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This set of notes grew out of an insane desire

PREFACE

felt existed in my education as a programmer. Like

initially received an education in mathematics when

barely beginning to be recognized as an independent

to close a gap which I

many other programmers, I

"computer science" was

scientific discipline.

Completion of my mathematical studies was followed by a transition into the

new and vast (and more lucrative) world of computer-programming.

Here, while

reading computer-related literature, I frequently stumbled over such bizarre

concepts as ''Turing machines," 'context-free grammars,'

and '"'finite-state

automata' -- concepts with which I simply could not associate any meaning.

Their persistent recurrence in the literature increased my feeling of

ignorance until I finally reached a point of decision.

systematically study the appropriate theory.

I decided to

So, in the spring of 1973 I got the books by Minsky and Kaine (mentioned

in the bibliography at the end of these notes).

Fortunateiy, both books did

an excellent job of pointing out the relevant concepts and ideas without

losing themselves in complicated and irrelevant details.

However, to enhance

my understanding I copied down many of the more important parts of the theory

in my own words.

an extensive set of notes, over 200 handwritten pages.

After three months I suddenly discovered that I had written

' Looking back over the

notes, I felt that the material they contained would lend itself quite well

to a course whose intent would be to "close the educational gap' experienced

by other programmers who had started out like myself in a non-computer-science

field.

As a result, in the winter Quarter 1976 I taught a course entitled

"Introduction to thec Theory of Machines and Languages' as part of the continu-
ing education program at LLL. I used Minsky's book as a text, and also handed

out my notes which I followed closely.

videotape and can be presented again at any time.
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INTRODUCTION TO THE THEORY OF MACHINES AND LANGUAGES

ABSTRACT

This text is intended to be an elementary ''guided tour'" through some basic
concepts of modern computer science. Various médels of computing machines and
formal languages are studied in detail. Discussions center around questions
such as, '"What is the scope of problems that can or cannot be solved by

computers?"

REVIEW OF SET THEORY

Intuitively, a set S is-simply a collection of different objects. The

objects in this collection are called the elements or members of the set S.

Some Terminology

Examples:

(1) A = the set of all CDC-7600's at LLL in January 1976. A is a set

containing three elements, the R- , S- , and U-machines.
(2) B = the set of all stars in the entire universe.
(3) C = the set of all integers greater than 1000.
(4) D = the set of all programmers who have never been frustrated.

A is an example of a finite set, containing a finite (3) number of elements.
According to current astronomical knowledge, B is presumably finite, even
though it contains an incredibly large number of elements. C is an example of
an infinite set, which contains infinitely many elements. D is called the
empty set, containing no elements at all.

Let us fix some mathematical terminology: If a set contains the objects
a,b,c,and d, we can write S = {a,b,c,d} = {c,a,d,b}, i.e., the order of the
elements in S is immaterial. Frequently sets are defined by saying that a
set § contaiﬁs-all elcments with a given property P; in symbols:

S = {x / x has property P} (read S equals the set of elements x where x has

the property P). For example, sel C above could be defined by C={x / x is an

integer > 1000}. Similarly, B
A

{z / z is a star in the universel,

{y / y is a 7600 computer at LLL}.



If an element or object a, belongs to a set S, we write a € S. Otherwise,
a ¢ S. Thus, 5000 ¢ B, but 5000 € C. Since D is the empty set (which is
denoted by @), there exists no object x with x € D, or stated differently, for
all-objects, X, X ¢ D. In fact, the empty set can bc defined as:
¢ = {x / x # x}.

Just as numbers can be compared by their size (5 < 7, etc.), sets may
(sometimes) be compared: given two sets A and B, we call A a subset of B if
X € A implies x € B. If A is a subset of B, we write AC B. Clearly, if
A CB and also B C A, then A = B (just as for numbers: x <y andy < x

implies x = y). The empty set is a subset of any set: @ C A, for all sets A.

Lxamples:

(5) Let E = {x / x is integer and x » 3000}, then x € E implies
'x > 3000 > 1000, so x € C. Thus E is a subset of C: E C C.

(6) ¥ =1{y / y is a star less than lOé light years away from us}.
Clearly, y € ¥ implies y € B, suo F C B.

(7) 6 ={t / t is a computer at LLL}. Clearly, t € A implies t € G,
so A CG.

Set Operations

Now that we have defined a new class of objects called "sets," we

proceed just as in elementary algebra where, having defliued numbers, oné A
studies algebraic operations (addition, multiplication, etec.) that can be
performed with numbers. We'll do the same with sets, and it'll turn out that
our set operations will even have many of the familiar prouperties that

algebraic operations have.

Union of Sets

Given two sets A and 8, thelr wrniurn Is Lhie set A UBE - {8 / % 6 A ue
x € B}.

Intersection of Sets

The intersection of two sets A and B is the set AN'B ={y / y € A and
y € B}.



Difference of Sets

The difference of two sets A and B is the set AN B = {z / z € A and
z ¢ B}.

~Example: .

(8) Let A = {1,2,3,4} and B = {2,4,6,8}:
AUB-={1,2,3,4,6,8},
A NB = {2,4},
AN B = {1,3},
B\ A = {6,8}.

Properties of Set Operations

The following eleven properties follow directly from the definitions:

®)) AUBUC=AUBUO Associativity
(P2) (ANB NC=AN(BNC) ‘
(P3) AUB=BUA ) Commutativity
(Pa) , ANB=BNA

®g) AU@NC = (AUuB N (AU Distributivity
(P6) ANnBUC) = (ANB)U (ANC)

(P7) AUA=ANA-=A

(PS) AUu®=A

(P9) ANY =9

(Plo) _ ANA=20

(Pll) . AN = A.

The next two properties have important applications in Boolean algebra and are

known as the rules of De Morgan:

(p )' | AN (BNC) (ANB)U (ANCQ)

12
(AN B) N(ANC)

®..) AN (B uyUC)

13



More Set Constructions

The Power Set

Given a set S there is an important construction which associates a new
set with S. This new set is called the power set of S: P(S) = {A / A C S}.
Thus, the power-set P(S) is the set of all subsets of S (including @ and S
itself as subsets, of course). For example, if S = {x / x integer, 0 < x < 4},
then § = {1,2,3} and P(S) = {@, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, s}, so P(S)
is a set with 8 = 23 elements. In general, if S is a finite set of n
elements, then P(S) is a finite set of 2" elements. Note that # has zero

elements, but P(@) = {@} contains 1 element.

The Cartesian Product

Given two sels A and B, we deline a new set A x B, called the Cartesian
product of A and B, as the set of all ordered pairs (a,b) with a € A, b € B:
AxB=1{(a,b) / a€eA, be Bl. Here, an ordered pair (x,y) is ﬁot the set
{x,y} but rather the set {{x}, {x,y}}. Thus (x,y) = (%,y) if and only if

X = x, y=y. In particular (x,y) # (y,x) unless x = y.

Functions

Mapping from One Set to Another

Of fundamental importance not only to set theory but to all of higher
mathematics is the concept of a function or map from one set to another.

Given two sets A and B, a function f from A to B (in symbols f : A - B)
is simply a rule which associates to any element a € A a unique element

b € B. This element b is denoted b = £(a). All functions (e.g., f(x) =

xz, f(x) = V ‘cosvx

from the set R ot real nunibers into ithe (same) set R, i.c., £ 1 R =~ R.

, etc.) that occur in calculus are examples of mappings

Examples:

(9) Let A
and B

{x / x is an employee at LLL}

{y / y integer, y > 0}.

Define £ : A > B by associating to every employee x € A the number

of years he has worked at LLL (= f(x)).



(10) Let S be any set, and define a function £: P(S) + P(S) by f(x) =
S \ x for every x € P(S). This function simply associates with

every subset x C S its complement S \ x. In particular: f£(@) = S,

£(S) = 0.
(11) Given two sets A and B, define two functions Plz A x B~ A and
P2: A x B~ 3B by Pl(a,b) = a and Pz(a,b) = b, for all a € A, b € B.

These two functions are called projections.

Given a function f from some subset of a set A into the set B, we define

the domain of f (Df) by Df = {a e A/ f(a) is defined}. The range of f (Rf)

is the set R = (beB/ D

exactly the "image" of Dfiunder the map f.

f(a) for some a € A}. Thus, the range of f is

A function f : A > B is called surjective (or onto B) if and only if
R. =B, i.e., if every element b € B is of the form b = f(a).

A function £ : A + B is called injective (or one-to-one) if f(a) = f(a')
implies a = a', i.e., if different elements of A are mapped into different
elements of B.

A function £ : A > B that is both injective and surjective is called an
1somorphism between A and B (or an equivalence between A and B). '

Thus, the sets A = {5,7,500,-2} and B = {X,Y,Z,Q} are equivalenﬁ, since
an isomorphism is given by f : A > B with £(5) = X, £(7) =Y, £(500) = 7,
£(-2) = Q.

Cardinality of a Set

Obviously, two finite sets are equivalent if and only if they contain
an identical number of elements. If we denvte the number of elements of a
finite set A by |A|, then A and B are equivalent if and only if la] = |B].
The number |A| is called the cardinality of A. The importance of the concept
of an isomorphism between sets lies in the fact that it has led to a
generallzation of the cardinality to infinite sets! The idea is very simple
as the following consideration shows. A child who cannot count yet can still
find out whether two finite sets havé the same cardinality (e.g., whether the
number of apﬁles on the table is equal to the number of oranges) by simply
associating to each object of the first set a unique object of the second set
‘(i.e., by pairing the oranges and apples). If the objects can be paired in

this manner without any 'left-overs,'" then the two sets must have had the



same cardinality. By dropping the finiteness restriction we arrive at the

following definition.

Definition 1:

Two (finite or infinite) sets have the same cardinality, if there is an

isomorphism between them, i.e., if they can be paired in a one-to-one fashion.

Examples:

(12) Let Z©
Let SQ
numbers. Thus, Z' = {1,2,3,4,...}

sq = {1,4,9,16,...}C z*.

The function f: Z+ -+ 8Q given by f(n) = h2 is clearly an equivalence;
N

{n / n integer, n > 0} be the set of all positive integers.

{x / x is integer of form yz}'be the set 6f all square

thus, Z+ and SQ have the same (infinite) cardinality. Similarly,

Z+ and CU = {1,8,27,64,...} have the same cardlnallty (f(n) = n3)‘

(13) The set Z+ of all positive integers 1s of the same cardinality as
the set of all integers z = {...,-2,-1,0,1,2,3,...}. The proof is

left as an exercise.

Note that in these examples a set (e.g.,fZ+) has -the same cardinality as
a proper subset (e.g., CU). This is a property that distinguishes infinlie

from finite sets.

Definition 2:
|
A set S is called countable if it has the same cardinality as Z .

Examples of countable sets are the sets Z of all integers; SQ of all square
numbers, CU of all cubes, 2% of all even integers, and ZOdd of all

odd integers. The set Q of all rational numbers (fractions) is also countable.
| The question now arises, "Are there infinite sets that have a higher
cardinality than the countable ones?'" The answer is '"yes," as indicated in

the following theorem.

“Theorem 1:.

Given an infinite set S, the power set P(S) has higher cardinality than- S.



-

Proof: .

We'll show that the assumption that S and P(S) have the same cardinality
leads to a contradiction. Assume that there is an equivalence, £ : S = P(S),

which is "onto'" and one-to-one. Define a subset A C S as follows:
A=1{x/xes, xd¢ £(x)}.

Thus, A simply contains all those objects Qf S that do not belong to their
associated subset f(x). Therefore, A as a subset of S is an element of
P(S): A € P(S); and since f is "onto," there is an element z € S with
f(z) = A.

We now ask whethér z € Aor z d A.  If z € A, then by definition of A,
z ¢ £(z). But f(z) = A, so z € A implies z ¢ A - nonsense! However, if
z ¢ A, then z ¢ f(2) = A, so z ¢ A implies z € A - again nonsense! The

assumption has led to an impossible situation, and must be abandoned. Q.E.D.

The theorem we have just proved displays one of the most remarkable
discoveries of modern mathematics, namely that there exist different (in fact,
infinitely many) Znfinite cardinalities.

The simple and intuitive concept of one-to-one correspondence allows us
to distinguish between different ''sizes of infinity." Starting with an
infinite set, say Z+, the set of all positive integers, we form the power-set
P(2+), the set of all subsets of Z+. From what we have just shown, P(Z+),
has a higher cardinality than Z+; Next we can form the set'P(P(Z+)), which is
of higher cardinality than P(2+), P(P(P(i+))) is of higher cardinality than
P(P(Z+)), etc. We can continue this process forever, and as a result obtain
infinitely many sets of different infinite cardinalities.

Let us denote the (finite or infinite) cardinality of a set S by |S|;

Then, one writes for the cardinality of P(S):

lp(s)| = 2|S|.
For finite sets S we already know that if S has n elements, i.e., |S| = n,
" then |P(S)| = 2", Thus, we simply extend this fact to infinite cardinalities.

One denotes the cardinality of the countable sets by ¥ 0 (¥ is Aleph, the
first letter in the Hebraic alphabet). Thus, |Z| = |Z+| = N 0°

The set of all real numbers (including all integers, fractions, irrational
numbers like v2, and transcendental numbers like m or e) is denoted.by'R, and

its cardinality is denoted by c = |R|. One can show that R is in one-to-one

-7-



+
correspondence with P(Z+), i.e., |R| = 2|Z |

, OY in our new notation:
c = 2540./ This means that the set of all real numbers is of higher cardinal-
1ty than the set of integers or rational numbers. Any set S which is in
one-to-one correspondence with R (so that |S| = ¢) is called a continuun.
In particular, we know from analytic geometry that the set of all real
numbers is in one-~to-one correspondence with all points on an infinitely long
line. Thus, the set of all points on a line forms a continuum.

A famous problem posed at the beginning of this century by Cantor, the

founder of set theory, was solved only a few years ago. It is the continuum

problem.

Continuum Prohlaom:

N()? In other words, are there

Are rhere sets S such that kéo < |S| < 2
sets having higher cardinality than the integers but lower cardinality than
the real numbers?

The interesting and unsuspecting answer to this question is that neither
the existence nor the nonexistence of such sets can be proved using the axioms

of set-theory. Either assertion is independent of the set-theoretic axioms,

and could therefore be appended as one further axiom.

Equivalence Relations

Qur final discussion will center around the concept of equivalence

relatrions.

Definition 3: -

Let A be a set (nonempty). A relativn """ which holds hetween certain
pairs (a,b) of elements of A is called an equivalence relation if it

satisfies the following three properties:

(a) anNa ¥ a € A (reflexive),*.
(b) a v b implies b v a ¥ a,b € A (symmetric),
(¢) a~nband b v e implies a Vv ¢ ¥ a, b, ¢ € A (transitive).

*The symbol ¥ is read '"for all" (see Appendix 3).

8-
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Examples:

(14) 1Let A be the set of all human beings, and let "V'" be the relation

"is blood-related to."

Thus, if a and b are human beings, then
a v b mecans that a is blood-related to b. Clearly, al% a (each
person is blood-related to himself); a v b implies b Vv a; and
avband h v ¢ implies a v~ ¢. Thus, the above relation is an

equivalence relation.

(15) Let Z be the set of all ‘integers, and let "V'" be the relation '"has
the same remainder after division by 3 as." Thus, e.g., 5 Vv 11,
since both numbers have the same remainder (2) after division by 3.
It is easy to verify that '"n'" is an equivalence relation. In this
example, instead of writing a v b, one writes a = b (mod 3), and says
that a ts congruenl to b modulo 3, which means that a and b leave

the same remainder when divided by 3, or, a — b is a multiple of 3.

(16) Let A be the set of all human beings as in (14), and let """ be
the relation "is a friend of." Thus, a v b means "a is a friend of
b." Properties (a) and (b) of an equivalence relation are .
obviously satisfied; however, property (c) is certainly not true,
since a might be a [riend of b, and b might also be a friend of c,
hut a and ¢ might not bc friends at all (il they always were, social
life would be quite a bit simpler, but also more boring). Thus,

""" is not an equivalence relation.

Given an equivalence rclation on a set A, we shall collect all elements
that are equivalent to each other into a subset. If a € A, then we'll denote
the subset of all elements b € A with a v b by [a], so [a] = {b / b € A,

a v bl. Since "' is an equivalence relation, [a] = [b] if and only if
a Vv b; otherwise [a] N [b] = @ (if a ¥ b). So, the set A is subdivided into
mutually disjoint subsets [a]; each such subset is called an equivalence

class.

Definition 4: -

Given a set A and an equivalence relation '™, we define the quotient-set

A/'v as the set of all equivalence classes: A/v = {[a] / a € A}.



In example (15) above, where "' is the relation "has the same remainder after

division by 3 as,"

there exist three mutually disjoint equivalence classes:
[9]
[1]

(2]

set of all integers whose remainder is @,

set of all integers whose remainder is 1,

set of all intégers whose remainder is 2.

Thus:
[2]
(1]
[2)

{0,£3,%6,+9,+12,...1},

{...-8,-5,-2,1,4,7,10,...},

{...,-7,-4,-1,2,5,8,11,...}.

Hence Z/~ = {[#], [1],[2]} has three elements. Since the equivalence relation
depended on the number 3, we write Z/v = z,.
(17) Our final example of an equivalence relation has many important
applications. We consi&er two sets A and B, and a function f: A > B.
Let "' be tHe %ollowing relation in-A: a Vv b means "f(a) = f(b)."
Clearly, a v a since f(a) = £f(a); a v b implies b v a; and a v b,
b Vv c implies a n c, since f(a) = £f(b), £(b) = £(c) implies f(a) =
f(c). Thus, "V'" is an equivalence relation in A. We can therefore

form the quotient set A/Vv of all equivalence classes in A.

Proposition 1:

There is a one-to-one correspondence between A/Vv and the range of f,

R, i.e., |a/v| = |Rf|.

Proof:

We define a function p: A/V O-Rf C B by: p(f[a]) = £(a) for alil
[a] € A/v. TFirst we must show that p is '"well-defined," i.e., that p is
indepeﬁdent of the element a' € [a]. Thus, let a' € [a]. Then a' ™ a,
i;e.,'f(a') f; f(a) by definition of "v." Then p({a']) = f(a') = f(a) =

p({al), so p is independent of the choice of a' € [a]. Clearly, p is

surjective, since every b € R. has the form b = f(a) for some a € A, hence,

£
b = p([al). Next suppose, p([a]) = p([b]). Then f(a) = £(b) by the
definition of p. But f(a) = £(b) means "a v b," so [a] = [b]. This shows

that p is injective. Since p is injective and surjective, it is one-to-one.

-10-~



Given A and '"v," there is an obvious function ¥ : A > A/Vv, namely,
p(a) = [a]. Clearly, y(a) = y(b) if and only a v b. Given f : A > B, we
showed above that there is an equivalence relation "A" in A and a function

P : A/ > R_C B, Composing this function with ¢ : A > A/v, we obtain:

f
A & A/"\J P* B.

It is easily seen that f = p*y, so that the triangle of functions shown in
Fig. 1 ”c&hmutes.” Thus, every function £ : A > B can be split up into a
composition of a surjective function (¥), followed by an injective function
(p). 1In modern algebra to yield important results, this fact is exploited

quite frequently.

Fig. 1. Function diagram.

