

s ive  sampling of subs t ra te  (surface so i l  o r  sediment), followed by a study 
of vegetation, and f i n a l l y  a survey of animals feeding on the vegetation, 
predators on those herbivores, and so  on. The f a c t  t ha t  sampling is some- 
times confined t o  the  higher t rop ic  l eve l s  (e .g . ,  predators such a s  t r ou t  
o r  pike) simply r e f l e c t s  an understandable preoccupation w i t h  hazards t o  
people, which a r e  often best  evaluated by sampling as close t o  the dinner 
t ab le  as  i s  feas ible .  Such s tudies  serve t o  evaluate immediate hazards, 
but cannot provide the  understanding required f o r  f u l l  analys is .  

Our problem can best  be s ta ted  i n  terms of sampling s o i l .  Conceptually 
the simplest scheme i s  deposition of some substance from a s ingle  "point 
source," from which emissions e i t h e r  stopped some time i n  the  past ,  o r  f o r  
which the current  r a t e  of re lease  i s  small r e l a t i ve  t o  the  quanti ty accumu- 
la ted over time. However, one might suppose the s i tua t ion  not to be too 
d i f f e r en t  f o r ,  say, the  accumulated record f o r  a i r  sampling devices, i f  the  
problem i s  posed as  one of the  "best" pattern f o r  arraying such instruments. 

The data can be regarded as  values of some posi t ive ,  continuous random 
var iable ,  expressed as  quan t i t i es  per u n i t  area of surface. For s impl ic i ty  
we assume so i l  cores t o  penetrate deeply enough so t h a t  subsampling by 
depth is not needed. We a l so  sweep under the rug  such problems a s  " ins t ru-  
ment" (counting) e r ro rs ,  "laboratory er.r.or*syM pool i n g  , a1 iquoting, com- 
posit ing and the  l i ke .  In pract ice  one must, of course, spend a l o t  of 
time t rying t o  be sure variance components due t o  these sources a r e  small 
r e l a t i ve  t o  between-sample variances, o r  a re  accurately measured. Normal l y ,  
the  samples wil l  be very small f rac t ions  of the  area sampled, and thus 
presumably can be regarded as  coming from an indef in i te ly  large  population 

( fo r  variance ' ca lcu la t ions  and the  1 i ke). S t r i c t l y  speaking, the population 
i s  f i n i t e ,  i s  defined by the  coordinate system used t o  locate  samples, and 
the  sampling i s  usually without replacement, inasmuch as  samples a re  removed 
from the  area.  



Some kinds of vegetation (mainly densely growing crops) m i g h t  be 

regarded i n  the same frame of reference as so i l s .  Most noncrop vegetation 
i s  i r regular ly distributed so tha t  a unit  area sample may frequently yield 

T 
no individuals of a given species or  group of species. Enough i s  known 
about differences i n  interception of par t ic les  by various kinds of plants, 

,4: 
and about plant physiology, to  d ic ta te  tha t  simply sampling whatever vege- 
ta t ion  i s  present i s  not sui table  fo r  any b u t  the crudest of "surveys." 

For estimating to t a l s  or  means of contaminants on vegetation, one can 
use a two-stage sampling scheme, where the f i r s t  stage i s  a sizable plot 
(quadrat) within which individual plants (elements) of the selected species 
a re  selected a t  random. I f  one i s  instead mainly concerned with the d i s t r i -  
butional pattern of a contaminant, i t  will evidently be necessary t o  also 
consider the spat ia l  pattern of the plants. Possibly two goals might be 
distinguished, one being tha t  of ascertaining pattern of the burdens of 
contaminant on individual plants (as i n  a "food-chain" study) and the other 
being concerned w i t h  deposition or  redistribution over space (so tha t  the 
plants serve mainly as co l lec tors ) .  

Our  most recent and most extensive experience in sampling so i l s  and 
vegetation for  a contaminant has been in connection with a study of pluto-  
n i u m  a t  the ~evada  Test S i t e  conducted by the Nevada Applied Ecology Group 

over the l a s t  several years. We are thus inclined to  view the problem in 
the framework of tha t  study, b u t  i t  i s ,  of course, of much wider scope. 
Presumably i t  extends f a r  beyond contamination, i n  the sense tha t  rational 
evaluation of the present "energy c r i s i s "  requires knowledge of both the 
total  quantity the location of our o i l  and uranium reserves. 

I t  i s ,  in f ac t ,  i n  the area of "geostat is t ics"  where we have found 
most of the references tha t  seem most relevant t o  our problem. Since we 
have rea l ly  only just s ta r ted  to  look a t  some of these sources, we can 
only suggest some impressions here. The main tool i n  common use fo r  dealing 

w i t h  distributional pattern i s  the contour map, which shows isopleths o'r 
l ines  of constant value fo r  the variable of in te res t .  In petroleum explora- 
t ion,  the contours of in te res t  may be mainly elevations of some subsurface 
rock stratum (since o i l  i s  found in "folds" or "anticlines" i n  such forma- 
t ions ) ,  while min ing  geologists will, generally be interested in mapping the 
extent of "grades" of ore ( i  . e. , concentrations of certain mineral s )  . 



I n  both f i e lds ,  t he  observat ions u s u a l l y  a re  made i n  a n . i r r e g u l a r  

s p a t i a l  pa t te rn .  The computerized contour ing  programs w i t h  which we are  

fami 1 i a r  use these i r r e g u l a r l y  spaced observat ions t o  est imate concentra- 

t i o n s  a t  t he  g r i d  nodes o f  a un i fo rm g r i d  pa t te rn .  The grid-node values 

are  est imated us ing polynomial surface f i t t i n g ,  moving average, o r  both methods 

i n  sequence. (Davis, 1973, q ives an elementary d iscussion of the  techniques ' in  

use; a l so  see Aqterberg, 1974, the  col loquium volume e d i t e d  by ~ e r r i a m ,  1970, 

and the  recent  exchange between Olea, 1974, 1975, and ~ k i m a ,  1975.) 

I n  designing a survey f o r  contaminants i n  s o i l ,  i t  would seem e n t i r e l y  

f eas ib le  t o  take the  samples d i r e c t l y  on a g r i d  pa t te rn ,  b u t  some k i n d  of 

smoothing w i l l  nonetheless o r d i n a r i l y  be requ i red  be fore  contour ing  i s  

poss ib le  (contours are  obta ined by i n t e r p o l a t i o n  between the  est imated 

gr id-node values).  Two s t a t i s t i c a l  problems then come i n t o  view. One i s  

the  well-known i ssue  o f  systemat ic  vs. random sampling (see, e.g. Cochran, 

1946, Quenou i l le ,  1949, MateFn, 1960). The second quest ion i s  whether a 

simple systemat ic  sample w i l l  be e f f i c i e n t  i n  terms o f  our  problem ( e s t i -  

mating d i s t r i b u t i o n a l  p a t t e r n ) .  The two issues a re  e v i d e n t l y  i n t e r - r e l a t e d ,  

b u t  need t o  be discussed i n  terms o f  "var iance-laws" (see below) t o  approach 

t h e  problem o f  a l l o c a t i o n  o f  sampling e f f o r t .  

I n  many o f  t he  cases where vegeta t ion  i s  t o  be sampled, t he  i r r e g u l a r  

d i s t r i b u t i o n a l  p a t t e r n  o f  i n d i v i d u a l  p l a n t s  prevents the  use o f  systematic 

sampling, so t h a t  we are  then immediately i n  a s i m i l a r  frame o f  reference 

t o  t h a t  described above f o r  petroleum and min ing  exp lo ra t i on .  

VARIANCE LAWS 

Near ly  a l l  o f  t h e  d a t a  t h a t  we have thus f a r  l oca ted  on contaminants 

i n  environmental samples show a s t r o n g l y  r ight-skewed d i s t r i b u t i o n .  Much 

o f  t h e  data t h a t  we have s tud ied  suggests t h a t  the  sample c o e f f i c i e n t  of 

v a r i a t i o n  (s /x)  i s  approximately constant  over  a wide range o f  concentrat ions.  

C o e f f i c i e n t s  o f  v a r i a t i o n  f o r  many o f  t he  " f a l l o u t "  rad ionuc l ides  f a l l  i n  

t t ie  range i f  0.1 t o  0.4 (Eberhardt, 1964; Remmenga and Whicker, 1967). I n  

rev iewing data on DDT concentrat inns we found h a l f  o f  74 sets o f  data (most ly  

q u i t e  small sampl es) e x h i b i t e d  c o e f f i c i e n t s  o f  v a r i a t i o n  between 0.3 t o  0.5. 

