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PREFACE

The object of this work is to study fluid dynamics
using symmetry principles. An invariance algebra technique
which was originally developed by Lic is used to investi-
gate non-ideal fluid dynamics ia the Navicer-Stokes approxi-
matien. A novel aspect of our approach is to regard
particle interactions within the fluid as symmetry breaking
mechanisms,

The fluid equations of motion must ke consistent with
the fundamental invariance principles of classical mechanics
and thermodynamics. An operator realization of the invar-
iance principles of fluid dynamics is derived in the firse
chapter and displayzd in Table 1.1, The interplay between
kinematical and thermodynamical symmetry principles within
the Navier-Stokes description leads to a characterization
of fluid motions according to subgroups of an umderlying
dynamical invariance group. The inequivalent subgroups
of the Navier-Stokes invariance group produce “similarity
variables,” for which the onc-dimensional unsteady XNavier-
Stokes cquations reduce to ordinary differential equatioss.
The group invariant coordinates for which this reduction
occurs are cataloged in Table 1.3 and Table i. ¢. Under
the assumption that the flow variables in a group reducible
motion depend on space and time in the same way as the
boundary and initial conditions, the vroup invariants which

are displayed in the text are applicable to a rather large

T



number of physical situations. The group invariants lead

to classces of solutions of the Navier-Stokes equations and
provide cases of moving boundaries for which group reducible
sclutions exist., The multiparameter invaria.ts of Table

1.5 are especially useful because they contain arbitrary
constants which may be adapted to the specifications of
particular problems.

Two types of symmetry-breaking particle interac’ions
are considered scparately in Chapter 1: (1) Mie-Gruneisen
deviations from a perfect gas equation of state; and (2)
temperature dependent dissipation. In both cases the
introduction of symmetry hreaking reduces the invariance
group of a4 simple isentropic gas to a subgroup, but it
does not alter the invariance group structure. An empirical-
1y relevant clastic pressure interpolation fupction is found
for which the isentropic fluid equations admit more than
smerely a kinematic (Galilean) symmetry group. Analytical
characteristics and exact group reducible motions of isen-
tropic Mic-Gruneisen (power-law) fluids are presented. An
invariance algebra for dissipative fluids is also derived
and group rediced equations of motion are given. Although
no cxact scolutions for dissipative motion in the full
Navier-Stokes description have bheca found in the present
work, first integrals are given in a special case.

In the second chapter, dissipative fluid motions are
treated at the level of Burgers' approximation to the

Navier-Stokes cquations. Burgers' equation governs the
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final stages of weak shock wave formation in Navier-Stokes
fluids. Group theoretical techniques are used to construct
invariance principles and find classes of group reducible
fluid motions. The symmetry analysis produces operator
realizations of the invariance principles underlying the
convective diffusion process. These are listed in Table
2.1. It also classifies the group-reducible motions and
yields previously unpublished exact solutions for Burgers'
description (see Table 2.3). Finally, the famous Cole-
Hopf transformation between nonlinear and linear diffusion
equations establishes itself naturally in the process of
invariance analysis.

In addition to the material in I and 1T, explanations
of peripheral topics are collected in three appendices.
Primarily expository matters reside in Appendix A and
Appendix C. ‘lovever, further new results are included in
Appendix B. Finally, the Bibliography contains an array
of modern and historical articles concerning the use of
symmetry principles in conjunction with dynamical laws.

Lie's invariance method for the integration of differ-
ential equations is summarized in Appendix (. The history
of the development and application of Lie's theory to
physical problems is surveyed. The physics background
which has led to a revival of lie's invariance analysis
is given and the connection with modeling theory is des-
cribed. The method of Lie is a natural generalization of

the method of self-similar solutions. The deduction of
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invariance principles from given dynamics is implemented
in an example using the wave equation. The known conformal
invariance algebra of the wave equation is constructed and
realized as a differential operator algebra. Sample group
reducible solutions - which include{d'Alembert’s solution -
are derived from the operator algebra. Lie's method is
also demonstrated for the boundary 1a1ue problem.

The extension of invariance co%ditions to differential

|
I
manifolds is described in Appendix ‘. Invariance of a

|
differential surface element is cen&?al to the application
of Lie theory to differential equat:ions.

In Appendix L the Lie symmetry properties of Newton's
equations of motion in classical mechanics are shown to
lead to useful geometric invariance transformations on
particle trajectories. For example, Kepler's law relating
the period and size of planetary orbits appears as a scale-
invariance principle for the equations of motion. Lie's
method is employed in the construction of the symmetry
algebra. The algebraic treatment of classical mechanics
constitutes a further illustration of invariance analysis,
this time for ordinary differential equations. The
geometric invariance principles of classical mechanics are
derived for various interparticle force laws. The associ-
ated group structures in each case are subgroups of the
projective group, which is locally isomorphic to SL(3,R).
A study is made of classical symmetry breaking for power

law, harmonic, centrifugal, and Newtonian - ?& forces.
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The scaling laws of the particle orbits are obtained. The
harmonic and centrifugal forces are shown to possess "acci-
dental"” symmetries. The introduction of symmetry breaking
terms in the force law reduces the differential operator
invariance algebra to a subalgebra. The last two state-

ments, along with the specific algebraic structures are

apparently new results.
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NOTATION

The most common symbols which denote physical quanti-
ties in the text are listed below. Wherever duplications
in usage appear, the meaning of the notation is clear from
the physical or mathematical context.

c

> e X % -

v

[P

Lo o

P
Adiabatic sound speed c? = 55)3 = %

(also, the speed of light in vacuum)
Specific heat at constant pressure
Specific heat at constant volume

Kinematic deformation tensor
jth component of gradient operator

Material derivative ft = aét oy a—";‘
)

Kroneker delta symbol

A small parameter, often a field of infinitesimal
group parameters

Shear viscosity coefficient
" -
Gruneisen parameter
Internal energy per unit mass

Thermal conductivity (also, adiabatic compres-
sibility)

Adiabatic compressibility
Characteristic dimension of flow
Molecular mean free path
Pressure tensor

Scalar pressure

Infinitesimal differential generator of a Lie
group

xiii



Ll

Heat flux vector

Mass density

Entropy per unit mass of a fluid
Time

Temperature (°K)

Fluid velocity vector

ith component of velocity vector
2u;

dXj

Volume per unit mass

Constant velocity vector
Position vector

ith component of position vector

Bulk viscosity coefficient

Xiv



ABSTRACT

SYMMETRY BREAKING IN FLUID DYNAMICS:
LIE GROUP REDUCIBLE MOTIONS FOR
REAL FLUIDS

by
Darryl Dallas Holm

Co-chairmen: Roy A. Axford, G. W. Ford

The physics of fluids is based on certain kinematical
invariance principles, which refer to coordinate systems,
dimensions, and Galilean reference frames. Other, thermo-
dynamic, symmetry principles are introduced by the material
description. 1In the present work, the interplay between
these two kinds of invariance principles is used to solve
for classes of one-dimensional non-steady isentropic motions
of a fluid whose equation of state is of Mie-Gruneisen type.
Also, the change in profile and attenuation of weak shock
waves in a dissipative medium is studied at the level of
Burgers' approximation from the viewpoint of its underlying
symmetry structure.

The mathematical method of approach is based on the
theory of infinitesimal Lie groups. Fluid motions are
characterized according to inequivalent subgroups of Fhe
full invariance group of the flow description and exacf

group reducible solutions are presented.
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CHAPTER 1

GROUP REDUCIBLE FLUID MOTIONS

After a brief introduction to the symmetry laws of
fluid dynamics, we study the invariance principles admitted
by an ideal fluid with a Mie-Gruneisen equation of state.
Energy dissipation by heat conduction and viscosity is put
aside urntil the last two sections of this chapter. Empiri-
cally derived equations of state for metals are fit with
symmetry - adapted functions and group redrcible fluid
motions are determined. In the context of fluid dynamics
we determine how symmetry breaking occurs through inter-
action terms in the equation of state. The generators of
the basic invariance principles of classical dynamics and
fluid dynamics are realized in the form of differential
operators. These operators are used to derive the natural
group invariant variables for isentropic fluid motion with
a Mie-Gruneisen equation of state. The general analytical
characteristics of group reducible motions of such a f{luid
arc presented. Similar calculations are made for a dissi-
pative fluid obeving an ideal gas equation of state.

A. The Fundamental Invariance Principles of Fluid Dynamics

A fluid consists of an indefinitely large number of
particles. Therefore it has an indefinitely large number
of degrees of freedom. The styucture of its motion 22 the

molecular level is too complicated to study. #However, it



has been established experimentally that the collective
effects of the mulecules can be adequately described by:

(1) a very small number of flow variables, e.g.,
the density, mean velocity, and two thermodynamic functions.

(2) a corresponding set of transport equations.

These are the Navier-Stokes equations, which express the
conservation laws for mass, momentum, and energy.

(3) a few constitutive functions, which express the
energy and momentum flux densities in terms of the flow
variables.

The view of classical fluid dynamics is that the
constitutive relations are defined locally in terms of the
flow variables. The material-dependent coefficients which
appear in the transport equations enter as functions of
local scalar state variable of the fluid, or as constants.
The medium itself is assumed to stay near local thermody-
namic equilibrium, so that its equilibrium equation of state
applies.

Consider one-dimensional motion of an ideal fluid.

Each fluid element moves isentropically. Erergy dissipation
between fluid elements by heat conduction and viscosity is
neglected. Except where steep gradients appear, or when
energy transfer mechanisms between molecular modes have long
relaxation times, the neglect of energy dissipation is a
good approximation.

In one dimension, the isentropic fluid dynamics equa-

tionc are given by the conservation laws for mass




dr ro- | (1-1)
— 4 U, o+ = ru = D
i* x
momentum,
lu _I_ (1.2)
‘:i—t - () F" = (@

and energy,

»s _ I FoLe
eIy < Lt‘EZLt—O (1.3)

In the continuity equation (1.1), n 1, 2, 3 for planar,
cylindrical, or spherical geometry, respectively. Equation
(1.2) is Newton's Law, F = ma. Equation (1.3) expresses the
First Law of Thermodynamics for isentropic flow.

The form of the equation of state is taken to be
F:*t(ell) (1.4)

The choice of a specific relation for the equation of state

is postponed for a moment.

The energy balance or heat flow equation may be rewrit-

ten as

(1.5)

—

s _ hY Se L€ -
ert = fQSrL o ¢ Tt o

Then, remembering the definition of the sound speed and

substituting the mass conservation law (1.1) we have

et (uar Huy s o

(1.6)




The isentropic First Law, equation (1.3), gives

JdI g TS (1.7

Hence, the sound speed is obtained directly from the equa-

tion of state, relation (1.4), when solved for I.
(1.8)

_ ! | . ) /
¢e® = ‘f)‘,(% - eTe) = K. te v

The inverse adiabatic compressibility 5<;lis a function of
¢ and P .

The isentropic fluid dynamics equations in one dimension,
equations (1.1), (1.2) and (1.6), admit several types of
transformations. Let the boundary and initial conditions be
ignored, or assumed to admit the same transformations. First
of all, the universal symmetries of nonrelativisitic mechan-
ics are admitted: the equations are invariant under time
translations, space translations, and Galilean boosts (n = 1,
only. For n = 2, 3 there are preferred points). The ad-
mission of these transformations means, as usual, that the
same fluid dynamical laws hold, regardless of when, where,
or in which Galilean reference frame the experiments are
performed. The conservation laws are also independent of
the orientatien of the experiment, so, in more spatial
dimensions, the balance equations would also admit rigid

rotations. The corresponding kinematic operations are given

by:

e
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(1) space and time translations (1.9)

(X,ty — (KX + X ,t+t,)

(2) rigid rotations

(2, 5) — (RX, RU) (same R)

(3) Galilean transformations

(X W) — QI+—Et)ZI+5>

J

These kinematic invariance transformations hold for all
classical nonrelativisitic systems, and, as such, yield equi-
valence classes of solutions. For example, letP= f(x,t),

v = gx,t), and u =V (x,t) be solutioﬁs of the fluid con-
servation equations for some planar fluid motion. Then a
different flow, similar to the first one, but in the trans-
formed variables, is also possible. In other words, the

set of functions

E = Tixacttx, tat,) (1.10)

"

g

w :'V(X+Cti-7('t+tp) ~+~ ¢

S{xa+ct+ o, fi t.)

must also be a solution set, for arbitrary constants Xqs

t c.

o!
Beside these kinematic arguments, dimensional conside-

rations also have a place in the discussion. The fluid

dynamics equations contain five different dimensional quan-

tities x, t, u, f, and p or I. These quantities have three




independent dimensional units, namely mass, length, and
time. The basic dimensional scales may be changed provided
the thermodynamic descripcion of the fluid admits the scale
transformation. Generally the equation of state and the
constitutive relations place constraints on the scale in-
variance properties of the fluid description.

Suppose, however, that the fluid description does ad-
mit a scale transformation. Then there exists a family of
different flows which are similar to one another and are
derivable from a single solution by changing the basic
scales of length, time, and mass.

For example, suppose that the balance equations (1.1),
(1.2), and (1.6) admit a scaling transformation for some
choice of equation of state, given by

x > x! = @& x (1.11)

f*t’:%‘t

_ 3-3,\'
¢~ == f
— Y - -M-ZF
L AL
W > = e Uu

where X, P,J‘ are scaling exponents for length, time, and
mass. That is, let the balance equations be unchanged in
form if the primed variables above are introduced. Let
e= £(x,t), P= g(x,t), and u = v(x, t) be solutions for a
fluid motion, If the boundary and initial conditions also
admit the transformation to primed variatles, then a new
possible motion can be described by the same functions

f, g, v, but in the new variables. The solution for the



new motion is expressed by the functions
3x - & »”
7 = e ';-_(ex') E*t)

s 2RPix-Q N
Vo= o 3 (e“x , e¥r) (1.12)
' W o= et V(s , eV 1)

The new motion is similar to the old one, differing only

in the mass, time, and coordinate scales. Note that the

equation of state must follow the transformation for a new

motion of the same fluid to obtain. In this way the sym-

metries of the fluid description yield equivalence classes
of solutions.

There exist fluid motions which are invariant under
the transformations admitted by the fluid description.
These motions are called group reducible (see Appendix C).
In a group reducible motion each of the flow variables
evolves in time and changes in space in a group invariant
manner. The spatial profiles of any of the flow variables,
say the density, at different times during a group reduci-
ble flow can be made to coincide by performing a group
transformation which leaves invariant the fluid equations
of motion. The functinn e(x,t) which has this group

invariant property can be expressed in the form

e(k,t) = :‘5"*)'5) 'F(A(",t}) (1.13)

ES

The argument ANx,t) is a group invariant quantity. There-
fore the quantity ﬁ%ﬁfx,t) is also a group invariant.
For group reducible motions in one space dimension, the

system of partial differential equations of fluid dynamics



reduces to a system of ordinary differential equations in
new unknown functions of the group invariant variable M.
This of course produces a mathematical simplification.

Group reducible solutions are of physical interest, as well,
because they represent the asymptotic limits of solutions

to non-group-reducible problems.

Group reducible motions which are derivable solely
from scale -invariance are called "self-similar”. 1In a self-
similar flow the spatial profiles of any of the flow vari-
ables at different times can be made to coincide by simply
adjusting the scales of length and mass. Thus during a
self-similar flow the spatial profiles of the flow vari-
ables retain their shapes although their dimensions may

change. A self-similar density function would be express-

ed by >
e(’(’t) S N F (:;at)) (1.14)

The argument Jiaﬂ is called a "similarity variable".

Thus, self-similar solutions are special cases of group
reducible solutions. Conditions for self-similar solutions
to exist, examples of self- similar fluid motions, and refe-
rences are given in the books by Landau and Lifshitz, Sedov,
and Stanyukovich. Other examples of self-similar fluid
motions are referenced in the bibliography.

In the first part of the present work our objective is
to employ the general group invariance principles admitted
by the isentropic fluid description in order to find classes

of group reducible motions. The groups involved are Lie

R L N ST



groups - they depend continuously upon a space of parame-
ters. In order to employ the Lie group method, the infini-
tesimal generators for the invariance principles admitted
by the isentropic fluid description must be constructed.

Let us expand the transformations (1.9) and (1.11) in
a Taylor series in the group parameters. The results of
these expansions give infinitesimal variations which may be
realized on the space (X, t,'ﬁ,g, ¥) as differential opera-

tors. The infinitesimal generators are given by

Space translations: 595

Time translations: ;%

Rigid Rotations: &, (> aéxh-\- Wi 3%“3
Galilean boosts: 'b5%;‘* f{;

Length scaling: fo;L (vo sum)
Time scaling: " §t

Velocity scaling: ﬁ” (vo sum)
Density scaling: € ;%

Pressure scaling: P a%)

The combinations of infinitesimal operators admitted by the
isentropic fluid equations for a specific choice of equation

of state will be derived in the next section.

B. The Derivation of the Invariance Algebra for Planar
Isentropic Flow

We are dealing with isentropic fluid motions. How-
ever, up 'til now the equation of state of the medium has

not been specified. The medium which we shall consider
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is a homogeneous metal at the pressures and temperatures
produced by explosives. Under high explosive conditions
in metals the experimental pressures range from about 105

6 atm during time intervals of tens of

atm to almost 10
microseconds. The accompanying temperatures may reach
2000°k. Because the pressures involved greatly exceed the
elastic 1imit of the material and because little heat ex-
change occurs across streamlines, the medium responds as
an isentropic fluid.

A model equation of state with general validity is
the Mie-Gruneisen equation of state, which can be written
as

p= 2tol + Tt (1.15)

In the Mie-Gruneisen model the pressure,} , and the specific
internal energy, I, of a material are divided into two parts,
an elastic part and a thermal part. The elastic pressure
term f(e) represents the modification to the equation of
state due to interparticle forces within the material. The
other term in the equation of state is the pressure due to
thermal motion. The assumptions and physical reasoning
which accompany the Mie-Grunzisen form of the equation of
state are reviewed by Barron (1957). Experimental proce-
dures for establishing Mie-Gruneisen relations at high
explosive conditions in metals - i.e., thermodynamic pro-
cedures for measuring f(Q_) and g(Q_) above - are described

in Rice, McQueen, and Walsh (1958).
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For high explosive conditions in metals, the Mie-
Gruneisen equation of stzte takes the form
P o=~ ¥el,B + (e (1.16)
where ¥ is a constant called the Gruneisen parameter. At
the temperatures concerned, the specific heat of the lattice
follows/fthe Dulong-Petit law,
€., = 3Nk (1.17)
The specific heat is a constant, independent of volume.
The equation of state affects the isentropic fluid equa-
tions only through the adiabatic compressibility I<.. For
an ideal gas, P(;' is given by

=1
K, = Py

Cor

(1.18)

The elastic pressure term f(€>) in the Mie-Gruneisen equa-
tion of state alter the compressibility of the material.
For equation of state (1.16) the compressibility is given
by

Ko = (s+dp +(eF - F) (1.19)
For many substances1 the elastic pressure f(e ) obeys a
single power law in the density. Thus, over the relevant
range of pressure and density.

ey = G/ (1.20)

where C is a constant and the exponent/u.is usually greater

than negative one.

V. N. Zharkov and V. A. Kalinin, Equations of State for ;
Solids at High Pressures and Temperatures, transl. by
A. Tybulewics (Consultants Bureau, New York, 1971).
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Let us proceed to derive the invariance algebra for

planar isentropic flow of a Mie-Gruneisen fluid. Our ob-
ject is to construct a differential operator realization ¢

of the invariance operations admitted by such a flow and

to find the corresponding group reducible motions. The

logical order of the derivation of the invariance algebra

bt
4
)
@

is as follows,

WA

(1) The basic equations of motion are written down.
(2) General forms of coordinate functions for infini-

tesimal transformations are assumed. 5

(3) Covariance of the equations of motion is used to

impose restrictions on the coordinate functions. The re-

stricting equations are linear partial differential equa-

A AT S, RS S

tions which determine the coordinate functions.

(4) The restricting equations are solved for the
coordinate functions. The solutions yield the infinitesi-
mal transformations which leave the equations of motion
covariant. Because the coordinate transformations depend

on the equation of state through the adiabatic compressi-

bility, several analytic expressions for the compressibility

are discussed.

Once the coordinate functions for the invariance

algebra have been derived, group reducible fluid motions
are sought by transforming the equations of motion to group
invariant variables.

‘The basic conservation laws of isentropic fluid dynamics

in one space and one time variable are:




€y + (hed, =+ H;I ug = O (mass) (1.21)
g v Uy + —+ Fx = O (momentum) (1.22)
Petoup, + b (u + 220 u) = O (energy)  (1.23)

Only the planar case (n = 1) is explicitly considered, but
the results for cylindrical and spherical geometry are also
given. As written, the expressions in the balance equa-
tions are intended to have the following meanings and rela-

tionships,

Dependent Variables: Independent Variables:
Pressure p = p(x,t) Position X
Density g = ¢(x,t) Time t

Velocity u = u(x,t)
For the moment the bulk modulus P({C)P)=-fcais Tegarded
as an arbitrary function of density and pressure.
Let a Lie group of transformations on these quantities
be defined, to first order in the group parameter, by the

expressions

X}
y

X
1

§ Xlx,t,u,0,p)
E T(k) t/“/(’/ ‘F)
d Lz(x)t)u',j‘J P\

te

H
o
+

(1.24)

N}
1
S
&+

f‘ = 6 *‘SE{)(;L/EJ;F,}*)

;_ = p oS P x, t,u o F)
In the expressions (1.24) £ is an infinitesimal group
parameter. The quantities X, T, U, R, P correspond to the

coordinate functions of the infinitesimal generators in

differential operator form. A general such operator Q will

be given by the expression
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Q= X3+ T +rid, + T4 - o (1.25)
The operator Q is defined on the combined space (x, t, u,
¢, p). The coordinate functions correspond to independent
variations on (x, t, u, £, p).

The transformation properties of the various partial
derivatives appearing in the fluid dynamics equatioas arc
defined using the chain rule. A given transformation is
called a symmetry operation when it leaves the conservation
laws invariant up to an overall multiplicative factor. The
equations which determine the coordinate functions of the
symmetry operations admitted by the conservation laws fer
mass, momentum, and energy will be derived successively.

The order £ terms in the expressions which enter the

continuity equation are given by

e - ~ T
g - \Jf, - » Y
- - K -
- - AL 3 @4\ w Tt b
1 fi = /“’ - - - - . (1.-6)
- (X} -
- - - - Do
\E‘.\ f LS ‘f"(;. L 2. -~ N\ AX L

The extended coordinate functions R(t), R(x), U(x). etc.
are defined in Appendix B. In the barred variables, we have
- - 3 [ NL ) T FS -
4 +’gx\_ = °g+‘~’"")x + 2]_"{' ‘o u&”-.- dp. v gLI( “""-_}l (1.27)
The invariance condition is that the order ¢ terms in

(1.27) vanish when the continuity equation holds. Thus the

bracketed term in (1.27) must satisfy

CRY + uR™ & Lre, + e+ Ru.,.? = C(’,t‘[?t+ (eu‘..j (1.28)




A side calculation has climinated the higher order depen-
dence in the multiplier ¢(x,t). The bracketed term has a
long expansion which is not reproduced here. Upon equating
iike coefficients of the bilincar products of derivatives

in {1.25), & set of determining equations for the coordinate

functions resules,

z ~‘3-= v w¥, e wli, w D

te ¥, s pl, ok, =8 o OF

., * e B>

F A T gL 0 LT {1.29)
!‘. Vol - .‘:";‘ - r.‘;."“’ @ :

e ":P e .‘:n:? - U

v omp o= li, e O

The other powers of derivatives insure only that

T = T{x,t)

X = X{x,t) . (1.30)

Similarly, invariance of the momentum equation implies

that

. ) ey R - . -
" I S b T .'.:? - 2?.,& Pt} - mqg,«,i_g(u“kuu.'b;'f-,) {1.31)
% A

Hence, equating coefficients of like derivatives,
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£: U, +«+wa, +3B =0

¢

u,: -Xg*“uu"“xx*’(l:Fu.*u = ma
uti LTL\ 47;_ = “(7; = v
€ \ALY(, * %Ee = O (1.32)
= Re=‘ue=o
P(_; 'Lfe = 0O
Pt 30p - $Xu-3aR = tm
. | -
e ATz = TaTi e Reso

Thus the invariance criteria for the continuity and momen-
tum balance equations lead to differential relations among
the coordinate functions. The following dependence on

(x, t, u, ¢ p) has been determined,

T(t)
X(x,t)

U(x,t,u) (1.33)
R(x,t,p)
P(x,t,u,p) .