Excrcises

(1) If X is a set, let P(X) be the set of all subsets of X, i.e., the power
set of X. Which of the following 3 equations are incorrect, and which

would be the corrcct statements?

(a) P(AUB) =P(A) UP(B)

(b) P(ANB) =PA) N P(B)

(¢) P(AN B) =P(A)\ P(B)
(2) Show that

() ANB=4N\ (ANBE)

(b) ANB=AeANB-=0§.

-11-



(3)

(4)

(5)

Let z¥ = {1,2,3,...} and Z = {...,-2,-1,0,1,2,3,...}.

+ .
Find a function £ : Z - Z which is one-to-one and onto.

Suppose, A and B are nonempty sets, and £ : A~ B and g : B > A are
functions. Let lA : A~> A and lB : B> B be the "identity-functions,"

i.e.,

lA(a)
lB(b) = b, for all b € B

a, for all a € A

What can be said about f and g, if

{(a) g ¢ £ = lA’ i.e., gl{f(a)) = a, tor all a e A?

) g~ f = lA and t ¢+ g = Lg?

Give a short (3 lines) proof that P(A) = P(B) implies A = B.

-12~



I3

THEORY OF LANGUAGES

In every language there is a distinction between the structure of that
language and the meaning of its words and sentences. Consequently, linguists
distinguish between the syntax, which deals with the structure only, and the
semantics, which deals with the meaning of the words. In the following we
shall be concerned only with the syntax, which lends itself relatively easily

to mathematical investigation.

Formal Definition of Languages

Consider the following example 6f a sentence in the English language:

"The man gave me a book."
——— e

noun phrase verb phrase

As indicated, this sentence consists of two parts, the noun phrase (NP) and
the verb phrase (VP), in that order. If we use the symbol S to denote the

entire sentence, we could symbolically write
s » (NP) (VP),

meaning, '"'We can start with a noun phrase, and follow it with a verb phrase
to obtain a sentence."
In our example, the noun phrase can be further partitioned into two

parts: an article (A), which is the word "the," and a noun (N), the word

"man.'" Using the ahove symbolism we can write

(NP) - AN,

meaning, ''"We can start with an article, and follow it with a noun to obtain a
noun phrase.'" Similarly we can partition the verb phrase into a verb

(gave), followed by a noun phrase (me) and another noun phrase (a book), i.e.,

(VP) > V(NP) (NP).

Now, the noun phrase 'me" consists of a single pronoun (PR), so we also have

(NP) - (PR).
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Finally, for our particular example we have

PR +> me
A > the
A~>a

N - man
N - book

V =+ gave

The symbolic rules of the form x - y, which specify how sentences are formed,
are called productions or rewriting rules. To arrive at a sentence S, we must
start with a rewriting rule of the torm § + y.

Let us use our above rules to dérive the original sentence:

S - (NP)(VP) - AN(VP) - A(man) (VP)
> A(man)V(NP) (NP) -+ A(man)V(PR) (NP)
~ A(man)V(me) (NP) > A(man) (gave) (me) (NP)
+ A(man) (gave) (me)AN -+ (The) (man) (gave) (me) AN
+ (The) (man) (gave) (me)A(book)
-+ (The) (man) (gave) (me) (a) (book)

Using the same rewriting rules in another order we could have obtained
sentences like, "A man gave me the book," or "The man gave me the book," or
"The book gave me a man," etc. .

Looking back at this example, we could think of the (English) language as
being comprised ot words (the, or, gave, man, &tc.), and of a "grammar"
reflected by the rewriting rules. - This consideration leads straight to the
mathematical formulation of languages as follows.

First we must specify a finite set of symbols Z. Let us denote the
elements (symbols) of I by XpsXgseersY sYgsene Then a word or a striny over
L of length n is a finite sequence x X X

17273

S where X, € L, n > 0. If

n = 0, we denote the (empty) string of length O by €. If |Z| is the number of
elements in Z, then the number of words of length 1 is |Z|, while in general,
the number of words of length n is IZln (n =0,1,2,...). If w is a word of
length n, write |w[ = n. Now, two words w, v are equal if |w| = |v| and both

contain the same symbols in the same order.
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If w = X Xye oo X and v = ylyz...yniare two words of length m and n,
respectively, then wv is a new word of length mtn obtained by putting the
symbols of v behind those of w:

, CAZRIESESTRRE S 25 PRRE AP
Obviously, |wv| = |w| + |v| for all strings v, w. Also, for three words,
u, v, w:

(#v)w = u(vw) = uvw

and €w = we = w, if € is the empty word.
The above concatenation of words is called the product of words.
N .
Now let ¥ be the set of all finite words over X. In contrast to Xz the

% .
set L 1is an infimite set.

Definition 5:

%
The set Z together with the above multiplication is called the free

semigroup generated by L.

Definition 6:

A language over L is a subset of £,

This definition of languages is much too general. To obtain a more

" interesting definition we have. to recognize the grammar as a main part of the
language. We can use our intuition toidescribe a grammar (as a set of

rewriting rules).
Definition 7:
A phrase-structure grammar (or simply, grammar) is a quadruple
G = (V’ Z, P, O)’
where:

V dig a finite sct (the vocabulary).

Y is a suhset of V, 2 C V (the set of terminals).

-15-



P is a finite set of ordered pairs (u,v) such that u is a nonempty word
. * *
of (VAZ) and v € V' (empty or not). Instead of (u,v) € P, we write

u > v, so that P is the set of productions or rewriting rules.

0 is the start variable (corresponding to our sentence symbol S).
c€VNEL, soV\ZI#%# 8.

We can interpret the various quantities in this definition as follows
(using our ‘example): I, the set of terminals, contains English words like

"the," ”man," "bOOk,” Hme’ll

etc, V, the vocabulary, contains Z and V \ Z, the
set of variables or nonterminals consisting of (NP), (VP), A, N, etc. P, the
set of rewriting rules, contains rules like (NP)(VP) - AN(NP)(NP), where the
left side must be a nonempty string of variables and/or terminals, while the

right side may be aﬁy string of terminals and variables, including the empty

string €. ]
, * . %
Now suppose that w and w'are in V . If there are strings Wi W, €V ,
and if u > v is in P such that w = W, uw, and W' = leWZ’ we wrlte w e wh.
Thus, w 2 w' means that there is a substring u in w that produces a substring

v of w', while the remaining substrings of w and w' are identical.

Example:

(18) AN(VP) 2 ANV (NP) (NP), since (VP) -~ V(NP)(NP) is a production, while
the string AN is identical on both sides. More generally, we say that w' muy

be derived from w in the grammar G, if there is a finite sequence of strings

OoGY1EY2% " B Va1 G Y
*
such that w = Vo w' = Vs and all W, € V . In this case we write
*
w2 w'

Now we are able to tie the grammar into the definition of a language.

Definition 8:

Let G = (V,L,P,0) be a grammar. Then the set

L@ ={wes /o % w}

is the language generated by the grammar G.
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Grammars as defined above are also called Chomsky grammars after the linguist
Noam Chomsky. We present a couple of examples of languages generated by

grammars.

Examples:
(19) For any set I, the sel {e} (consisting of the empty word alone) is
a language generated by the grammar
G = (V,L,P,0),
where V = ¥ U {0} and P = {(0+€)}i.e., the only rewriting rule is ¢ =+ €.
(26) The whole set Zfc is a language generated by the grammar
G = (v,z,P,0),

where V = £ U {0}, and P consists of the productions 0 - a0 for all a € I
(finite!) and 0 - €. For instance, if I = {a,b}{ then we derive the word

aba3 = abaaa as follows:
3 3
0 - a0 = ab0 = aba0 = abaa0 = aba 0 = aba”,

*
hence o g-aba3, and so aba36 L(G).
% *
Any other word of I may be similarly derived, and hence L(G) D X which, of

course, implies that L(G) = %
¢

* R .
(21) If w = xlxz...xn € L, letw = xnxn_l...x'zxl be the word w written

in reverse order. (e.g., if w = a2b3c, then wR = cb3a2). Then the set
%
{wwR / w €% ] is a language generated by a grammar

G = (V’Z’P’O),

where V = £ yu {0}, and P contains the productions ¢ - aca for all a € X
. . . R . .
(finite!) and 0 - €. For instance, if w = aba, then ww = abaaba is derived

as follows:
0 > ala = aboba = abacaba = abaaba,

. * 2 2
i.e., O e aba"ba, so aba"ba € L(G).
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. *
(22) The set {ww / w € £ } is a language generated by a grammar G with
the following set of nonterminals:

VALY = {O,AX,BX,CX,DX,EXy,FXy / for all x,y € Z}.

So, for each symbol x € ¥ we define four nonterminals Ax’ BX, Cx, DX, and for
each ordered pair (x,y)€IXI we define two nonterminals EXy and FX . The

productions P are:

g > €
0 >A B, for each x € L
X X

- Any, for all x,y €

»

N

+A A E _, for ull x,y,2 ¢l
Xy zy

-~ CE
X z

>+ C_F

X zy
G.DEBE
X z

N

y

N

N

Xy
Xy
Xy

y
F
X zy

~+~ D DB
X zy

N

UNUJC‘GU(‘)C‘:

AAF
Xy zy

>
MOX
e T e!
<o
O =5 > W
X XM N N
v ¥
™ >
x>
«
e}
N
o
«

"

Classification of Languages (Chomsky)

In 1959 N. ChomsKy classified grammars (and hence their associated
languages) into four types, according to the form of the productions. He
labeled the widest class of languages type 0, and then imposed increasingly
severe restrictions on the productions to obtain type 1, type 2, and finally

type 3 languages, which constitute the smallest class.

Type 0 (Recursive Languages)

These are all languages that we have considered so far - there are %o

restrictions on the production rules.
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Examples of type O productions:

CBD - CabbDabcB
AB - AbbA
AC 4\0»

B~>e€

Type 1 (Context—Sensitive‘Langugges)'

In this subset of the recursive languages, productions must be of the

form
0AB > awf,

% *
‘where 0,B eV , A€V \ZI,weV \{e}.

So, a stngle nonterminal A must be replaced by a nonempty string w of terminals
and/or nonterminals; the strings o and B are called the context, and either

string may be empty.

Examples of type 1 productions:

XAY - XaBbceY
AB - ab¥YB
aaBC - aaBbaA
X > abX

Rules 1like A = € or ABC - AB are not allowed - in fact the right-hand side of

a type 1 production can never be shorter in length than the left-hand side.

Type 2 (Context-Free Laﬁguages)

The type 2 languages form a subset of the type 1 languages. The produc-

tions are restricted to the form
A > w,

: *
where A e V \ £ and w e Vv \ {e}.
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So, in a type 2 production, a single nonterminal A is replaced by a nonempty
string w of terminals and/or nonterminals. Note that these are all those

context-sensitive productions with the context empty.

Examples of type 2 productions:

A - abAa

D - ABC

Type 3 (Regulatr Languages)

Type 3 productions are of the form
A > w,
where A € V \ I, and w = a (a single terminal symbol), or w = aB (a single

terminal, followed by a single nonterminal).

AExamples of type 3 productions:

A -+ bX
B> a

L2 3,

v aXk

Note that for type 1 (and hence also for types 2 and 3), u > v implies
|ul §_|v|, i.e., these productions cannot shorten the length of a sLring.
In other words, if a grammar G contains a production u - v with |u| > |v|,

then G is necessarily type 0 and not type 1.

*.
Note that a language L C I can be generated by many different grammars,
in fact, even by grammars of different types. The following shows how the

language
. .
L={w/we€e{0,1}, and each 0 is immediately followed by a 1}

can be generated by a grammar of each of the four types.
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Type O:

@
|

= (Vy>1,P;,0), where V\I = {o}, and

%o

{o » 0lo; 0 ~ 10; o > €}.

G0 is type 0 (because 0 * €) and generates L; L(GO) = L.

Type 1:

G, = (Vl,Z,Pl,O), where Vl\Z = {Q,A}, and

( 3
o> 10"

o > 0A
0A - Olo
1lc - 101

c-~>1

A~>1
\ J

Gl is type 1 (because 0A » 0lo, 10 ~ 101); and generates L: L(Gl) = L.

Type 2:
G, = (VZ,Z,PZ,G), where VZ\Z = {0,A}, and

y
(o » 01A)
A>0C
P,= < A~ 1A &

c ~> 01

. o>1

G2 is type 2 (because 0 > 0lA, ¢ -+ 01), and L(Gz) = L.

o1



Type 3:
G3 = (V3,Z,P3,O), where V3\Z = {0,A}, and

(o > 0A)
A-> 10|

A~ 1

Lo~»1 J

G3 generates L: L(G3) = L, and is type 3.

So, the language L actually belongs to the smallest class of reyulur languages.

If n is one of the integers 0, 1, 2, or 3, then let L(n) = {L / L is

language of type n}. We then have the following proper inclusions:

L(3) € L(2) C L(1) € L(0).

See Fig. 2.

Fig. 2. Set-theoretic relationship of languagés.
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Note that the empty string € cannot appear in type 1, 2, and 3 languages,

since the productions do not shorten a string. It is customary, however, to
include € in all languages, and it sounds plausible that by doing so we do
"not change the main features of a language. We shall not give a rigorous
argument for this, but shall from now on assume that € € L(G). This can, e.g.,

be achieved by adding the production
o+ €,

assuming that O never occurs on the right-hand side of any production.
The following '"membership.question" is of fundamental importance in our

theory:
Given a grammar G and a string w, is w € L(G)?

If we could build a machine to answer the membership question, we would have a
mechanical device for testing the validity of sentences in a language L(G).

We are thus led to. the question, "What types of machines can answer the
membership question for each of the four types of languages?'" Obviously, .the
complexity of the machines will increase as the class of languages becomes
bigger, i.e., the machines that can answer the membership question for regular
languages will be much simpler than those that can answer the membership
question for fhe whole set of recursive languages. It therefore seems
reasonable to concentrate on the regular languages first, and to try to find

(simple) machines that handle this set of languages.

Definition 9:

If the membership question of a language L can be answered by a machine

in finitely many steps, then L is called decidable.

As it turns out, context-sensitive, and hence context-free and regular
languages are decidable. On the other hand, recursive languages are not

decidable.

Algorithms, Computability, and Decidability

One of the basic concepts of computer science is that of an "algorithm."”
Since this word appears quite frequently in the text that follows, let us

discuss its meaning and some closely-related concepts.
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Quite informally we define procedure and algorithm.

Definition 10:

A procedure is a finite ordered sequence of instructions than can be

mechanically carried out.step by step.

Definition 11:

A procedure which always terminates in a finite amount of time is called

an algorithm.

Clearly, the definition of procedure is not’ rigorous, since we have not
defined what we mean by saying that its instructions are carried out
"mechanically." Intuitively, we know what is meant, and probably identify

"procedure" with "computer program." This identification will do for our

future considerations. Let us present two examples:

(23) TFigure 3 is the flowchart of a procedure that, given input number

N > 1, will decide whether or not N is a prime number.

This procedure obviously terminates for every input number N.> 1, since
either a value of i will be reached that is greater than or equal to N, in
which case N is a prime; or some value of i will divide N, and then N is not

a prime. Thus, the procedure shown in Fig. 3 is actually an algorithm.

(24) A perfect number is an integer equal to the sum of all its divisors
except itself. Thus, N = 6 is perfect, since 6 = 1+ 2 + 3. N = 28 is perfect,
since 28 = 1+ 2 + 4 + 7 + 14. Tt is not known whether there are finitely
ﬁany or infinitely many perfect numbers. Also, no odd perfect numbers are
known. PFigure 4 is a flowchart for a procedure that, given an inpul. integer
N, determines whether there is a perfect number K > N,

This procedure need not always terminate. If there are only finitely
many perfect numbers, and N is greater than the largest one, then the procedure
will continue testing larger and larger values of K, and will never halt. If,
however, there is a perfect number K > N, then the procedure will find it in a

finite number of steps. This procedure, therefore, is not an algorithm.
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Start

Is Yes

Halt .
N is not
prime

Is
N/i an

integer?

Yes

Fig. 3. Flowchart for determining whether N is a prime number.

Now let us think of an algorithm as a function F which is given an input
value (N), and returns as output some integer‘F(N). For example, in our
algorithm (1) we might output the integer 0, if N is not a prime, and 1, if
N is a prime. Thus, F(5) = 1, while F(4) = 0. Thought of in these terms, an
algorithm is nothing else but a function F : Z+ > Z+, where Z+ is the set of
nonnegative integers. We are now ready to define three important concepts

that we will use repeatedly.
Definition 12:

A function f : AR A is called computable if and only if there exists
-+
an algorithm F : A , such that f(n) = F(n) for all values n € Z+.
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Start
)

K=N
/

K=K+ 1 -

Sum=20
w 4*
i=1 No
1 A

Halt.
=i+ K/i an K> Nis
integer? perfect

\ number

Yes

- Sum = Sum + i

Fig. 4. F¥Flowchart for determining whether there is a perfect number K greater
. than N.

Definition 13:

A subset S C Z+ is called enumerable if and only if there exists an
+  _+ +
algorithm G : Z -+ Z , such that S = RG- ={ne€eZ / n=G() for some i € Z+}.
Thus S is the '"range" for some algorithm G.
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Definition 14:

A subset S C Z+ is called decidable (or solvable) if and only if there
+ 4+
exists an algorithm H : Z -+ Z such that S = {n € Z+ / H(n) = 1}. H is said

to "decide S."

Clearly, a function f: Z+ - Z+ is computable if it can be expressed in
terms of an algorithm (i.e., if it can be programmed). We'll see shortly
that néncomputable functions exist. A sét S C Z+ is enumerable if there
exists a computable function f : Z+ + § (onto S). Thus, a set S is enumerable
if each element n € S is the result of applying an algorithm G to some
integer i € Z+. Nonenumerable sets exist as we'll show soon. Finally, a set
S C Z+ is decidable if an 'algorithm exists which decides for every n € Z+
whether n € S (H(n) = 1) or n ¢ S (H(n) = 0). Finite sets S are both enumerable

and decidable.

Theorem 2:

+ o+
(a) There exist functions f : Z > Z that are not computable.

. . . +
(b) There exist sets S C Z that are not enumerable.

Proof:

(a) Every procedure P (in particular every algorithm F) is a finite
string over a finite alphabet. Hence, the set of all procedures is infinitely
countable, and we can arrange it as a sequence {PO’Pl’PZ""}' Some of these

procedures are actually algorithms, say

P, ,P, ,P. ,... is the subsequence of algorithms.
. X + +
Now define the function f : Z -+ Z by

f(n) = P (n) + 1; n=20,1,2,...
n
Suppose f were computable. Then there would be an algorithm F with f(n) =
+
F(n) for all n € Z . Since F is an algorithm, it must appear in the above

sequence P, ,..., say, F =P, . Thus, f(n) = P, (n) for all n. In particular,
i i i
0 k- k

if we choose n = k, we obtain:

»
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k) = P (k) ;
k

but f(k) = Pi (k) + 1, which is impossible. Thus, f is not computable.

(b) Congider the sequences PO’Pl"" of procedures and Pi , Pi 5... oOf
algorithms, and define S = {n € zt / P is an algorithm}. 1If sOvere
enumerable, then an algorithm F would exist such that n = F(i) for all n é S.

