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tigensystem Compuiation for Skew-Symmetric
Matrices and a Class of Symmetric Matrices

R. C. Nard
L. J. Gray

ABSTRACT

Ve present an algoritim for computing the eigenvalues and
(optionally) the eigenvectors of either a skew-symmetric matrix
or a symmctric triciagonal matrix with constant diagonal. The
algorithm uses only orthogonal similarity transformations and is
believed to be the mos: efficient algorithm available for computing
all the eigenvalues or the complete eigensystem.
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1. INTRODUCTION

In this paper, we consider the problem of computing the eigenvalues
and eigenvectors of a skew-symmetric matrix. As these matrices occur
in model calculations in nuclear physics, this question is of practical
interest. Paardekooper [4] has presented a Jacobi-like algorithm which,
like the Jacobi method, is elegant but somewhat inefficient. The
method that we will discuss makes full use of the constant (zero) main
diagonal.

Our method, after transforming to a tridiagonal system, is based
upon a technique due to Golub [1]. This algorithm is designed for a
matrix of dimension 2m x 2m; however, it is easily seen that a skew-
symnetric matrix whose dimension is odd has zero as an eigenvalue. We
oive a method, based upon Givens transformations, for eliminating this
eigenvalue, and thus reducing the dimensicn of the matrix to an even
number.

One of the main advantages of this approach is the observation
that the eigenvector matrix is half sparse. This results in significant
savings over alternative algorithms. We also point out that this
procedure can be applied to another class of matrices; namely, symmetric,

tridiagonal matrices with a constant main diagonal.

2. DESCRIPTION OF ALGORITHMS

We now describe a three routine package for computing all tne
eigenvalues and, optionally, all the eigenvectors of a full skew-

symmetric matrix or of a tridiagonal symmetric matrix with a constant
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diagonal. The three subroutines and their functions are given below:

TRIZD--transforms an arbitrary real skew-symmetric matrix to
skew-symmetric tridiagonal form using orthogonal similarity trans-
formations and saving the pertinent information about these trans-
formations.

IMZD--computes the eigenvalues and, optionally, the eigenvectors
of a symmetric tridiagonal matrix with zeros on the diagonal or of a
skew-symmetric tridiagonal matrix.

TBAKZD--computes the eigenvectors of an arbitrary real skew-
sysmetric matrix by back transforming the eigenvectors of the cor-
responding skew-symmetric tridiagonal matrix determined by TRIZD.

Subroutines TRIZD and TBAXZD are straight-forward adaptations of
procedures TRED1 and TRBAK1 [3] which accomplish similar functions for
arbitrary real symmetric matrices. Thus, we provide a listing of all
three routines in the appendix, but we will confine our discussion to
the subroutine IMZD.

The algorithm coded as subroutine IMZD has three basic ideas.
First, a matrix of size 2m + ) is deflated to a 2m x 2m matrix by
removal of a zero eigenvalue. Second, the eigenvalue problem for the
2m x 2m matrix is looked at as a singular value problem for anm x m
bidiagonal matrix. Finally, it is recognized that the eigenvector
matrix has a simple zero-non-zero structure.

IMID determines the eigenvalues and eigenvectors of a n x n

tridiagonal matrix Tn(_t) defined by:
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The matrix Tn(-) is skew-symmetric and can be orthogonally
transformed into a matrix consisting of the direct sum of 1x)
and 2 x 2 blocks. The I1x1 blocks correspond tc zero eigenvalues and
the 2 x 2 blocks are skew-symmetric and correspond to a non-zero
pair of purely imaginary complex conjugate eigenvalues. The matrix
T(+) is symmetric; however, iT(+) is skew-hemitian. Thus, Tn(+) can
also be orthogonally transformed into a matrix consisting of the
direct sum of 1x1 and 2 x 2 blocks. The Ix} blocks again correspond
to zero eigenvalues and the 2 x 2 blocks are symmetric and correspond
to a non-zero pair of real eigenvalues of equal magnitude but opposite
sign. The eigenvalues of a symmetric, tridiagonal matrix with a
constant main diagonal, i.e., Tn(+) + gl, are easily obtained by adding
o to the eigenvalues of Tn(+).

We will assume throughout the remainder of this paper that
3 7 0 for 2 <1 < n since the eigenvalue problem can always be
partitioned into subproblems corresponding to matrices with this
property. Thus, Tn(:) has exactly one zero eigenvalue if n is odd

and all non-zero eigenvalues if n is even.
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2.1 Zero Eigenvalues

If n is odd, the algorithm begins by transforming T"(i) into the
direct sum of a T__,(+) matrix and 2 1x1 zero block. To illustrate

this finite process, consider the matrix T,(_t):

g O as

Applying a Givens orthogonal similarity transformation (plane rotation
[S. pp. 47-48]) to the fifth and seventh rows and columns to annihilate
ay and +a;, we obtain the matrix:

SRS X RN

iy Wy



Appiying a Givens similarity transformation to the fourth and seventh

rows and columns to annihilate x and +x, we obtain the matrix:

0 az ]
4a; 0 ajy y
2 0 ay
Wa, 0 as

+y 0

Finally, a Givens s‘milarity transformation applicd to the second and
seventh rows and columns annihilates y and +y to obtain the desired
mtrix. It is obvious from the above example that we need not apply
the transformations to both the rows and columns since they act on
disjoint sets of non-zero elements and they preserve symmetry and
skew-symmetry. Therefore, in general, this process requires the
computation and application of (n-1)/2 Givens' transformations resulting
in 5(n-1)/2 multiplications, (n-1) divisions, (n-1)/2 additions, and
(n-1)/2 square roots.

