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Eigensystem Computation for Skew-Symmetric 
Matrices and a Class of Symmetric Matrices 

R. C. Hard 
L. J. Gray 

ABSTRACT 

tie present an algorithm fir coaputing the eigenvalues and 
(optionally) the eigenvectors of either a skew-symmetric matrix 
or a symmetric trio'iagonal matrix with constant diagonal. The 
algorithm uses only orthogonal similarity transformations and is 
believed to be the most efficient algorithm available for computing 
all the eigenvalues or the complete eigensyste*. 
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1. INTRODUCTION 

In this paper, we consider the problem of computing the eigenvalues 
and eigenvectors of a skew-symmetric matrix. As these matrices occur 
In model calculations In nuclear physics, this question Is of practical 
Interest. Paardekooper [4] has presented a Jacobl-like algorithm which, 
like the Jacobl method, Is elegant but somewhat Inefficient. The 
method that we will discuss makes full use of the constant (zero) main 
diagonal. 

Our method, after transforming to a trldlagonal system, Is based 
upon a technique due to Golub [1]. This algorithm Is designed for a 
matrix of dimension 2m x 2m; however, It Is easily seen that a skew-
symmetric matrix whose dimension Is odd has zero as an eigenvalue. Me 
oive a method, based upon Glvens transformations, for eliminating this 
eigenvalue, and thus reducing the dimension of the matrix to an even 
number. 

One of the main advantages of this approach 1s the observation 
that the eigenvector matrix Is half sparse. This results In significant 
savings over alternative algorithms, we also point out that this 
procedure can be applied to another class of matrices; namely, symmetric, 
trldlagonal matrices with a constant main diagonal. 

2. DESCRIPTION OF ALGORITHMS 

We now describe a three routine package for computing all the 
eigenvalues and, optionally, all the eigenvectors of a full skew 
symmetric matrix or of a trldlagonal symmetric matrix with a constant 
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diagonal. The three subroutines and their functions are given below: 
TRIZD--transforms an arbitrary real skew-symmetric matrix to 

skew-symmetric tridiagonal form using orthogonal similarity trans­
formations and saving the pertinent information about these trans­
formations. 

IMZO—computes the eigenvalues and, optionally, the eigenvectors 
of a symmetric tridiagonal matrix with zeros on the diagonal or of a 
skew-symmetric tridiagonal matrix. 

TBAKZO—computes the eigenvectors of an arbitrary real skew-
symmetric matrix by back transforming the eigenvectors of the cor­
responding skew-symmetric tridiagonal matrix determined by TRIZO. 

Subroutines TRIZD and TBAKZD are straight-forward adaptations of 
procedures TRE01 and TRBAK1 [3] which accomplish similar functions for 
arbitrary real symmetric matrices. Thus, we provide a listing of all 
three routines in the appendix, but we will confine our discussion to 
the subroutine INZO. 

The algorithm coded as subroutine IMZD has three basic ideas. 
First, a matrix of size 2m • 1 is deflated to a 2m x 2m matrix by 
removal of a zero eigenvalue. Second, the eigenvalue problem for the 
2m x 2m matrix is looked at as a singular value problem for an m x m 
bidiagonal matrix. Finally, it is recognized that the eigenvector 
matrix has a simple zero-non-zero structure. 

IMZD determines the eigenvalues and eigenvectors of a n x n 
tridiagonal matrix T (+) defined by: 
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0 a, 
•a, 0 

* " ." a n 
^ 0 

The matrix T n(-) is skcw-symmctrlc and can be orthogonally 
transformed into a Matrix consisting of the direct SUM of 1x1 
and 2 x 2 blocks. The 1x1 blocks correspond to zero eigenvalues and 
the 2 x 2 blocks trt skew-symmetric and correspond to a non-zero 
pair of purely iMaginary complex conjugate eigenvalues. The Mtrlx 
T(+) is symmetric; however, 1T(+) Is skew-hermitIan. Thus, T n(*) can 
also be orthogonally transformed Into a Matrix consisting of the 
direct sun of 1x1 and 2 x 2 blocks. The 1x1 blocks again correspond 
to zero eigenvalues and the 2 x 2 blocks are symmetric and correspond 
to a non-zero pair of real eigenvalues of equal Magnitude but opposite 
sign. The eigenvalues of a symmetric, tridiagonal Matrix with a 
constant Main diagonal, I.e., T n(+) • al, are easily obtained by adding 
a to the eigenvalues of T (•). 

we will assume throughout the remainder of this paper that 
a^ f 0 for 2 <_ i <_ n since the eigenvalue problem can always be 
partitioned Into subproblems corresponding to Matrices with this 
property. Thus, T n(+) has exactly one zero eigenvalue if n Is odd 
and all non-zero eigenvalues if n is even. 

V±). 

0 
1*2 

[ 



5 

2.1 Zero Eigenvalues 
If n is odd, the algorithm begins by transforming T n(+) into the 

direct sua of a T .(+) matrix and a lxl zero block. To illustrate n-i — 
this finite process, consider the Matrix T 7(+): 

0 a 2 

+*2 0 < * j 

• a , 0 a» 

*a* 0 <*5 

U»5 0 

• a . 