+
But F = Pk for some k € S. Now the function f: Z+ + Z , given by

£G) = P, (3) + 1
3

would be computable since ij = Pk(i) for some i € Z+. By (a) we know that f

is not computable, hence S is not enumerable.

Theorem 3:

S decidable implies S enumerable.

Proof:

+
Suppose, S = {n € Z / F(n) = 1}, where F is an algorithm. Let us define
+ +
an algorithm G : Z - Z as given by the following FORTRAN program (with
input number INPUT and answer RESULT):

J=0

DO L3 I = 1, INPUT
Ll J=J+1

IF(F(J).EQ.1)L2,L1
L2 CONTINUE

RESULT = J
T.3 © CONTTNITR

END

Clearly, this algorithm G is simply given by G(i) = iLh number of S, and

hence S = RP’ i.e., S is enumerable.
T

Theorem 4:

If S and Z+ \ S are both enumerable, then S (and hence Z+ \ S) is
decidable.
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Proof:

+
Suppose S = RF and Z \ S = RG’ where F, G are algorithms. Define an

algorithm (FORTRAN program) H with input INPUT and answer RESULT:

I
L1 I
IF(F(J).EQ.INPUT)L3

IF(G(J) .EQ.INPUT)L2,L1
L2 CONTINUE

0
J+ 1

RESULT = 0

GO TO L4
L3 CONTINUE

RESULT = 1
L4 END

Clearly, S = {n € zt / H(n) = 1}, so S is decidable.

Theorem 5:

+
There exist sets S C Z which are enumerable but not decidable.
We shall not prove this result, but an example of an enumerable, yet

undecidable set is S = {n € Al / Pn(n) > 0}.

Backus-Naur Form of Grammars

A different way to write the productions of a formal grammar is known as
the Backus-Naur Form (BNF). This form has been used extensively in describing
the grammars of various programming languages, and was first applied in the
formal syntactic description of ALGOL. The advantage of BNF is that it allows
a more compact way of listing productions.

So far, our description of grammars made use of one '"'metasymbol" -+ which
is used in productions, e.g., 0 » A. Also, two or more productions with the

same left-hand side had to be listed separately, e.g.,
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In BNF three "metasymbols' are used: -
N M Mo n|n_

The symbol "< >" is used to enclose and thereby identify nonterminals, e.g.,

<A>, <0>. The symbol "::=" replaces our old "»". The symbol "|" is used to

~separate different right-hand sides of productions corresponding to the same

left-hand side. For example,
<g> 1:= <A>|a<B>|<C>

replaces the three productions ¢ > A
6 “+ aB
o~>C

The symbol "|" is read as "or".

Example:

(25) We shall now present an example of a simplified grammar for
generating arithmetic expressions in ALGOL (the actual grammar used, for

instance, in the ALGOL-60 report is slightly more complex).

Let G = (V,Z,P,0) be the grammar
with L= {#,=,%,/,%%,1,2,...,9,4,b,¢,...,2,(,)])
vz = {o,T,F,VA,L,D}, and
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productions - A

>0+ T

>~ g -T

> T * F }
> T/F
- VA
F~>F *% VA
VA - L VA

VA > VA D
VA > (0)

We'll call

O an arithmetic expression,
T a term,

F a factor,

VA a variable,

L a letter,

D a digit.

When writing the same productions in BNF we'll use different names for our

nonterminals to convey their meaning better:

<AE> =0
<TERM> = T
<FACTOR> = F
<VAR> = VA
<LETTER> = L
<DIGIT> =D
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The productions in BNF are:

<AE> ::= <TERM>|<AE> + <TERM>|<AE> = <TERM>
| <TERM> ::= <FACTOR> | <TERM>*<FACTOR> | <TERM>/ <FACTOR>
<FACTOR> ::= <VAR>|<FACTOR>**<VAR>
<VAR> ::= <LETTER><VAR>|<LETTER>
<VAR><DIGIT>| (<AE>)

Note that in this grammar ** has precedence over * and /; * and / have

precedence over + and -.

(6)

(7)

(8)

Excrcises

Let % = {(,)} and V = . U {0}, and let there be a grammar G = (V,Z,P,u)

with productions

o> ()
P = g > Jgo

o > (0)

Describe the resulting language L(G), and classify the grammar according

to Chomsky's classification.

* .
Let w = X XoXqe o Xy € L a string of length k. The grammar (V,Z,P,0)
with V = £ U {0,A} and productions
P = o > wA
O *w

is context-free. Show that L(G) can be generated by a regular gramuar G'.

Define a grammar G = (V,L,P,0), where

£ = {A, who, saw, the, cat, which, chased, rat, went, ?}.
vV ={o, A, B} UZ, and P consists of the productions:

o -+ ABR?
P = A > A which A chased A the A rat A

rat A B -+ rat A which A went B

A > who A saw A the A cat A

Describe the resulting language L(G).
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(9) Construct a context-free grammar, such that the resulting language contains

all FORTRAN arithmetic statements (i.e., all FORTRAN statements that use
Co% %%
the operators +, -, , /, ).

(10) Using the grammar of the previous problem, given an explicit derivation

of the sLatement

a - (a*((b + c)/d)**e).
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FINITE-STATE AUTOMATA

Intuitive Description of a Finite-State Automaton

The simplest model of a machine is a finite-state automaton. Intuitively,
we can think of a finite-state machine as a "black box," which, at discrete
time points (e.g., every nanosecond or micrgsecond), is in exactly one of a
finite number of configurations called "states."

Furthermore, at every time point t we provide the machine with an input
symbol I(t) (e.g., a binary digit or a letter of the alphabet). Let the
machine be in state S(t) at time point t. Then the state S(t + 1) at the
following time point t + 1 will depend on the previous state S(t) and the

previous input I(t). Ln functional notation:
S(t + 1) = F(S(t), T(x)).

If we also assume that the machine gives us output O(t) at each time point t,

then the output at time t + -1 depends on the previous state and input signal:
O(t + 1) = G(S(t), I(L)).

The two functions F and G, which describe the state transition and the -output,
are intrinsically associaﬁed with eéch machine.

Note that our description contains three major restrictions. First, we
assume that the set of internal states of the machine is finite. This happens
to be true for all digital computers, but is not the case for analog computers.
By restricting the number of states to he finite we have rommitted nurselves
to models of digital computers rather than analog devices.

Second, the state and output at time t do not depend on the input signal,
which arrives at the same time (I(t)). This restriction simply means that the
input signal at time t needs a finite time to traverse the machine. Since all
signals that occur in nature are limited by the speed of light, the second
restriction assures us of a realistic model in which all signals cause a
delay because of their finite velocity.

Finally, note that the two functions F and G do'not depend on the

particular time t. In other words, let t be two distinct time points

1° &
such that

s(t)) = S(t,) and I(t)) = 1(t,)

(i.e., the machine happens to be in the same state at both times and the

input signals at both times are also the same).
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Then S(t, + 1)

1 S(t

) + 1)

0(t, + 1) = 0(t, + 1)

1 2

Again, this fact reflects the behaviour of digital computers: running the
identical program at different times should result in identical answers.

Thus, every single restriction reflects a condition that actually occurs
in the "real" world, so we have no reason to feel guilty about these

restrictions.

Definition and Examples of Finite-State Machines

The intuitive model we have just considered has been studied by Mealy
and is therefore called the '"Mealy model" of a finite-state machine. Its

formal definition follows.

Definition 15: '

The Mealy model of a finite—staté automaton is a sextuple (K, I, O,so,f,g),
where

(1) K is finite set (of states)

(2) T is a finite set (of‘iﬁput cymbols)

(3) 0 is a finite ser (of nutput symbols)

(4) g € K (s0 is a starting sﬁate)

(5) £ : K x £ » K (state-transition function)

(6) g : K x I~ 0 (output function)

There is another, slightly simpler model by Moore in which condition (6)
in the previous definition is replaced by

(6)l g : K> O (output function depends only on the state).

It can be shown that every Mealy model can be converted to a Moore

model, and vice versa; see exercise (13).

Remarks: The function f : K x £ > K, which describes the transition from

one state to the next, is also called the next-stage function.
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Examples:

(26) The first example will be that of a parity-recognition machine:

We put

K

L =0=1{0,1} (set of binary digits)

f(sO,O) = 54> f(sl,O) =5

(next-state function)

f(so,l) =855 f(sl,l) = s,

g(so) =0, g(sl)

{so,sl} (sO is the starting state)

= 1 (output function)

It is usually easier to write the two functions in a two-dimensional

table as shown in Table 1.

Table 1. State—transition table for example 26.

Output“.

States Input
0 1
SO s0 sl -0
sl sl SO 1

Remember that we are using the Moore model, so the output

depends only on the previous state, as . shown in Table 1.

By tracing the

parity-recognition machine for a string consisting of 0's and 1's, one sees

that the output is 1 if and only if there is an odd number of 1's in the

input string, otherwise the output is 0. Note also that both states change

only if the input symbol is 1, i.e., if the.parity changes.

Tables such as Table 1 are called state-transition tables.

The

information contained in a state-transition table may also he represented

by a state diagram, which for our example is shown in Fig. 5.

- Fig. 5. State diagram for example 26.
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states are represented by circles, while arrows represent the transition
from one state to the next, depending on the input symbol located at

the tail of that particular arrow. The symbol over the center of the arrow
designates the output symbol. In the Moore model the output symbols for

all arrows leaving the same state are identical!

(27) Let us next construct another machine with ¥ = 0 = {0,1} such that

the output symbol at time t is 1 if and only if the input at times t - 1 and

t - 2 is 1. This machine will recognize all input sequences that end in two

1

1's (this is a case of a machine with a rudimentary ability to "remember" signals

that occured two time steps ago). This machine has three states, and

SO,Sl,Sz,

the state-transition table is shown in Table 2. Again, s, is the starting state.

0

. Table 2. State-transition table for example 27.

States Input Output
0 1
Sy Sy S 0
) 50 s, 0
S, SH S, 1

The corresponding state-diagram is given in Fig. 6.
(28) The following example is that of a binary adding machine. In this case
we first construct a Mealy model, and then find a Moore model that does the

same thing,

Fig. 6. State diagram for example 27.
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We assume that the machine simultaneously receives as input, two strings
of binary digits, where each string represents a number in binary form with
least significaﬁt digits first.

The string of output symbols represents the binary sum of the two input
numbers, again with least significant digit output first. Thus at some
starting moment the machine receives two binary digits (one for each number).
That is, the input symbols to our machine are I = {00, 01, 10, 11}. In the
and a "carry"

Mealy model only two states are needed: a ''no-carry'" state s

0

state s.,. The state~transition table is shown in Table 3.

1

Table 3. State-transition table for example 28.

States Input
00 01 10 11
R sO,O so,l SO’ sl,O
sl so,l sl,o sl, sl,l

Since this is a Mealy model,_the output depends not iny'bn the state, but

also on the input symbol, hence we have written the output symbol after each

state in the table. The corresponding state-diagram is shown in Fig. 7.
101101

+111001

1100110

For example, the sum 45 + 57 = 102 has the binary form

Performing this addition would cause the sequence of events dcpicted in

Table 4.

Fig. 7. State diagram for example 28 (Mealy model).
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Table 4. Configuration of the Mealy model corresponding to the

addition 45 + 57 = 102.

Time t 0 1 2 3 4 5 6 7
45 [1 0 1 1 0 1] o 0
57 [1 0 0 1 1 1] o 0
Input

Signal . 11 00 10 11 01 11 00 00 .

State .8 s

0
Output
Signal . - | 0 1 1 0 0 1 1} 0

Note the absence of an output signal at t = 0. Also note that all numbers
are presented backwards, least significant digit first (as mentioned before).
Now let us find an equivalent Moore model. First, we represent the

major difference of the two models as follows:

Mealy model: K x 2 Ji-
- £ g
Moore model: KxI - K 3 0

For the Moore model to obtain an output signal that depends on the input
{as the Mealy model), it must go through two steps: first get the next
state using the next-state function f, and then get the output signal using
the function g. Since each step requires one time step, we need two time
steps to obtain an input-dependent output signal in the Moore model,

i.e., the output will be delayed by one time step as compared to the Mealy
model. With this consideration in mind, we can write the state-transition
(see

table for the Moore model, which requires four states s

Table 5).

0’ 51 S2° %3

Table 5. State-transition table for the Moore model.

States Input Output
| 00 | 01 | 10 | 11
s, 50 81 8, Sy 0
sl Sy S1 $1 8, 1
s, ) Sy s, S, 0
S5 81 Sy Sy 83 1
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The corresponding state diagram is given in Fig. 8.
Table 6 shows the table of events for the example 45 + 57 = 102 for the Moore
" model.

Table 6. Configuration of the Moore model corresponding to the
addition 45 + 57 = 102.

Time t 0 1 2 3 4 5 6

45 [1 0 1 1 0 1] o 0

57 [1 0 0 1 1 11 o 0

Input signal 11 00 10 11 01 11 00 00 00 .
State SO s2 sl sl 82 32 33 sl sO

Qutput cignal 0 [0 1 T N n 1]o0.

Observe the delay of one time step just discussed. Since the machine starts
in state (s the first output signal at t = 1 is always 0, independent of the
input at time t = 0. We therefore have to regard this first output signal
simply as a signal that the machine has started. It is not part of the
output sequence we are interested in.

The outcome from example (28) is Theorem 6.

Fig. 8. State diagram for example 28 (Moore model).
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Theorem 6:

Finite-state machines are able to add arbitrarily large binary numbers.

In contrast to this result we have the following theorem.

Theorem 7:

No fixed finite-state machine can multiply arbitrarily large binary

numbers.

Proof:

Let n be the finite number of states of the machine M, and consider the
problem of multiplying the number 2" + 1 by 2" * l. Both numbers are
represented in binary form by 1, followed by n + 1 0's. ‘'Their product, which

s 22(n + l), is représented by 1, followed by 2n-+ 2 zeros. Since the
product contains 2n + 3 digits, and each of the factors contain n + 2 digits,
the machine must output n zeros followed by a 1 after the input has stopped.
But once thé machine has received its input, M operates as a machine with
constant input (00). Since it contains only n states, and since it has
output n zerosA(after the input stopped), it must be caught in a loop. Thus,
it has to go on generating zeros forever, contrary to the requirement to
output a final 1.

We have here a problem that is beyond solution by any finite-state
machine (because the machine is limited to a finite number of states). In
fact, to multiply two numbers a and b with 0 < a §_2n - land 0 < b < 2" -1, we

need a machine with n states (Mealy model!). WNote that two states sufficed

for arbitrary additions.

Languages Accepted by Finite-State Machines

In our three examples of finite-state machines the set 0 of output
symbols consisted each time of the digits 0 and 1. In particular, in
examples (26) and (27), the symbol 1 represented the answer 'yes," while
the symbol 0 stood for the answer '"mo.'" The question in example (26) was,
"I's there an odd number of ones in the input éequence?” and the question in
example (27) was, "Does the input sequence end in two ones?'" Iu each case
we could say that the sequence of input symbols is 'accepted" by the machine

if the output is 1 (yes). Since (for the Moore model) each output symbol

is associated with a state, we can make the following definition.
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Deﬁnition 16:

A state seK is called an accepting (or final) stuate, if
g(s) - 1, where 0 = {0,L}.

Using this definition, the set O of output symbols becomes redundant,
since we can declare some of the states as final. Omitting the set 0 of
outputs, and introducing the set F of final states in our definition of a
finite-state machine, we arrive at the formal definition of a finite-state
acceptor. This serves the purpose of accepting certain strings and rejecting

others.

Definftion 17:
A finite-state acceptor is a quintuple (K,E,F.so,f), where

(1) K is finite set (of states)

(2) £ is a finite set (of input symbols)
(3) FC K is a subset (of final states)
) §O ¢ K (the start state)

(5) £ : Kx Z > K (the next-state function)

In example (26) we had F = {sl},'in example (27) we had F = {SZ}’
and in example (28) (using the Moore model) we had F = {Sl’sj}'

Now let us imagine that the set I of input symbols is the set of
terminals tor some language. By inputting one symbol at a time, we obtain
a string of symbols, i.e., an element of X*. We can now inductively eitend

6ur next-state function f to a function f: K x %% + K as follows:

(i). f(s,e) = s (€ = empty word)

(ii) f(s,xl,xz...xn) = f(f(s’xl’XZ"'xn—l)’xn)

~

where n > 1, and each X, € z.

In fact, this is exactly the way that states change if the machine is

presented with a sequence of input symbols X% Using this extension

X
2 n
of the function f, we can formulate the fundamental definition.

Definition 18:
Let A = (K,Z,F,sof) be a finite-state acceptor. Then the set

T(A) = {w e Zx / f(so,w) € F}
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is the language accepted by A. (Here T comes from '"tapes,'" since we may
think of a tape that provides the input string to the machine.)

This definition sets up the basic relationship between languages and.
finite—state machines. Observe that the finite-state acceptor A answers
the membership question for the language T(A) (i.e., any string w € I* that

is accepted by A belongs to the language T(A), and vice versa).

Kleene's Theorem

We are now in a position to pose the question, "Which languages are
accepted by finite-state automata?" The following important theorem answers

this question completely.

Theorem 8 (KLEENE’s Theorem):

A language is accepted by some finite-state automaton if and oﬁly if it
is a regular language. .

Before embarking on the proof of this theorem let us collect a few facts
that will be needed during the proof.

First, suppose that M and N are two subsets of %X*. Then we define
MN = {vw/veM, we N} (Concatenation). In particular, if M = N we
write M2 for MM; and M3 = MMM, etc. Also, for M C I* put

M* = {e} UM LJMZ U M3 U

Next we supply a different description of the class of regular (type 3)

languages.

Proposition 2:

The class of regular languages in Z* is the smallest collection of

%
subsets of ¥ containing all finite subsets and being closed with respect

*
to the three operations union, , and concatenation. More precisely, let

%
r collection of finite subsets of X ,

0

P

{s,us, / sl,s

collection of subsets of the form

’ %
) eFO} U {Sl-s2 / Sl,SzeFo} ui{s /s eFO}.
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o

Inductively, let Fn 1 be the collection of subsets of Z'c of the form

+

/ S EFn} U {sls2 /S

{SlLJS Sl’ 2

) 105, an} ui{s /s an}

(n > 1). Then Proposition 2 says that 8 F11 is the class of regular languages

'( =
in 5 : n=l

Proof:

There are two parts to prove:

(o]
(a) ngl Fn is contained in the set of regular languages;
[o0]
(b) the rcgular languages are contained in n‘;’i F.

Proof of (a):

(i) Every finite.set F is a regular language. If F = {Xl’XZ"°°’Xk}’

then the productions are simply S - X (i = 1,2,...,k). Since these are

type 3 productions, F is regular.

(ii) 1If Ll and L2 are regular, so isALl U L2. Suppose Pi is the set of

productions for L and s, is the sentence symbol for Li(i = 1,2). Then

the set P of productions for Ll U L2 is simply Pi UP

two productions S, - s) and s + s

9> together with the

) (s is the sentence symbol).