2.2 Eigenvalues of Tn(ﬂ for n Even

In the previous section, we showed that the matrix for the eigen-
value problem can always be reduced to an even ordered matrix. This
section discusses the reduction by similarity transformations of Tn(f_)

to a matrix En(_t) defined by:
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0 Ay
+#$; 0
0 )
#$, 0
En(i’)i
0 XnIZ
L Y2 0 |

The eigenvalues of Tn(o) are then easily recognized as :Ak and the

eigenvalues of T,(-) are #ix, .
Golub [1] states that the eigenvalues of Tn(+) are +), where )

is a singular value of the bidiagonal matrix J defined by:

Qg
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The QR-type iteration found in the singular value decomposition
algorithm (Golub and Reinsch [2]) can then be used to find the singular
values of J and thus, the eigenvalues of Tn(+). Similarly, the eigen-
values of Tn(-) are i times the + singular values of J. Therefore,
this segment of the algorithm reduces to performing the singular value
QR-type iteration on the matrix Tn(j). To illustrate one such iteration,
consider the matrix Ts(:) after the initial Givens orthogonal similarity

transformation which entcsrs the shift information has been applied. It

has the form:
l..0 a3 x 7
hart: 0 a3
+a) 0 x.
X +a, 0 as
Yas 0 ag
L Yag 0 .

Applying another Givens similarity transformation to annihilate x and +x,

we have:
[0 az 7
+a2 0 o) y
+a3 0 oy
s 0 as
+y +ag 0 ag
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Applying a third Givens similarity transformation to annihilate y and

ty, we have:
0 a3 -
3 C o
*af 0 ay z
oy 0 as
tas 0 ag
+ i 0
. .

Finally, a Givens similarity transformation applied to the fourth

and sixth rows and columns to annihilate z and +z completes the
iteration. Again, it is obvious that we need not apply the trans-
formations to both the rows and columns. Therefore, one iteration
requires the computation and application of n-2 Givens transformations
resulting in 5(n-2) multiplications, 2(n-2) divisions, (n-2) multipli-
cations, and (n-2) square roots.

From Golub and Reinsch [2] and Wilkinson [6], we know that the
singular value QR-type iteration converges globally and almost always
cubically. Thus, the matrix Tn(i) converges under this iteration to
the desired matrix En(i) consisting of the direct sum of 2 x 2 blocks.

2.3 Computation of the Eigenvector Matrix

The algorithn has an option for returning to the user the
eigenvectars of the matrix Tn(i)' The three steps for computing these

eigenvectors are described in this section. In addition, we briefly
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explain the method of computing the eigenvectors of an arbitrary
skew-syrmetric matrix and why this method is preferred.

The first step in computing the eigenvectors of Tn(t) involves
determining the correct diagonal matrix used to accumulate the Givens
transformations. The first Givens transformation in IMZD is applied to
the rows of Tn(t)- tne second to the columns, the third to the rows,
etc. Therefore, the matrix elements of interest are a;, *ai, a,, *us,

--» @ . Since TRIZD returns the lower subdiagonals of Tn(-), the
alyorithm requires these elements as input. Thus, the matrix elements
of interest are given as input for Tn(+), but they are not given as
input for Tn(-). To rectify this problem, we perform a diagonal
similarity transformation on Tn(') where the diagonal elements ds;

are given by:

Oorl (mod 4)

Q.
"
—
¢
—
-
-
-
"

ii )1 if i=2or3 (mod 4)

Therefore, the matrix elements of interest for both Tn(+) and Tn(') are
the subdiagonal elements. The diagonal matrix used to accumulate the
Givens transformations for Tn(+) is the identity matrix and for T“(-)
it is the diagonal matrix defined by dii above.

The second step in computing the eigenvectors of Tn(i) jnvolves
accumulating the Givens transformations. By analyzing this particular
iteration, one can reduce by a factor of 2 the number of operations
which are no‘rmally required for accumulating Givens transformations

in eigenvalue problems. Since only alternate columns are combined in

P T
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. the accumylation and since the accus:lation matrix was initially diagonal,
we observe that the final accumulation matrix is 1/2 sparse and has the

form illustrated below on an 6 x 6 matrix.

(o SaITS TR T2 DO

x 0 x 0 x 0]
0 x 0 X 0 X
g X 0 x 0 3 0
b 0 X 0 X J x
x 0 x 0 b3 0
10 x 0 X 0 X

Thus, the algorithm only has to recompute every other element in each
- column as it accumulates the transformations. The number of operations
per iteration required for this accumulation is (2n2-4n) multiplications

and (n2-2n) additions.