T R C X -
]

The invariance condition for the energy equation (1.23) is

derived from

Ba = 3 + v KEE )0, = \:t+ wuP = Kux

v s BT Up. vu (KeR+ i Bty + 137 (1-34)
The invariance condition for the energy equation, namely

[ Je = S lpevubos i<us) (1.35)

requires that, for like derivatives,
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B?t+u\f‘,. v L1l = 0O

e+ HPE: v uB, eI~k R, T KE

SR, T uPp-uRXn T En

(1.36)

The reduced determining equations for the eight quantities

T(t), X(x,t), U(x,t,u), R(x,t,¢), P(x,t,p), c(x,t), n(x,t),

E(x,t), with arbitraryiA(f,p), are collected below.

There

are twelve of them, four relations from each of the fluid

dynamics equations.

the inverse compressibility /< appears only twice.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

[ XY

Ry + uRy +elly = O

W, - Ky + %- = Cix,4)
é(u-xt\ + Kr- Ky = Clret)
Re - T, = Cixe)

W +tulde + §F. =0

T2 -X Y+ W, - Xx = mex, )
W= To = MOt

Fo- X x - —; = WD

Pe + ufe 4+ KU = O

E (e R+ KpE) + 13, -Kx = &
(1 -Xe) - Xx + By = &
B.- T = &

In the twelve determining equations,

(1.37)
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The solution of (1. 37 goes as follows. Combining equa-

tions (3) and (4), we find
1= Ayg-ulT - X, (1.38)

The same equation for U is obtained from {6) and (7) or
from (11) and (12). Now sclve for (Tt-xx) separately from
(2) plus (7) and from (8) plus (12). Subtracting and add-

ing the results gives,

TL'X* = ‘-z(r‘-—E) (1.39)

R _ c &\

E - , 3 mos=Z ) (1.40)
Hence,

11 = Xt— %(C"?) (1.41)

Equations (2) and (10) along with (14c¢) imply that
L (R IEY = 38 -4 -m (1.42)

If ¢, m, and £ are constant, then

U, = -5 (c-8Y (1.43)
Hence, from (6) and (1.43) we find

%oz (& - c-m)x 4 Py (1.44)
and as a consequence of (144 ), now (1.41) takes the form

17 = L(8-evu + My (1.45)




From (1. 43 and (1.40) we have

£ 2e- £
Bl = -5+~ - )+ (383 ") (1.46)

Consequently Px = Pt = 0, Since Px = 0 and xx = const,

then Ux *= 0. Then (5) implies that U, = 0 and f"(t) = 0.

Thus, f(t) = a + bt,
Finally, from (1.39) and (l.44), siace T, = 0, we can

integrate Tt' The results so far are collected below.

Hix,tY = x(E-2e-mN + &t + X

Ty = t{§-£-»4 1,

- - = S -2) 4 L‘

~Ttwd 267« (1.47)
- £ ¢ AN

Rier = els 4t -

Vo, . 3 s 0
;(V.GR* V(Pr\ = EP = (2&" 2 m)

The last equation in (1.47) can be rewritten as

x

o (&4 §-m) = (k- Fe - S-m)+ Bl (1.48)

or
(p+phicy + (@#H3)oKe = i< = O (1.49)
where the new constants are dcfined by
xx 3E-5-m ,3=0C-&  p= ot (1.50)

In terms of these, the coordinate functions take the form



+ &kt + o,

Uy = - _{qn)". - t,

Tlay = o=~ 4o (1.51)
Foir, = (s §)e

FTer, = wpep

Sevaral expressions for the compressibility must be consid-
ered,

(1) :<(¢,p) is arbitrary.

Consequently, from (1.49),

A+ p= §= o, OF in terms of the other constants, p = ©
c o= & = 2.

2
The resulting four parameter algebra has
coordinate functions,

X = —ex s+ ¢t 4+ a
T2 -z 4L,
- (1.52)
R = P =0
Its differential operator basis is given by
D= O space translations
H = 9¢ time translations
S = xd .+ to, x/t invariant scaling (1-5%)
G = tde+ 3

“ Galilean boosts

These operators form the kinematic algebra of classical

mechanics, plus scaling, in the absence of length, or time

scales. In more dimensions, rigid rotations are added, as

well as translations and boosts along the other spatial

directions. In one-dimensional cylindrical or spherical



coordinates, the fixed axis or fixed point breaks the
space translation and Galilean transformation symmetries,
leaving only scale invariance and time translations.

(2} A ({¢,p) is derived from a Mie-Gruneisen equation

of state,
o= beanyp s SF Lo o T (1.54)
For convenience equation (1.49) is rewritten
IECh« Py <0 4 (a+5‘)pk_{, - xbe = D (1.49)
Substituting the Mie-Gruneisen form for L< in (1.49)
results in an equation for f(<).
I DI . x(?#'-—#) + Rlesid = D (1.55)
In order for the fluid motion to acquire more symmetry than
(1.53), the elastic pressure f(p) which enters the Mie-
Gruneisen equation of state must satisfy the equidimensional
differential relation (1.55). The solution of (1.55) for

i+ 3) *» O is given by

Ce™® 4 oap - PR 5.,
Fler = (1.56)
(¢ +ALpYp - FLZO 55

where A and C are constants.

If x+3%) = o , but X= o, then the elastic pressure is

given by

3 (¥#¢)
ey = Ce o« 15_? (1.57)
If x=0 , but S,};t © , then f(e) is given by
(1.58)

Feey = Ce + F(_‘;’),&,‘e « 5
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The parameter B may vanish in equaticn (1.58). Thus we
have found four classes of elastic pressure interpola-
tion functions including positive and negative powers, and
logarithmi behavior, for which the fluid dynamics equa-
tions may admit a wider symmetry algebra than the purely
kinematic invariance (1.53). Mie-Gruneisen equations of
state which are not in one of these classes do not admit

a wider algebraz than (1.53).

(3) iX(¢f,p) is not in Mie-Gruneisen form. In a similar

manner, equation (1.49) may be integrated directly for
p((g,p). The general solution is .

TR ORI SR (1.59)
where F is an arbitrary function. Since we are interested
only in the Mie-Gruneisen form, results stemming from this
general solution are not included.

The four classes of interpolation functions for the
elastic pressure reduce to only one if logarithmic depen-
denc: in the density is ignored. Let the elastic pressure
f[() from (1.56) appear in a Mie-Gruneisen equation of state.

b= owp T o+ Gple Ap - HZP (1.60)
where the group parameters «x and ¥ are related by the expo-
nent/Ain the elastic pressure.

S - ({—;{:)% (1.61)

The logic of the group analysis which follows is that the
experimental value of/u imposes a relation between & and § .

This constant reduces the symmetry group of the ideal gas to
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a subgroup.

Equation of state (1.60) is physically relevant. Power
law interpolation functions can be used to describe the Mie-
Gruneisen equations of state for most materials (see Zharkov
and Kalinin) in regions of physically interesting pressures
and densities. For example: s+ = 2 corresponds to van der
Waals binary interacticn Correction;‘/A= -1 yields the
"harmonic" lattice model of solids; and/h = 0 (or 1) results

in the "stiff gas,” which is applicable for a large class

';‘.
I~

of solids under moderate compressions (1 £ S,z L),

The mathematical character and the invariance transfor-
mations of the resulting fluid motion deperd on the particu-
lar value of the exponent S When S takes on a specific
value, the group space is reduced fo relative values of X
and b) which satisfy (1.61). Thus, the exponent/;t breaks
the symmetry. Rather,/u restricts or reduces the symmetry
group .to a subgroup one less in dimension. The other con-
stants which appear in (1.60), C, A, and }5 , are integra-
tion constants. As such, they depend on the specification
of the probiem which is to be solved. They do not affect
the mathematical character of the solutioﬁ, but they do
refer to physical properties of the medium. For example,

a shift in energy or pressure has the nature of a change in

the initial conditions. Rewrite the Mie-Gruneisen equation

of state (1.60) in the form

P BED L oxe (14 8) 4o (1.62)
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Thus, B and A correspond precisely to shifts in the values
of the pressure and energy, respectively. Mathematically,
this means that p and A are inessential constants and could
be set equal to zero. However, physically, F and A are
connected to the "stiffness'" of the medium. Suppose that,
for a moment, the constant C vanishes in (1.60), so that

it is written,

P = Yel + a®(p-¢.) (1.63)

The adiabatic compressibility is then given by
1 (1.64)
(r+1)p + a*e,

Kg =

If (aze,) is large, say 106 atm, then at normal pressures,
the material described by (1.63) will be almost incompres-
sible. The constants a and @, are to be interpreted as

the sound speed and normal density, respectively. While
the mathematical character of the solutions for nonzero
azﬁ, is not distinct from that for a%@= 0, the physical
nature of the motions of a fluid whose equation of state is
described by (1.63) is vastly different from an ideal gas.
In fact, if the compressions are not too high, the equation
of state (1.63) adequately describes the essential features
of a large class of materials. In particular, it applies

5 atm.

to metals under moderate pressure £10
The remaining integration constant C in (1.60) multi-
plies @F. Therefore, it cannot be arbitrarily set to

zero without affecting the character of the solution.
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However, mathematically it could take on any nonzero real
value. On the other hand, like E and A, the constant C is
a parameter which depends on the physical situation. It
sets the scale for the relative thermal and nonlinear
(/*#-i) elastic pressure and energy content.

Let us finally give the differential operator basis
for the Lie invariance algebra for the isentropic motion of
fluids governed by Mie-Gruneisen equations of state (1.60).

The coordinate functions are given by

X = - [ (?ﬁ?)t<+-n{Zx + bt + X

™™ = - [_(' LYk et = E,

- .
Sr oo ,/,A__ﬁ) (1.65)
- (3R e

R = %¢

E = KY"&P

The differential operator bhasis is given by operators (1.53)

plus the scaling operator

l'“ —I

Cp = Fo (v ud)) + 0% 2 pupdy (1.66)

The pressure translation operator ,J} also appears, but for
now it is discounted from the mathematical discussion. The

finite transformations of the operator C,, are given by

/A
pa
X-—-'P—;(:e?(?‘)
t — ¢ = t
o~ (A (1.67)
—_ T = e(‘zyu
R —™ g = =¢

eﬂtp

-
)

m'i
I}

[
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Thus, it has four inequivalent group invariants
S

- —— 2
“ i TR .
t) P’ )e)( FX/“ (1.68)
The operator C;m leaves invariant the dimension of the con-
stant C, which has units of ﬁ@r. It also leaves invariant
the ratio of the pressure to the kinetic energy density,

FV?M" , and the relation u?«-@kq which pertains to the

nonlinear elastic part of the sound speed squared.

R _ _ 1.69)
SN G NV e (
-1 = x 0
The operator (}Amay be written as
, (1.70)
G = b= (o Oy
where the operators C; and CO are given by
C, = ¢ + I (1.71)
and
Co = --'i(x)x-c—uah) -+ ec)e -+ E))P (1.72)

when A« = 0 or 1 the group parameters X and S are decoupled
and the symmetry group is given by (1.53) plus both Cj and

C This occurs because when./u.= 0 or 1 the Mie-Gruneisen

1°
fluid is equivalent to an ideal gas.

The operator C1 commutes with all other invariance
operators, except pressure translation. Thus C1 is in the
center of the subalgebra, omitting B If Q is a symmetry
operator andl/A= 1, then Q + ~JC1 is also a symmetry opera-

tor, where ¥ is an arbitrary constant. The value of v in
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some cases may be determined as an eigenvalue from the re-
quirement that the boundary conditions be satisfied, as in

the treatment of the wave equation, Appendix A.

Finally, we mention that one more operator is admitted

.z : .
when A=1, % = ¢ (wheren =1, 2, 3 for planar, cylin- :
drical, spherical geometry, respectively) and the multipliers h

c, &, m in (1.37) are allowed to depend linearly on the

time. The additional operator is

F=txd +1%), + (x=ul)d, ~ntedp - 2am) tlpep)dyp (179

Operator F was noticed by Ovsjannikov for the case n =1

only, and for the ideal gas equation of state. The invari-

ants of F are

x<-ut | ﬁt”, (pimt " (1.74)

bl

I

The operator F, and the presence or absence of space trans-
lations and Galilean transformations, are the only aspects
of the group analysis which depend on whether the one-
dimensional geometry is planar, cylindrical or spherical.
In summary, we have proven that fluid motion admits
invariance principles which correlate thermodynamic state
variables with velocity and position, provided that the
elastic pressure isentropes essentially follow a power law
in the density. The classical kinematic Galilean symmetry
laws for fluid mechanics have also been derived. Galilean
invariance holds for an arbitrary equation of state because

Galilean transformations do not affect the relationships
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between the thermodynamic state variables. Invariance of
the "internal" thermodynamic relationships in addition to
the kinematical symmetry laws restricts the allowed trans-
formations of the dynamical equations.

A differential operator basis LEM for the invariance

algebra of the isentropic flow equations with equation of

state (1.62) is given in Table 1.1

Operator

Significance
D= Iy Space translations
H = at Time translations
G = td +9d, Galilean Boosts
2

= xJ, + tde x/t invariant scaling

- Y j
C/y\ = M=, v ud )+ €)€+(ﬂp+{%\3‘> )~ -dependent scaling

Table 1.1. The Basis L M of the Lie Algebra for Euler
Equations iﬁ One Planar Dimension.

The commutator table for LEM is displayed in Table 1.2.
The algebra Lgy, is a semi-direct product of the Galilean

algebra with the abelian scaling algebra genarated by S
and C/, .



D H G ‘ “_s _ c./_,m C,
D 0 0 0 D (75')D -4D
H 0 0 D H 0 0
G 0 -D 0 0 (F. "G -%G
S -D -H 0 0 0 0
C, | -U20D D -6 0 0 - Bp
c, 1D 0 5G 0 B o 0
C, 0 0 0 0 0 0

Table 1.2 The Commutator Table of the Lie Algebra Lpy -

62
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Let us reiterate how the Mie-Gruneisen power law term
in the equation of state breaks the symmetry of perfect fluid
motion. The M= 0, 1 components of 9*‘ apply to the case
that C = 0 in (1.62). The two operators which take the place
of 9“ when the @” term vanishes in (1.62) are
C, = % + [p+3) 9 (1.75)
and

(# v udy)+ PJs 4 B.)F (1.76)

P~

The ff‘term in (1.62) forces a relation between the group
parameters for the transformations of an ideal gas and there-
by reduces the symmetry group to a subgroup. The other
terms B and A in (1.62) are not symmetry breaking terms
because they do not change the essential character of the
medium.

Let us say a word about the physical meaning of the
invariance operators. The first three operators in Table
1.1 are the classical Galilean invariance operators. The
operator S appears because, although no fundamental length
or time enters the description, a characteristic speed
appears. Namely, the sound speed of the material enters
the description and must be left invariant. The operator

Cpr

form of the equations of motion as well as the relative

represents a scaling transformation which preserves the

thermal and elastic pressure contributions. The operator F
in (1.73) is more complex. It correlates the fluid motion

at different space-time points in a manner which depends on
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the value of the time. It may also be related to the exis-
tence of a Legendre transformation which exchanges the roles
of dependent and independent variables and linearizes the
first two Navier-Stokes equations.

In the Mie-Gruneisen equation of state (1.62) an inter-
polation function has been introduced in order to describe
lattice site interactions at high pressures. The group
theoretical result of adding the CP/A term in (1.62)is to
couple the x and } characteristics and group orbits, thereby
breaking the symmetry of the linear interpolation function
and reducing it by one in dimension. When the group para-
meters x and § are independent, their orbits and charac-
teristics are disjoint. Upon coupling them through the
equation of state (1.62), the separate K and & orbits
degenerate and become identical. In order to study the
effects of symmetry breaking through the equation of state,
in the group analysis which follows, & and % are treated
independently and then reconnected for /u.f 0, 1, after the
invariant coordinates have been found. Later on, further
comments are made concerning the physical effects of the
interaction term in the equation of state.

We are dealing with the isentropic motion of a fluid
whose thermodynamic state is described by (1.62). The
corresponding Lie invariance algebra can be realized as a
set of differential operators through the coordinate func-

tions, X, T, U, R, P, rewritten now as
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X » (d4a)x + bt 4 a
T = nt + ¢
T3 = du « b (1.77)
R = la-2d17¢
P o= «ps+p
where,
/ ¥ ¢ = 1
o = 3 \ = 0 (1.78)
and
3 o
o= -(-.2+m) = =~ 1 (1.79)

For the moment, d and &« are taken to be independent, as in
the case of an ideal gas, also for the "stiffened gas,"
simplified equation of state for metals. The corresponding
operator realization of the infinitesimal variations given
by (1.94) is found by setting each group parameter (a, b,
c, d, n, &« , E.) to unity in turn, while making the other
six of them vanish. The resulting ideal gas operator alge-

bra is listed below.

ar D= Iy Space translations

c: H = Jdy Time translations

L. s= 2.+ Galilean boosts

A8 = xd e tJt x/t invariant scaling (1.80)
a - Qo = *9x*“%A‘2€)e (u/x,guz) invariant scaling

X o G = P+ ede P/p invariant scaling

B B, = QP Pressure translations
Together C0 and C1 leave invariant the ratio P/e u2 of the
pressure to the kinetic energy density. The same ratio is

left invariant by C/A for arbitrary //A, as well as the
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other ratios P/er and u/x, corresponding, respectively, to
the ratio of the total pressure to its elastic component

and the ratio of flow velocity to a characteristic length.

C. Group Invariant Coordinates

The group invariant coordinates of the operators (1.80)

are found, according to Appendix C equation (C.62) from the

identities
dx _ Jt da _ dC dP (181
(c/:_);—:_l;:-\ a  wtx €7 ud + b (V{’ZA)(" “p+p

Note that the value of g, controls the character of the
group reducible solutions. When the group parameter X 1is
allowed to vanish, the nontrivial density and pressure
transformations are eliminated for degenerate & and d.
Therefore, in what follows it is important to distinguish
between zero and nonzero values of &,

From the first identity in (1.81), the invariant inde-

pendent variable %Jx,t) is determined.

dx  ldinm)x + bt + o (1.82)
;I—'-L ’ nwi + Q
or
alr- vs) - {oem >,y = v(i-zo\ (1.83)
dl(li"*o) ;/k(t"\;o\

The symmetry exponent k = determines the form of the

d+n
n
invariant coordinates. In shifted coordinates (1.83) is

dx - x ~ V£ (1.83%)
dt 'L/’\




Hence, for k # 0, , we have for the group invariant
coordinate,

ve O\
Aaul (1.85)

The function A(x,t) given by (1.85) contains five arbi-
trary parameters a, b, ¢, d, n for use in fitting the
subsidiary conditions and physical context of a specific
problem. When V = 0, the group invariant A(x,t) reduces
to x/tk, which is the customary form for similarity vari-
ables in fluid dynamics. To the author's knowledge, no
solutions for V # 0 have ever been applied in the litera-
ture.

When k = 1, corresponding to d = 0, equation (1.85)
becomes

Alxt) = ’é + VAoat (1.86)

or, alternatively,

» = eh = t'e® (1.87)
The transformation corresponding to d = 0 and A given by
(1.86) or (1.87) is purely kinematical when « and d are
coupled through the equation of state. It is kinematical
in the sense that the density and pressure do not transform.
The solutions which result when the thermodynamic variables
are invariant, have everywhere constant entropy.

The other special values of the symmeiry exponent Kk

occur for the vanishing of n, of (d + n), and of both d and

n. The general invariants for each case are arrayed in
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Table 1.3. The seven parameters a, b, ¢, d, n,x’,%, can
be used to fit a wide variety of subsidiary conditions.
The physical assumption of group reducible fluid motion is
that the flow variables depend on the independent variables
in the same way as the boundary and initial conditions. In
Table 1.3 appear the general forms of combinations of
position and time for which this assumption can be true.
Special values of the general invariant quantities are
obtained by setting the group parameters a, b, ¢, d, n
equal to unity for each value of the symmetry exponent k.

Examples are listed in Table 1.4.

As mentioned before, the invariants in the first row
of Table 1.4 have the usual similarity form. Included
among their group reducible solutions are self-similar
solutions and centered simple waves.2 In the fourth and
fifth rows appear the similarity variables discussed pre-
viously by Stanyukovich and Sedov, whose solutions are
called "self-similar in-the limit."3 The independent
variables in row three are of similar character to those
in the fourth and fifth rows of the table. The variables
in rows six and nine can be found by separation of varia-
bles. They correspond in their simplest forms to steady

and uniform flow respectively. However, travelling waves

2L, 1. Sedov, Similarity and Dimensional Methods in
Mecnanics (Academic Press, New York, 1959).

35L. I. Sedov (1959), p. 174.
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n=d=0

C:J:V\:Q

k Invariants A, U(A), R(»), P(A\)}, Respectively
d+n { b an-ke uJ+b E‘;;( N
IGE (nt-f-c)k nx"'d"("t*c)"' d+n (ntft)/" 5 e(nt'i'C) ) F(n‘t-\-t)
bt Th TR ‘
/ -nxn:; + e = - %’(t?(v‘t"' )y 4= R '(°3(nt+c‘) > f(nt'* n’ P(nt-‘-C) i
~(B+2 -2
o "~ %t* bc—Q\" /Q"j("t+ ), (un+ b)(nt+c), C(nt-t(‘.S P(Vlt-t(‘) "
o
- dt _xt
(-3

. dt -
o ec< [_x+5a(t+§ +§~;J (ud +8)e ¢ , e exp{ Z= pe

-xt vt
Ay b _b e ST
—_ x~=t —Tt , w2t , €€ , pPe
b x x —

Table 1.3. General Independent Group Invariants of Fluid Dynamics.




Nonzero Zero
k Parameters Parameters A, U, R, P Significance
1E~“ - > .
1+& n={’4:£ &/bl d féfl 5 —-L;j—i ; (\91’_ , Ptp( Self-similar (SS)
. - -
{ n=1, bsd a,e,d Z4sl-dqt), u-3-5,0t, pt  Galilean #1
X-2
o dz-n={ a, b, ¢, (d+n) %, ut , et , pt Separated variables
o d=-n=-f b,c (d+n)  x-gloat (or t;5) ut. o6 2% S in limit
o= & T e r UL F
- ~t (z~Jt -xt
w cads a, b, n x€®,we , pe , pe’ " S§S in limit
-t —xt
— ¢ =1 a,b,d n X, w,ee ¥ Steady flow
. t* AN -
- b=eg, =1 a,d, n x—¢3 ,u-st,ee , pe Galilean #2
x -« ot
- b= { a,c,d,n T, wu-F e’ pe Galilean #3
~ X ~ B¢ X
- a={ &,¢,d,n t, w,¢ee ,pe Uniform flow
Table 1.4. Special Invariants of Fluid Dynamics.
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are included by combining row six and row 9.4 In rows two,
seven, and eight appear invariants associated with Galilean
transformations, which had not been noticed prior to
Ovsjannikov (1962), and to the author's knowledge, have
never been applied. These solutions are studied later on
for Mie-Gruneisen equations of state.

Thus, the general multiparameter invariants of Table
1.3, upon specialization, reduce to a catalog of group
invariant variables for self-similar motion. The invari-
ants lead to the classes of solutions of the Navier-Stokes
equations, and provide cases of moving boundaries for which
group reducible solutions exist. The multiparameter invar-
iants of Table 1.3 are especially useful because they
contain arbitrary constants which may be adapted to the
specifications of particular problems.