<*• 

0 

• a , 

07 

Applying a Givens orthogonal similarity transformation (plane rotation 
[5, pp. 47-48]) to the fifth and seventh rows and columns to annihilate 
a 7 and *07, Me obtain the matrix: 

0 <»2 

*a2 0 <*i 

• a j 0 a* 

•a % 0 ai 
•a i 0 

0 

•X 
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Applying a 61vens similarity transformation to the fourth and seventh 
rows and columns to annihilate x and +x, we obtain the matrix: 

0 a* 
•a 2 0 aj y 

+?} 0 aC 
+a; 0 a's 

•a* 0 a« 
•aj 0 

•y 0 

Finally, a Givens similarity transformation applied to the second and 
seventh rows and columns annihilates y and +y to obtain the desired 
mnrix. It Is obvious from the above example that we need not apply 
the transformations to both the rows and columns since they act on 
disjoint sets of non-zero elements and they preserve symmetry and 
skew-symmetry. Therefore, In general, this process requires the 
computation and application of (n-l)/2 Givens' transformations resulting 
in 5(n-l)/2 multiplications, (n-1) divisions, (n-l)/2 additions, and 
(n-l)/2 square roots. 
2.2 Eigenvalues of T (•) for n Even 

In the previous section, we showed that the matrix for the eigen­
value problem can always be reduced to an even ordered matrix. This 
section discusses the reduction by similarity transformations of T (•) 
to a matrix Efl(+) defined by: 
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0 X, 
•A j 0 

E„(t) « 
•J 'J 

1 

n/2 

*-\/2 0 

The eigenvalues of T (•) are then easily recognized as +X. and the 
eigenvalues of T(-) »re -MA.. n — K 

Golub [1] states that the eigenvalues of T R(+) are n , where > 
is a singular value of the bidiagonai matrix J defined by: 

J * 

* 2 <*J 

Vl 
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The QR-type iteration found in the singular value decomposition 
algorithm (Golub and Reinsch [2]) can then be used to find the singular 
values of J and thus, the eigenvalues of T (+). Similarly, the eigen­
values of T {-) are i times the + singular values of J. Therefore, 
this segment of the algorithm reduces to performing the singular value 
QR-type iteration on the matrix T_(•)• To illustrate one such iteration, 
consider the matrix Tg(+_) after the initial Givens orthogonal similarity 
transformation which enters the shift information has been applied. It 
has the form: 

0 c*2 x 
+«2 0 a 3 

+a 3 0 oi 
+x +ai 0 a 5 

+a 5 0 a 6 

+a 6 0 

Applying another Givens similarity transformation to annihilate x and +x, 
we have: 

'0 a'i 

+a'i 0 a'i y 
+a3' 0 o! 

+a!; 0 a's 

+y +as 0 «6 
las 0 
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Applying a third Givens similarity transformation to annihilate y and 
+y, we have: 

0 a? -i 
+a5 0 a? 

•a" 0 a* 2 

+ar 0 a? 
+txS 0 aj 

+2 +aj 0 

Finally, a Givens similarity transformation applied to the fourth 
and sixth rows and columns to annihilate z and +z completes the 
iteration. Again, it is obvious that we need not apply the trans­
formations to both the rows and columns. Therefore, one iteration 
requires the computation and application of n-2 Givens transformations 
resulting in 5(n-2) multiplications, 2(n-2) divisions, (n-2) multipli­
cations, and (n-2) square roots. 

From Golub and Reinsch [2] and Wilkinson [6], we know that the 
singular value QR-type iteration converges globally and almost always 
cubically. Thus, the matrix T R(+) converges under this iteration to 
the desired matrix E (+_) consisting of the direct sum of 2 x 2 blocks. 
2.3 Computation of the Eigenvector Matrix 

The algorithm has an option for returning to the user the 
eigenvecti-s of the matrix T (+_). The three steps for computing these 
eigenvectors are described in this section. In addition, we briefly 
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explain the method of computing the eigenvectors of an arbitrary 
skew-syrmetric matrix and why this method is preferred. 

The first step in computing the eigenvectors of T (+J involves 
determining the correct diagonal matrix used to accumulate the Givens 
transformations. The first Givens transformation in IMZD is applied to 
the rows of T (+), toe second to the columns, the third to the rows, 
etc. Therefore, the matrix elements of interest are a 2, *xs, a %, +a 5, 
.... a . Since TRIZD returns the lower subdiagonals of T n(-), the 
algorithm requires these elements as input. Thus, the matrix elements 
of interest are given as input for T (+), but they are not given as 
input for T (-). To rectify this problem, we perform a diagonal 
similarity transformation on T (-) where the diagonal elements d.-
are given by: 

t -1 if i = 0 or 1 (mod 4) 
d.. - ' 

1 1 / 1 if i = 2 or 3 (mod 4) 

Therefore, the matrix elements of interest for both T R(+) and T n(-) are 
the subdiagonal elements. The diagonal matrix used to accumulate the 
Givens transformations for T (+) is the identity matrix and for T

n(-) 
it is the diagonal matrix defined by d.. above. 

The second step in computing the eigenvectors of T (+) involves 
accumulating the Givens transformations. By analyzing this particular 
iteration, one can reduce by a factor of 2 the number of operations 
which are normally required for accumulating Givens transformations 
in eigenvalue problems. Since only alternate columns are combined in 
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the accumulation and since the accumulation Matrix was initially diagonal, 
we observe that the final accumulation matrix is 1/2 sparse and has the 
fom illustrated below on an 6 x 6 matrix. 

"x 0 x 0 x 0 

0 x 0 x 0 x 
x 0 x 0 x 0 
0 x 0 x 0 x 
x 0 x 0 x 0 
0 x 0 A 0 x_ 

Thus, the algorithm only has to recompute every other element in each 
column as it accumulates the transformations. The number of operations 

2 per iteration required for this accumulation is (2n -4n) multiplications 
2 and (n -2n) additions. 
If the matrix was skew-symmetric, i.e., T (-), we easily observe 

Ihat the real and imaginary parts of the eigenvector corresponding 
to iXk in E (-) are found in the kth and (k+l)th columns, respectively, 
of the accumulated transformation matrix. Since complex conjugate 
eigenvalues have complex conjugate eigenvectors, the eigenvector 
corresponding to -iAk is also easily obtainable from the kth and (k+l)th 
columns. However, we must perform a third and final step if the eigen­
vectors of T (+) are desired. From the form of M + ) » *e observe that 
the eigenvector for \. is the sum of the kth and (k+l)th columns of 
the accumulated transformation matrix. The eigenvector for -Ak is given 
by subtracting the (k+1) column from the kth column. Due to the structure 
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of the accumulation matrix, these eigenvectors can be stored in the 

kth and (k+l)th column, respectively, by replacement instructions. 