If the matrix was skew-symmetric, i.e., Tn(-), we easily observe
that the real and imaginary parts of the eigenvector corresponding
to iAk in En(-) are found in the kth and (k+1)th columns, respectively,
of the accumulated transformation matrix. Since complex conjugate
eigenvalues have complex conjugate eigenvectors, the eigenvector
corresponding to -i\k is also easily obtainable from the kth and (k+1)th

columns. However, we must perform a third and final step if the eigen-

vectors of Tn(+) are desired. From the form of En(+), we observe that
the eigenvector for A is the sum of the kth and (k+1)th cclumns of
: the accumulated transformation matrix. The eigenvector for -k is given

by subtracting the (k+1) column from the kth column. Due to the structure



12

of the accumulation matrix, these eigenvectors can be stored in the
kth and (k+1)th colusn, respectively, by replacement instructions.

To compute the eigenvectors of an arbitrary skew-symmetric matrix,
our package transforms the eigenvectors of the tridiagonal skew-
symmetric matrix rather than using the accumslated TRIZD transformation
matrix in IMZD. This is different from the standard practice as
represented by the codes in Wilkinson and Reinsch [7]. If we assume
that two iterations are required to determine each eigenvalue, an
nperation count analysis indicates that the technique of only accumulating
the transformations in IMZD and then transforming them in TBAKZD requires
a total of 3 1/2 n3 + O(nz) operations (counting both additions and
multiplications). The technique of giving IMZD the accumulated trans-
formation matrix from TRIZD and accumulating the IMZD transformations

3, O(nz) operations. Thus, substantial

in this matrix requires 4 1/3 n
savings result even when this very conservative estimate for the number

of iterations required to determine each eigenvalue is used.

3. TEST RESULTS

Subroutines TRIZD, IMZD, and TBAKZD have been tested extensively
on the IBM 360/91 computer at Qak Ridge National Laboratory using
double precision arithmetic (approximately 16.8 decimal digits). In

this section, we present the results of some of these test cases.
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Test Case A:
[0 1 o -5 0o o0 o 7]
-1 0 0 0 S 0 -2 0
0 0 0 0 -2 -1 5 0
) 5 0 0 0 -1 -2 0 0
b 0 -5 2 1 0 0 0 0
0 0 1 2 0 0 0 -5
0 2 -5 0 0 0 0 1
-2 0 0 0 0 5 -1 0

The eigenvalues are +2i, +4i, +6i, and +#8i. Table 1 presents
the eigenvalues computed by IMZD after A was transformed to tridiagonal
form by TRIZD. The eigenvectors were also computed in IMZD and trans-
formed to the eigenvectors of A by TBAKZD. These computed eigenvectors,

similar to the eigenvalues, were accurate to the sixteenth decimal digit.

Test Case B:

) T
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The eigenvalues of B are {0, 0, +4i, +8i, #12i}. The computed
eigenvalues are presented in Table 1. The eigenvectors were computed
and again were accurate to the sixteenth decimal digit. This test case
was included because the tridiagonal matrix resulting from TRIZD contains
3 zero subdizgonal. Thus, a partitioning of the problem into two sub-
problems occurs in INZD.

TABLE 1
Eigenvaives of A Eigenvalues of B
+1.9999 99999 99999 6 4 0.0
43.9999 99999 99999 6 i 0.0

45.9999 99999 99999 8 i | +3.9999 99999 99999 6 i
+7.9999 99999 99999 3 § | +8.0000 00000 00000 2 i
+12.000 00000 00000 O i

Test Case C:

io 2 -2 0 -4
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The eigenvalues of C are {0, #4i, +8i}. The computed eigenvalues
are presented in Table 2 with the computed eigenvectors having similar
éccuracy. This test case was included to test that segment of the
algorithm described in Section 2.1 which computes the zero eigenvalue
and deflates the matrix when n is odd.

Test Case D:

0 1 7

1 0 ]

] 0 1
D =
1 0 ]
1 0 1
R 1 0]

The eigenvalues of D are 2 cos 5% for k=1,2, ..., 6. The
computed eigenvalues are presented in Table 2 with the first imaccurate
digit underlined.

TABLE 2
Eigenvalues of C Eigenvalues of D
0.0 + .44504 18679 12628 7

+3.9999 99999 99999 7 i 41.2469 79603 71746 6
+7.9999 99999 99999 6 i 41.8019 37735 80483 5




(1]
(2]

(3]

(4]

€3

(6]

7

16

REFERENCES

Golub, Gene H., "Least Squares, Singular Yalues and Matrix
Aoproximations,” Aplikace Matematiky 13 (1968), pp. 44-51.

Golat, Gene H. and C. Reinsch, "Singular Value Decomposition
and Least Squares Solutions,” Numer. Math. 14 (1970), pp. 403-420.

Martin, R. S., C. Reinsch, ard J. H. Milkinson, "Householder's
Tridiagonalization of a Symmetric Matrix,” Numer. Math. 1]
(1968), pp. 181-195. I

Paardekooper, M. H. C., "An Eigenvalue Algorithm for Skew-
Symmetric Matrices,” fumer. Math. 17 (1971), pp. 189-202.

Wilkinson, J. 4., The Algebraic Eigenvalue Problem, Clarendon
Press, Oxford, 1965.

Wilkinson, J. H., "Global Convergence of Tridiagonal QR Algorithm
with Origin Shifts,” Lin. Alg. and its Appl. 1 (1968), pp. 409-
420.