1’ 1’ P2’
respectively. To show that L1L2 is regular, we modify the productions

in Pl as follows: for every production of the form X + x we write now

X > x 52, where s

(iii) Again, let L L2 be regular languages with productions P

is the sentence symbol for L Productions of Lhe form

2 2°
X + x Y are not altered. Then, let P] be this modified set of productions,
and pilt P = Pl U Pz; s = s;. Clearly, P is a set of regular productions for
the concatenation LlLZ'

(iv) To show that L* is regular, assume L is regular, let P be the set
of productions for L, and let s be the sentence symbol. Now introduce a new
symbol X as an additional nonterminal symbol. The set P is now modified
as follows: first we add the production X + o for every production s =+ Q
(here o may be either a single terminal element a, or a terminal element a,
followed by a nonterminal symbol A, i.e., o = a or o = aA); second, to

every production of the form A > x, where x is a terminal symbol, we add
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the production A - x X. Using the new set P of modified productions, it is
easy to see that L* is regular. This proves part (a).
The proof of part (b) is a little involved and is therefore omitted.
Below are two examples éf languages that are accepted by a finite-state

automaton.

Examples:

(29) Let £ = {a}, and let L = {azn / n > 0}. Define a finite-state

acceptor A as follows:

A = (K3Z’F,So’f)’

Awhere K = {so,sl}, F = {SO}, [(so,a) = Sl’ and f(sl;a) = sg- The reader
L.

may verify that T(A)
(30) Let S<ZZK be a finite subset (i.e., S ¢ FO’ using our previous

notation). Define a finite-state acceptor A by:

A= (K,Z,F,S )’

f
O’
where:

* *
{SlulweZ /3 w' eI with wi'eS}

S (observe that SCK, so FCK)

-~
]

s, = £ (start state is empty word)

wa, if wa €K :
(w € K, a€el)

f(w,a)
s, if wa ¢ K

f(s,a) = s

Note that the set K of states is finite since S if finite. By induction one
can show that
ww', if ww'eK

flw,w') =4 _
s, otherwise

Hence,

w' ¢ TA) ef(e,w')eFef(c,w')€eSew'es,

so we conclude T(A) = S, i.e., every finite subset of ) is a language

accepted by a finite-state acceptor.

In our next cxample we go through various steps to exhibit a language

that is not accepted by any finite-state machine.
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B .
(31) Let SCX be an arbitrary subset. Define an equivalence relation
* *
~g among elements of I by w ~“g w' if and only if for all words u € I we have

%
wu €S ¢ w'ueS. Clearly, ~, is an cquivalence relation in 7. . Furthermore,

. S
if v € I, then w ~g w' implies vaSw'v (by definition).

. %* .
Denote the equivalence class of w by {w], thus [w] = {w' € £ / w ~S w'l}.

% *
Let KS = {[w] / we Z } be the set of equivalence classes in L . Now define

an automaton AS = (KS,Z,Fs,so,f) by

{[w] / w e s}

[e] (class of empty word)

Fs

SO
f([w],a) = [wa] for [w] eKS, ael

More generally, the next-state function is f([w],w') = [ww']. Note that

A_ is in general an infinite-state automaton, since K_ might be an infinite

S
set.

S

Proposition 3:

AS is the minimal state automaton that accepts the language S.

Proof.

There are two parts to the proof:

(a) AS accepts S, i.e., T(AS) =S,

(b) If A accepts S, then A has "more'" states than Aq.

. *

(a) Let w € £ , then we have:

w € T(As)af([e],w)era[w] € Fsaw g w' (w' € S)ew € s.
Therefore T(As) = g. (

(b) Let A = (K,Z,F,po,f') be an automaton that also accepts S. Define a
# *
mapping ¢: L ~+ K by ¢(w) = f'(po,w). Suppose ¢(w) = ¢(w') for w, w'el

"Then ¢ (wu) =<¢(w'u) fo; all»u‘g Zf, §ince ¢(wu) = f'(pn,wu) =
E' (£ (pg,w)>u) = £ (pgsw'u) = $u'n). |
Now wu € S®wu € T(A) & f' (By,wu) ¢ F o (wu) e Fodw'u) ¢ Fouues,

hence, ¢(w) = ¢(w') implies w ~Sw',i.e., d(w) = ¢(w'") imﬁlies [w] = [w'] € KS'
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*
We can therefore define a mapping ¥: ¢(2 ) - KS

by ¥Y(¢(w)) = [w].
Sinée Y is onto, we have

]KS|§JIm¢|i]K| (cardinalities).

Corollary 1:

If S = T(A) for some finite-state machine A, then KS is finite.

Corollary 2:

S = {a™" / n > 0} is a language that is not accepted by any finite-state

automaton.

Proof:
For i # j we have ai¥SaJ, for if i < j, then a'b’ € S, but adpt ¢ S,

contradicting the definition of ™ Consequently, there are infinitely

, S’
. i . . e s
many equivalence classes [a”], 1= 1,2,..., and so KS is infinite.

Remark: The language {a™b" / n >.0} is context-free, given by the productions

S > ab
A > aSb

In this chapter we have obtained two results which exhibit the limitations
of finite-state machines: they cannot multiply arbitrary numbers, and they
can only accept regular languages. The first result is a consequence of the
finiteness of the nuwber of states, while the second result is in part due
to the simple nature of the next-state function, which simply does not allow

for the recognition of more complicated languages.

Proof of Kleene's Theorem

The proof of Kleene's theorem naturally falls into two parts: we have
to show (a) that for any finite-state acceptor A there is a regular language
L such that A accepts L, i.e., L — T(A),and (b) that for any regular
language we can construct a finite-state acceptor that accepts the language.
Part (a) is belatively straightforward. Starting with a finite-state
acceptor we simply construct a set of prodpctions that detine a regular

language, which in turn is accepted by the given machine. To prove part
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(b) we have to do a little more work. In particular we have to define the
notion of a nondeterministic finite-state machine. Let us therefore prove

(a) first.

Let A = (K,L,F,s.,f) be a finite-state acceptor, and let us denote its

O’

states by si(i = 0,...,n) so K = {so,s .,sn}. To define the language

17890
L accepted by A, recall that the set V\ I was the set of nonterminal elements,
containing as the sentence symbol the element OO.
We shall construct V\ZI so that it is simply a copy of the set K,
i.e., for every state si € K, we want a nonterminal symbol Oi e V\NZ. 1In
particular, the sentence symbol 04 corresponds to the start state s . Then

0]
vis=A{o ..,On}. Let us further denote the input symbols as follows:

0°91°%>

let x.. & . be the input symbol tor which f(s,,x,.) = s., so x,, is the
ij i N ij

ij
input symbol that causes the machine to change from state Sy to state sj.
Now we can construct the set P of production rules for our language L.

Let the productions in P be

0 > Xj{0j» if and only if f(Si,Xij) =8

q*xﬁ,ﬁmMOMyﬁﬂ%&peE

Let L be the language defined by the grammar G = (V,Z,P,OO).

To show that T(A) = L, we have to verify two things: (i) T(A)CL, and (ii)
LCT(A). Both verifications are straightforward in view of the close
resemblance of the productions and the next-state function, and are left
aAs an exercise.

We have therefore shown that for every finite-state acceptor A, there

exists a regular language that is accepted by A.

o prove part (b) we have to start with a regular language L and find
a finite-state acceptor A that accepts L. To do this, we introduce the

concept of nondeterministic finite-state Aacceptor.

Definition 19:

A nondeterministic finite-state acceptor is a quintuple A = (K,Z,F,So,f),
where
(1) K is finite set (of states)

(2) £ is a finite set (of input sywbols)
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(3) F is a subset of K (of final states)

4) s,

(5) f: K x Z+2K (the next-state function) - 2K = P(K)=power set of K
def

is a subset of K (of start states)

Ohserve two major differences to the notion of a (deterministic)
finite-state acceptor: first, there can be more than one starting state;
second, the next-state function is not unique, but has as values subsets of
the set of states (hence the name 'mondeterministic'). Thus, given a state
s and an input signal x £ I, f(s,x) 1s a set ol poussible next states. Wec

extend f to a function

f=Kx5z = ZK be defining

t(s,e) = s (€ = empty word)

— 1 1
f(s,xlxz...xn) = ;ﬂ {f(s ,Xn)/S £ f(S’XlXZ"'Xn—l)}
K

Furthermore we can define £ : 2 X Zm > 2K by £(K',w) = S,Q K f(s',w)

forvK'C K. Then one verifies that £(K',uv) = £(£f(K',u),v).

Dcfinition 20:

Let A be a nondeterministic finite-state automaton. Then the set

T(A) = {w ¢ " / f(SO,w)nF # §)} is the language accepted by A.

X Xpe o X is in T(A) if and only if
4S.,...,8_ of states with s, € S, such that s, €
0’71 n 0 0 i

Xi) and sn e F. 1In other words, a string w = X1x2"'Xn is accepted

It turns out that a string w =
there is a sequence s
(s,

(s; 1>
by A if there is at least onc sequence of states, consistent with the

input string, that leads the machine to an accepting state.

Example:
(32) Let A = (K,Z,F,So,f) be a nondeterministic finite-state acceptor,
where % = {0,1}, K = {50;51,32.53}, F = {53}, and f is given by the next-

state table in Table 7.
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Table 7. The next-state table for example 32.

States Input
— = .
Sy $1> S, S1> Sy
S1 S0 81> S5
'sz ) $02S9
S, Sy> S3 85> S15 Sy

For example, the input sequence w = 0110 gives rise to the "state tree"

shown in Fig. 9.

. ®
, 0 '
] Final state
Input = 0110 . 0
] e Finclv state

fig. 9. State tree for example 32 when the input sequence is w = 0110.
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Note that 0110 is accepted by A, since there are two possible branches that
lead to a final state S3.
' Since nondeterministic finite-state automata are more general than
deterministic ones, one might expect that they are more powerful in the
sense that they accepf more strings than deterministic automata do. The

following result shows that this is not the case.

Proposition 4:

Let A = (K,Z,F,S.,f) be a nondeterministic finite-state machine.

0,
Then there exists a deterministic finite-state automaton D(A) such that

T(A) = T(D(A)).

This proposition shows that any language accepted by a nondeterministic
finite-state (F-s) machine A can also be accepted by a deterministic F-S
machine D(A). That is, nondeterministic F-S machines have no more power

than deterministic ones!

Proof of proposition 4:
Define D(A) = (K',Z,F',sé,f') by
K' = QK (= set of subsets of K),
F' = {KCK / KNF # ¢}

s! € K' is the subset S0 E»ZK,

£' (K,x) = £(K,x) for KCK, x€3.
*
Then, if w € Z we have
we T(A) » f(SO,w)r\F 0 o f'(SO,w)(wF + 0
< f'(SO,w) e F' o weT(D(A)).

Continuing now with part (b) of the proof of Kleene's theorem, we shall
make use ol proposition 2. Beginning with that proposition, we can prove .

part (b) if we can show four facts:

(i) finite languages are accepted by F-S automata;

(ii) if Ll and L2 are accepted by a F-S automaton, then so is LlLJLZ;
(iii) 4if Ll and L2 are accepted by F-S automata, then so is their "product"
LiLys

KN

(iv) if L is accepted by a F-S agutomata, then so is L.
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(i) By example (30) on page 45, we know that every finite language is

accepted by a finite-state acceptor.

(ii) Suppose L. = T(Al) and L2 = T(AZ)’ wherg A] = (KL’Z’Fl’SO’fl) and

1
A2 = (KZ’Z’FZ’Sé’tz)' Define a new (deterministic) F-S acceptor A =
9 - ,
(K Kz,Z,Kl X FyUF, X Kys(s4585)5) 5

where f((sl,sz),x) = (fl(sl’x)’fZ(SZ’X))’ for s, € Kl’ s, € K2, Xer.

w .
Lo = ' .
Then, for any word W € f((sl,sz),w) (fl(sl,w), f2(sz,w))

1 _
Furthermore, w € T(A) & f((so,so),w) € F, where F = Kl X F2UFl X KZ'

1] — 1] .
But, f((so,so),w) = (fl(so,w), fZ(SO’w)) € Kl X F2L)F x K if and only

1 2’

. . . - s .
if fl(so,w) e F. or f2 (so,w) € F That ic, weT(A) if w € T(Al)LJT(éZ).

1
Thus 11LJL T(A).

9

2

(iii) Again, let Ll = T(Al), L2

(ii) with the additional condition that K

= T(AZ)’ where A_, A, are defined as in

1’ 72
NK, = 0. Define a nondeterministic

1 2

F-S automaton

A = (RUK,,Z, Fyy S,

£)
where,

= ' 1
S0 {so,so}, if sg € Fl
S

0 {so}, it s, ¢ F,-

For s eKl, let

| H{E,(s,x)), if [.(s,x) ¢ F
£(s,x) = 1 1 1

r :
{[l(s,x), 50}, if tl(s,x)eFl

Tor s ¢ K, let f(s,x) = f2(s,x) always.

2

Observe that the start-state for A is the same as that for A, (at least

. 1
if SO ¢ Fi). Also, the next-state function f is actually unigue except in one
situation: if the machine A is in a state of Kl and receives an input symbol

% that would lead to a final state in Al' In that situation A can choose

]
1 or to the start sta;e s0 of A2. If

to go either to that final state in K
now wel is accepted by A, then it has to end up in F2, i.e., in a final

state of AZ' As we just saw, this is only possible if an initial substring

of w leads to a final state in A, - that is, if and only if w

1

1€ T(Al)°
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If instead of going to that final state, A chooses sé as its next state,

then the rest of the string (the substring following wl) must lead to a final

'-state in F i.e., the substring following w, must be in T(AZ). Thus,

1
€ T(AZ) if and only if w € T(A).

2’
W= W, with w, € T(Al), W

Suppose w

2 .
1T XX X, while LOSRIR 2D FRRED Then we can graphically
represent the sequence of states through which A passes as in Fig. 10. Thus,

Lle = T(Al)T(AZ) = T(A).

(iv) Suppose L = T(A) with A = (K,Z,F,so,f). Construct a nondeterministic

F-S automaton
(- ' ' ' 1
A (Ku{so}, Z,Fu{so}, {so}, £')

where f'(sé, x) = {f(SO, x)},

{f(s,x)}, if f(s,x) ¢ F
f'(s,x) =

{f(s,x),f(so,x)}, if f(s,x) €F
The idea in constructing this automaton is quite similar to that used in
(iii). The extra state {sé} has been added to make sure that £ (the empty
word) is accepted by A' (any F-S automaton whose start state is also a
final state will accept the empty word €). Again, f' is unique except in
the situation in which a word has been accepted by A - then f' can either
cthoose the final state in F as the next state or it can go to f(so,x)
and start all over again. Thus A' accepts any word w = W Wy W with W, €

*
T(A), n =0, 1, 2,... Consequently, L = T(A'), which proves (iv). We have

completed the proof of Kleene's theorem.

X X, Xn_-l Xn
SO—’S]_"SZ_""_——"—Sn-]__'»JSn\l
& . 7] Y2 A
1 S0 J ————>51—>52—>—————~>5|

X X oo e X accepted by A] Y1 ¥y - - -y, accepted by A,

Fig. 10. Possible sequence of states for a nondeterministic automaton A, which
accepts Lle.
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We might mention that part (b) of our proof cén also be proved by
starting with a regular language L. and using the productions of L to
construct a nondeterministic automaton A(L) that accepts L: L = T(A(L)).
Given the regular grammar G = (V,2,P,0) we construct the nondeterministic

accepﬁor A= (K,Z,F,so,f) as follows: -

Let K = (V\I)U{X}, so the states of A are in one-to-one correspondence

with the nonterminals V \Z, plus one additional state X. Let sO = 0 be the

start state. If P contains the production ¢ - €, define F = {soﬁX},

otherwise let F = {X}. The next-state function f is given by:

(i) X ef(s,a), if and only if s + a
(i) o©'e f(o,a), if and only 1f 5 + aa'
(iii) f£(X,a) = @ for all a €L

One can show that for this automaton
T(A) = L(G).

This concludes our discussion of finite-state automata.

Syntax Trees and Ambiguity

In the following, we restrict our considerations to context-free
grammars. CLonsider the grammar ¢ = (V,%,P,0) given by V = £uio,A,B,C),
Z = {s,t,x,v,z}, and the productions P: '

(G > xoA )

A = BC
P=<0~>y >

B~z

\C > st )

The sentence xyzst € L(G) can be derived by 0#XUA»x0UBC*xOBst>x0zst*Xyzst.
This sequence can be represented geometrically in the form of a syntax tree
(or derivation tree) (see Fig. 11).

In a context-free grammar the order in which the terminal symbols in a
sentential form are derived is not important. The following different

derivations of xyzst are all represented by the same tree

0 > XOA > xyA - xyBC > xyzC - xyzst
or '

0 > xOA > X0BC > xyBC > xyBst > xyzst
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Fig. 11. Syntax tree for a context-free grammar,

Two derivations of a sentence w € L(G) are considered equivalent if they
lead to ideﬁtical‘syntax trees.
Figure 12 is the syntax tree correspond{ng to all equivalent derivations
of the string xxyzstzst € L(G). -
Consider next the grammar G' = (Vf,Z',P',o'), where L' = {+},
v' = 2'U{o',A,B}, and P' is
' + A
A->B
A >+
B> A

Pl

Obviously, there are many different derivations for the word +, e.g.,

o' - A~>+
. or o' - A+ B+ A~>+

or ' >A~>B~>A~>B~>A~>+

Their derivation trees are given in Fig. 13. Since all three trees are

different from each other, the three derivations are nonequivalent.

Definition 21:

If G = (v,Z,P,0) is a context-free grammar, and w € L(G), then we call
the string w ambiguous in G if there exist at least two nonequivalent
derivations of w (i.e., if there exist at least two derivations of w with

different derivation trees).
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Fig. 12. Syntax tree for equivalent derivations of the sentcnce xxyzstzst.

Thus, in the grammar G' above, the string '"+'" is ambiguous in G' (see

Fig. 13).

Fig. 13. Syntax trees for three nonequivalent derivations for the word +.
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'Definition 22:

A grammar G is ambiguous if there exists at least one string w € L(G)

that is ambiguous in G.

Note that a language L could be ambiguous when described by one grammar Gl’
but unambiguous when described by another grammar G

9"
Definition 23:

A language is inherently ambiguous if it cannot be described by an

unambiguous grammar.

Example:

(33) The language L(G') = {+} in the example above is not inherently
ambiguous, since we can also describe it using the following unambiguous

grammar G'':

G" (V',Z',P”,O'), where V',I',0' are as above, but P'" consists of

PH

{c > A,A > B,B ~ +}.

-

An ambiguous English sentence is, "In all books examined sentences were

'

not ambiguous.'" The ambiguity results from the fact that "examined" may

either go with "books" or with "sentences.'" Since either choice leads to a

different meaning, there can be no gfammar which resolves this ambiguity,

i.e., the English language is inherently ambiguous.

Here is another cxample of an ambiguous grammar:
G = (V)Z}P’O)’
where T = {+,*,a,b}, V=% U {0}, and P is

O+0+ 0
g+ g rg
0~ a

o ~>b

Tow nonequivalent derivations of a + b * a + b are

(i) o»>o0+0->0+0*%0c>0+0*0+0~>...>a+b*a+b

(ii) o~>o0c*0~>0+0*0g>0+0*0c+0~+...>a+b*a+b
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" The syntax trees are given in Fig. 14. This language is unambiguous, since

the following unambiguous grammar 6 describes it also:

(V,%,P,0), where V = I U {0,A}, and
{o+A+0, 0+A, A>A* A, A>a, A~>Db}.

gl N
I

In G, the string a + b * a + b is unambiguous, since any derivation is

equivalent to
O+>A+0>A+A+0+A+A I AYA+A*A+A+ ... a+b*a+b

The syntax tree is shown in Fig. 15. The question of whether or not a grammar
is ambiguous is quite important when applied to programming languages, most of
which are context-free (or nearly context-free). If the grammar describing a
programming language is ambiguous, then there are at least two ways to interpret
_some sentence in the language. In particular the compiler might interpret the
sentence differently than the programmer, and the resulting code would do
gomething different than the programmer had intended. Unfortunately,'the
problem of whether'a grammar is ambiguous is unsoivable for context-free

grammars.