G i l b e r t ,  e t  a l ,  (1975) tabu la ted  c o e f f i c i e n t s  o f  v a r i a t i o n  f o r  80 sets of 

data (sample s i zes  5 t o  50) obta ined i n  s t r a t i f i e d  random sampling f o r  



plutonium 239-240 i n  'soil and vegetation a t  the  Nevada Test S i t e .  The 
modal value is 1.0 f o r  both so i l  and vegetation, while the  median fo r  so i l  

is somewhat higher (about 1.2) b u t  lower (about 0.9) f o r  vegetation. Some 
l imited data f o r  petroleum i n  the  marine environment suggest values of the  
coef f ic ien t  of var ia t ion t o  be roughly unity f o r  t ha t  substance (National 
Bureau of Standards, 1974). 

~requency d i s t r i bu t i ons  commonly used a s  models f o r  t h i s  k ind  of data 
include the  gamma, lognormal and Weibull d i s t r ibu t ions .  For plutonium, 
a t  l e a s t ,  the d i s t r i bu t i on  of pa r t i c l e  s i z e s  no doubt plays an important 
r o l e  i n  the  extreme v a r i a b i l i t y  observed i n  both so i l  and vegetation samples. 
W i t h  the  exception of the  plutoniu~n data ,  most of the s tudies  summarized 
above were based on ra ther  uncertain sampling schemes. For t h i s  reason, 
and i n  consequence of the  strong skewness and small sample s izes  avai lable ,  
we do not suppose there  i s  much point i n  t ry ing t o  decide on a spec i f i c  
frequency d i s t r ibu t ion  model, The important points seem to  us t o  be the  
substant ia l  skewness of the  data and approximate constancy of the coef f ic ien t  

of var ia t ion over a wide range of concentrations. From t h i s  we suppose i t  

t o  be desi rable  t o  consider a "variance-law" of a2 = y2v2 where y i s  the  
coef f ic ien t  of var ia t ion.  

I t  should be noted t h a t  the  plutoniur~~ data exh ib i t  a very marked 
spa t i a l  trend, crudely concentric about the  "ground zero" of the  "safety- 

shots" g i v i n g  r i s e  t o  much of the  data ( c f .  Gi lber t ,  e t  a1 , . ib id .  ) .  We 

ord inar i ly  used four  t o  s i x  s t r a t a  t o  reduce the  e f f e c t  of the  sharp 
gradient  on between-sample v a r i a b i l i t y ,  b u t  obviously t h i s  "trend-effect" 
nonetheless contributes t o  the  within-stratum variances from which the  
coef f ic ien t s  of var ia t ion were computed. As y e t  we have not had time t o  
t r y  t o  s o r t  o u t  a trend component, b u t  there  seems t o  be ample evidence 
t h a t  a substant ia l  pa r t  of the  var ia t ion observed w i t h i n  s t r a t a  i s  - not due 
t o  trend.  

SOME ALLOCATION SCHEMES 

When some p r io r  o r  aux i l i a ry  information i s  avai lable  f o r  es tab l i sh-  
ment of s t r a t a ,  th ree  schemes a r e  commonly considered f o r  a l locat ing a 
f ixed t o t a l  sample (n )  among s t r a t a .  These may be 1 i s t ed  as equal, pro- 

. portional  , and optimal a1 1 ocation.  Equal a1 1 ocation m i g h t  be considered 



f o r  "analyt ical  " comparisons ( i  . e . ,  t e s t ing  f o r  s ign i f ican t  differences 

between stratum means), i f  one assumes the  underlying frequency di  s t r i  bu-  

t ion t o  be lognormal and transforms accordingly, and if  no par t i cu la r  s e t  
of contras ts  i s  deemed more important a p r i o r i .  Cochran (1963: 145-146) 
deals w i t h  a1 location f o r  comparisons between s t r a t a  (o r  "domains of study") 
when w i  thin-stratum variances a re  not equal . Qui t e  reasonable arguments . 

m i g h t  be ra ised f o r  dealing w i t h  the  problem proposed here i n  terms of com- 

parisons between subareas, b u t  we have viewed i t  en t i r e ly  as  a matter of 
location--"where i s  the  contaminant?" 

I f  Ah denotes the  area of the  hth  stratum, and C A ~  = A ,  then i n  

proportional a l locat ion we have: 

In optimum a1 location (assuming the f i n i t e  population correction negl . . i g i  bl e ,  
and assuming cos t  per u n i t  i s  the  same i n  a l l  s t r a t a )  we have: 

where the  right-hand quanti ty r e su l t s  from assuming the  variance law above, 
i..e., Sh = mh. I t  i s  in te res t ing  t h a t  optimum al locat ion thus amounts t o  
a l locat ion i n  proportion t o  the  f rac t ion  of the  t o t a l  quanti ty of the  sub- 
stance f a l l i n g  i n  the  stratum. 

Another candidate f o r  an a l locat ion scheme may be postulated by supposing 
each stratum t o  be comprised of a number of subareas o r  c e l l s ,  a l l  of the  
same area.  I f  i t  i s  required t ha t  the  quanti ty w i t h i n  each such ce l l  be 
estimated w i t h i n  a common, constant standard e r ro r ,  6 ,  then: 

Sh - Wh 2 
6 = -  - -  and thus n = (3) p i ,  

Jnjh Jnjh j h 

where n i s  the  sample s i ze  required w i t h i n  each ce l l  o t  stratum h, and 
j h 

thus n h  i s  proportional t o  Ahpi. Consequently the  several a l locat ions  

proceed a s  proportional t o  A h ,  Ahph, and Ahpi. The l a s t  scheme might a l so  

be regarded a s  a r e s t r i c t ed  randomization, o r  as  two-stage sampling. 



One immediately evi'dent d i f f icu l ty  w i t h  systematic sampling under the 

variance law mentioned above i s  that. systematic sampling presumably 
corresponds roughly to  proportional allocation, and thus may not offer  
suf f ic ien t  precision in high concentration areas while "oversampl ing" the 
1 ow concentration regions. We are  thus tempted to  propose systematic 
(gr id)  sampling w i t h i n  s t r a t a ,  b u t  using a variable grid mesh, so tha t  
the s t r a t a  having high concentrations have a f ine  mesh, while those with 
the lowest concentrations have a much coarser mesh. However, i t  i s  not 

c lear  tha t  such a scheme will  be compatible w i t h  the available contouring 
algorithms (we expect trouble a t  stratum boundaries). 

While the contouring schemes of fer  a neat graphical representation of 
.concentration data,  i t  is by no means certain tha t  contouring i s  the best 
way to  deal with the problem posed here. Two-stage sampling with s t r a t i f i -  
cation of the f i r s t  stage units may well be a desirable al ternat ive,  and 
perhaps our "problem" only expresses a need fo r  be t te r  definit ion of objec- 
t ives .  Certainly t h i s  has been a major problem fo r  us ,in trying to  help 
investigators and administrators decide on survey designs. 

CONCLUSION 

Our  purpose here has been to  express a concern about surveys fo r  
contaminants tha t  focus on estlmation of means or  t o t a l s ,  and t o  suggest 
a need f o r  some theoretical and practical emphasis on sampling for  d i s t r i -  
butional pattern. We have postulated a s t a t i c  system to  avoid the rami- 
f icat ions introduced by kinetic models and to  direct  attention to  spatial  
patterns.  In e f fec t ,  we are  assuming a system tha t  changes rather slowly 
over time, and we presume tha t  a theory sui table  for  our "problem" will 
ultimately need also to  be examined fo r  i t s  relevance t o  patterns of change 
over time. 

1t.should be emphasized that  our main present concern i s  with sample 
allocation, a pr ior i .  In thc s i tuat ion where one is given a s e t  of obser- 
vations and asked to  produce a map, then i t  may be mostly a matter of 

judgment as to  which of the several available schemes for  data smoothing 
are  used. 
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DISCUSSION: SAMPLING THE ENVIRONS FOR. CONTAMINATION 

Easter1 i ng 
re1  eased? 
depos i t i on  

: ~ a ' s  the  l a y i n g  of t he  g r i d  done a f t e r  t he  contaminant was 
How about experiments where you d o n ' t  mark your  contaminant 
as i t  happens? Have you looked a t  t h a t  o r  a re  you going t o  

p rov ide  us w i t h  references? I am t h i n k i n g  i n  terms o f  a  nuclear  power 
p lan t .  I f  we want t o  mon i to r  a  poss ib le  e f f e c t  on f i s h  l i f e ,  how do we 
p lace s t a t i o n s  i n  t h e  r i v e r  o r  t he  lake? I was w o n d e r i n g ' i f  t he re  was any 
r e l a t e d  work t h a t  you looked a t  t h a t  might  be o f  help. 

