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PREFACE 

This set of notes grew out of an insane desire to close a gap which I 

felt existed in my education as a programmer. Like many other programmers, I 

initially received an education in mathematics when "computer science" was 

barely beginning to be recognized as an independent scientific discipline. 

Completion of my mathematical studies was followed by a transition into the 

new and vast (and more lucrative) world of computer-programming. Here, while 

reading computer-related literature, I frequently stumbled over such bizarre 

concepts as "Turing machines," "context-free grammars," and "finite-state 

automata" -- concepts with which I simply could not associate any meaning. 

Their persistent recurrence in the literature increased my feeling of 

ignorance until I finally reached a point of decision. I decided to 

systematically study the appropriate theory. 

So, in the spring of 1973 I got _the books by Minsky and Kaine (mentioned 

in the bibliography at the end of these notes). Fortunately, both books did 

an excellent job of pointing out the relevant concepts and ideas without 

losing themselves in complicated and irrelevant details. However, to enhance 

my understanding I copied down many of the more important parts of the theory 

in. my own words. After three months I suddenly discovered that I had written 

an extensive set of notes, over 200 handwritten pages. Looking back over the 

notes, I felt that the material they contained would lend itself quite well 

to a course whose intent would be to "close the educational gap" experienced 

by other programmers who had started out like myself in a non-computer-science 

field. 

As a result, in the winter quarter 1976 I taught a course entitled 

"Introduction to the Theory of Machines and Languages" as part of the continu­

ing education program at LLL. I used Minsky's book as a text, and also handed 

out my notes which I followed closely. The 22 lectures were recorded on 

videotape and can be presented again at any time . 

.------NOTICE-----~ 
This report was pre_parcd a~ an account of work 
spunsur~ by tne Uruted States Government. Neither 
the United States nor the United States F.nr:rgy 
Rc~arch and Development Administration, nor any or 
thcu employees, nor any of their contractors 
subcontroctors, or th~i.J cmplnyel".!., JN .. ~, anf 
~r~~nty, express or implied, or auumcs any legal 
liability or responsibility for the accuracy, completeness 
or uscful~ess of any information, apparatus, product or 
~ro~ d~losed, or represents that its use would not 
mfnnge Pnvately owned rights. 
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INTRODUCTION TO THE THEORY OF MACHINES AND LANGUAGES 

ABSTRACT 

This text is intended to be an elementary "guided tour" through some basic 

concepts of modern computer science. Various models of computing machines and 

formal languages are studied in detail. Discussions center around questions 

such as, "What is the scope of problems that can or cannot be solved by 

computers?" 

REVIEW OF SET THEORY 

Intuitively, a set S is simply a collection of different objects. The 

objects in this collection are called the elements or members of the set S. 

Some Terminology 

Examples: 

(1) A = the set of all CDC-7600's at LLL in January 1976. A is a set 

containing three elements, the R- , S- , and U-machines. 

(2) B the set of all stars in the entire universe. 

(3) c the set of all integers greater than 1000. 

(4) D the set of all programmers who have never been frustrated. 

A is an example of a finite set, containing a finite (3) number of elements. 

According to current astronomical knowledge, B is presumably finite, even 

though it contains an incredibly large number of elements. C is an example of 

an infinite set, which contains infinitely many elements. D is called the 

empty set, containing no elements at all. 

Let us fix some mathematical terminology: If a set contains the objects 

a,b,c,and d, we can write S = {a,b,~,d} = {c,a,d,b}, i.e., the order of thR 

elements in S is immaterial. Frequently sets are defined by saying that a 

set S contains all elements with a given property P; in symbols: 

S = {x / x has property P} (read S equals the set of elements x where x has 

the property P). For example, seL C above could be defi~ed by C = {x I x is an 

integer> 1000}. Similarly, B {z I z is a star in the universe}, 

A {y I y is a 7600 computer at LLL}. 

-1-



If an element or object a, belongs to a set S, we write a e S. Otherwise, 

a f S. Thus, 5000 f B, but 5000 e C. Since D is the empty set (which is 

denoted by 0), there exists no object x with x e D, or stated differently, for 

all objects, x, x f. D.· In fact.:, the empty set can be defined as: 

0 = {x I x 1' x}. 

Just as numbers can be compared by their size (5 < 7, etc.), sets may 

(some.times) be compared: given two sets A and B, we call A a subset of B if 

x e A implies x e B. If A is a subset of B, we write AC B. Clearly, if 

A C·B and also BC A, then A= B (just as for numbers: x ~ y and y ~ x 

implies x = y). The empty set is a subset of any set: 0 CA, for all sets A. 

Examples: 

(5) Let E = {x I x is integer and x > 3000}, then x e E impHe.R 

x > 3000 > 1000, so x e C. Thus E is a subset of C: E C C. 

(6) F {y I y is a star less than 10
6 

light years away from us}. 

Clearly, y e F implies y € B, su F C Il. 

(7) G = {t I t is a computer at LLL}. Clearly, t e A implies t e G, 

so AC G. 

Set Operations 

Now that we have defined a new class of objects called "sets," we 

proceed just as in elementary algebra where, having ui;flw:'.tJ 11umbers, one 

studies algebraic operations (addition, multiplication, etc.) that can be 

performed with numbers. We'll do the same with sets, and it'll turn out that 

our set operations will even have many of the familiar properties that 

algebraic operations have. 

Un:ion of Sets 

Given two sets A and H, their wnun ls Ll1e .set A U £ - {lr I x f:i A. •.•1. 

x e B}. 

Intersection of Sets 

The intersection of two sets A and B is the set A n B {y I y e A and 

y e B}. 

-2-
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Difference of Sets 

The difference of two sets A and B is the set A ' B 

z ti BL 
{z I z € A and 

Example: 

(8) Let A 

AU B 

AnB 

A' B 

{1,2,3,4} and B 

{1,2,3,4,6,8}, 

{2,4}, 

{1,3}, 

B'A={6,8}. 

Properties of Set Operations 

{2,4,6,8}: 

The following eleven properties .follow directly from the definitions: 

(P. l) (A U B) u c A U (B. U C) } (P 2) (An B) n c A n (B n c) 
Associativity 

(P 3) AU B BU A } 
(P 4) AnB B n A 

Commutativity 

(P 5) A U (B n C) (AU B) n (A UC)} 

<i> 6) A n (B U C) (A n B) u (A n C) 
Distributivity 

(P 7) AUA=AnA= A 

(P 8) AU 0 A 

(P 9) An 0 0 

(P 10) A ". A 0 

(Pll) A'0 A. 

The next two properties have important applications in Boolean algebra .and are 

known as the rules of De Morgan: 

(P 12) A '- (B n C) (A ' B) u (A ". C) 

(P 13) A' (B U C) (A' B) n (A '- C) 

-3-



More Set Constructions 

The Power Set 

r.iven a set S there is an important construction which associates a new 

set with S. This new set is called the power set of S: P(S) = {A I ACS}. 

Thus, the power-set P(S) is the set of all subsets of S (including 0 and S 

itself as subsets, of course). For example, if S = {x Ix integer, 0 < x < 4}, 

then S {1,2,3} and P(S) = {0, {l}, {2}, {3}, {1,2}, {1,3}, {2,3}, S}, so P(S) 

is a set with 8 = 2
3 

elements. In general, if S is a finite set of n 

elements, then P(S) is a finite set of 2n elements. Note that 0 has zero 

elements, but P(0) = {0} contains 1 element. 

The Cartesian Product 

Given two 8els A and Il, we deflnc a new set A x B, called thP. r:a.rtesi.an 

product of A and B, as the set of all ordered pairs (a,b) with a € A, b € B: 

Ax B {(~,b) I a €A, b € B}. Here, an ordered pair (x,y) is not the set 

{x, y} but rather the set { {x}, {x,y}}. Thus (x,y) = (x,y) if aud only if 

x = x, y = y. In particular (x,y) # (y,x) unless x = y. 

Functions 

Mapping from One Set to Another 

Of fundamental importance not only to set theory but to all of higher 

mathematics is the concept of a function or map from one set to auother. 

Given two sets A and B, a funct-ion f f2°om A to B (in symbols f : A -+ B) 

is simply a rule which associates to any element a € A a unique element 

b e Il. This element b is denoted b = f(a). All functions (e.g., f(x) "' 

x2 , f(x) ""' ~~xi, etc.) that oc.r.ur in calculus are examples of mappings 

from the set R ot reai numbers 1n~o Ll1e (8a111e) set R, i. c., f 1 R -+ R. 

Examples: 

(9) Let A {x I x is an employee at LLL} 

{y I y integer, y > o}. and B 

Define f : A -+ B by associating to every employee x € A the number 

of years he has worked at LLL (= f(x)). 

-4-
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(10) Let S be any set, and d~fine a function f: P(S) + P(S) by f(x) = 

S ~ x for every x E P(S). This function simply associates with 

every subset x C S its complement S ~ x. In particular: f (0) = S, 

f(S) = 0. 

(11) Given two sets A and B, define two functions P
1

: Ax B +A and 

P2 : A x B + B by P1 (a,b) = a and P
2

(a,b) = b, for all a E A, b E B. 

These two functions are called projections. 

Given a function f from some subset of a set A into the set B, we define 

the domain of f (Df) by Df 

is the set Rf = {b E B / b 

{a EA I f(a) is defined}. The range off (Rf) 

f(a) for some a E A}. Thus, the range of f is 

exactly the "image" of Df· under the map f. 

A function f : A + B .is called surjective (or onto B) if and only if 

Rf B, i.e., if every element b EB is of the form b = f(a). 

A function f : A+ B is called injective (or one-to-one) if f(a) = f(a') 

implies a = a', i.e., if different elements of A are mapped into different 

elements of B. 

A function f : A->- B that is both injective and surjective is called an 

isomorphism between A and B (or an equivalence between A and B). 

Thus, the sets A {5,7,500,-2} and B = {X,Y,Z,~} are equivalent, since 

an isomorphism is given by f : A+ B with f(S) = X, f(7) = Y, f(SOO) = 7., 

f(-2) = ~. 

Cardinality of a Set 

Obviously, two finite sets are equivalent if and only if they contain 

an identical number· of elements. If we <lenote the number of elements of a 

finite set A by !Al, then A and B are equivalent if and only if !Al = !Bl. 

The number IAI is called the cardinality of A. The importance of the concept 

of an isomorphism between sets lies in the fact that it has led to a 

generaJ.1.7.atj_on of the cardinality to infinite sets! The idea is very simple 

as the following consideration shows. A child who cannot count yet can still 

find out whether two finite sets have the same cardinality (e.g., whether the 

number of apples on the table is equal to the number of oranges) by simply 

associating to each object of the first set a unique object of thP. second set 

(i.e., by pairing the oranges and apples). If the objects caii be paired in 

this manner without any "left-overs," then the two sets must have had the 
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same cardinality. By dropping the finiteness restriction we arrive at the 

following definition. 

Detmition 1: 

Two (finite or infinite) sets have the same cardinality, if there is an 

isomorphism between them, i.e., if they can be paired in a one-to~one fashion. 

Examples: 

(12) Let Z+ {n / n integer, n > O} be the set of all positive integers. 

Let SQ {x I x is 

numbers. Thus, z+ 
SQ 

The function f: z+ 

integer of 2 form y } 

(1,2,3,4, ... } 

{1,4,9,16, ... } c 
-+ SQ given by f(n) 

be the set of all square 

z+. 
.2 = n is clearly an equivalence; 

'\ 

thus, z+ and SQ have the same (infinite) cardinality. Similarly, 
+ } . 3 Z and CU= {1,8,27,64, .•. have the same cardlnallly (f(n)., n ), 

(13) The set z+ of all positive integers is of the same cardinality as 

the set of all integers z = { ... ,-2,-1,0,l,2,3, ... }. The proof is 

left as an exercise. 

Note that in these examples a set (e.g., 'Z+) has .the same cardinality as 

a proper subset (e.g., CU). This is a property that distinguishes infinlLe 

from finite sets. 

Definition 2: 

I 
A set S is called countable if it has the same cardinality as Z . 

Examples of countable sets are the sets Z of aU integers; SQ of all .square 

numbers, cu of all cubes, Zev of all even integers, and zodd of all 

odd integers. The set Q of all rational numbers (fr.actions) is also countable. 

The question now arises, "Are there infinite sets that have a higher 

cardinality than the countable ones?" 

the following theorem. 

·Theorem 1: . 

The answer 1s "yes," as indicated in 

Given an infinite set S, the power set P(S) has higher cardinality than S. 

-6-
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Proof: 

We'll show that the assumption that S and P(S) have the same cardinality 

leads to a contradiction. Assume that there is an equivalence, f 

which is "onto" and one-to-one. Define a subset AC S as follows: 

A= {x Ix€ S, x f/ f(x)}. 

S -+ P (S), 

Thus, A siu~ly contains all those objects of S that do not belong to their 

associated subset f(x). Therefore, A as a subset of Sis an element of 

P(S): A€ P(S); and since f is "onto," there is an element z € S with 

f(z) = A. 

We now ask whether z € A or z f/ A. If z € A, then by definition of A, 

z f/ f(z). But f(z) =A, so z €A implies z f/ A - nonsense! However, if 

z f/ A, then z t f(z) = A, so z f/ A implies z € A - aga.i.n nonsense! The 

assumption has led to an impossible situation, and must be abandoned. Q.E.D. 

The theorem we have just proved displays one of the most remarkable 

discoveries of modern mathematics, namely that there exist different (in fact, 

infinitely many) infinite cardinalities. 

The simple and intuitive concept of one-to-one correspondence allows us 

to distinguish between different "sizes of infinity." Starting with an 
+ infinite set, say Z , the set of all positive integers, we form the power-set 

P(Z+), the set of all subsets of Z+ From what we have just shown, P(i+), 
+ . + 

has a higher cardinality than Z. Next we can forni the set P(P(Z )), which is 

of higher cardinality than P(Z+), P(P(P(Z+))) is of higher cardinality than 

P(P(Z~)), etc. We can continue this process forever, and as a result obtain 

infinitely many sets of different infinite cardinalitieo. 

Let us denote the (finite or infinite) cardinality of a set S by Isl. 

Then, one writes for the cardinality of P(S): 

IP Cs) I = 2lsl. 

For finite sets S we already know that if S has n elements, i.e., Isl = n, 

·then IP(S) I = 2n. Thus, we simply extend this fact to infinite cardinalities. 

One denotes the cardinality of the countable sets by ~ 
0 

( ~ is A lP.ph.; th'e 

first letter in the Hebraic alphabet). Thus, IZI = lz+I = ~ 0 . 
The set of all real numbers (including all integers, fractions, irrational 

numbers like /2, and transcendental numbers like TI or e) is denoted by R, and 

its cardinality is denoted by c = IRI. One can show that R is in one-to-one 
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correspondence with P(Z+), i.e., IRI = 2lz+I, or in our new notation: 
~ I 

c = 2 0. This means that the set of all real numbers is of higher cardinal-

ity than the set of integers or rational numbers. Any set S which is in 

one-to-one correspondence with R (so that Isl = c) is called a continuum. 

In particular, we know from analytic geometry that the set of all real 

numbers is in one-to-one correspondence with all points on an infinitely long 

line. Thus, the set of all points on a line forms a continuum. 

A famous problem posed at the beginning of this century by Cantor, the 

founder of set theory, was solved only a few years ago. It is the continuum 

problem. 

Continuum T'rohlr.m: 

.A.r~ thPrP. sets S such that ~ 
0 

< IS I < 2 ~ 0 ? In other words, are there 

sets having higher cardinality than the integer~ but lower cardinality t.han 

the real numbers? 

The interesting and unsuspecting answer to this question is that neither 

the existence nor the nonexistence of such sets can be proved using the axioms 

of set-theory. Either assertion is independent of the set-theoretic axioms, 

and could therefore be appended as one further axiom. 

O~r final discussion will center around the concept of equivalence 

rel <i ti nn::;. 

Definition 3: . 

Let A be a set (nonempty). A relaL.i.011 fin •. " which hold:;: hPtWP.en certain 

pairs (a,b) of elements of A is called an equivalence relation if it 

satisfies the following three properties: 

(a) a rv a V a E A (reflexive),>'< . 

(b) a rv b implies b rv a V a,b EA (symmetric), 

(c) a rv b and b 'v c implies a 'V c Ya, b, c e A (transitive). 

*The symbol Vis read "for all" (see Appendix 3). 

-8-
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Examples: 

(14) Let A be the set of all human beings, and let "",'' be the relation 

"is blood-related to." Thus., if a and b are human beings, then 

a"' b means that a is blood-related to b. Clearly, a rv a (each 

person is blood-related to himself) ; a rv b. implies b rv a; and 

a rv b an<l h rv c implies a "-' c. Thus, the above relation is nn 

equivalence relation. 

(15) Let Z be the set of all ·integers, and let "rv" be the relation "has 

the same remainder after division by 3 as." Thus, e.g., 5 rv 11, 

since both numbers have the same remainder (2) after division by 3. 

It is easy to verify that "rv" is an equivalence relation. In this 

example, instead of writing a 'Vb, one writes a= b (mod 3), and says 

that a is cong1'uenl to b modulo 3' which means that a and b leave 

the same remainder when divided by 3, or, a - b is a multiple of 3. 

(16) Let A be the set of all human beings as in (14), and let "rv" be 

the relation "is a friend of." Thus, a ''-' b means "a is a friend of 

b." Properties (a) and (b) of an equivalence relation are 

obviously satisfied; however, property (c) is certainly not true, 

since a might be a fr1end of b, and b might also be a friend of c, 

but a and c might not be friends at all (if they always were, social 

life would be quite a bit simpler, but also more boring). Thus, 

"rv" is not an equivalence relation. 

Given an equivalence relation on a set A, we shall collect all elements 

that are equivalent to each other into a subset. If a £ A, then we'll denote 

the subset of all elements b € A with a rv b by [a], so [a] = {b I b € A, 

a rv b}. Since "rv" is an equivalence relation, [a] = [b] if and only if 

a rv b; otherwise [a] n [b] = 0 (if a~ b). So, the set A is subdivided into 

mutually disjoint subsets [a]; each such subset is called an equivalence 

class. 

Definition 4: 

Given a set A and an equivalence relation "rv", we define the quotient-set 

A/''-' as the set of all equivalence classes: A/rv = {[a] I a € A}. 

-9-



In example (15) above, where 11
'\..

11 is the relation "has the same remainder after 

division by 3 as," there exist three mutually disjoint equivalence classes: 

[0] set of all integers whose remainder is 0, 

[l] set of all integers whose remainder is 1, 

[ 2] set of all integers whose remainder is 2. 

Thus: 

[0] {0,±3,±6,±9,±12, ... }, 

[ 1] { ... -8,-5,-2,1,4,7,10, ... }, 

[ 2 J { ... ,-7,-4,-l,2,5,8,ll, ... }. 

H~pce Z/'\.. = {[0], [l],[2]} has three elements. Since the equivalence relation 

depended on the number 3, we write zf'-.., = z
3

. 

(17) Our final example of an equivalence relation has many important 

applications. We consider two sets A and B, and a function f: A-+ l3. 

Let 11
'\..

11 be the following relation in A: a '\.. b means "f (a) f (b) •II 

Clearly, a'\.. a since f(a) = f(a); a'\.. b implies b '\J a; and a '\J b, 

b '\Jc implies a '\Jc, since f(a) = f(b), f(b) = f(c) implies f(a) = 

f(c). Thus, 11
'\..

11 is an equivalence relation in A. We can therefore 

form the quotient set A/'\.. of all equivalence classes in A. 

Proposition l : 

Then'? is a one-to-one correspondence between A/'\J and the range of f, 

Rf, i.e., JA/'\JJ = !Rf I· 

Proof: 

We define a function p: A/'\.. -> R C B by: 
f 

p([a]) = f(a) for ali 

[a] € A/'\... First we must show that p is "well-defined," i.e., that p is 

independent of the element a' E [a]. Thus, let a' E [a]. Then a' '\J a, 
-

;i,.,e., f(a') = f(a) by definition of 11
'\...'

1 Then p([a']) f(a') = f(a) 

p([a]), sop is independent of ·the choice of a' E [a]. Clearly, pis 

surjective, since every b € Rf has the form b = f(a) for some a € A, hence, 

b = p([a]). Next suppose, p ( [a]) = pqb]). Then f(a) - f(b) by the 

definition of p. But f (a) = f (b) means II a 'V b," so [a] = [b] . This shows 

that p is injective. Since p is injective and surjective, it is .one-to-one. 

-10-
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Given A and "rv," there is an obvious function l/J : A-+ A/rv, namely, 

iJJ(a) [a]. Clearly, ¢(a)= ¢(b) if and only a rv b. Given f : A-+ B, we 

showed above that there is an equivalence relation "rv" in A and a function 

p : A/rv -+ Rf C B. Composing this function wlth l}J : A -+ A/rv, we obtain: 

A .~ A/"• £ B. 