Theorem 9:

(1) The ambiguity problem is unsolvable for context-free grammars.

(2) VYor regular graumars the ambiguity problem is solvable.

A related question is whether or not a given langnage is inherently ambiguous.

Here we state the following results.

g

\ A AN
7N N N
- J . l

(b)

U‘
=1
*

(a)

Q
o

Fig. 14. Syntax trees fcr two nonequivalent derivations for a + b * a + b.
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a A + o
A * A A
b a b

Fig. 15. Syntax tree for deriving a + b * a + b in the unambiguous grammar G.

Theorem 10:

The inherent ambiguity problem is unsolvable for context-free languages.

-

Theorem 11: '

If a language L is accepted by a deterministic machine, then L is

unambiguous.

Corollary 3:

There are no regular languages that are inherently ambiguous.

Corollary 4:

The inherent ambiguity problem is (trivially) solvable for regular

languages.

There exist inhevently amhiguous context-free languages. An example is
the language L = {aleck / i =3 or j = k}. 1In general, it is quite hard to
decide whether a language is inherently ambiguous, since this decision must

be based on some analysis of all grammars that can describe the given language!
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Exercises

(11) Draw the state-diagram for a Mealy-automaton that can subtract binary

numbers (least significant digits input first).

* *
(12) Describe a finite-state acceptor able to accept all strings in I = {0,1} ,
such that every 0 is immediately followed by a 1. (Thus, 11, 01, 10111,
101011 are all acceptable, but 0, 11001, 10 are not.)

(13) Using the definition below of equivalence for a Moore and Mealy
automaton, construct for every.Moore machine an equivalent Mealy
wacliine, aud vice versa. (Guiung Liuvwm Mealy tu Muore luvolves au

increase in the number of states.)

- Let A = (K,Z,O,so,f,g) be a Mealy machine, and B = (K',Z,O,sé,f',g') a
Moore machine with the same input and output alphabets as A.

Define recursively for A:
f(s,e) = s

f(s,x ..xn) = f(f(s,x

l,x2,. 12%go e

g(x)) = g(s5,%))

g(xl,xz,...,xn) = g(f(sO’xl’XZ"'"Xn—l)’xn)

Similarly, for the Moore machine B we define:
f'(s',e) = s’

f'(s',x ,xn) = £'(£'(s',x,,x

lsxz,--- 1%

| h —_ 1 o8 | 1
g' (x) = 8" (£' (s4,%))
] = 1] A 1]
g (xl,xz,...,xn) g'(f (so,xl,xz,...,xn))

Now we call A and B equivalent if and only if g(xl...xn) = g'(xl,..xh)

%

for all strings w = Xp.. X € Y, i.e., if the same input string yields

the same output string in both A and B.
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(14) Let A = (X,Z,F,s.,f) be a finite-state acceptor that accepts a certain

0’
language L, i.e., T(A) = L. We define the "reversed" language LR by
Tl {wR / w € L}, so LR contains the reversals of all strings in L.

(For example, if L = {001, 1011, 100111}, then L} = {100, 1101, 111001}.)

e . R
Construct a nondeterministic finite-state acceptor A = (K',Z,F',s',f'"),

such that it acceﬁts LR: T(AR) = LR.

(15) Apply the above construction of AR to the finite-state accepfor in

example (27) (put F = {52} there), so AR accepts all strings starting

with two 1's.
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TURING MACHINES

Discussion, Definition, and Examples

In this chapter we study a class of machines that were invented by Alan
M. Turing in 1936 and now bear his name.

While finite-state automata are quite simple machines - they are not even
able to multiply arbitrary numbers - Turing machines are probably the most
complex and powerful machines. In fact, Turing in his original paper asserted
-that his machine is able to perform any calculation that can possibly be
performed by any machiné! This assertion cannot be proved mathematically

""calculations that can be

since there is no precise mathematical definition of
performed by a machine."
We enter here into the general problem of describing precisely what
problems can be solved by mechanical processes, by machines. Are there
'processes that can be precisely described but cannot be realized by machines?
Mathematicians use the term "effective procedure' or "algorithm" for processes
that should be solvable by machines (e.g., that can be programmed). One could
say, "An effective procedure is a set of rules that tell us (or the machine),
from moment to moment, precisely how to behave (e.g., there are at each step
no choices left open; there is at each step a unique instruction ta follow)."
In particular, any computer program is an effective procedure, and most
people agree intuitively that only effective procedures can be handled by

machines. Turing's thesis - also known as Church's thesis - can now be stated

as Lvllows;
Any effective proccdure can be handled by a Turing machine.

As we have mentioned, this assertion cannot be proved rigorously because
the notion "effective procedure" is only defined intnitively. The best we can
do is believe Turing or disbelieve him. One should know, however, that so far
no effective procedure has been found that could not he handled hy a Turing
machine. In fact, various different mathematicians (e.g., Church, Post, and
Kleene) have arrived at the same conclusion from quite different ronsidera-
tions - and that fact is quite compelling.

" What is particularly surprising about the thesis that Turing machines can
handle all effective procedures, is the relatively simple definition of Turing

machines.
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Definition 24: -

,

A Turing machine consists of a finite-state control unit which controls
the motion of a read/write head that scans an infinite tape. The infinite

(linear tape) is divided into "'squares'" or ''cells,"

each containiﬁg a stngle
symbol chosen from a finite set I' = {b} U Z , where "b" denotes a "blank"
symbol, and X is a finite set of tape symbols (nonblank, of course). The
read/write head is located over a squaré on the tape at each time point.
Depending on the input symbol in that square and the present state of the

control unit, the machine acts as follows:
(i) a new symbol is written on the tape in the square under the head,

(ii) the head then moves either one square to the left or one square to

the righf,
(iii) the control unit enters a new state,

(iv) the machine might halt.

. A few remarks are in order. First of all, we may assume without any loss
in generality that the symbol written by the Turing machine on a tape square
is nonblank. Also, when a symbol is written on a square, it erases the symbol
that previously occupied that square. Because the machine can move either
way along the tape, it is possible for it to return to a previously printed
location to recover the information inscribed there. We shall see later that
this makes it possible to use the tape for the storage of an arbitrarily large
(finite) amount of information. '

We will also make the restriction that when the machine is started, the
tape must be blank except for a finite number of squares. This means that we
have an infinite storage medium available, but at each time there is only a
finite amount of information stored on it.

To describe the behavior of a Turing machine, we observe that each pair

(state, tape symbol) gives rise to:

(a) a new state,
(b) a new tape symbol,
(¢) a head motion L (left) or R (right)
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Thus, a Turing machine may be described by quintuples (si, Xj’ S.., X,,, M,.),

where
si = current state,
xj = tape symbol currently under the read/write head,
s,., = new state,
ij -
xij = new tape symbol (replaces Xj),
m,. = head motion, i.e., m.. € {L,R}
1] 1]
1f sij = H, we mean that the machine halts. 1In this case there will be no
head motion, so we write mij = —, Some authors use the term instantaneous

description for quintuples.

Let us look at some examples now.

Examples:

(34) This example presents a parity recognition machine like the
finite-state machine in example (26) on page 00. The tape contains blank
squares except for a finite sequence of squares containing zeros and ones.

ln 1ts starting state s the machine has its head over the leftmost nonblank

0’
square on the tape. Just as in the case of a finite-state machine. we have

wo states s, and s
t 0 1’

encountered on the tape. The '"'state-transition'" table in terms of quintuples

and the machine changes state only if a one is

is shown in Table 8.

Tablc 8. State-transition table fof‘example 34.

! 3 ij *1j i3
s 0 S 0

Sy 1 81 0

5, b H 0 -
s1 0 ) 0 R
S1 1 o 0 R
81 b H 1 -
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In this example, the original input sequence has been erased by the machine.
Also, if it contained an odd number of ones, a one is written into the first
blank square.after the input sequence; otherwise a zero is written. In both
cases the machine comes to a halt. )

Note that the head always moves in one direction (R), so there is no
possibility of recording information on the tape and returning to it at a
later time. Hence one could not expect it to do anything that could not be
done by a simple finite-state machine.

Suppose now that a machine satisfies the following condition:

Ql = (Si’ Xj’ Sij’ xij’ mij) and Q2 = (sk, X, SkZ’ X 99 mkﬁ) are two

quintuples such that sij = Skl (i.e., in both situations Ql and Q2, the

1]
moves in the same direction in both situations). If we have such a situation,

machine enters the same state sij = Skz)' Then m,. = moo (i.e., then the head

we can draw the state diagram shown in Fig. 16 to represent our parity
recognizing machine. “

We have used the same conventions as in the case of finite-state
automata, except that the symbol in each circle represents the head motion
that results whenever this state (circle) is entered. An "H" in the diagrém
denotes a halling state of the machine. Quintuples of the form (si, X., é.,

i’ i
Xj’ mij)‘have been omitted from the diagram.

(35) In our second example we construct a Turing machine that computes
the function f(n) = 2n (for all n > 1). Two nonblank tape symbols '"1" and "2"
are used, and the machine has five internal states 8> 815 Sy5 S35 S,- The
table of quintuples is given in Table 9. The machine acts as follows. The

tape consists of a finite sequence of l's, and the tape head initially

Fig. 1b. Srave dlagt ain for the parity=recngnizing Turing machine in example 34.
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scans the left-most 1 of this sequence. The starting state is s The head

0
then moves to the right until the first blank is encountered. The machine
(which is still in state so) then writes a 2 after the end of the input

sequence and moves into state s It then moves to the far left of the

1

sequence, erases the leftmost 1 (state is sz), and changes to state s In

3"
states Sy and Sy the tape head moves to the right end of the nonblank portion

of the tape and writes two 1l's., This procedure is repeated n times (where
n is the number of 1l's originally on the tape). For each of the original 1's
that is erased, two 1l's are added to the right end of the sequence. The

machine halts in state s, with the head over the leftmost "1" of the answer,

4
the answer consisting of a sequence of 2n 1's.

Table 9. State-transition table for example 35.

s X, s, . X,. m

i J 1] 1] ij
Sy b S; | 2 L
s0 1 sO 1 R
SO 2 . not possible
$1 : b S,y b R
sS4 | 1 , 81 , 1 L
S1 2 S1 2 L
s, b ' ‘not possible
S, . 1 Sy b . R
s, 2 Sy b R
S5 b Sy 1 R
Sy 1 Sy 1 R
Sy 2 Sy 2 R
S, b 81 1 L
s4 1 H - -
s4 2 H - -
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Observe that the condition for drawing a state diagram is fulfilled. The .
diagram is shown in Fig. 17. Note that the original input sequence of n 1l's
has been completely erased by this machine. The reader may try to modify_the

machine so that the input is preserved.

(36) In this example we construct a machine that multiplies arbitrary
numbers. This is our first demonstration that Turing machines are more
powerful than finite-state machines. We assume that' the set of nonblank
tape symﬁols is L = {l,A,X,Y}, and that the tape is initially as,shown in
Fig. 18a‘(in this example the first number m is 2 and the second number n is

3).

Fig. 17. State diagram for example 35.

m n

/'_—/\ﬁ
Y
@

111117 X]blb|b

W\

(b)%bebbYAAAXAAAAAAb%

Fig. 18. (a) Initial status of the tape for the Turing machine of example 36,
and (b) final status of the tape.
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The symbols X and Y are end markers, Y separating the two numbers. The

machine is initially in state s, with its head pointing to the square contain-

0

ing Y. There are four states Sy Sp»

Sys Sgs with the following state
transition table (Table 10):

Table 10. State-transition table for example 36.

%1 3 1] *13 "
Eq b 84 b L
Sy 1 S1 b R
SO X H - -
Sy Y o Y L
sy A SO A L
s1 b Sy b R
$1 1 $1 1 R
Sy X s, X L
S1 Y Sy Y R
sy A 81 1 R
sy h s, h T
€,y 1 83 A | R
S, X S,y X L
&, Y Sy Y L
s, A S,y A L
S5 b Sy A L
S, 1 Sq 1 R
83 X 93 X K
S5 Y Sy Y R
Sy A S3 A R




The corresponding state diagram is shown in Fig. 19.

Fig. 19. State diagram for example 36.

Using the example n = 2, n = 3, the reader may trace the actions of the
machine and determine the significance of each state. The end result is
shown in Fig. 18b. The answer m x n is written as a sequence of m x n A's to

the right of the right end marker X.

(37) The state diagram shown in Fig. 20 represents a luring machine
that converts a sequence of n 1's on the tape to the binary representation
of the number n.

The tape looks initially (n = 10) as shown in Fig. 2la. At the end it has
the form given in Fig. 21b. So the answer is BABA = 1010 = 10 (base 2).
In principle, the machine repeatedly divides by 2, writes the remainder (A
for 0, B for 1) and repeats this process on the quotient until the quotient
becomes zero. Again this is a coﬁputation‘that cannot be done by a finite-

state machine (for arbitrary n) - a fact we are not going to prove.

Through these examples the reader should have gained sufficient insight
into the structure of Turing machines to appreciate the following remarkable

facts that have been proved mathematically:

(A) Any Turing machine can be replaced by one that uses only two tape-
symbols (say O and 1, O being also used for "blank'"). The basic idea
is to encode every nomnblank symbol as a binary number. However, by

reducing the number of symbols we increase the number of states.
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Fig. 20. State diagram for example 37.

(a)§511,1111111_1b§,

(b)ibBABAXXX'XXXXXXX'bb é

()

Fig. 21. (a) Initial status of the tape for example 37, and (b) final status
of the tape. '
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(B) More remarkable is the fact that every Turing machine is equivalent to
one that has only two internal states. The eqﬁivalence is achieved by
greatly increasing the alphabet of the multistate machine. This fact

was proved by Claude Shannon, the inventor of information theory.

(C) Turing machines that have tapes infinite in both directions have no
advantage over machines with tapes that are infinite only in one

direction.

(D) Turing machines that control several read/write heads that independently

scan several tapes are no more powerful than single-tape machines.

(E) Recall the condition under which we could draw a state diagram: the
head motion (L or R) depends only on the state which the machine enters.
One can prove that every Turing machine is equivalent to such a

"directed-state' machine, by adding suitable states (exercise!).

Universal Turing Machines

Let us suppose that T is a Turing machine that can compute a certain
function f(x). That is, for each value of x (represented on the tape of T as
a certain nonblank string Sx)’ T will eventually come to a halt with an
appropriate "answer string' Sf(x) remaining on the tape. Given a description
of T (e.g., in terms of its quintuples) and of the initial string SX on the
tape,'the reader could trace out the behavior of T with input SX and find for
himself what the corresponding value of f(x) is. In fact, this is presumably
what the reader bhas done for the examples given above. He required an external
storage medium (paper and pencil) and a precise understanding of how to
interpret the description of the machine.

We intend to replace the reader by a "universal' Turing machine and give
it the same necessary materials: an external storage medium (its tape and
read/write head), a description on its tape of a machine T and of T's tape
SX, and the built-in capacity to interpret correctly the description of T's
behavior.

In other words, there exists a universal Turing machine U, which is able
to interpret and simulate the behavior of any Turing machine T. All U needs
is a string of symbols dT containing the encoded description of T, and it can

then compute (by simulating T) all functions that T can compute. ‘Lhis means
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that there exists a Turing machine U, which is so sensitive that, by properly
adjusting the input representation, it can compute any function that is
possibly computable by a Turing machine (hence the name "universal'').

" By analogy we can think of a Turing machine T as an algorithm or
computer program that solves a particular‘task (e.g., multiplies two numbers).

A universal Turing machine then corresponds to a digital "

stored program"
computer that can "simulate'" any program, as long as it is properly described
and encoded (in machine language). '

Asserting the existence of this universal machine is one of the high-
lights of Turing's original paper, and is also Turing's chief support that
Turing machines can handle all effective procedures. To construct a
universal Turing machine U, we shall first show how Turing machines can be
ﬁsed to store and retrieve information, by using the tape as a general-purpose
file. ) ‘ ' '

Supposec Rl’ R2, R3, ..... ’ Rk are a number of items (records), eaph Ri
being given a name Ni’ and suppose that (after encoding all items and names
in, say, binary numbers) they have been arranged on a tape in pairs (Ni, Ri)’

separated by markers (say X's) (see Fig. 22).

Library region

Name of g g g
desired item ZU E f E f E
§Y N | X N] R] X N2 R2 X eececscescee X NK RK Y b%

A

0

Fig. 22. 1Items and names arranged on tape for the universal Turing machine.

Now suppose we want to locate the item whose name is N (we assume that
all names have the same length when encoded). Here the Y's are special end
markers. The state diagram in Fig. 23 represents 'a machine that compares the
given name N with each of the names Nl’ N2, ... in the "library." When it
‘finds a match, it stops and returns to its starting position after having
changed all 0's and 1's between the desired record Ri and. the start position
to A's and B's, respectively. For instance, this machine would cause the tape

conversion shown in Fig. 24.
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copy
machine

(Fig. 25)

Fig. 23. State diagram for an item-locating machine.

g\’l Ol X|ofof1]oOl1foOlX{1{O| V|1V jOX]H}j1} 101V |Y}|b E)%
_—V—'—‘/\ v/ J v J \/ ~/ ) . \/ A J :
N [so] N, R N, R, N, R,
(b)
;\’.I OJ1TIX|A[AIB[A[B{A[X[B[A|B{TIT[O(X[T |V {V]|OJT|{1{Y][b|b Eé
N ——
N = N2 H R2

(desired record)

Fig. 24. Tape status (a) before and (b) after processing by the item-locating
machine of Fig. 23.

Having located the particular record Ri’ we might want to copy (move) it
to another place on the tape. The state diagram shown in Fig. 25 represents
a Turing machine that will copy the record Ri’ just located, into the block
that contains its name (we assume here that names and records have equal
length). Thus, by applying the copy machine to the tape obtained from the

item-locating machine above, we finally arrive at the tape depicted in Fig. 26.
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From
locating

machine o TZ p:.cse—3
iq. 2 machine
(Fig. 23) - (Fig. 31)
3
::TO'bhose—3
machine
(Fig. 31)

Fig. 25. State diagram of a Turing machine for - copylng a record into the block
trhat contains 1ts name.

%i Y|ITIO|T|XIAJAIB|A|BJA|X|BIA|B|T]T{O (X111 (0|17 ]|Y]b|b ‘é
/) R
50 R2
i | :
___l___
g Y{B|BJAIX|A|A|B|[A[B|AIX]|BlA|BIB|B|A[X]|B|[1T]V1}lO|1 |1 ng
7\
R2 |H

Fig. 26. 1ape status (a) before and (b) after proce351ng by the copy machine
shown in Fig. 25. :

Having introduced'file—locating and copying machines we. can now begin
to construct a universal luring machine U. First, we describe the structure
of U's input tape, which must contain (a) an encoded description of a Turing
machine T (e.g., T's quintuples), and (b) a description of T's input tape.
The. description of the machine T in terms of quintuples (Si’ Xj’ Sij’ xij’
mi.) appears on U's input. tape as shown in Fig. 27.