Eberhardt: We wor r ied  about t h a t  (power p l a n t s ) ,  too'. I t h i n k  i t  would 
be a  whole l o t  harder i n  t he  sense t h a t  the  k i n e t i c s  o f  what happens over 
t ime has t o  be considered. I d i d  mention i n  t he  paper some schemes t h a t  
have been developed,. i n  i n d u s t r i a l  experimentat ion, t o  guide sampl i n g  i n  
t ime o r  sampling o f  some continuous v a r i a b l e  t h a t  i n f l uences  the  outcome 
o f  the  response. Those th ings  undoubtedly need t o  be looked i n t o  f o r  j u s t  
t h a t  k i n d  o f  problem. 

Here, we would l i k e  some d iscuss ion  r e l a t i v e  t o  a  theory o f  sampling f o r  
d i s t r i b u t i o n a l  pa t te rn ,  g iven nonhomogeneity o f  var iance and some p r i o r  
in fo rmat ion .  We would l i k e  t o  con t ras t  i t  w i t h  the  usual designs which 
seek t o  op t im ize  est imates o f  t o t a l s  o r  means. I n  o ther  words, "What 
a re  the  d i s t i n c t i o n s  between sampling f o r  p a t t e r n  and sampling.to est imate 
how much the re  i s ? "  Such sampling i s  n o t  so d i f f i c u l t  i f  the  var iance i s  
homogeneous over t h e  f i e l d .  Then, I would . s e t t l e  f o r  systematic g r i d  
pa t te rns .  I f  t h e  variances a r e n ' t  too  bad, one can go t o  the  contour ing  
rou t i nes  and come up w i t h  a  n i c e  map. I suppose i t  should be said,  too, 
t h a t  we d o n ' t  know t h a t  t he  contour scheme i s  " the"  answer. I t  i s  j u s t  
t h a t  i t  i s  a  neat  d e s c r i p t i o n  o f  t he  p a t t e r n  t h a t  we i n f e r  from the  data 
we c o l l e c t .  There may be some o the r  e n t i r e l y  d i f f e r e n t  way o f  doing it. 

F e r r i s :  Rocky F l a t s  has been doing exper imentat ion and data ana lys is ,  
even some experimental design, i n  s o i l  sampling f o r  q u i t e  some t ime. Our 
s i t u a t i o n  i s  somewhat d i f f e r e n t .  We do have a  p o i n t  source. We p r e t t y  
much know how i t  was dispersed - most ly  through t h e  wind. We have covered 
a l l  f r o n t s  i n  t h a t  we use both a  systematic g r i d  as you showed and, i n  
case t h a t  doesn ' t  work, we a l s o  have a  p o l a r  design. Don Michaels from 
Aero je t  has been doing a  l o t  o f  work on g r i d  sampling o f  t he  s o i l .  I n  
f a c t ,  he designed our  standard sampler t h a t  we use a t  Rocky F la t s .  As I 
understand it, i t  i s  pat terned a f t e r  t he  one t h a t  t he  Colorado S ta te  
Department o f  Heal th uses. We have many people mon i to r ing  as we1 1  as 
ourselves - the  S ta te  Department o f  Heal t h y  the  u n i v e r s i t i e s ,  and i n t e r e s t e d  
ecology groups. Re la t i ve  t o  movement o f  p lutonium i n  the  s o i l ,  John Minor 
a t  Rocky F l a t s  i s  doing'a l o t  o f  work and i s  pub l i sh ing  on how plutonium 
gets from here t o  the re  i n  t he  s o i l .  Does i t  go r a d i o l o g i c a l l y ,  does i t  
d isso lve ,  o r  does i t  get  c a r r i e d  along w i t h  another p a r t i c l e ?  I am n o t  

. t a l k i n g  about l i n e a r l y ;  I am t a l k i n g  about going down i n t o  the  ear th .  You 
r n i g l ~ t  f-ind h i s  work i n t e r e s t i n g  a lso.  Another t h i n g  I have no t i ced  i s  
t ha t ,  i n  a l l  s o i l  work, t he  l o g  normal d i s t r i b u t i o n  i s  used. I d o n ' t  know 



why. It seems t o  be convenient. I hear the  s t o r y  t h a t  i t  i s  used because 
i t  i s  the re  and t h a t  i s  what has always been used. I wonder if anybody 
has done any work t o  see i f  there  i s  another d i s t r i b u t i o n  t h a t  i s  be t te r .  
I s  t h i s  something t h a t  i s  e m p i r i c a l l y  der ived o r  do we j u s t  know t h a t  
p lutonium i n  s o i l  i s  d i s t r i b u t e d  l o g  normal ly? 

Crain: We a t  Lovelace a re  i n t e r e s t e d  i n  d i s t r i b u t i o n s  o f  plutonium and 
o the r  rad ionuc l ides ,  b u t  a t  a  d i f f e r e n t  l e v e l .  We are  i n t e r e s t e d  i n  the  
d i s t r i b u t i o n  of s p a t i a l  pa t te rns  o f  inha led p a r t i c l e s .  When the  i nves t iga to rs  
came t o  discuss t h i s  problem w i t h  me i n  connection w i t h  alpha e m i t t i n g  
p a r t i c l e s  l a s t  spr ing,  I looked a t  what had been done by the  eco log is ts .  
I rummaged through t h e i r  l i t e r a t u r e - a n d  found q u i t e  a  b i t  o f  ma te r ia l .  
Foresters are i n t e r e s t e d  i n  problems o f  s p a t i a l  p a t t e r n  and a l so  problems 
o f  d e n s i t y  o f  est imat ion,  which seems s i m i l a r  t o  the  k i n d  o f  problem you 
a r e  g e t t i n g  i n t o  o f  no t  o n l y  t o t a l  i nventnry  b u t  the  s p a t i a l  pat tern.  The 
reason we are  i n t e r e s t e d  i n  i t  i s  t h a t  i t  has t o  do w i t h  microdosimetry 
problems and t h e  h o t  p a r t i c l e  problem. .But u l t i m a t e l y  we would be in te res ted  
i n  t h e  quest ion  o f  t ime because we f e e l  t h a t  there  i s  a  p o s s i b i l i t y  t h a t  
e i t h e r  inha led p a r t i c l e s  are  a n n i h i l a t e d  i n  a  s p e c i f i c  way o r  a re  moved 
at-aund by some s o r t  o f  clearance process. To r e t u r n  t o  your problem, .it 
would be i n t e r e s t i n g  t o  l ook  a t  t he  s i z e  d i s t r i b u t i o n s  o f  these p a r t i c l e s .  
You can probably ge t  some o f  t h a t  from your autoradiograph studies.  I 
t h i n k  i t  would be i n t e r e s t i n g  t o  r e l a t e  those t o  some k ind  o f  theory about 
how they might  be blown. around. Perhaps the  heavier  p a r t i c l e s  are  n o t  ' d i s t r i b u t e d  t h e  same as t h e  l i g h t e r  ones. 

Eberhardt: The problem i n  f o r e s t r y  o r  p l a n t  ecology genera l ly  has t o  do 
w i t h  d i s c r e t e  i n d i v i d u a l s  t h a t  a re  r e a d i l y  i d e n t i f i e d ,  r e a d i l y  seen. 
Here we must take a  sample and send i t  t o  the  l abo ra to ry  f o r  ana lys is ,  and 
even then we have "count ing"  e r r o r s  and var ious biases t o  contend wi th .  
But  I agree the re  a re  very  s i m i l a r  s o r t s  o f  angles t h a t  are indeed i n t e r -  
es t i ng .  We have a  r e l a t e d  s i t u a t i o n  on the  Test S i t e  because we are very 
much i n t e r e s t e d  i n  t h e  r e l a t i o n s h i p  between the  concentrat ion i n  s o i l  a t  a  
spot  and the  concent ra t ion  i n  vegeta t ion  riear t t ~ a l  spot. Those two fac tors  - 
c e r t a i  n l y  a re  impor tant  I n human exposure prob l  e111s. 