It is easily seen that f = p·¢, so that the triangle of functions shown in 

Fig. 1 "co'mmutes." Thus, every function f : A-+ B can be split up into a 

composition of a surjective function(¢), followed by an injective function 

(p). In modern algebra to yield important results, this fact is exploited 

quite frequently. 

f 

A/-

Fig. 1. Function diagram. 

Exercises 

(1) If Xis a set, let P(X) be the set of all subsets of X, i.e., the power 

set of X. Which of the following 3 equations are incorrect, and which 

would be the correct statements? 

(a) P(A U B) 

(b) P(A n B) 

(c) P (L\ \ B) 

(2) Show that 

(a) A \ B 

(b) A \ B 

P (A) U P (B) 

P(A) n P(B) 

P (A) \ P (B) 

A \ (A 11 B) 

A+..AnB=0. 
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(3) + Let Z = {1,2,3, ... } and Z = { ... ,-2,-1,0,1,2,3, ... }. 
. + Find a function f : Z + Z which is one-to-one and onto. 

(4) Suppose, A and B are nonempty sets, and f : A+ B and g : B +A are 

functions. Let lA : A+ A and lB : B + B be the "identity-functions," 

i.e., 

a, for all a € A 

b, for all b € B 

What can be said about f and g, if 

(~) g • f 

(b) e · f 

lA 1 i.e., g(fta)) a, tor ail a €A? 

lA and t • g = lB? 

(5) Give a short (3 lines) proof that P(A) P (B) implies A 
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THEORY OF LANGUAGES 

In every language there is a distinction between the structure of that 

language and the meaning of its words and sentences. Consequently, linguists 

LI.is Llugulslt be tween the syntax, which deals with the s true tu re only, and the 

semantics, which deals with the meaning of the words. In the following we 

shall be concerned only with the syntax, which lends itself relatively easily 

to mathematical investigation. 

Formal Definition of Languages 

Consider the following example of a sentence in the English language: 

"The man gave me a book." 

noun phrase verb phrase 

As indicated, this sentence consists of two parts, the noun phrase (NP) and 

the verb phrase (VP), in that order. If we use the symbol S to denote the 

entire sentence, we could symbolically write 

S -+ (NP) (VP), 

meaning, "We can start with a noun phrase, and follow it with a verb phrase 

to obtain a sentence." 

In our example, the noun phrase can be further partitioned into two 

parts: an article (A), which is the word "the," and a noun (N), the word 

"man." Using the ;:ihove symbolism we can write 

(NP) -+ AN, 

meaning, "We can start with an article, and follow it with a noun to obtain a 

noun phrase." Similarly we can partition the verb phrase into a verb 

(gave), followed by a noun phrase (me) and another noun phrase (a book), i.e., 

(VP)-+ V(NP)(NP). 

Now, the noun phrase "me" r.onsi sts of a single pronoun (PR), so we also ltave 

(NP) -+ (PR) . 
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Finally, for our· particular example we have 

PR + me 

A·> the 

A+ a 

N + man 

N + book 

v + gave 

The symbolic rules of the form x + y, which specify how se_n tences are formed, 

are called productions or rewriting rules. To arrive at. a sentence S, we must 

start with a rewriting rule of the torm S ~ y. 

Let us use our above rules to derive the original sentenee: 

S + (NP) (VP) -> AN(VP) ->- A(man) (VP) 

+ A(man)V(NP)(NP) + A(man)V(PR)(NP) 

+ A(man)V(me)(NP) + A(man)(gave)(me)(NP) 

+ A(man)(gave)(me)AN + (The)(man)(gave)(me)AN 

+ (The)(man)(gave)(me)A(book) 

+ (The)(man)(gave)(me)(a)(book) 

Using the same rewriting rules in another order we could have obtained 

sentences like, "A man gave me the book," or "The man gave me the book," or 

"The book gave me a man 11 

. ' etc. 

Looking back at this example, we could think of the (.English) language as 

being comprised ot words (the, or,- gave, man, ere.), and of a "granuuar" 

reflected by the rewriting rules.· This consideration leads straight to the 

mathematical formulation of languages as follows. 

First we must specify a finite set of symbols E. Let us denote the 

elements (symbols) of E by x1 ,x2 ,. .. ,y
1

,y2 ,... . Then a worid or a st·rirt(f over 

l: of length n is a finite sequence x
1

x
2

x
3 
... xn' where xj € l:, n > 0. If 

n = O, we denote the (empty) string of length 0 by £~ If IEI is the number of 

elements in L:, then the number of words of length 1 is IEI, while in general, 

the number of words of length n is ILln (n = 0,1,2, ... ). If w is a word of 

length·n, write lwl = n. Now, two words w, v are equal if lwl = lvl and both 

contain the same symbols in the same order. 
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If w = x1x 2 ... xm and v = y1y 2 ... yn ·are two words of length m and n, 

respectively, then wv is a new word of length m+n obtained by putting the 

symbols of v behind those of w: 

WV 

Obviously, lwv I lwl + lvl for all strings ·v, w. Also, for three words, 

u, v, w: 

(uv)w = u(vw) uvw 

and Ew = wE = w, if E is the empty word. 

The above concatenation of words is called the product of words. 

* Now let E be the set of all finite words over E. In contrast to E the 

* set E is an infinite set. 

Definition 5: 

* The set E together with the above multiplication is called the free 

semi.group generated by E. 

Definition 6: 

A language over i is a subset of L*. 

This definition of languages is much too general. To obtain a more 

interesting definition we have.to recognize the grammar as a main part of the 

language. We can use our intuition to describe a grammar (as a set of 

rewriting rules). 

Definition 7: 

A phrase-structure grammar (or simply, grammar) is a quadruple 

G (V, E, P , o) , 

where: 

V is a finite oet (the vocabulary). 

E is a suhset of V, l. C V (the set of terminals). 
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P is a finite set of ordered pairs (u,v) such that u is a nonempty word 
,~ * 

of (V\I) and v € V (empty or not). Instead of (u,v) € P, we write 

u > v, so that P is the set of prodiwti.ons or re1,Jr>1'.t1'.ng rules. 

er is the stai~t Val"iable (corresponding to our sentence symbol S). 

cr € V \ I, so V \ I # 0. 

We can interpret the various quantities in this definition as follows 

(using our example): I, the set of terminals, contains English words like 

"the," "man," "book," "me," etc. V, the vocabulary, contains I and V \I, the 

set of variables or nonterminals consisting of (NP), (VP), A, N, etc. P, the 

set of rewriting rules, contains rules like (NP)(VP) + AN(NP)(NP), where the 

left side must be a nonempty string of variables and/or terminals, while the 

right side may be any string of terminals and variables, including the empty 

string E:. 

* * Now suppose that wand w' are in V . If there are strings w
1

, w
2 

€ V 

and if u +vis in P such that W w1uw2 and w' = WlV\VZ' we write w Gw'. 
Thus, w G w' means that there is a substring u in w that produces a substring 

v of w', while the remaining substrings of w and w' are identical. 

Example: 

(18) AN(VP) G ANV (NP)(NP), since (VP)+ V(NP)(NF) is a production, while 

the string AN is identical on both sides. More generally, we say thaf w' may 

be derived from w in the grammar G, if there is a finite sequence of strings 

such that w 

w =»w ~w -» •••• ~w ~w, 
0 G 1 G 2 G h n-1 G n 

and a:lJ 
i< 

w. € v . 
1 

* w G w'. 

ln this case we write 

Now we are able to tie the grammar into the definition of a language. 

Definition 8: 

Let G (V,I,P,cr) be a grammar. Then the set 

L(G) = {w € I* I a ! w} 
G 

i.s the language generated by the grammar G. 

-16-
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Grammars as defined above are also called Chomsky grammars after the linguist 

Noam Chomsky. We present a couple of examples of languages generated by 

grammars. 

Examples: 

(19) For any set l:, the sel {E:} (consisting of the empty word alone) is 

a language generated by the grammar 

G = (V,l:,P,o·), 

where V = l: U {o} and P {(o+E)}i.e., the only rewriting rule is a+ E. 

i< 
(20) The whole set l: is a language generated by the grammar 

G = (V,l:,P,o), 

where V = l: u {o}, and P consists of the productions a+ aa for all a € l: 

(finite!) and a+ E. For instance, if l: 
3 

{a,b}, then we derive the word 

aha = abaaa as follows: 

3 3 a + aa ~ abo ~ abao ~ abaao ~ aha a ~ aha , 

* 3 3 hence a G aha , and so aba € L (G). 

* * Any other word of l: may be similarly derived, and hence L(G) ~ l: which, of 

course, implies that L(G) = t:* 

(21) If w = * R x1x2 ... xn € l: , ~e~ w = xnxn_1 ... xZxl be the word w written 

(e.g., if w =ab c, then wR = ch 3a 2). Then the set in reverse order. 
R * {ww I w e I. J is <.:i language genarated by o. grammar 

G = (V,l:,P,o), 

where V = i u {o}, and P contains the productions a+ aaa for all a € l: 

(finite!) and a+ E. For instance, if w = aha, then wwR abaaba is derived 

as follows: 

a + aaa ~ aboba ~ abaoaba ~ abaaba, 

i.e., * 2 2 a G aha ha, so aha ba € L(G). 
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* (22) The Set {ww I w € L } is a language generated by a grammar G with 

the following se.t of nonterminals: 

So, for each 

each ordered 

v .\ ).; {cr,A ,B ,C ,D ,E ,F I for all x,y € L}. 
x x x x xy xy 

symbol x € L we define four nonterminals A , B , C , D , and 
x x x x 

pair (x,y)ELXL we define two nonterminals E and F The 
xy xy 

productions P are: 

0 -+ A B , for each x € L x x 
A -+ A C for all y:l y E l. - x x y' 

A C c -+ A A E for ull x,y,:l e L x y 2. x y zy' 
E c -+ c E 

xy z x zy 
E D -+ c F 

xy z x zy 
E n c D B xy z x z y 
F D -+ D F 
xy z x zy 

F B -+ D D B 
xy z x z y 

A C D -+ A AF 
x y z x y zy 

A C B -+ A A D B 
x y z x y z y 

A -+ x 
x 

B ·>- x 
x 

D -+ x 
x 

Classific;_a.tion of L?~~uages (Chomsky) 

for 

In 1959 N. C.homsky classified grammars (and hence their associated 

languages) into four types, according to the form of the productions. He 

labeled the widest class of languages type 0, and then imposed increasingly 

severe restrictions on the productions to obtain type 1, type 2, and finally 

type 3 languages, which constitute the smallest class. 

Type 0 (Recursive Languages) 

These are all languages that we have considered so far - there are no 

restrictions on the production rules. 
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Examples of type 0 productions: 

CBD + CabbDabcB 

AB + AbbA 

AC -~\C · 

B + E: 

Type 1 (Context-Sensitive-Languages) 

In this subset of the recursive languages, productions must be of the 

form 

aAl3 + awl3, 

* * ·where a, 13 e V , A € V \ l:, w € V \ { d. 

So, a single nonterminal A must be replaced by a nonempty string w of terminals 

and/or nonterminals; the strings a and 13 are called the context, and either 

string may be empty. 

Examples of type 1 productions: 

XAY + XaBb t.: Y 

AB + abYB 

aaBC + aaBbaA 

X + abX 

Rules like A + E: or ABC + AB are not allowed - in fact the right-hand side of 

a type 1 production can never be shorter in length than the left-hand side. 

Type 2 (Context-Free Languages) 

The type 2 languages form a subset of the type 1 languages. The produc­

.tions are restricted to the form 

* where A € V \ l: and w € V \ {d. 

A+ w, 
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So, in a type 2 production, a single nonterminal A is replaced by a nonempty 

string w of terminals and/or nonterminals. Note that these are all those 

context-sensitive productions with the context empty. 

Examples of type 2 productions: 

A -+ abAa 

B -+ bX 

c -+ aA 

D -+ ABC 

Type 3 (Regular Languages) 

Type 3 productions are of the form 

A-+ w, 

where A EV\ L, and w =a (a single terminal symbol), or w 

terminal, followed by a single nonterminal). 

Examples of type 3 productions: 

A + bX 

B -+ a 

X aX 

aB (a single 

Note that for type 1 (and hence also for types 2 and 3), u-+ v implies 

I u I 2_ Iv J , Le., these productions cannot sho.rten the length of a s Lring-. 

In other words, if a grammar G contains a production u-+ v with Jul > lvl, 

then G is necessarily type 0 and not type 1. 

*· Note that a language LC L: can be generated by many different grammars, 

in fact, even by grammars of different types. The following shows how the 

language 

* L = {w I w € {O,l} , and each 0 is immediately followed by a l} 

can be generated by a grammar of each of the four types. 
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Type 0: 

P
0 

= {a+ Ola; a+ la; a+ E}. 

c
0 

is type 0 (because a + E) and generates 1; 1(G
0

) 1. 

Type 1: 
=.. 

fo,A}, and 

a + la 

a + OA 

pl 
OA + Ola 

la + 101 

a + 1 

A+ 1 

G
1 

is type 1 (because OA +Ola, la+ 101), and generates 1: 1(G1 ) 1. 

Type 2: 

{a ,A}' and 

I 
a -+ OlA 

A+a 

A+ lA 

a+ 01 

a+ 1 

G
2 

is type 2 (because a+ OlA, a+ 01), and 1(G
2

) 1. 
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Type 3: 

G3 (V
3

,L,P
3

,cr), where v3\L {cr ,A}, and 

cr -+ OA 

A -+ lcr 
p3 

A -+ 1 

cr -+ 1 

G
3 

generates 1: 1(G
3

) = 1, and is type 3. 

So, the language L actually belongs to the smallest: class of 1•eyuZw· la11guag1:::;. 

If n is one of the integers 0, 1, 2, or 3, then let 1(n) = {1 I 1 is 

language of type n}. We then have the following proper inclusions: 

1(3) C L(2) C 1(1) C L(O). 

See Fig. 2. 

~TypeO 
~ 

Type l 

Fig. 2. Set-theoretic relationship of languages. 
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Note that the empty string s cannot appear in type 1, 2, and 3 languages, 

since the productions do not shorten a string. It is customary, however, to 

include s in all languages, and it sounds plausible that by doing so we do 

not change the main features of a language. We shall not give a rigorous 

argument for this, but shall from now on assume thats€ L(G). This can, e.g., 

be achieved by adding the production 

cr -+ s, 

assuming that a never occurs on the right-hand ~ide of any production. 

The following "membership.question" is of fundamental importance in our 

theory: 

Given a grammar G arid a string w, is w E L(G )? 

If we could build a machine to answer the membership question, we would have a 

mechanical device for testing the validity of sentences in a language L(G). 

We are thus led to the question, "What types of machines can answer the 

membership question for each of the four types of languages?" Obviously, the 

complexity of the machines will increase as the class of languages becomes 

bigger, i.e., the machines that can answer the member~hip question for regular 

languages will be much simpler than those that can answer the membership 

question for the whole set of recursive languages. It therefore seems 

reasonable to concentrate on the regular languages first, and to try to find 

(simple) machines that handle this set of languages. 

Definition 9: 

If the membership question of a language L can be answered by a machine 

in finitely many steps, then L is called decidable. 

As it turns out, context-sensitive, and hence context-free and regular 

languages are decidable. On the other hand, recursive languages are not 

decidable . 

Algorithms, Computability, and Decidability 

One of the basic concepts of computer science is that of an "algorithm." 

Since this word appears quite frequently in the text that follows, let us 

discuss its meaning and some closely-related concepts. 
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Quite informally we define procedure and algorithm. 

Definition 10: 

A procedure is a finite ordered sequence of instructions than can be 

mechanically carried out.step by step. 

Definition 11 : 

A procedure which always terminates in a finite amount of time is called 

an algorithm. 

Clearly, the definition of procedure is not· rigorous, sinr.e we have not 

defined what we meaI} by saying that its instructions are carried out 

"mechanicaliy." Intuitively, we know what is meant, and probably identify 

"procedure" with "computer program." This identification will du for our 

future considerations. Let us present two examples: 

(23) Figure 3 is the flowchart of a procedure that, given input number 

N > 1, will decide whether or not N is a prime number. 

This procedure obviously terminates for every input number N. > 1, since 

either a value of i will be reached that is greater than or equal to N, in 

which case N is a prime; or some value of i will divide N, and then N is not 

a prime. Thu~, the procedure shown in Fig. 3 is actually an algorithm. 

(24) A perfect number is an integer equal to the sum of all its divisors 

except itself. Thus, N = 6 is perfect, since 6 = 1 + 2 + 3. N = 28 is perfect, 

since 28 = 1 + 2 + 4 + 7 + 14. Tt is not known whether there are finitely 

many or infinitely many perfect numbers. Also, no odd perfect numbers are 

known. Figure 4 is a flowchart for a procedure that, given an inpul integer 

N, determines whether there is a perfect number K > N. 

This procedure need not always terminate. If there are only finitely 

many perfect numbers, and N is greater than the largest one, then the. procedure 

will r.ontinue testing larger and larger values of K, aud will never halt. If, 

however, there is a perfect number K > N, then the procedure will find it in a 

finite number of steps. This procedure, therefore, is uot an algorithm. 
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Start 

i=2 

No 

i = + 1 

Yes 

Yes 

Halt. 
N is prime 

N is not 
prime 

Fig. 3. Flowchart for determining whether N is .a prime number. 

Now let us think of an algorithm as a function F which is given an input 

value (N), and returns as output some integer F(N). For example, in our 

algorithm (1) we might output the integer 0, if N is not a prime, and 1, if 

N is a prime. Thus, F(S) = 1, while F(4) = 0. 

algorithm is nothing else but a function F : Z+ 

Thought of in these terms, an 
+ .+ 

+ Z , where Z is the set of 

nonnegative integers. We are now ready to define three important concepts 

that we will use repeatedly. 

Definition l 2: 

A function f : z+ + Z+ is called computable if and only if there exists 

an algorithm F : Z+ + Z+, such that f(n) = F(n) for all values n € Z+. 
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Start 

K= N 

K = K + l 

Sum= 0 

i= 

Yes 

i = i + l 
No 

Y~s 

Sum= Sum+ 

No 

l'-Jo 

Halt. 
K > N is 
perfect 
number 

Fig. 4. Flowchart for determining whether there is a perfect number K greater 
. than N. 

Definition 13: 

A subset s· C Z+ is called enumerable if and only if. there exists an 
+ + + + algorithm G : Z -+ Z , such that S = RG = {n € Z I n = G(i) for some i € Z } . 

Thus S is the "range" for some algorithm G. 
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Definition 14: 

A subset S C Z+ is called decidable (or solvable) if and only if there 
+ + + exists 8n Algorithm H Z + Z such that S = {n e Z I H(n) = l}. H is said 

to "decide S." 

Clearly, a function f: Z+ + Z+ is computable if it can be expressed in 

terms of an algorithm (i.e., if it can be programmed). We'll see shortly 

that noncomputable functions exist. A set S C z+ is enumerable if there 
+ exists a computable function f : Z + S (onto S). Thus, a set Sis enumerable 

if each element n e S is the result of applying an algorithm G to some 
+ integer i e Z . Nonenumerable sets exist as we'll show soon. Finally, a set 

s c z+ is decidable if an ·algorithm exists which decides for every n € z+ 
whether n € S (H(n) = 1) or n i S (H(n) = 0). Finite sets Sare· both enumerable 

and decidable. 

Theorem 2: 

(a) 

(b) 

There exist functions f : Z+ + Z+ that are not computable. 
. + 

There exist sets S C Z that are not enumerable. 

Proof: 

(a) Every procedure P (in particular every algorithm F) is a finite 

string over a finite alphabet. Hence, the set of all procedures is infinitely 

countable, and we can arrange it as a sequence {P0 ,P1 ,P 2 , ... }. Some of these 

procedures are actually algorithms, say 

IP. ,P. ,P. ····] 10 11 12 
is the subsequence of algorithms. 

Now define the function f 

f(n) P. (n) + 1; 
1 

n 
n = 0,1,2, ... 

Suppose f were computable. Then there would be an algorithm F with f(n) = 
+ F(n) for all n € Z . Since F is an algorithm, it must appear in the above 

sequence P. , ... , say, F = P. . 
10 1k 

if we choose n = k, we obtain: 

Thus, f(n) = P. (n) for all n. 
1k 
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f(k) P. (k); 
]_k 

but f(k) = P. (k) + 1, which is impossible. 
]_ . Thus, f is not computable. 

(b) Con~ider the sequences P0 ,P1 , ... 

algorithms, and define S = {n E Z+ I P is 
n 

of procedures and P. , P. , ... of 
io i1 

an algorithm}. If S were 

enumerable, then an algorithm F would exist such that n = F(i) for all n E S. 

But F = Pk for some k E S. Now the function f: Z+ ~ + 
~ Z , given by 

f (j) = p. (j) + 1 
]_ . 

J 
+ would be computable since ij = Pk(i) for some i E Z . By (a) we know that f 

is not computable, hence S is not enumerable. 

Theorem 3: 

S decidable implies S enumerable. 