Here the following conventions are used: if T has n states, and n as a
binary number has b digits, then blocks of b binary digits are used to

represent T's states on U's tapé. In the above example, b = 2, so that this
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Quintuple ' ' - Quintuple T * Quintuple
A A\

/ n) r A 4 )
ololofo]o]o]o olofafofololo] ] olololo]ololo '
§ x-lllll.llx:],']lll'll;)?"'xrl i Y le
S s” . et S Skl
x 1™ ™ . % Y
— Description of T on U's tape

Fig. 27. Description of Turing machine T as it appears on U's tape.

o

is a description of a machine having at most 3 states. Furthermore, we
assume that T's input-symbols are 0 and 1, so that xj is represented as a
single binary digit. Also, mij = 0, if T's tape head moves left, othgrwise,
mij = 1, so that mij is also represented by a single binary tligit. means
that either 0 or 1 may appear in this tape square. "Y" is an end marker which
tells U where the deocrlptlon of T ends.

We assume next that the de5t11pt10n of T's tape, its bead p031t10n, and T's s
current state and bymbol appear to the left of T's déscription on U's tape
(Fig. 28). The part on U's tape 1mmediately-to the left of the left-most X
is the machine condition of T, i.e., its current state and the symbol on T's
tape currently being'read by T. Further left is the descriptibn of T's tape,

"copy" of T's tape, except that in place of the symbol

Which is simply a
currently being read a special symbol M appears on U's tape, indicating the
current position ot I''s tape head.

This concludes the description of U's input tape. Now we show how U

operates. U's operation proceeds in a four-part cycle.

(1) Starting with the tape head over the left-most X as shown in Fig.
28, U sets the "item—locating” machine in operation. It searches to the right
(i. c , in the marh1ne ‘description area) until it finds the first state- symbol
pair in a qulntuple that matches the ‘one contained in the "machine condition"

area (which 1n1t1ally will be (s,, x.,), where s, is T's starting state, and x,
0 i i

0
is the symbol initially under T's head). As we know, all 0's and 1's between

the left-most X and the desired pair are changed to A's and B's, respectively.
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Current state of T r Current symbol read by T
’-:‘—“rAﬂ
0
1

LJO10}0 0L..Jo10]o0O 010 oljofofoJojo]o oo d
%111""1 v Y[ [ X X Yb%
7 /\L\/’—‘ ——
Current : 5 5
location of
T's head
X, X., m..
J o
o Description of T's tape Condition - Description of T -
of T L

Fig. 28. U's tape containing the description, location of tape head, and
' current gtate and symbol of T,

After the matching pair has also been converted to. A's and B's, U's tape head
moves back to its starting position over the leftmost X. At that point U's

tape appears as shown in Fig. 29.

(2) Now the "copy" machine is invoked. It moves U's head to the right
until it encounters the first 0 or 1. It then copies the part that contains
the new state (SOi’ or in general Sji) and the new symhol (in, or in general
in) into the "machine condition'" portion of U's tape. The symbol representing

the new head motion (mOi’ or in general m_, ) is 'remembered” by U. After the

31

copying process is finished, U's tape looks as shown in Fig. 30.

Match

A .
B
——
50
%

Fig. 29. U's tape after processing by the itém-locating machine.
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|
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(3) Next, U's tape head moves to the left (i.e., along the portion that
contains a description of T's tape) until it encounters the M. It erases the
M.and replaces it by the direction mij (A or B) (which had been 'remembered"
by U). Refer to the diagram of the copy machine (Fig. 25) and note the two
exit arrows at the right. If mij was an A, the copy machine exits from state

if mij was a B, it exits from s,. This is the way U "remembered" mij!

Sos

Tﬁen, U's tape head moves right again, changing all A's and B's to O's and

1's (except the A or B which represents‘mij in_M's old location). After that,
iF moves to the left of the left-most X, erasing the Xij (and "remembering"
it), and printing a special symbol S in its place. All this is done by the
machine in Fig. 31. We'll call it the . ''phase-3'" machine. The appearance of

U's tape at the end of phase-3 is given in Fig. 32.

(4) In its fourth and final phase, U;s head moves to the left until it
encounters an A or B (this is the one representing the digection mij of T's
head). U replaces the A or B with the value of Xij (0 or 1) and shifts one
square to the left or right, depending on whether the symbol encountered was
A or B. The symbol in the new square is replaced by an M and "remembered."
Then U shifts its head to the right until it reaches the symbol S. This it
replaces by A or B, depending on whether the '"remembered" symbol on T's
tape was 0 or 1. The machine that does all this is repreéented by the diagram
in Fig. 33. After completing phase 4, the tape appears as shown in Fig. 34.

At this point, the machine U has completed one cycle and is ready to
start the next cycle, going through the same four procedures. During each
Xj’ sij’ Xij’ mij)
which contains the same pair (Si’ xj) as is contained in the machine condition

cycle the machine U first locates the proper quintuple (si,

area. It then copies the new state and symbol (sij’ xij) into the machine

;g
("remembered")

New sfofew /— New symbol

e
" ToTo of..]olo Alala Alalalalalala Alalalalalala ol.
511""1 [y Y s |sls|*|sle|e|elsls]|e]|X|e]|sls|e|sle|s]|X]

—— e

Mcchine/\ s..

condition 1)

Fig. 30. U's tape after processing by the copy machine.
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rom s © To phase-4

copy machine machine
(Fig. : (Fig. 33)

~ Restore- . Restare-
A——®M machine- machlne- N
From Sy of condition description To phase-4

region region machine

Fig. 31. Phase-3 machine.

—
p—
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—
—
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—_—
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%.-. 010 ﬁ 0 seed 010 Y 010 S X 0 XXX 0 X 0 jo 0 ¢ o 0 X 0 ....0 X 0 'l.é

1

Fig. 32. U's tape after processing by the phase-3 machine.

condition area, moves the marker M, depending on mij’ and reads the new
symbol, replacing it by M. Thus, U carries out the instructions of exactly
one quintuple of T during each cycle. This completes the construction of a

universal Turing machine.

Some Unsolvability Results

Recall Turing's thesis that Turing machines can solve {(compute) any

problem (function) that is an effective procedure. In this chapter we are
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locating
machine
(Fig. 23)
Find . Put M . .
marker= Agcr);/;e:n on the Fulsn:'i .Write new symbol
location

| : square
on T's tape direction ‘

Fig. 33. Phase-4 machine.
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Fig. 34, U's tape after processing by the phase-4 machine.

going fo look at some procedures that cannot be solved by any Turing machine,
i.e., there are no algorithms to solve these procedures.

For our first question let us consider a Turing machine T with input
tape T. If T starts its operation it may be a very long time ﬁntil it finally
comes to a halt. In fact, T might get caught in an infinite loop and never

halt. We are therefore entitled to ask the question below.

Halting Problem

Is there a Turing machine H that, given any Turing machine T and its input tape 7, is able

to decide whether or not T comes to a hall?

It is obvious that the existence of such a machine H would be quite
useful, but as it turns out no such machine can exist. To prove the -

- unsolvability of the halting problem, we shall restrict the problem.as
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follows: instead of considering all pairs (T,T), we only select those pairs
of the form (I, dT), i.e., where the tape T contains the description of T.

Then we can ask the next question.

Restricted Halting Problem

Is there a Turing machine H' that, for any Turing machine T, can decide

whether or not T halts if T is given its own description dT on its input tape.

Clearly, if we can show that the restricted halting problem is unsolvable,
we can imply the unsolvability of the more general halting problem. ‘

Let us therefore assume that such a "decision' machine H' exists.' Then
1° So» such that H' arrives in stéte )
when it decided that (T, dT) halts, otherwise H' arrives in state s, (see

Fig. 35).

H' must contain two internal states s

Now let us denote by H" the machine H' modified by adding two states s',

"

s'' as shown in Fig. 36.
Obviously,; H" halts if (T,dT) does not halt. However, if (T, dT) halts,
then H" enters the infinite loop (s's's's"....) and never halts.

Now, suppose that we give H" its own description (dH"’ dH”)' What will

happen? If H", given its own description, should halt, then it must enter

state Sl’ and then the infinite loop (s's"s's"...), i.e., H" would never

Halt if (T, d
alt if ( T) Mo

= Halt if (T, d

)
halts T

never halts

Fig. 35. Decision machine.

-80-



Halt if

never
4 No Yes

Sl Sll
(X is any symbol)

Fig. 36. Decision machine with two states added.

halt, which is a contradiction. Let us then suppose that H'" never halts when
given its own description. This implies that H'" enters state S, and then
halts - again we reached a contradiction! The only way out of this mess is to
conclude that a machine like H" cannot exist, i.e., the restricted halting
problem is unsolvable, and consequently the general halting problem is

unsolvable.

Consequences of the Halting Problem

A consequence of the halting problem is the unsolvability of the printing
problem, namely, '"Does a Turing machine T ever print the symbol o when started

with tape t?"

Next we provide an example of a function that is not Turing-computable
in the sense that there is no Turing machine T which, given a representation
of a number x on its input tape, will come to a halt with the description of

f(x) on the tape. The function f is defined as follows:
Let Cm = {T / T is a Turing machine with m states and tape symbols 0, 1}.
Let T be a tape containing m consecutive 1's.

Let us discard all TeCm which never halt when given tape T and let
6m = {TeCm / (T,Tm) does halt} be.the class ot those Teum that do halrt

when presented with input tape Tm.
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Define for each Teém: pm(T) = number of 1's on the tape after T halts. Since

Cm and ém arc finite sets, we can define the function f by
f(w) = maximum {pm (T) / TeCm}.

Assume now that there is a machine F which computes f (by Shanﬁnn's
theorem we may assume that F uses also the two tape symbols {0,1}). Define a
new machine F' as follows: F' proceeds just like F, but instead of halting
when it has computed f(m), F' writes one more 1 on the tape and then halts.

That is, F' computes the function f' given by
f'(m) = f(m) + 1

Let K be the number of states of F, and ask F to compute f(k). By its very

definition, F' will compute
£'(k) = £(k) + 1

However, F' € Ck’ and therefore

P (F') < £(k) 4=, max {p (T')/T' e C .

But we just saw that pk(F') = f(k) + 1 which is a contradiction! The only
way to resolve this contradiction is by giving up the assumption that a machine
F exists which computes f. This prohlem is knowm as the "bucy-beaver problem,!
ahd we have just shown its unsolvability..

An interesting consequence of the unsolvability of the halting problem
is the fact that »no computer program can ever be devised that is capable of
deciding whether an arbitrary program ever halts or gets caught in an infinite
loop. This is an example of how an abstract theory like automata theory can

yield results that are of interest to computer scientists and programmers.

Recursive Functions

Before discussing the concepts of recursive-function theory, I want to
mention a result that concerns the class of languages accepted by Turing
machines. First of all, let us assume that certain states of the Turing
machine T are declared final (or accepting) states (just as for finite-state

automata). Next, let L be the input alphabet to the machine (i.e., the input
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tape symbols), together with two special end markers o and 8. We assume that
* . .

a string w € I 1is presented on the input tape in the form owB, and that at

the start the tape head is over the left end marker «... We now advance a

definition.

Definition 25: ;

. : * :

The Turing machine T accepts the string w I if and only if it halts in

a final sfate, when w is presented on the input tape as described above. The
string w is not accepted if either T does not halt or T halts in a nonfinal

*
state. The set L(T) = {wel / w accepted by T} is the language accepted by T.

We can now state a theorem analogous to Kleene's theorem (it was proved

by Chomsky in 1959).

Theorem 12:

A language is accepted by some Turing machine if and only if it is a

recursive (type 0) language.

The proof of this theorem is quite lengthy and in principle similar to
the proof of Kleene's theorem, so we are nolt going to present it. It was first

proved by Chomsky who used recursive function theory for the proof.

Next let us study in a little more detail the class of functions that can
be computed by Turing machines. First, we want to give a precise definition
of what we mean by saying "a function is Turing-computable." As ‘we have
seen, among the functions that can be computed, by Turing machines are the
function s(x,y) = x + y and P(x,y) = x*y. These are obviously functions of
two variables x and y, so we are naturally lead to the consideration of
functions of one or more arguments: f(xl,xz,...,xn). Also, each argument
X is assumed to be a nonnegative integer, and the function value f(xl,...,xn)
is again a nonnegative integer. Furthermore, the function f(xl,...,xn) may not
be defined for all arguments (Xl""’xn)’ e.g;, the function g(x,y) = %-is not
defined for (x,0) and for those pairs (x,y) for which %-is not an integer,

i.e., x # O(mod v).
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Definition 26:

A function f(xl,xz,...,xn) is called a partial function if it is not
defined for all arguments (xl,...,xn). If f(xl,..,,xn) is defined for all
arguments (xl,...,xn), then f is called a total function.

Definition.27:

A partial function f(xl,...,xn) is called Turing-computable in general
(Tcg), if there exists a Turing machine T that, when given a tape containing
the arguments (Xl""’xn)’ will either halt with the value f(xl,...,xn) if
f(xl,...,xn) is defined, or will.not halt if F(Yl’T"’xn) is not defined.

If [ is a tutal fuunctlon, and cthe Turing machine descraibed above exists

(i.e., it will halt for all (xl,...,xn) with answer f(x .,xn) on the tape),

1
then f is called Turing computable (Tc). Thus, f being a total function
and Tcg implies f is Tc. 1In either case (f Tcg or Tc) we write f v T if T is

a Turing machine that computes f.

Remark: In the following we shall only consider Turing machines that contain
two tape symbols {0,1}. This does not restrict the generality, since we know
that any Turing machine is equivalent to one using only two symbols.

Now that we have a precise definition of what it means for a function £
to be Turing-computable, one can ask whether there is some algebraic
classification of the Turing-computable functions. 1t turns out that there
is indeed such an algebraic description of Turing-computahle functions, in
terms of so-called recursive functions. To clarify the term "recursive" let's
look at the familiar Fibonacci sequence, and let us define the function ¢(n)
to be the nth term in the Fibonacci sequence 1,1,2,3,5,8,... (generally, each
term is the sum of the two preceding terms, the first twn terms heing defined

to be 1). Clearly, the function ¢ is defined as follows:

(1) = ¢(2) = 1;

o(n) ¢p(n - 2) + ¢(n - 1) for n > 3.

As we see, before we can find ¢(n) for somé value n, we have to know ¢(n - 2)
and ¢(n - 1), i.e., the value ¢(n) depends on the preceding values ¢(n - 1)
and ¢(n - 2). In such a case one says that the function (here ¢) is defined
"recursively." The simplest class of recursive functions are the so-called

primitive recursive functions.
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Definition 28:(Primitive recursion):
(1) The zero function Z(x) = 0 is a primitive recursive function.

(2) The successor function S(x) = x + 1 is a primitive recursive

function.

(3) For every i with 1 < i < n, the ith projection function

P,(n)(x

J X 5.++.3X ) = X, is a primitive recursive function.
i 1’72 n i

(4) 1If g and h are primitive recursive functions, then the function £
defined by the recursion scheme

f(0, Xl’x7"'°xn) = g(xl,xz,...,xn),

f(y + l,xl,xz,...,xn) = h(f(y,xl,...,xn),y,xl,...,xn)

is again a primitive recursive function.

(5) If h and 81°8y>-+-18, are primitive recursive functions, then their
composition f(xl,...,xn) = h(gl(xl,...,xn), ...,gk(xl,J..,xn)) is a primitive

recursive function.

Thus, any function that is comstructed by a finite number of applications

of rules (1) through (5) is primitive recursive.
Let us give a few examples of primitive recursive functions.

Examples:

(38) Addition: f(x,y) = x + y is primitive recursive, in fact,
by (3): £0,y) = ;P ),
by (4): f(x + 1,y) = S(pl(3)(f(x,y),x,y)).
(Since f(x + 1l,y) = (x+ 1) +y = (x+y) + 1= f(x,y) + 1, one would be
tempted to define f(x + 1l,y) = S(f(x,y)), but this would not fit inte our five

rules abuve, sov we have to usc the more cumbersome definition (definition (4),

above).

(39) Multiplication: m(x,y) = xy is primitive recursive:
m(O’Y.) = Z(Y) = 0,
m(x + 1l,y) = h(m(x,y),X,y), where
h(x.,x,x) = £¢. P ,x,%.),2. 3 (x,%.,,%x.))
1°72°73 1 1°72°737°°3 1°72°7377°
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f being the "sum" function in example (38). (Since m(x + 1,y) = (x + Ly =
Xy + y, one would like to simply put.m(x + 1,y) = f(m(x,y),y), £ being the
addition function; but again this formula is not covered by any of the five

rules for primitive recursion.)

(40) Exponentiation: exp(x,y) = yX is a primitive recursive:
exp(0,y) = S(z(y)) (=1),
exp(x + 1,y) = h(exp(x,y),x,y), where

h(x = m(Pl(3)(x (3)(x

1°%0%3)

1°%2°%3)5P3
from example (39). ‘

l,x2,x3)), m being "multiplication"

(41) Factorial: Recall the definition of the "fartnrial oﬁeratnr" L

L, 1t n =0

1°2+3...n, if n > 0, son! =n * (n - 1)! for n > 0.'

The function fc(x) = x!
fc(0) = s(z(0)) =1,

fe(x + 1) h(fc(x),x), where

2

@ )0 5, P 6 1x,)0)

is primitive recursive:

h(xl,x m(Pl

2)
(42) Zero-test: The function
0

- 1, if x
sg(x) =
0, if x>0

is primitive recursive:
5g(0) = 8(Z(0)) = 1,
sg(x + 1) = Z(Pz( )(sg(X),X))-

(43) Parity: The functinn

U, if x is even
P(x) =
1, if x is odd

is primitive recursivc:
P(O) = Z(0) = 0,
P(x + 1) ='E§(Pl(2)(P(X),X))-

(44) Half: The function

H(x) = [x/2] is primitive recursive:
H(0) = Z(0),
H(x + 1) = h(H(x),x), where

nGey ) = £y P epxy) 2, P lnxy )0,
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f being "'sum," P being "parity." (Here we have implicitly made use of the

relationship H(x + 1) = H(x) + P(x). Also note x = 2 H(x) + P(x) for all x).

(45) Predecessor: The function

0, if x =20
pd(x) =

x -1, 1f x> 0
is primitive recursive:
pd(0) = z2(0) = O,
2
pd(x + 1) = B, %) (pd(x),x).

(46) Subtraction: The function

y -x, if y > x
sub(x,y) =

A
b

0, if y

is primitive recursive:
sub(0,y) Pl(l)(y)
sub(x + 1,y) = h(sub(x,y),x,y),
(3)
Pd(Pl (Xl,Xz,X3))-

y

where h(xl’XZ’XB)

For our purposes we have to consider a wider class of recursive
functions. This extension is accomplished by introducing a new type of

function, and in some sense "adding" it to the primitive recursive functions.