To compute the eigenvectors of an arbitrary skew-symmetric matrix, 

our package transforms the eigenvectors of the tridiagonal skew-

symmetric matrix rather than using the accumulated TRIZD transformation 

matrix in INZD. This is different from the standard practice as 

represented by the codes in Wilkinson and Reinsch [7]. If we assume 

that two iterations are required to determine each eigenvalue, an 

operation count analysis indicates that the technique of only accumulating 

the transformations in INZD and then transforming them in TBAKZD requires 
3 2 a total of 3 1/2 n + 0(ni ) operations (counting both additions and 

multiplications). The technique of giving INZD the accumulated trans­

formation matrix from TRIZD and accumulating the INZD transformations 
3 2 in this matrix requires 4 1/3 n + 0(n ) operations. Thus, substantial 

savings result even when this very conservative estimate for the number 

of iterations required to determine each eigenvalue is used. 

3. TEST RESULTS 

Subroutines TRIZD, INZD, and TBAKZD have been tested extensively 

on the IBM 360/91 computer at Oak Ridge National Laboratory using 

double precision arithmetic (approximately 16.0 decimal digits). In 

this section, we present the results of some of these test cases. 
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Test Case A: 

"o 1 0 -5 0 0 0 f 
-1 0 0 0 5 0 -2 0 

0 0 0 0 -2 -1 5 0 

5 0 0 0 -1 -2 0 0 

0 -5 2 1 0 0 0 0 

0 0 1 2 0 0 0 -5 

0 2 -5 0 0 0 0 1 

-2 0 0 0 0 5 -1 0 

The eigenvalues are +2i, +4i, +6i, and +8i. Table 1 presents 
the eigenvalues computed by INZO after A Mas transformed to tridiagonal 
for* by TRIZO. The eigenvectors Mere also computed in IHZD and trans­
formed to the eigenvectors of A by TBAKZD. These computed eigenvectors, 
similar to the eigenvalues, Mere accurate to the sixteenth decimal digit. 

Test Case 6: 

~b -1 -2 3 1 4 -4 i 
I 0 -3 2 6 -1 1 -2 

2 3 0 -5 -1 0 4 1 

-3 -2 5 0 -2 1 3 2 

-1 -6 1 2 0 3 -1 -2 

-4 1 0 -1 -3 0 -2 5 

4 -1 -4 -3 1 2 0 -3 

-3 2 -1 -2 2 -5 3 0 
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The eigenvalues of B are (0, 0. +4i, +8i, +12i}. The computed 
eigenvalues are presented in Table 1. The eigenvectors were computed 
and again Mere accurate to the sixteenth decini digit. This test case 
was included because the tridiagonal Matrix resulting froa TRIZD contains 
a zero subdiagonai. Thus, a partitioning of the problem into two sub-
probleas occurs in IMZD. 

TttLM 
Eigenvalues of A Eigenvalues of B 

+1.9999 99999 99999 6 i 0.0 
•3.9999 99999 99999 6 i 0.0 
±5.9999 99999 99999 8 i •3.9999 99999 99999 6 i 

•7.9999 99999 99999 3 i •8.0000 00000 00000 2 i 

•12.000 00000 00000 0 i 

Test Case C: 

To 2 -2 0 -4 
-2 0 4 -5 3 

c * 2 -4 0 1 1 
0 5 -I 0 2 
1 -3 -1 -2 0 
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The eigenvalues of C are {0, +4i, +8i>. The computed eigenvalues 
are presented in Table 2 with the computed eigenvectors having similar 
accuracy. This test case was included to test that segment of the 
algorithm described in Section 2.1 which computes the zero eigenvalue 
and deflates the matrix when n is odd. 

Test Case 0: 

0 

1 

1 

0 1 

0 = 
1 0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

kir The eigenvalues of D are 2 cos ̂ y for k = 1, 2, .... 6. The 
computed eigenvalues are presented in Table 2 with the first inaccurate 
digit underlined. 

TABLE 2 

Eigenvalues of C 

0.0 

•3.9999 99999 99999 7 i 

•7.9999 99999 99999 6 i 

Eigenvalues of D 

• .44504 18679 12628 7 

•1.2469 79603 71746 6 

+1.8019 37735 80483 5 
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APPENDIX 
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SBBBOBTIBE n u i a n , a, i, BATZ, SKEB, I. I E H J 

poacnoa -

pitAtrems 
RAI 

coarare TIE EICEBVALBES ABB OPTIOBALLX TBE EICESVECTOBS 
OP B SY8BRBIC TBIDIACOBAL a 1TBII BXTB ZEBO DUCOUIS 
OB A SKEB-STBBETPIC TBXBIACOBAL BATBII 8SIBC AB 
XBPUCIT QB-TYPP ITEBATIOV 

IBPBT IBTESEB SPECIPTIBC TBE BCa 0IBE8SI0B OP Z AS 
BECLABEB IB TBE CALLIBC PROCtAB CXBEBSIOB STATEBEBT 

XBPBT IBTECEB SPECXPTIK TBE 
BATBII 

CABER OP TBE TBIBIACOBAL 

IBID0001 
IBZD0002 
IBZOO003 
IRZDOOO* 
IRZDOOO5 
XBZBOOOC 
IBZBO007 
IBZBOOOP 
IBZM009 
IBZ9OO10 
IBZB00I1 
IBZ0OO12 
IBZBOOI3 
IBZB001* 
IBZDOOIS 
IBZB0016 
IBZD0O17 
XBZP0018 
XBZB0019 
IBZBOO20 

E|BI - OB IBPBT, ABBAT OOBTAIBIBC TBE tOBEB SBBBIAOOBAL 
ELEBEBTS OP TBE TBIDIAGOBAL BATBII IB ITS LAST B-1 
POSITIOBS. E ( 1 | IS ABBITBABT. 