As f a r  as the  a p p l i c a t i o n  o f  t h e  l o g  normal d i s t r i b u t i o n  i s  concerned, we 
wor r ied  about t h a t  several years ago. We contrasted the  gamma and t h e  l o g  
normal as poss ib le  models. We d i d  n o t  l ook  a t  t h e  Wei b u l l  , which seems t o  
be another possi b i  9 i ty. we found t h a t  S t  would take tremendous sal~lples t o  
d i s t i n g u i s h  t h e  two d i s t r i b u t i o n s .  The b i g  problem o f  course i s  i n  the  
t a i l s  o f  t he  d i s t r i b u t i o n s .  We simply d o n ' t  have samples adequate t o  
d i s t i n g u i s h  between such s i m i l a r  d i s t r i b u t i o n s .  We t r i e d  var ious t e s t s  
f o r  ku r tos i s ,  skewness, and so on. We then went t o  s imula t ion .  I f  we 
considered t h e  gamma and l o g  normal as a1 t e r n a t l v e s  and decided t o  use one 
and p icked t h e  wrong one, i t  d i d n ' t  make much d i f f e r e n c e  i n  the  outcome. 
Log transforms o f  t h e  gamma, i n t e r e s t i n g l y  enough, behave p r e t t y  we l l .  
That 's  most ly  approximation by s imulat ion,  bu t  p a r t l y  b u i l t  on some o the r  
e a r l y  work w i t h  t e s t s  f o r  homogeneity o f  variance by B a r l e t t  and others. 



Bloomf ie ld:  The gamma d i s t r i b u t i o n  w i t h  c o e f f i c i e n t  o f  v a r i a t i o n  one i s  
t he  exponential-  d i s t r i b u t i o n ,  and the  l oga r i t hm o f  an exponential  d i  s t r i b u -  
t i o n  i s  p r e t t y  h e a v i l y  skewed. A gamma' w i t h  l a r g e r  shape parameter 
necessi tates a  smal le r  c o e f f i c i e n t  o f  v a r i a t i o n .  

It i s  un for tunate  t h a t  our  maps use a  rec tangu lar  g r i d  system. Barocent r ic  
coord inates would be b e t t e r  s ince  a  hexagonal g r i d  g ives more un i fo rm 
coverage than a  rec tangu lar  g r i d .  But I guess i t  i s  hard t o  ge t  people t o  
go o u t  t o  ba rocen t r i c  coord inates and take samples. 

You mentioned t h a t  K r i g i n g  i s  d i f f e r e n t  from moving averaging. It i s  
d i f f e r e n t  i n  t h a t  t he  weights i n  t he  averages are  determined from the  
semi-variogram, r a t h e r  than being determined on some ad hoc basis.  But i t  
s t i l l  shares the 'moving averages p rope r t y  o f  being a  l i n e a r  f u n c t i o n . o f  
t he  data. Therefore i t  i s  s e n s i t i v e  t o  bad values. The technology t h a t  
John Tukey mentioned e a r l i e r  o f  adap t i ve l y  weight ing th ings  based on the  
s i z e  o f  res idua ls  can be app l i ed  t o '  K r i g ing  t o  ge t  res i s tance  t o  the  
occasional bad value, o r  genera l l y  l o n g - t a i l e d  e r ro rs .  You hear i t  s a i d  
o f  K r i g i n g  t h a t  i t  a l lows f o r  an i n f i n i t e  o r  nonconstant var iance. That 
i s  a b s o l u t e l y . t r u e .  But i t  i s  s t i l l  t r u e  t h a t  i t  i s  a technique t h a t  i s  
designed f o r  use w i t h  Gaussian d i s t r i b u t i o n .  The i n f i n i t e  var iance p a r t  
should n o t  lead one t o  be le i ve  t h a t  i t  i s  good w i t h  s t a b l y  d i s t r i b u t e d  
Cauchy e r r o r s  o r  such. It i s  s t i l l  fundamental ly a  procedure designed f o r  
Gaussian data. 

When you app l i ed  one o f . t h e  smoothing procedures t o  the  raw data be fore  
t a k i n g  the  logar i thm, the  gross d i s p a r i t y  i n  t he  s izes  gave you a  r a t h e r  
uncomfortable amount o f  smearing ou t  o f  the  peak. That gave a  s t r o n g l y  
sloped res idua l  versus smooth p l o t .  I f  you f i t  a  s t r a i g h t  l i n e  t o  t h i s  
p l o t ,  you ge t  a  f u n c t i o n  t h a t  says res idua ls  tend t o  l ook  l i k e  a  l i n e a r  
f u n c t i o n  o f  t h e  smooth values. I f  you then sub t rac t  t h a t  f rom t h e  
res idua ls ,  which i s  equ iva len t  t o  adding i t  t o  the  smooth values, you get  
a  new smooth value wh ich .necessar i l y  g ives you a  zero s lope i n  t h a t  par-  
t i c u l a r  p l o t .  It might  remove a l l  t he  smoothing. I d o n ' t  know. But i t  
does ge t  r i d  o f  t he  slope. 

Eberhardt: We haven ' t  t r i e d  i t  (smoothing) and i t  i s  worth l ook ing  i n t o .  
I do t h i n k  we should say again t h a t  i f  we t rans form t o  logar i thms then 
th ings  smooth o u t  and l ook  p r e t t y  n ice.  I t ' s  j u s t  t h a t  we w i l l  then have 
t o  t a l  k  t o  people i n  terms. o f  logar i thms which we a r e  n o t  always successful  
i n  doing. 

Steck: It o c c u r s . t o  me t h a t  i f  you a re  s a t i s f i e d  w i t h  the  contours then 
you.might  design your  experiment j u s t  t o  f i n d  p a r t i c u l a r  contours. I f  
something l i k e  s tochas t i c  approximations e x i s t  i n  two dimensions, then you 
cou ld  zigzag around on a  contour  and d e f i n e  i t  and then go on t o  a  d i f f e r e n t  
contour.  



Eberhardt: That 's  an i n t e r e s t i n g  idea. One of t h e  th ings  t h a t  we need i s  
a s i t u a t i o n  where t h e  variance i s  n o t  so unreasonable, where the  sampling 
i s  n o t  so expensive, so we can, ge t  more experience w i t h  l a r g e r  samples. 

T i e t j e n :  Perhaps t h e  u l t i m a t e  o b j e c t i v e  i n  l ook ing  a t  t h i s  i s  t o  determine 
where i t  i s  so we can decontaminate the  area where i t  i s  located.  With 
t h a t  i n  mind, I would t h i n k  t h a t  i n  the  per iphera l  area, f o r  instance, one 
would say the re  i s  an upper th resho ld  number o f  counts i n  t h a t  f i r s t  
contour. Consequently, suppose we do n o t  want t o  i n v e s t i g a t e  t h a t  area a t  
a l l ,  b u t  we decide t h a t  t he  c lose - in  area, i n s i d e  a s p e c i f i c  contour, w i l l  
have t o  be cleaned up. I f  we t h i n k  t h a t  there  i s  more plutonium i n  the  
midd le  area than i n  t h e  per iphera l  area, we perhaps should j u s t  move 
toward the  source u n t i l  we ge t  t o  something t h a t  we decide i s  i n t o l e r a b l e .  
We won ' t  i n v e s t i g a t e  t h e  extremes a t  a l l  bu t  s imply see where the  h igh  
contaminat ion begins and where i t  ends, i.e., d iscover what p a r t  has t o  be 
cleaned up. I s  t h a t  an o b j e c t i v e  o f  t h e  u l t i m a t e  experiment? 

Eberhardt: Yes. That i s  one of t he  ob jec t ives .  I h e s i t a t e  t o  take t h a t  
as a pr imary o b j e c t i v e  and t o  sample accordingly.  One o f  t he  t roub les  i s  
t h a t  people have t o  decide t o  what degree they want t o .  clean up an area. 
They would need t o  know t h e  concentrat ions over the  whole f i e l d  t o  f i n d  ou t  
how much d i r t  they would have t o  p i c k  up. How many tons o f  d i r t  would 
have t o  be moved. t o  reach the  100 p c i / g  l eve l ,  f o r  example? You r e a l l y  
need t h e  whole p i c t u r e  before.you make your decis ion.  I f  you are  g iven a 
g u i d e l i n e  t h a t  says go down t o  a c e r t a i n  l e v e l  and t h a t  i s  the  so le  purpose, 
f i n e .  Suppose we go ahead and make a d e c i s i o n . t o  remove s o i l  o u t  t o  a 
s p e c i f i c  contour. We c lean up the  d i r t  ou t  t o  t h a t  p o i n t  and take i t  
away. The f i r s t  quest ion  then asked i s ,  "What contaminated s o i l  d i d  we 
miss i n  the  removal ~ r o c e s s ? "  We.then have r a t h e r  a d i f f e r e n t  sampling 
problem, I am a f r a i d .  One o f  t he  reasons I am worr ied  about t h e  g r i d  
p a t t e r n  i s  t h a t  i t  appears t h a t  t h e  machine, perhaps a grader, t h a t  we use 
t o  c lean up an area w i l l  probably windrow the  d i r t .  I am concerned tha t ,  
when I am now t o l d  t o  come back and again sample t h i s  cleaned-up area, 
those windrows may cause problems. You can take ou t  d i r t  once and go 
back, do another survey and f i n d  t h a t  you d i d n ' t  ge t  i t  a11 and go back 
again, and so on. 