Definition 29:

Let g(y,xl,xz,...,xn) be a function of n + 1 arguments. Then we define
the minimizdtion operator “y by:

uy[g(y,xl,...,xn) = 0] = the smallest value y for which g(y,xl,...,xn) =0

(here (Xl""’xn) are fixed parameters). Of course, there might not be
such a smallest y, in which case uy[g(y,xl,...,xn),= 0] is not defined.
Also note that as the arguments (xl,...,xn) vary, the value of uy varies

(if it exists at all), so that we can define the following partial

function of n variables:

uy[g(y,xl,...,xn) = 0] if such a y exists;

f(xl,...,xn) =
: undefined otherwise.
Wa call £ elen rhe mimimization operation on the function g. It is

assumed that the function g is a total function.
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Example:

; 2 2 2
i <
(47) Let g(Y,X.,X.) = {12 %X +X <X
1°72 2 2 2 .
Yo+ X Y~ otherwise.
1 2
2 2 2
For example, g(2,3,4) = 3" + 4~ - 27 = 21
2

and g(6,3,4) = 1, since 3% + 42 < 62,

N ST I G G c,
17 % 1t %
0] = |

0]

Then

f(X,,X,)) = u_[g(¥Y,X,,X,)
12 y 172 undefined otherwise

<5

For example, uy[g(Y,B,&)
uy[g(Y-,3,5) = 0] is undellned.

Now we can extend the class of primitive recursive functions to the class

of partial recursive functions.

Definition 30:

The class of partial recursive functions is defined by six rules, the
five rules from definition 27 with the word "primitive" replaced by "partial,"
and the following rule:

(6) 1If g(y,xl,...,xn) is a partial recursive function that is total
(i.e., defined for all arguments), then the minimization operation uy applied

to g is a partial recursive function.

It can be shown that the minimization operation uy is not primitive
recursive, and consequently, the class of partial recursive functions is
actually a wider class than the class of primitive recursive functions. In
contrast to the primitive recursive functions, which can be shown to be total
functions, the partial recursive functions may not be defined for all
arguments (since uy is sometimes undefined). Hence they are partial functions
in our initial sense of the word. The subset of all those partial recursive
functions that are actually total functions is quite important and is called
the set of recursive or general-recursive functions. The class of recursive
functions 1lies between that of the primitive recursive and the partial

recursive functions and coincides with neither class:
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{Primitive recursive fns} C {recursive fns} C {partial recursive fns}'

proper inclusion proper inclusion

We can now state the result that answers our question concerning an algebraic

classification of Turing-computable functions.

Theorem 13:

(A) A function f(xl,...,xn) is Turing-computable (Tc) if and only if it
is recursive. '
(B) A function f(x ,...,xn) is Turing-computable in general (Tcg) if and

1
only if it is a partial recursive function.

Clearly, it is sufficient to prove part (B) of the theorem, since part
(A) follows more or less by definition of Tc and recursiveness as compared to -

Tcg and partial recursiveness.

Proof of theorem:

The proof of part (B) breaks into two parts: (i) If f is a partial
recursive function, then f is Tcg, and (ii) If f is Tcg, then f is a partial

recursive function.

Proof of (i):

A function f is partial recursive if and only if it is either the zero
function, successor function, or projection function, or if it is formed by
finitely many applications of (a) the recursive scheme, (b) composition, and
(¢) the minimization operation. Thus, one must show that there are Turing
machines that compute the first three functions, the composition, the

"recursion scheme,'" and the minimization operation. The proof is tedious and

is therefore omitted. The proof of part (ii) is more interesting.

Proof of (ii):

Recall that we start with a Tcg function f, and that we want to show
that f is partial recursive. So let £~ T, where T is a Turing machine with
only two inputlsymbols {0,1}.

Suppose we take a look at T's tape at a certain time t, when T is in

state S, (Fig. 37). Here X, is the tape symbol currently under the tape
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%...... 0 b LR NN N NN J b

ol*-tcolcrlcales| """ < 0 ""'é

Fig. 37. T's tape at time t.

head, while m is the nonblank portion of the tape to the left of X, and n
is the nonblank portion to the right of X . Since both portions have finite

length, we can also define
T i s 5
m, =.i§0b12~ and n_ = g c.2

Suppose that the quintuple beginning with state S, and symbol X, is

(st,xt,st+i,X,O), where we use 0 for motion to the right and 1 for motion to

the left. Then, at time t + 1 the tape would appear as in Fig. 38. .Thus,

= i+1
mt s 1 =X + 'E: biZ =X + th and
i=20
= i 1
D41 -Z; c;? H(nt) [nt/2] ,
i=1
xt 1 = P(n ) = cOf

EO.. 0 0 b [ EERE NN b2 b] b x

Co C.I C2 C3 scessas CS 0 0 -o-.oé

M+ | Mt
t+1

Fig. 38, T's tape at time t + 1, after tape head moved to the right.
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If the quintuple had been (st,x 1), we would have

£°%c + 1’X’

mo, g = H(mt) = [mt/2].
no,q= X + 2nt,
X, 41 - BPm) = by

Now let us assign integers to the states of T by assigning the number i
to state s, (using some fixed ordering of T's states). Then, instead of using

quintuples, we can associate three functions with T:

Q(si,xj)

sij (next-state function)

S(s.,x.) = x,, (next-symbol function)
1° ] 1]

M(s, ,x.) m.. (next-move function)
i’™j ij .

All three functions are number-theoretic functions using numbers for the
states, symbols, and moves (0 for R, 1 for L). Now it is a simple exercise to
show that .any number-theoretic function f that must assume preassigned values
at a finite number of arguments, and can be defined arbitrarily elsewhere, .is
A primitive recursive function. In particular, the three functions Q, S, and
M are primitive recursive functions.

Let us now consider the four functions:

qT(t,n) (state at time t, if input at time 0 is n),
mT(t,n) (portion of tape to the left of the tape head at time t),
nT(t,n) (portion of tape to the right of the tape head at time t),
sT(t,n) (symbol being read at time t).

Initially, at t = 0 we have:

qT(O,n) = 0 (T starts at state s, % 0);

0
mT(O,n) = 0 (tape head starts at left);

n.(0,n) = H(n) = [n/2]

ST(O,n) P(n) (least significant digit of n).
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Then, at time t + 1 we have:
qp(t+l,n) = Qg (t,n), s (t,n)),
m (t+l,n) = (2 m (t,n) + S(qT(t,n), ST(t,n)))
© (1 - M(qp(t,n), si(t,n)))
+ H(m,(t,n)) * Mgy (t,n), s (t,n))
nT(t+i,n) = (2.nT(t,n) + S(qT(t,n), ST(t,n)))
. M(qT(t,n), ST(t,n))
+ H(ag(6,m) + (1 - M(qr(t,n), sp(t,m)))
sT(t+l,n) = P(nT(t,n)) - (1 - M(qI(t,n), Sw(r’")))
+ P(m (£,n)) * M(q.(t,n), s, (ryn))

Since all the functions on the right-hand side are primitive recursive, the

functions Qs> Dps and s,, are primitive recursive. Now suppose T comptites

T
the given function f, i.e., T halts with f(n) on the tape, where n is the

initial input string at t = 0. Thus, assuming the tape head is to the right

" of the "answer" f(n) when T halts, we have: -
f(n) = mT(t*,ﬁ) when qT(t*,n) = H,
where t* is the smallest t such that

qT(t,n) = H.

Hence: f{(n) mT(pt[dT(t,n) = H}, n),

. using the minimization operator ut. Note that qp is a total function since it-
is primitive recursive. Hence ut is defined. This proves that f is a partial
recursive function, which is what we had to show.

Before completing our discussion of Turing machines, we might mention
that one can also define nondeterministic Turing machines by simply allowing
a finite number of possible "moves" for each given pair (state, input symbol).
That is, given (si,xj) there are finitely many quintuples (si’xj’sij’xij’mij)
that start with (Si’xj)' A string on the input tape is '"accepted' by a
nondeterministic Turing machine if there is at least one possible sequence

of moves that leads to a halt in an accepting state. The set of these words

is then the language accepted by the machine.
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Theorem 14:

Nondeterministic Turing machines are no more powerful than deterministic
Turing machines.. In other words, both types of machines accept the same class
of languages (recursive). This is similar to proposition 4 for finite-state

automata.

Exercises

(16) Construct a Turing machine with no more than four states, that will add

two integers.

(17) A Turing machine initially starts out on a tape of the form shown in

Fig. 39a. Its state diagram is shown in Fig. 39b. Analyze this machine.

(a)

%b b X 1 ] |oeeeees '| Y '| ] |seeese ] Z b b oooooooo.ooog ’

ml's nl's

(b)

Start

Halt

Fig. 39. (a) Tape and (b) state diagram for exercise 2.
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(18) A Turing machine is called a directed state machine if, for any 2

quintuples (Si’xj’sij’xij’mij) and (Sk’xl’skl’xkl’mkl) with Sij =5, e

have mij = 1 (entering the same state results in the same head motion).

m
k
Given any Turing machine, construct an equivalent directed-state machine.

i
(19) Prove that a Turing machine whose only head motion is to the right can be

replaced by a finite-state automaton.
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PUSHDOWN AND LINEAR-BOUNDED AUTOMATA

Pushdown Automata

A pushdown automaton (PDA) is essentially a finite-state control unit that
controls an input tape of finite length and a 'pushdown store" or '"pushdown
stack.'" The pushdown store is a first-in-last-out type stack, i.e., a symbol
(out of some finite alphabet I') is entered at the top of the‘stack, thereby
pushing all symbols that are already in the stack down by one unit. So, the
symbol that had previousiy been at the top is now at the second place from the
top, the symbol previously second from the top becomes third, ete. The symbol
at the top of the stack may also be removed in which case all other symbols
move up by one unit.

A familiar example of a pushdown store is the stack of plates resting on
a spring; this device is frequently seen in cafeterias. Putting a new plate
on top of the stack moves all plates in the stack down by one unit; removing
the top plate raises the stack by one unit. ,

We can think of the stack as a tape that is infinitely long in one
direction (say to the right), so the bottom of the pushdown stack is the left-
most square of that tape and the top is the square currently scanned by the
tape head. »

Initially, the tape head for the input tape is over the left-most symbol
on that tape. Also, in contrast to Turing machines, the tape head only moves
to the right until it reaches the last symbol on the tape. The input symbols
are elements of some finite alphabet: L.

Let a particular pushdown symbol Z0 (ZO €' = pushdown alphabet)'initially
be in the left-most cell of the pushdown tape, and the tape head initially
scan that left-most tape square. The initial configuration ot a pushdown

automaton is shown in Fig. 40. There exist two types of moves:

(i) TDepending on the current input symbol, the top symbol in the pushdown
stack, and the state of the control unit, the machine moves into a new state,
the read head for the input tape moves one square to the right, and the R/W
head for the pushdown tape either moves one square to the right and writes a
new pushdown symbol into that square (thereby ''lowering' the stack, with the
new symbol now the '"top" symbol) or it erases the 'top'" symbol and moves one
square to the left (thereby "raising" the stack). If the last symbol in the
stack is removed the machine halts. Also, the pushdown tape might not be

modified at all (denote this by -).
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Infinite

Finite input tape Pushdown tape —
XX lxgfxg) e e e e X Zol | 1 e g
] A :

Read head R/W head

Finite-state
control unit

Fig. 40. 1Initial configuration of a pushdown automaton.

(i1) 1In the second type of move (called an "€ move"), the input symbol is
ignored and the input tape head is not advanced. This allows the machine to

manipulate the pushdown stack without reading input symbols.

Let us fix some notation.
As usual, let K be a finite set of states;

let ¥ be a finite input alphabet;

let |' be a finite pushdown alphabet;

let F C K be a subset of final states;

let s, € K be the starting‘state;

let Zu € T be the start pushdown symhol;

let £ : K X (Zu{e})- x T > K x (Tu{e,-}) be the "rext-state' function.

Thus, if sieK, xjeZU{E} > Py € T,

then

f(sis Xj’ Pk) = ( )9

Sijk® Pijk

where s, € K is the next state, and

jk
pijk e T U {e,-} is the new pushdown-symbol at the "top" of the
stack.
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Note: If Xj = €, then this signals an €-move (no input is read!); if pijk er,
then the pushdown tape head moves right and adds pijk to the top of the
stack; if pijk = £, then the top symbol is erased and the pushdown tape head
moves to the left.

A "move'" of the pushdown machine can therefore be described by a
quintuple (si’ Xj’ P> Sijk’ pijk)' Note that this is the deterministic

prototype of a PDA. Now, an input string w € I* can be accepted in two ways:

(i) 1If the machine, after reading w, moves into a final state s € F, then the

string is said to be accepted by final state.

(ii) 1If the machine, after reading w, ends up with an empty pushdown store,

then the string is said to be accepted by empty store.

As the following proposition shows, both types of acceptance are

equivalent.

Proposition 5:

Let P1 be a pushdown automaton, and let Lf(Pl) be the language accepted

by final state. Then there exists another PDA P, such thal Lf(Pl) =

by Pl 9
LE(PZ) is the language accepted by P2 by empty store. Similarly, given P2,

oene can find a PDA P such that LE(PZ) = Lf(Pl).

1°

In view of this result, we can define L(DPDA) to be the class of languages
accepted by deterministic pushdown automata, without worrying about the type
of acceptance (final state or empty store).

Instead of deterministic PDA's we can also consider non-determinislic
PDA's (NDPDA), where the next-state function is multi-valued, i.e., f : K X
(Zu{g}) x T+ P x (Zule, -})). So, given a triple (Si’xj’pk)’ there are
several possible choices for the next state and the new pushdown symbol.

Again, an input string w is accepted by final state if at least one choice
eventually leads to a final state, and a string is accepted by empty store

if at least one choice eventually leads to an empty pushdown‘stack. As before,
both types of acceptance are equivalent, and we can uniquely aefine L{(NDPDA)

as the class of languages that are accepted by NDPDA's.

For finite~state automata and for Turing machines, the deterministic and
the nondeterministic prototypes turned out to be equivalent wi;h respect to the

class of accepted languages. This is not true for PDA's. In fact the
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- language L = {w wR / weL*} is accepted by an NDPDA but not by a DPDA (see
example 49), so PDA's are our first example of machines where Lhe nondeter-
ministic model is more powerful than the deterministic one.

Obviously, by ignoring the pushdown store, a DPDA is nothing more than a
finite-state machine. Consequently, every regular language can be accepted by

some DPDA. The following fundamental theorem was proved by N. Chomsky in 1962.

Theorem 15:

The class of languages accepted by NDPDA's coincides with the class of

context-free languages:

L(MDPDA) - {typc 2}.

We therefore have the following chain of (proper) set-inclusions:

{type 3} c L(DPDA) C L(NDPDA) = {type 2}.

In fact, the language {1ncln / n > 0} over the alphabet & = {1, ¢} is in
L(DPDA) but is not regular, proving that {type 3} # L(DPDA). Languages

accepted by DPDA's are of importance and are called deterministic.

Exauple:

(48) Here we describe a DPDA that will accept the language
L w [wewt / we {0, 1}7}. We use "acceptance by empty store." 'Thus, let

v =10, 1, ¢}, T = {X, ¥, Z}, K = {so, sl}, . = start state, and X = initial

0
pushdown symbol.

Table 11 is the state transition table.

"Illegal" configurations (like s 0, X, ...)) have been omitted from the

l’
table - they certainly never lcad to a final state or an empty pushdown store.

The operation of this machine can be described as follows. As long as

we have not reached a "c¢", every "0" input causes a '"Y" to be added to the top

of the pushdown stack, while every "1'" causes a "Z" to be added. Also, the
T n

state does not change. The moment a '"c¢" is encountered, the state changes

from s, to s but the pushdown stack is not modified. From then on, for

o T 1
every "0" input the machine expects a "Y" on top of the stack and removes it}
similarly for a "1" input the machine expects a "Z" on top of the stack, and

promptly removes it. The moment an "X" is encountered on top of the stack,
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Table 11. State-transition table for example 48.

Current . Current Current top Next Next top
state input pushdown symbol‘ state pushdown. symbol
SO\ 0 ‘ X o Y
s, ‘.0 Y A Sy Y
S0 0 Z s, Y
S 1 X Sy A
S, 1 Y s, Z
\ o 1 Z 80 Z
o c X Sy -
Sy c Y sy -
Sy c Z 8y -
s, o v S e
S 1 Z Sy €
sy £ X $1 £

it is removed (we have reached the last input symbol). The stack is empty,
s0 the string wcwR has been accepted. TFigure 41 shows the varying contents
of the pushdown store as the input sequence 011cll0 is accepted. A sequence
(such as wcwR) which reads the same forwards or backwards is called a
palindrome. We have shown that the language L = fwew® / w € {0,1}*} is in

L(DPDA), so, by our earlier definition, L is a deterministic language.

Example:

(49) We now exhibit a language that, in contrast to the previous
example, cannot be recognized by a deterministic PDA, but only by an NDPDA.
The NDPDA that we shall construct will recognize the language L = {wwR /
we{0,1}%}. Again we'll‘use "acceptance by empty store."

Let & = {0,1}, T = {x,v,2}, and K = {so,sl}, where s, = start state and

0
X =-initial pushdown symbol. Table 12 is the state-transition table.
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Input: ' 0 1 1 c ] 1 0
Top of pushdown store: X

<
N
N
<
X
m

X

X <
X < N N
X < N N

x <

x

J

Pushdown store emptied

¥ig. 41L. Contents ot the pushdown store as the sequence 011c110 is accepted.

Note that this machine acts nondeterministically only in two situations:
(a) in state g after reading 2 consecutive 0's,
(b) 1in state 59 after reading 2 consecutive 1l's.

In both situations the machine must choose between two possibilities: either
it is still reading a symbol in the first part w of the string wwR, or it has
just reached the first symbol of the second part wR (i.e., it has just reached
the "midpoint'" of the sequence).

Since the machine has no way of knowing which of the two possibilities it
has encountered (at least not until it has read the last symbol of the input
string), it must allow for both possibilities. This is where the nondetermin-
ism becomes unavoidable (a fact which we will not prove, though). Note that
if the machine "thinks" it has reached the midpoint of the string, it changes
frqm state Sy to S1s and then it keeps removing symbols from the top of the
pushdown stack.

In contrast to the language L = {wwR}, the language {wew} of the prevfous
example could be recognized by a deterministié machine since the special

"center symbol" ¢ marked the midpoint of an input string.
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Table 12. State-transition table for example 49.

Current Current Current top Next Next
state ~ input pushdown symbol state pushdown symbol
50 0 X S5 Y
o 1 X s, VA
sy 0 Y S5 Y
$1 €
50 0 Z s, Y
g 1 Y o Z
80 1 Z o Z
sy €
S5 0 Y ) €
S1 1 Z 51 €
s0 € X sl £
Sy £ X Sy €

Linear-Bounded Automata

Having so far found three types of machines (finite-state automata,
Turing machines and nondeterministic pushdown automata) that recognize the
classes of regular, recursive, and context-tree languages, respectively, we
now complete this subject hy presenting machines that recognize context-

sensitive languages.
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Definition 30:

A linear bounded automaton of multiplicity K is a Turing machine which,
given a tape with an input sequence of length n (i.e., occupying n adjacent
squares) is only allowed to use K n squares on the tape. In other words, an
LBA is a Turing machine for which the length of the usable tape is a linear
function of the length of the input sequence. The multiplicity (K) is an
integer that is intrinsically associated with the particular LBA. The
following theorem shows that the multiplicity K can be assumed to be 1 without

loss of generality.