OB OBTPBT, ABBAT COBTAIBS TBE EICEBfALOES. TBE BOB-ZEBOIBZD0021 
EICEBVALBES OCCBB IB PAIBS BITB OPPOSITE SI6BS ABB IBXD0022 
ABE POBBD IB ABJACEBT LOCATXOBS IB E. TBI EICEBVALBESIBZD0023 
OP STBBETBIC BATBICES ABE PEAL ABB TBE EICEBVALBES 
OP SKEB-STBaRBIC SATBICES ABE PBBELT IBASIBABT 
COaPLEX BfflBEBS. I P AB EBBOB EXIT I S BABE, TBE 
EICEBVALBES ABE OOBBECT POB IBBICES I S B B * 1 , I E B t * 2 . . . 

XWPBT LOCICAL VABIABLE SPECIPTIBC TBE EICEBVECTOV 
CPTIOB 
» .TBBE. EXCEBfECTOBS »1E TO BE COBPBTED 
• .PALSE. EICEBTECTOBS U f BOT TO BE CDBPBTEB 

ISZD002* 
IBZB0025 
IBZB002C 

.BXBZB0027 
IBZB002B 

BATZ - XWPBT LOCICAL VABIABLE SPECIPTIBC TBE EICEBVECTOB IBZL0029 
IBZ00030 
IBZD0031 
IKXD0032 
IBZD0033 

SBEB - IBPBT LOCICAL VARIABLE SPECIPTIBC TTPE OP IBPBT BATBIX IBX0003* 
« .TBBE. XBPBT TBIBIACOBIL BATBIX IS SKEB-SYBBETBICIBZD0035 
* .PALSE. IBPBT TBXBIACOBAL BATBIX IS STBBETtlC BITBIBZD0036 

ZEBO DTKCBILS IBZD0037 
SKEB I S BOT BEPEBEBCED IP BA1Z * .PALSE. IBXDO038 

IBZB0039 
Z(HAX,H) - OBTPBT ABBAT COBTAIBIBC TBE OI1BOCOBAL EICEBVECTOBS IBXDO0«0 

OP TBE IBPVT TBXBIACCBAL HATIIX. XICEBVECTOBS COBBE- I8Z000M 
SPOBBIBC TO ZEBO EICEEVALBES ABE BOBBALXZE TO BBIT XBZ000«2 
2-BOBB (LEVCTB) ABD TBOSE COBBBSPOBOIBC TO BOB-ZEBO IBZD00O 
EICEBVALBES BIVE 2-BOBB OP SCBABE BOOT 2 . XP TBE J-TBIHXDOOM 
EXCEBVALVB I S ZEBO OB BEAL ( I . E . E ( J 1 | , ITS EXCEB- XBZOOOVS 
VBCTOB IS POVED IB TBE J-TB COLBBB OP Z. IP TBE J-TB IBZD00A6 
IXCBBVALOE I S I8ACIHABT f l . E . S ( J ) * I ) B7TB BAJ*1| • IBZD00B7 
- B ( J ) , TBE BEAL MET OP ITS EICEBVECTOB IS POB BO IB 
TBB J-TB COLOBB OP Z ABD ITS HACIBABT PAIT POOBD IB 
TIE fJ*1)-TB COLOR B. I P IB I t BOB EXIT IS BADE, t 
COBTAXBS TBE tIC IB VECTORS ASSOCIATED BXTB TBE STOBED 
flCXBVALOES. 
Z IS BOT BEPEIEECXD IP RITE • .PALSS. 

XBIt OOTPOT ERBOB COOE 

XBZDOOM 
IBXD0049 
XB1DOOS0 
XBZD0051 
XHZD0052 
IBZD00S3 
XRZD005* 
XBZO00S5 
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c « o BOBBAL l e r a a v n i x B i e a a Y A i a c s / f a c T o a s FOBBBI i a x a o o s * 
• j I F TBC J - T B n c e a r a x a i BAS BOT a a t a a r r r a a x a n i a x a c a s ? 

C AFTBB 30 XTtBATXOaS IBX944S9 
C XBXB00S9 
C BBO«T*n F08CTX3BS - 9ABS,9SIC9,9Sg9?,aOD IBZBOO«0 
C 18X900*1 
C 1ACB1BE 9KFBBCBCX - BFS SFCCIFIB TBt B t U T I f l F8CCXSXOB OF FI.OATI9CIBXa«0«2 
C FOXBT ABITBatTIC. BFS • 1 « . » 0 * * f - 1 3 | FOB lOBC 18X909*3 
C 
c 
c 
c 
c 
c 
c * • • • 
c 

B C F m a c a -

poaa AaxraairK oa iaa s3*o. 