Wilkinson, J. H. and C. Reinsch, Handbook for Automatic Computation,
Vol. II Linear Algebra, Springer Verlag, Mew York, 19/1.




T e e

casnsntad

annAAnNANAANNAAAAANANANNAAANANAAAANANANANANRNAAAAANAANAANAAAANANNA

17

APPENDIX
SUBROSTINE INID ( 8AX, B, P, WATI, SKPZ¥, I, IEDR ) 18100001
1200002
b 18200003
mId000s

PUNCTION -

PARANETERS

AATZ

CORPUTE TEE EIGERVALSES AND OPTIOBALLY TEE EIGESVECTORS 1Im1D000S

OF A SYBEETIRIC TRIDIAGOSAL SATRIX WITR ZERO DIAGOBALS ININ0O0OE

O A SKEU-SYREETPLIC TRIDIACONAL BATRIX GSIPG A® IEZD0007
IEPLICIT QBR-TYPP? ITERATIOP Inze 0008
8200009

18230010

INZDOO011

- IFPOT IBTEGER SPECIPYIDG TRE BRCY DISEBSIOW OF T AS 18200012
OECLARED IF TOE CALLIFG PROGEAN CINEFSIOP STATEREST INZINOOI?
INZPO0 18

- INPOT INTEGER SPECIPYIPG TRE CSDER OF TEE TRIPIAGOBAL INZDOO1S
EATRIX 1INz 0016
INZDOO 1?7

- OF IBPST, ASBAY COWFAIFIPG THE LOGER SURDPIAGOBAL 18700018

ELEARSTS OF TIRE TRIDIACOPAL BATSIX IF ITS LASTY B-V 18200019
POSITIONS. B (1) IS AEBITRANY. Iz 0020

O8 OUTPST, ARPAY CONTAIES THE EIGRBVALURS. TBE BOR-ZRROINZDOO21

EIGEWVALUES OCCUR IF PAIRS STITS OPPOSITE SICES AGD 18200022
ARE POUSED IF ADJACEFT LOCATIORS IF E. TEE RIGEBVALUESIBIDOO23
OF STYNRETRIC RATRICES ARE PEAL AFD TER EIGEBVALSES 18200028

OF SKES-SYRAPETIRIC BATRICES ABE PURELY IRACIDARY InZ90025
COGPLEL BURDERS. IP AF ENROR EXIT IS BADE, THE 18200026
LIGEFVALSES ABE COBRECT POFR IFDICES IRRR+1,IERR®2...FINZD0027
180020

- INPST LOCICAL VARIASLE SPECIFPYIBG THE EIGEEVECTOR 18200029
CPTION 182000130

= . TROUR. EIGEWVECTORS ARE 10 BE COAPUTED 18200031

= .PALSE. EICESVECTORS ARE BOT 1O 32 COAPUTED IN200032
IAZD0033

- TSPOT LOGICAL VARIASIE SPECIFYING TIPE OF INPUT BATRIXI 18200038

s . TROL. ISNT TRIBIMONAL BATRIX IS SKEU-SYRAZTRICISZDOO3S
= _PALSE. IVPOTY TRIDIAGOWAL EMATPIX IS SYRSETRIC SITRINZIDOD 36

IBR0 DI MGCUALS IAZD0037
SKEW IS FOT REFERZICED IF SAIZ = .PALSE. 18200038
ImZD 0039

T (AAX,0) - OUTPET ARRAY COPTAINIFG TRE ORINOGOSAL EIGEBVECTOBRS 18200080

e

OF TSR INPOT TRIDIAGCWAL RATRIX. EIGEWVECTORS CORRE- INZDOOS)
SPONDING TO ZIRO EIGEWVALJES ARE POSNALIIE TO BNIT INZD00N2
2-00B8 (LEFGTE) AND TROSE COBRESPOSDIPG TC BON-IERC 1IN2DOOS3
EIGESVALURS RAVE 2-BORS OF SCUARE RO0OT 2. IP TOE J-THRIALIDOORA
RIGERVALUE IS ZERO OR BEAL (I.E. E(N), ITS EIGEE- 18200085
VECTIOR IS FOUND IN TAE J-TH COLUAS OF I. IPF TRE J-TH INZDOORE
RIGEWVALUER IS IBAGIFUARY (I.E. E(J)°T) SJTR EJ+1) = INIDOONY
~2(J), THE REAL PMART OF ITS RIGREBVECTOR IS FOUBD IF INZDOOSS
TEB J-70 COLOAW OF T AUD ITS INAGINARY PART POOND IF INIDOORY

TAR (J+1)-TH COLONG. IF AF EPROR EXIT IS RADE, I 10200050
COFTAINS TEE RIGENVECTORS ASSOCIATED NITH THRE STORED INZD0O0SH
2IGENVALURS. INID00%2

T IS §OT REPREENCED IP AATZ = .PFALSE. 182000933
18200038

- OOTPUT E8BOR CODR INZD00SS

Y b

R S
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BOBEAL RETERE QLL RIGEUFALIRS/VECTORS FOWSd)

IRZD0056

=0
= J IP TEE J-TE KIGCEWALSE BAS BOT SEEF BPETERNISED INZH-OS?