F e r r i s :  You a re  t a l k i n g  about o n l y  tak ing  o u t  the  contaminated s o i l .  
Perhaps a b e t t e r  concept would be t o  con t ro l  t he  contamination. I f  you 
blade i t  and then scoop, you hope t h a t  you w i l l  do t h a t  on a nonwindy day. 
Otherwise the  people downwind may n o t  be as en thus ias t i c  about your  
c lean ing up as you are. L e t ' s  t h i n k  more i n  terms o f  l o c a t i n g  and 
c o n t r o l l i n g  it. I f  t h e  best  way t o  con t ro l  i t  i s  t o  blade it, scoop it, 
and bury i t  o r  whatever, f i n e ,  Otherwise, an aspha l t  path over i t  would 
be b a t t e r .  

Hooper: It seems important,  p a r t i c u l a r l y  where you want t o  t r y  t o  est imate 
d i s t r i b u t i o n ,  t h a t  i n  dec id ing  on a sample p lan  you charac ter ize  the  



source term. I n  a  more complicated s i t u a t i o n  l i k e  Rocky F la t s ,  subs tan t i a l  
amounts o f  ma te r i a l  t h a t  you might  expect t o  f i n d  the re  a r e  the  r e s u l t  of 
a  s i n g l e  d i s c r e t e  i n c i d e n t  i n  t ime, as opposed t o  ma te r i a l  t h a t  was d i s t r i b -  
uted the re  from day t o  day operat ions. If you conclude, based,upon pre- 
l i m i n a r y  analys is ,  t h a t  t he  b u l k  o f  ma te r i a l  i s  due t o  an accident  of some 
k ind ,  then the  micrometeorology a t  t he  p o i n t  o f  t h a t  acc ident  would be 
p r e t t y  compel l ing as f a r  as a  sample p lan  i s  concerned. 

Eberhardt: We do. have advance data on the  s i t e  we have studied, c o l l e c t e d  
w i t h  f i e l d  instruments, which a re  i n s u f f i c i e n t  t o  do the  f i n a l  work bu t  do 
g i v e  us i n fo rma t ion  on the  pa t te rn .  We would a l so  l i k e  t o  know, o f  course, 
much more about d i s t r i b u t i o n ,  as you a re  suggesting. 

Martz:  You mentioned e a r l i e r  i n  your  p resenta t ion  one o f  the  problems 
w i t h  the  moving average i s o p l e t h s  cons t ruc t i on  procedure i s  t he  i n a b i l i t y  
t o  ge t  a  handle on the  var iance associated w i t h  the  i s o p l e t h s  themselves. 
I s  t h a t  c o r r e c t ?  Once enough data a r e  obtained from a  c e r t a i n  p o r t i o n  of 
the  g r i d  t o  e s t a b l i s h  one of these i sop le ths ,  i s  i t  then poss ib le  t o  do 
sampling a long t h a t  i s o p l e t h  t o  v e r i f y  the  q u a l i t y  o f  t he  f i t ?  Do you 
then modi fy  the  f i n e  l i n e  t h a t  you have w i t h  some s o r t  o f  a  band o r  some 
s o r t  o f  a  fuzzy  wide l i n e  t o  represent  the  e r r o r  associated w i t h  these 
contours? S o r t  o f  s e q u e n t i a l l y  sampling i n  t he  sense o f  e s t a b l i s h i n g  the  
accuracy o f  t he  i s o p l e t h s  f i t t i n g  themselves? 

Eberhardt:  That i s  n o t  something we have t r i e d .  I t  apparent ly  i s  p a r t  o f  
t he  geo log i s t s  approach t o  ge t  some s o r t  o f  conf idence measure. What they 
come up w i t h  i s  a  map showing t h e  r e l a t i v e  v a r i a b i l i t y  over t he  f i e l d .  

G r i f f i n g :  I am n o t  sure about t h e  v a l i d i t y  o f  t h i s  nex t  idea. I am 
suggest ing the  p o s s i b i l i t y  o f  coming up w i t h  an i n i t i a l  dens i t y  t o  use i n  
sampling. It may be based on data you a l ready  have o r  on some theory  as 
t o  how the  p a r t i c l e s  m igh t  be released. I f  i t  comes from data, i t  would 
be r a t h e r  g ra iny  l i k e  the  data you presented e a r l i e r .  I n  t h a t  case you 
would smooth t o  ge t  a  dens i t y  func t ion .  Then you would do a  random 
s imu la t i on  o f  a  g r i d  based on the  dens i t y  f u n c t i o n  t h a t  you ge t  from t h i s  
i n i t i a l  knowledge o r  from an idea as t o  where your  p a r t i c l e s  would be. I n  
t he  areas where you thought you would have a  l a r g e r  number o f  p a r t i c l e s  
you would be j u s t  s h r i n k i n g  down your  g r i d .  You wou ldn ' t  be us ing  any 
k i n d  o f  a r b i t r a r y  g r i d  p a t t e r n  l i k e  a  p o l a r  g r i d  o r  rec tangu lar  g r i d .  But 
t h e  g r i d  spacing on t h e  average would be p ropo r t i ona l  t o  t he  expected 
amount o f  p a r t i c l e s  a t  any p a r t i c u l a r  p o i n t .  

Eberhardt:  I t  i s  i n t r i g u i n g  t o  t h i n k  about vary ing  g r i d  meshes over t he  
f i e l d .  I have no idea how I can t r a n s l a t e  t h a t  i n t o  a  r e a l  sampling 
scheme. One t h i n g  t h a t  i n t r i g u e s  me about s imu la t i ng  the  s i t u a t i o n  i s  
t h a t  i t  c o n s t i t u t e s  a  way t o  ge t  some experience w i t h  var ious  schemes. As 

<\ y e t  we know almost no th ing  about the  poss ib le  au to -co r re la t i on  func t i on .  
There i s  a  marked t rend,  which i s  t h i s  h i l l - shaped  concent ra t ion  pa t te rn .  
The very subs tan t i a l  v a r i a t i o n  about t h i s  p a t t e r n  poss ib l y  makes a  " s igna l " .  

' -. 



But  as t o  whether the re  r e a l l y  i s  any r e l a t i o n s h i p  o the r  than t h i s  gradual 
t o  steep change i n  concentrat ion between adjacent samples I do n o t  know. 
Probably n o t  i n  t h i s  case. 

Lohrding: I have wandered around on t h a t  t e s t  s i t e .  One t h i n g  I not iced 
was t h a t  i n  a l o t  o f  areas you have problems where there  i s  very l i t t l e  
vegetat ion.  Where the re  i s  vegetat ion you tend t o  have s o i l  b u i l d i n g  up 
under the  vegetat ion. I s  i t  poss ib le  t h a t  a l o t  o f  t h e  heterogenei ty  i n  
your data i s  due t o  t h e  f a c t  t h a t  you are  c lose t o  sagebrush? Concentrat ion 
o f  p lu ton ium, in  pockets could in t roduce a l o t  o f  t he  variance t o  your data 
i n  l o c a l  areas. I n  o ther  words, maybe your measuring techniques are  too 
good and y i e l d i n g  data which a re  too  good. Perhaps you need t o  be up i n  
t h e  a i r  about 100 f e e t  and be averaging over a much broader area. Then 
maybe t h e  p l o t s  w i l l  be much smoother.~ 

Eberhardt: You are  q u i t e  cor rec t .  There are l i t t l e  "blow sand" mounds 
t h a t  appear under t h e  bushes and the re  are  d i f f e rences  i n  concentrat ion 
associated w i t h  these features.  As Tar as we can t e l l ,  these a rc  no t  
major d i f fe rences.  That i s  one o f  t he  th ings,  again, t h a t  we swept ou t  o f  
s i g h t  so as t o  g e t  t o  t h e  c e n t r a l  i ssue here. 