The effect of the nonlinear elastic pressure term in
the equation of state (1.62) is to couple two of the group
parameters d and X . When the exponent s in (1.62)
vanishes, or equals unity, the parameters d and %X which
appear in Table 1.3 and Table 1.4 will be independent of

each other. Otherwise d and X are coupled, so that

- 22
"= M= d (1.88)

For example, when d and X are connected, the last four

special invariants and the second one in Table 1.4 have

4Appendix C, equation (C.145) and sequel.
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= 0, while in the remainder & is given in terms of d by

(1.88). Tables 1.3 and 1.4 also contain the invariants
for a general equation of state, in which case X=d = 0

everywhere, and the flow has constant entropy.

D. Representative Group Reducible Solutions

Let us explore the effect of the power law elastic
pressure on representative group reducible isentropic
fluid motions. The group invariant variables generally
allow a partial integration of the fluid dynamics equa-
tions. Most often; as in the case of self-similar motion,
the group reduced representation reduces the prcblem to a

phase plane analysis and quadratures.

So far we have found an empirically relevant elastic
pressure interpolation function for which the isentropic
fluid equations admit more than merely a kinematic symmetry
algebra. In the context of fluid dynamics we have deter-
mined in detail how symmetry breaking occurs through inter-
action terms in the equation of state., In addition, the
basic invariance principles of classical mechanics and
fluid dynamics have been formulated quantitatively as dif-
ferential operators and have been used to derive the natural

symmetry-adapted variables for isentropic fluid motion with

5L. I. Sedov (1959).
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Mie-Gruneisen equation of state (1.62). We shall now
present the general analytical characteristics of group
reducible motions. We shall see that invariance analysis
unifies and systematizes previously scattered concepts.
Thereby it leads to both a firmer control of existing
methods of analysis and a deeper insight into their basis
and possible modes of generalization and extension.

We wish to consider one-dimensional planar isentropic
flows of an "interacting gas'" whose equation of state is
given by (1.62). Let us write the equations of motion for
flows of this type. Referring to equations (1.21), (1.22)
and also (1.23) we obtain the following system of equa-
tions for the density, pressure, and velccity, as functions

of position and time.

Pe + WP + PUx = O (1.89)
Ue + UMy + 5P = O (1.90)
Pe + ulx + [mnn Clpm=1) ?’ulux = O (1.91)

In equation (1.91) we have reset the zero point of the
pressure so that the symbol p stands for the quantity
¥/
P
The invariance groups for the equations (1.89) through
(1.91) have already been derived and enumerated in the
previous section. We have also seen how the invariance

principles admitted by the fluid dynamics equations deter-

mine the natural variables of the system. The group

J
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invariant quantities are tabulated above. In these varia-
bles the system of partial differential equations of fluid
dynamics reduces to a system of ordinary differential
equations for new unknown functions of the appropriate
independent group invariant. Let us derive these group
reduced equations and analyze them for various choices of
invariant independent variables. 1In Table 1.3 and Table
1.4 a large number of choices are available.

In the group reduced representation of fluid dynamics
the interaction term for # # 0, 1 changes the character
of the motions. Unless/u is equal to one of its "accident-
ally symmetric' values, an additional connection occurs
between the transformations of the kinematical variables
(x, t, u) and the thermodynamical variables ( ¢, p) which
limits the form of the solution. The physical explanation
of this group theoretical effect is that the sound speed -
which connects the kinematical and thermodynamical quanti-
ties - has two components, a thermal contribution and an
elastic contribution, which scale differently unless #~ = 0

or 1. The isentropes for the equation of state (1.62) are

given by
_ t1 - v,
P=YKC 1+ OG0 o= (1.92)

Thus the sound speed has two components which scale differ-

tl :
M = aP 2| (/\}‘( « (H-1) /A"l
¢ = ;,‘(, = C, \ o 1 7(/)};"‘"_ 7_(() (1.93)
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The expression (1.93) tells us that the thermal and elastic
parts of the sound speed cannot scale the same way with
density, because if they did, the denominator of the second
term would vanish. But for/M = 0, 1, the elastic part
itself vanishes and a simplification occurs. For U=10, 1,
the sound speed takes on the ideal gas form, and ;he isen-
tropic Navier-Stokes description gains on extra symmetry
principle.

1. Group Reducible Solutions of Self-Similar Type.

Let us derive the group reducible representation of the
fluid dynamics equations for nonzero group parameters d, n,
<. According to Table 1.3 the invariant coordinates are

given in this case by

X
>\ = —_‘t_d“}n
)\-L',()\\ = —21/"
24~ K (1.94)
Reov= 2%
- %N
Pxn =~ T

The group reducible representation of the fluid dynamics
equations is gotten by solving (1.94) for (u, ¢, p) and
substituting into (1.89) through (1.91). From equations
(1.94) we find

e

X
A= F
X
Moo= g Y (1.95)
«—2d
€ = t R(X)

P o=t PO
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Substituting the group reducible expressions
(1.95) for the coordinates into the starting partial dif-
ferential equations for fluid dynamics, we obtain, first of

all for /“ = 1, the group reduced representation

RALY + (1T~ B AR = —(1r+ Z524)R (1.96)
+d = = _ fry -

( ‘%-)%LT/-f R = - w{- 1) (1.97)

e+ E ALY 4 (- 22d) B = —{(nm..r-k E]E (1.98)

Equations (1.96), (1.97), § (1.98) comprise the group
reduced representation of the balance equations for mass,
momentum, and entropy, respectively.

When /Lk# 1, 0 the last equation changes, and d and X
become connected by (1.388). The new equations, with

expressed in terms of Mo d, are given by

(1T - v_i_:‘_d)Au/_:_ ;\—,fiflz = TTLT - 1) (1.100)
LeenB+ cpunREAD <= m2) 5B = - 24 4P (1.101)

~ Toeenk + G(u-nRERT
We first study the case where S~= 1. The mass equations
(1.96) and the entropy equation (1-.98) may be rewritten
in the form

RM(LT-AY + (32-AYAR! + DR+ (17-4AYR = O (1.102)

(mEAI-AY « (- AR + ER + be)(T-5HB = © (1.103)
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where the constants 4, D, E are defined by

nyd
a = =

“-d+wn
b o B (1.104)
E o= Kz,.(a:-r)(w-fd\ - .E + (w4 4

These equations admit a first integral, an algebraic rela-
tion between all of the variables. From equation (1.102)
multiplied by EP we subtract equation (1.103) multiplied

by DR. The result appears in the form,

(B -~ brenn] i

= O (1.105)

{4\ dR L dP
- A )+ = R Dﬁ?

A first integral is thus obtained from the mass and entropy

balance equations
E-(0D
RE [ AGr-a)]

:E;D

= const (1.106)

This integral, to be called the adiabatic integral, exists
because of conservation of entropy along particle paths in
the flow. In general, each group reduced fluid conserva-
tion law should have a corresponding first integral.

We see that equations (1.100), (1.102), (1.103) are
invariant under two scaling laws,

E— e f R — &°°R
oancd (1.107)
R —~ "R A —> e?.)\
The invariants of these scale transformations which cor-
respond to the original invariance principles Co and C1

in (1.80) are given by
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W= (1r-4y , & = = (1.108)

In terms of w, z the group reducible pressure and density

become, through the adiabatic integral,

! - r4lxeng - +lre)E
B = (onst) z'f A - ® w 7€
& ~ 1+ {&43) € -1 4{ X 1)E (1 109)
= - F 7= .
R = Gonst) 275 X w f
where
e > o Xodrm
T E T wwmsen(nd) (1.110)

Substitution of (1.109) into the group reduced representa-
tion (1.100), (1.102) and (1.103) leads to complicated
. dw dz L

expressions for g and 3x . The general expressions are
omitted. They are best treated numerically.

A simplification for which the results are more tract-

4

able occurs if ¢=1, i.e., if d = 77 . In this case
the adiabatic integral (1.106) becomes

-
ER = (ecomst)(AW) = Z>\z (1.111)

In terms of the invariants X, w, 2z the differential condi-

tion for the adiabatic integral (1.111} to exist when E = D,
is simply,

wL 2/ _ _ wiz |
w xz CIPN (1.112)

Rewriting the momentum equation with w, 2z, and setting E =

D, we have
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A ~
wWI-Ryw’ 4+ Az’ e - [Eetweaiwes-0] (1.113)

Regard these two equations as a linear algebraic set of
equations for w' and z'. Because of the choice of

invariant variables w, z, an expression may be found for

c‘j—: which is independent of the invariant X . By Cramer’'s

Rule for linear equations we find,

dz _ yaw  melwsiwra-D+ BF(w-a)

¢ » w*- =) ~ yw=a (1.114)
w2

dz ¥ E4 (w+ANwW+a=-1) + ~§-(w1_iw

dw T W T e Z - (wealwaa— 1) (1.115)

dw w2 (EanE — lwa W+ 8~ 4)

ST (wWh-2) ~ rw=a (1.116)

Thus, in the general < = 1 case, the solution is reduced
to a first order differential equation ‘iﬁ = F(w,z), one
quadrature, and the adiabatic relation (1.111). However,
the formulas are still too complicated to afford much
analytical insight.

2. U =4 Flows. If we assume in addition that U =

A= %%E » then exact solution is made possible. Compati-
bility with the group reduced equation for U = A implies

through (1.102) and (1.103) that

D=E=290 (1.117)
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Thus, from (1.104} we have
; = < (¥+1) A (1.118)

and the momentum equation (1.100) reduces to

£’ 2%
-_ = - (a~-1) =
*R ala~h = T (1.119)

The solution which results under these assumptions is given

by

x -A =(F+NA X
wum A , €= t RN . p=+t POy, A= (1.120)

where R() ) is an arbitrary function and P(A) is given in

terms of R(A) by

r

= =¥ | A dA
By = oo JARWD (1.121) ‘
For R(A) = X' =-§ the solution (1,120) becomes
= 2 X = L = 2¥ X 2
“*Ezr 0 (T x PERG T (1.122)

At a given time the velocity and pressure have a linear

spatial profile, while the density decreases inversely with
distance. This flow preserves the ratio of the pressure to

the kinetic energy density. From (1.122) we have

L
leu* (1.123)

J
Consider a more general U = 4 flow. Let R(XA) = KX . The

solution (1.120) becomes

. Ve 2o
v 2 I X+

2 - -
t(\h-nA » P S Ot 2V W+ 2. t(zrhh;\é (1.124)

x -
“= gzt 1 L= K<
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At a given instant the velocity profile is linear again,
but the density and pressure profiles follow power laws.
The flow (1.124) also preserves the ratio of the pressure

to the kinetic energy density. From (1.124) we have

P x
éeu"" J+ 2 (1.125)

Recalling the remark after equation (1.80) we realize that
all of the group reducible solutions derived in this way,
and all of those generated by operating upon them with an
invariance transformation of the fluid dynamics group,
preserve the quantity P/¢ uz. Note that, under the trans-
formations of the fluid dynamics group (generated by the
operators (1.80;), the solutions listed above transform to
four parameter families of new solutions. The new solu-
tions derived by transformations of the rest of the group,
are said to be equivalent to the old ones up to a symmetry
transformation.

Let us extend our analysis of U = .4 flows to the case
that the elastic pressure exponent . is not equal to zero
or unity. When/h-# 0, 1 the group reduced equations

(1.99) through (1.101) take the forms

AR(W-AY + (LT -A)AR’ = -DR = (1-A)R (1.126)
B’ v
XL AV (Lr=AY o *= = -3 — 4D (1.127)

{(k-ﬂ‘nf-b C.(p—l\R"J,\(U—A\'-;. w-ONP'= -~ G(/u-l)RPA

1.128
—E® - Ciu-dRP (1-24) ¢ )
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where the constants 4, D, E are given by

D= 2444 (1.129)

1
o
*
>
+
b
Sle-

E

and we have already used (1.88) to relate d and X. For
compatibility when U =4, we require D = 0 in (1.126) and,

hence,
2

e (1.130)
E = 4 (¥+l ‘/A)

The result of setting U = 4 in (1.128) is that

fr = (x41) AR T s tve

Consequently, from (1.127) with U = 4 we find
!

2 - /A-‘
- | % - e}
= X = ~ 7 1.132
R < G e (1.132)

Therefore, the result of the elastic pressure term in the

equation of state is to reduce the class of fiows for which

2-
AP o
Note that, in (1.131) the expression Jr is precisely the

U =A to a single member, namely (1.124) with V =

nonlinear elastic part of the sound speed squared in
(1.93). The physical reason that the entire sound speed
did not appear in (1.131) is that while the group reducible

motion for U = 4 has constant entropy along particle paths,




s

the entropy is not constant everywhere. The constant
entropy relation (1.Y3) cannot be expected to hold for
a general isentropic flow, but in this case '"part of it"
is satisfied,.

In our analysis, we have consistently found that
symmetry breaking reduces the range of available group
reducible solutions. This onccurs in essentially the same
manner in which the number of degrees of freedom of any
system is reduced by imposing a constraint. The nonlinear
elastic pressure could have conceivably had another type of
effect: it could have completely changed the character of
the motion. 1In fact, this would be, a priori, the most
likely possibility. Except for the limiting ideal gas
behavior when C is small, the nonlinear elastic component
may be completely unconnected with ideal fluid flow.

3. Degenerate Self-Similar Motion: Separated

Variables. Let us present another example of the group
reduced representation of the fluid dynamics equations,
this time for self-similar motions with group parameters
d and n initially connected by d + n = 0. The connection
between d and n forces the symmetry exponent k to vanish
and changes the analytical character of the solutions.

According to Table 1.3, the invariant coordinates are given

by

7See also Appendix C.

TR AR S uiieas

o
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)\: X
TItxr = ut
—(%:2) (1.133)
Rixv = pt %)
R
:;D/x):: >'t "

The group reduced representation is gotten by substituting
the invariant forms into the fluid dynamics equations
(1.89) through (1.91). 1In the group reducible flow

variables the coordinates are separated,

PN
A= AR (1.134)

1

X

g = "t%*z'R(X)

P = t’é Py
In terms of a similarity representation, the length scale
is constant and the velocity scale goes like 1/t. This is
a singular case, The density scale is set by
exponent B = %-vz , which is a uniform limit of the density
scale in a self-similar representation.

The results of the substitution of the group reducible

flow variables (1.134) into the fluid dynamics equations

are, respectively, for the mass, momentum, and entropy

balance,
RE "+ 1rR’ = -(%+2)R (1.135)
/ |
LTU, -+ % = LT (1-136)
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[T+ -/ s + P = - 2P (1.137)

In these zquations, when C # 0 we have, for compatibility

of dimensions,

2,
A (1.138)

-—
-

si®

When C # 0, no free parameters remain. When, however, the
nonlinear elastic pressure is not present, an adiabatic

integral can be gotten straight forwardly. Setting C = 0,
from (3 + 2)R times the entropy equation we subtract (¥[)

times the mass equation. The result is

o P’ g ' =
(7,+2)_’5_ ;:..E + YR s = ¢ D (1.139)

and the adiabatic integral for C = 0 is

(Be2)  [xXaaoeen]
= lenst) (1.140)

R H

The group reduced equations (1.135) through (1.137) with

C = 0 are invariant under the following scaling laws (see

equations (1.67) and (1.68))

o~
X —» & X

R — e'R 1
1 — &7 11 ed (1.141)
o >
- P—ep
R— e R

These operations correspond to Co and C;, above, which are

independent of time.
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The invariants of these scale transformations are

I [
W = — Z - -
9 _L:lg (1.142)

Yhern C # 0 a scale transformation derived from 9/‘ in

icble 1.1 is admitted.

-~
(01 -
U —- V7T 1] (1.143)
< — e'rl?
o M

The transformation (1.143) has the same invariants (1.142)

From the adizbatic integral (1.140) we get, for C = 0

now,
~ ‘ - {B+1}) <)
W = (st B 1 .
& - (1.144)
—_ . - . £+
P i iwaed 2 277U
with
(x+n){¥e2)
£= —za— (1.145)

In terms of U and z the group reduced representation
becomes

FLT’+(;%+1)1-;{ z- = (5+2) (1.146)
i ezl - A1z’ = 4 (1.147)

. i &
(€+2-OHT’ ~ 3 2 = - % (1.148)




54

Adding the entropy equation to the mass equation, we obtain

(s+2) T "+ =g~ = =2 (1.149)

Combining this equation with the momentum equation we get

an equation for U'(x) and for z'(x).

Jdu - _ 1+ 5=
d x [%q(‘f+2)—(£-()]i£ -1 (1.150)
d= =z 2@-1g + ¥

8 kL [:g-mk¥+l)—(i-|)jz"_ 4 (1.151)

Hence, an equation appears for U(z)

du _ _ L _f+%2
da ~ 2 2(E-Na+ ¥ (1.152)

When €= 1 a simplification occurs. First of all, €= 1

corresponds to

X 20r+)
& (vr2) = -(¥t) , F =~ o (1.153)
Therefore,
/- B ¥ 1.154
= T telregz ( )
[2al

f_ 1t 8E (1.155)

u = {+(eri)
- X (1-Ew) (1.156)

dz L
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Consequently, from (1.156) the expression for U(z) becomes

L =%z
Uigy = BY @ "% (1.157)

and from (1.154) and the expression for U(z), we have

RE
S My

e e
T ¥dx = (H1) ZR dz + T (1.158)
¥

L%
ny

The integrals involved are related to incomplete gamma

functions, or degenerate hypergeometric functions. The
U~ x/t solution in this case corresponds to ¥ = 0, i.e.,
it corresponds to isothermal motion. Therefore, even for
the perfect gas, the isentropic solution by separation of
variables (1.144) apparently can be gotten only implicitly,
at least for €= 1.

Y+2

Further progress can be made when € = - =3~ . For

this case we have

22 22 _ 2 = 2 teun) (1.159)

and the dependence on U in the adiabatic integral (1.140)

drops out. Consequently, (1.140) becomes

¥+

%‘ = (eomst) (1.160)

and the group reduced balance equations, namely

(Ru)” = =R (1.161)
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- %’ = 17 (1.162)
(e BU/+ LIP = SHre) P (1.163)

can be reduced to
[y P ~ 1r2] -R'?—' = %—Z LT (1.164)

Moreover, if ¥ = 2 as well, two simple solutions for con-

stant entropy flow result:

(2x+A)x K=o
w = (1.165)
-% ) R'’'= 0
2 -2/3f
B(Ex+A)y ¢, R'=o0
¢ = (1.166)
SN
2 2 ! ’
B(gxw‘\x 73, R'=0
p= (1.167)
) R'=0O

where A and B are constants.

Before proceeding to a new type of fluid motion, we
note that, although the transformation to the invariants

(1.142) partially separates the variables in the equations
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of motion for m = 0, 1, the group reduced equations (1.135)
through (1.137) with arbitrary/Mn, even when written in the
invariant combinations w, z, cannot be separated into a
phase plane form: <X = F(w,z). Thus the symmetry break-
ing term dynamically connects P, U, and R, and changes the
character of the solution. We remark that the other
simplifying aspect of the motion - the adiabatic integral -
has also eluded us for »# 0, 1.

4. Galilean Flows. Let us discuss the types of flows

generated by Galilean invariance. This type of flow has
been noticed only once before, by Ovsjannikov (1962) for an
ideal gas. We wish to study its physical significance and
to determine the effects of equation of state symmetry
breaking on the analytical character of the fluid motion.

A simple Galilean flow is found by taking « and b non-
zero in Table 1.3, while forcing the other five parameters
(a, ¢, d, "’F’) to vanish. The dimensionless group param-
eter % labels the scale transformations on p and ¢ together.
This thermodynamic scale change leaves invariant the quanti-
ty -JE%?, with dimensions of speed. The other group
coordinate, b, labels the Galilean transformations and also
has dimensions of speed. If X = 0, then the kinematic
Galilean boost remains: t-»t, x—(x + bt), u~(u + b),
g-~e, p>p. The Galilean boost involves an invariant time
and a family of equivalent uniform velocities {inertial
frames). Under a Galilean boost, time is unchanged, veloc-

ity is translated, and position mixes linearly with time.
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The first step in the symmetry analysis for Galilean
flows is to write down the invariant coordinates for b
nonzero. The group reducible representatives of the flow
variables for Galilean flow of this type are, according to

the last line of Table 1.3,

A2 =t
= = It
w t N ) (1.168)
X
K =
e = = “FRw
P = eK bt_ﬂ)(t)

In this flow, spatial dependence appears only in the combi-
nation x/t, with units of speed. The invariants U, R, P in
(1.168) have dimensions corresponding to the notation. The
velocity is linear in x/t, with an additional time depend-
ent term which modifies its temporal behavior. At a given
instant, the flow has a linear velocity profile and an
exponential pressure and density shape. The pressure and
density have the same profiles, except for a time-varying
relative scale. The type of physical situation for which
such a flow could develop would be an initial value problem
(because t is invariant) with a characteristic velocity and
density. For example, at t = 0 a spatial density distribu-
tion of moving gas might be set up, with a given velocity,

which then expands into a vacuum. The subsequent motion
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takes the form (1.168)

The Galilean/thermodynamic scaling group reduced form
of the fluid dynamics equations is obtained upon substitut-
ing (1.168) into the isentropic partial differential equa-

tions, (1.89) through (1.91). The result of the substitu-

tion is
(Rf)/ -+ p‘ﬁ -'T[{ = )
(rrey + ¢ ,E = O (1.169)

i & ’ -~ R (F-1)K*
S FE) « S uk o aporRleptTEE - o

Immediately we notice that, because of the exponential in
the last equation, nonlinear interaction pressures in the
equation of state cannot be accomodated unless X = 0. When

o vanishes, the first two equations in (1.169) corresponding

respectively to mass and momentum balance, give

R= % - ¢ (1.170)
B AIK tou%‘b. *
U= 7
Then the last equation becomes
-
(") + tpn gt = 0 (1.171)

Equation (1.171) can be integrated to give the isentropic

form,



60

g " ma ( I
AL Cm-t) (A e
L= Tt /“_m,)(t} = » = K¢ +#_m‘m€/' (1.172)

In other words, for vanishing « the group reducible motion

of the purely kinematic Galilean group is given by

x4 B é Fo + L'v(/"") (A/J
+

Yy s €= » P = /h-m,.)z\, (1.173)

Because the pressure and density are independent of position,
the isentropic relation (1.35) or (1.172) holds throughout
the flow. Clearly the ideal gas (or stiffened gas) result
can be gotten from (1.173) by setting C = 0.

Thus the X = 0 Galilean '"flow" corresponds to a con-
stant entropy, strongly coupled, driven pressure-density
respoense, with a velocity response which increases linearly
with position in the material. As time increzases, all of
the flow variables in a finite region decrease to zero.

For completeness and comparison, the « = 0, 1, XFE0
Galilean flow is presented. When the nonlinear part of the
elastic pressure vanishes, C = 0 and the last group reduced

equation in (1.169) - the entropy balance equation - becomes

(fi’-t‘u' + %Uﬁ*t‘ = O (1.174)

Comparing equation (1.174) and the group reduced mass

balance equation in (1.169) we see that ( Pi") and R differ



61

at most by a constant factor. Consequently, in this case

the adiabatic integral is given by

£ _ K K = couct (1.175)

and the group reduced momentum equation can be directly

integrated to give

3 [’ a9

U= 3 o+1 = 'tL‘f , E= coundl. (1.176)

—

Rearranging the mass balance equation gives

af‘(zo:,r\:f) =z - "T: 9{3 dt (1.177)

Hence, upon substituting (1.176) we have,

A x K !
R = T exE T‘f(-‘% + 5 e {;.,3 (1.178)
Then from (1.175)
A wip % kL
P = = o4 b(;, o e t¥ (1.179)
When o= 0, the solutions for U, R, P reduce to their

constant entropy, C = 0 values, with P = (const) RF*‘.