APTIER 30 ITEMATIONS

REQUIPED PUBCTIDES - DABS,PSICE, PSR T, NOD

InTN00Se
IRZDOOSY
INZPO060
IaT006

SACNTIEER PEPESDENCE - EPS SPECIFIES TIR BELATIVE PRECISIOB OPF PFLOATIFGINIDGOG2
POISTY MITEEETIC. EPS = 16.00%% (-13) PO LOBC IRZDO06?

BEFESEBCE - 1.J. GRAY AP BR.C. SARD, EIGRUSYSTER CORNPUTATION POR
SEER-STNERTRIC SATRICES AS® 3 CIASS OF SYMERTRIC

POSE AKITERETIC O 1BS $360.

RATRICES, OCCEP-CSP REPOPT, 1976.

115

130

REALSS B2 (W) ,Z({BAX, %)

REAL®S EPS,P,.C,.0.,C,.5,8,0,70ST
REAL®S DABS,PSIGE,PSORT
LOSICAL WATZ, SKR®

S)EISE DEPEEDEST PARASEYES
DATR EPS / T3410000000000000 /

IFf {.FOT. BATE) €O TO V15
PLACE IDRFTITY GATRIX 1IN 2

DO 1906 X = 1, B
PO W00 J = 1,8
1a,J3) = 6.0
COBTINNE
(1,0 = .90
CORTINOE

Ime =0
A=9
a8V = § -
(V) = 0.0
IS = 0

17 (¢ .1T. 2) GO TO 370
"0 =N

STARCE FOR FEXT SUBRATRIXI 10 SOLVE (BATRIX SPLITTING)

?s=0.080
DO 130 1 = 1, an?
Js Q-1
JPl e 3 o
¢ = DARS(R(IPN)
IP (G .LE. RPS®* (DABS (E(J)) ¢P)) GO TO 180
| S -
cCorTINGE
JPt =

I 0e6s
INTD0e6S
InzD0eés
IRZ90067
Inmoece
INZP006Y
INZ» 0070
10071
InT80072
InT9 0872
INZPOO7s
InID 0875
076
18290877
Inzn0e78
INTHOOT79
1090080
INZ90081
1INZ90002
18290083
IRIPOVSs
InNTH08s
18290086
1az9 0007
101200000
ININ0009
18290090
18290091
INED 0092
Inze0093
IN2p00%
IAZD 009
INZDO096
18390097
18200098
IALD0099
IA2D0100
INEp0 101
IR®O102
IM20103
IRIDO 108
INIDO10S
18200106
18200107
INTD0 108
16200109
IN200110
INEDOIIY
IATD0112
INIDOYVY)
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AAN

50

70

180

198
190

19

L0 = Jpl ¢ 1

Lont = Jp?

I? (LOEY .EQ. B) GO 170 290
I® (.90T. BATZ) GO 10 16C
1P (.BOT. SKEW) GO 19 169

PLACE COSRECT SICW €3 IPEFWTITY OIMCOWALS

PO 150 . = 1ORY, B, &
T, = -I{LI)
IPI3 =1 ¢ 3
IF (IP3 .CT. W) 6O TO 16C
Z(IP3, IPY = -Z(IP3, IP)
cosTiIo®RE

IP 710 .2Q. #) GO TO 300
PO = 8 - LO

I = ROP{IPO,2)

L=10

Iv (IZO .PQ. 0) GO 10 230

PIPD IEPO EICEUVALIE OF 098 OIRED SUBRATRICES

C = 0.00
S = ~-1.00
90 190 I = 10, BOY, 2
E=m +10 -1
Pl =K ¢ %
G = -3 °*(EPhH
E(KPY) = C = EqERY)
IP (PAPS(E(K)) .CT. DASS(Q)) SO 70 170
C=2(xX / Q
B = DSQRT(C®C ¢ 1.D0)

E(X) =Q°* B
S=1.00 /18
CsCe*s

¢0 T0 180

S$=Q/ 2K)

R = DSQRT({1.00 ¢+ S°3)
E(E) = R¢X) ¢ 2

C= 1.0/ 18
S$sseC

IP {.B0T. NATZ) GO TO 199
SCCURVLATE TRASSFORUATIONS POR RIGEIEVECTOBRS

KAl = K - 1
Z(ENI, M) = -3 ¢ T (KM, KNY)
Z(KBI, KA = C ¢ (KU1, ENI)
DO 188 J = KPY, 4, 2
L(I. KNV} = § ¢ Z(I W)
2(I.M = C* LI, M
coutTINgR

Continoe
A=A
ALANE N BE )

pe v T2RE)
zIpe 115
INIDO1 16
1=Z»o 11?7
INTpOt 1S
InI0119
Inze0120
Ine121
239122
Inpet23
mIee 128
012
IRZDO126
15290127
INT90126
INTDO129
290130
IO I
INp0132
Ine0133
IRIDOI3S
INLDe13%
18290136
X2
INTP0138
IRTDO013Y
Inzp01a80
INoI181
INEPOINZ
18ZD0 183
INTIDOINS
INZPO S
I8TDO 186
INIDOS?
wgpo 188
18300189
IIpo150
IRIDOI1SY
INER01S2
18390153
IO O 158
18200155
IRZDO 156
INZD01S?7
I8T00 158
INgDO159
INEDO160
INZDO16Y
INTDO162
I82ZD016)
INZpOt60
I82D0165
18300166
o167
IagpO 168
In3Dp0169
1290170
Inz00171
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I* (L0 .PQ. B) &0 TO 30

C ®%e CRECK PCR CONVERGERECE CR SHLL SOPDIRCONAL EZLEARSY

C

aNeNg!