Conover: I t  i s  the  c e n t r a l  i ssue t h a t  I was wondering about. I f  your 
c e n t r a l - i s s u e  i s  one o f  inventory,  as you have o r i g i n a l l y  stated, then i t  
seems na tu ra l  t o  want t o  sample much more h e a v i l y  i n  areas where concen- 
t r a t i o n  i s . h i g h e r ,  much more so than what was ind ica ted.  Also i t  would 
seem na tu ra l  t o  g i ve  the  person c o l l e c t i n g  t h e  sample a c e r t a i n  amount o f  
leeway i n  the  way o f ,  say, w i l d  card samples. As he goes from one s p e c i f i e d  
spot  t o  another, i f  he f i n d s  a l i k e l y  s i t e  f o r  h igh  concentrat ion he 
should have t h e  a u t h o r i t y  t o  take an ex t ra  sample now and then and mark i n  
some way.where t h i s  was obta ined i n  an e f f o r t  t o  o b t a i n  an accurate inventory.  
F i n a l l y ,  as was po in ted.out ,  he shou1d.state the  covar ia tes  t h a t  a re  
ava i l ab le .  Th is  i s  cheap informat ion.  What i s  the  t e r r a i n  l i k e  where he 
o b t a i n e d ' h i s  sample? Are the re  some p e c u l i a r  c h a r a c t e r i s t i c s  t h a t  would 
i n d i c a t e  t h a t  t h i s  might  tend t o  be an area o f  h igh  o r  low concentrat ion? 
As long as t h i s  i s  cheap informat ion,  why n o t  w r i t e  i t  down? 

Eherhardt: Covariates we. have used are  i n  the  form o f  FIDLER instrument 
measurements. It i s  n o t  q u i t e  good enough t o  do a double sampling k ind  o f  
job, i .e. ,  t o  use a cheap f i e l d  inst rument  and expensive l abo ra to ry  
determinat ions together  t o  ge t  a b e t t e r  i nven to ry  est imate. There i s  an 
in termedia te  stage i n  which we use a l abo ra to ry  c r y s t a l . t o  make a qu ick  
determinat ion r a t h e r  than going through the  chemistry. So.we have looked 
a t  double-sampling, b u t  again I p u t  i t  aside f o r  t he  presenta t ion  here. I 
would indeed l i k e  t o  see a good theory  o f  adapt ive s t r a t i f i e d  o r  o the r  
optimum sampling f o r  inventory.  I won't, from b i t t e r  experience, l e t  t he  
f i e l d  man make decis ions i n  q u i t e  the  way yoii have suggestierl, b u t  1 t h i n k  
we should consider t h a t  p o s s i b i l i t y  i n  o the r  contexts. 

L e t  me r e i n f o r c e  t h e  i nven to ry  po in t .  We use an o b j e c t i v e  o f  " inventory"  
bccause t h a t  i s  t h e  one loud and c l e a r  t h i n g  we could ge t  from the  people 



who were respons ib le  f o r  t h i s  whole e f f o r t .  We used s t r a t i f i e d  random 
sampling w i t h  optimum a l l o c a t i o n  which does indeed p u t  most o f  the  e f f o r t  

Q i n  the  h igh  concent ra t ion  areas. But, as an af ter thought ,  we began t o  
wonder, " I s n ' t  t he re  another way. to  l o o k ' a t  t h i s ? "  What I would l i k e  t o  
see i s  a c l e a r  c u t  theory  f o r  sampling fo r  p a t t e r n  on one extreme, w i t h  
t h e  e x i s t i n g  theory  o f  survey sampling on the  o ther  s ide,  because I know -*, 
f u l l  w e l l  t h a t  i n  t he  n a t u r a l  f i e l d  s i t u a t i o n  we a re  going t o  have a mixed 
bag o f  ob jec t i ves  and we w i l l  be fo rced t o  compromise. But i t  would be 
n i c e  t o . l o o k  a t  t h i s  o the r  business as a model on one extreme t o  he lp  i n  
judg ing  the  r i g h t  l e v e l  o f  compromise. 

Ze ig le r :  I am cur ious  because of an i n c i d e n t  t h a t  happened no t  t oo  long 
ago a t  Los Alamos. We found a few p a r t i c l e s  o f  p lutonium over i n  t he  
towns i te  area t h a t  was poss ib l y  from some t ime long ago. As a consequence 
o f  t h i s ,  we were surveyed by a low f l y i n g  he1 i c o p t e r  w i t h  on-board 
de tec t i on  equipment. I am cur ious  if such equipment has been used i n  
e i t h e r  t he  Nevada t e s t  s i t e  o r  Rocky F l a t s .  Th is  i s  a very  good smoothing 
type o f  inst rumentat ion.  When you go over these areas, i t  tends t o  smooth 
the  data because you a r e  seeing an area on t h e  ground, r a t h e r  than a p o i n t  
source. Secondly, i f  such surveys have been made, how do they c o r r e l a t e  
w i t h  the  ground data? I would t h i n k  t h a t  i n  t he  l ong  run  i t  would be much 
cheaper and much more d e s i r a b l e  t o  do an a i rbo rne  survey than a-ground 
survey. 

Eberhardt: A i rborne surveys have been used a t  the  Test S i t e  and a t  Rocky F l a t s .  
There a r e  a l l  s o r t s  o f  in te rmed ia te  stages, s t a r t i n g  w i t h  our  FIDLER 
instrument,  moving up t o  a much l a r g e r  f i e l d  i n t e g r a t i n g  instrument,  and 
on t o  the  a e r i a l  array.  A l l  o f  these i n t e g r a t e  and show n i c e  contour 
pa t te rns .  I c a n ' t  answer accura te ly  as t o  the  c o r r e l a t i o n s  between those 
and the  ground samples where we took d i r t  and d i d  a chemist ry  ana lys is .  
For t he  FIDLER, t h e  c o r r e l a t i o n s  were good b u t  n o t  good enough t o  be the  
o n l y  t h i n g  we looked a t  be fore  p r e d i c t i n g  inventory .  C e r t a i n l y  we need t o  
1 ook more a t  t he  i n t e r r e l  at!onships between var ious  scans. 

G i l b e r t :  .The FIDLER in teg ra tes  and i s  he ld  a f o o t  above the  ground. The 
c o r r e l a t i o n s ,  which Eberhardt i n d i c a t e d  were n o t  very  good, a re  between the  
FIDLER and a 10 gram sample o f  s o i l  loca ted  underneath the  FIDLER's c r y s t a l .  
In a ho t  p a r t i c l e  s i t u a t i o n  you wou ldn ' t  necessar i l y  expect a very good 
c o r r e l a t i o n  w i t h  t h a t  con f i gu ra t i on .  I am n o t  q u i t e  sure what we want t o  
1 o o k . f o r  there. J u s t  because you d o n ' t  ge t  a good c o r r e l a t i o n  doesn ' t  
mean you ' c a n ' t  ge t  a reasonably good est imate o f  the  surface. 

Eberhardt: Techn ica l l y ,  t h e  p a r t i c l e  problem i s  an important  f a c e t  o f  the 
p a r t i c u l a r  problem we a r e  t a l k i n g  about here, i.e., surveys f o r  r a d i a t i o n .  
It should even tua l l y  be brought i n t o  the  theory  we a re  t a l k i n g  about here. 

Zeigler: The de tec t i on  equipment t h a t  I am f a m i l i a r  w i t h  use most ly  gamma 
type scans. Gammas penet ra te  q u i t e  a d is tance through the  atmosphere and 
the  energy l e v e l s  can cover a wide range. Some o f  t he  de tec t i on  equipment 
t h a t  we have looked a t  have a i rbo rne  computers w i t h  ana log - to -d ig i t a l  



devices on the  a i r c r a f t  i t s e l f .  You can ge t  a complete spectrum on t h a t .  
W i  t h  a he1 i copter,  you can. hover i f  .you have to .  