Proof: 

+ Suppose, S = {n E Z / F(n) = l}, where Fis an algorithm. Let us define 
+ + 

an algorithm G : Z + Z as given by the following FORTRAN program (with 

input number INPUT and answer RESULT) : 

J = 0 

DO L3 I = 1, INPUT 

Ll .J = J + 1 

IF(F(J).EQ.l)L2,Ll 

12 CONTINUE 

RESULT = J 

T .1 . r.ONTTNTTF. 

END 

l.learly, this algorithm G is simply given by G(i) 

hence S = Rr,• i.e., Sis enumerable. 

Theorem 4: 

i Lli number of S, and 

+ + If S and Z \ S are both enumerable, then S (and hence Z \ S) is 

decidable. 
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Proof: 

+ Suppose S =RF and Z \ S = RG' where F, Gare algorithms. Define an 

algorithm (FORTRAN program) H with input INPUT and answer RESULT: 

J 0 

Ll .J .J + l 

IF(F(J).EQ.INPUT)L3 

IF(G(J).EQ.INPUT)L2,Ll 

L2 CONTINUE 

RESULT = 0 

GO TO L4 

L3 CONTINUE 

RESULT 1 

L4 END 

+ Clearly, S = {n E Z I H(n) l}, so S is decidable. 

Theorem 5: 

There exist sets S C Z+ which are enumerable but not decidable. 

We shall not prove this result, but an example of an enumerable, yet 

undecidable set is s = {n E z+ I p (n) > O}. 
n 

Backus-Naur Form of Grammars 

A different way to write the productions of a formal grammar is known as 

the Backus-Naur Form (BNF). This form has been used extensively in describing 

the grammars of various programming languages, and was first applied in the 

formal syntactic description of ALGOL. The advantage of BNF is tbat it allows 

a more compact way of listing productions. 

So far, our description of grammars made use of one "metasymbol" -+which 

is used in productions, e.g., a-+ A. Also, two or more productions with the 

same left-hand side had to be listed separately, e.g., 

a -+ A 

a -+ aB 

0 -+ c 
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In BNF three "metasymbols" are used: 

"< >". ". ·=" "I". 

The symbol"<>" is used to enclose and thereby identify nonterminals, e.g., 

<A>, <a>. The symbol"::=" replaces our old"-+". The symbol "I" is used to 

separate different right-hand sides of productions corresponding to the same 

left-hand side. For example, 

<a> ::= <A>Ja<B>[<c> 

replaces 'the three productions a -+ A 

a -+ aB 

a -+ c 

The symbol "I" is read as "or". 

Example: 

(25) We shall now present an example of a simplified grammar for 

generating arithmetic expressions in ALGOL (the actual grammar used, for 

instance, in the ALGOL-60 report is slightly more complex). 

Let G = (V,E,P,o) be the grammar 

Wit:h '"' - {cb * I 'Id• 1 2 9 1 · ( ) J L - ,.-,-,,, , , , ••. , ,a,u,l:., ... ,~,, 

V \ E {cr,T,F,VA,L,D}, and 
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productions 

We'll call 

a -+ T 

a -+ a + T 

a -+ a - T 

T -+ F 

p T -+ T * F 

T -+ T/F 

F -+ VA 

F -+ F ** VA 

VA -+ L VA 

VA -+ L 

VA -+ VA D 

VA -+ (a) 

a an arithmetic expression, 

T a term, 

F a factor, 

VA a variable, 

L a letter, 

D a digit. 

When writing the same productions in BNF we'll use different names for our 

nonterminals to convey their meaning better: 

<AE> a 

<TERM> T 

<FACTOR> F 

<VAR> VA 

<LETTER> L 

<DIGIT> D 
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The productions in BNF are: 

<AF.> 

<TERM> 

<FACTOR> 

<VAR> 

. ·= 

. ·= 

. ·= 

<TERM>l<AE> + <TERM>l<AE> = <TERM> 

<FACTOR>l<TERM>*<FACTOR>l<TERM>/<FACTOR> 

<VAR>l<FACTOR>**<VAR> 

<LETTER><VAR>l<LETTER> 

<VAR><DIGIT>I (<AE>) 

Note that in this grammar *'~ has precedence over ,~ and I; * and I have 

precedence over + and -

Exercises 

(6) Let >: = {(,)} and V 6 U {cr}, and let there be a grafiifiiar G - (V,Z,P,u) 

with productions 

Describe the resulting language L(G), and classify the grammar accordjng 

to Chomsky's classification. 

* (7) Let w = x 1x 2x 3 ... ~ € L: a string of length k. The grammar (V,L:,P,cr) 

with V = L: u {cr,A} and productions 

is context-free. Show that L (G) can be generat:ed by a 1'e~ulw' grammar G'. 

(8) Define a grammar G = (V,L:,P,u), where 

L: {6, who, saw, the, cat, which, chased, rat, went, ?}. 

V {a, A, B} u L:, and P consists of the. prorluc.tions: 

p 

rat 6 

0 --:. AB? 

A + A which 6 chased 6 the 6 rat 6 

B --:. raL 6 which 6 went 13 

A + who 6 saw 6 the 6 cat 6 

Describe the resulting language L(G). 
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(9) Construct a context-free grammar, such that the resulting language contains 

all FORTRAN arithmetic statements (i.e., all FORTRAN statements that use 
* ** the operators+, - /, ). 

(10) Using the grammar of the previous problem, given an explicit derivation 

of the sLatement 

a - (a*((b + c)/d)**e). 
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FINITE-STATE AUTOMATA 

Intuitive Descriptjon of a Finite-State Automaton 

The simplest model of a machine is a finite-state automaton. Intuitively, 

we can think of a finite-state machine as a "black box," which, at discrete 

time points (e.g., every nanosecond or microsecond), is in exactly one of a 

finite number. of configurations called "states." 

Furthermore, at every time point t we provide the machine with an input 

symbol I(t) (e.g., a binary digit or a letter of the alphabet). Let the 

machine be in state S(t) at time point t. Then the state S(t + 1) at the 

following time point t + 1 will depend on the previous state S(t) and the 

previous input I(t). ln functional notation: 

S(t + 1) = F(S(t), I(t)). 

If we also assume that the machine gives us output O(t) at each time point t, 

then the output at time t +-1 depends on the previous state and input signal: 

O(t + 1) = G(S(t), I(L)). 

The two functions F and G, which describe the state transition an.d the output, 

are intrinsically associated with each machine. 

Note that our description contains three major restrictions. First, we 

assume that the set of internal states of the machine is finite. This happens 

to be true for all digital computers, but is not the case for analog computers. 

By restricting the number of states to he fini t:P. WP. h;:ivp rnmmi ttPn n11rc::Pl,rPc;; 

to models of digital computers rather than analog devices. 

Second, the state and output at time t do not depend on the input signal, 

which arrives at the same time (I(t)). This restriction simply means that the 

input signal at time t needs a finite time to traverse the machine. Since all 

signals that occur in nature are limited by the speed of light, the second 

restriction assures us of a realistic model in which all signals cause a 

delay because of their finite velocity. 

Finally, note that the two functions F and G do not depend on the 

particular time t. In other words, let t
1

, t
2 

be two distinct time poi.nts 

such that 

(i.e., the machine happens to be in the same state at both times and the 

input signals at both times are also the same). 
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Then S(t1 + 1) S(t2 + 1) 

O(t1 + 1) = O(t 2 + 1) . 

Again, this fact reflects the behaviour of digital computers: running the 

identical program at different times should result in identical answers. 

Thus, every single restriction reflects a condition that actually occurs 

in t.he "real;' world, so we have no reason to feel guilty about these 

restrictions. 

Definition and Examples of Finite-State Machines 

The intuitive model we have just considered has been studied by Mealy 

and is therefore called the "Mealy model" of a finite-state machine. Its 

formal definition follows. 

Definition 15: 

The Mealy model of a finite-state automaton is a sextuple (K, 2:, 0, s 0 ,f,g), 

where 

(1) K is finite set (of states) 

(2) 2: is a finite set (of input cymbola) 

(3) 0 is a finite set (nf rm.tp1d symbal.s) 
. 

(4) s 0 E K (s
0 

is a starting state) 

(5) f K x 2: -+ K (state-transition function) 

(6) g .K x 2: -+ 0 (output function) 

There is another, slightly simpler model by Moore in which condition (6) 

in the previous definition is replaced by 

(6) l g ·. K O ( f . d d 1 h ) -+ output unction epen s on y on t e state . 

It can be shown that every Mealy model can be converted to a Moore 

model, and vice versa; see exercise (lJ). 

Remarks: The functton f : K x 2: -+ K, which describes the transition from 

one state to the next, is also called the next-stage function. 
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Examples: 

(26) The first example will be that of a parity-recognition machine: 

We put 

K {sO,sl} (s
0 

is the starting state) 

2: 0 = {O,l} (set of binary digits) 

f(s
0

,o) SO' f(s
1

,0) sl I function) (next-state 
f(s

0
,1) sl, f(s

1
,l) so 

g(so) 0, g (sl) = 1 (output function) 

It is usually easier to write the two functions in a two-dimensional 

table as shown in Table 1. 

Table 1. State-transition table for example 26 . 

·-··· ·- ·- . .. ·-- .. --'• 

States Input Output 

0 1 

so so sl 0 

sl sl so 1 

Remember that we are using the Moore model, so the output 

depends only on the previous state, as shown in Table 1. By tracing the 

parity-recognition machine for a string consisting of O's And l's, one sees 

that the output is 1 if and only if there is an odd nv.mber of l's in the 

input string, otherwise the output is O. Note also that both states change 

only if the input symbol is 1, i.e., if the parity changes. 

Tables such as Table 1 are called state-transition tables. The 

information contained in a state-transition table may also he rPprPsented 

by a state diagram_, which for our example is shown in Fig. 5. Here 

0 

0 

, Fig. 5. State diagram for example 26. 
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states are represented by circles, while arrows represent the transition 

from one state to the next, depending on the input symbol located at 

the tail of that particular arrow. The symbol over the center of the arrow 

designates the output symbol. In the Moore model the output symbols for 

all arrows leaving the same state are identical! 

(27) Let us next construct another machine with ~ 0 = {O;l} such Lhat 

the output symbol at time t is 1 if and only if the input at times t - 1 and 

t - 2 is 1. This machine will recognize all input sequences that end in two 

l's (this is a case of a machine with a rudimentary ability to "remember" signals 

that occured two time steps ago). This machine has three states, s
0

,s
1

,s
2

, and 

the state-transition table is shown in Table 2. Again, s
0 

is the starting state. 

Table 2. State-transition table tor example 27. 

States Input Output 

0 l 

so so sl 0 

sl so s2 0 

s2 so s2 l 

The corresponding state-diagram is given in fig. 6. 

(28) The following example is that of a binary adding machine. In this case 

we first construct a Mealy model, and then find a Moore model that does the 

same thing. 

Fig. 6. State diagram for example 27. 
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We assume that the machine simultaneously receives as input, two strings 

of binary digits, where each string represents a number in binary form with 

!east significant digits first. 

The string of output symbols represents the binary sum of the two input 

numbers, again with least significant digit output first. Thus at some 

starting moment the machine receives two binary digits (one for each number). 

That is, the input symbols to our machine are l: = {OO, 01, 10, 11}. In the 

Mealy model only two states are needed: a "no-carry" state s
0 

and a "carry" 

state s
1

. The state-transition table is shown in Table 3. 

Table 3. State-transition table for example 28. 

States Input 

' 
00 01 10 11 

80 so,o ::;o, 1 so,l s
1

,o 

sl so,l s
1

,o s
1

,o s
1
,l 

-
Since this is a Mealy model, the qutput depends not only on the state, but 

also on the input symbol, hence we have written the output symbol after each 

state in the table. The corresponding state-diagram is shown in Fig. 7. 

For example, the sum 45 + 57 = 102 has the binary form 101101 

+111001 

1100110 

Performing thls addition WOl1ld caui=;e thP F;P<p1enr.~ of eventc depicted in 

Table Li. 

0 
0 

0 

0 

Fig. 7. State diagram for example_28 (Mealy model). 
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Table 4 .. Configuration of the Mealy model corresponding to the 

addition 45 + 57 102. 

Time t 0 1 2 3 4 5 6 7 

45 11 0 1 1 0 1 0 0 

57 11 0 0 1 1 1 0 0 

Input 
Signal 11 00 10 11 01 11 00 00 

State so sl so so sl sl sl so 

Output 
llo Signal 0 1 1 0 0 1 

Note the absence of an output signal at t = O. Also note that all numbers 

are presented backwards, least significant digit first (as mentioned before). 

Now let us find an equivalent Moore model. First, we represent the 

major difference of the two models as follows: 

Mealy model: K x ).; 
g 

0 --
Moore model: K x E 

f 
K 

g 
0 -- --

For the Moore model to obtain an output signal that depends on the input 

(as the Mealy model), it must go through two steps: first get the next 

state using the next-state function f, and then get the output signal using 

the function g. Since each step requires one time step, we need two time 

steps to obtain an input-dependent output signal in the Moore model, 

i.e., the output will be delayed by one time step as compared to the Mealy 

model. With this consideration in mind, we can write the state-transition 

table for the Moore model, which requires four states s
0

, s
1

, s
2

, s
3 

(see 

Table 5). 

Table 5. State-transition table for the Moore model. 

States Input Output 

00 01 10 11 

so so 81 sl 82 0 

51 so 81 81 82 1 

82 81 82 s2 83 0 

83 81 s2 s2 s3 1 

' 

-39-



The corresponding state diagram is given in Fig. 8. 

Table 6 shows the table of events for the example 45 + 57 102 for the Moore 

model. 

Table 6. Configuration of the Moore model corresponding to the 
addition 45 + 57 102. 

Time t 0 1. 2 3 4 5 6 7 8 

45 11 0 1 1 0 1 0 0 0 

57 11 0 0 1 1 1 0 0 0 

Input signal 11 00 10 11 01 11 00 00 00 

State so s2 sl sl s2 s2 s3 sl so 

Output oicnaJ 0 0 0 n l i I o. 

Observe the delay of one time step just discussed. Since the machine starts 

in state s
0

, the first output signal at t = 1 is always 0, independent of the 

input at iime t = 0. We therefore hRvP to regard thio first output signal 

simply as a signal that the machine has started. It is not part of the 

output sequence we are interested in. 

The outcome from example (28) is Theorem 6. 

0 

0 

Fig. 8. State diagram for example 28 (Moore model). 
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Theorem 6: 

Finite-state machines are able to add arbitrarily large binary numbers. 

In contrast to this result we have the following theorem. 

Theorem 7: 

No fixed finite-state machine can multiply arbitrarily large binary 

numbers. 

Proof: 

Let n be the finite number of states of the machine M, and consider the 

problem of multiplying the number 2n + 1 by 2n + 1 Both numbers are 

represented in binary form by 1, followed by n + 1 O's. Their product, which 

· 2 2 (n + l) · d b 1 f 11 d b 2 2 S · h is , is represente y , o owe y n·+ zeros. ince t e 

product contains 2n + 3 digits, and each of the factors contain n + 2 digits, 

the machine must output n zeros followed by a 1 after the input has stopped. 

But once the machine has received its input, M operat~s as a machine with 

constant input (00). Since it contains only n states, and since it has 

output n zeros (after the input stopped), it must be caught in a loop. Thus, 

it has to go on generating zeros forever, contrary to the requirement to 

output a final 1. 

We have here a problem that is beyond solution by any finite-state 

machine (because the machine is limited to a finite number of states). In 

fact,· to multiply two numhers a and b with 0 <a< 2n - 1 and 0 ~ b < 2n-l,we 

need a machine with n states (Mealy model!). Note that t-wo states sufficed 

for arbitrary additions. 

Languages Ac'cepted by Finite-State Machines 

In our three examples of finite-state machines the set 0 of output 

symbols consisted each time of the digits 0 and 1. In particular, in 

examples (26) and (27), the symbol 1 represented the answer "yes," while 

the symbol 0 stood for the answer "no." ThP. question in example (26) was, 

"Is there an odd number of ones in the input sequence?" and the question in 

example (27) was, "Does the input sequence end in two ones?" In ead1 case 

we could say that the sequence of input symbols is "accepted" by the machine 

if the output is 1 (yes). Since (for the Moore model) each output symbol 

is associated with a state, we can make the followlng definition. 
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Definition 16: 

A state seK is called an accepting (or final) s-/;ate, if 

g(::.) 1, where O = {0,1}. 

Using this definition, the set 0 of output symbols becomes redundant, 

since we can declare some of the states as final. Omitting the set 0 of 

outputs, and introducing the set F of final states in our definition of a 

finit_e-state machine, we arrive at the formal definition of a finite-st.ate 

acceptor. This serves the purpose ~f accepting certain strings and rejecting 

others. 

Definition 17: 

A fini-te-s·tate acceptor is a quintuple (K, r., F, s
0

, f) , where 

(1) K is finite set (of states) 

(2) E is a finite set (of input. symbols) 

(3) F C K is a subset (of final states) 

(4) .sO e K (the start state) 

(5) f : K x E-+ K (the next-state function) 

In example (26) we had F = {s
1

}, 'in example (27) we had F = {s
2
}, 

and in example (28) (using the Moore model) we hArl F = {£ 1 ,~ 3 }. 
Now let us imagine that the set E of input symbols is the set of 

terminals tor some language. By inputting one symbol at a time, we obtain 

a string of symbols, i.e., an element of E*. We can now inductively extend 

our next-state' function f to a function f: K x ~*-+ K as follows: 

(i) f(s,E:) = s (E: empty word)· 

(ii) f(s,x 1 ,x2 ... xn) = f(f(s,x1 ,x2 ... xn_1),xn) 

where n > 1, and each x. € E. 
l 

In fact, thl8 is exactly the.way that states change if the machine is 

µresenLed with a sequence of input symbols x
1

x
2 
... xn. Using this extension 

of the function f, we can formulate the fundamental definition. 

Definition 18·: 

Let A = (K,E,F,s
0
f) be a finite-state acceptor. Then the set 

T(A) = {w e E* I f(s
0

,w) e F} 
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is the language accepted by A. (Here T comes from "tapes," since we may 

think of a tape that provides the input string to the machine.) 

This definition sets up the basic relationship between languages and. 

finite-state machines. Observe that the finite-state acceptor A answers 

the membership question for the language T(A) (i.e., any string w € E* that 

is accepted by A belongs to the language T(A), and vice versa). 

Kleene's Theorem 

We are now in a position to pose the question, "Which languages are 

accepted by finite-state automata?" The following important theorem answers 

this question completely. 

Theorem 8 (KLEENE's Theorem): 

A language is accepted by some finite-state automaton if and only if it 

is a regular language. 

Before embarking on the proof of this theorem let us collect a few facts 

that will be needed during the pr~of. 

First, suppose that Mand N are two· subsets of E*. Then we define 

MN = {v w I v € M, w 

write M2 for MM, and 

€ N} 

M3 = 

(Concatenation). In 

MMM, etc. Also, for 

M* {d 2 
= UM UM U 

particular, if M = N we 

MC E* put 

M
3 

U .... . 

Next we supply a different description of the class of regular (type 3) 

languages. 

Proposition 2: 

The class of regular languages in E* is the smallest collection of 

* subsets of L containing all finite subsets and being closed with respect 
'i< 

to the three operations union, , and concatenation. More precisely, let 

* F 
0 

collection of finite subsets of E 

p. 
1 

collection of subsets of the form 

{s1 u € FO} u {s1s2 Sl,S2eFO} U {S * I S € F 
0

}. s2 I s1,s2 I 
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1< 
Inductively, let Fn + 1 be the collection of subsets of L of the form 

~-

{ S l us
2 

I s
1

,s
2 

EFn} u {s
1
s

2 
I s

1
,s2 EFn} u {s" Is EFn} 

00 

(n _::. 1). Then Proposition 2 says that u F is the class of regular languages 
n=l 11 

>'< 
in L . 

Proof: 

There are two parts to prove: 
00 

(a) U F is contained in the set of regular languages,· · n=l n 
00 

(b) the rcgulgr l~ngv.ag_es are r.ontaine.o in u F . n=l n 

Proof of (a): 

(i) Every finite. set Fis a regular language. If F = {x
1

,x2 , ... ,xk}' 

then the productions are simply S + x. (i = l,l, ... ,k). Since these are 
l . 

type 3 productions, F is regular. 

(ii) If L
1 

and L
2 

are regular, so is_L
1 

U t
2

. Suppose P. is the set.of 
l 

productions for t
1

, and s1 :is the sentence symbol for T.i(i = 1,/). ThPn 

the set P of productions for t
1 

u t
2 

is simply Pi u P
2

, together with the 

two productions s
2 

+ s
1

_and s + s
2 

(sis the sentence symbol). 

(iii) Again, let L
1

, L
2 

be regular languages with prodtictions P
1

, P
2

, 

respectively. To show that L1L
2 

is regular, we modify the productions 

in P
1 

as follows: for every production of the form X + x we write now 

X + x s
2

, where s
2 

is the sentence symbol for L
2

. Productions of Ll1e form 

X + x Y are not altered. 

and pur P = P u P · s 1 2' = 
the concatenation L

1
L2 . 

* 

Then, let P
1 

be this modified set of productions, 

s
1

. Clearly, P is a set ot regular productions for 

(iv) To show that L is regular, assume L is regular, let P be the set 

of productions for L, and let s be the sentence symbol. Now introduce a new 

symbol X as an additional nonterminal symbol. The set P is now modified 

as follows: first we add the production X +a for every production s +a 

(here a may be either a single terminal element a, or a terminal element a, 

followed by a nonterminal symbol A, i.e., a= a or a= aA); second, to 

every production of the form A+ x, where x is a terminal symbol, we add 
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the production A~ x X. Using the new set P of modified productions, it is 
>'< 

easy to see that L is regular. This proves part (a). 