When ¥ = 1, the group reducible representatives of the

flow variables become

B x o 22t
W = £ - pR% (1.180)
x '&2 oot
R = é rxPLg(b Ek)i_‘wk—‘g] (1.181)
oo K
= 3R (1.182)

o
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\;2
Let us choose the constants =%, b, K, to satisfy K = (z\ =1,

Then for X # 0, ¥ # 1 the flow is given by

Xy B __(“ _L
W = ?— -+ | _tr (1.183)
_ A x+ B ! L
¢ = = C*P[ £ 7 i) t\-‘] (1.184)
A X+RB | {
> =R = 25 —_— 2
/ L3 Q"P[ T Y Yen t‘r-] (1.185)

and for X # 0, ¥= 1 the flow is given by

. x=+B Aoy £
N (1.186)
e = Ay [i‘.ﬁ; - 4**‘-’-‘*{( (1.187)
L -+ F + = | y

- A X+B _ 1'+,(ot-l
P t* Q"P[ t BE (1.188)

The last six formulas were essentially given by Ovsjannikov

in 1962. Ovsjannikov's work, however, is purely of a mathe-

matical nature. He gives no discussion of physics or
applications.
These solutions have the characteristics which we
anticipated following the group reducible representation
(1.168). In particular, the ratio 3% depends only on the
time. However, the solution for X ¥ 0 does not have every-
where constant entropy, as evidenced by the adiabatic

integral, relation (1.175). The spatial variation of the

e b s g et e vin o ey 2y s e




63

flow variables appears only the combination x/t: 1linearly
for the velocity; and exponentially for the pressure and
density., In the case = 0, only the constant entropy
solution comes forward.

5. Three Parameter Galilean Flows. Let us extend our

analysis of Galilean flows to the case d ¥ 0, so that we
can analyze the nonlinear elastic flow with the aid of
additional thermodynamic group transformations. We wish to
study the case that three group parameters b,oX, d are non-

zero, while the rest vanish. From Table 1.3 1line four, or
by directly integrating (1.73), we find the group reducible

representation of the flow variables,

A=t
w= - c‘% + (x+ ;ﬁ’-t\/U(f) (1.189)

w~2d

€ = (x+ 2T R

O(/J
(x+21) " Pre)

I

r

As expected, for Galilean flow, the time is the group
invariantQ Thus we aré again dééling with an initial value
problem. In the group reducible representation (1.189) the
velocity retains a linear spatial behavior, but the position
dependence of the density and pressure no longer track one
another. The (b, <, d) group reduced equations of motion

are given by
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R + ('%J)KLI‘ = O

25‘_‘2_,_
+ d = (1.190)

7+ LY

B+ (F+5+D0WE + Cl-0R¥ LT = O

In the group reduced balance equations (1.190) the group
parameter b is absent. When the exponent s is not equal to
zero or unity, the group parameters & and d are connected

throughout by the symmetry breaking relation,

-

v

24 L
e {1.191)
Equations (1.190) have already solved themselves for the
derivatives R'(t), U'(t), P'(t). After some manipulations

we find

RRW('_@) = s (1.192)

This is the adiabatic integral. In addition we find,

-

, (. -
XQ%.%Q = - (s2) U dt = - (v oa v (1.193)

]

Finally, because the momentum equation is a Riccati equa-
tion for U(t) in terms of P/R, we have

NS CYD]
Y = O (1.194)

I

4/ & :{ﬁ%iﬂ = y” +

qu

From (1.193) and (1.194) we find a particular solution for

U(t) by letting y' = z, y" = zﬁi » and integrating twice,

-

TS e
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L) = 512 © (1.195)

=z
Equation (1.195) holds when §:== Tev2y2 *

This form for U(t) results in a familiar expression for the

velocity

LN

X
| Xt2 (1.196)

<
]
{X
'
o|x
!
JUR T

Once U(t) is known, R(t) and P(t) follow by directly inte-
grating equations (1.196). Aside from unimbortant constants
the results for the density and pressure are

(e 24) 7

€ = k=4 (1.197)
+ 7 FH=

N
(x+ Ft)

p= - t(5+‘6+f)%z (1.198)

We note, as a check, that

-y
R 2 N R
= =t FN = 1% (1.199)
The first relation holds in general, because of the group

reduced momentum equation. We see that {(1.192) and (1.193)

are satisfied by

|-

)

- @ 2
\ * 5 ~.(§+\'~H)F—*2
R = comst t y P = oewsi t (1.200)

B
(X}
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In all of the equations (1.197) through (1.200) we must

take ? =

2¥
(x+2y> °

Suppose we now let/u.# 0, 1, and we employ the parti-
cular solution (1.195) for U(t). Then by (1.196) a rela-

tion is enforced between/u and ¥, namely

o { - (ot 2)
/)\ =

For the particular value of/u given by (1.201) a solution

L D (1.201)

of the group reduced equations (1.190) is possible. The
analysis of the equations is presented, because the outcome
of the solution is that the fluid motion for/M # 0, 1 has a
completely different character than that of the simpler
cases. By solving the group reduced continuity equation
for U and substituting into the group reduced entropy equa-

tion we find

/

P’ = w—,’%— + ERM*RY (1.202)

where the constants D and E are given by

o o= ;f’_d(g“xu) {1.203)
E = Q-0 (1.204)
LM o~ o .
Thus,
JE DP + E SMF (1.205)

d ({6qR)

and we find that the adiabatic integral takes the form

I ST s s e = = o em e
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r o> E M-l y

R = (comst) R +/A—-—~_bR = = (1.206)
The relations (1.195) and (1.206) implicitly determine the
flow. We note that in this case the symmetry breaking in
the equation of state completely alters the analytical
character of the flow.

E. Invariance Principles for the Dissipative Navier-
Stokes Equations with an Ideal Gas Equation of State

We have characterized the change in isentropic Navier-
Stokes flow which occurs upon introducing symmetry breaking
interaction terms into the Mie-Gruneisen equation of state.
However, other types of symmetry breaking interactioms do
occur in fluids. For example, the thermal energy may be
distributed, as in a plasma, among different interacting
species of particles (along with a radiation temperature
field, say), so that relaxation effects occur. Or the
particles may interact during the flow to dissipate energy.
In the Navier-Stokes approximwation, the latter type of
interaction is described by transport coefficients of
viscosity and thermal conductivity. 8

In this section we briefly present the result:c of our
derivation of the invariance principles for the full Navier-
Stokes equations, with dissipation, and in one dimension.

The coefficients of viscosity and thermal conduction are

8 andau and Lifshitz (1959).
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allowed to depend on temperature, as in a real material.
However, the equation of state is assumed to be that for

the simple gas (equation (1.62) with/u\n 1), namely

F+h = ®elT + L), T=¢9 (1.207)

The medium is specified with constant Gruneisen parameter
and constant specific heats. Eliminating the pressure in
favor of the temperature,? , the dissipative Navier-Stokes

equations in one dimension become

s pux =0 (1.208)
Du \ , }
ebt + (kaefx - < O Uy = St = O (1.209)

s

e B 4 (RIP)UN —SUL -G -KE . =0 (1.210)
where R = ¥¢,, and the temperature dependence has been
included in the coefficients |K{®) and ;(9) , describing
thermal conduction and viscous dissipation.

We wish to determine the maximal set of invariance
principles which belong to equations (1.208) through
(1.210). Let a set of transformations on the quantities
x, t, u, 6,9 be defined to first order in Taylor expansion

by the expressions:
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x = x + EXlx,t,u,e 9)
t =t + & T(xt,u,¢6)
T o= w+ €L (x,t,u,¢,d) (1.211)

¢ = 0+ 8 Rixt,u, e )
3 = @4 &E@(x,1,u,0,9)

In these expressions £ represents a field of infinitesimals.
The quantities X, T, U, R, ¥, correspond to the coordinate
functions for the infinitesimal generators of the transform-
ation group, in a differential operator realization. A

general such operator takes the form
R = R +TJ, + LI+ Rdp + @0 (1.212)

As usual, the transformation properties of the various
derivatives appearing in the dissipative gas dynamics equa-
tions are defined by the chain rule of differentiation.9

A given transformation is a symmetry operation when it
leaves each of the fluid flow equations invariant, up to an
overall factor. The result of a calculation which is analo-
gous to that presented earlier for an isentropic Mie-
Gruneisen fluid (but extremely tedious due to the presence
of second derivatives) proves that first of all for general
thermal dependence in the transport coefficients, only the

kinematic operations of classical mechanics are allowed:

9 see Appendix A

S - SEE A O s e S SR L
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D = 9x space translations
H = Je time translations (1.213)
G = td + 9, Galilean boosts

The viscosity and conductivity
introduce fundamental lengths which violate the (x/t) -
invariant kinematic scaling law of isentropic flow. However,
if the coefficients S(®) and IK(9) vary with temperature
according to the same power law - so that —;— is a constant,

as is often experimentally valid - then two more invariance

principles are admitted. Namely, the scaling laws generated
by,

B

I

Xdx + 2(m~1gde + ud, + 239, .
.214

C = t - (2m-1)ede —ud, -22Jy

The viscosity and conductivity coefficients depend on tem-

perature according to a single power law,

S =3506" , K=K, 97 s m, S, K, cont  (1.215)

Y
The exponent m is calculable from kinetic theory, given the
particle interaction. Kinetic theory predicts m = 1/2 for
the hard sphere model, and m = 1 for "Maxwell molecules"
(with an intermolecular potential energy which has an

. . < 10
inverse fourth power dependence on separation distance).

1%. W. Ford and J. D. Foch, "The Dispersion of Sound in
Monoatomic Gases," in Studies in Statistical Mechanics V, J.
deBoer and G.E. Uhlenbeck, Eds. (North-Holland,New York 1970).
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Adding and subtracting the operators in (1.214)
eliminates the exponent dependence in one case,

A= B—-¢ = xd,-td, + ({4m-3)¢7 +2u9m«‘ﬁ93
* e+ D ® (1.216)

A= B = x)x-+-tat~€o"(,

The commutator table of the invariance algebra for dissipa-

tive flow is displayed in Table 1.5. This algebra is a semi-

direct product of the Galilean algebra with scaling laws (z2).
When the coefficients § §qgl< both vanish, the result

is the algebra of operators (l.éb) but with pressure re-

placed by (kR8¢ ). For comparison we display the full

invariance algebra for S = K=0, The results for the

coordinate functions are, in planar geometry,

X = htx + (d+vix + bt + o
T = ht® + vt + ¢
R=(-ht+a)¢f

I = hix-ut) 4+ du+ b

1.217
@ = -2(ht-d}O ( )
¢ = =~ 3ht + (q-4n)
W= = 4l 4 {(gq-n+d)
E + —&hi 4 (a-n4 2d)

with group parameters g, h, a, b, ¢, d, n. Translations of
internal energy, although also allowed, are omitted in
(1.217). An operator basis which results from the set of

coordinate functions (1.217) is given by,
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H = xtd, + £ +(x-«t)d, Projective transformations
- tﬁaﬁ -2t Gr)e
D= xdx + wdu+20) (X, u,/6 )scaling
8= tde + I Galilean boosts
A= d, Space translations (1.218)
(x, t) scaling

Time translations

G

Y
S
o™

)
~

2
o

G

Density scaling

The effect of symmetry breaking dissipative interactions
is first of all to reduce the symmetry group of the nondis-
sipative equations, by establishing relations among the
group parameters. In jgarticular, the group parameter g

becomes related to d and n by,
q4= 2m-1)d - n (1.219)

Then, because second derivative terms appear in the result-
ing group reduced representations of the fluid equatioas,
the dissipative terms actually alter the character of the
flow in an essential way. A few of the analytic properties
of group reducible dissipative fluid motions are discussed
in the next section. In a later article, we plan to numer-
ically investigate the fundamental group reducible dissi-

pative motions of a Navier-Stokes fluid,
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) H G = A
D 0 0 0 D D
H 0 0 D H -H
G 0 -D 0 0 2G
z -D -H 0 0 0
4 -D H -2G 0 0
Table 1.5. The Commutator Table of the Invariance

Algebra for Dissipative Flow.
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In the present work a group classification of dissi-
pative flows is given. For £ and ¥ nonzero, the group
parameter h vanishes and (d, g, n) become connected by

(1.219). The catalogs of group reducible representatives
given in Table 1.3 and Table 1.4 still apply to the case of
dissipative flow; with appropriate modifications in the
last two columns of each table for the change to a thermal
description, rather than a pressure description. These
modifications are shown in Table 1.6 and Table 1.7. In the
subsequent symmetry analysis of the group reduced equations
the symmetry breaking condition on the group parameters
(1.219) is imposed. The resulting ordinary differential
equations are second order, rafher than first order, in the
group invariant independent variable A(x,t). Two different
group reduced representations of the dissipative Navier-
Stokes equations are given.

F. Self-Similar Dissipative Flows

Let us derive the group reduced representation of the
dissipative fluid dynamics equations for nonzero d, a, g.
According to Tables1.3 and 1.6, the group reducible

representatives of the flow variables are given by



Parameters

(n,d

Free

d'l"/):_o

Table 1.6.
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|

Invariants

RN

(nt .;,c)alh

(nt 4 Q‘)‘W"’

?wz’;.-}(‘)wn

ex —3x
( r bt + o

HND

(ntrc)2Hh

0 (nt -\-c,)z

Modifications of Table 1.3 for Thermal Description.
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k Parameters Parameters
{+& n=q4 , d=2=g a,b,c

1 ns=4 ,  b={ Q,Q,d

Q d=-n= o a, b, (dn)
Q ~d= n=za-={ b,Q,an)
o c=d=1¢1 &, b

- c = { a,b,d,n
- b=1c¢={ o, d, n

_ L= o Y
— acs{ b,e,d, ~

R(A),O ()

Qt'ﬂ o+ *

’
etd, &

et?, ot
et ot®

9t ~2&

eé , O

-9t
()(«-‘3 , O

- qt
(?f’j , ©

—a X
cclt, 6

- gx £y
rz

€<,

Table 1.7. Modifications of Table 1.4 for Thermal Description.
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x

A= e
w o= 4L
(1.220)
e = tIR(N)
6 = +-o@INY

Substituting (1.220) into the dissipative equations (1.208)
through (1.210) we have,

RU+ [ (e )] R = -aR (1.221)
[/ - EOXNEL’ + RBR + KRR + leffta'“'
1(emM-N-& e ;

=2t (m® rr/e’/: @"E1")  (1.222)

q+’l£~1

{/q@Rr_r’# g[u-(eﬂ)x]R @"§ t
(1.223)
{5,001, ]m8 @ + 670"}

-
-

L(EM=~1)
L

The powers of time in these equations can only be eliminated
if

3 = 2(m=-13&-~{ (1.224)

which is, of course, a rewriting of the symmetry breaking
relation (1.119). However, even when the factors of time
are eliminated from the group reduced equations (1.221)

through (1.223), a formidable set of ordinary differential
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equations stiil remains. Equations (1.221) through (1.223)

may be written as
dL = ¢ AdR

dri = s ard (52) (1.225)
dN = 2{§J[R(h@+ L2 - RLJ?,JI,\_’?
J
where L, M, N are given by ) g
L=z {ir-»R
M = LI + ROR - SIT’ ' (1.226) |
N=2lo+Mu-LLw? kg
when & = 0 the quantities L, M, N are constants of the motion.
Let us now consider self-similar motions with group
parameters d and n connected by
dan = © (1.227)
The connection between d and n forces the symmetry exponent
k to vanish. Hence, the group reducible flow variables

gotten from Tables 1.4 and 1.7 are given by ;

A= X
w = £ Lo (1.228)
¢ = IR
6 = 2R -

The resulting group reduced dissipative flow equations may

be expressed

(IRY = (z2m-~1R (1.229)

LR 4 (kORY LR = 5 [m@" 177" 4 §"1Lr"[  (1.230)
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RROU + E1RE - koR

2 (1.231)
= 2 @m e SR w -]
Jo L + Ml ® @ + K, 00
where the symmetry breaking relation (1.224), namely
g = 2m-1, has already bheen assumed.
When m = 1 some simplification occurs.
(e = R (1.232)
I ZJ/ -f ¥ /— S = < 4 4
IR (R@R) Lr R So (@) (1.233)

Ny k . 2 .
KROL '+ S 1IR® _ kpp = S, 01 4 Ko l@@7)) (1.234)

At this point invariance principles from the prcvious sec-
tion have been used to reduce the Navier-Stokes equations
with power law temperature dependent transport coefficients
to ordinary differential equations and for a special case

iirst integrals have been obtained. Further progress with

the full set of fluid equations can best be made numerically.

In the next chapter we discuss the group reducible fluid
motions of Burgers' approximation to the Navier-Stokes des-
cription. The fluid invariance laws established for Bur-
gers' description lead to solvable group reduced equations
of motion. The associated group reducible fluid motions in
Burgers' approximation are relevant to the dissipative

Navier-Stokes description in a weak shock, asymptotic limit.

g
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CHAPTER 11

WEAK DISSIPATIVE SHOCKS: BURGERS' APPROXIMATION

Burgers' equation - a prototype fluid equation - is
employed to study how dissipative effects alter a wave
profile as it propagates.1 Group theoretical techniques
are used to construct invariance principles and find
classes of group reducible fluid motions. The analysis
applies to the propagation of a weak shock in a dissipative
fluid, e.g., the formation and attenuation of finite ampli-
tude sound waves in air. In the regime of interest, both
convection and dissipative effects (viscosity, self-
diffusion, thermal conduction) are present. Under these
conditions a balance may be struck between the convective
wave-steepening tendency and the relaxation effect of dis-
sipation. The weak shocks which result, rather than being
discontinuous, have a thickness and an internal structure.

A. Burgers' Model Fluid Equation

The simplest fluid equation which combines nonlinear

convection with diffusion is Burgers' equation,

1The attenuation and dispersion law for sound waves in
monatomic gases is investigated from a kinetic theory
viewpoint by G. W. Ford and J. D, Foch (1970). The
question of the evolution of the wave form due te diffusive
effects is broached by Lighthill (1956).

2Burgers (1974). Equation (2.1) has received much attention
in the literature. It first appeared in a paper by H.
Bateman, "Some Recent Researches on the Motion of Fluids,"
Monthly Weather Rev. 43, 163-170 (1915). A survey of pub-
lished solutions has recently been given by Benton and
Platzman (1972). See also Whitham (1974).

¢
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W, + e = Ve (2.1)

where J is a positive constant. This equation is a simpli-
fied form of the fluid momentum balance equation. The

quantity u has dimensions of velocity
L] ~ [%] (2.2)

while ¥ plays the role of a kinematic viscosity with dimen-

sions

[2] ~ (3‘;] (2.3)

The Burgers' equation (2.1) may be regarded as a differen-

tial conservation law,

oD oF
St 5% = © (2.4)
with density D and flux F given by
2
D=w , F = (':‘—\)Mx) (2.5)

In the conservative form it is argued that the flux F
depends quadratically on the local momentum density D and
linearly on the momentum density gradient. The flow is
driven by the kinetic energy density %g . It slows down
when it encounters regions of positive u,, but it speeds

up when it meets a negative u,. Consequently in the evolu-
tion of a Burgers wave, the negative slopes (u, < 0) are

steepened but the positive slopes (uxj>0) slacken and
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diminish to zero. If the diffusion coefficient is small,
an initially sinusoidal wave train will eventually take the
form of a steady sawtoothed row of triangular waves.
Burgers' equation (2.1) is not a true fluid wave
equation. Because no pressure gradient term is present,
its solutions do not reduce to ordinary sound waves. How-

3

ever it has recently been shown~ that Burgers' equation

governs the final stages of weak shock wave formation for

general Navier-Stokes fluids, T

. . o~
The physical length and time scales for a“weak shock

wave are

L = shock width
t. = L/u, convection time scale (2.6)
ty = :% , diffusion time scale

The time scales defined in equations (2.6) correspond to:
(1) the time interval required for a signal to propagate a
distance L at the convection velocity u; and (2) thé average
time it takes for a disturbance to diffuse a distance L, by
means of one of the diffusion mechanisms which attenuate

the wave. The ratio, 7, of the diffusion time scale to

the convection time scale is equal to the Reynolds number

3W. D. Hayes, Gasdynamic Discontinuities (Princeton Univer-
sity Press, 1960); J. P. Moran and S. F. Shen, "On the
Formation of Weak Plane Shock Waves by Impulsive Motion

of a Piston," J. Fluid Mech. 25, 705 (1966).




of the wave motion.4
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In equation (2.7) c refers to the local sound velocity and

/v is the average diffusion mean free path,
J
/' ~ _Q_- (2-8)

The manner in which a wave form evolves depends on the
relative magnitudes of t. and t4y. If the diffusion time is
considerably less than the convection time, then the dis-
turbance will decay away, and nonlinear effects will not be
important. However, if v ~1, nonlinear effects are
important. The waveform then steepens and a balance may be
established between shocking-up and relaxing. The result
is a stable waveforn.

Historically Burgers' ecuation (2.1) has been studied
for its shock-like solutions, i.e., solutions with steep

fronts of the form

Uy ) = Cim.ch; = T34 N
[ ;1‘) [ PR~ [ (2.9)

5 precise definition of the Reynolds number for a Burgers®
wave is given by

- -]
R L0 wd
e = = % wudx
J,

-0
The Reynolds number defined in this way is a constant of
the motion. Thus the relative importance of convection and
diffusion does not change as the wave propagates, The
constancy of Re is equivalent to momentum conservation
(uniform asymptotic motion).
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Such soluticns result from space and time translation
In order to study these solutions, the shock

invariance.
form is substituted into the Burgers equation,
{S-ecysS; = ~Ja_ ¢ e oxect (2.10)
Integration with respect to X produces
(2.11)

-
(\:- -0 :?- = }: =

(B i

Far ahead of the front s = s, while far behind it s =
away from the front

s, # s;. Neglecting the gradient S
leads to
;:’m‘{: T £ - 'u,, (2.12)
or
aowm = ;.;J.‘ (2.13)
where the shock stability condition has beer used,
AN N (2.18)
The integrated form above can now be written as
Ltnog® o JI_toe . a s {2.15)
This equation has the solution
& = & - 4‘.22“, .f.-.__.,:cf_;m (2.16)
A (2.17)
A,

with
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The solution has the form of a kink which propagates at
coastant speed ¢, and acts like a shock: it changes the
state s,, ahead of the kink, to the state sy, behind the
kink. Note that its amplitude As and width L are inter-
related via the diffusion coefficient. As J decreases at
constant amplituds, the kink gets steeper and the width
decreases. Vice versa, at constant viscosity the shock
thickness L decrcases with increcasing amplitude.

In a series of papers beginning in 1940, Burgers used
equation (2.1) to develop a z2eroeth order theory of turbu-
lence. Then in the late 1940's, it attracted the interest
of other physicists and mathematicians. Cole (1949) and
Hopf (1950) found a linearizing transformation which
relates Burgers equation to the linear diffusion equation.
The Cole-Hopf transformation between Burgers waves and pure

diffusion is given by
SRR S XY 3, _:i'm: wi {'-,Lif} (2.18)

where u(x,t) satisfies Burgers' equation and w(x,t) dif-

fuses linearly, with the same diffusion coefficient,

-~ - \.IN (2-19)

x

Thus, any solution of the diffusion equation will give a
solution of Burgers' equation by applying (2.18).