E l  lesson: I t  seems t o  me we .are  fa1 1 i n g  v i c t i m  t o  the  tyranny o f  exactness. 
I d o n ' t  t h i n k  you r e a l l y  need t o  know as much as our comments ind ica te .  
A very coarse g r i d  may be more than you w i  11 need t o  develop the  k ind  o f  
contours t h a t  w i l l  a l l o w  t h e  f i e l d  man t o  make the  type o f  dec is ion  he i s  
going t o  make. You d o n ' t  have t o  have every l i t t l e  w r i n k l e  i n  there. He 
i s  n o t  going t o  d i r e c t  t h e  bu l ldozer  t o  leave t h a t  sagebrush and take t h i s  
one. He i s  going t o  go 'ou t  t he re  and c u t  a very broad swath. Unless you 
a re  es t imat ing  the  t o t a l  amount, the  p ropor t i ona l  Neymann a l l o c a t i o n  o f  
samples may n o t  be app l i cab le  t o  d i s t r i b u t i o n a l  es t imat ing  s ince they were 
designed f o r  es t ima t ing  mean values. As soon as you leave es t imat ing  
procedures l i k e  tha t ,  s t r a t i f i c a t i o n  comes under some quest ion. 

Eberhardt: I would l i k e  t o  comment on t h e  need t o  be c a r e f u l  i n  our use +.... .....,.... .... ,, -- 
o f  t h e  w o ~ d  "cleanup". We were talking here as i f  we wetqe a c t u a l l y  c leaning 
up an area. What we a re  doing i s  tak ing  d i r t  conta in ing  plutonium, haul ing 
i t  someplace e lse,  and perhaps .burying i t  a 1 i t t l e  deeper. If we must 
remove plutonium from t h e  sur face s o i l  i n  a p a r t i c u l a r  place, I would l i k e  
t o  do t h a t  w i t h  a very  minimum o f  d i r t  t h a t  would c reate  a problem somewhere 
e lse.  There i s  a need f o r  r e a l  accuracy i n  our work. 

Martz: One t h i n g  we t a l k e d  about a moment ago i s  a l t e r n a t i v e  ways t o  
analyze data t h a t  we might  ge t  from an experiment such as t h i s .  I n  regression 
ana lys is ,  i f  I had two design var iab les  xl and x2, and sample po in ts  over 
a g r i d  i n  two dimensions on t h e  surface, I would consider  t h a t  t o  be a 
p r e t t y  h o t  dog experiment. Are the re  any advantages t o  us ing regression 
ana lys i s  as a t o o l  i n  f i t t i n g  surfaces t o  descr ibe the  amount o f  observed 
plutonium? One o f  t h e  problems t h a t  we ta l ked  about e a r l i e r  w i t h  moving 
average procedures i s  t h a t  o n l y  neighboring p o i n t s  g i ve  r i s e  t o  the  surface. 
I n  regression ana lys i s  you have a l l  data po in ts  support ing each o ther  i n  
some sense p lus  the  o the r  advantages o f  variances and so f o r t h .  Has there  
been any experience w l t h  drawing these contours from f i t t e d  regression 
curves based on t h i s  much data? You would t h i n k  t h a t  they would be p r e t t y  
good. 

Eberhardt: We should say we d o n ' t  have an absolute measure' o f  e i t h e r  
quan t i t y .  I f  you t h i n k  o f  regression i n  the  sense o f  chemical determinat ion 
o f  s o i l  plutonium, which has e r ro r ,  and the  r a d i o l o g i c a l  reading w i t h  a 
f i e l d  instrument, then I might rephrase what you are  saying i n  the  sense 
o f  a l i n e a r  combination o r  a weighted combination o f  t he  two sources, one 
much cheaper than t h e  o ther .  That i s  an i n t e r e s t i n g  -idea. We had used 
regress ion i n  the  sense o f  double' sampl i nq f o r  inventory  . 

Martz: I was j u s t  t h i n k i n g  o f  simply regressing the  observed amount of 
p lutonium versus t h e  l ong i tude  and l a t i t u d e  o r  whatever the  coordinate 
measures are f o r  l o c a t i o n  o f  where the  sample was taken. 



Eberhardt: You run  o u t  on a  p o l a r  ray.  I t ' s  worth l ook ing  i n t o .  

I ' Tukey: I w i l l  begin by responding t o  a  l i t t l e  o f  t h i s  l a s t  d iscussion.  
Our l o v e l y  six-degree polynomial t h a t  went swooping up i n t o  the  sky i s  
what happens when you regress th ings  on simple func t i ons  o f  xl and x,. 

‘Z The good t h i n g  about t he  l o c a l  methods i s  t h a t  they a re  l o c a l  and you 
c a n ' t  be ru ined  by i r r e l e v a n t  data somewhere e lse.  And i f  you d o n ' t  know 
what the  shapes o f  t h ings  ought t o  be, f i x i n g  the  func t i ons  i n  advance i s  
l i k e l y  t o  g e t  you i n  j u s t  t h a t  t roub le .  

I have about t h ree  d i f f e r e n t  se ts  of t h ings  t o  say. One o f  these invo lves  
the  p a t t e r n  problem. I would c e r t a i n l y  want t o  work on a  l oga r i t hm ic  
bas is .  I d o n ' t  see any excuse f o r  n o t  us ing the  logar i thm. It seems t o  
me t h a t  most o f  t he  decis ions you make go t h a t  way, t he  chemist ry  goes 
t h a t  way, t he  f i n i t e  . p a r t  o f  the  b io logy  goes t h a t  way, and maybe even 
some o f  t h e  physics goes t h a t  way. Nothing goes i n  l i n e a r  conce,ntrat ion 
t h a t  I know o f  except i nven to ry ing  t o  f i n d  how much t o t a l  i s  there.  This  
i s  most ly  a  minor problem and c e r t a i n l y  i s  n o t  very o f t e n  a  h igh  p r e c i s i o n  
problem, unless you are.  supposed t o  i nven to ry  how much i s  t he re  and then 
determine whether one percent  o r  t h ree  percent  blew away. I n  which case 
you have my sympathy. 

I t h i n k  we need t o  make a  d i s t i n c t i o n  between the.processes o f  smoothing 
o r ,  i f  you have data a t  i r r e g u l a r  po in t s  and a re  recover ing  something a t  
t he  good po in ts ,  which i s  r e a l l y  a  smoothing procedure. We're separat ing 
t h a t  from contour ing.  You can deal w i t h  them somewhat separate ly .  There 
i s  a  very major i ssue here about a  r e p e t i t i v e  approach. For anyth ing t h a t  
i s  as vigorous and as r e l a t i v e l y  w e l l  behaved as what you have here, i t  
seems t o  me t h a t  i t  i s  very d i f f e r e n t  than some o f  t he  th ings  I have seen 
i n  geo log ica l  mapping.. It i s  wrong t o  expect anybody's procedure t o  work 
on a  once-through basis.  What you want t o  do i s  go once through, smooth 
t h a t ,  and then come back and work on e i t h e r  the  d i f f e r e n c e  o r  the  r a t i o .  
I f  you a re  i n  logar i thms you would, o f  course, use d i f f e rence .  I n  ac tua l  
u n i t s ,  you would almost c e r t a i n l y  use r a t i o s ,  which i s  another reason f o r  
t a k i n g  logar i thms.  I n  o the r  words, now you a re  i n  a .p lace  where you can 
do your  choice, say two times. 

L e t ' s  consider  another major po in t ;  i .e., t he  FIDLER versus the  ana lys is .  
You were saying t h a t  you d i d n ' t  t h i n k  t h a t  t he  FIDLER was good enough f o r  
t he  double sampling. Now I am n o t  q u a r r e l i n g  w i t h  t h a t  i f  you want t o  do 
inventory .  But i f  you want t o  do p a t t e r n  I t h i n k  you missed a  very l a r g e  
oppor tun i ty .  What i s  t h e  r e l a t i v e  cos t  o f  FIDLER measurement.versus an 
ana lys i s?  I would argue t h a t  t he  e f f i c i e n t  way t o  do t h i s  s o r t  o f  t h i n g  
would be t o . g o  o u t  and do the  FIDLER measurements and smooth the  FIDLER 
measurements i n  a  good way. That i s  going t o  r e q u i r e ,  r e p e t i t i o n .  Other- 
wise you p u l l  t he  very s k i r t s  up as you a re  very w e l l  aware. Then go i n t o  

-I , the  f i e l d  where t h e  purpose of t he  wet ana lys i s  i s  t o  ge t  t h e  r a t i o  o f  t he  
ana lys i s  t o  the  smooth FIDLER measurements. L e t  me do a  one dimensional 
ve rs ion  o f  t h i s .  We go o u t  and we ge t  a  l o t  o f  FIDLER measurements and 



they  l ook  as shown i n  F igure  A. I am on a l o g  scale so they d o n ' t  look  so 
h o r r i b l e  as they  would otherwise and they a r e n ' t  as h o r r i b l e .  I w i l l  
smooth them w i t h  some bas i s  o r  other .  