(o

2%¢

220

230

280

250

90 210 I = LY, WY, 2
K= 8§t ¢« 10 -1
L=Ke 1
TEST = EPS * (DABS(RE(L)) ¢ PMOS(P(E-1)))
IP (PABS(2(K)) .LER. TEST) @ TO0 20
COSTIRWE
L =X%0
IF (1L .EQ. B 60 10 300

rORE SEIrFT

ITS = TS ¢ 1V

IP (ITS .CT. 30) O TO 360

z(w-3)

-5

T(war)

Z(m

({C-F) © (Com) » (S-6) * (5+6)) / (2.08 © G * Q)
SQUET (PP + 1.D0)

G/ (P +» PSIGB(R,P))) - C

e

ey s L -9

EQ(LBY) = ((P-5) ® (PeS) ¢+ C o2 Q) /¥

PERPORS OFE IRPLICIT (08 ITERATION OB CROLESKY PACTOB

Yo AW LANON
LI I I B N B ]

LS = LomY

C =
s s
D0

CH

- wh

- ¥ luzz
LEC R )

} = C * pgIPY)

DABS (R(IN1)) .GT. DADSQ)) €O TO 200
B{I8Y} / @Q

BSQRT(CeC ¢ 1.D0)

BY) =Q 2

L)
<
0

- g

AUN®I~NO
TP

8

S
T o
Q/ g(18M)
T(1.D0 ¢ 393)
} = E(INY) * B
- B

LE" NN N R
*3

(e
E(IPY) = -S S E(I) s C o ¥
B(I) =C o B(I) ¢+ S 7P

IP (.FOT. RATZ) GO 70 280

C #¢¢ ACCUAULATE TRANSFORBLTIONS POR RIGERVECTORS

(of

DO 260 J = LS, RO, 2

IazD0172
Inze017)
IRZeO1 78
maons
Iaze0176
e 77
18200178
nze0t79
INZPO100
Inzeo18
InZN0182
INZ00183
IszaCise
InzDO19%
INZDe106€
ININO Y
IZNo180
INZD0109
INIp0 190
1IE290191
INZDO192
Ineo0193
I 019
INZDO19S
180196
INEpe19?
IRIDO198
INZD0199
INz90200
INTP223Y
18200202
IEz00203
InzZe0208
Imp020s
InZ0020¢
15200207
18200200
InzZn0209
Inzp0210
INzZD02%1
Imzno212
Iazpo213
IN2D0021%8
18eD021¢5
I8TD0216
mtp0217
18200210
Iazn0219
18290220
18300227
InzD0222
18200223
IATD022%
18200225
18200226
IAT00227
1200228
18200229
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e e ——— L

nAN

aAaNNAN

anNn

nnn

260

*oe

310

329
3130

300
350

360

370

21

P =13, IR}
TE,IP) = -S ® L(J INY) + C o P
TR, IR =C & 1(3,18)) + S =P
CoOBTISIE
I? @s .. Lowl) &0 TO 270
LS = Lom?
60 T0 280
LS = LO
CouTINGE
E(LSn) = 0.90
60 TO 200

ITESATIOB COSVERGED TO OFE IESO EIGERVALS?Z
zM) = 0.p0

w=aat

G0 10 310

ITESATICE CONVESGED TO RIGESVAL™E PAIZ

zEare = (W)

) = -E(m)
&=8 -2
I7S = €

aat = a - 1

IP (8 .6T. LO) GO YO 200
IP (W .BQ. LO) €O TO 300
IF (.BCT. RATY) GO 70 120
17 (SKE¥) €O TO 120

CONPOTE RIGENVECTORS PRCW OFYBOBOBEAL COL9A®S OF 1 IP BOT SKRW

X = RO
1P (B¢X} .2Q. 0.D0) GO TO 350
KAy = K - 1V

DO 380 J = LORY, MO, 2
T, = 2T (3, KR}
P= 3(Je1,0)
Z2(J*1,K0Y) = P
T2(J*1,K) = -P
CONTIBNGZ
= K8
K= gK-1
IP (K .C¢T. LORY) 6O TO 330
I? (IZB® .NE. 0) GO TO 370
GO0 10 120

grROR EXTT

ZRR = W

I® (.WOT. RATZ) GO TO 370
I? (.WOT. SKEW) GO T0 320

RETORN
END

10e230
18290231
1200232
INZO0233
18220238
IN200235
IazZ90236
Inz0237
InI0230
INZDO239
182902s0
INZe0ZeY
IBZ00282
InZp02s3
mInozss
INZD028S
15200286
{4292
INZDO 280
isTDO28S
989250
18253251
18200252
INZDO0253
19290258
INTDO25S
18200256
18200257
18200258
iNID0259
18200260
1829026V
mI00262
18200263
18200268
INZIDO 265
1I8ZD0266
I82D0267
18206268
INZD0269
18200270
I8ZD027Y
8200272
12200273
18200274
18200275
18200276
18200277
I8Z00278
IR200279
18200280
182002081
ImZID0282
18200283
18200288
InzZ00285
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nan 0