The proof of part (b) is a little involved and is therefore omitted. 

Below are two examples of languages that are accepted by a finite-state 

automaton. 

Examples: 

(29) Let E =·{a}, and let L {a.2n I 
I n > O}. Define a finite-state 

acceptor A ac follows: 

A= (K,E,F,so,f), 

. where K = {s
0

,s
1

}, F 

may verify that T(A) 

{s
0

}, f(s
0

,a) = s
1

, and f(s
1

:a) = s 0 . The reRrler 

L. 

(30) 
·k 

Let Sc E be a finite subset (i.e., S s F
0

, using our previous 

notation). Define a finite-state acceptor A by: 

A= (K,E,F,so,f), 

where: 

* * } K { s} u { w € E . I · 3 w' € E with ww' € S 

F S (observe that SCK, so FCK) 

s
0 

= s (start state is empty word) 

f(w,a) 
{ 

wa, if wa € K 
(w € K, a € E) 

s, if wa ¢ K 

f(s,a) = s 

Note that the set K of states is finite since S if finite. By induction one 

can show that 

f(w,w') 

Hence, 

{

·ww', if ww' € K 

s, otherwise 

w' c T(A) .;:.f(s,w') € F~f(f.,w') eS-::>w'eS, 

';~ 

so we conclude T(A) = S, i.e., every finite subset of~ is a language 

accepted by a finite-state acceptor. 

In our next example we go through various steps to exhibit a language 

that is not accepted by any finite-state machine. 
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* (31) Let SC L be an arbitrary subset. Define an equivalence relation 
* ~ s among elements of L by w s w' if and only if for all words u e L we have 

* WU £S ~ w'u f S. ... Clearly, -S is an equivalence relation in ~ . Furthermore, 
A 

if v £ l: 
' 

then w -S w' implies wv-sw'v (by definition). 

Denote the 

Let KS = { [w] I 

equivalence class of w by [w], thus [w] = {w' e z:* I w -S w' L 
* * w e L } be the set of equivalence classes in L . Now define 

an automaton AS (Ks,l:,Fs,s0 ,f) by 

Fs = {[w] I we s} 

s
0 

= [£] (class of empty word) 

f([w],a) [wa] for [w] eKS, a e L 

More generally, the next-state function is f([w],w') [ww']. Note that 

AS is in general an infinite-state automaton, since KS might be an infinite 

set. 

Proposition 3: 

AS is the minimal state automaton that accepts the language S. 

Proof: 

There are two parts to the proof: 

(a) As accepts S, i.e., T(AS) = S, 

(b) If A accepts S, then A has "more" states than A8 . 

* (a) Let w e L , then we have: 

w e T (As) ~ f ( [ £] , w) e F s ~ [ w] e F s ~ w - s w' ( w' e s) ~ w e s. 

Therefore T(A
5

) = S. 

(b) Let A = (K,l:,F,p
0
,f 1

) be an automaton that also accepts S. Define a 
'If I * mapping¢: L + K by ~(w) = f'(p0 ,w). Suppose ¢(w) = ¢(w') for w, w el: • 

.. . . -- --·· •. ·-·- 'i(" ---

Then ¢(wu) = ¢(w'u) for all u el: , since ¢(wu) = f'(p0 ,wu) 

£'(£'(p
0

,w),u) = f'(p
0

,w 1 u) = ¢(w'u). 

Now WU€ s~wu € T(A) ~ f' (Po,wu) € F ~ ¢ (wu) € F ~ ¢(w'u) € F ~ w'u € s, 

hence, ¢(w) = ¢(w') implies w -sw',i.e., ¢(w) = ¢(w') implies [w] = [w'] e KS. 
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* We can therefore define a mapping~: ¢(L) + K by ~(¢(w)) [w]. s 
Since ~ is onto, we have 

Corollary 1 : 

If S = T(A) for some finite-state machine A, then KS is finite. 

Corollary 2: 

S = {anbn I n > O} is a language that is not accepted by any finite-state 

automaton. 

Proof: 

For i 1' j we have a\tsaj, for if i < j, then aibi € S, but ajbi t S, 

contradicting the definition of -s· Consequently, there are infinitely 

many equivalence classes [ai], i = 1,2, ... , and so KS is infinite. 

Remark: The language fanbn I n >.O} is context-free, given by the productions 

S +ab 

A + aSb 

In this chapter we have obtained two results which exhibit the limitations 

of finite-state machines: they cannot multiply arbitrary numbers, and they 

can only accept regular languages. The first result is a consequence of the 

finiteness of the number of states, while the second result is in part due 

to the simplP. nature of the next-state function, which simply does not allow 

for the recognition of more complicated langu~ges. 

Proof of Kleene's Theorem 

The proof of Kleene's theorem naturally falls into two parts: we have 

to show (a) that for any finite-statP. R~~eptor A there is a regular language 

L such that A accepts L, i.e., 1 - T(A),ond (b) that for any regular 

language we can construct a finite-state acceptor that accepts the language. 

Part (a) is relatively straightforward. Starting with a finite-state 

acceptor we simply construct a set of productions that define a regular 

language, which in turn is accepted by the given machine. To prove part 
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(b) we have to do a little more work. In particular we have to define the 

notion of a nondeterministic finite-state machine. Let us therefore prove 

(a) first. 

Let A = (K,L,F,s
0

,f) be a finite-state acceptor, and let us denote its 

states by si(i = o, ... ,n) so K {s
0

,s
1

,s 2 , ... ,sn}. To define the language 

L accepted by A, recall that the set V \ L was the set of nonterminal elements, 

containing as the sentence symbol the element a
0

. 

We shall construct V \L so that it is simply a copy of the set K, 

i.e., for every state s. E K, we want a nonterminal symbol a. E V \ 2:. In 
l l 

particular, the sentence symbol a0 corresponds to the start statP. s
0

. Then 

V \L.={o
0

,o
1

,o
2

, ••• ,on}. Let us further denote the input symbols as follows: 

let x .. t L. be the input symbol ±or which f(s.,x .. ) = s., so x .. is the 
l] l lJ J l] 

input symbol that causes the machine to change from states. to states .. 
l ]. 

Now we can construct the set P of production rules for our language L. 

Let the productions in P be 

a·~ x··O· if and only if f(s· X··) = s· I IJ J' I' IJ J 

ai ~ xij , if and only if f(si,~j) € F. 

Let L be the language defined by the grammar G = (V,L,P,o
0
). 

To show that T(A) = L, we have to verify two things: (i) T(A)C L, and (ii) 

LC T (A). Both verifications are straightforward in view of the close 

resemblance of the productions and the next-state funf'.t.ion, .::in.d are left 

as A.n P.xP.rr is P. 

We have therefore shown that for every finite-state acceptor A, there 

exists a regular language that is accepted by A. 

'l'o prove part (b) we have to start with a regular language L and find 

a finite-state acceptor A that accepts L. To do this, we introduce the 

concept of nondeterministic finite-state acceptor. 

Definition 19: 

A nondeterministic finite-state acceptor is a quintuple A 

where 

(1) K is finite set (of states) 

(2) L is a finite set (of input syuiliuls) 
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(3) F is a subset of K (of final states) 

(4) s
0 

is a subset of K (of start states) 

(5) f: K x E~2K (the next-state function) - 2K = P(K)=power set of K 
def 

Ohservc two major differences to thR notion of a (deterministic) 

finite-state acceptor: first, there can be more than one starting state; 

second, the next-state function is not unique, but has as values subsets of 

the set of states (hence the name "nondeterministic"). Thus, given a state 

s and an input signal x E E, f(s,x) is a set of possible next states. We 

extend f to a function 

f K x E* ~ 2K be defining 

t(s,E) = s (E = empty word) 

f ( s , x 
1

x2 ... x n) = u
1 

{ f ( s ' , x n) Is ' E f ( s , x 1x2 ... x n _ 1) } 

s K * K 
Furthermore we can define f : 2 x E ~ 2 by f(K' ,w) = s'~ K' f(s' ,w) 

for K'C K. Then one verifies that f(K',uv) = f(f(K',u),v). 

Definition 20: 

Let A be a nondeterministic finite-state automaton. Then the set 

T(A) = {w E E'" I f(S
0

,w) nF 1' 0).} is the language accepted by A. 

It turns out that a string w = x
1

x
2 
... xn is in T(A) if and only if 

there is a sequence sO,sl, ... ,sn of states with so € so such that s. E 
l 

f(s. 
1

,X.) and s E F. In 
l- l n 

other words, a string w xl x2 ... xn is accepted 

by A if there is at least one sequence of states, consistent with the 

input string, that leads the machine to an accepting state. 

Example: 

(32) Let A (K,E,F,s
0

,f) be a nondeterministic finite-state acceptor, 

where E = {O,l}, K {s
0

,s
1

,s
2

.s
3

}, F = {s
3

}, and f is given by the next­

state table in Table 7. 
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Table 7. The next-state table for example 32. 

States 
- -

so 

sl 

s2 

s3 

For example, the input sequence w 

shown in Fig. 9. 

0 

Input= 0110 

Input 
.... _,.-

0 1 

sl, s2 sl, s3 

so sl' s3 

0 s0,s2 

so, s3 SO' sl, s2 

0110 gives rise. to the "state tree" 

0 -

o~ 
~ 

0 

---Final state 

Fig. 9. State tree for example 32. when the input sequence is w OllO. 
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Note that 0110 is accepted by A, since there are two possible branches that 

lead to a final state s3. 

Since nondeterministic finite-state automata are more general than 

deterministic ones, one might expect that they are more powerful in the 

sense that they accept more strings than deterministic automata do. The 

following result shows that this is not the case. 

Proposition 4: 

Let A (K,I,F,s
0

,f) be a nondeterministic finite-state machine: 

Then there exists a deterministic finite-state automaton D(A) such that 

T(A) = T(D(A)). 

This proposition shows that any language. ac.cepted by a nondeterministic 

finite-state (F-s) machine A can also be accepted by a deterministic F-S 

machine D(A). That is, nondeterministic F-S machines have no more power 

than deterministic ones! 

Proof of proposition 4: 

Then, 

Define D(A) = (K',I,F',s~,f') by 

K' 2K (=set of .snhsets of K), 

F' {KcK I KnF # 0} 

SI € K' is the subset so 
K 

0 £ 2 ' 
f I (K,x) = f(K,x) for KCK, x €I. 

* if w € I we have 

w € T.(A) ~ f(So,w) (') F # 0 ~ f' (So,w) nF # 0 
~ f'(S

0
,w) e F' ~ weT(D(A)). 

Continuing ·now with part (b) of the proof of Kleene's theorem, we shall 

make 11se of proposition 2. Beginning with that proposition, we can prove 

part (b) if we can show four facts: 

(i) finite languages are accepted by F-S automata; 

(ii) i.f 11 and 12 are accepted by a F-S automaton, then so is 11u12; 

(iii) if 11 and L2 ;::i.re accepted by F-S automata, then so is their "product" 

1112; 
* (iv) if 1 is accepted by a F-S automata, then so is 1 . 
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(i) By example (30) on page 45, we know that every finite language is 

accepted by a finite-state acceptor. 

(ii) Suppose L
1 

= T(A
1

) and L
2 

= T(A
2
), where A

1 
= (K

1
,r.,F

1
,s

0
,f

1
) and 

A
2 

= (K.
2

,E,1"
2
,s0,t

2
). Define a new (deterministic) F-S acceptor A= 

(Kl x K2,E,Kl x F2UF1 x K2,(so,so),f), 

where f((s
1

,s
2
),x) = (f

1 
(s

1
,x),f2 Cs 2 ,x)), for s

1 
E K

1
, s

2 
e K

2
, x eL. 

>'< 
Then, for any word w € E 

Furthermore, we T(A) ¢> f((s
0

,s0),w) e F, where F = K
1 

x F
2

uF1 x K
2 
.. 

But, f((s
0

,s0),w) = (fl (s0 ,w), f
2

(s0,w)) €Kl x F2 uF
1 

x K2 , if and only 

if f
1

(s
0

,w) e F
1 

or f 2 (s0,w) E "F~, That ic, wc::T(A) if we T(A
1
)uT(A2). 

Thus t.
1 

U L
2 

T(A). 

(iii) Agaiu, let L
1 

= T(A
1
), L

2 
= T(A

2
), where A1 , A

2 
are defined as in 

(ii) with the additional condition that K
1 

nK
2 

= 0. Define a nondeterministic 

F-S autom;:iton 

where, 

s
0 

{s
0

,s0}, if s
0 

E F
1 

s
0 

{s
0

}, it s
0 

¢ F
1

. 

For s € K
1

, let 

f(s,x) l{t
1

(s,x)}, if r
1

(s,x) ¢ F
1 

{r
1

(s,x), s0}, if\ (s,x) € F
1 

For scK
2 

let f(s,x) = f
2

(s,x) always. 

Observe that the start-state for A is the same as that for .Al (at least 

1f so t .l:"l). 

situation: 

x thar would 

Also, the next-state function f is actually uul4ue except in one 

if the machine A is in a state of K and receives an input symbol 
1 

iead to a final state in A
1

. In that situation A c;:in choose 

to go either to that final state in Kl or 
* now we E is accepted by A, then it has to 

to the start state s0 of A
2

. If 

end up in F
2

, i.e., in a final 

state of A
2

. As we just saw, this is only possible if an initial substring 

of w leads to a final state in A
1 

- that is, if and only if w1 E T(A
1
). 
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If instead of going to that final state, A chooses s0 as its next state, 

then the rest of the string (the substring following w
1

) must lead to a final 

state in F
2

, i.e., the substring following w
1 

must be in T(A
2
). Thus, 

w = w
1

w
2 

with w
1 

E T(A
1
), w

2 
E T(A

2
) if and only if w F. T(A). 

Suppose w
1 

= x
1

x
2 
... xn~ while w

2 
= y

1
y

2 
... ym. Then we can graphically 

represent the sequence of states through which A passes as in Fig. 10. Thus, 

T(A). 

(iv) Suppose L T(A) with A (K,E,F,s
0
,f). Construct a nondeterministic 

F-S automaton 

A'= (Ku{s0}, E,Fu{s0}, {s0}, f') 

where f' (so, x) = {f(so, x)}, 

£' (s,x) l{f(s,x)}, if f(s,x) ¢ F 

= {f(s,x),f(s
0

,x)}, if f(s,x) EF 

The idea in constructing this automaton is quite similar to that used in 

(iii). The extra state {s0} has been added to make sure that E (the empty 

word) is accepted by A' (any F-S automaton whose start state is also a 

final state will accept the empty word E). Again, f' is unique except in 

the situation in which a word has been accepted by A - then f' can either 

choose the final state in F as the next state or it can go to f(s
0

,x) 

and start all over again. Thus A' accepts any word w w
1
w

2 
... wn with wi E 

* T(A), n = 0, 1, 2, ... Consequently, L T(A'), which proves (iv). We have 

completed the proof of Kleene's theorem. 

xl x2 xn-l xn J l 
so----s1-s2-~-----sn-l~~1 :no'J L __ Y_1 __ I Y2 Y1 

"" s 1----52 ____ --- SI 

x 1 x 2 ... xn accepted by A1 y 1 y2 · ·. y1 accepted by A2 

Fig. 10. Possible sequence of states for a nondeterministic automaton A, which 
accepts L

1
L

2
. 
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We might mention that part (b) of our proof can also be proved by 

starting with a regular language L and nsi,ng the productions of L to 

construct a nondeterministic automaton A(L) that accepts L: L = T(A(L)). 

Given the regular grammar G = (V,E,P,o) we construct the nondeterministic 

acceptor A (K,E,F,s
0

,f) as follows: 

Let K (V \ E) u {X}, so the states of A are in one-to-one correspondence 

. with the nonterminals V \ l:, plus one additional state X. Let s
0 

= a be the 

start state. If P contains the production a+ E, define F = {s0 ~x}, 
otherwise let F = {X}. The next-state function f is given by: 

(i) X i:f(s,a), if au<l only ifs-+ a 

(ll) o' E f(ota)t if and only if 3 ~us' 

(iii) f(X,a) = 0 for all a e E 

One can show that for this automaton 

T(A) = L(G). 

This concludes our discussion of finite-state automata. 

Syntax Trees and Ambiguity 

In the following, we restrict our considerations to context-free 

grammars. Consider the grammar G = (V,L,P,o) given by V = LU{a,A,B,C.}, 

E = {s,t,x,y,z}, and the productions P: 

d ·> xaA 

A ..,. BC 

p a + y 

B + z 

c + st 

The sentence xyzst € L(G) can be derived by u-+xoA-+xoBC-+xoBst+xozst+xyzst. 

This sequence can be represented geometrically in the form of a syntax tree 
(or derivation tree) (see Fig. 11). 

In a context-free grarninar the order in which the terminal symbols in a 

sentential form are derived is not important. The following different 

derivations of xyzst are all represented by the same tree 

cr -+ xcrA -+ xyA -+ xyBC + xyzC -+ xyzst 
or 

cr + xcrA -+ xcrBC -+ xyBC -+ xyBst + xyzst 
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CT 

/I~ 
x CT A 

z s t 

Fig. 11. Syntax tree for a context-free grammar. 

Two derivations of a sentence w eL(G) are considered equivalent if they 

lead to identical syntax trees. 

Figure 12 is the syntax tree corresponoi.ng to all equivalent derivations 

of the string xxyzstzst e L(G). 

Consider next the grammar G' 

V' ~- E' u {a' , A, B} , and P' is 

(V' , E' , P' , a') , where E' 

0' -+ A 

A -+ B 

P' A-++ 

B -+ A 

{ +}, 

Obviously, there are many different derivations for. the word+, e.g., 

a' -+ A -+ + 

or a' -+ A + B -+ A -+ + 

or a' -+ A -+ B -+ A -+ B -+ A -+ + 

Their derivation trees are given in Fig. 13. Since all three trees are 

different from each other, the three derivations are nonequivalent. 

Definition 21: 

If G = (V,E,P,o) is a context-free grammar, and we L(G), then we call 

the string w ambiguous in G if there exist at least two nonequivalent 

derivations of w (i.e., if there exist at least two derivations of w with 

different derivation trees). 

-·55--



/I 
x A 

/~ 
B 

I 
y B z s t 

I 
z s t 

Fig. 12. Syntax tree for equivalent derivations of the sentence xxyzstzst. 

Thus, in the grammar G' above, the string "+" is ambiguous in G' (see 

Fig. 13). 

er I er I er I 

I 
A A A 

I / / 
+ B B 

~ ~ 
A A 

/ 
+ B 

~ 
A 

+ 

Fig. 13. Syntax trees for three nonequivalent derivations for the word +. 
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Definition 22: 

A grammar G is ambiguous if there exists at least one string w € L(G) 

that is ambiguous in G. 

Note that a language L could be ambiguous when described by one grammar G
1

, 

but 11namhiguous when described by another grammar G
2

. 

Definition 23: 

A language is inherently ambiguous if it cannot be described by an 

unambiguous grammar. 

Example: 

(33) The language L(G') = {+} in the example above is not inherently 

ambiguous, since we can also describe it using the following unambiguous 

grammar G": 

G" (V',2:',P",0 1
), where V',2: 1 ,0 1 are as above, but P" cunsists of 

P" { 0 + A' A + B' B + +} . 

An ambiguous English sentence is, "In all books examined sentences were 

not ambiguous." The ambiguity results from the fact that "examined" may 

either go with. "books" or with "sentences." Since eithel;" choice leads to a 

different meaning, there can be no grammar which resolves this ambiguity, 

i.e., the English language is inherently ambiguous. 

Here is another example of an ambiguous e;rammar: 

G = (V,2:,P,a), 

where 2: = {+,*,a,b}, V 2: U fo} , and P is 

0 + 0 + 0 

p 

0 + a 

0 -+ b 

Tow nonequivalent derivations of a + b * a + b are 

(i) 0 + 0 + 0 -+ 0 + 0 * 0 -+ 0 + 0 * 0 + 0 + 

(ii) 0 + 0 * 0 + 0 + 0 * 0 + 0 + 0 * 0 + 0 + 
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The syntax trees are given in Fig. 14. This language is unambiguous, since 

the following unambiguous grammar G describes it also: 

- -
G (V,L,P,a), where V L u {a ,A}, and 
-p {a+ A+ 0, CT+ A, A+ A* A, A+ a, A+ b}. 