Theorem 16:

of multiplicity K (K>1) there exists another LBA L, of

For any LBA L 9

1
multiplicity 1 which can perform the same calculations as L

1°
We won't go into the details of the proof but rather we mention that the
main idea of the proof consists in converting a tape of length Kn (input

1

tape for Ll) into a tape of length n with K 'tracks,' which then serves as

input tape for L We also assume that the input sequence is bounded on the

left by a left eid marker ¢ and on the right by a right end marker $. As L2
scans the K-track input tape, it moves to the next track any time it encounters
the right end marker $.

Because ot this theorem, most authors only consider LBA's ot multiplicity
1, i.e., they define an LBA as a Turing machine that is never allowed to leave
that portion of the tape initially containing the input sequence. Since an
LBA is a special Turing machine, we can talk about deterministic and non-
deterministic LBA's (denoted DLBA's and NDLBA's). '

Let L(DLBA) be the class of languages accepted by DLBA's, and let L(NDLBA)

be the class of languages accepted by NDLBA's.

Unsolved Problem: Is L(DLBA) = L(NDLBA)?

Here is a first example of a machine for which it is not known whether the
nondeterministic prototype is more powerful than the deterministic one. Of
course, as always L(DLBA) C L(NDLBA), but does the inverse inclusion also
hold?
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Concerning the languages accepted by NDLBA's, Landweber and Kuroda (1963
and 1964) proved the following result: '

Theorem 17:

The class of languages éccepted by NDLBA's coincides with the class of

context-sensitive languages, i.e., L(NDLBA) = {type 1}.

Even though we do not know whether L(DLBA) = L{(NDLBA), we have a lower
bound on L(DLBA), namely, every context-free language is accepted by a DLBA:
{type 2} € L(DLBA). 1In fact the two sets are not equal, since the .language
L = {ONlNZN / N> 1} is not context-free, but L € L(DLBA).

Summarizing the results of this chapter we have the following chain of
set-theoretic inclusions:

, ? .
{type 3} C L(DPDA) C L(NDPDA) = {type 2} C L(DLBA) C L(NDLBA) = {type 1}..

In Table 13 we present the four classes of formal langdages and the associated

recognizing machines.

-Table 13. The classes of formal languages and associated recognizing machines.

Language Recognizing machine
Regular ) DFSA = NDFSA
Context-free . : NDPDA D DPDA
Context-sensitive NDLBA D DLBA (?)
Recursive DTM = NDTM
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APPENDIX 1 - NOTES ON NP-COMPLETE PROBLEMS

by Kelly Booth

Background

Previous lectures have introduced the idea of an algorithm, either as a
computer program written in a language like FORTRAN or ALGOL, a Turing-machine
description, or as a general phrase-structure grammar (Post production system).

It can be shown that all of these definitions define the same set of
problems. We can solve a problem using a program if and only if there is a
Turing machine that solves the problem and if and only if there is a phrase-
structure grammar that solves the problem,

Church's thesis is the intrinsically‘unverifiable assertion that any
definition of effective computability will lead to exactly the same set of
computable problems. ‘ »

We also know that there are noncomputable (undecidable, nonrecursive)
problems that have no solution.

In what follows, we examine the relative complexity of problems. Ignoring
all unsolvable problems (who needs to waste time solving the halting problem!),
there are still problems with solutions so complicated that for all practical

purposes we cannot solve them, even though theoretically solutions exist.

Polynomial Transformability

A problem P has time complexity T(n) on a Turing machine if there is some
Turing machine that solves the problem in T(n) steps for inpufs of size n.

As an example, a Turing machine can recognize a string of 0's and 1's
in which no two 0's are consecutive in linear time, simply by scanning the
string. Thus T(n) = c*n for some constant c¢>0.

Edmonds has suggested that a useful criterion for deciding whether a
problem has a practical solution is to demand that its complexity be a
polynomial function of n. Thus, the previous example qualifies, but
T(n) = 2" does not. This seems to be a useful rule-of-thumb, and we will
simply use it, without further debate,

One comment, however, should be made. All of the models of computation
cited earlier have the following property: model I (e.g., Turing machines)

can be simulated by model II (e.g., computer programs) in a polynomial number
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of steps. Thus if a problem has Turing-machine complexity T(n), its complexity
as a computer program is at worst P(T(n)) where P(x) is a polynomial. 1In
particular, if T(n) is itself a polynomial, then so is P(T(n)).

This last remark implies that there is no loss of generality in
restricting attention to Turing machines.

We say that a problem P. is polynomially transformable to a problem P

1 2
if and only if there is an algorithm (running in polynomial time) that converts

inputs for problem Pl_to inputs for problem P2, and this translation has the

property‘that Il is a solution for Pl if and only if 12 is a solution for P2

(17 is the encoded Il)'
For example, consider the problem P1, which is '"n is odd," and the

problem P, which is "m and n are relatively prime." Lf we encode inputs ''m"

2

for Pl as "2,n" for P2, then it is clear that using an algorithm for P, we

2

can solve P1. Notice that the encoding is trivially polynomial.

The Classes P and NP

A problem is said to be in P if and only if it can be solved by a Turingi
machine that has polynomial complexity. Here, we mean a deterministic Turing
machine. If we relax this to mean a nondeterministic Turing machine, then we
have the class N?.

Amazingly enough, no one knows whether P = NP! It might be that allowing
a Turing machine to "guess' (the nondeterminstic moves) provides absolutely no
new power in terms of polynomial computability. '

A problem P € NP is NP-complete it and only it tor any ?roblem P’ € NP,
P' is polynémially transformable to P.

It may not be obvious that this definition is satisfied by any problem P.

But there do exist such problems.

Theorem (Cook):

The problem of determining whether a set of clauses is satisfiable is
NP-complete.
First, let's look at the problem. A clause is a Boolean expression of

thé form

AvBvcC [here "v" is the logical "or" and the bar is negation]
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in which the terms are the literals A, B, and C (note that some terms can be
negated). A set of such clauses is satisfiable if and only if there is an
assignment of "true'" and '"false'" to the literals so.that all of the clauses

are 'true."

Proof Sketch:

Suppose that we have an arbitraryAproblem PeNP. Then there is some
nondeterministic machine M which solves P in polynomial time P(n). We want
to construct an input for -the satisfiability problem.

If M requires P(n) steps to solve a problem of size n in P, then M does
not use more that P(n) squares of. its tape.

We can define literals Cijt which have the meaning 'cell i has symbol j
at time t." By the above remarks, i and t extend from 1 to P(n). The values
of j depend only on M.

Similarly we can define S to be "M is in state k at time t," and Hi

k,t
to be "M is scanning cell i at time t."

b

It is a fact that there are only C*[P(n)]2 literals so defined and they
can be used to build a set of clauses that is satisfiable if and only if M
suécessfully accepts the original input.

The details may be found in Ref. L.

To sum up, satisfiability captures all of the problems in NP, since an
algorithm for satisfiability can be converted to an algorithm for any problem
in NP.

There are many other NP-complete problems.

Theorem: .
All of the following are NP-complete.
(1) Satisfiability.
(2) Does a graph have a clique of size k?
(3) Does a directed graph have a Hamilton circuit?
(4) 1Is a graph k colorable?
(5) 1Is there an efficient scheduling algorithm for a multiprocessor?

(6) Traveling salesman's problem.
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(7) Knapsack problem.
(8) Subgraph isomorphism.

There are so many NP-complete problems, none of which are known to have poly-
nomial solutions, that it is wvery unlikely that any of them has a polynomial.

solution. This follows from the corollary below.

Corollary:

P = NP if and only if a single NP-complete problem is in P.
The lesson to be learned from this is that there are probably many

problems of interest that have solutions but cannot be solved on any .feasible

computer within the foreseeable future.
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~\

(D

(2)

(3)

(4)

(5)

(6)

APPENDIX 2 - ANSWERS TO EXERCISES

Statement (b) is the only correct one. The modified statements are:

(a) P(A U B) D P(A) U P(B)
(b) TP(ANB) =P(A) N P(B)
(¢) P(A \ B)C P(A) \ P(B)

(a) A\N(@ANB) =(A\ AU (A\ B) = A\ B.
(b) A=A\N(ANB) =A\D [by (a)].

N o’

=9

+
f :Z =+ Z is given by

f(2n + 1) = -n for .n o, 1, 2,
f(2n) = n for n =1,2,3,....

(a) If g~ £ = lA’ then f must be injective and g must be surjective;

Suppose f(al) = f(a2) for aj, a, € A. Then a, = g(f(al)) = g(f(az)) = a,,

(=

so £ is injective. Also, for every a € A, a g(f(a)), so g is surjective.

(b) Iff + g-= lB’ then f is surjective and g is injective (by part
(a)). Thus, g * £ = lA’ and £ < g = lB
one—-to-one and onto, and inverse to each other. They therefore establish

implies that both f and g are

an isomorphism between sets A and B.

A € P(A) = P(B) implies A € P(B), i.e., A C B.
B € P(B) = P(A) implies B € P(A), i.e., B C A.
Thus, A = B. ‘

L(G) contains all strings of matched parentheses, i.e., all strings of
parentheses that onc could encounter in arithmetic expressions. The

grammar is context-free..
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(7)

. (8)

(9

Modify the sets V and P by introducing non-terminal symbols

Al’ A2, . Ak—l’ and defining P' by
( N
g > XlAl
A1 7 Xoh
Ay > Xahy

A

S
\Ak—l ="

/

Clearly this grammar G' is regular, and L(G) = L(G').

The language is empty: L(G) = @. This follows from the fact that the
first and third productions will never allow us to replace the nonterminal
"B" by a terminal string - any string we derive will always end with

..... 87, 'Therefore, L(G) is empty.

Define the grammar G = (V,Z,P,0) by
Z——-»{'l', -y *,/, (), a, b, ¢, ..., V¥, Z}’
Vv = zu{c}, and the productions P: -

+0 4+ 0
>0 -0
> a0 K g
c/o
> 0 %% g
(o)

a

a a a a a a c
¥ +

es e e +

Q
¥
N

Clearly, L(G) will contain all FORTRAN arithmetic statements (and more).
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(10) Using the above productions, we derive the statement

a - (a*((b + ¢)/d)**e) as follows:

0~>0-0=+a-0U=a- (0) >a- (0%*%0)
> a - (g%*e) > a - (o%g**e) > a - (a*o**ke) -
> a - (a*(0)**e) > a - (a*(g/o)**e) -
+ a - (a*(o/d)**e) > a - (a*((0)/d)**e) ~»
+ a - (a*((oto)/d)**e) > a - (a*((0 + c)/d)**e)
> a - (a*((b + c)/d)**e)

-111-



(11) This is the state-diagram for a Mealy-machine that subtracts binary

numbers.

D

(12) Let A = (K,Z,F,s,,), where K = {s,s,,5,}, T = {0,1}, F = {s;}, and
f(sO,O)‘= $; f(sl,O) = s2 f(sz,O) = s,
f(so,l) = 8 f(sl,l) =9, f(z,l) =5, -

Note that inputting two or more 0's in a row will kick us into state Sy

from which we can never return.

(13) (a) Let B = (K',Z,O,so',f',g') be a Moore automaton. Define a Mealy

machine A = (K,Z,O,so,f,g) by:

K=K',s,=s,",f=£f',g=g" £ :K' xI~>0.

0 0
Now g(x,) = glsy's x) = g"(£7(s"s %)) = g'(x))
and g(xl...xn) = g(f(so', xl"'xn—l)’ xn)
= g'(f'(f(so', xl...xn_l), xn))

' 1 ' — o!
g' (f (sO . xl...xn)) g (xl...xn).
Thus, A is equivalent to B.
(b) Start out with a Mealy machine A = (K, I, O, so,f,g).
Define a Moore-machine B = (K',%,0,s,',f',g"') by:
K' =K X L, so' = (so,e);
let f': K' X & > K' be f'((s,x),y) = (f£(s,x),y)

and let g': K' - 0 be g'((s,x)) = g(s,x), where x,y € L, s € K.
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(14)

Then:

g'(x) = &' (£'(sy" %)) = g"(£' ((s(,€),%,))
= 8" ((£(s(,€),%,)) = g(fs;,€),x)
= g(so,xl) = g(x).
Also:

1

g (xl...xn) = g'(f'(so',xl.;.xn))

g'(f'(f'(so',xl...xn_l),xn))

g' (£ (£ ((5,€) 3wk _1),% 1)) = 8" (€' (55 - ox__1)% )

g'((f(so,xl...xn_l),xn)) f g(f(so,xl...xn_l),xn)

= g(x .xn).

10"

Thus,'we have shown that B is a Moore machine equivalent to A. DNote
that if A has n states (IKI = n) and m input symbols (|Z| = m), then B
has men states (|K'| = |K X Z| = m*n). 1In going from a Mealy to a Moore
model we have to increase the number of states to make up for the loss
of input-dependence in the output function g' : K' - O. |
Define AR = (K',Z,F',SO’,f') as follows:

K' =K; F' = {sj}; s =F;

f'(s,x) = {8 / 8 € K and f(s,x) = s}
To show that T(AR) = LR, let w = X, X,....X

A 12 n-1%n
L = T(A), and suppose that f(so,xl) =S5 f(sl,xz) = Soseens f(sn—l’xn)=

be a string in

s. € F for some states s.,S,.,...,S ,8 € K. Now we input the reversal
n 1°72 n-1’"n R R

wh = X X .- -XpX) to A7, and we must find that w € T(A™), i.e.,

£'(s.', wR) NF 40, but F' = {SO}, so we must show that s € f'(SO',wR).

Now £'(s.', x) =1{s e K/ f(s,x ) € F} # 0,
0 n n

. ' ' .
since s, €f (SO ’Xn)’

and f' (s x .)=1{seK/ f(s,xn; } # 0,

n-1’"n-1 ) = s

1 n-1

. '
since s__, € f (Sn—l’ Xn-l)'
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Continuing this argument, we see that

S.

Finally, s

Informally, we can draw

As we see,

in state s

It is not hard to show also, that if v € T(A ), i.e., s

then v =

AR -

i-1

0

. . R
hy inputting w

0’

€ f'(si,xi)

\i
€ f (sl,xl)

so that s
0

{s e x/ f(s,xi)

{s e x / f(s,xl) =

this diagram:

€ f'(S

w for some w € T(A).

K',Z,F',8.',f"), where K'

X X
n"'n 1

s w ), il.e., w

o s XX

271

and the next-state function f' is given by:

= {s
= {s €

€ K/

{s €
= {s €
{s €

= {s

f(s,0)
f(s,1)
f(s,O)
f(s,1)
f(s,0)

f(s,1)

= {30,31,59} F' = {s },
= so} = {SO’SI’SZ}
= so} =0
= Sl} =9
= sl} = {SO}
= s2} =0
= 52} = {sl,sz}
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R
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n‘sv),

' =F = {sz},



For exampie, the string 111010 € T(AR) can be drawn as follows:

?6']_’{51' sp)
1 toy syt
‘]_'_;{so}
IoAv—.’{s‘o' S0 5}
0 tsgrsyrsy)

The string 1011 ¢ T(AR), since we have:

—

(16) The Turing machine whose input tape and state diagram is given in
problem (17) will add the numbers m and n, and write the result (m + n 1's)

after the square with the "Z."

(17) The above answer solves this problem.
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(18)

(19)

Assume T is.an arbitrary Turing-machine and (s.,xj,sij,xij
(Sk,xl,skl’skl’ skl (SO T 1S VlOt a

directed state machine). Add two states, say Sij and s;j, and replace

,L) and

R) are two quintuples with sij =

the quintuple (sk,xl,skl,xkl,R) by the 3 quintuples:

\]
(Sk,xl’sij ,XleR)

(Sij,x,s;j,x,R), for any x.

1
(sij,

X’Skl’X’L)’ for any x.

Repeating this procedure for all pairs of '"'noncompatible' quintuples
(adding 2 new states, and replacing one of the quintuples by 3 new
quintuples as shown) will result in a directed-state machine that is

equivalent to the original machine.

The finite-state machine that is equivalent to a 'one-way" Turing
machine has the same states and the same input and output alphabets.

Furthermore, the next-state function F and output function G are

F(si,xj) = sij

G(si,xj)

X, .

1]
where (Si’xj’sij’xij’R) is a quintuple. This completely defines the
finite—-state automaton.
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APPENDIX 3 - ABBREVIATIONS AND GLOSSARY OF SYMBOLS

Abbreviations
BNF Backus-Naur form of a grammar
DFSA Deterministic finite-state automaton
DLBA Deterministic linear-bounded automaton
DPDA Deterministic pushdown automaton
DTM Deterministic Turing machine
LBA Linear-bounded automaton
NDFSA Nondeterministic finite-state automaton
NDLBA Nondeterministic linear~bounded automaton
NDPDA . Nondeterministic pushdown automaton
NDTM Nondeterministic Turing machine
PDA Pushdown automaton

Glossary of Symbols

Set Theory

{a,b,c,d} Set of elements a, b, ¢, and d

{x / x has P} Sefr of all elements (x) that have property P

a €8S a is an element of (belongs to)‘thelset S

a é¢s a does not belong to the set S

1) Empty set (containing no elements)

g g i A is a subset of B

A UB Union of sets A and B

AN B Intersection of sets A and B

A\B 4 Difference of sets A and B

A X B Cartesian product of sets A and B

PiA) Power-set (set of all subsets) of the set A
9 .
Is| Cardinality (size) of the set §

xo Cardinality of all countable sets (Aleph zero)
(a,b) Ordered pair of elements a and b

R - Set of all real numbers

Q Set of all rational numbers (fractions)

z Set of all integers
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z Set of all non-negative integers
f:A—> B f is a function from set A to set B
f(a) Function-value of f evaluated at element a
g-f Composition of functions f and g
(first carry out f, then g)
Df Domain of function £
Rf Range of function £
avhb Equivalence relation (a is equivalent to b)
[a] v Equivalence class (set of all eiements that are equivalent to

the element a)

a = b (mod ¢) a is congruent to b modulo c; means "a and b have same
remainder if divided by c."

Afv Quutlent sec (sev ol 41l eyulvalence classes)

Logical Symbols

= . "implies"

® "if and only if"

Ix "there exists an x such that...."
vx "for all elements X, ..... "

Languages and Grammars

z Finite alphabet (set of terminals)

*

z Set of all finite strings formed from elements of I
\Y Finite vocabulary (set of terminals and non-terminals)
£ Empty string

|w] Length (number of symbols) of string w
o] Start variable (always a nonterminal)
w v Production (w produces the string v)
v : v Derivation (w derives the string v)
W=V

G

L(G) Language generated by the grammar G

R . .
w String w in reverse order
LR B Language of all reversed strings

<A> : BNF-description for a non-terminal-

1= BNF for '"-" (production symbol)
BNF for "or"
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Machines

A{E}UMUMZUM

Finite set of states

Subset of final (or accepting) states
Subset of initial (start-) states
Initial (start-) state

Finite set of output symbols

Time . !

%
Product (concatenation) of subsets of I

3

Language (tapes) accepted by machine A

Input tape

Description of Turing machine T

Minimization operator (partial-recursive function)
Symbol initially at top of pushdown-stack

Finite pushdown alphabet

Language .accepted by PDA P by final state

Language accepted by PDA P by empty pushdown store
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