Nnan

SUBROUTINE TRIZD ( 8AX, ¥, A, E, E2) TRIZ20001

TRIZ0002

*eee TRIZ0003
TRIZ0008

PONCTION - REDUCES A4 REAL SKEW~SYAMETRIC MATRIX TO A SKEW-SYNMETRICTRIZO000S
TRIDIAGONAL MATRIX USING ORTHCGONAL SINILARITY TRIZ0006
TRABSPORBATIONS TRIZ0007

18120008

PARANETERS TRIZ0009
TRYZ001!0

naxX - ISPOT IVTEGER SPECIFYING THE BOU DIMEWSIOW OF A AS TRIZ001Y
DECLARED IN THE CALLING PROGBAN DINENSION STATENENT TRIZ0012

TRIZO001)

N - INPUT INTEGER SPECIPYING THE CHDER OF A TRIZ00 14
TRIZ001S

A(RAX, W) - O INPUT, A CONTAINS THE REAL SKEW~SYBAETRIC MATRIX.  TRIZ0016
ORLY THE STRICT LOWEE TRIANGLE OF THE MATRIX WEED 1120017

BE SUPPLIEL. TRIZ 0018

ON OUTPUT, A CONTAINS INPORNATION ABOUT THE ORTHOGONAL TRIZ0019
TRANSFORBATIONS OSED IK THE REDUCTION IN ITS POULL TRIZ0020

LOWER TRIANGLE. THE STRICT UPPER TKIAWGLE OF A IS TRIZ0021

CRALTERED. TRIZ0022

TRIZ0023

r(N) - OUTPUT ARRAY CONTAINING THE LOWEE SUBDIAGOWAL ELENENTS TRIZ0024
OP THE TRIDIAGOWAL WATEIX IN ITS LAST W-1 POSITIONS. TRIZ002S

(1) IS SET TO ZERO. TRIZ0026

170027

z2(m) - OUTPUT ARRAY CONTAINING 1HE SQUARES OF THE ELENENTS TRIZ0J28

OF E, E2 WAY COINCIDE WITH E IF THE SQUARES ARE NOT TRIZ0029

WEEDED. TRYZ0030

TRIZ0031

RPQUIRED PONCTIONS - DABS,DSIGN, DS QRT TRIZ 0032
TR120033

REPERENCE -~ L.J. GRAY &ND R.C. WARD, EIGENSYSTEM COSPUTATION POR  TRIZ003A
SKEW-SYRNETRIC BATRICES AND A CLASS OF SYRMETRIC TRIZ0035

BATRICES, UCCAD~CSD REPORT, 1976. TRIZ0036

TRIZ0037

sees TRIZ0038
TRIZ0039

REAL®S A(NAX,W),E(N),E2(N) TRIZ004O
REAL*S P,G, R, SCALE TRIZ0041
REAL*8 DABS,DSIGN,DSQRT TRIZI042
TRIZ00a3

I¥ (8 .EQ. 1) GO TO 230 TRIZOO4S
TRIZ004S

#%¢ HATY DO LOOP IsN STEP -1 USTIL 2 TRIZOG46
TRIZ0047

DO 220 Ii = 2, W TREZ0048
I=8e¢2-1II TRIZNO49
L=71-1 TRI20050

A = 0.D0 TRIZO0051

SCAL® = 0.DO TRIZ0052
TRIZ00S3

*s¢ NORNALIZE ROW TRIZ0056

TRIZO0055
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100

10

120
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140
150

160

170
180

V90
200
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DO 100 K = 1, L

SCALE = SCALE + DABS(A(I,K))
CONTINUE
IP (SCALE .ME. 0.DO) GC TO 120
?(I) = 0.D0
B2(1) = 0.D0
GO TO 215

CONPOTE ELENENTS OF U VECTOR

DO 130K = 1, L
A(I,F) = A(I,K) / SCALE
A=H8e+ (K * A(IK)
CONTINOE

B2(I) = SCALY * SCALE ~ 8
P = A(I,L)

G = -DSIGNW (DSQRT (H),F)
E(I) = SCALE * G
B=R-P7*G

AMIL) =P -6

IF (1L .EQ. 1) GO TO 200

CONPUTE ELEMENTS OF A*O/d

DO 180 J = 1, L
G = 0.D0
17 (J .2Q. 1) GO TO 150
Jnt = J - 1

e 180 K = 1, JAY
G =6 + AJ,K) * A(I,K)
CONT NUE

IP (3 .EQ. L) GO TO 170
JBl = G =~ 1

DO 1607 =JP1, L
G =6 - A(K,J) * A(I,K)
CONTINOP

E(J) =G/ H
CONTINUE

CONPOTE REDUCED A
PO 190 J = 2, L
P = A(1,J)
G = E(J)
I8 = J -~ 1

DO 190 K = 1, JA1

A(J,K) = A(J,K) ¢« P * E(K) -G * A(I,K)

CONTINUE

D0 210 K = 1, L
A(I,K) = SCALE * A(I,K)