From the point of view of theoretical physics, the
Cole-lopf rclation is an unexpected bonus. It tells us

that, in the appropriate space, Burgers waves can be added
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linearly. This means, in turn, that Burgers shock inter-
actions can be studied exactly. Burgers' wave description
with Cole's and Hopf's contributions has become a testing

ground for ideas about various types of nonlinear phenom-

ena. 5

B. The Derivation of the Burgers' Equation Invariance
Algebra

In order to characterize the symmetry structure of
Burgers' equation and to derive representative group reduc-
ible motions, an algebra of invariance operators must be

constructed. These operators generate infinitesimal

transformations
X = x +& Xix,t)
t = t o+ & T (%) (2.20)
W= wua ELT(xt)

which leave invariant the Burgers' equation

My * Ul = Uy, = O (2.21)

Units are chosen to make the diffusion coefficiert equal
unity. The invariance condition is that the order = terms

vanish with (2.21) in the expression

5cole (1951) conjectured that the existence of the trans-
formation (2.18) between static and convective diffusion
equations depends on the invariance operations admitted by

both equations.
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- - - P4 P 4 7,( } (" zz)
Aia-luz-—u\;; =T P D0 Ut U = U <.
or
L% Lrug 4 all™' 127 = B, ) (U U= U) (2.23)

The extended coordinate functions which appear in the
invariance condition (2.23) are given in Appendix D.
Equating like coefficients on each side of (2.23) results
in an over-determined set of linear partial differential
equations for the coordinate functions X, T, U, and for the
multiplier P(x,t,u). A side calculation convinces us that
more general dependences in X, T, U, P do not occur for
Burgers' equation. The set of determining equations is

quickly reduced to six members

U, v ull, =1, = O (2.24)

ulr, + I —Xt - M:X_x - XKxex — 211, = w P {2.25)

Uu— T4 = T o = “‘17:» - P (2.26)
.- 22X, = F (2.27)
Ty = O (2.28)

Tuu = O (2.29)
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The last two equations imply that
T = Tit) (2.30)
1 = ufety+ 2lxs (2.31)

Remaining are five equations for f, g, X, T, P . We use
(2.30) and (2.31) to reduce the determining equations

(2.26) and (2.27) to

F - Ti¢) = B (2.32)
F- 2%, =P (2.33)
Hence, by subtraction |
Xx = 3 T (2.34)
£ -PFP = Ty (2.35)

Equations (2.34) and (2.35) imply that Xy, = 0 and P, = 0.

Consequently,

xX = —’Z-‘ 'T'(t\ + Al) (2.36)

Substitution of (2.30), (2.31), and (2.32) separates (2.25)

into two terms.

D (2.37)

X
E
hN
!
N
N
—
]

ul++3T7) + (a-

Thus
(2.38)
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and
2= 3T 4 A = Ry
Finally, substituting (2.31) with (2.38) and (2.39) into

the first determining equation (2.24) gives

21t 43 8y + ity = O (2.40)

Q
"

i

ST AW BT R %, s 0 e

The last two terms in (2.41) vanish. The first two terms

must also each vanish separately. Therefore,

T AT = O (2.42)

and
T = ct¥ 4+ 25t 4+ bk (2.43)
A = &t + p (2.44)

where ¢, s, h, b, p are integration constants.
From (2.36) the coordinate function X(x,t) must be
X = cxt +sx+ bt 4 p (2.45)
Now
=2 -LiT s Scetas) (2.46)

4 = Xt = ex+ % (2.47)

L ek



90

and finally,
_P = -3(1t+‘51\) (2.48)

Collecting terms, the coordinate functions (2.20) satisfy-

ing (2.23) are given by the expressions

X = Cxt+3x+‘:t+?

T = et? 4 2sx 4 (2.49)

17 = ((=x-ut) — 24 +

A differential operator basis, Ly, is found for the Burgers'
aigebra by individually letting each of the group param-
eters (p, h, s, g, ¢) be unity, while forcing the others to
vanish. Table 2.1 lists the members of LB along with their
invariants and geometrical significance.

Appearing in the Burgers' algebra are space and time
translations, Galilean transformations, scaling transforma-
tions, and conformal transformations. Space and time
translations, along with Galilean transformations, are
universal symmetries of pianar flow. The scale tramnsforma-
tion S leaves the units of the diffusion constant
invariant. The last transformation, C, is a time dependent
scaling operation. The eperators in the basis Lg satisfy
the commutation relations given in Table 2,2.

An interesting subalgebra of LE is formed from{}-d,%nﬂ}
which has SU(2) commutation relations corresponding to
{J},J;,J;} respectively. Other subalgebras may also be

picked out of Table 2.2. The algebra of invariance
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SIGNIFICANCE

INVARIANTS

R TS .- et W

L RRARNLEX s TN

H

£

tod. + 0O

2
Xtd, + t 5t

+ (x-ut)o

Table 2.1. The Basis

Space translations
x(p) = x, *+ p
Time translations
t(h) = t, * li

Sx

o
t(s) = eZSt

Scaling: x(s) = e

2]

=S
u(s) = e Suy

Galilean Boosts:
x(g) = x + gt
u(g) =u +g

Conformal transforma-
tions:
ke

'/ -
1, - C

I

(N

trry 7L - ¢

WAL T As 4 O ue= Upt,)

LB of the Lie Invariance

t, u

™
e

) ‘E‘U.

~lx

t, x-ut

Algebra for Burgers' Equation.

H o - 24 P 5§ :

S -P -z2H - G 2C .

-t [PPSR S o

¢ o -P-6 - O

C -G -8 J-ZG; O -

Table 2.2.

The Commutators of the Basis Lpg
for the Burgers' Equation,
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operators for the linear diffusion equation is precisely
the same as Table 2.2, except that [G,P:[ = 1, Thus, the
linear diffusion equation admits the central extension of

L The relation between their invariance algebras is a

B
¢lue that Burgers' equation and the diffusion equation are
more deeply related,

The general families of invariant surfaces under Ly

are found by integrating the characteristic equations

dx dt _ du (2.50)

cxt+ sx+qt+p T oet? 425t +h T ehe-uty-su49

in closed form. Rearranging the first equation and defin-

ing new constants (xo, t V, a) we have, for c # 0

o’
d(x~%s) - (x=~3,t-1.) + Va (2.51)
dit~t.) (t -ty + o '

Let x and t correspond to shifted variables. Then equation

(2.51) reads,

dx _ xt+ Va 2.52
dt 12 4 on : n Cx O (2.52)
Rewriting equation (2.52) as
4 __x R LN
AN FEFN = (£™ 4 a\f’/:. (2.53)

we have by integration,
X e 4 A (2.54)

\]-L‘+m B \/1:24-0\
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A is thea constant of integration. The expression A(x,t) =
const describes invariant curves in (x,t). A four param-

eter family of group trajectories results,

-~ Ne) - t—t.
Aix,py = ZoXe o viE-tl) (2.55)

NICEES RN

or
(X=x%) = V(t-t )+ xwhﬁ_io)z*,q (2.56)

In the
case that ¢ = 0, we can return to equation (2.50) and find
other classes of invariant surfaces.

Next, the functional form of the sclution correspond-
ing to the invariant surfaces (2.56) is derived. Rearrang-
ing the second identity in equation (2.50) for c # 0 we
have

du (X =x) = ult=t,)
dit-t,) @E-to)* + oo

(2.57)

In the shifted variables x and t the determining equation
(2.57) is expressed by,

c(g. - X-ut

dt 1T 4+ & (2.58)

Now x may be eliminated for X and t by substituting the

relation,

X = Afered + vt (2.59)

intc equation (2.58). The result of this substitution is,
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d (u=\) _ /\\/tz-}& - (u~-Vvit (2.60)
dt - t* + oQ )

or, when the velocity is shifted, as well,

d AE24al - ut
i €2 4 ou (2.61)
Equation (2.61) may be rewritten as
4 (wymrs) = A (2.62)

gt

Consequently, the second family of invariants for c # 0 is
given by
TTIXNY = v dtrqa. —~ 2T (2.63)

or, in terms of the original coordinates.

WA = u=-WIY-t )+ — Alt-8)  (2.64)

C. Group Reducible Burgers' Fluid Motions

A group reducible solution of Burgers' equation for
c # 0 lies on the characteristic surfaces in (x, t, u)
determined from (2.50). The characteristic surface may be
coordinated by the families of group invariants, A and
U(A), given by equations (2.55) and (2.64), respectively.

In terms of A and U the Burgers' equation becomes

{ L
O=uny + uLb\,(*\}M,.,x = mg,z(q)\*—uu -\HJ”) (2.65)

As expected, on the characteristic surfaces of its
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invariance group, Burgers' equation reduces to an ordinary

differential equation in the invariant coordinates A and

U(A). Equation (2.65) integrates to

17 = K+ ;5~UJ‘+ar9 (2.66)

which is a Riccati equation. Upon making the standard

substitution,

7y = - 2V C%\(lojjm) (2.67)

we find a second order linear differential equation for
y(r).

o

314 +(A—B,\1)_'j=© s A:k}gr_ - (2.68)

Equation (2.68) can be transformed to the classical equa-
tions for either confluent hypergeometric functions, or
parabolic cylinder functions.

Before we write a closed form group reducible solu-
tion. let us comment on the linearity of equation (2.68).
0f course, mathematically, it is linear because (2.66) is
Riccati equation. However, the physical meaning of this
linearity is that, in the right space, Burgers waves can
be superimposed. Thus, equation (2.67) represents the
counterpart of the Cole-Hopf transformation (2.18), taken
on the ¢ # 0 characteristic surface of the Burgers invar-
iance group.

Equation (2.68) is related to the confluent hyper-

geometric equation and to Weber's equation for the
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parabolic cylinder functions.6

A

(1) Let “q = e—%’lr(a) » B(A) = \7% (2.69)
then
2 4 (L) kv =o, R=4(A41) (2.70)

The solution is given in terms of the confluent hypergeo-

metric function

Yixy = e Fk;£52) (2.71)
(2) Let &%= %™, q(n = v (2.72)
then Weber's equation appears,
Garll 4 (24 4k -2y = D (2.73)
where
2A = C(2R+() | ¢% = 48 (2.74)

The solutions for y(\) are given in terms of parabolic
cylinder functions

ylay = Dy lx 200) (2.75)

and

, (2.76)
B =D (F5rn) , C= =~ (he))

6G. M. Murphy, Ordinary Differential Equations and Their
Solutions (D. Van Nostrand, Princeton, 1960).
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Now, transforming back to the invariant U(A) via

relation (2.67) gives

{FII(R;TLJ'E{)‘)
G, + ALIE S 2(n)

TN = V+ (2.77)

where Co is a constant which is related to k and B.
Finally, the relation (2.55) and (2.64) or, in the shifted

coordinates,

w - WAy + At Coa-= x-Vt (2.78)
t? 40 YVt + o

restores us to the original variables.

The solution given by (2.77) and (2.78), or its equiva-
lent in terms of parabolic cylinder functions, comprises a
four-parameter family of group reducible solutions. This
family of solutions corresponds to the group reducible solu-
tion generated by the infinitesimal operator C, while
simultaneously incorporating the finite transformations of
the rest of the invariance group. In a similar manner,
other group reducible solutions may be produced. Represen-
tative examples of nontrivial Burgers waves are listed in
Table 2.3. Details of the derivations are not shown. The
wave form (2.77) and (2.78) can be represented in terms of
various special functions of wmathematical physics. The
parabolic c¢ylinder functions have already been mentioned.
Hermite functions, error integrals, and exponentials in

A may also be made to appear. In terms of x and t, the



Group Reducible Form

Operator Invariants
P H x-et , n tw = Lf{x=ct)
x { =
S \[‘E s \A\rE = TEU(:%)
t* 2
H+a X - 3, -t w=t+ (x-3)
a+3 X, oxw- s X Lr(=E
JEE 2) tta t+2 > Tt 43)
- Lt LT+ At
1 - X oo - 1 - At W= b =+ e
al+ P + ( A \/—sz-ﬁ_ , (u SWEier ~A A Vieo
b + C e Tkt -k W= 2 n+ 210D
~ = % - At T t
Table 2.3. Representative Classes of Group Reducible Solutions

for Burgers' Equation.

86
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error function solution initially looks like a Gaussian.
Then, as time progresses, its height decreases and the
"hump' may be described to '"lean" to the right, acquiring
a steeper gradient on the side toward positive x. This is
the expected character of the motion, corresponding to
wave form steepening and attenuation.

In Table 2.3, the (cP + H) solution is the shock-like
solution (2.16) discussed earlier. The S group reducible
solution is Burgers' similarity solution for which U(») is
given in terms of Hermite functions. The (H + G) solution
can be written in terms of Airy functions. The last three
lines are special cases of the general C # 0 solution
derived abcve. In each case the transformations of the
rest of the invariance group lead to families of group

equivalent solutions.
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APPENDIX A

EXTENSION OF INVARIANCE TO DIFFERENTIAL MANIFOLDS

Lie's method for the study of partial differential

equations depends explicitly on the transformation proper-
ties of the derivatives

. y K, . ete,
ik ERY,

(A.1)
under the action of a Lie group defined on (x,u) over EN,

The equations for the local action of a Lie group are given
to first order by,

x. =

: xX; + EX:("I"\)
Ry = g o+ €L 0xw (A.2)
(k)
R = Fie ¥ ELT W)
™ = . u(&!)
ALY SRR ¥ > & i [x, )
where,
Au - da
w. = ¢ ’ P = ——— - (A.S)
oy axj 3R A;k ) ot .
Hote:

no letter distinctions are made for the appropriate
ranges of the subscripts in this appendix.

The "extended" coordinate functions U(k) U(kl)

J » J » etc.,
are calculated from the coordinate functions on EN. directly

from the chain rule.

The nth extension refers to how the
nth partial derivative transforms.

In this appendix, the
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forms of the first few extensions are calculated and tabu-
lated for use in the text.1

Although we make no explicit notation for it, the
partial derivatives of interest are always to be evaluated
on a characteristic surface of the group concerned. Thus,
implicit dependencies abound, because we are operating with

fij on functions F(x,u(x)). 1In order to simplify the

notation, the total differential operator is introduced,

x. = e T YSeda. vy =+ (A.4)

Expression (A.4) accounts for both the explicit and implicit
coordinate dependence.
The derivatives transform, to first order in &,

according to,

Dx; :D]&_L

TR, s'i - €& ix‘j (A.5)
.)i_‘?i - DT J)XR
b;_( = u‘,g + & Dx; - JSTJ "‘L,h] (A.6)

Expanding the right side of (A.6) using (A.4) we have

we o, oo IXn . Xk

2 -
2 Up o+ & oy Y dar i Ixg Lk Su, uﬁjui,k] (A.7)

D

x! ' st

S

lsee also A. Cohen (1911) p. 40 or Bluman and Cole (1969).

v T T A L
RS AT AN T D R ; e AT T TN
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Expression (A.7) gives the first extension of the group
{A.2).

The second extension of (A.2) is found from

(x'l S -~
O I EPL .+ SR
Lk = Volke + - 1,12
.4 i D X DXy SR
‘) A~IT 279, AR
fiﬂ) - " H: +é.£3¢,m{t +_;_Z:'_‘_._u,,,.
L 3yj9xh AX_;Q(A,M ‘ )r‘k)“m ‘3
0211 ILT;
M-mau/[ A n (A.B)
PR I X X IR 7
ot cal b I
I<, IXp dx au’( 4R xkéu Su, uy LiArR A

In general the q-th extension of (A.2) is fcund by applying

the operator
>
Dx;
b
to the (q-1)th extension and adding the negative term.

-)XM
. (A.9)
MY th Y, :liz”'itqm

where



103

jz = {‘ 2, s ¥
(A.10)
Jon LEe, e
For the infinitesimal transformations given by
X = x4+ 8 X (xt,w
T = £+ T (x,t u)
A (A.11)
"A - “A-+$.Ul’lt:“)

the expressions (A.5), (A.6), (A.8) are tabulated below.

dx B

s - / - é'LXx *Xkux]

ax [~

o = - X+ X, '*t] (A.12)

A_t' = (“EETt"’T‘&Mt-&

PR

o celn el
U“‘:[er * (Uu'k")“z =~ Teug = qui - Ta “xu\‘.] (A.13)
L..f'ﬂ - [ut + (L’u-—r't)ut - Xtux -T: u: - qutu,__{ (A.14)

o g laeny 1 - 3
wl = L U,w+(zum X.')ux_"u‘ut - 2T,

« (e, ~ 2300

Iy o -
+ LT, - -LXx\M‘,‘ -

w Uxthy

= X uie = T utug (A.15)

ZT’“x' - zx““nuul

- T.“u'““t —zt‘ u_‘.tu,‘]




104

ey | - - ~
T = l_utt + (AU - T g = R ux - X, Mauy

(A.16)
+(~LT\A-\'\- ZTtuBU}t - -T(:.u “i - qu “zU\

+ (Uu‘ZTt)“tt -2X,u, - 3T, u,u .

14

- Xuhge U, ~ ZXU‘lAt!M‘_,{

{(xt)
U = [Ll;t -+ (-.er“—tt\ut + (Utu—xxt)u)‘ (A 17)

+(Lr““-7;XK - T;u)'l'{x“t + (UM‘ K- Tt)“xt

- 2 - 2 -
T)(\Au\t- X‘Mt“k - T"utt‘ktukx

- 2 ~ 2
Tuy Wty = Xy Uy ~ 2 W U g

(x x x)
T [ a(-ag - Xxxx)l,\ -

’(kk v(
* (A.18)

= 3T Uxty + (BT ~ 3X Y u2 = 3T,

uux t

2
-+ (ub\u.u\ - SK"'A‘*}"{X - X""“"‘ M'j: = 3Tx:¢ Mxt_

(B3 - 3 e+ (31700~ 2 ) L U

- N\
~ 3T e Uy = bR HE Uen + (T ~ 3R Vamre
3
- .Ew\w Ui Uy -"é-,:u U Upee = 3 Tua A e e Mt“x

‘3T~g M\tkt '-‘/X“Mg,xb{.t "gk _3 Iau't Ut

"'Tu “knxkt "BTK Wox A se g - 3 Tu U u\xn-t]

R T S

e iy
AT

!
F g
g
5

!
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APPENDIX B

GEOMETRICAL INVARIANCE ALGEBRAS AND
SYMMETRY BREAKING IN CLASSICAL MECHANICS

The symmetry principles of nonrelativistic mechanics
have traditionally been of great interest to physicists.

In this work we have no intention of adding to the multitude
of review articles about canonical transformations in phase
space. However, we would like to point out that the sym-
metry principles of Newton's equations of motion lead to
useful geometric invariance transformations, which refer
directly to particle trajectories. In fact, the space-time
transformations of particular mechanics problems often lead
to constants of the motion. Occasionally they give exact
solutions. Thus, the invariance principles of Newton's
equations provide some insight into the charactef»of the
motion,

The nature of the symmetry principles which we discuss
here is more geometrical than the phase space formalism of
mechanics. First of all, we work only in configuration
space, so we are interested in the mapping of a space-time
flow of possible paths into itself. Our subject is the
transformation properties of orbits in configuration space.
In the simplest case, we are concerned with families of
trajectories whose elements are geometrically similar.

This is the sense in which a symmetry group in
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configuration space is geometrical in character.

In what follows the free particle in uniform motion in
one dimension plays a central role. All of the work is
performed in one spatial dimension. The introduction of
more spatial dimensions is conceptually straightforward, but
it is not done here. The kinematical group of the free
particle, i.e., the group of space-time transformations
which maps uniform motion into uniform motion, is the planar
projective group, also isomorphic to SL(3,R). Under the
action of the projective group, straight lines are mapped
into straight lines. When an interaction potential is
present, the projective symmetry is usually broken.

Consider a particle moving in the presence of an
external force which varies spatially according to a power
law. The kinematical symmetry group in the general case
reduces to a two parameter subgroup of the eight parameter
projective group. The kinematical group decreases in size
because the warping of the trajectories produced by the
external force tends to make them less symmetric. However,
in two special cases Newton's equation admits an accident-
ally larger algebra. In both cases, the extra symmetry
occurs because the corresponding family of space-time
trajectories is especially symmetrical. The first case is
the centrifugal 1/r3 force, whose three parameter kinemat-
ical group of the projective group is isomorphic to
SL(2,R). The second,even more symmetrical case is the

linear harmonic oscillatqor (LHO). The one dimensional LHO
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has an eight parameter kinematical algebra, which, when
written using the complex normal modes as cooxrdinates,
becomes identical to the free particle projective algebra.
The introduction of linear damping does not break the
structure of the kinematical LHO symmetry, but damping does
alter its differential operator realization. In the
undamped LHO case, when centrifugal force is present, the
symmetry algebra again reduces to SL(2,R)}.

Our justification for appending such simple examples
of invariance analysis to the present work is first of all
that the harmonic oscillator treatment (which was obtained
in collaboration with Professor Roy Axford) is apparently a
new result. Secondly, in the construction of the kinemat-
ical symmetry algebras we use the same methods as in the
rest of the present article. Thus, the kinematical treat-
ment of classical mechanics constitutes a further illustra-
tion of Lie's methods, but this time for ordinary differen-
tial equations. Thirdly, the present kinematical classical
examples provide 2 good contrast to the analogous, but
qualitatively different use of similar group methods in
quantum physics.

A. Forces Obeying a Power Law

Newton's equation of motion for a particie moving under
the action of an external force which varies spatially

according to a power law is given by

“ n
4" + Guy = O (B.1)
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In (B.1) G is a coupling constant and n is the spatial
exponent in the potential energy V(y) = Gy"™. Newton's
equation (B.1) is assumed to admit a Lie group whose
infinitesimal variations depend on both the position y and

the time x:

5 = 9t g Y (x, y) (B.2)
X = X4+ & X(x. 9

One could very well allow the coordinate functions to also
depend on velocity v~ y'. And indeed, when this is done, an
even larger algebra results than the one which will be
presented momentarily. However, for our current geometrical
considerations, the simple space-time 'point"” transforma-
tions (B.2) rather than more general '"contact'" transforma-
tions depending on velocity, are sufficient. When consider-
ing transformations such as (B.2) one should worry about
having violated Newton's concept of uniform time. We have
admitted transformations of our time variable, called x,
which depend on the motion y. In this view, space and time
are still absolute (in particular, they are unaffected by
the presence of mass). But the time now is somehow con-
nected with the space coordinate. The point to remember is
thai the transformations (B.2) do not take a space-time
point along a trajectory, they ‘take one entire trajectory
into a neighboring one. Thus the relation between corre-
sponding points provided by (B.2) is not a dynamical

relation concerning the motion along a particular path.
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Rather it is a geometrical relationship among corresponding
points on different possible paths.

Either by following Appendix Aor by simply substi-
tuting the barred variables into the equation of motion,

we find that
"g_" + G/\E—"—"’ = u’ 4 Gmi"-'+ E[Y"-q» Gmn-:;\fau-? (B.3)

where

Y” = ka “* 31(2\(5"}(*‘) + ‘311(Y‘.: _2X*>
) (B.4)
+y (YZ‘:! - 2in) - 313H(3X5) _ ﬁ’5xj'j
For invariance, the order & terms in (B.3) should vanish

when the equation of motion is satisfied, i.e.,

7(:”4- G-nj"-’)

£l

" “ - N
Y -+ G’VHV\‘I)Y_lj 2 = ):.rf'(x,g\+ R(k,j',3 (B.S)

The form of tie multiplier in (B.5) can be derived from the
classical Lie theory (see Eisenhart's book on continuous
groups).

Equating coefficients of like derivatives in (B.5) we
obtain the determining equations for the coordinate
functions X(x,y) and Y(x,y).

0 Y = G-y *Y = EG—mg‘-'
80 20y = Xux = RGEng""!

S Yy - 2%, = P

gt Yy - 2}{,“3 = 0O

2’y —3){3 = R

4% Kyy = O

(B.6)
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From the last four equations in (B.6) we find the relations,

valid for arbitrary exponent n,

-.x = )J‘f,: + Taiw)
R = R .x3» = =~ Zxm
{B.7)
’ . ,
l = "(J‘ + (2= a4 ?’a\ e 4 C'w)

where the functions of time a(x), b(x), c(x) are integra-
tion functions. Now using the last equation for Y in the

second determining equation, we have the relation,

wt- ?