-In G, the string a + b * a + b is unambiguous, since any derivation is 

equivalent to 

a+ A+ a+ A+ A+ a+ A+ A ·I A·) A+ A* A+ A+ ... + a+ b *a+ b 

The syntax tree is shown in Fig. 15. The question of whether or not a grammar 

is ambiguous is quite important when applied to programming languages, most of 

which are context-free (or nearly context-free). If the grammar describing a 

programming language is ambiguous, then there are at least two ways to interpret 

some sentence in the language. In particular the compiler might interpret the 

sentence differently than the programmer, and the resulting code would do 

Something difterent than the programmer had intended. Unfortunately, the 

problem of whether a grammar. ts ambiguous is unsolvable for context-free 

grammars. 

Theorem 9: 

(1) The ambiguity problem is unsolvable for context-free grammars. 

(2) 1''or r.egular grammars the ambiguity problem is solvable. 

A related question is whether or not a given lane118ee is inherently ambiguous. 

Here we state the following results. 

lJ' ll 

,/I"' //I~, 
CT + . CT {J' * {J' 

I /I"' /I"' /I"' a CT * CT CT + CT er + CT 

I ,/I"' I J I ! b ·CT * CT a a 

(a) I I (b) 

a b 

Fig. 14. Syntax trees fer two nonequivalent derivations for a+ b * a+ b. 
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CT 

/I~ 
A ' + CT 

I /I~ 
a A + CT 

/I~ 
A * A A 

I I I 
b a b 

Fig. 15. Syntax tree for deriving a+ b * a+ b in the unambiguous grammar G. 

Theorem 10: 

The inherent ambiguity problem is unsolvable for context-free languages. 

Theorem 11: 

If a language L is acc~pted by a deterministic machine, then L is 

unambiguous. 

Corollary 3: 

There are no regular languages that are inherently ambiguous. 

Corollary 4: 

The inherent ambiguity problem is (trivially) solvable for regular 

languages. 

There exist inherently rimhig11011s c:ontext-free languages. An example is 

the language L {aibjck I i = j or j k}. In general, it is quite hard to 

decide whether a language is inherently ambiguous, since this decision must 

be based on some analysis of all grammars that can describe the given language! 
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Exercises 

(11) Draw the state-diagram for a Mealy-automaton that can subtract binary 

numbers (least significant digits input first). 

"* * (12) Describe a finite-state acceptor able to accept all strings in ~ = {O,l} , 

such that every 0 is immediately followed by a 1. (Thus, 11, 01, 10111, 

101011 are all acceptable, but 0, 11001, 10 are not.) 

(13) Using the definition below of equivalence for a Moore and Mealy 

automaton, construct for every.Moore machine an equivalent Mealy 

lltddtlue, auu vlcl::! Vl::!ll:;Ci. '(Gulug ltUlll Hl::!dly Lu Huutl::! luvulVl::!l:; au 

increase in the number of states.) 

Let A= (K,l:,O,s
0

,f,g) be a Mealy machine, and~= (K',l:,O,s0,f 1 ,g') a 

Moore machine with the same input and output alphabets as A. 

Define recursively for A: 

f(s,E:) = s 

Similarly, for the Moore machine B we define: 

£' (s' ,E:) = s' 

g'(x
1

) = g'(f'(s0,x
1
)) 

g 1 (x
1

,x
2

, ... ,xn) = g'(f'(s0,x
1

,x
2

, ... ,xn)) 

Now we call A and B equivalent if and only 
,~ 

for all strings w xl ... xn € l: 
' 

i.e., if 

the same output string in both A and B. 
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(14) Let A= (K,E,F,s
0

,f) be a finite-state acceptor that accepts a certain 

language L, i.e., T(A) = L. We define the "reversed" language LR by 

LR= {wR / w EL}, so LR contains the reversals of all strings in L. 

(For example, if L = {001, 1011, 100111}, ·then LR= {100, 1101, 111001}.) 

R 
Construct a nondeterministic finite-state acceptor A 

such that it accepts LR: T(AR) = LR. 

(K' ,E,F' ,so,f'), 

(15) Apply the above construction of AR to the finite-state acceptor in 
R 

example (27) (put F = {s 2} there), so A accepts all strings starting 

with two l's. 
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TURING MACHINES 

Discussion, Definition, and Exau~les 

In this chapter we study a class of machines that were invented by Alan 

M. Turing in 1936 and now bear his name. 

While finite-state automata are quite simple machines - they are not even 

able to multiply arbitrary numbers - Turing machines are probably the most 

complex and powerful machines. In fact, Turing in his original paper asserted 

that his machine is able to perform any calculation that can possibly be 

performed by any machine! This assertion cannot be proved mathematically 

since there is no precise mathematical definition of "calculations that can be 

performe.d by a machine." 

We enter here into the general problem of describing precisely what 

problems can be solved by mechanical processes, by machines. Are there 

processes that can be precisely described but cannot be realized by machines? 

Mathematicians use the term "effective procedure" or "algorithm" for processes 

that should be solvable by machines (e.g., that can be programmed). One could 

say, "An effective procedure is a set of rules that tell us (or the machine), 

from moment to moment, precisely how to behave (e.g., there are at each step 

no choices left openi there is at each step a unique instruction to fnllnw)." 

In particular, any computer program is an effective procedure, and most 

people agree intuitively that only effective procedures can be handled by 

machines. Turing's thesis - also known as Church's thesis - can now be stated 

as L:vlluws: 

Any effective procedure can be handled by a Turing machine. 

As we have mentioned~ this assertion cannot be proved rigorously because 

the notion "effective p:rocedure" is only rlP.finPn int11it:ively. Th,. best we con 

do is believe Turing or disbelieve him. One should know, however, that so far 

no effective procedure has been found that could not hP. hAnrllPn by A T11r.ing 

machine. In fact, various different mathematicians (e.g., Church, Post, and 

Kleene) have arrived at the same conclusion from quite diffPrPnt rnnsinPr.~­

tions - and that fact is quite compelling. 

What is particularly surprising about the thesis that Turing machines can 

handle all effective procedures, is the relatively simple definition of Turing 

machines. 
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Definition 24: · 

A Turing machine consists of a finite-state control unit which controls 

the motion of a read/write head that scans an infinite tape. The infinite 

(linear· tape) iS divided into 11 SquareS 11 Or 11 CellS >II each COntaining a single 

symbol chosen from a finite set r = {b} u L: ' where "b" denotes a "blank" 

symbol, and L: is a finite set of tape symbols (nonblank, of course). The 

read/write head is located over a square on the tape at each time point. 

Depending on the input symbol in that square and the present state of the 

control unit, the machine acts as follows: 

(i) a new symbol is written on the tape in the square under the head, 

(ii) the head then moves either one square to the left or· one square to 

the right, 

(iii) the control unit enters a new state, 

(iv) the machine might halt. 

A few remarks are in order. First of all, we may assume without any loss 

in generality that the symbol written by the Turing machine on a tape square 

is nonblank. Also, when a symbol is written on a square, it erases the symbol 

that previously occupied that square. Because the machine can move either 

way along the tape, it is possible for it to return to a previously printed 

location to recover the information inscribed there. We shall see later that 

this makes it possible to use the tape for the storage of an arbitrarily large 

(finite) amount of information. 

We will also make the restriction that when the machine is started, the 

tape must be blank except for a finite number of squares. This means that we 

h~ve all ·infinite storage medium available' but at each time there is only a 

finite amount of information stored on it. 

To describe the behavior of a Turing machine, we observe that each pair 

(state, tape symbol) gives rise to: 

(a) a new state, 

(b) a new tape symbol, 

(c) a head motion L (left) or K (right) 
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Thus, a Turing machine may be described by quintuples (s., x., s .. , x .. , m .. ), 
l J lJ lJ lJ 

where 

s. current state, 
l 

x. tape symbol currently under the read/write head, 
J 

s.. new state, 
lJ 

x.. new tape symbol (replaces x.), 
lJ . J 

m .. = head motion, i.e., m .. € {L,R} 
lJ lJ 

If s .. = H, we mean that the machine halts. In this case there will be no 
lJ 

head motion, so we write m.. Some authors use the term instantaneous 
lJ 

description for quintuples. 

Let us look at some examples now. 

Examples: 

(34) This example presents a parity recognition machine like the 

finite-state machine in example (26) on page 00. The tape contains blank 

squares except for a finite sequence of squares containing zeros and ones. 

ln its starting state s
0

, the machine has its head over' the leftmost nonblank 

square on the tape. Just as in the cas~ of a finite-state machine~ we have 

two states s
0 

and s
1

, and the machine changes state only if a one is 

encountered on the tape. The "state-transition" table in terms of Q'llintupl~s 

is shown in Table 8. 

Table 3. State-transition table for . example 34 . 

s. x. s .. x .. m .. l J lJ l] l] 

so 0 so 0 R 

so 1 sl 0 R 

so b H 0 

sl 0 sl 0 R 

sl 1 so 0 R 

sl b H 1 
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In this example·, the original input sequence has been erased by the machine. 

Also, if it contained an odd number of ones, a one is written into the first 

blank square.after the input sequence; otherwise a zero is written. In both 

cases the machine comes to a halt. 

Note that the head always moves in one direction (R), so there· is no 

possibility of recording information on the tape and returning to it at a 

later time. Hence one could not expect it to do anything that could not be 

done by a simple finite-state machine. 

Suppose now that a machine satisfies the following condition: 

Q1 = (si, x5 , sij' xij' mij) and Q2 = (sk, x£' sk.Q,' xk£' ~9) are two 

quintuples such that sij = sk£ (i.e., in both situations Q1 and Q2 , the 

machine enters the same state sij = sk£). Then mij = ~£ (i.e., then the head 

moves in the same direction in both situations). If we have such a situation, 

we can draw the state diagram shown in Fig. 16 to represent our parity 

recognizing machine. 

We have used the same conventions as in the case of finite-state 

automata, except that the symbol in each circle repre.sP.nts the head motion 

that results whenever this state (circle) is entered. An "H" in the diagram 

denotes a hall~ng state of the machine. Quintuples of the form (s., x., s
1
., 

1 J 
x., m .. ) have been omitted from the diagram. 

J 1] 

(35) In our second example we construct a Turing machine that computes 

the function f(n) = 2n (for all n _:::. 1). Two nonblank tape symbols "l" and "2" 

are userl, and the machine has five internal states s
0

, s
1

, s 2 , s
3

, s
4

. The 

table of quintuples is given in Table 9. The machine acts as follows. The 

tape consists of a finite sequence of l's, and the tape head initially 

Start 

0 

H H 

0 

Fig. lo. Sr au:! tllag,i.dill for the parity-r1?i;-neni zing Turing machine in example 34. 
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scans the left-most 1 of this sequence. The starting state is s
0

. The head 

then moves to the right until the first blank is encountered. The machine 

(which is still in state so) then writes a 2 after the end of the input 

sequence and moves into state s
1

. It then moves to the far left of the 

sequence, erases the leftmost 1 (state is s
2
), and changes to state s

3
.· In 

states s
3 

and s
4 

the tape head moves to the right end of the nonblank portion 

of the tape and wr.ites two l's. This procedure is repeated n times (where 

n is the number of l's originally on the tape). For each of the original l's 

that is erased, two l's are added to the right end of the sequence. The 

machine halts in state s
4 

with the head over the leftmost "l" of the answer~ 

the answer consisting of a sequence of 2n l's. 

Table 9. State-transition table for example 35. 

s. x. sij x .. m .. 
1 J 1] 1] 

so b s 
l 

2 L 

so 1 so 1 R 

so 2 not possible 

sl b s2 b R 

s, 1 !'; 
·· 1 1 I. 

sl 2 sl 2 L 

s2 b not possible 

s2 1 s3 b R 

s2 2 84 b R 

s3 b s4 1 R 

s3 1 s3 1 R 

s3 2 s3 2 R 

s4 b 81 1 L 

s4 1 H 

s4 2 H 
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Observe that the condition for drawing a state diagram is fulfilled. The 

diagram is shown in Fig. 17. Note that the original input sequence of n l's 

has been completely erased by this machine. The reader may try to modify the 

machine so that the input is preserved~ 

(36) In this example we construct a machine that multiplies arbitrary 

numbers. This is our first demonstration that Turing machines are more 

powerful than finite-state machines. We assume that· the set of nonblank 

tape symbols is L = {l,A,X,Y}, anq that the tape is initially as.shown in 

Fig. 18a (in this example the first number m is· 2 and the second number n is 

3). 

H 

H 

Fig. '17. State diagram for example 35. 

m n 

(a) b b x y x b b b 

n mxn 

~ 

( b) b X b b YA AA XA AA A A Ab 

.Fig. 18. (a) Initial status of the tape for the Turing machine of example 36, 
and (b) final status of the tape . 
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The symbols X and Y are end markers, Y separating the two numbers. The 

machine is initially in state s
0 

with its head pointing to the square contain­

ing Y. There are four states s
0

, s
1

, s 2 , s
3

, with the following state 

transition table (Table 10): 

s. 
]_ 

G n 

so 

so 

so 

so 

sl 

sl 

sl 

sl 

sl 

c:::l 

82 

s2 

62 

s2 

s3 

s3 

63 

S3 

s3 

Table 10. State-transition table for example 36. 

x. 
J 

b 

l 

x 

y 

A 

b 

1 

x 

y 

A 

h 

1 

x 

y 

A 

b 

1 

x 

y 

A 

s .. 
l.J 

so 

sl 

H 

so 

so 

sl 

sl 

82 

sl 

sl 

RL 

83 

s2 

so 

s2 

s2 

s3 

R3 

s3 

S3 
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x .. 
l.J 

b 

b 

y 

A 

b 

1 

x 

y 

1 

h 

A 

x 

y 

A 
' 

A 

1 

x 

y 

A 

m .. 
l.J 

L 

R 

L 

L 

R 

R 

L 

R 

R 

T. 

R 

L 

L 

L 

L 

R 

R 

R 

R 



The corresponding state diagram is shown in Fig. 19. 

H 

Fig. 19. State diagram for example 36. 

Using the example n = 2, n = 3, the reader may trace the actions of the 

machine and determine the significance of each state. The end result is 

shown in Fig. 18b. The answer m x n is written as a sequence of m x n A's to 

the right of the right end marker X .. 

(37) The state diagram shown in Fig. 20 represents a Turing machine 

that converts a sequence of n l's .on the tape to the binary representation 

of the number n. 

The tape looks initially (n = 10) as shown in Fig. 2la. At the end it has 

the form given in Fig. 2lb. So the answer is BABA= 1010 = 10 (base 2). 

In principle, the machine repeatedly divides by 2, writes the remainder (A 

for 0, B for 1) and repeats this process on the quotient until the quotient 

becomes zero. Again this is a computation that cannot be done by a finite­

·state machine (for arbitrary n) - a fact we are not going to prove. 

Through these examples the reader should have gained sufficient insight 

into the structure of Turing machines to appreciate the following remarkable 

facts that have been proved mathematically: 

(A) Any Turing machine can be replaced by one that uses only two tape· 

symbols (say 0 and 1, 0 being also used for "blank"). The basic idea 

is to encode every nonblank symbol as a binary number. However, by 

reducing the number of symbols we increase the number of states. 
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Start 

b 
t-----H 

Fig. 20. State diagram for.example 37. 

n 

b 

(b) A B A X X X X X X X X X X ·b b 

Fig. 21. (a) Initial status of the· tape for example 37, and (b) final status 
of the tape. 

-70-



(B) More remarkable is the fact that every Turing machine is equivalent to 

one that has only two internal states. The equivalence is achieved by 

greatly increasing the alphabet of the multistate machine. This fact 

was proved by Claude Shannon, the inventor of information theory. 

(C) Turing machines that have t;apes infinite in both directions have no 

advantage over machines with tapes that are infinite only in one 

direction. 

(D) Turing machines that control several read/write heads that independently 

scan several tapes are no more powerful than single-tape machines. 

(E) Recall the condition under which we could draw a state diagram: the 

head motion (L or R) depends only on the state which the machine enters. 

One can prove that every Turing machine is equivalent to such a 

"directed-state" machine, by adding suitable states (exercise!). 

Universal Turing Machines 

Let us suppose that T is a Turing machine that can compute a certain 

function f(x). That is, for each value of x (represented on the tape of T as 

a certain nonblank string S ), Twill eventually come to a halt with an x 
appropriate "answer string" Sf (x) remaining on the tape. Given a description 

of T (e.g., in terms of its quintuples) and of the initial string S on the 
x 

tape, the reader could trace out the behavior of T with input S and find for 
x 

himself what the corresponding value of f(x) is. In fact, this is presumably 

what the reader has done for the examples given above. He required an external 

storage medium (paper and pencil) and a precise understanding of how to 

interpret the description of the machine. 

We intend to replace the reader by a "universal" Turing machine and give 

it the same necessary materials: an external storage medium (its tape and 

read/write head), a description on its tape of a machine T and of T's tape 

S ; and the built-in capacity to interpret correctly the description of T's x 
behavior. 

In other words, there exists a universal Turing machine U, which is able 

to interpret and simulate the behavior of any Turing machine T. All U needs 

is a string of symbols dT containing .the encoded description of T, and it can 

then compute (by simulating T) all functions that T can compute. This tnearts 
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that there exists a Turing machine U, which is so sensitive that, by properly 

adjusting the input representation, it can compute any function that is 

possibly computable by a Turing machine (hence the name "universal"). 

· By analogy we can think of a Turing machine T as an algorithm or 

computer program that solves a particular task (e.g., multiplies two numbers). 

A universal Turing machine then corresponds to a di.gital "stored program" 

computer that can "simulate" any program, as long as it i.s properly described 

and encoded (in machine language). 

Asserting the existence of this universal machine is one of the high­

lights of Turing's original paper, and is also Turing's chief support that 

Turing machines can handle all effective procedures. To construct a 

universal Turing machine U, we shall £irst show how Turing machines can be 

used to store and retrieve information, by using the tape as a general-purpose 

file. 

Suppose R
1

, R
2

, R
3

, ..... , ~ are a number of items (recurd8), ea_ch Ri 

being given a name N., and suppose that (after encoding all items and names 
l. . 

in, say, binary numbers) they have been arranged on a tape in pairs (N., R.), 
l l 

separated by markers (say X's) (see Fig. 22). 

Library/egion 

Name of r Q) Ol Q) 

·E E E E E E des;ret aem c Q) c Q) c Q) z +- z +- z 
y N x Nl Rl x N2 R2 x •••••••••••• x NK RK y b 

Fig. 22. Items and names arranged on tape for the universal Turing machine. 

Now suppose we want to locate the item whose name is N (we assume that 

all names have the same length when encoded). Here the Y's are special end 

markers. The state diagram in Fig. 23 represents ;i machine that compares the 

given name N·with each of the names N
1

, N
2

, ... in _the "library." When it 

'finds a match, it stops and returns to its starting position after having 

changed all 0' s and l's between the desired record R. and. the start position 
l 

to A's and B's, respectively. For instance, this machine would causP. the tape 

conversion shown in Fig. 24. 
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A 

Start--'"i 

To 
copy 

machine 
(Fig. 25) 

x 

Fig. 23. State diagram for an item-locating machine. 

(a) 

~y 1 0 1 x 0 0 1 0 1 0 x 1 0 1 1 1 0 x 1 1 1 0 1 1 

~GJ~ ~ ~ N s0 N
1 

R
1 N2 R2 N3 R3 

(b) 

;v 1 0 1 x A A B A B A x B A B 1 1 0 x 1 1 1 0 1 1 

L-,,----JB L._y---1 

N = N2 H R2 
(desired record) 

y 
t------11-H 

y b .b ~ 

y b b~ 

Fig. 24. Tape status (a) before and (b) after processing by the item-locatin~ 
machine of Fig. 23. 

Having located the particular record R
1

, we might want to copy (move) it 

to another place on the tape. The state diagram shown in Fig. 25 represents 

a Turing machine that will copy the record R., just located, into the block 
1. 

that contains its name (we assume here that names and records have equal 

length). Thus, by applying the copy machine to the tape obtained from the 

item-locating machine above, we finally arrive at the tape depicted in Fig. 26. 
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From 
locating 
machine 

(Fig. 23) 

y 

x. 

y 

----------To phase-3 
machine 
(Fig. 31) 

i-----~~---To·phase-3 
machine 
(Fig. 31) 

Fig. 25. State diagram of a Turing machine for copying a record into the block 
thRt ~nntainR its name. 

y l 0 B A B A X B A s· 0 x 0 y b b 

~ 
R2 

I 

! 
r-"-.. 

y B A A B A B A X B A B B B A X B 0 y 

i ___ v __ _j 

R2 

Fig. 26. Tape status (a) before and "(b) after processing by the copy machine 
shown in Fig. 25. 

Having introduced file-locating and copying machines we can now begin 

to construct a universal ~uring machine U. first, w~ describe the structure 

of U's input tape, which must contain (a) an encoded description of a Turing 

machine T (e.g., T's quintuples), and (b) a description of T's input tape. 