TRIZ005¢
TRIZ00S7
TRIZ00S8
TRIZ0059
TRIZ0060
TRIZ0061
TRIZ0062
TRIZ0063
TRIZ 0064
TRIZ0065
TRIZ0066
TRIZ0067
TRIZ0068
TRIZ0069
TRIZ0070
TRIZ0071
TRIZ0072
TRIZ0073
TRIZ0070
TRIZ0075
TRIZ0076
TRIZ0077
TRIZ0078
TRIZO0079
TRIZ0080
TRIZ0081
TRIZ0082
TRIZ0083
TRIZ0088
TRIZ0085
TRIZ0086
TRIZ0087
TRIZ0088
TRIZ0089
TRIZ0090
TRIZ0091
TRIZ0092
TRIZ0093
TRIZ0094
TRIZ009S
TRIZ009¢
TRIZ0097
TRIZ0098
TRI2Z0099
TR120100
TRIZ0101
TRIZO102
TRIZ0103
TRIZ01046
TRIZ0105
TRIZU106
TRIZ0107
TRIZ0108
TRI20109
TRIZ0110
TRIZO111
TRIZO112
TRIZ0113



210 CONTINOE

215 A(I,I) = SCALE * DSQBRY(H)
220 COWTINOE

230 B(%) = 0.D0
z2(1) = 0.00
RETORN
EED
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TRIZOV1a
TRIZO0115
TRIZO116
TRIZO11?
TRIZO0118
TRIZO119
IRXZ0120
TRYZO121
TEXIZ0122
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SUBROUTIWE TBAKZD ( BAX, W, A, K, Z) TBAKOO0O1
TBAK0002

TBAKO00O3

TBAKOOOS

CTION - PORAS THE EIGESVECTORS OF A REAL SKEW-SYANETRIC HATRIX TBAKO00OS
BY BACK TRAWNSFORAING THOSE OF THE CORRESPOBDING SKBE~ TBAK0O0O06

SYNNETRIC TRIDIAGCWAL HATRIX DETERMINED BY TRIZD TBAK0007?

TBAK0008

ANETERS TBAK0009
TBAKO0010

NAX - IWPUT INTEGER SPECIPYING THE RO¥W DIAENSION OP A AND Z TBAKOO1?
AS DECLARED IN CALLIBG PROGRAA DINENSION STATENENT TBAKOO12

TBAKOO13

L) - INPUT INTEGER SPECIPYING THE CEDER OF A TBAKO0C 18
TBAKOQO15

A(MAX,®) - IFNPOT ARRAY CONTAINIBG IFPORAATION ABOUT THAE ORTHOGONALTBAKOO16
TRANSPORBATIONS OSED IF THE BEDUCTION BY ZRIZD 1IN TBAKOO1?

ITS FULL LOWER TRIAWGL?Y TBAKOO 18

TBAKOO19

" - INPUT INTEGER SPECIPYING THE NUMNBER OF EIGENVECTORS TC TBAK0020
BE BACK TRAWNSPORAED TBAKOO 21

TBAK 0022

Z(MAX,H) - OF INPOT, Z CONTAINS THE REAL AND IBAGINARY (IP TBAKOQO23
CONPLEX) PARTS OF THT EIGEWVECTORS TO BE BACK TRANS- TBAKO0O2s

FORBNED IF ITS PIRST B COLURBS TBAK002S

OF OUTPUT, Z COUTAINS THE REAL AWND IRAGINARY (IF TBAK 0026

CONPLEX) PARTS OF THE ITRANSPCRAED EIGENVECTORS 1V TBAK0027

ITS PIRST 8 CCLUMNES TBAKO0O28

TBAK 0029

EREWCE - L.J. GRAY AND R.C. WARD, BIGEWSYSTES CORNRUTATION POR TBAKQO 30
SKEE-SYAARTRIC HATRICES AND A CLASS OP SYNARTRIC TBAKOO3 "

HATRICES, UOCCND-CSD REPORT, 1976. TBAKO0032

TBAKO0033

TBAKOO34

TBAKO0O 35

REAL®8 A(NAX,N),Z(8AX,H) TBAKO0036
REAL®*8 H,S TBAK0037
TBAKO0O38

IP (1 .BQ. 0) GO TO 140 TBAK0O039
IPF (¥ .EQ. 1) GO TO 180 TBAKO04O
TBAKOOU1

DO 130T =2, ¥ TBAKQO&2
L=1I-1 TBAKO0043
= AMID TBAKOO4®

IP (A .BEQ. 0.D0) GO TO 130 TBAKO0O0&S
TBAK 00416

DD 1203 = 1, 1 TBAKOO4?

S = 0,00 TBAKOOGS
TBAKOO49

D0 100 K= 1, L TBAK00S0

S =8 ¢ A(I,K) * Z(K,J) TBAKO0O0S51
CONTINOE TBAK00S2
TBAKO0O0S3

S=(s/8 /1 TBAKO0OS54

TBAK00SS
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DO 110K =1, L
Z(K,J) = 2(X,J) -5 * M1, N
110 COFTINGE

Cc
120 CORTINUE

C
130 CONTIRNRDE

C

1830 RETURNE
B¥D

TBAKOO0S6
TBAKO0057
TBAKO0S58
TBAK00%9
TBAKO006K0
TBAKOOG V
TEAK 0062
T8AK0063
TOAK006a
TOAK006%