2a. o+ 2" 4+ 2P = RGua (B.8)

Thus, R = 0 unless n = 0, 1, 2. For an arbitrary value of
n, the first determining equation, along with (B.8) and

the middle equation in (B.7), gives

o= c T Q
. _ ein=-ty .
P = ST A L Aot (B.9)

b’ = -‘g P+ A

[

Thus, for arbitrary exponent n the coordinate functions

X and Y are given by

I{n-2)
_X-. h+2.'4 +B
(B.10)
&
Y = 55 Ay

From (B.10) the operators follow by setting A, B equal to

7&(n + 2) and unity, respectively,
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{6.11)

The operators A and B are the geomerrical symmetry opera-
tors for Newton's oquation of motion under a spatially
homogencous force, The opcrator B corresponds to time
translations. The operator A is a sclf-similar scaling

rule. XNamely, undey

(B.12)

particle trajectories transform among themselves. The
invariant of the transformation A gives a relation between
corresponding space-time points on geometrically similar

trajectories. Namely,

— = ‘m5+ . 3
= (5.13)
or
-
o I ‘ 2
;"‘a ) ! 105

(B.14)

Equation (B.id4) is a scaling relation between corresponding
times and lengths characterizing different motions under
the same power law force. The interpretation of (B.14) for

several values of n is tabulated below.
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n 1-n/2 Physical Problem Meaning of (B.14)
2 0 Harmonic motion Period independent of
amplitude
1 1/2 Constant force Time to fall «~ square
root of height
0 1 Zero force Uniform motion
-1 3/2  Kepler motion (Period)? progortional

to (length)

time .
———-— ., characterizes

-2 2 Cotes' spirals
P (length)z the orbit

Of course, these particular results are standard and were
known even to Newton (as cited by Whitaker, 1904, p. 47).
We have, however, shown that, up to time translations,
expression (B.14) represents the only relation between
different orbits. The operators A and B in (B.11) close
under commutation to form a two parameter Lie algebra of
the third type.1 When rewritten in terms of Lie's canonical
variables the ordinary differential equation (B.1l) is
integrable by quadratures.2

Let us proceed to discuss the special values n = 0, 1,
* 2, for which extra symmetry occurs. First of all, for
free particle motion (n = 0) the group analysis after (B.8)
takes a different turn, resulting in coordinate functions

M= /A+Bx)j + Ex2 + (2F-N)x + H

Y = Buy? + (Ex+F)ly + Ix + T (B.15)

1A, Cohen (1911) p. 159,
2. Cohen (1911) p. 171.
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where the eight integration constants A, B, D, E, F, i, I,
J are the group parameters of the kinematic symmetry group
for uniform motion. The infinitesimal generators and their
commutation relations are given in Table B.2 and Table
B.1 respectively. The group corresponding to the coordi-
nate functions (B.15) has the finite transformations,

A, X g a,u + a3z 1qx+q,5+q‘

a.,x« q33+qj ? - 071464‘:,(]1 tB‘16)

-
-
-

sl

Thus, the expressions (3.15) are the coordinate functions
for the classical projective group in the x-y plane. The
planar projective group, which is isomorphic to SL(3,R),
maps straight lines into straight lines and therefore takes
the family of uniform motions into itself. Included in the
projective group are operations of scaling, rotation, trans-
lation, and of course, projections in the x-y plane.

When n = 1 the external force is uniform in space and
constantly accelerating motion results. The group analysis
yields coordinate functions X and Y which are the same as
{B.15), but with additional polynomial terms in the time
variable. The eight group parameters remain the same, and
the resulting algebra is the same as the projective algebrsa.
Since no modification of the group structure occurs, the
results for constantly accelerating motion are omitted.

When n = -2, corresponding to Cotes' spiral motion,
where y is now a radial coordinate (Whittaker, p. 83), an

intriguing extra geometrical symmetry emerges. The



A B C D E F G i
AL - 0 -B “A vB (e k) i(pe3) A
Bl o - -A B oA (o) L(-eaE)  -B
C|] B A - - 2E -20b -G -F 0
D] A -B = - 2.C F -G 0
E| -«B -wA 2wD -2uC - wG -wF 0
Fli(@el) ~L@-sm G -F -6 - 0 F
6 | s(®+3)  £(a-§) F G F 0 . G
HI A B 0 0 0 -F -G .
Table B.1. Commutator Table for the Real Basis of the

Hlarmonic Oscillator Algebra.
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Harmonic Oscillator Algebra

Table B.2

Projective Algebra
Infinitesimal Finite Infinitesimal Finite
Operator Transformation Operator Transformation
o E
a.&:&(bﬁ;_) xg = X,
Z O\JR"'L’Q‘: e )
- PN 3 B = s
bﬁ.: (L’q* .z,) jf = e+ £
Ao X -
cﬁe = € k3
W= > = 28Q [~ & Xq
2 a* I, ° ;t(xdx-kﬂc)s\)
34
LE = l3° HYes = ! 5;‘_‘
o Ao
2 e = . X, = X
x: i a {-Fg & (-]
E a - kaﬂ
B: = bo - “s = H.+ EXx,
Y = 695 d
_ éé j fiu &
e = &b, Gy = €4,

S11



Table B.2 continued

Harmonic Oscillator Algebra

Projective Algebra

Infinitesimal Finite Infinitesimal Finite
Operator Transformation Operator Transformation
Ag = (o,+ §
2% o\.,\-;-'bég £ ° 2 Xg = %g 4 &
= - O
2o
EE (a +-> de = *Jo
X
ARg =
. Xp = O I~ £
W = 207 d Y(=d + yIy)
L . —Se 2 e
§ i-zzb e = '- t3.
iy g = aﬂ Mg = Xt Eu,
X* = iab b —&&—— ﬂ‘}an
£ {-= e = !10
c £
Ae = € O X = @ XNa
Y' = o\)m xf)x
be = b, “e = e
Table B.2. The Comparison between the

Projective Algebra.

Complex Extended HO Algebra and the

9IL1
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corresponding coordinate functions are given by (B.15) with
E, G, H nonzero.
o= Exr 4 2Fx +H
(B.17)
.\J, = (EI+F)t1
The differential operators which appear when E = 1, F = -1/2,
H = 1 are called J_, Jo’ J, respectively in order to suggest

their commutation relations,

(Fo, o] = =3y ,[4 z.7--21, (B.18)
where
J_ = xydy « =79, Projective transformations
J, = - 2)3 - x O Scaling: ;;.s const {B.19)
I, = dy Time translations

The commutation relations (CR) in (B.18) are SL(2,R) CR
which are the same as SU(2) CR, but with one wrong sign.

The SU(2) CR can be obtained by relabeling (J,, J_, J_) by

o’
J_, -Jo, -J,). In any case, the operators (B.19) generate
projective transformations. The action generated by J_
(for E = 1) leaves ¥~ invariant. The finite transforma-

tions of J_ are given by

XE = / Xe
- & Xy
(B.20)
- .__———-ﬂo
.-‘:(E = [_er,

where the subscripts refer to the value of £. The group
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parameter £ vanishes at the untransformed points. The

transformations generated by J  and J, are identified in
(B.19).

Finally, when n = +2, in the case of harmonic vibra-

tion, the equation of motiom is given by

(B.21)

In the group analysis of the harmonic oscillator equation

the integration functions a(x), b(x), c(x), P(x), R(x) are

given by

Alxy = Asinwx + Bcogewx

e )
E(xy = ?i St 2ux - ;—;erwx + B
Cix) = Fsrmwx + & coxwx

(B.22)

Erxy = - %b/(x) + H
Ritx)y = = Ratxy

There are eight integration constants in the coordinate

functions, corresponding to an eight parameter Lie invar-

iance algebra with parameters A through H. A differential

operator basis is given by
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A . 2 s‘mwxax + 5"-w¢wx a._,
8 = _i_ﬂ) oy Lux Jk + 32'5,74 COA c)j
G = - £BC0qzq»_Ax -+(jsﬁr2wx 91
D = igsﬁn mdxgx 4‘3&&q2&»(%i
(B.23)
E = ax
E = gbuux'&s
G = Cov wx 95
H o= 49

The notation for the operators in(B.ZS)corresponds to the
nonzero group parameter involved. The action of the opera-
tor H is to scale the amplitude of oscillation. H is
admitted mathematically because Newton's equation for har-
monic motion is homogeneous in the amplitude y. The opera-
tors F and G correspond to superposition of solutions,
admitted because (B.1) is linear. E is the time translation
symmetry operator, which arises because x does not appear
explicitly in (B.1). Each of the other operators A, B, C,
D, acts on the phase of the oscillation. The operators A
and B, respectively, shift the cotangent and the tangent of
the phase angle = x, and produce nonlinear transforma-

tions on the amplitude y. The invariant quantities under

A and B are respectively, and q:iUX . Thus, A and

S
S uwix

B make phase changes, but preserve the amplitudes of the
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normal modes of oscillation. The operators C and D essen-
tially scale the tangent of the phase angle and the ampli-
tude, but they preserve the quantities ;;ﬁij; and gﬁ%%;k .

The eight parameter dynamical algebra of point
transformations for the harmonic oscillator closes com-
pletely. Its commutator table is given as Table B.1.

It is natural to inquire about the structure of this
algebra. It turns out that the complex extension of the
HO dynamical algebra is isomorphic to the projective
algebra of classical mathematics, i.e., the complex extended
algebra is isomorphic to SL(3,R). Remember that the projec-
tive algebra is the symmetry algebra for a free particle
y" = 0,

A differential operator basis for the complex exten-

sion of the HO algebra is given by the eight operators.

L i (B.24)

X = é—_(b-ﬁ(‘,) = e (3o7j —‘é_,)x>

Y o= L(H+iE) = é‘(na_h_\-»i)ax)

plus their compiex conjugators, Z*, W*, X*, Y*, The
practical usefulness of the complex extension algebra is
that its finite transformations may be calculated more
easily than those of the real basis. In terms of the

invariants of the complex extension algebra, namely the

;
B
H
;
;
|
i
i
i
i
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normal modes,

(B.25)

the operator basis (B.24) takes on a simple polynomial

form. For example,

/

2
W o= za¥d, , X =T Y s ady (B.26)

In Table B.2 the differential operator bases and the finite
transformations for the complex extended HO algebra and the
projective algebra are displayed side by side, according

to one-parameter subalgebras.

When the operator correspondence of Table B.2 is made
between the algebras, the commutator tables for the complex
extended HO algebra and the projective algebra are precisely
the same. The two algebras in Table B.Zalso have the same
set of invariant forms, namely (a, b, a/b) and (x, y, Xx/y).
However, corresponding operators only have the same form as
the invariant when they are identical. The commutator
table for these two isomorphic algebras is given as Table
B.3.

It is interesting to notice at this point that the
SL(3,R) algebra is the same as minus the SU(3) algebra,
except for four essential "wrong" signs. A correspondence
can be made between the SL(3,R) algebra and the SU(3)
algebra by multiplying the generators of SL(3,R) by appro-

priate factors of Af-{'. We mention the unitary algebra



2 W X Y Z* W X* Y*

yA - X 0 Z 0 (2Y+Y%*) A 0

WX - 0 0 - (2Y*+Y) 0 -Wh -W

X 0 0 - X - W - (Y-Y*) ~X

Y -7 0 -X - 0 Wk X* 0
i
(8]
(3]

YA 0 (2Y*+Y) yA 0 - X* 0 7%

WE - (2Y+Y®) 0 -W -W* -X* - 0 0

X% -7 Wk (Y-Y*) -X* 0 0 - At

Y* 0 W X 0 A 0 - X* -

Table B.3. The Commutator Table for the Complex Extended HO Algebra and the

Projective Algebra SL(3,R).
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SU(3) because it is usually seen in conjunction with the
three dimensional harmonic oscillator, where it is the time

independent phase space symmetry group of the Hamiltonian,

rather than the symmetry group of the equations of motion.
In contrast, the point transformation group (B.24) is a
mapping of one x-y space into another, for which the change
in the definition of time is crucial. In particular, the
operators W and W* are nonlinear transformations for which
the new value of the time depends on the motion. For
example, using Table B.2, the operator W infinitesimally is

seen to transform the time according to

£, SivRe B.27
Xg = Xo+ T3 4,8 (B.27)

where Xgs Yo refer to the original (& = 0) point. The
nonlinear transformations induced by W and W* cannot be
found by using linear operators in the solution space. The
operators W and W* operating in the (x,y) plane, replace
y by yzf(x), and so induce nonlinear transformations on y.
In addition, the transformations W and W* are not canonical.
Since they are special to the harmonic oscillator, they
will not leave invariant every canonical equation of motion
in Hamilton's form. However, because the algebra structure
which includes W and W* refers directly to the dynamics of
the harmonic oscillator, the energy integral for the motion
of the oscillator follows directly from the algebra.

The equation of motion may be rewritten in terms of

the invariants of the algebra. The invariant and 1st and
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2nd differential invariant of (B.24) are

A= ye

&=y Rt (B.28)
“ " s X

A = j e

along with their complex conjugates. The harmonic oscil-
lator equation clearly admits (B.24), since it can be
written in terms of the invariants of the algebra. Now

taking the ratio of the time derivatives of a and a' we find

) . ; R 1 X - ~
al = ol = (_'3 —:w_ﬂ)ﬁ S ) (B.29)

And by complex conjugation,

b +iwb = (’j’«"»uﬂ)éwx = consd (B.30)
Thus, the Dirac variables appear, y'#+ iwy, and by multi-
plying together (8.29) and (B.30) the energy integral
obtains, ‘

474 Wiyt = 2 = cemsd (B.31)

whence the solution preceeds as usual.
In the invariant phase space (a', a) ® (b', b) the
orbits of the solution are straight lines,

de.’ db’

= - o= Feo (B.32)

Physically, this means that the normal modes are decoupled

(which fcllows also from the superposition principle).

s o gy e
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During the course of the motion, as time progresses the
Dirac variables change phase in opposite directions.

Of course, the derivation presented here is not
rigorous, because the first integral is obtained from the
solution for the normal modes. However, a completely
analogous procedure is valid in more usual cases where the
symmetry group is obtained without first solving the equa-

tions of motion!

B. Damped Harmonic Motion ;
The introduction of linear damping does not break the

harmonic algebra symmetry. For the equation of motion E

/"

4" + 7_P_tj' + w"n = O (B.33)

an exactly analogous calculation to the one presented for
the homogeneous force law results in an operator algebra

whose real form is given by

B
A = :!: Sinax Iy + 42 @ (logdx - 25"'1Ax)93

2
B = - 27 coaxds + 5% e (gin ax + V4 covax) Iy

(@]
]

i cov 24x dy + 3(51':1 2hx + %WZAK)QS

D = Z{-s'm 24X e + 5(‘«79—4* ~ Buem ZAK)a5

(B.34)
E= 9~ P4y
G = é*w—qAx 3!_1

H = 595
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where A-:JZ;TE;‘. The basis (B.34) generates mappings of
the (x,y) plane into itself, for «'»p*. Each of these
operators limits to a corresponding operator for the
undamped harmonic¢ oscillator when the damping coefficient,
= tends to zero. And the geometrical meaning of each
operator is analogous to its undamped counterpart. Time
translations are contained in the basis (B.34) in the form
Jx= E +pH. However (B.34) is written to exhibit the
connection to the algebra of the undamped harmonic motion.
The complex extension of (B.34) is defined by the
operator combinations (B.24) as before. The invariants of

the complex extended algebra are given by

(iA+Ppyx
A = 4ye M

(B.35)

(=1 A+
b = ye P a*

In terms of the invariants a and b, the dynamical algebra
of the damped harmonic oscillator has precisely the form
given in Table B.2. Thus the algebras for the damped and
undamped oscillators are both isomorphic to the projective
transformations in the (Xx,y) plane and to each other.

As a proof of its invariance under (B.24), the damped
oscillator equation of motion may be rewritten in terms of
the invariants of its dynamical algebra. The invariants

are
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CA+t Ay X
A = ye a

ClA+R) X .
o = ljfe » (B.36)
e gn S

along with their complex conjugates. The invariant
expression,

(ia+ Ky
<

A7+ 2Fq’ 4 wRa o= (3”+ 2}:{’4—!—0’3) (B.37)

makes it clear that the damped harmonic oscillator equation
is invariant under the complex extension of (B.34). The

. daf da
result of dividing gx by gx is simply,

LA+RI%
e

al ~ Ga+rpya = [3’~</'4+p)g1 = wy (B.38)

Hence, taking the product of (B.38) with its complex conju-

gate, we have the constant of motion,

(%_3’1 + Byu’ < -_LLw‘u_,l)ezFx = E_ = st (B.39)
The expression (B.39) is an explicitly time dependent first
integral of the damped motion. According to (B.39) the
oscillator energy falls exponentially with time and
linearly with an effective frictional work term. For

2 A%
initial conditions y(o) = A, y'(o) = 0, we have Eo = “2;4 .

In this way, the initial potential energy of the oscillator

is dissipated by friction.
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We have derived an eight parameter Lie invariance
algebra for the damped harmonic oscillator and have shown
that it is isomorphic to the dynamical symmetry algebra of
the undamped motion. 1In fact, the algebras are identical
when written in terms of their respective invariants. In
addition, a constant of the motion was found directly for
the damped harmonic oscillator which is the analogue of the
Hamiltonian for undamped motion. At every step the undamped
case is the uniform limit of the damped motion.

Let us finally discuss the case of undamped harmonic
motion including a centrifugal force. The equation of
motion is

4" - 5"; + wFy = O (B.40)

While linear damping modifies the LHO algebra but does
not actually break it, the centrifugal term scales differ-
ently than the others in (B.40), and thus breaks the LHO
algebra. The group analysis, which is again straight
forward but tedious, produces three-parameter coordinate

functions,

- > - G
X = E)Sln 200% —~ -—MWZwX -+ E
(B.41)
Y = %SC’WIWX -+ %LISM‘zw)‘
The corresponding differential operators are
D = & Swmzwx I + Y cov 200 Iy
¢ = -Levawx d, + ysn 2wx Iy (B.42)

E = o
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Clearly the eight parameter LHO algebra has been reduced to
only three of its original members. The analogous reduc-
tion occurs between uniform motion and Cotes' spiral motion.
In both cases the breaking of the original symmetry reduces
it to a subgroup, rather than completely changing its
structure, e.g., by contracting it. Referring to (B.23) we
see that, with the introduction of centrifugal force, the
invariances under scaling, H, and superposition, F and G,
along with the motion-dependent transformations A and B,
have all been lost. Remaining are time translations and
phase scaling of two kinds. Identifying

§ & £ 27

Vo 200 Vo 2

with the SU(2) angular momentum operators {J_, J,, J_} we
see that, again as in the case of free motion, including
centrifugal force reduces the symmetry from SL(3,R) to
SL(2,R). For ready comparison the SU(2) and SL(2,R)
commutator tables are written down. Note the difference

in signs at opposite corners.

J, Jg J. J, Jq J.
J, 0 J. 2, J, 0 -J,  -2d,
Jo J, 0 -J. J, J, 0 -2J ‘
J_ | 23, J_ 0 J. | 23, J, 0

SuU(2) CR SL(2,R) CR

R R e



APPENDIX C

LIE'S INVARIANCE METHOD

Lie's invariance method for the integration of differ-
ential equations is summarized in this appendix. The
history of the development and application of Lie theory
to physical problems is surveyed. The physics background
which has led to a revival of Lie invariance analysis is
given and the connection with mcdeling theory is described.
By referring to the Euler fluid example of Appendix A, the
method of Lie is shown to be a natural generalization of
the method of self-similar solutions. The deduction of
invariance principles from given dynamics is implemented in
an example using the wave equation. The known conformal
invariance algebra of the wave equation is constructed and
realized as a differential operator algebra. Sample group
reducible solutions - which include d'Alembert's solution -
are derived from the operator algebra. Lie's method is also |

demonstrated for the boundary value problem.

A. Historical Development in Physics

In this work some of the properties of real gas flows
are derived from the invariance properties of their equa-

tions of motion. The infinitesimal group methods which are
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used originally appeared in nineteenth century geometry.
These methods stem directly from the work of the Norwegian
mathematician Marius Sophus Lie. About a century ago, Lie,
following Euler and in collaboration with Klein, was con-
cerned with the use of local geometry to integrate differ-
ential equations.1 The underlying assumption for Lie's
integration method is that there should exist motions which
have the same local invariance properties as the dynamics.
The primary technique for integration is the method of
characteristics, Lagrange's method.

Since Lie's investigations one hundred years ago,
infinitesimal variations and lLie algebra methods have
completely permeated physics, both in analysis and in
interpretation. No attempt to chronicle the dissemination
of invariance analysis in physics is presented here. How-
ever, a rather extensive bibliography has been included in
order to provide a guide to the literature. The applica-
tions of symmetry analysis are manifold. In fact, subse-
quent éevelopments have extended symmetry methods far
beyond Lie's purely geometrical intent.

As for the line of development which did follow Lie's
intent, namely the application of transformation groups to
solve partial differential equations, little was accom-

plished until about 1956. Purely mathematical reviews and

ig, Lie, "Allgemeine Untersuchungen uber Differential-
gleichungen, die eine Kontinuierliche endliche Gruppe
Gestatten," Vol VI, Abh III, pp. 139-223.
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applications along this line were given, e.g., by Cohen
(1911), Dickson (1924), Eisenhart (1933), Franklin (1927),
and Campbell (1903).2 However, in the first half of the
~twentieth century Lie's work had little impact in physics.
This happened because the most popular problems in physics
then were linear, and more powerful mathematical tools than
Lie's methods were used by physicists, namely spectral
theory and group representation theory. General relativity,

3 is perhaps an exception,

particularly Weyl's contribution,
but nothing will be said about it here.

The theory of continuous groups was probably first
applied to the construction of invariant solutions of
specific partial differential equations in phvzics by
Garrett Birkhoff (1950). Birkhoff discussed hydrodynamics,
using one parameter invariance groups, which he found by
inspection. Morgan (1951), in his doctoral dissertation,
and Michal (1952), who was Morgan's thesis advisor, later
gave formal methematical conditions, under which an invar-
iance group may be used to reduce the number of independent
variables in a partial differential equation. Michal and
Morgan's results generaliz=d the similarity method. Morgan

applied invariance group conditions to solve two nonlinear

problems in boundary layer theory.

ZThe detailed references appear in the bibliography.

3H. Weyl, "Gravitation and the Electron," Proc. Nat. Acad.
Sci. 15, 323 (1929).

G
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After Morgan and Michal, little was done explicitly
with Lie's methods for almost a decade. In 1962 the Soviet
mathematician L. V. Ovsjannikov# again applied Lie algebras
to the hydrodynamic equations. Ovsjannikov used Lie's
invariance analysis to classify the solutions of Euler's
equations for an ideal gas. There followed a flurry of
Soviet publications amplifying Ovsjannikov's work and ex-
tending it to other problems, mainly in fluid flow and gas
dynamics. The publications in this field after Ovsjannikov
are documented in the bibliography.

In order to appreciate the modern interest in Lie's
classical methods for partial differential equatioans, a
brief digression to explain the physical background is
necessary. First of all, we are dealing with nonlinear
physics. In fact, it is the nonlinear experimental behavior
which is most intriguing. In certain media, for example,
the nonlinear response to an excitation can be tuned to the
medium relaxation characteristics, thereby producing a
stable propagating signal, as in the self-induced trans-
parency effect. In other experiments, nonlinear wave
"shocking up" is balanced by dispersion or dissipétion in
the medium, again leading to stable signal propagation.
Fascinating nonlinear effects are outstanding experimental
features of several modern fields of physics. Calculation-

ally, however, the presence of important nonlinear effects

4. v. Ovsjannikov, Gruppovye Svoystva Differentsialny
Uravneni (Novosibirsk, 1962), (Group Properties of
Differential Equations, G. Bluman, transl. 1967).
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means that the available analytical tools are comparatively
weak and primitive. The nonlinear effects themselves are
of main interest, so linearization techniques can produce
only limited results. However, because of the mathematical
difficulties inherent in the nonlinear description, only a
f=w special cases have been treated analytically. Conse-
quently nonlinear wave phenomena are not well understood
theoretically. See Scott, et. al., (1973) for an excellent
review of both the theoretical and experimental status of
idealized nonlinear wave descriptions.

It is traditional in physics to invoke symmetry prin-
ciples as a first step toward a more complete understanding.
In the case at hand Lie's invariance analysis comes forward.
Knowledge of the symmetry structure of physical laws tends
to reduce arbitrariness and relate previously unconnected
concepts. For the nonlinear problems of current interest,
the symmetry structure also provides a tool for solution of
the equations of motion. Invariance analysis expedites the
calculation of particular solutions by reducing the number
of independent variables. As well as yielding solutions to
particular problems, group invariant solutions represent ’
general classes of motions.