U J . COAT ABB B.C. •ABB, ETCeBSYSTZB CDBFVTATXOB FOB 
ssBB-stBanaic BATBXCXS ABB A CUSS OF siaacnxc 
BATUCKS, accaa-cs» tEForr, wi« . 

m m r . | B ) , z ( a A x , 9 ) 
BFAL«« BF5.F V C,0. ,C.S,B,F.TB5T 
BCAI*0 BABS#aSICa,BSOBT 
LOGICAL BATX.SBSB 

l aaar F A B M B T H 

C 
c 
C • * * BACBXBI 
C 

BATA CFS / xsoiooooooooooooo / 
C 
C 

IF f.BOT. BATT) 60 TO 115 
C 
C • • • FUCC I9KBTITT BATBIX IB I 
C 

BO ito i • i , a 
ao IOO J * i , a 

Xflr*) * ••90 
too coBTian 

x f i . n * i-a« 
no coanaat 

c 
115 Xttl * 0 

a * a 
aai « a - i 
Bf l ) * 0 . 9 0 
I T S • o 

c 
120 IF fB . I T . 2) CO TO 370 

ao » a 
c 
C • • • SCAROI FOB BKXT SBBBATRIX TO S O l f t fBATIXI SFUTTIBO) 
C 

F • o . e o 
DO 130 i • i # aai 

j • a - i 
J F I • J « i 
0 - DABS(I(JF1)» 
IF (0 . t l . IFS* ( » * • > ( * ( • » ) + ' ) ) «0 TO 1*0 
F - « 

130 COBTXBBF. 
JFI • 1 

xaxooo** 
iaxaoo*^ 
xaxooo** 
iazaoo«7 
xaxaooca 
xaxaoo«9 
18X99070 
xataoo7i 
ISZ9O072 
18X99973 
IBX9907* 
10X99975 
IBX»0«7f 
XBX9O077 
IBZ90078 
18X90079 
iaxoooao 
IBZ9O081 
XBZBOOB2 
IBX900B3 
iaxaooa* 
IBX909I5 
iaxaooa* 
IBX90087 
iaxaooaa 
XBZ900B9 
xax9009e 
18X90091 
18X9099.2 
XBX9O093 
XBX9009* 
18X9009* 
18X9009* 
IBX90097 
IBXB0098 
18X00099 
18X90100 
XBX90101 
18X90102 
X8X90103 
18X90109 
XBX90I05 
18X9010* 
X8X90107 
18X00109 
18X90109 
18X00110 
xaxDom 
18X90112 
18X90113 
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C 
C 
c 

1*0 1 0 * J H • 1 
IOBI * JP1 
I P flOOl .ZQ. • ) CO TO 290 
IP ( . 9 0 T . 99TX) CO TO ICC 
I P f.ROT. S « 9 ) CO TO 190 

• • • PUCK CD908CT SXC9 Ot I9CVT1TT 9X9K09US 

M 150 ; » 1011, • . • 
xa.n * -«<i,n 
IP3 « I • 3 
IP fIP3 - 6 T . I ) COTO IfC 
X(IP3,IP3) * - X ( I P 3 , I F 3 ) 

»50 C09TI99B 
190 I P JL9 . f Q . • ) CO TO 399 

IBO * • - L9 
IPO « 9O0iItO,2) 
1 « 19 
I P f l t O .CO. Of CO TO 230 

• • • TOD ZEOO E l c e i f f t U e OP 0 9 9 0R9BC9 S99R|T9ICCS 

C - 9 . 9 9 
S « - 1 . 9 0 
9 0 190 I • 1 0 , 9 9 1 , 2 

R • 901 • tO - I 
RP1 « R • 1 
Q « -$ • t ( » q 
CfRPI) - C • SfRPI) 
XP ( M 9 S ( t f R ) ) -CT. M9S(Q)I 6 0 fO 170 
C « t | E | / Q 
9 » 0SQ9T(C*C • 1 . 9 0 | 
t ( R ) - Q • • 
S • 1.90 / I 
C » C • S 
CO TO 190 

T70 S • 0 / t (R) 
9 • 9SQ9T(1.90 • $•$) 
F d ) • t | R ) • I 
C • 1.90 / • 
s • s • c 

190 XP J . O O T . HITX) oo TO 199 

• • • iCCRWlRTt TtftRSPOIfliTlORS POI fXCIRftCTORS 

R91 - R - 1 
1 ( 1 9 1 , 9 ) • - S • 
i ( i i i , n n • c • 
90 199 J • i f f , 

X(J,RR1) • S 
10* 

I(J.*) 
C0IT199I 

X(RR1,RR1) 
> *(RRl,RR1) 

• *P#9) 
C • X(J,9) 

190 CORTXRRt 
n • RHi 
*91 • R - 1 

19X9911* 
19X99115 
19X99119 
19X90117 
19X99111 
19X99119 
19X99129 
19X99121 
19X99122 
19X99123 
19X9912* 
19X99125 
19X99129 
19X99127 
19X99129 
19X99129 
19X90139 
19X99131 
19X90132 
19X99133 
10X9913* 
19X99135 
19X9913* 
XRX901*? 
SRX99139 
19X90139 
19X991*0 
19X991*1 
19X901*2 
19X90193 
XRX901»« 
19X90**S 
19X901*9 
19X001*7 
19X901*9 
19X001*9 
19X90150 
19X90151 
X9X991S2 
IRX901S3 
19X9915* 
19X90155 
XRX90159 
X9X90157 
X9XM159 
XRX90159 
19X90190 
XRZ90191 
XRX90192 
19X001*3 
I9X90M* 
XRX0019S 
XRX9019* 
XRX90197 
10X901*1 
XRX90169 
XK90170 
IRX90171 



10 

I ' HO . 8 0 . R) S D T O J N 

• * • caeca rca coaveauact ca s a a u saeaiacoaai ELsaxar 

200 ao 210 i * M , a a i , 2 
a « aat • LO - i 
L - a • i 
T E S T « ers • ( M a s t t f i . ) ) • B I B S I F I B - I I H 
I F f a a a s R f c i ) . i t . T I S T J on TO 220 