The. description of the machine T in terms of quintuples 

m .. ) appears on U' s input. tape as shown in Fig. 2 7. 
1] 

(s., x., s .. , x .. , 
1 J 1] 1] 

Here the following conventions are used: if T has n states, and n as a 

binary number has b digits, then blocks of b binary digits are used to 

represent T's states on U's tape. In the above example, b =· 2, so that this 
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Quintuple' 

x 0 0 0 0 ,0 ... 0 6 x 1 1 1 1 1 .1 1 

-~ ~·. 
s 1 s 

11 

Quintuple 

0 0 (j o· o 0 (j 
.X ,1, ·1 1. 1 1 1 

·'---v--1 ~ 
. 's i . s .. 

I J 

x. 
J 

x .. m .. 
I J I J 

Descripti.?n of Ton U' s tape 

· Quintuple 

x 0 
1 

y 

Fig. 27. Description of Turing machine T as it appears on U's tape. 

is a description of a machine having at most 3 states. Furthermore, we 

assume that T's input-symbols are 0 and 1, so that x. is represented as a 
J 

b 

single binary digit. Also, m .. = 0, if T's tape .. head moves left, otherwise, 

mij = 1, so that mij is also ~~presented by a single binary digit. {1] means 

that either 0 or 1 may appear in this tape square. "Y" is an end marker which 

tells U where the description of T ends. 

We assume next that the description of T's tape,· its head position, and T's 

current state and symbol appear to the left ~f T's description on U's tape 

(Fig. 28). The part on U's tape immediately to the left of· the left-most X 

is the machine condition of T, i.e., its current state and the symbol on T's 

tape currently being read by T. Further left is the description of T's tape, 

which is simply a "copy" of T's tape, except that in place of the symbol 

currently being read a special symbol M appears on U's tape, indicating the 

current position ot T's tape heat.I. 

This concludes the description of U's input tape. Now we show how U 

operates. U's operation proceeds in a four-part cycle. 

(1) Starting with the tape head over the left-most X as shown in Fig. 

28, U sets the "item-locating" machine in operation. It searches to the right 

(i. c., ·in the mach:inP. 'rle::;cription area) until. it finds the first state-symbol 

pair in a quintuple .that matcheE; the one .contained in. the "machine condit.ion 01 

area (which initially will be (s
0

, xi)' where s
0 

is T's starling state, and xi 

is the symbol initially under T's head). As we know, all O's and l's between 

the left-most X and the desired pair are changed to A's and B's, respectively. 
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Current state of;i_,~ Current symbol read by T 

} .. 0 0 0 M 0 eeae 0 0 0 y 0 0 0 x 0 0 0 0 0 0 0 x •• Qt' b~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
y 

-

\.._~ /\ ~ ~ ' 

Current s. s .. 
I I J 

location of 
T's head 

,___ 

x. x .. m .. 
J I J I J 

. Description of T's tape Condition Description of T 
of T 

Fig. 28. U's tape containing the des~ription, location of tape head, autl 
current otatf! ond ."lymhul ...:1£ T. · 

After th~ matching pair has also been converted to.A's and B's, U's tape head 

moves back to its starting position over the leftmost X. At that point U's 

tape appears as shown in Fig. 29. 

(2) Now the "copy" machine is invoked. It moves U's head to the ri.ght 

until it encounters the first 0 or 1. It then copies the part that contains 

the new state (so;• or in generals .. ) and the new symhoJ 
.., ]1 

(xl .. , or in general 
11 . 

x .. ) into the "machine condition" portion of U's tape. 
J1 

The symbol representing 

the new head motion _(m
0
i, or in general mj i) is "remembered" by U. After the 

copying process is finished, U's tape looks as shown in Fig. 30. 

x. 
I 

So· Match 
,--"---.. ,--J'---.. 

0 0 0 
M 

0 0 0 0 y 0 0 0 A A A A A A A A A A ·O 0 0 0 
l l l l l l l l l l B B B B B B B 

x 
B B B l l l l x 
~ 

so 

x. 
I 

Fig. 29. U's tape after processing by the item-locating machine. 
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(3) Next, U's tape head moves to the left (i.e., along the portion that 

contains a description of T's tape) until it encounters the M. It erases the 

M .and replaces it by the <lir.ection m .. (A or B) (which had been "remembered" 
l] 

by U). Refer to the diagram of the copy machine (Fig. 25) and note the two 

exit arrows at the right. If m .. 
.LJ 

was an A, the copy machine exits from state 

s
2

, if m .. was a B, it exits from 
lJ 

s 4 . This is the way U "remembered11 m .. ! 
l] 

Then, U's tape head moves right again, changing all A's and B's to O's and 

l's (except the A or B which represents m .. in M's old location). After that, 
l] 

it moves to the leIL of the left-most X, erasing the x .. (and "remembering" 
lJ 

it), and printing a special symbol Sin its place. All this is done by the 

machine in Fig. 31. We' 11 call it the "phase-3" machine. The appearance of 

U's tape at the end of phase-3 is given in Fig. 32. 

(4) In its fourth and final phase, U's head moves to the left until it 

encounters an A or B (this is the one representing the direction m .. of T's 
lJ 

head). U replaces the A or B with the value of x .. (0 or 1) and shifts one 
lJ 

square to the left or right, depending on whether the symbol encountered was 

A or B. The symbol in the new square is replaced by an M and "remembered." 

Then U shifts its head to the right until it reaches the symbol S. This it 

replaces by A n:r R, <lepending on whether the "remembered" symbol on T's 

tape was 0 or 1. The machi~e that does all this is represented by the diagram 

in Fig. 33. After completing phase 4, the tape appears as shown in Fig. 34. 

At this point, the machine U has completed one cycle and is ready to 

start the next r.ycle, going through the same four procedures. During each 

cycle the machine U first 1 or.ates the proper quintuple (si, xj, s 1j, x1j, m
1
j) 

which contains the same pair (s., x.) as is contained in the machine condition 
l J 

area. It then copies the new state and symbol (s .. , x .. ) into the machine 
l] J.J 

m •• 
I J 

("remembered") 

New statel rNew symbol 

,---/'-.,-/"-., 

0 0 
M 

0 o· 0 y A A A A A A A A A A x A A A A A A A x 0 
l l l l l 0 0 0 0 B B B B B B B B B B B B B l 

'--r------1 "---v--1 
Machine s .. 
condition I j 

x .. 
IJ 

Fig. 30. U's tape after processing by the copy machine. 
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From s
2 

of. 

copy machine 
(Fig. 25) 

0 0 A 0 
l l B l 

'-v-' 
m;. 

I J 

Fig. 32. 

m .• 
I J 

in place 
of M 

Restore­
niach ine­
condition 

region 

RP.5tt'.'lri:-­

rnu ch lne­
description 

region 

To phase-4 
machine 

(Fig. 33) 

,, 
To phase-4 

machine 

Fig. 31. Phase-3 machine. 

0 0 y 0 0 x 0 0 x 0 0 x 0 0 x 0 
l 1 1 1 1 1 1 ••• 1 1 1 1 

ffl •• 
I J 

U's tape after processing by the phase-3 machine. 

condition area, moves the marker M, depending on m .. , and reads the new 
lJ 

symbol, replacing it by M. Thus, U carries out the instructions of exactly 

one quintuple of T during each cycle. This completes the construction of a 

universal Turing machine. 

Some Unsolvability Results 

Recall Turing's thesis that Turing machines can solve (compute) any 

problem (function) that is an effective procedure. In this chapter we are 
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From 
phase-3 0 S 
machine-----i 

(Fig.31) 

From 
phase-3 1 
machine·---~ 

To 
locating 
machine 
(Fig. 23) 

s 

Find 
marker­
location 

on T1 s tape 

Move in 
proper 

.direction 

Put M 
on the 
square 

Find 
;15 If 

. Write new symbo I 

0 0 
l l 

M 0 
l 

0 • • • • 1 

Fig. 33. Phase-4 machine. 

y 0 
l 

0 
l x 0 

l 
0 
l 

0 
l 

0 
l 

0 
l 

0 
l 

0 
l x 0 

l 
0 
l 

Fig. 34. U's tape after processing by the phase-4 machine. 

x 0 ... 
l 

going to look at some procedures that cannot be solved by any Turing machine, 

i.e., there are no algorithms to solve t.hese procedures. 

For our first question let us consider a Turing machine T with input 

tape T. If T star.ts its operation it may .be a very long time until it finally 

comes to a halt. In fact, T might get caught in an infinite loop and never 

halt. We are therefore entitled to ask the question below. 

Halting Problem 

Is there a Turing machine H that, given any Turing machine T and its input taper, is able 

to decide whether or not T comes to a hall'! 

It is obvious that the· existence of such a machine H would be quite 

usefvl, but as it turns out no such machine can exist. To prove the 

unsolvability of the halting problem, we shall restrict the problem as 
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follows: instead· of considering all pairs (T,T), we only select those pairs 

of the form(~, dT), i.e., where the tape T contains the description of T. 

Then we can ask the next question. 

Restricted Halting Problem 

Is there a Turing machine H' that, for any Turing machine T, can decide 

whether or not T halts if Tis given its own description dT on its input.tape. 

Clearly, if we can show that the restricted halting problem is unsolvable, 

we can imply the unsolvability of the more general halting problem. 

Let us therefore assume that such a "decision" machine H; exists.· Then 

H' must contain two internal states sl, 82, such that H' arrives in state Bl 

when it decided that (T, dT) halts, otherwise H' arrives in state s
2 

(see 

Fig. 35). 

Now let us denote by H" the machine H' modified by adding two states s', 

s" as shown in Fig. 36. 

Obviously; H" halts if (T,dT) does not halt. However, if (T, dT) halts, 

then H" enters the infinite loop (s's"s's" .... ) and never halts. 

Now, suppose that we give H" its own description C_dH", dH 11 ). What will 

happen? If H", given its own description, should halt, then it must enter 

state S
1

, and then the infinite loop (s's"s's" ... ), i.e., H" would never 

Ha It if ( T , d ) 
T· No 

never halts 
Yes 

Ha It if ( T , dT ) 
ha Its · 

H' 

Fig. 35. Decision machine. 
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H" 

x 
never ha I ts _____ N_o ___ ----1 Yes 

x 
( X is any symbo I) 

Fig. 36. Decision machine with two states added. 

halt, which is a contradiction. Let us then suppose that H" never halts when 

given its own description. This implies that H" enters state s
2 

and then 

halts - again we reached a contradiction! The only way out of this mess is to 

conclude that ·a machine like H" cannot exist, i.e., the restricted halting 

problem is unsolvable, and consequently the general halting problem is 

unsolvable. 

Consequences of the Halting Problem 

A consequence of the halting problem is the unsolvability of the printing 

problem, namely, "Does a Turing machine T ever print the symbol a when started 

with tape T?" 

Next we provide an example of a function that is not Turing-computable 

in the sense that there is no Turing machine T which, given a representation 

of a number x on its input tape, will come to a halt with the description of 

f(x) on the tape. The function f is defined as follows: 

Let C = {T I T is a Turing machine with m states and tape symbols 0, l}. 
m 

Let T be a tape containing m consecutive l's. 
m 

Let.us discard all TeC which never halt when given tape T , and let 
m m 

a {Tee I (T,T) docs halt} be.the class ot those ~ec that do hale m m m m · 
when pr~sented with input tape T . 

m 
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Define for each TeC p (T) =number of l's on the tape after T halts. Since 
m m 

C and C arc finite sets, we can define Lhe function f by 
m m 

f (ru) maximum {p (T) I TeC }. 
m m 

Assume now that there is a machine F which computes f (by Shan~nn's 

theorem we may assume that Fuses also the two tape symbols {O,l}). Define a 

new machine F' as follows: F' proceeds just like F, but instead of halting 

when it has computed f(m), F' writes one more 1 on the. tape and then halts. 

That is, F' computes the function f' given by 

f'(m) = f(m) + 1 

Let K be the number of states of F, and ask F to compute f(k). By its very 

definition, F' will compute 

f' (k) = f (k) + 1 

However, F' € Ck, and therefore 

But'. we just saw that rktF') = f(k) + 1 which is a contradiction! The only 

way to resolve this contradiction is by giving up thP. a.ssumption that a machine 

F exists which computes f. Thi:=; prnhl Pm ·is l<no~·m ii\~ the "bucy-bcovcr problem," 

and we have .iust shown its unsolvability. 

An interesting consequence of the unsolvability of the halting problem 

is the fact that no computer program can ever be devised that is capable of 

deciding whether an arbitrary program ever halts or gets caught in an infinite 

loop. This is an example of how an abstract theory like automata theory can 

yield results that are of interest to computer scientists and programmers. 

Recursive Functions 

Before discussing the concepts of recursive-function theory, I want to 

mention a result that concerns the class of lang11ages accepted by Turing 

machines. First of all, let us assume that certain states of the Turing 

machine T are declared final (or accepting) states (just as for finite-state 

automata). Next, let~ be the input alphabet to the machine (i.e., the input 
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tape symbols), together with two special end markers a and S. We assume that 

* a string w E L: is pre.sented on the input tape in the form awS, and that at 

the start the tape head is over the left end marker a ... We now advance a 

definition. 

Definition 25: 

* The Turing machine T accepts the string w L: if and only if it halts in 

a final state, when w is presented on the input tape as described above. The 

string w is not accepted if either T ddes not halt or T halts ln a nonfinal 

* state. The set L(T) = {wEL I w accepted by T} is the language accepted by T. 

We can now state a theorem analogous to Kleene's theorem (it was proved 

by Chomsky in 1959). 

Theorem 12: 

A language is accepted by some Turing machine if and only if it is a 

recursive (type O) language. 

The proof of this theorem is quite lengthy and in principle similar to 

the proof of Kleene's theorem, so we are uot going to present it. It was first 

proved by Chomsky who used recursive function theory for the proof. 

Next let us study in a little more detail the class of functions that can 

be computed by Turing machines. First, we want to give a precise definition 

of what we mean by saying "a function is Turing-computable." As 'we have 

seen, among the functions that can be computed, by Turing machines are the 

function s(x,y) = x + y and.P(x,y) = x·y. These are obviously functions of 

two variables x and y, so we are naturally lead to the consideration of 

functions of one or more arguments: f(x1 ,x2 , ... ,xn). Also, each argumeul.'. 

xi is assumed to be a nonnegative integer, and the function value f(x
1

, ... ,xn) 

is again a nonnegative integer. Furthermore, the function f(x
1

, ... ,xn) may not 

be defined for aZZ arguments (x
1

, ... ,x ), e.g., the function g(x,y) =~is not 
n y 

def:i.nerl for (x,O) and for those pai_rs (x,y) for which~ is not an integer, y . 
i.e., x t. ·a(mod y). 
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Definition 26: 

A function f(x1 ,x
2

, ... ,xn) is called a partial function if it is not 

defined for all arguments (x
1 
•... ,xn). If f(x

1
, .. ,,xn) ls definP.d for all 

arguments (xl, ... ,xn)' then f is called a total function. 

Definition.27: 

A partial function f(x1 , ... ,xn) is called Turing-computable in general 

(Tcg), if there exists a Turing machine T that, when given a tape containing 

the arguments (x
1

, ... ,xn)' will either halt with the value f(x1 , ... ,xn) if 

f(x
1

, ...• x) is defined, or will not ltalt H F(x1 , ... ,x) is not defined. 
n . · n 

If [ ii:, .:1. Lulul fuueLluu, aud che Turing mAC.hine described above exists 

(i.e., it will halt for all (x
1

, ... ,xn) with answer f(x1 , ... ,xn) on the tape), 

then f is called Turing computable (Tc). Thus, f being a total function 

and Tcg implies f is Tc. In either case (f Tcg or Tc) we write f ~ T if T is 

a Turing machine that computes f. 

Remark: In the following we shall only consider Turing machines that contain 

two tape symbols {O,l}. This does not restric~ the generality, since we know 

that any Turing machine is equivalent to one using only two symbols. 

Now that we have a precise definition of what it means for a f11T11.: I _i_crn f 

to be Turing-computable, one can ask whether there is some algebraic 

classification of the Turing-computable functions. It turns out that there 

is indeed such an algebraic description of Turing-computable functions, in 

terms ot so-called recursive functions. To clarify the term "recursive" let's 

look at the familiar Fibonacci sequence, and let us define the function ¢(n) 

to be the nth term in the Fibonacci sequence 1,1,2,3,5,8~ ... (generally, each 

term is the sum of the two preceding terms, the first. two tP.rms bPi.ng i:lef.i.ned 

to be 1). Clearly, the function¢ is defined as follows: 

¢(1) ¢(2) = l; 

¢(n) ¢(n - 2.) + ¢(n - 1) for n ~ 3. 

As we see, before we can find ¢(n) for some value n, we have to know ¢(n - 2) 

and ¢(n - 1), i.e., the value ¢(n) depends on the preceding values ¢(n - 1) 

and ¢(n - 2). In such a case one says that the function (here¢) is defined 

"recursively." The simplest class of recursive functions are the so-called 

primitive recursive functions. 
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Definition 28: (Primitive recursion): 

(1) The zero function Z(x) = 0 is a primitive recursive function. 

(2) The successor function S (x) = x + 1 is a primitive re.cursive 

function. 

For every i with 1 .s_ i .s_ n, the ith projection function 

x. is a primitive recursive function. 
1. 

(4) If g and h are primitiv~ recursive functions, then the function f 

defined by the recursion scheme 

is again a primitive recursive function. 

(5) If hand g
1

,g
2

, ... ,gk are primitive recursive functions, then their 

composition f(x
1

, ... ,xn) = h(g
1

(x
1

, ... ,xn)' ... ,gk(x
1

, ... ,xn)) is a primitive 

recursive function. 

Thus, any function that is constructed by a finite number of applications 

of rules (1) through (5) is primitive recursive. 

Let us give a few examples of primitive recursive functions. 

Examples: 

(38) Addition: f(x,y) = x + y is primitive recursive, in fact, 

by (3): f(O,y) = P_(l)(y), 
1 (3) 

by (4): f(x + l,y) = S(P1 (f(x,y),x,y)). 

(Since f(x + l,y) = (x + 1) + y = (x + y) + 1 = f(x,y) + 1, one would be 

tempted to define f(x + l,y) = S(f(x,y)), but this would not fit into our five 

rules al.Juve, so we have to use the more cumbersome defini.l:ion (definition (4), 

above). 

(39) Multiplication: m(x,y) 

m(O,y) • Z(y) = 0, 

m(x + l,y) = h(m(x,y),x,y), where 

xy is primitive recursive: 

(3) (3) 
h(x

1
,x

2
,x

3
) = f(P

1 
(x

1
,x

2
,x

3
),P

3 
(x1 ,x2 ,x

3
)), 
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f being the "sum" function in example (38). (Since m(x + l,y) (x + l)y = 
xy + y, one would like to simply put m(x + l,y) = f(m(x,y),y), f being the 

addition function; but again this formula l.s not covered by any of the five 

rules for primitive recursion.) 

(40) Exponentiation: exp(x,y) 

S(Z(y)) (=l), 

h(exp(x,y),x,y), where 

x y is a primitive recursive: 

exp(O,y) 

exp(x + l,y) 

h(x
1

,x
2

,x
3

) 

from example 

(3) (3) m(P
1 

(x1 ,x2 ,x
3
),P

3 
(x1 ,x2 ,x

3
)), m being "multiplication" 

(39). 

(41) Faetor•ial: Recall the defin:i,tion of the "fartnr.i<1l oper.'.ltor" ! 1 

l .L, it 1'1 - 0 
n' -

. - 1•2•3 ... n, if n > 0, son! n • (n - l)! for n > 0. 

The function fc(x) = x! is primitive recursive: 

S(Z(O)) = 1, 

h(fc(x),x), where 

fc(O) 

fc(x + 1) 

h(x1 ,x2) 
(2) (2) 

m(P1 (x1 ,x
2
), S(P 2 (x

1
,x

2
))) 

(42) Zero-test: The function 

J if x 0 
sg(x) 

0 ' if x > 0 

is primitive recursive: 

Sg(O) = S(Z(O)) = 1, 

sg(x + 1) = Z(P
2 

( 2)(sg(x),x)). 

(43) 

P(x) 

The fnnrtinn 

x is even 

x i.s odd 

is pri.mitive recursive: 

P(O) "" Z(O) = 0, 

P(x + 1) = sg(P
1 

(2)(P(x),x)). 

(44) Half: The function 

H(x) [x/2] is primitive recursive: 

H(O) Z(O), 
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,,. 

f being "sum," P being "parity." (Here we have implicitly made use of the 

relationship H(x + 1) = H(x) + P(x). Also note x = 2 H(x) + P(x) for all x). 

(45) Predecessor: The function 

10,ifx= 0 
pd(x) 

x - 1, if x > 0 

is primitive recursive: 

pd(O) = Z(O) = 0, 

pd(x + 1) = P
2 

( 2)(pd(x),x). 

(46) Subtraction: The function 

= ly - x, if y > x 
sub(x,y) 

0, if y < x 

is primitive recursive: 

sub(O,y) 

sub(x + l,y) 

where h(x
1

,x
2

,x
3

) 

pl (l)(y) = y 

h(sub(x,y),x,y), 
(3) 

pd(P
1 

(x
1

,x
2

,x
3
)). 

For our purposes we have to consider a wider class of recursive 

functions. This extension is accomplished by introducing a new type of 

function, and in some sense "adding" it to the primitive recursive functions. 