B. Modeling Theory

Before explaining Lie's program for invariance analysis,
we should comment on another, rather parallel, line of
reasoning which appears in fluid dynamics. This is modeling

theory, whose principles for hydrodynamics were first
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proposed by Helmholtz {(1873), almost simultaneously with
the publication of Lie's theory of integration. In Helm-
holtz's paper all of the modeling parameters admitted by
the continuity and momentum equations of (isothermal)
hydrodynamics are given. These parameters were later
named in honor of Reynolds, Froude, Euler and Mach.

In the present work the physical description of the
fluid, which includes the transport coefficients and con-
stitutive relations such as the equation of state, is to
be invariant. The transformations of interest to us relate

different possible states of the same fluid. These trans-

formations will be used to construct solutions which have
the same symmetry as the equations of motions. The trans-
formations of modeling theory differ in this respect. They
are applied to an existing solution, for a fluid flow, say,
in order to find equivalent solutions, but for other fluids.
General transformations of modeling theory were established
by Bateman (1938, 1944), Haar (1928), Tsien (1939), and
Prim (1949). Further developments have been made more
recently, and are referenced by Castell and Rogers (1974).

The transformations of interest to us here relate
different possible states of the same fluid flow. In fact,
we are interested in solutions to the equations of motion
which have the same invariance properties as the dynamics.
A useful class of solutions of this kind in fluid dynamics
can be found using dimensional analysis. Dimensional

reasoning relies on the premise that the motion cannot
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depend on the choice of units, and thus can be represented
as a set of relations among dimensionless quantities. The
resulting motions are described by similarity solutions.
Similarity solutions

exist when the physical laws are sca1e4ihfariant and the
effects of the subsidiary conditions limit uniformly to
zero., Often they are more easiiy found than the general
solutions, because the similarity relationship reduces the
number of independent variables by one.

C. Laplace's Equation

Another example of the simplification due to invar-
iance properties of the dynamics, is provided by Laplace's

equation for electrostatics:
V&¥d =0 (c.1)

The Laplacian is invariant under rotations, so one can look
for solutions which are also rotationally invariant. They
will, of course, only depend on the spherical radius, r.
Consequently, the angular differentiations in the Laplacian
will vanish when they operate on F(r), and Laplace's
equation will reduce to an ordinary differential equation
in r. The solution ZH(r) found this way will be an invar-
iant solution under rotations, because it does not depend

on angle. It is the { = 0 radial solution for r # 0.

F(vy= A+ % , AR const, (C.2)
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Laplace's equation is also invariant under the scaling
law,
T/ = A

(C.3)
PN

e
|
m\
)

where L is any constant and A is the scale parameter. If
& is not invariant under rotations, but it is to transform
according to the radial scale change as above, it may have

the functional form

® = r4Y (59 (c.4)

This form leads to a partial separation of variables and
evidently to the definition of the spherical functicns
(cf. Jackson, 1965, p. 55).

The Laplacian example is a good illustration of the
difference between finding invariant solutions and another
often-used tool of physicists for solving partial differ-
ential equations, namely separation of variables. Invar-
iance analysis is generally less powerful than separation
of variables, because it depends on a local rather than a
global property of the solution space. The solutions of
Laplace's equation form a multidimensional (linear) mani-
fold in the coordinate metri: space. Separation of vari-
ables is possible whenever the multidimensional solution
manifold is really a direct-product space of one-dimen-
sional manifolds. On the other hand, invariance analysis

applies whenever an invariant manifold exists within the
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solution space. The difference is between a separation of
the solution space into a direct product of one-dimensional
subspaces and a reduction of the solution space to an
invariant manifold embedded within it. Sometimes the exis-
tence of an invariance algebra is a clue that the space of
solutions may be completely separated, but this is not
always true. The examples of invariant solutions cited
above - similarity solutions for fluid dynamics and radial
solutions of the Laplace equation - are constructed from
very simple transformations on the dynamics. In one case,
under simultaneous scaling of x and t the Euler equations
are invariant (up to a constant). And in the other case,
urnder rotations and a scaling transformation, Laplace's
equation is invariant. The first symmetry of Laplace's
equation occurs because the Laplacian operator is a dot

product,

1 -
ve=Y¥-Y (C.5)

The second symmetry of Laplace's equation arises because
Laplace's equation is homogeneous in r and ¥, and the
coordinates ¥ and ® are independent of linear dimensionms.
The remaining non-trivial property of Laplace's

equation, namely conformal invariance, involves more subtle
operations than scaling and rotation. Conformal invariance
for Laplace's equation (even in n dimensions) is well known.
The existence of conformal invariance is evidence for

invariance transformations which are more general than the




139

simplest geometrical operations. These more general
symmetries lead to other classes of invariant solutions.
For their construction, a sufficiently general and system-
atic transformation method is useful. Such a method is
provided by the classical theory of Lie.

D. Lie Groups

Lie group theory deals with first order variations of
local coordinates in an N-dimensional space EN.  The

coordinates of EN are of two types,

X = (xl, Xypeuns xn) (n components) (C.6)
and

u = (ul, Ujsenns um) (m components) (C.7)

where n + m = N, the dimension of EN. The space EN is a
differentiable metric space, but it need not be linear.
The requirement that EN be differentiable implies that near
any point (x,, u,), functions on N may be expanded in a
Taylor series. The first order terms in the Taylor series
define a linear vector field near (xo, qu. Lie's mathemat-
ical goal was to characterize all possible classes of
geometry on spaces N according to the finite dimensional
groups of motion admitted by EN,

A Lie group G of point transformations on EN is essen-
tially 2 mapping of EN inte itself, which depends continu-
ously on a space of parameters. The finite action of G

on points in N is given by
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X, = -F;_IX,K; ) il X; = '}E(x,u;mxo) (C.8)
and
.LIJ. = 3j(xlu;x\ .VIH\ LLJ = :J-(“,L«;D(to> (C.gl
where
X = (Kl,'(z, K (C.10)

denotes the general element of the group by its set of «
parameters (group coordinates). The functions f; and g;
are analytic functions of (x,u) and X, Assume now that
fi and gj form a realization of the point transformation
group, i.e., assume that the group axioms are satisfied by
the system (C.8) - (C.10).

Let us look at the infinitesimal transformations of
points in EN, Expand (C.8) and (C.9) in a Taylor series

in the group parameters. To first order in /X, one obtains,

- aF;
. = . — P( = .

X, = X, + Swy % X, + K, Xw(x,u) (C.11)
=0

. = u.a % ~ Xy, W, (x, w) (c.12

‘A_S - A — 0(9 = Mj-f- + 3‘) . - )

2 &g
where

"’= 'Jz/ M
4‘ = 1,2, P ) (C.IS)
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and the Einstein sum rule on repeated indices is employed.
Thus, the infinitesimal action of the Lie group G induces
vector fields X,, and U, on EN. The functions X,, and
UEJ are called the '"coordinate functions'" of the group.
They correspond tc independent infinitesimal variations of
X4 and uj.

The coordinate functions describe the local action of
*k2 ~ parameter Lie group G on the N dimensional space of
points (x, u), to first order in the group parameters.
Equivalently, the local action of G can be realized on EN

by the differential operators

d 3
Qy =X, 3, + 1L, du, (C.14)

These ''directional derivative" operators, also called "lLie
derivatives,'" are the generators of the group action on
functions over EN. The characteristics of the set Q are
the group trajectories of G acting on points in EN. Thus
the infinitesimal vector with components (xiJ, lkJ) is
tangent at (x, u) to the group trajectory generated by Q,
which passes through (x, u). The group trajectories in EN

can be found by integrating the characteristic equations

of Qy.

dx, d x, I x, du, dum p
= 2 T = mom— m =— = o= =—— = g (C.15)
X\q xz\) ykv\\) un) ‘LIW‘\) v

For a finite dimensional group, the set Q closes under

commutation to form the r parameter Lie algebra L, of the
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Lie group G. The Lie algebra structure of a Lie group is
independent of the assignment of coordinates either in N
or in the group’space. 0f course, its realization though
depends on the parameterization of both spaces.

We now look at the infinitesimal transformations of
surfaces in EN. A surface J in EN is a set of points

satisfying a system of defining relations of the form

T 2.(x,uy= O (w=1,2,..,M2N) (C.16)

where the functions g, are assumed to be differentiable.
When the g are functionally independent, the dimension of

the surface J is equal to
dimJ = N - M

If M = N, then J reduces to a point. A surface I < EN is
called a G-invariant surface if a point (x, u) initially
found in I, remains in I under the action of the Lie group

G. In other words, set

I : f.xuy=o0 (rm=1,2,..., M2 ND (C.17)
I is an invariant surface under G when
"bm(;,a) = 0O Pollows  From ‘F(x,v.\ = 0 (C.18)

Expansion of this condition to first order in the group
parameters gives a determining equation for the invariant
surface I in terms of the group coordinate functions X;

and Uj' To first order, we have
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‘ N Q‘Fm o - 9; -T
£ (x,u) = ‘Fm(x,m) +E[>§.L:;—x +LJJI—:J (C.19)

or, more compactly,

Joage =~ (+ 8 Q)T (x,u0) (C.20)

Here & represents the group parameters, whose indices are
suppressed in order to simplify the equations. It follows
that fm(f,ﬁ) will vanish when fm(x,u) does, thereby satisfy-

ing condition (C.18), if

'CQF.M(X;M) = }\M}z(x,u; E(K’u) o I (C.21)

This is the invariant surface condition for G acting in N,
The multipliers Amz are auxillary functions on EN, which
also depend on the group parameters. Because each Q, is a
differential operator, it will leave invariant an entire
family of surfaces in EN, labeled by a set of constants.
The members of this family are the characteristic surfaces
of Q;, in the sense of classical analysis. A surface in EN
which is invariant under Q), lies entirely on a character-
istic surface of Qy. Transformations between characteristic
surfaces take one invariant surface into another.

Let us present an example of the invariant transforma-
tion of surfaces. The example chosen is the Lorentz trans-
formation in one-space/one-time dimension. The Lorentz
transformation serves not only to demonstrate the manipu-

lations involved in invariance analysis. The physical
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implications which are drawn from Lorentz invariance act
as a model for the general use and interpretation of the
invariance of laws in physics. In the example of the
Lorentz transformation, the manipulation of invariance
concepts is presented first rather mechanically, followed
by comments on the physical meaning of Lorentz invariance
and its implications to the present work.

The characteristic surfaces of Lorentz transformations
in two dimensional space-time are hyperbolas, parameterized

by the invariant proper time 2(x,t),

T~ e L O (C.22)

= -

Pt [ EPaR R

where ¢ is the speed of light. See Figure C.1.
Under an infinitesimal Lorentz transformation the
space-time variables change. The form of this change is

given by

x - X x + & X(x,t1)

' (C.23)
et + g¢'Tlixe)

et - CE

X(x,t) and T(x,t) are the ccordinate functions of the ;
Lorentz transformation. Invariance of the value of the
proper time, according to condition (C.22) or condition
(C.21) with vanishing multipliers, produces an algebraic
equation which determines the coordinate functions. The

relevant solution is, to first order in ¢,

X = ct (C.24)
<T = x




145

2 <0 /
TME-LKE | oo Bt

Figure C.1. The Characteristic Surfaces of the Lorentz
Transformation.
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Therefore the infinitesimal operator for Lorentz transforms
in (x,t) in the form (C.14), is given by

A = c¢eta, + x 5“'_ (C.25)

The operator Q annihilates % The characteristics of Q

are determined from

dx X _ ct
det) ~ T = X (C.26)
or, rearranging,
dx det) |
— = == = d
ct X & (C.27)

The integration constant in the solution of the first
identity gives back the group invariant, the proper time.
We now solve for the group parameter, £. Obvious manipula-

tions of equation (C.27) result in

Ctddx — xdlat)

de = (C.28)
Cztz - x?-
so that the group parameter may be resolved as
£ = ‘ﬁmé\-l c_x_ (C.29)

+

For uniform velocity frames, %»is the velocity ~; and we
have

E = tanh! F . P = { (C.30)

Under Lorentz transformations generated by Q, the group

parameter & changes linearly. The differential operator
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form of Q, equation (C.25), can be written as

2

A = 5% (C.31)

which may easily be verified. In Lie's theory, & satisfy-
ing (C.31) is called a 'canonical coordinate of the second
kind." In Hamilton-Jacobi theory, & is called an angle
variable. As £ increases, an arbitrary point (x,t) moves
along a " = const path toward increasing %. As ¢ tends
toward *on, B limits to *1, The lines of coastant £ coincide
with lines of constant [.

Under two successive Lorentz traniformations the group

parameter changes according to
E = & 4+ & (C.32)

The linearity in & leads to velocity changes of the form,

B o= tonh (608 = i % banbte (cL33)
F) '
.+ WL\.F' {W:‘E2

- B! - l?’z
1+ RE,

Equation (C.33), of course, is Einstein's formula for the
relativistic addition of velocities.

The Lorentz transformation example serves to dramatize
the general procedure for the manipulation of invariance
concepts. In other cases the procedure for deriving
coordinate functions, invariants, and group parameters is
analogous to this illustration. In addition, the physical

implications of Lorentz invariance act as a model for the
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use and interpretation of invariance principles in physics.
In what follows we first recall the meaning of the proper
time according to the active and passive views of invariance.
Then we comment on the physical implications of invariance
in general.

The proper time >{x,t) is a correlation between two
events labeled by (x,t). In the passive view, this cor-
relation of events is regarded as being independent of the
rest frame of the observer. One event is taken to be at
X3 = t; = 0, as measured in both frames. The other event
is at X, =X, t, =t, as measured in the 'rest' frame; and
= t, as measured in the (uniformly) "moving"

at x, = X, t

2 2
frame. The speed of light c¢ has the same value in each
frame. In the equivalent active view, which is usually
taken for calculations in this work, the formulation of
Lorentz invariance is slightly different. Let the states

of a physical system be labeled by (x,t). Also let the
laws which govern its evolution be independent of global
uniform motion. Finally, let the speed of light be inde-
pendent of the reference frame in which it is measured.

Then, according to the active view, Lorentz transformations,
i.e., transformations which preserve the value of the
function <7-(x,t), take given (x,t) states into states

which are also physically possible under the same (invariant)
laws of motion, but at different values of x and t.

In other words, if the laws of motion are Lorent:z

invariant, then given a physical state, Lorent:z
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transformations take this state into other possible states
of motion. Thus each allowed solution lies entirely on a
characteristic surface of the Lorentz transform operator in
(x,t). This situation leads to fundamental classes of
solutions admissible under Lorentz invariant equations
(Wigner, 1939). Spaces of solutions are sought which are
mapped into themselves by Lorentz transformations, i.e.,
solutions are sought which lie only on invariant surfaces
of the Lorentz transform operator. 1In this way, the number
of independent dimensions in the domain of the solutions is
lowered, and the solutions themselves are automatically
classified according to their transformation properties.
Thus, Lorentz invariance produces conclusions about the
nature of the allowed motion.

These physically important conclusions are, in fact,
independent of whether the Lorentz invariant laws are
linear. Only the forms of the solutions and their relation-
ship to one another, e.g., superposition, depend upon the
linearity of the equations of motion. The classification
of the fundamental solutions of a physical law according
to an invariance principle relies only upon the existence
of the invariance principle itself, The general conclusion
that one should seek the fundamental solutions on the
invariant surfaces remains as a guide, even in the study
of a nonlinear system. Thus as Laporte has often said, "By

their transformations shall ye know them."
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It turns out that a matiematical technique for both
deducing the invariance properties of a given partial dif-
ferential equation and for seeking its solutions on
invariant surfaces was worked out by Lie. It is fortunate
that Lie, in the classical era, has already developed the
mathematics for precisely the task which is relevant to
modern physics. After all, it is attributed to F. Klein,
whose Erlanger Program (1872) was correlated with Lie's
work, that "With the theory of groups, the mathematicians
have finally invented something of no possible use to
natural scientists.”

We must go on to describe Lie's method in detail.
However, even at this stage, its outline should be clear.
Let a Lie group G describe an invariance principle. The
coordinate functions of G define the infinitesimal operators
Q. The characteristics of Q, in turn, determine invariant
surfaces in N under G. Lie's method, as we shall use it,
is to seek physical motions which lie entirely on a
characteristic surface of one of the Q's. The use of Lie's
method, both for the deduction.of invariance principles and
for the description of characteristic surfaces, relies
primarily on the invariant surface condition.

The invariant surface conditions (C.21) can be viewed
in two ways; according to whether the invariant surface, or
its invariance group, is regarded as unknown. In the first
view, equation (C.21) is a relation which determines the

unknown invariant surface, I, from the given infinitesimal
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generators, Q. Ia the second view, given the surface I in

EN, conditions (C.19) determine the coordinate functions %
of the Lie group which leaves it invariant. Thus, the ?
invariant surface condition has a dual interpretation. In ?
the example of the Lorentz transformation the second view

is adopted. However, by equation (C.27) the group invar-

iant, the proper time, may be recovered from the coordinate

functions.

Lie found it possible to extend the invariance condi-

tion (C.19) to include differential manifolds, i.e., to

include surfaces in the space of x, u, and derivatives of u
to arbitrary order. The extension is obtained directly ;
from the chain rule. Let the infinitesimal action of a .

point transformation group G be given by the expressions,

X, = %, 4 gxi(x,u)

L (C.34)
ﬁ_i‘:u.i*é""‘:'"\x,bk)
The action of G on the partial derivative
u, - %ﬂé
3,0\ avL
is given by
7 ()
Uio® it B OGuu) (C.35)

The extended coordinate functions U}i) (x,u,u') are calcu-

lated from the chain rule, according to




3% ; Dxs T
Sx. T DR, Ly, (C.36)
The total differential operator
> J , 2 s
N Tl R P (C.37)
< A oA

accounts for both the explicit and implicit coordinate

dependence. The coordinate functions for the first exten-

sion of (C.34) take the form,

~q :-J,n, e . (C.38)

3 I Lo A&

The calculation of higher extensions and explicit tabula-
tions of the extended coordinate functions are given in
Appendix A.

Suppose that the extension to manifolds, including
higher derivatives of u has been accomplished. Let the
statement of the dynamical problem of interest be (S,B,C),
where typically S is a system of linear and/or nonlinear

partial differential equations of order (.
B o, 0w nu,.N=0, a=1,2,..,A (C.39)

B is a set of boundary conditions for S, prescribed on a

region R in space and in time, bounded by curves C, i.e.,

By(x,u,ouy= 0, b=1,2..,8B (C.40)

&
o
3

b
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on curves

C, (x) = O C = l,z,,,.,c (C.41)
[

s

The dynamical statement is invariant under G if (S,B,C)
forms an invariant manifold under the transformations of G
in the extended space. The set of extended invariance
conditions are analogous to the invariant surface condition
(C.21). Namely, (S,B,C) is an invariant differential
manifold if (5,B,C) is related to (S,B,C), to first order

in £, by

:A(i w f;-M, 9,‘3‘/\; \> = {{'f & qu\ Sd(xzulaz“za-:«;“-") (C_42)

and
ByCx, b, Gu) = (Tr8Xy)B, tx,u,d.0) (C.43)

on curves

C’O tx) = (1+ F/ACF\) G_F(x) (C.44)

The multipliers (<, )th are auxiliary functions which depend
on the invariance operations. The invariance conditions
mean that (5,B,C)follows from (S,B,C), under infinitesimal
group transformations in the extended space. These condi-
tions produce a system of partial differential equations
which determine the coordinate functions of the Lie invar-
iance group G.

Under the invariance group of the dynamics, in N the
solutions transform among themselves, i.e., the solution set

forms an invariant surface in BN under G. Although this
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property may seem perfectly natural because of previous
experience with invariance principles in physics, let us
prove it in a special case. Suppose the solution of

(8,B,C) is unique and given by
bkj. = Qd(x) (C.45)

Putting bars over all of the variables cannot change the
form of the solution. In the new coordinates (;,ﬁ), the

solution is

b, = B (X3 (C.46)

e

Then, to first order in ¢,

= - Dy ] f
Ox)= %y = G - wy 2 £ X3 o=, [ (C.aD)

pe - e

Now, the left side of (C.47) must vanish when the right
side does, by uniqueness. Consequently, the solution is an
invariant surface under G, because the braketed term must
vanish with (éj(x)-uj).

In general if (S,B,C) admits G, then G leaves invariant
the solution set of (S,B,C). In other words, if uj = EG(x)
is a solution, then 35 = Qj(i) is also a solution.

As an example, suppose that (S,B,C) admits the inter-
change of the first two independent variables, say X and t.
Such a transformation is a discrete symmetry rather than a
continuous one, but the same type of reasoning applies.

Let

Mj = le(klt) . (C'48)
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be a solution. The action of (x,t) interchange is given by

AL, w

g s

> - (C.49)
1 = X

If (S,B,C) admits this operation, then for the pair of

values (x,t)

r

!

D 0, (x4) = /\[ui —9:-(x,t;;
(C.50)
= /(i - Q—(. (t/x)
and for the pair of values (t,x)
- . a
Ty=— B8, =)= Al4;- 9,00
(C.51)
= W, - 9'.(x)'t\

Consequently, for all (x,t) we have X =1, A=*1, and

Thus, a characterization of the solution set has been
achieved. Under interchange of x and t, the solution sur-
face either reflects through the (x,t) plane or it stays
the same. There ire only these two classes of solutions
when (S5,B,C) is invariant under (x,t) interchange.

Let the operations admitted by (S,B,C) form a Lie
group, G. The coordinate functions of G define the infini-

tesimal operators Q. The characteristics of Q, in turn,
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determine invariant surfaces in EN under the action of G.
Lie's method is to seek solutions of (S,B,C) in EN which

lie entirely on the characteristic surfaces of each distinct
subgroup of G. In this way, the number of independent
dimensions in the domain of the solutions is lowered, while
at the same time the solutions themselves are classified
according to their transformation properties.

E. Synopsis of Lie's Method for Partial Differential
Equations

Let us now describe details for the actual procedure

of Lie's method when the dynamical statement admits an
invariance principle. A general solution surface of

(§,B,C) in EN has the form,

1= 4,2,..., »m

(C.53)

= L=,z 0N

with dimension N - m = n, Let us seek solutions which lie

entirely on a characteristic surface of an r-parameter

subgroup of the main group G, admitted by (S,B,C). The

characteristic surface C in EN is defined by R relations

for the invariants of Q, where Q stands for the set of

r 2 R generators of the subgroup H, of G. Let P be the

total number of functicnally independenf invariants of Q
N

in E'. Then C is determined from R independent relations

for P invariant quantities.

d: Q)Iyix,uy =D oun C (C.54)
| B

G T
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where the subscript ranges are,

Vot (C.55)
P = l,z‘,..,f

The invariant surface C has dimension
cdim ¢ = N-RK {C.56)

because it is the result of placing R independent first
order restrictions on the N dimensional space EN. The
numbers R and P are determined from the classical theory of
differential equations (Forsythe, 1906). The set {Q;} forms
an algebra. When the Q; are all functionally independent,
they form a ‘‘complete linear system,'" in the sense of clas-
sical analysis. In this case R, the number of independent
equations (C.54), equals the rank of the matrix of coeffi-

cients appearing in (C.S4).S

R = namk : .' (C.57)

3{\‘, v e e .. l__r\) !

Let N>R, i.e., suppose there are more columns than rows in
equation (C.57). There are R independent equations for P

invariants in an N dimensional space. Therefore,

P < N-R (C.58)

SThe first question which Lie asked a prospective student
was '"Do you know how to solve a complete linear system?"
(Private communication, Prof. R. A. Axford).
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The maximum number of functionally independent invariants
equals (N - R). P is less than (N - R) whenever any opera-
tors in {Q,)} are linearly connected. If H1 is a nontrivial
one parameter subgroup of G, then R equals unity.

Suppose P equals its maximum, then

dm ¢ = NM-R = P (C.59)

and the set of independent invariants {Ip} can be used as
coordinates on C. Let condition (C.59) be satisfied, so
that we can choose a set of coordinates which are invariant
on C. Now suppose that the first m invariant coordinates
are solvable for u.,, and that the remaining P - m invariants
on C, labeled {Ak}, depend only on X; . Then a solution
surface on C can be expressed in the invariant form,

T wx) = F () (C.60)

-

where

(C.61)

Compare (C.60) and (C.61) with (C.53). By assumption, the
{Ij} can be solved for {uj}. Hence, the restriction of the
solution surface to C essentially reduces the number of
independent variables by R, provided that P equals its
maximum value.