216 COBTXaaZ 
1 « 10 

220 I F f l .CQ. a) CO TO 300 

* • * poaa S U F T 

30) CO TO MO 

c 
c 
c 

230 ITS « ITS • 
I F {ITS .CT. 
F - Bfa-3) 
C « «I8-2» 
c « t f a a i ) 
$ « e<aj 
F • IfCHF) • (C*F| • | $ - « | • |5«C)) / |2.C0 • C • CI 
9 * as«aT<F*F • 1.001 
Q « (C / fF • BSICB{B,F)M - C 
r « t f i ) 
M l • I - I 
* n a i ) * I C F - S I • |F*s» • c • 01 / F 

• * * FcaFoao oae i a n i c i T oa ITBBATIOB o a c a o i c s n F K T O B 
I S * IOBI 
c - I . B O 
s * i .eo 
BO 200 1 • x.. a a i 

I F I « 1 • 1 
xai « 1 - 1 
0 « S • K(IF1) 
« ( I F I | * C * SfXFf) 
IF (MBSfX( IBI ) ) .CT. DABSfQ)) CO TO 2*0 

c 
c 
c 

c - m a i l / Q 
I * BSQBT(C*C * 1.00) 
( ( I I I ) « Q • I 
s - i.oo / a 
c « c • s 
CO TO 250 

2*0 S « 0 / BflBf) 
a * DSQBT(1.00 • S*S) 
B ( i a i ) • B f i a i ) • a 
c • i.oo / a 
s - s • c 

250 F « XffPI) 
E(IP1) » - S • E(X) • C • F 
B(X) • C • I f f ) • S • F 
IF ( . fOT. RiTX} 60 TO 200 

• * • ICCQnOLftTE TtlBSFOIH&TXOBS FOB XICEBfBCTOBS 

00 260 J • I S , HO, 2 

IBZSOI72 
IBXMI73 
iazaoi7» 
IBE80175 
IBZB0170 
IBX80177 
i a tao i7a 
U n » 0 l 7 4 
xaxaoiao 
IBZB0181 
IBZ»0ia2 
iaxao io i 
iazac ia« 
iazao ia* 
iaxa«ia< 
iazaoiB7 
iaxaoiaa 
iaxaoiao 
XBXB019O 
XBSB0I9I 
IBXB4I92 
18880193 
XBXB019* 
18X06195 
I8X80I9* 
XBXB0197 
iaxaoioa 
IBXB0194 
IRB02OO 
IBX992SI 
IBX00202 
IBXB0203 
IBX8020* 
18300205 
18X9020* 
IBXC0207 
IBXO0208 
IBXBQ209 
IBXB0210 
IBXO0211 
XBU0212 
18X00213 
IBX9021* 
IBID0215 
I8ZD0216 
IBX0O217 
18X002 IB 
18X00219 
18X00220 
X8X00221 
18X00222 
18X00223 
18X0022• 
IBXD0225 
IHXD0226 
18X00227 
18X00228 
IHZ00229 
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P » Z f J . H l ) 
Z ( J . I P I ) « -S 
zu . ia i l 

2*0 coansoz 
IF as .to. 
IS * LM1 
CO TO 200 

270 LS • LO 
200 C30TIME 

zaati * «>M 
CO TO 200 

Z f J . M l ) 
• C • ZfJ,IB1) « 

LOOl) CO TO 270 

• C 
s 

• p 
• p 

•*• rmtriov c a r a c n ro o«e zuo EICEVULOC 

c 
c 
c 

TO HCHfH.'*E P1I* 

2*0 Eff) * 0 .00 
I ' l l ! 
CO TO 110 

• • • ITTMTIC* COVVCI 

MO S f s r i ; * Z(O) 
cfRi - - E « « I 
• « • - 2 

310 ITS » C 
111 * I • 1 
IP ! • -«* • 101 CO TO 200 
IP ( • .«Q. 10) CO TO 300 
IP (.OCT. M T U CO TO 120 
I f (SKI*) CO TO 120 

• • • coBprrt EICESVECTOIS Ptcn O R B D N I I colons OP Z IP *OT S K I 

320 K « 00 
130 TP (E(K) .CQ. 0 .D0 | CO TO 350 

M l * I - 1 
DO nO 4 « 1 0 0 1 , M , 2 

I P , I | * Z(J ,UM) 
P - Z(J«T,C) 
Z(J«1,KH1) « P 
Z(J*1,K) « - P 

380 COVTIfBE 
S - M l 

350 It - I f -1 
IP (K .CT. L0I1) CO TO 330 
IP (HIP .IE. 0) CO TO 370 
CO TO 120 

••* EM 0» EIIT 
360 IERI - H 

IP (.HOT. B»TZ» CO TO 370 
IP (.ROT. SKE8) CO TO 320 

370 RETIIM 
MO 

MZDO230 
UZ00231 
11X80232 
HX80233 
I M B 0 2 3 * 
I8XB023S 
IIX8023* 
I B S 4 2 3 7 
UZ80238 
m » 0 2 3 9 
I«W02«0 
U » 0 2 « 1 
IBZ002«2 
I K 0 0 2 C 3 
I«Z»02«« 
MXB02«S 
UZ0O2M 
iezss^%7 
IOXD02M 
KiKB02«S 
HZ692S0 
ISZS02S1 
11X80252 
HX00253 
HZ802S* 
U Z 0 0 2 5 5 
HZB025* 
ISXD0257 
11X00258 
10Z00259 
HXD0280 
UX80281 
18X00262 
11X00263 
I8XD026« 
IBZB0Z65 
IBZD0266 
IBZD0267 
IBZDC268 
IBXDC269 
IBZD0270 
IBZD0271 
IBZ00272 
ISZD0273 
IBZD027* 
IBZD0275 
ISZD0276 
IBZD0277 
IRXD0278 
IHZ00279 
IBXD0280 
IBZD0281 
IBZ00282 
IBXD0283 
IRZD0288 
IHZD0285 
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C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
• * 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