Definition 29: 

Let g(y,x
1

,x
2

, ... ,xn) be a function of n + 1 arguments. Then we define 

the minimization ope1•atm• µ by: 
y 

µY[g(y,x
1

, ... ,x) = O] = the smallest value y for which g(y,x
1

, ... ,xn) = 0 

(here (x
1

, ... ,x) are fixed parameters). Of course, there might not be 
n • 

such a smallest y, in which caseµ [g(y,x
1

, ... ,x) = 0) is not defined. 
y n 

Also note that as the arguments (x
1

, ... ,x) vary, the value ofµ varies 
n Y 

(if it exists at all), so that we can define the following partial 

function of n variables: 

lµy[g(y,x
1

, ... ,xn) = O] 

undefined otherwise. 

if such A y exists; 

W<il call f 0190 rhr m1:m:m1:?.(l.t1'.rm opeX'ation on. the .function g. It is 

a~sumed that the function g is a trital function. 
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Example: 

(47) 

For example, g(2,3,4) 

and g(6,3,4) 

Then 

For example, J1 [ g (Y , 3 , 4) 
y 

J1 [ g (Y ; 3 , 5) 
y 

1, 

? ? + x~ < y'"" 
22 

Y othe.Lw.i.::.e. 

since 3
2 + 4

2 < 62. 

I~ if Y2 = x2 x2 
= xl + x2, + 

O] 1 2 

undefined otherwise 

O] - 5 

O] i.6 uuJeflueu. 

Now we can extend the class of primitive recursive functions to the class 

of partial recursive functions. 

Definition 30: 

The class of pal'tia.l r•ecursive functions is defined by six rules, the 

five rules from definition 27 with the word "primi.tivP." rPpl~cl?d by "partiol 1 " 

and the following rule: 

(6) If g(y,x
1

, ... ,xn) is a partial recursive function that is total 

(i.e., defined for all arguments), then the minimization operationµ applied y . 

to g is a partial recursive function. 

It can be shown that the minimization operation µ is not primitivP. 
y 

recursive, and consequently, the class of partial recursive functions is 

actually a wider class than the class of primitive recursive functions. In 

contrast to the primitive recursive functions, which can be shown to be total 

functions, the partial recursive functions may not be defined for all 

argument8 (sinceµ is sometimes undefined). Hence they are partial functions . y 
in our initial sense of the word. The subset of all those partial recursive 

functions that are actually total functions is quite important and is called 

the set of recursive or general-recursive functions. The class of recursive 

functions lies between that of the primitive recursive and the partial 

recursive functions and coincides with neither class: 
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{Primitive recursive f } C {recursive f } C {partial recursive f }. 
ns t ns t ns 

proper inclusion proper inclusion 

We can now state the result that answers our question concerning an algebraic 

classification of Turing-computable functions. 

Theorem 13: 

(A) A function f(x
1

, ... ,x) is Turing-computable (Tc) if and only if it 
11 

is recursive. 

(B) A function f(x , ... ,x) is Turing-computable in general (Tcg) if and 
1 n 

only if it is a partial recursive function. 

Clearly, it is sufficient to prove part (B) of the theorem, since part 

(A) follows more· or less by definition of Tc and recursiveness as compared to · 

Tcg and partial recursiveness. 

Proof of theorem: 

The proof of part (B) breaks into two parts: (i) If f is a partial 

recursive function, then f is Tcg, and (ii) If f is Tcg, then f is a partial 

recursive function. 

Proof of (i): 

A function f is partial recursive if and only if it is either the zero 

function, successor function, or projection function, or if it is formed by 

finitely many applications of (a) the recursive scheme, (b) composition, and 

(c) the minimization operation. Thus, one must show that there are Turing 

machines that compute the first three functions, the composition, the 

"recursion scheme," and the minimization operation. The proof is tedious and 

is therefore omitted. The proof of part (ii) is more interesting. 

Proof of (ii): 

Recall that we start with a Tcg function f, and that we want to show 

that f is partial recursive. So let f ~ T, where T is a Turing machine with 

only two input symbols {O,l}. 

Suppose we take a look at T's tape at a certain time t, when T is in 

states (Fig. 37). Here xt is the tape symbol currently under the tape 
. t 
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> f ...... 0 b b3 b2 bl bo ••••••• xt . co cl c2 C3 • •••••• cs 0 • •••• > 
~ r 

\ ., 
~ 

mt nt 

Fig. 37. T's tape at time t. 

head, while mt is the nonblank portion of the tape to the left of xt and nt 

is the nonblank portion to the right of xt. Since both portions have finite 

length, we can also define 

r . 
I: b. 2

1 

i = 0 l. 

and n 
t 

s . 
L c. 2

1 

i = 0 l. 

Suppose that the quintuple beginning with state st and symbol xt is 

(st,xt,st+l'X,O), where we use 0 for motion to the right and 1 for motion to 

the left. Then, at time t + 1 the tape would appear as in Fig. 38. Thus, 

r 
b.2i + 1 

mt + 1 
x + L X + 2mt and 

i = 0 l. 

s 
i 1 L -

H(nt) [n/2] n c.2 "" , 
t + 1 

i = 1 
l. 

x + 1 
p (n ) co. t . t 

.. 

~-·· 0 0 b ••••••• b2 bl bo x r co cl c2 C3 ••••••• C5 0 0 ~····~ 
\. 

~ 

mt+ I nt+ l 

Fig. 38. T's t~pe at time t + 1, after tape head moved to the right. 

-90-



If the quintuple had been (s ,x ,s + 
1

,X,l), we would have 
t t t 

Now let us assign integers to the states of T by assigning the number i 

to states. (using some fixed ordering of T's states). Then, instead of using 
1. 

quintuples, we can associate three functions with T: 

Q(s.,x.) s .. (next'-state function) 
1. J 1.J 

S(s. ,x.) x .. -(next-symbol function) 
1. J 1.J 

M(s.,x.) m .. (next-move function) 
1. J 1.J 

All three functions are number-theoretic functions .using numbers for the 

states, symbols, and moves (0 for R, 1 for L). Now it is a simple exercise to 

show that .any number-theoretic function f that must assume preassigned values 

at a finite number of arguments, and can be defined arbitrarily elsewhere,.is 

a primitive recursive function. In particular, the three functions Q, S, and 

Mare primitive recursive functions. 

Let us now consider the four functions: 

·qT ( t, n) (state at time t ,. if input at time 0 is n), 

~(t,n) (portion of tape to the left of the tape head at time t), 

nT(t,n) (portion of tape to the right of the tape head at time t), 

sT(t,n) (symbol being read at time t). 

Initially, at t = 0 we have: 

qT(O,n) 

~(O,n) 

nT(O,n) 

1'\,(0,n) 

0 (T starts at state s
0 
~ 0); 

0 (tape head starts at left); 

H(n) = [n/2] 

P(n) (least significant digit of n). 
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Then, at time t + 1 we have: 

qT(t+l,n) 

~(t+l,n) 

Q(qT(t,n), sT(t,n)), 

(2 ~(t,n) + S(q
1

(t,n), sT(t,n))) 

• (1 - M(qT(t,n), sT(t,n))) 

+ H (mT ( t, n)) • M(qT ( t, n), sT ( t, n)) 

(2 nT(t,n) + S(qT(t,n), sT(t,n))) 

• M(qT(t,n), sT(t,n)) 

+ H(nT(t,n)) • (1 - M(qT(t,n), sT(t,n))) 

P(nT(t,n)) • (1 - M(qT(t,n), i\.(t,n))) 

+ P(mT(t:,n)) • M(qT(t,n), i\,(t,n)) 

Since all the functions on the right-hand side are primitive recursive, the 

functions qT,mT,nT, and sT are primitive recursive. Now suppose T comp1ites 

the given function f, i.e., T halts with f(n) on the tape, where n is the 

initial input string at t 0. Thus, assuming the tape head is to the right 

of the "answerr; f(n) when T halts, we have: 

f(n) = mT(t*,n) when qT(t*,n) H, 

where t* is the smallest t such that 

Hence: f (n) 

using the minimization operator µt. Note that qT is a total function since it· 

is primitive recursive. Hence µt is defined. This proves that f is a partial 

recursive function, which is what we had to show. 

Before completing our discussion of Turing machines, we might mention 

that one can also define nondeterministic Turing machines by simply allowing 

a finite number of possihJe "moves" for each given pair (state, input symbol). 

That is, given (s.,x.) there are f:i.nitely many quintuples (s.,x.,s .. ,x .. ,m .. ) 
1 J . l J 1J 1] lj 

that start with (s.,x.). A string on the input tape is "accepted" by a 
l J -

nondeterministic Turing machine if there is at least one possible sequence 

of moves that leads to a halt in an accepting state. The set of these words 

is then the language accepted b.y the machine. 
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Theorem 14: 

Nondeterministic Turing machines are no more powerful than deterministic 

Turing machines .. In other words, both types of machines accept the same class 

of languages (recursive). This is similar to proposition 4 for finite-state 

automata. 

Exercises 

(16) Construct a Turing machine with no more than four states, that will add 

two integers. 

(17) A Turing machine initially starts out on a tape of the form shown in 

Fig. 39a. Its state diagram is shown in Fig. 39b. Analyze this machine. 

(a) 

•••••• y • ••••• z b b ••••••••••• 

m 11 s n 11 s 

(b) 

Fig. 39. (a) Tape and (b) state diagram for exercise 2. 
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(18) A Turing ~achine is called a directed state machine if, for any 2 

quintuples (si,xj,sij'xij'mij) and (sk,x1 ,skl'xkl'mk1) with sij skl' we 

have mij = mkl (entering the same state results in the same he~d motion). 

Given any Turing machine, construct an equivalent directed-state machine. 

(19) Prove that a Turing machine whose only head motion is to the right can be 

replaced by a finite-state automaton. 
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PUSHDOWN AND LINEAR-BOUNDED AUTOMATA 

Pushdown Automata 

A pushdown automaton (PDA) is essentially a finite-state control unit that 

controls an input tape of finite length and a "pushdown store" or "pushdown 

stack." The pushdown store i.s a first-in-last-out type stack, i.e., a symbol 

(out of some finite alphabet f) is entered at the top of the stack, thereby 

pushing all symbols that are already in the stack down by one unit. So, the 

symbol that had previously been at the top is now at the second place from the 

top, the symbol previously second from the top becomes third, etc. The symbol 

at the top of the stack may also be removed in which case all other symbols 

move up by one unit. 

A famjli.ar example of a pushdown store is the stack of plates resting on 

a spring; this device is frequently seen in cafeterias. Putting a new plate 

on top of the stack moves all plates in the stack down by one unit; removing 

the top plate raises the stack by one unit. 

We can think of the stack as a tape that is infinitely long in one 

direction (say to the right), so the bottom of the pushdown stack is the left­

most square of that tape and the top is the square currently scanned by the 

tape head. 

Initially, the tape head for the input tape is over the left-most symbol 

on that tape. Also, in contrast to Turing machines, the tape head only moves 

to the right until it reaches the last symbol on the tape. The input symbols 

are elements of some finite alphabet·E. 

Let a particular pushdown symbol z
0 

(z0 €I' = pushdown alphabet). initially 

be in the left-most cell of the pushdown tape, and the tape head initially 

scan that left-most tape square. The initial configuration ot a pushdown 

automaton is shown in Fig. 40. There exist two types of moves: 

(i) Depending on the current input symbol, the top symbol in the pushdown 

stack, and the state of the control unit, the machine moves into a new state, 

the read head for the input tape moves one square to the right, and the R/W 

hP.arl for the pushdown tape either moves one square to thP. right and writes a 

new pushdown symbol in.to that square (thereby "lowering" the stack, with the 

new symbol now the "top" symbol) or it erases the ntop" symbol and moves one 

square to the left (thereby "raising" the stack). If the last symbol in the 

stack is removed the machine halts. Also, the pushdown tape might not be 

modified at all (denote this by-). 
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Finite input tape Pushdown tape 
Infinite 

xl x2 X3 x4 . . . . . x zo . . . . n . . . ~ 
Read head R/W head 

Finite-state 
control unit 

Fig. 40. Initial configuration of a pushdown automaton. 

(ii) In the second type of move (called an 11 € move")", the input symbol is 

ignored and the input tape head is not advanced. This allows the machine to 

maulpulate the pushdown stack without reading input symbols. 

Let us fix some nutation. 

As usual, let K be a finite set of states.; 

let E be a finite input alphabet; 

let l' be a finite pushdown alphabet; 

let F C K be a subset of final states; 

let s E K be the starting state; 
0 

let Z E f be the start pushdown symhnl ; 
u 

let f : K x O.:u{d) x I' -+ K x (fufr,-J) be thP. "next-state'1 function. 

Thus, if s i EK, x j E Eu{ d , pk e I', 

then 

f(si, xj, pk)= (sijk' pijk), 

where s. 'k EK is the next state, and 
1] 

P E f U {€,-} is the new pushdown-symbol at the "top" of the 
ijk 

stack. 

-96-



. -

Note: If xj = E, then this signals an E-move (no input is read!); if pijk € f, 

then the pushdown tape head moves right and adds p .. k to the top of the 
l] 

stack; if p .. k 
l] 

= E, then thP. top symbol is erased and the pushdown tape head 

moves to the left. 

A "move" of the pushdown machine can therefore be described by a 

quintuple (s. ' x.' pk, sijk' p. "k). Note that this is the deterministic 
l J l] 

prototype of a PDA. Now, an input string w € 2>'< can be accepted in two ways: 

(i) If the machine, after reading w, moves into a final state s € F, then the 

string is said to be accepted by fi.nal. state. 

(ii) If the machine, after reading w, ends up. with an empty pushdown store, 

then the string is said to be accepted by empty store. 

As the following proposition shows, both types of acceptance are 

equivalent. 

Proposition 5: 

Let P
1 

be a pushdown automaton, and let Lf(P
1

) be the languag~ accept~d 

by P
1 

by final state. Then there exists another PDA P
2 

such thal Lf(P
1

) = 

LE(P
2

) is the language accepted by P2 Ly empty store. Similarly, given P
2

, 

one can find a PDA P1 , such that LE(P 2) = Lf (P
1
). 

In view of this result, we can define.L(DPDA) to be the class of languages 

accepted by deterministic pushdown automata, without worrying about the type 

of acceptance (final state or empty 8ture). 

Instead of deterministic PDA' s we can also consider non-deter•rrrin·is l·ic 

PD/! 's (NDPDA), where the next-state function is multi-valued, i.e., f : K x 

(Lu{E}) x r ~ P(K x (LU{E, -})). So, given a triple (s. ,x. ,pk), there are 
l J 

several possible choices for the next state and the new pushdown symbul. 

Again, an input string w is accepted by final state if at least one choice 

eventually ieads to .a final stat~, and a string is accepted by empty store 

if at least one choice eventually leads to an empty pus~down 8tack. As before, 

both t:ypes of acceptance are equivalent, and we can uniquely define L(NDPDA) 

as the class of languages that are accepted by NDPDA's. 

For finite-state automata and for Turing machines, the deterministic and 

thP. nondeterministic prototypes turned out to he equivalent with respect to the 

class of accepted languages. This is not true for PDA's. In fact the 
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language L = {w wR I weE*} is accepted by an NDPDA but not by a DPDA (see 

example 49), so ~DA' s are our first example of machines where Ll1e nondeter­

ministic model is more powerful than the deterministic one. 

Obviously, by ignoring the pushdown store, a DPDA is nothing more than a 

finite-state machine. Consequently, every regular language can be accepted by 

some DPDA: The following fundamental theorem was proved by N. Chomsky in 1962. 

Theorem 15: 

The class of languages accepted by NDPDA's coincides with the class of 

context-free languages: 

L (NDPDA) - { 'CYP c 2}. 

We therefore have the following chain of (proper) set-inclusions: 

{type 3} C L(DPDA) C L(NDPDA) = {type 2}. 

In fact, the language {lncln I n > O} over the alphabet L = {l, c} is in 

L(DPDA) but is not regular, proving that {type 3} # L(DPDA). Languages 

accepted by DPDA's are of importance and are called deterministic. 

E.x.amµle: 

(48) Here we describe a DPDA that will ac:c;:ept the lan~ua~e 
R ..... 

L"' [w1:.:w I WE {O, l}"}. We U8e "accep t<lficc by etnpty store. " Thus, let 

E {O, 1, c}' r = {X, Y, Z}, K = {so, sl}' s = start state, and X = initial 
0 

pushdown sym~ol. 

Table 11 is the state transition table. 

"Illegal" configurations (like s 1 , 0, X, ... ))have been omitted from the 

table - they certainly never lead to a final state or an empty pushdown store. 

The operation of this machine can be described as follows. As long as 

we have not reached a "c", every "O" input causes a "Y" to be added to the top 

of the pushdown stack, while every "1" causes a 11 Z11 to be added. Also, the 

state does not change. The moment a "c" is encountered, the state changes 

from s
0 

to s
1

, but the pushdown stack is not modified. From then on, for 

every "O" input the machine expects a "Y" on top of the stack and removes it; 

similarly for a "l" input the machine expects a "z': on top of the stack, and 

promptly removes it. The moment _an "X" is encountered on top of the stack, 
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Table 11. State-transition table for example 48. 

Current Current Current top Next Next top 
state input pushdown symbol state pushdown symbol 

so. 0 x so y 

so 0 y so y 

so 0 z so y 

so 1 x so z 

so 1 y so z 

·so 1 z s 
0 

z 

so c x sl 

so c y sl 

so c z sl 
- - - - - - - - - - - - - - - - - - - - - - - - - - -

sl 0 y sl E: 

sl 1 z sl e.: 

sl E: x sl € 

it is removed (we have reached the last input symbol). The stack is empty, 
R 

su the string wcw has been accepted. Figure 41 shows the varying contents 

of the pushdown store as the input sequence OllcllO is accepted. A sequence 

(such as wcwR) which reads the same forwards or backwards is called a 
R palindrome. We have shown that the language L = {wcw I w € {O,l}*} is in 

L(DPDA), so, by our earlier definition, Lis a deterministic language. 

Example: 

(49) We now exhibj_t a language that, in contrast to the previous 

exmuple, cannot be recognized by a deterministic PDA, but only by an NDPDA. 

The NDPDA that we shall construct will recognize the language L = {wwR I 

w € {O,l}*}. Aga'in we'll use "acceptance by empty store." 

Lett;:::: {O,l}, r"' {X,Y>Z}, anrl K {s
0

,s
1

}. where s
0 

= start state and 

X =·initial pushdown symbol. Table 12 is the state-transition table. 
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Input: 0 c 0 

Top of pushdown store: x y z z z z y x E 

x y z z y x 
x y y x 

x x 

Pushdown store emptied 

Fig. 41. Contents ot the pushdown store as the sequence 011c110 is accepted. 

Note that this machine acts nondetermini s.ti cally only in two situations: 

(a) in state s
0

, after reading 2 consecutive O's, 

(b) iri state s
0

, after re~ding 2 ~nnsecutive l's. 

In both situations the machine must choose between two possibilities: eithP.r 

it is still reading a symbol in the first part w of the string wwR, or it has 
R 

just reached the first symbol of the second part w (i.e., it has just reached 

the "midpoint" of the sequence). 

Since the machine has no way of knowing which of the two possibilities it. 

has encountered (at least not until it has read the last symbol of the input 

string), it must allow for both possibilities. This is where the nondetermin­

ism becomes unavoidable ·(a fact which we will not prove, though). Note that 

if the machine "thinks" it has reached the midpoint of the string, it changes 

from state s
0 

to s
1

, and then it keeps removing symbols from the top of the 

pushdown stack. 

In contrast to the language L = {wwR}, the language {wcwH.} of the prP.vin11s 

example could be recognized by a deterministic machine since the special 

"center symbol" c marked the mi.dpoint of an input string. 
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Table 12. State-transition table for example 49. 

Current Current Current top Next Next 
state input pushdown symbol state pushdown symbol 

so 0 x so y 

so ·1 x so z 

so 0 y 

ro :1 sl 

so 0 z so y 

so 1 y so z 

so 1 z 
1

6

0 ~] sl 

sl 0 y sl E 

sl 1 z s 1 
E 

so E x sl E 

sl F. x sl E 

Linear-Bounded Automata 

Having so far found three types of machines (finite-state automata, 

Turing machines and nondeterministic push<lown automata) that recognize the 

classes of regular, recursive, and c~ntext-tree ianguages, respeccively, we 

now complete this subject by presenting machines that recognize context­

sensi tive languages. 
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Definition 30: 

A linear bounded automaton of' multiplicity K is a Turing machine which, 

given a tape with an input sequence of length n (i.e., occupying n adjacent 

squares) is only allowed to use K n squares on the tape. In other words, an 

LBA is a Turing machine for which the length of the usable tape is a linear 

function of the length of the input sequence. The multiplicity (K) is an 

integer that is intrinsically associated with the particular LBA. The 

following theorem shows that the multiplicity K can be assumed to be 1 without 

loss of generality. 

Theorem 16: 

For any LBA L
1 

of multiplic.ity K (K>l) there exists another LBA L
2 

cif 

multiplicity 1 which can perform the same calculations as L
1

. 