I now go o u t  and ge t  a few a n a l y t i c a l  measurements such as the  dots i n  
F igure  A. I should be l ook ing  a t  how these compare w i t h  the  smoothing I 
have o f  t h e  FIDLER measurements. So I smooth the  a n a l y t i c a l  measurements 
(F igure  B ) .  Then I can p u t  the  two together.  Ins tead o f  us ing  the  FIDLER 
as a cova r ia te  afterwards, I am e s s e n t i a l l y  us ing i t  as a reference base 
f rom which t o  make my measurements. As long as t h i s  i s  a good s e t  o f  
samples and I have a decent process f o r  reducing th ings ,  I can take advantage 
o f  every th ing  t h e  FIDLER measurement has t o l d  me about t he  s t ruc tu re .  Now 
when I come back, I probably w i l l  have t o  deal w i t h  th ings  r e p e t i t i v e l y  
again, I f  you have anyth ing decent ly  s t ruc tured,  you cannot expect anybody's 
a n a l y t i c a l  techniques t o  do a good j o b  on one pass, w i t h  the  poss ib le  
except ion  o f  some Kr ig lng  techrllques. 

FIGURE A 

FIGURE B 

On t h e  quest ion  o f  g r ids ,  I d o n ' t  see any reason why I shou ldn ' t  use an 
e l l i p t i c a l  p o l a r  g r i d  here. These are  supposed t o  be concent r ic  e l l i p s e s  
whatever they l o o k  l i k e .  When I want t o  contour, I am going t o  be p e r f e c t l y  (+ 
happy t o  contour  as i f  i t  were rec tangu lar ,  sub jec t  t o  t he  f a c t  t h a t  I 
have gone around t h e  c i r c l e  by going on ou t  and repeat ing  the  measurements 
on each side. I am p e r f e c t l y  w i l l i n g  t o  use t h e  sur face program on p o l a r  v \ 

I 



o r  e l l i p t i c a l  g r i ds ,  t e l l  i t  i s  a  rec tangu lar  g r i d  and t e l l  i t  t o  go and 
do the  bes t  i t  can. And then I can always make a  change o f  coord inates.  
I t  seems t o  me t h a t  I have t o  expect t o  make a  p r o f i t  ou t  o f  doing t h i s .  
The d is tances t h a t  n a t u r a l l y  come i n t o  most o f  these programs ought n o t  t o  
be ground d is tance.  They ought t o  t ake  account o f  what i s  going on. I f  
from FIDLER measurements you t h i n k  an e l  1  i p t i c a l  t h i n g  i s  going t o  be 
reasonable, then you have t o  say t h a t  moving across concent r ic  e l l i p s e s  i s  
moving a  l ong  way b u t  moving around i s  n o t  very much. Instead o f  drawing 
e l l i p s e s ,  what I should probably be t e l l i n g  the  contour ing  device i s  t h a t  
I have go t  c i r c u l a r  pa t te rns .  This  gets repeated on each s ide  as I go 
round and round the  c i r c l e  and t h e  d is tance around the  c i r c l e  i s  shor t ,  
b u t  t he  d is tance o u t  r a d i a l l y  i s  long. I want th ings  t o  be analyzed i n  
t h a t  way. I f  I go t o  random a l l o c a t i o n  w i t h i n  s t r a t a  o r  w i t h i n  c e l l s  o r  
something l i k e  tha t ,  I have i r r e g u l a r  l oca t i ons .  I want to  ge t  t h a t  
washed out.  The nature  o f  t he  atmosphere, f o r  example, i s  v e r j  an i so t rop i c .  
Things i n  t he  atmosphere change much more r a p i d l y  going up than going 
sideways. I f  you want t o  d i v i d e  the  atmosphere i n t o  c e l l s ,  they have t o  
be shaped 1  i k e  pancakes. I am saying t h a t  i f  you want t o  d i v i d e  t h i s  area 
i n t o  c e l l s  they would tend t o  be long pieces o u t  o f  e l l i p t i c a l  annulae. 
That i s  t he  sens ib le  way t o  d i v i d e  i t  i n  terms o f  what you want t o  understand 
about the  th ings  from t h e  p r e l i m i n a r y  approach. L e t ' s  c e l l u l a t e  i t  t h a t  
way and take advantage o f  a l l  we know. And a l so  l e t ' s  make use o f  a  
p re l im ina ry  f i t  and work w i t h  the  co r rec t i ons  t o  the  p re l im ina ry  fit. The 
p re l im ina ry  f i t  doesn ' t  have t o  be r i g h t .  As long as i t  i s  b e t t e r  than a  
constant  you w i l l  probably do a  b e t t e r  j o b  o f  ana lyz ing  th ings  o v e r a l l  if 
you deal w i t h  the  d i f f e rences  from the  p re l im ina ry  f i t. I am sure t h a t  
what the  smooth FIDLER values w i l l  g i v e  you i s  a  darn s i g h t  b e t t e r  than a  
constant  i n  terms o f  p r e d i c t i n g  what the  p lutonium s i t u a t i o n  w i l l  be. 

A word o r  two about Kr ig ing .  There e x i s t s  two books by a  Frenchman named 
Matheron. I c a n ' t  quote the  t i t l e s .  But t h a t  ought t o  be enough t o  ge t  
you moving. Don ' t  take  the  s t r u c t u r e  o f  these books too  se r ious l y .  It 
r e f l e c t s  t h e  s t r u c t u r e  o f  French science and n o t  the  t r u e  s t a t e  o f  a f f a i r s .  
If you a re  t o  be a  l e g i t i m a t e  s c i e n t i s t  i n  France, you must have l o t s  o f  
theory  and h igh  powered mathematics. So you w i l l  f i n d  these books t a l k  
about h igher  o rder  s t a t i o n a r y  processes and so on f o r  12 chapters. I n  the  
l a s t  two o r  th ree  chapters you ge t  some o f  the  meat. I t h i n k  the  un iversa l  
K r i g i n g  more o r  l e s s  i s  f o l l o w i n g  Matheron's l i n e s ,  b u t  d o n ' t  f e e l  t h a t  
you have t o  have the  h igh  powered machinery i n  o rder  f o r  i t  t o  be usefu l  
t o  you. If you have i r r e g u l a r  po in ts ,  then l e t  me r e q u i r e  t h a t  I w i l l  n o t  
make an e r r o r  i f  these p o i n t s  l i e  p e r f e c t l y  on a  plane. I f  the  data 
p o i n t s  l i e  p e r f e c t l y  on a  plane, I would n o t  l i k e  t o  make an e r r o r .  
Subject  t o  t h a t  and sub jec t  t o  what t he  semivariogram says on how d i f f e rences  
go w i t h  d is tance,  then I w i l l  t ry  t o  do the  bes t  I can. But saying , t ha t  I 
r e q u i r e  the  planes t o  behave proper ly ,  o r  conceivably quadra t ic  surfaces, 
takes an awful l o t  o f  po in ts .  I am now a l l ow ing  f o r  l a r g e  sca le  t rends 
which are  n o t  i n  any sense s t a t i o n a r y  and separat ing these slow changes 
t h a t  c a n ' t  be s t a t i o n a r y  i n  many problems. They c a n ' t  be s t a t i o n a r y  i n  
yours. You've go t  one h igh  h i l l  and the re  a r e n ' t  any o thers  around. But 



i t  might  be t h a t ,  i f  you take  ou t  t h a t  h igh  h i l l ,  t he  o the r  ya r i a t i ons ,  
p a r t i c u l a r l y  i n  t h e  logar i thm,  might  be 'reasonably s ta t i ona ry .  The 
variogram p l o t s  'an average o f  y i  - y.  aga ins t  t he  d is tance between these 
two th ings .  I t ' s  a  common t h i n g  tci#ind s i t u a t i o n s  t h a t  behave l i k e  t h i s  - 
where t h e  variogram does n o t  s t a r t  f rom 0. This  i s  the  s o r t  o f  h o t  p a r t i c l e  
problem. The jump a t  t h e  o r i g i n  i s  t he  c o n t r i b u t i o n  t o  variance t h a t  you 
g e t  i f  you take  another 10 gram sample nex t  t o  t h i s  one. And t h a t  may be 
fa i r l y . . ' l a rge . .  I t  seems t o  me the  c o r r e c t  p i c t u r e  here i s  t he  variogram 
p i c t u r e  t h a t  i s  associated w i t h  one cif your  hypotheses. 
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