S9BR00TIHE TRIZD ( SAX, H, A, E, 12 ) 

* • * • 
POBCTIOW - REODCES A REAL SKEN-SinMETRIC HATRIX TO A 

TBIZ0001 
TRIZ0002 
TRIZ0003 
TBIZOOOB 

SKEH-SYHHETBICTRIZ0005 
TRIDIAGOHAL RATSIX 
TRAHSPORBATIORS 

OS IIIG ORTBCGOHAL SinXLABITT 

PARAMETERS 

HAX - IRPOt IRTEGER SPECIFIIRG THE ROB DIHEHSIOH OP A AS 
DECLARED IR TBE CALLIRG PROGRAH DIHER510H STATEBBRT 

- IRPOT IHTEGER SPECIPXIRG THE ORDER OP A 

A (HAX,R| - OR IRPOT, A CORTAIRS TBE REAL SKRH»SYHBBTRIC BATRIX. 
ORLT TBB STRICT LORES TRIARGLE OP THE HATRIX HEED 
BE SUPPLIED. 

TBIZ0006 
TBIZ0007 
TBIZ0008 
TRIZ0009 
TRIZOOtO 
TBIZ0011 
TBIZ0012 
TRIZ0013 
TBIZ0014 
TRIZ0015 
TRIZ0016 
TRI30017 
TRIZ0018 

OR OOTPOT, A CORTAIRS XRPORBATXOR ABOOT TBB ORTBOGOHAL TRIZ0019 

E(R) 

«(•) 

TRARSPOSBATIORS OS ED IR TRE REDOCTIOK IR ITS POLL 
LORER TRIARGLE. THE STRICT OPPER TBIAHGLE OP A IS 
ORALTERED. 

OOTPOT ARRAY COHTAIHIRG TBE LORES SOBDIAGORAL BLERERTS 
OP TBE TRIDIAGORAL BAT BIX IR ITJ LAST R-1 POSITIORS. 
E(1) IS SET TO ZERO. 

OOTPOT ARRAY CORTAIRIRG TRE SQUARES OP THE ELERERTS 
OP E. E2 RAY COIRCIDE BITH I IP THE SQUARES ARE HOT 
HEEDED. 

RBQ0IRED POHrTIOHS - DABS,DSIGH.DSQRT 

RBPERERCE 

REAL'S 
REAL*8 
REAt*8 

- L . J . GRAY AHD R.C. HARD, EIGEHSYSTEH COHPOTATIOH POR 
SKEH-SYHBETRIC RATBICES AND A CLASS OP SYHHETBIC 
BATRICES, OCCBD-CSD REPORT, 1976. 

A(HAX,R),E(R),E2(H) 
P,G,R, SCALE 
DABS,DSIGB,DSQHT 

I * (R .EQ. 1) GO TO 230 

• * * HAIH DO LOOP I*H STEP - 1 ORTIL 2 

DO 220 
I * 
L « 
H * 

I I • 
R • 

• 2, H 
2 - I I 

SCAl" 

- 1 
,D0 
* 0. DO 

*** HORBALIZE ROB 

TRIZ0020 
TRIZ0021 
TRIZ0022 
TRIZ0023 
TRIZ002H 
TRIZ0O25 
TBIZ0026 

TRIZ0028 
TRIZ0029 
TRIZ0030 
TRIZ0031 
TRIZ0032 
TRIZ0033 
TRIZ0034 
TRIZ0035 
TRIZ0036 
TRIZ0037 
TBIZ0038 
TRIZ0039 
TRIZ0040 
TRIZOOHI 
TRIi30tt2 
TRIZ0043 
TRIZ0044 
TRIZ00K5 
TRIZ00U6 
rRIZ00»7 
TRIZ0OD8 
1RIZ00U9 
TR120050 
TRIZ0051 
TRIZ0052 
TRIZ0053 
TRI2005R 
TRIZ0355 
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DO 100 K = I , I 
SCM.E = SCU.E • D4BS(»(I ,K)) 

too CORTIROE 
IF (SOLE .HE. 0.D0) GC TO 120 

110 E(T) * 0.D0 
E2(I) * 0.D0 
GO TO 215 

*** COHPOTE ELE BESTS Or 0 VECTOR 

120 DO 130 K s 1 , L 
»<I,F.) = * ( I ,K) / SCiLE 
B * H • T (I,K) * ft(I,K) 

n o CORTIROE 

E2(I) « SC»LJ * SCM.E * H 
F - aix.L) 
G ~ ~DSIGR(DSQRT(S),F) 
E | I ) * SCHE • G 
B * H - P • G 
1 ( 1 , L) = P - G 
IF (L .EQ. 1) GO TO 200 

* • • COBFOTE ELEBERTS OF &*0/S 

DO 180 J * 1 , I 
G * 0.D0 
IF (J .EQ. 1) GO TO 150 
JIM = J - 1 

100 

150 

160 

170 
180 

CO 140 K » 1 , JB1 
G = G • l ( J , K ) • » ( I , K ) 

CORT-'RUE 

IF (J .EQ. I) GO TO 170 
JP1 = J - 1 

DO 160 V * J P 1 , I 
G * 6 - k(K,J) * » ( I ,K) 

COBTIROB 

CORTIR0E 
G / H 

*** COBPOTI REDUCED A 

DO 190 J = 2 , L 
t ' M I , J ) 
G * E(J) 
JIM * J - 1 

DO 190 K « 1 , JB1 
»(J,K) * »(J#K) • F * E(K) - G • k(l,K) 