We won't go into the details of the proof.but rather we mention that the 

main idea of the proof consists in converting a tape of length Kn (input 

tape for L
1

) into a tape of length n with K "tracks," which then serves as 

input tape for L
2

. We also assume that the input sequence is bounded on the 

left by a left end marker i and on the right by a right end marker $. As L
2 

scans the K-track input tape, it moves to the next track any time it encounters 

the right end marker $. 

Because ot this theorem, most authors only consider LHA's ot multiplicity 

i, i.e., they define an LBA a::; a Turing 111ad1ine that is never allowe<l to leave 

that portion of the tape initially containing the input sequence. Since an 

LBA is a special Turing machine, we can talk about deteY'l7linistic and non­

deterministic LBA's (denoted DLBA's and NDLBA's). 

Let L(DLBA) be the class of languages accepted by DLBA's, and let L(NDLBA) 

be the class of languages accepted by NDLBA 's. 

Unsolved Problem: Is L(DLBA) = L(NDLBA)? 

Here is a first example of a machine for which it is not known whether the 

nondeterministic prototype is more powerful than the deterministic one. Of 

course, as always L(DLBA) C L(NDLBA), but does the inverse inclusion also 

hold? 
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Concerning the languages accepted by NDLBA's, Landweber and Kuroda (1963 

and 1964) proved the following result: 

Theorem 17: 

The class of languages accepted by NDLBA's coincides with the class of 

context-sensitive languages, i.e., L(NDLBA) ={type l}. 

Even though we do not know whether L(DLBA) = L(NDLBA), we have a lower 

hound on L(DLBA), namely, every context-fre.e. language is accepted by a DLBA: 

{type 2} C L (DLBA). In fact the two sets are not equal, since the .language 

L = {ON1N2N IN~ l} is not context-free, but LE L(DLBA). 

Summarizing the results of this chapter we have the following chain of 

set-theoretic inclusions: 
? 

{type 3} C L (DPDA) C L (NDPDA) = {type 2} C L (DLBA) ~ L (NDLBA) = {type 1} .. 

In Table 13 we present the four classes of formal languages and the associated 

recognizing machines. 

Table 13. The classes of formal languages and associated recognizing machines. 

Language 

Re.gular 

Context-free 

Context-sensitive 

Recursive 
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APPENDIX 1 - NOTES ON NP-COMPLETE PROBLEMS 

by Kelly Booth 

Background 

Previous lectures have introduced the idea of an algorithm, either as a 

computer program written in a language like FORTRAN or ALGOL, a Turing-machine 

description, or as a general phrase-structure grammar (Post production system). 

It can be shown that all of these definitions define the same set of 

problems. We can solve a problem using a program if and only if there is a 

Turing machine that solves the problem and if and only if there is a phrase­

str11r.t.1irP. grammar that solves the problem. 

Church's thesis is the intrinsically unverifiable assertion that any 

definition of effective computability will lead to exactly the same set of 

computable problems. 

We also know that there are noncomputable (undecidable, nonrecursive) 

problems that have no solution. 

In what follows, we examine the relative corrrplexity of problems. Ignoring 

all unsolvable problems .(who needs to waste time solving the halting problem!), 

there are still problems with solutions so complicated that for all practical 

purposes we cannot solve them, even though theoretically solutions exist. 

Polynomial Transformability 

A problem P has time corrrplexity T(n) on a Turing machine if there is some 

Turing machine that solves the problem in T(n) steps for inputs of size n. 

As an example, a Turing machine can recognize a string of O's and l's 

in which no two O's are consecutive in linear time, simply by scanning the 

string. Thus T(n) = c•n for some constant c>O. 

Edmonds has suggested that a useful criterion for deciding whether a 

problem has a practical solution is to demand that its complexity be a 

polynomial function of n. Thus, the previous example qualifies, but 

T (n) = i 1 does not. This seems to be a useful rule-of-thumb, and we will 

simply use it, without further debate. 

One comment, however, should be made. All of the models of computation 

cited earlier have the following property: model I (e.g., Turing machines) 

can be. simulated hy model II (e.g., computer programs) in a polynomial number 
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of steps. Thus if a problem has Turing-machine complexity T(n), its complexity 

as a computer program is at worst P(T(n)) where P(x) is a polynomial. In 

particular, if T(n) is itself a polynomial, then so is P(T(n)). 

This last remark implies that there is no loss of generality in 

restricting attention to Turing machines. 

We say that a problem P
1 

is polynomially transformable to a problem P
2 

if and only if there is an algorithm (running in polynomial time) that converts 

inputs for problem P 1 to inputs for problem P 2 , and th.is translation. has the 

property that I
1 

is a solution for P1 if and only if I 2 is a solution for P2 
(1

2 
is t~e encoded I 1). 

For .example, consider the problem P 
1

, which is "n is odd~" and the 

probleq .P 
2

, which is '1m and n are relatively prime.'' lt we encode inputs "n" 

for P
1 

as ."2,n" for P
2

, then it is clear that using an algorithm for P2 we 

can solve P
1

• Notice that the encoding is trivially polynomial. 

The Classes P and NP 

A problem is said to be in P if and only if it can be solved by a Turing 

machine that has polynomial complexity. Here, we mean a deterministic Turing 

machine. If we relax this to mean a nondeterministic Turing machine, then we 

have the class NP. 

Amazingly enough, no one knows whether P = NP! It might be that allowing 

a Turing machine to "guess" (the nondeterminstic moves) provides absolutely no 

new power in terms of polynomial computability. 

A problem P e NP is N~-corrplete it and only it tor any problem P' e NP, 

P' is polynomially transformable to P. 

It may not be obvious that this definition is satisfied by any problem P. 

But there do exist such problems. 

Theorem (Cook): 

The problem of determining whether a set of clauses is satisfiable is 

NP-complete. 

First, let's look at the problem. A clause is a Boolean expression of 

the form 

Av B v C [here "v" is the logical "or" and the bar is negation] 
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in which the terms are the literals A, B, and C (note that some terms can be 

negated). A set of such clauses is satisfiable if and only if there is an 

assignment of "true" and "false" to the literals so. that all of the clauses 

are "true." 

Proof Sketch: 

Suppose ·that we have: an arbitrary problem P €NP. Then there is some 

nondeterministic machine M which solves Pin polynomial time P(n). We want 

to construc:t an input for ·tht= satisfiability problem. 

If M requires P(n) steps to solve a problem of size n in P, then M does 

not use more that P(n) squares of. its tape. 

We can define literals C.. which have the meaning "ceii i has symbol j 
1] t 

at time t." By the above remarks, i and t extend from 1 to P(n). The values 

of j depend only on M. 

Similarly we can define S to be "Mis in state k at time t," and H. 
k,t 1,t 

to be "Mis scanning cell i at time t." 

It is a fact that there are only C•[P(n)]
2 

literals so defined and they 

can be used to build a set of clauses that is satisfiable if and only if M 

successfully accepts the original input. 

The details may be found in Ref. 1. 

To sum up, satisfiability captures all of the problems in NP, since an 

algorithm for satisfiability can be converted to an algorithm for any problem 

in NP. 

There are many other NP-complete problems. 

Theorem: 

All of the following are NP-complete. 

(1) Satisfiability. 

(2) Does a graph have a clique of size k? 

(3) Does a directed graph have a Hamilton circuit? 

(4) Is a graph k colorablc? 

(5) Is there an efficient scheduling algorithm for a multiprocessor? 

(6) Traveling salesman's problem. 
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(7) Knapsack problem. 

(8) Subgraph isomorphism. 

There are so many NP-complete problems, none of which are known to have poly­

nomial solutions, that it is very unlikely that any of them has a polynomial 

solution. This follows from the corollary below. 

Corollary: 

P = NP if and only if a single NP-complete problem is in P. 

The lesson to be learned from this is that there are probably many 

problems of interest that have solutions but cannot be solved on any feasible 

computer within the foreseeable future. 

-108-



APPENDIX 2 - ANSWERS TO EXERCISES 

(1) Statement (b) is the only correr.t one. The modified statements are: 

( 2) (a) 

(b) 

(3) f 

(a) P(A U B) ~ P(A) U P(B) 

(b) T'(A n B) P(A) n P(B) 

~c) P(A \ B) C P(A) \ P(B) 

A \ (A n B) = (A \ A) u (A \ B) = A. \ 

A = A \ (A n B) = A \ Il [by (a)] . --= 0 

z+ . -+ Z l.S given by 

f(2n + 1) = -n for n = 0, 1, 2, ... 
f(2n) = n for n = 1,2,3, .... 

B. 

(4) (a) If g • f lA, then f must be injective and g must be surjective. 

Suppose f(a
1

) f(a 2) for a1 , a
2 

E A. Then a1 g(f(a
1
)) = g(f(a 2)) = a

2
, 

so f is injective. Also, for every a e A, a g(f(a)), so g is surjective. 

(b) If f • g = lB' then f is surjective and g is injective (by part 

(a)). Thus, g • f = lA, and f • g = lB implies that both f and g are 

one-to-one and onto, and inverse to each other. They therefore establish 

an isomorphism between sets A and B. 

(5) A e P(A) 

B E P(B) 

P(B) Jmplies A E P(B), i.e., AC B. 

P(A) implies Be P(A), i.e., BC A. 

Thus, A= B. 

(6) L(G) contains all strings of matched parentheses, i.e., all strings of 

parentheses that one could encounter in arithmetic expressions. The 

grammar is context-fre.e. 
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(7) Modify the sets V and P by introducing non-terminal symbols 

A1 , A2 , ... , ~-l' and defining P' by 

P' 

0 -+ x
1

A
1 

Al -+ x2A2 

A7 -+ x
3
A3 

'\-l 1 ~A 

1\-1 -+ ~ 

Clearly this grammar G' is regular, and L(G) L(G'). 

(8) The language is empty: L(G) = 0. This follows from the fact that the 

first and third productions will never allow us to replace the nonterminal 

"B" by a terminal string - any string we derive will always end with 

..... !f!. Therefore, L (G) is empty. 

(9) Define the grammar G = (V,E,P,0) by 

{+, -, *, /, (,),a, b, c, ... , y, z}, 

V Eu{o}, and the productions P: · 

(J -+ 0 + a 

0 -+ 0 - 0 

* 
, .. I' 

0 -~ r;r IJ 

0 -+ 0 /0 

0 -+ 0 ** er 

a -+ (0) 

a -+ a 

0 -+ z 

Clearly, L(G) will contain all FORTRAN arithmetic statements (and more). 
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(10) Using the above productions, we derive the statement 

* a - (a ((b + c)/d)**e) as follows: 

a + a - a + a - 0 + a - (a) + a - (a**a) 

+ a - (a**e) + a - (a*a**e) + a - (a*a**e) + 

+ a - (a*(CT)**e) + a - (a*(a/a)**e) + 

+ a - (a*(a/d)**e) + a - (a*((a)/d)**e) + 

+ a - (a*((a+a)/d)**e) + a - (a*((a + c)/d)**e) + 

+ a - (a*((b + c)/d)**e) 
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(11) This is the state-diagram for a Mealy-machine that subtracts binary 

numbers. 

(12) 

0 

0 

0 

Let A= (K, l: , F , s O , f) , where K {s0 ,sl's 2}, L: = {O,l}, F {so}, and 

f(s
0

,o) sl f(s
1

,0) s2 f(s
2

,o) = s 
2. 

f(s
0

,1) = RQ f(s
1
,l) so f(2 ,1) = 82 

Note that inputting two or more O's in a row will kick us into state s
2 

from which we can never return. 

(13) (a) Let H = (K',L:,o,s
0

1 ,f',g') be a Moore automaton. Define a Mealy 

machine A= (K,L:,o,s
0

,f,g) by: 

K = K', s
0 

= s
0

1
, f = f', g = g' • f': K' x 2:-+- O. 

g(f(so', .xl ... xn-1), ~n) 

g'(f'(f(s0 •, x1 ... xn_1), xn)) 

g'(f'(s0
1

, x1 ... xn)) = g'(x1 .•. xn). 

Thus, A is equivalent to Il. 

(b) Start out with a Mealy machine A= (K, L:, O, s
0

,f,g). 

Define a Moore-machine B = (K' ,L:,o,s
0

1 ,f' ,g') by: 

K' = K x l:, s
0

1 = (s
0

,c); 

let f': K' x L:-+- K' be f'((s,x),y) = (f(s,x),y) 

and let g': K'-+- 0 be g'((s,x)) = g(s,x), where x,y € L:, s € K. 
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(14) 

Then: 

Also: 

g'((f(s
0

,£),x
1

)) 

g(sO,xl) = g(xl). 

g' ( xl ... x n) = g ' ( f ' ( s 0' , xl ... x n) ) 

g' (f' (f' ((s0 ,£) ,x1 ... xn-l) ,xn)) 

g'(f'(f'(s0 • ,x1 ... xn_1),xn)) 

g'(f'((sO,xl ... xn-1),xn)) 

g'((f(so,x1·· .xn-1),xn)) = g(f(sO,xl ... xn-1),xn) 

g(xl ... xn). 

Thus, we have shown that B is a Moore machine equivalent to A. Note 

that if A has n states <IKI n) and m input symbols <III = m), then B 

has m•n states <IK' I = IK x II = m•n). In going from a Mealy to a Moore 

model we have to increase the number of states to make up for the loss 

of input-dependence in the output function g' : K' + 0. 

Define AR = (KI , I, FI , so I , f I) as follows: 

K' = K; F' = {so}; s I = F· 
0 

, 

f'(s,x) {s I s € K and f(s,x) = s} 

To show that T(AR) ~LR, let w = x1x2 ... xn-lxn be a string in 

L = T(A), and suppose that f(s
0

,x
1

) = s
1

, f(s 1 ,x2) s 2 , ... , f(sn-l'xn) = 

sn € F for some states s1 ,s 2 , ... ,sn-l'sn € K. Now we input the reversal 

wR xnxn-l" .. x
2
x

1 
to AR, and we must find thal wR € T(AR), i.e., 

f' (s
0

•, wR) n F1 # 0, but F' = {s
0

}, so we must show that s
0 

€ f'(s
0

• ,wR). 

Now f'(S ' x) = {s €KI f(s,x) € F} # 0, 
0 ' n n 

since s 1 € f' <so'' x ) ; n- n 

and f'(s 
1

,x 
1

) = {s €KI f(s,x ·
1

) 
n- n- n-

since s 
2 

€ f' (s 1 , x 1) . 
n- n- n-
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Continuing this argument, we see that 

si-1 e f' (si ,xi) 

Finally, s
0 

e f'Cs
1

,x
1

) 

{s e KI f(s,x.) 
J_ 

Informally, we can draw this diagram: 

s.}. 
J_ 

F __ n_{ •. •' sn-1' .. •} 

(15) 

~{. · "' 'n-2' ••.} 

As hy inputting R AR finally arrive we RP.P.' w = x x 1~· .x~xl to we can 
n n ' R T(AR). in state so, so that s E [' (S ' w ) ' i.e. ' w e 

0 (l ' 

It is not hard to show also, that if v e T(AR), i.e., s
0 

e f'(s 0
1 ,v), 

R then v = w for some we T(A). 

R 
(K' ,L,F 1 ,s

0
1 ,f'), where K' {s0,sl,s2}' F' {so}, so 

I {s2}' A = = F 

and the next-state function f' is given by: 

f'(s
0

,o) {s E K I f(s,O) so} {s0,sl,s2} 

f'(s
0

,1) {s e K I f(s,l) so} 0 

f'(s
1

,0) {s e K I f(s,0) sl} 0 

f' (s
1

,0) {s e K I f (s, 1) sl} {so} 

f'(s
2

,o) {s E K I f(s,O) s2} 0 

f' (s 2,l) = {s e K I f(s,l) s2} {sl's 2} 
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R 
For example, the string 111010 e T(A ) can be drawn as follows: 

s2} 

L- } 1 ls 1 I S2 

~' ----· {so} 

I ~0----1•- {s
0

, s 
1
, s

2
} 

The string 1011 f/ T(AR), since we have: 

0 0 

(16) The Turing machine whose input tape and state diagram is given in 

problem (17) will add the numbers m and n, and write the result (m + n l's) 

• after. the Rquar.e with the "Z." 

(17) The above answer solves this problem. 
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(18) Assume Tis an arbitrary Turing-machine and (s. ,x.,s .. ,x .. ,L) and 
l J lJ lJ 

(sk,x1 ,skl'sk1 ,R) are two quintuples with sij = skl (so T is not a 

directed state machine). Add two states, says'.. ands~., and replace 
lj lj 

the quintuple (sk,x1 ,skl'xk1 ,R) by the 3 quintuples: 

(sk,x1 ,s~j'~1 ,R) 

(s '.. ,x,s'.'. ,x,R), for any x. 
lJ lJ 

(s~j,x,sk1 ,x,L), for any x. 

Repeating this procedure for all pairs of "noncompatible" quintuples 

(adding 2 new states, and replacing one of the quintuples by 3 new 

quintuples as shown) will result in a directed-state machine that is 

equivalent to the original machine. 

(19) The finite-state machine that is equivalent to a "one-way" Turing 

machine has the same states and the same input and output alphabets. 

Furthermore, the next-state function F and output function G are 

F(si,xj) 

G(S.7X.) 
l J 

s .. 
lJ 

x .. 
l.J 

where (s.,x.,s .. ,x .. ,R) is a quintuple. This completely defines the 
1 J 1J 1J 

finite-state automaton. 
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BNF 

DFSA 

DLBA 

DPDA 

DTM 

LRA 

ND FSA 

NDLBA 

NDPDA 

NDTM 

PDA 

Set Theory 

{a,b,c,d} 

{x I x has P} · 

a € S 

a t S 

0 
A C B 
B :J A 

AUB 

A n B 

A \ B 

A x B 

p (A) 

2A 

Is I 
~o 
(a,b) 

R 

Q 

z 

APPENDIX 3 - ABBREVIATIONS AND GLOSSARY OF SYMBOLS 

Abbreviations 

Backus-Naur form of a grammar 

Deterministic finite-state automaton 

Deterministic linear-bounded automaton 

Deterministic pushdown automaton 

Deterministic Turing machine 

Linear-bounded automaton 

Nondeterministic finite-state automaton 

Nondeterministic linear-bounded automaton 

Nondeterministic pushdown automaton 

Nondeterministic Turing machine 

Pushdown automaton 

Glossary of Symbols 

Set of elements a, b, c, and d 

SP-t of a.l l elements (x) that have property P 

a is an element of (belongs to) the set S 

a does not belong to the set S 

Empty set (containing no ele1nents) 

A is a subset of B 

Union of sets A and B 

Intersection of sets A and B 

Difference of sets A and B 

Cartesian product of sets A and B 

Power-set (set of all subsets) of the set A 

Cardinality (size) of the set S 

Cardinality of all countable sets (Aleph zero) 

Ordered pair of elements a and b 

Set of a·11 real numbers 

Set of all rational numbers (fractions) 

Set of all incegers 
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z+ 

f :A -+ B 

f (a) 

g•f 

[a] 

a - b (mod c) 

A/•v 

Logical Symbols 

3x 

"Vx 

Set of all non-negative integers 

f is a function from set A to set B 

Function-value of f evaluated at element a 

Composition of functions f and g 
(first carry out f, then g) 

Domain of function f 

Range of function f 

Equivalence relation (a is equivalent to b) 

Equivalence class (set of all elements that are equivalent to 
the element a) 

a is congruent to b modulo c; means "a and b have same 
remainder if divided by c." 

Quut:ienL seL (seL uf all e4ulvale11~e ~lasses) 

"impli.es" 

"if and only if" 

"there exists an x such that .... " 

"for all elements :x, .•.•. " 

Languages and Granunars 

l: 

* l: 

v 
E 

lwl 
CJ 

w -+ v 

w => v 

* w => v 
G 

L(G) 
R w 

LR 

<A> 

: := 

Finite alphabet (set of terminals) 

Set of all finite strings formed from elements of L 

Finite vocabulary (set of terminals and non-terminals) 

Empty string 

Length (number of symbols) of string w 

Start variable (always a nunl.:ennlnal) 

Production (w produces the stri~g v) 

Derivation (w derives the string v) 

Language generated by the granunar G 

String w in reverse order 

Language of all reversed strings 

BNF-description for a non-terminal· 

BNF for "-+" (production symbol) 

BNF for "or" 
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Machines 

K 

F 

t 

MN 
M* 

T(A) 

dT 

J.ly 

zo 
r 
Lf(P) 

LE:(P) 

Finite set of states 

Subset of final (or accepting) states 

Subset of initial (start-) states 

Initial (start-) state 

Finite set of output symbols 

Time 

* Product (concatenation) of subsets of E 
2 3 

. {£} U M UM U M ... 
Language (tapes) accepted by machine A 

Input tape 

Description of Turing machine T 

Minimization operator (parti.al-recursive function) 

Symbol initially at top of pushdown-stack 

Finite pushdown alphabet 

Language .accepted by PDA P by final state 

Language accepted by PDA P by empty pushdown store 
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