190 CORTIRPE 

200 DO 210 K » 1 , L 
M I , M * SCALE * » ( I ,K) 

TRIZ0056 
TRIZ0057 
TIIZ0058 
TBIZ0059 
TRIZ0060 
TRIZ0061 
TBIZ0062 
TRIZ0063 
TBIZ006* 
TRIZ0065 
TRIZ0066 
TBIZ0067 
TRIZ0068 
TRIZ0069 
TRIZ0070 
TBIZ0071 
TRIZ0072 
TRIZ0073 
TBIZ007H 
TRIZ0075 
TRIZ0076 
TRIZ0077 
TRIZ0078 
TBIZ0079 
TRIZ0080 
TRIZ0081 
TRIZ0082 
TRIZ0083 
TRIZ0084 
TRIZ0085 
TRIZ0086 
TRIZ0087 
TRIZ0088 
TRIZ0089 
7RIZ0090 
TRIZ0091 
TRIZ0092 
TRIZ0093 
TRIZ009U 
TRIZ0095 
TBIZ009* 
THIZ0097 
TRIZ0098 
TRIZ0099 
TRIZ0100 
TRIZ0101 
TRIZ0102 
TRIZ0103 
TRIZ0104 
TBIZ0105 
TRIZU106 
TRIZ0107 
TRIZ0108 
TRIZ0109 
TRIZ0110 
T5IZ0111 
TRIZ0112 
TRIZ0113 
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210 COITIIDE 

215 » ( I . I ) * SCALE * DSQBT(H) 
220 COUTHDE 

230 E(1» * O.DO 
E2{1) * O.DO 
RCTOM 
BSD 

TBIZ0114 
THIZOHS 
TRIZ0M6 
TBIZ0117 
TRIZ0118 
TBIZ0119 
ISIZ0120 
TBIZ0121 
TEIZ0122 
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C 
C 
C 
C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

POBCTIOB -

PARAHETEBS 

SOBBODTIBE T8AKZD ( BAX, I, I, I, t ) TBAK0001 
TBAK0002 

• TBAK0003 
TBAKOOO* 
TBAK0005 
T8AK0006 
TBAK0007 
TBAK0008 
TBAKOO09 
T8AK0010 
TBAKOO 11 
TBAK0012 
TBAKOO13 
TBAKOO1« 
TBAK0015 

MR*I»B) - IB POT ARBAY CORTAIBIBG ISPOBHATIOH ABOOT TBE OBTHOGOBALTBAK0016 
TBABSPOB8ATI0BS OS ED IB THE IEDOCTIOB BT TBIZD IB TBAK0017 
ITS POLL LOBEB TBIUGLP TBAKOO18 

TBAKOO19 
H - IBPOT IBTEGEB SPECIPYIBG THE BOBBER OP EIGEBfECTOBS TO TBAK0020 

MAX 

PORHS THE EIGEBfECTOBS OP I REAL SKEB-SYBHETRIC HATBIX 
BT BACK TRARSPOBHIBG THOSE OP TBE COBBESPOBDIBG SKEH-
STBBETBIC TBIDIAGCRAL HITBIX DETEBRIBED BT TBIZD 

IBPOT IBTEGEB SPECIPIIBG TBE BOB DIHEBSIOB OP A ABO Z 
AS DECLARED IB CALLIBG PROGBIB DIBEBSIOB STATEHEBT 

- IBPOT IBTEGEB SRECIPYIBG THE CEDEB OP A 

Z (MAX, H) 

REPERBBCB -

BE BACK TBABSPORBED 

OB IBPOT, Z COBTAIBS THE REAL ARD IHAGIBART (IP 
COBPLEX) PARTS OP THE EIGEBfECTOBS TO BE BACK TRARS-
PORHBD IB ITS PIRST H COLOURS 

OB OUTPUT, Z COBTAIBS THE REAL ABD IHAGIBABT (IP 
COHPLEX) PABTS OP TBE TBABSPCRHED EIGEBfECTOBS IB 
ITS PIRST H CCLOBBS 

L . J . GRAT ABD B.C. HARD, EIGEBSTSTEH COBPOTATIOB POB 
SKEB-SYflflETBIC MATRICES ABD I CLASS OP SYMMETRIC 
MATRICES, OCCBD-CSD BEPORT, 1976. 

* • • • 

REAL*8 A(HAX,R),Z(HAX,B) 
REAL'S H,S 

IP 
IP 

DO 

(• 
130 
L » 
H « 
IP 

DO 

.EQ. 

.EQ. 
0) 
I I 

GO TO 
GO TO 

1U0 
140 

2 , 
1 

I 
I 

(H .EQ. O.DO) GO TO 130 

100 

120 J -
S « O.DO 

DO 100 K 
S « S 

COBTIBOE 

1. • 

1. t 
* Z(K,J) 

S - (S / H) / H 

TBAK0021 
TBAK0022 
TBAK0023 
TBAK002« 
TBAKO025 
TBAK0026 
TBAK0027 
TBAKO028 
TBAK0029 
TBAK0030 
TBAK0031 
TBAK0032 
TBAK0033 
TBAK0034 
TBAK0035 
TBAK0036 
TBAKOO37 
TBAK0038 
TBAK0039 
TBAK0040 
TBAKOOM 
TBAK00a2 
TBAK0043 
TBAK0040 
TBAK0045 
TBAK0046 
TBAK0047 
TBAK0048 
TBAK0049 
TBAK0050 
TBAK0051 
TBAK0052 
TBAK0053 
TBAK0054 
TBAK0055 
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DO ItO K * 1, L TBAK00S6 
MR,J ) * Z ( * , J ) - S • 1 ( 1 . 1 ) TBM0057 

110 C O R I D ! TBIKOOSB 
C TBM0059 

120 COITTIOC TBAK0060 
C TBM0061 
130 COITIIOB TBAR0062 

C TBAK006 3 
I BO BBTOBI TSIK006* 

IID TBU0065 