If the inequality helds in (C.58), then the solution

surface has more essential dimensions than an invariant
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surface under Hr' Consequently, it cannot be coordinated
by the invariants {Ip} of the particular subgroup Hr which
is chosen initially. Also, if R = N, then, from (C.56),
C reduces to a set of invariant points in EN, upon which
the coordinate functions vanish. In this case, no invar-
iant functions appear at all, and P = 0.

The invariant coordinates {Ip} on C are obtained in
practice from the invariant surface condition (C.21).
The characteristic form of equation (C.21) may be expressed

as,

dx; _ c{Mj L=1,2,.,.,¥n

Ny | Wiy 0D (C.62)

where the coordinate functions are to be evaluated on C.
Note that the u depeﬁdence in the coordinate function Xi
has already been factored out, according to the assumptions
above. This factorization allows the first set of equali-

ties in (C.62), namely,

dx dxa S xn (C.63)

-

:x:\ - Xz B “.’ Xﬂ

to be solved for the group trajectories of Hr in x-space.

The integrals of (C.63) are given by,

>\'YL'*7 = cevst ks '/3,“',’4“R (C.64)
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Now let equations (C.60) be resolved for uj on the invar-

iant surface C.

wp = NGOk N vy (C.65)

Equation (C.65) is the form of the solution, which remains
on C under Hr' Upon substitution of (C.65) into (S,B,C),
a new system of equations is obtained for the set {Yj(h)}.

Expressions such as (C.65) will be called "group
reducible'" solutions, because they can be cast into
"manifestly'" group invariant form. The group reducible
form (C.64) includes the self-similar form as a
special case. The n-R group invariant coordinates ) are
analogots to similarity variables. The m functions v(A) in
(C.65) are roughly the analogs of the ''shape functions" in
the self-similar solution.

Lie's program is a constructive and general mathemati-
cal technique which includes the method of self-similar
solutions. The implementation of Lie's method takes the

following steps:
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(1) Find, or solve for G, the Lie group corresponding
to the invariance principles for (S,B,C). The required
result is a set of cocordinate functions on EN.

(2) Solve for the invariants of Q. Here Q is a set of
infinitesimal operators on EN corresponding to a distinct
T parameter subgroup Hr of G. The required result is a
complete set of invariant coordinates for the characteristic
surfaces, C, of Q.

(3) Transform to invariant coordinates on C and seek
solutions of the form (C.60). The result is (S,B,C) reduced
to C, whose solutions give the fundamental group reducible
motions on C. These motions transform reducibly under H..

A mathematical aspect concerning details of the group
structure of G is worth mentioning. Care has been taken
above to call Hr a "distinct" subgroup of G. If two sub-

groups H(l) and H(Z) can be related set theoretically, by
H” = THOT L | {Tle G (C.68)

then H(l) and H(ZJ are called "equivalent,' as opposed to
"distinct."” The group reducible solutions ?ﬁ and ?2 of
equivalent subgroups (1) and H(Z), respectively, are
themselves equivalent, relative to G. They are equivalent
in the sense that there exists a group transformation T,

such that,

Te - o, (C.69)
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for some transformation TeG. Equivalent solutions are
regarded as not different, because they lie on the same
family of characteristic surfaces in N,

The equivalence relation (C.68) separates the set of
all subgroups of G into distinct classes, each class con-
taining equivalent subgroups. A distinct group reducible
solution follows from each distinct subgroup of G. Under
the action of separate distinct subgroups, a given group
reducible solution leaves its family of characteristic
surfaces in EN, and may even cover N entirely (see Figure
C.2). Thus, having found a group reducible solution‘?§r)(x)
for a subgroup HrCG; other solutions, equivalent to the
first one, may also be found by operating onfzgr)(x) with
the remainder of group.

The algebraic analogs of equivalent subgroups are
equivalent subalgebras. The equivalence relations for sub-
algebras Q1 and Q2 of a Lie algebra LG are defined by the

set theoretic equality,

[&,, X7 = . (C.70)
for some element X of LG. This relation may also be
written symbolically, as

- ad(X)
$¥Y%, = a, (C.71)

where,

ad ). R, = [X,Q,] (€.72)
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Figure C.2. The action of distinct subgroups of G. The
non-parallel surfaces represent characteristic surfaces of
distinct subgroups. The parallel surfaces represent
characteristic surfaces of equivalent subgroups.
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is an element of the adjoint group of linear inner auto-
morphisms of the Lie algebra. The adjoint group can be

used to find classes of distinct subalgebras of the main
algebra LG.6

F. The Wave Equation

Evidence has already been submitted that, when an
invariance principle is known, Lie's method may produce
useful and general results. Even for the nonlinear problem
of ideal fluid flow, an invariance principle provides the
key to characterizing the scaling group reducible solutions
as simple waves. Previously, it has also been mentioned
that the extended invariant surface conditions, (C.42)
through (C.44), might be used to actually solve for the Lie
group of invariance principles, which is admitted by a
dynamical problem. However, the systematic deduction of
nontrivial invariance principles from given dynamics has not
yet been implemented in an example. Thus, as another intro-
ductory illustration of Lie's method, but this time starting
immediately from the statement of the problem, we look at

the linear one-dimensional wave equation.
) { =
Axx =~ Loy, = O (C.73)

The object of this illustration is to sample once again the
completeness and quality of the results produced with the
invariance approach; and to make its procedure even more

concrete and definite.

6Ovsjannikov (1962). Such decompositions were first made
by Cartan (1952), p. 304.

R . VUV
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We present the wave equation as an ab initio example
of Lie's method. It will be seen that Lie's method recovers
naturally each of the classical results for linear wave mo-
tion. The finite part of the Lie invariance algebra for the
wave equation is the conformal algebra. The operations of
the conformal algebra map the solution space for the wave
equation into itself. The boundary value problem for stand-
ing wave motion is also discussed from a group theoretical
vantage point.

After Laplace's equation, the wave equation has been
the most deeply studied partial differential equation of
mathematical physics. As early as 1747, d'Alembert obtained
the general solution of the one-dimensional wave equation as
the superposition of two simple waves, moving with the same

speed ¢ in opposite directions,
U= FTlx-ct) + alx+ect) (C.74)

d'Alembert used his solution of the wave equation to discuss
the vibrating string. He was followed by Lagrange (1781),
who used the two-dimensional wave equation to study water
waves; Poisson (1807), who derived the Poisson Kernel for
it; Cauchy (1841), who coined the word 'characteristic" to
describe the wave fronts; Riemann (1860), who recognized
that the zone of influence from a point in (x,t) is wedge-
shaped, and who used the adjoint equation and the so-called

Riemann function to solve it. Then came virtually all of
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the classical mathematical physicists of the nineteenth
century - Liouville, Helmholtz, Kelvin, Kirchoff, Maxwell,
and Poincare.7

The wave equation has sufficient structure to provide
an interesting illustration of Lie's method. Also, it is
Lorentz invariant, so it connects well with the earlier
discussion. In this section the following procedural areas
will come to light:

(1) How to determine the coordinate functions X, T, and
U from the invariance of the starting equation (S, in the
previous notation).

(2) How the fundamental solutions are found from the
set (Qj) and the invariant surface condition.

(3) How the subsidiary conditions (B,C) restrict the
invariance algebra of S.

(4) How the structure of the group enters into the
classes of admissable solutions.

The starting equation, S, is the one-dimensional wave
equation,

sz - Htt = o) (Co 75)

where units are chosen to make the wave speed ¢ = 1, since

it is assumed not to transform. The initial and boundary

conditions are put aside until later.

A preliminary calculation shows that it is sufficient

7G. Birkhoff, A Source Book in Classical Analysis, (Harvard
University Press, 1973), pp. 403-454.
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to consider a Lie group whose coordinate functions have the

following dependences,

x = X =+ SX(*,'L)
t = t + & T (x1) (C.76)
o o= ow o+ e Wi, t,w)

The extended invariant surface condition, correspond-

ing to equation (C.42), for the wave equation if

By =~ By = [ 14 ePorwf (Keama,,) €7

xx

The functions X, T, U, P which are to be determined, could
have depended more generally on u and its derivatives. In
this case, (C.76) would represent contact transformations,
instead of point transformations. However, the preliminary
calculation, which is the same as the one to be shown
except for including higher order dependence, has already
eliminated the higher order functional dependence in X, T,
u, P.8

The condition of invariance is that the O(¢) terms in

(C.77) vanish together. Expanding (C.77) to first order in

&, we find

U0 1% o Pt (sam -y, ) (€.78)

8Ovsjannikov (1962), p. 183.
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The second-extended coordinate functions which appear in

the invariance condition (C.78) are calculated in Appendix
D, formulas (D.14) and (D.15). The second extensions

depend on u and on its first and second derivatives. Equat-
ing like coefficients of 1, Ups Uyy Woos Uees Voo and their
bilinear combinations, on each side of the invariance
condition (C.78) produces an over-determined system of
linear partial differential equations for the coordinate
functions X, T, U, and for the multiplier P(x,t,u). This

system of equations quickly reduces to

Wyx — Wi = O (C.79)
207 = Ty — Tix (C.80)
21T, = X, - X, (C.81)

LG..= © (C.82)
T = Xy (C.83)
T. = X, = $U.-P (c.84)

Equations (C.79) to (C.84) are the so-called "determining
equations'" for the coordinate functions. To solve thenm,

we first combine the last two equations. The result is,
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HKee = Tag = X on (C.85)
Tee = Xop= T (C.86)

Thus, the coordinate functions X{x,t) and T(x,t) each

satisfy the wave equation. Hence, from (C.80) to (C.82) we

find

1T = .L-r;(m = 17 =0 {C.87)

tu e

So Uu is a constant, say a. Then from the first equation,

(C.79), we have
17 = o w + (P(x,t) (C.88)

where qqx,t) satisfies the wave equation. Equation (C.88)
represents two properties which are common to the solutioms
of all linear equations. Namely, that they remain solutions
when they are scaled and/or superposed.

Because Tt satisfies the wave equation, the function

P(x,t) must also obey it. From equation (C.84) we have

! = - = -4 (C.89
LPXK = T = T, - D_Ftt )
Thus U(x,t), X(x,t), T(x,t), P(x,t) each satisfies the wave
equation, and the wave equation admits an infinite dimen-

sional group, parameterized by its own solutions. The

infinite dimensional group of the wave equation is a formal
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mathematical property which is related to the possibility
of exchanging independent and dependent variables in one
space dimension. When the wave equation is written in the

Cauchy-Riemann form,

+ Fo3
(C.90)
‘U’t = U x

we see that (x,t) could be exchanged with (u,v) without
changing the form of the equations by simply inverting.

The result of inverting (C.90), namely

Ba = X (C.91)
t, T X
then leads to the wave equation expressions,
Xuuw = X4, = O (€.92)
for the position in terms of (u,v), and also
tuw = tay = O (C.93)

which is a similar wave equation for the time. This purely
formal variable exchange property goes away when more
spatial dimensions are present. Of course, the other
infinite dimensional propert; - superposition - remains in

higher dimensions because of linearity.
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The finite part of the wave equation algebra is gotten

by making Pxx and Ptt vanish separately. In this case we
may take,

Ji(z:\— P) = s + 2dx 4+ 2et (C.94)
where s, d, e are constants. Now from (C.84) we have

>xX =

sx 4+ dx? 4 2ext + F(®) (C.95)
T = st +2dxt + et™ &+ §=) {(C.96)

The integration functions f(t) and g(x) are determined
from Tx = Xt, i.e.,

2dt + 9x) = z2ex + ¥t

(C.97)

As a consequence of this relation, we find that
Fey = dt2 4+ bx + b (C.98)
gix) = ex? + bt + p (C.929)

where b, h, p are new integration constants. Thus we have

for the coordinate functions of the finite part of the wave
equation algebra,

X = p +sx + bt + dx* +2ext (C.100)
T = h + st + bx + 2dxt + et® (C.101)
U = aw (€.102)

with integration constants, a, b, d, e, s, p, h.
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The seven arbitrary constants are the seven independent
group parameters of the finite dimensional part of the wave
equation Lie invariance algebra. A differential operator
basis, Q, is found by individually letting each group param-
eter be unity, while making the rest vanish. Table C.1
lists the members of Q, along with their invariants and
geometrical significance.

The operators in the Basis Q satisfy the commutation
relations given in Table C.2.

The entry which appears in the j-th row and k-th
column in Table C.2 is the commutator(Qj,Qr).

The subsets of operators Q which form subalgebras can
be picked out of the commutator table. The six parameter
subalgebra (P, H, S, B, D, E) is called the conformal
algebra. It is the well-known invariance algebra of the
wave equation, which has seen a lot of action in relativ-
istic particle physics.

The basis Q preserves the null space of the wave

operator, W, given by
W 2 9 - 9 (C.103)

In other words, Q maps the solution space of W¥#(x,t) = 0
back into itself. We may check this invariance property
for the elements of the conformal subalgebra of Q, by

noting the commutator relation,

[, W] = P, )W (C.104)



OPERATOR SIGNIFICANCE

H

Space transiations

x
= bt Time translations
= xd, + td, Space/time scaling

= tbx + X

bt Lorentz boosts

= 2xtd, + (x% + tz)at Conformal

= (x? + tz)bx + 2xtd

= ud

u

Table C.1.

Transformations

Scaling of u

INVARIANT

The Basis Q of the Lie Invariance Algebra fcr the Wave Equation.

eLl



P 0 0 P H 2B 25 0
H 0 0 H P 25 2B 0
) -pP -H 0 0 D E 0
B -H -P 0 0 E D 0
D -2B -28 -D -E 0 0 0
E -28 ~-2B -E -D 0 0 0
A 0 0 0 0 0 0 0

Table C.2. The Commutators of the Basis Q for the Wave Equation.

VLT
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where,

Re P, H, 5, B,D EF (C.105)

and P(x,t) is given By equation (C.94). Equation (C.104)
implies that WQ W= 0, whenever WY = 0, which means that,
under Q, solutions are mapped into solutions.

Such operators Q are the analogs of dynamical symmetry
operators in quantum mechanics. In the quantum case the
operator W is replaced by K = hd, -H, where H is the
Hamiltonian. The vanishing of the commutator [K,Q;] may be

written as

e

(“‘“%—”,GZ = "L“Qt + {Q,H:’ = R 0O {C.106)

ﬁ

gquation (C.106) is the quantum condition for the eigenvalues
of the operator ¢ to be constants of the motion.

Let us continue with the wave equation example.
Bguation (C.100) through (C.102) represent the required
result for admission to’ the last step in Lie's program.

The coordinate functions on (x, t, u) have been resolved

and a basis for the Lie algebra, Q, has been
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constructed. In Table C.1 the invariants of Q appear.
The Lie algebra Q has been identified with the conformal
algebra.

Before we proceed to construct group reducible solu-
tions, it should be verified that the Lie algebra which
appears in Tables C.1 and C.2, really does include the
generators of conformal transformations. In order to make
this validation, the finite transformations generated by
(P + E) and (H + D) are calculated. First, let us consider

the operator

(Pre) = [1+ a2 + 2xtdy (C.107)

The group parameter corresponding to (P + E) is found by

solving the characteristic equations,

of dt
[+ x:+ t?* = axt = ¢ (C.108)
Let the quantities Z, be defined by
2y = x*t (C.109)
so that
zj = x? 4 ¢+t? > 2xt (C.110)

Of course, R4+ = const is a characteristic of Wu = 0. It

follows from equation (C.108), that

dixtt) = da, = (r+2})de (C.111)
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Hence,
de = d (tas'2,) (C.112)

We now drop the subscript on Z, , because everything is

symmetric under the interchange of subscripts. The result

of equation (C.112) is that,

E(&) = tan(€+%) (C.113)

where
tau x = 2(g=9) = &, (C.114)

Hence,
Z@ = Tt iamf (C.115)

\20-&“? + -t

Equation (C.115) for #(e) has the form of a conformal trans-

formation

a2e + o

2 s and (€. 116)

The condition for the conformal transformation (C.116) to

be nonsingular, i.e.,

ad -~ be % o (C.117)

corresponds to

{
{+ ta's = —5z % O (C.118)

which restricts £ to be non-imaginary.

Clearly the operator H + D generates the same finite

conformal transformation as (P + E), except for the
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interchange of x and t. Thus, by calculating the appro-
priate finite transformations, we have verified that the
wave equation algebra includes the generators of conformal
transfcrmations, Now we can proceed to derive group reduc-
ible solutions of the wave equation from its invariance
algebra.

According to Lie's theory, each distinct subalgebra
of Q generates a distinct group reducible solution. Let us
present three examples of the construction of group
reducible solutions for the wave equation.

Up until now, the boundary and initial conditions
(B, C) have been put aside. However, if subsidiary con-
ditions are present, they must also be left invariant, in
order for group reducible solutions to be admitted. In
principle, the invariant coordinates of the Lie invariance

algebra of S. say L, will determine the most general

G
""moving boundaries”

G (Myed) = coust (C.119)

upon which auxilliary conditions could be invariant. 1In
practice, however, the requirement of invariance of (B, C)
usually restricts L; to a subalgebra, which leaves invar-
iant both the boundary conditions, B, and the curves, C,
upon which they are prescribed.

Suppose, for the wave equation exampie, that group
reducible solutions are required for the vibrating string

problem with fixed endpoints. Let the boundary values of
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the amplitude and velocity vanish on the unit interval,

Wilo 4y = u(l,t) [
{C.120)

O

uto ) = ou (1,4

In order to find a group reducible solution to this problen,
we must leave the boundary conditions invariant., Invariance

of the endpoints, x = 0 and x = 1, requires that
X = x + S:)(fx,t.) = X whes xwo f (C.121)

Hence, referring to the coordinate functions given by (C.100)

through (C.102), we have

> = S = b = d - €& = -.: (C.l:Z)

Thus, the boundary conditions restrict the non-zero

constants in the coordinate furctions to a two parameter

subset,
N = 0
T2 h (€C.123)
o = G

In other words, for the vibrating string rroblem, (S,B,C)
is invariant (up to superpesition) only under time transla-
tions and scaling of the amplitude. The infinitesimal

operator corresponding to these transformations is given by

Q= d + wud, » W= 3 (C.123)

We shall see that the values of the parameter w, in equa-

tions (C.124) must be restricted, for a group reducible
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solution to obtain.

A group reducible solution in (x,t,u) space lies on a
characteristic surface of the differential operator Q given
by equation {C.124). Such a surface is illustrated in
Figure C.3. Thus, in accord with Lie's program, wc scek
a subspace in (x,t,u) which is invariant under Q. The

invariants of Q are found from

Q‘I“‘,t‘b\\ o= D (‘:.!;’S)

or, in characteristic form

dx »
) = - = (C.120)

The invariants are given by

I, = x , I, =& «u (C.127)

1 3

Note that for this problem, X =« 3, f = ], and P = 2, in our
earlier notation, so that P attains its maximum value. Con-
sequcntly, the group reducible solution can be coordinated
by the invarioants of the group. Group recducible solutions
are now sought by transforming to the invariant coordinates.
in the invariant coordinates thc characteristic surface of ¢
is given by

I, = WwiIN (C.128)

-
-

See Figure C.4. In terms of the old variables, the group

reducible soluzion is expressed by
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Figure C.3. The Characteristic Surface of Q ¥q. (C.124)
in (x,t,u) Space.

Iz(e‘“'lﬂ

I, = ul1y)

I(x)

Figure 0.4, The Characteristic Surface of Q Eq. (C.124)
in (11,12) Space.
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t
w = e’"rri (C.129)

The group reducible solution thus appears in separated
form. The eigenvalue spectrum, the set of allowed values
forw, is determined from the condition that u(x,t) be a
global solution, i.e., that u satisfy the boundary condi-
tions. The rest of the problem, of course, follows the
familiar pattern. However, we would still like to carry it
out to its conclusion.

When the separated form is substituted into the start-
ing equation, a differential equation in one less independ-

ent variable is obtained.
IT “fsey ~ w>LTtwy = D (C.130)

Imposing the boundary conditions restricts the possible

values of the parameter w to a discrete spectrum
W = 3am LA 0T, (C.131)
and results in the standing wave solutions,
anwt ,
Wix,t) = Ae SminmTxY (C.132)

Thus, the group reducible solutions for the vibrating string
are its normal modes.

The character of this example tends to recur whenever
Lie's method is applied. First, as expected, the number of
independent variables decreases and a partial (or complete)

separation of variables occurs. Second, the relative values
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of the group parameters are restricted by imposing the
boundary conditions. Third, a family of group reducible
solutions appears, labeled by the (restricted) values of
the group parameters.

When the problem is posed in an infinite domain,
requiring only that the solution vanish at infinity, the
full invariance algebra of the wave equation is admitted.
In particular, space and time translations leave the wave
equation invariant, because the independent variabies x and

t do not appear in it explicitly. Under translations of x

and t,
X —» X = X+ p
+ =~ £t = t+h (C.133)
A-—ba': AL

The solution u, itself, is invariant. The other invariant,

required for group reducible solvability, is giver by

= x =t (C.134)

The group reducible solution is sought in the invariant

form,
w = FIx) (C.135)

Substituting (C.135) into the wave equation yields an

ordinary differential equation,
[1 - (."/h\lj F7(ay = O (C.136)

Therefore, the relative values of the group parameters p
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and I are restricted to,

P = 1 (C.137)

i.e., space and time translations are only allowed which
move u(x,t) along a characteristic. Becauss u = F(A), the
wave profile does not change shape as it moves along a

characteristic. For arbitrary p and h, the trivial solution
F o2 /l;-x-—(*/a‘;t? + B (C.138)

results, but it is zeroed out by the vanishing conditions
at infinity. The d'Alembert travelling wave solution

reappears when the group reducible solutions are superposed.
u = Filx-ty + G(x+ £) (C.139)

where F and G are arbitrary functions. Finally, we note
that, as in the case of fluid dynamics, the similarity

variables actually define the characteristics.

ar, = O - gg =1
AL,= x tt (C.140)

dx_ = T = =+

The path of the propagated wave fronts follow lines of
constant A. Thus, these solutions are simple waves in the
sense of fluid dynamics. However, unlike the simple waves

in fluid dynamics, the solutions of the lin::ar wave
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equation retain their wave prcfile as they propagate. ﬁ
In the travelling wave case, the relative values of

the group parameters are restricted, not by the boundary

conditions, but by requiring a non-trivial solution of the

group-reduced differential equaticen (C.136). The travel-

ling wave solution is an example of a degenerate case,
which seldom occurs. Namely, the group reducible solution @
is functionally invariant, i.e., arbitrary functions appear ﬁ%
in the final solution. 5

The object of the invariance analysis of the linear

wave equation has been to sample the character of the group
reducible solutions, and to make the procedure for obtaining
them more definite. The types of wave motions obtained in
this example - namely, standing waves, travelling waves, and
centered simple waves - are representative group reducible
solutions of the wave equation. In the case of standing
waves, although the symmetry of the wave equation is broken
by the boundary conditions, enough invariance remains to
produce a nontrivial wave motion. In fact, the boundary §
conditions choose a discrete spectrum of allowed wave .
motions. A family of solutions results, labeled by the

relative values of the parameters in the symmetry algebra.

In the case of travelling waves, the conditions at infinity
do not break the symmetry of the wave equation. The group
reducible solutions which result from space and time trans-
lation invariance comprise a family of travelling waves of

arbitrary shape, whose members propagate along characteris-
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tics without change in form. These wave motions fall into
two discrete classes - leftward and rightward moving waves.
The discrete classes are again labeled by the relative
allowed values of the group paranmeters.

It has been shown that, even when boundary conditions
break the symmetry algebra of the equations of motion, group
reducible solutions may still be obtainable and meaningful.
However, group reducible solutions are not of interest
merely because they are examples of solutions to particular
problems. We have seen that the group reducible solutions
can also represent the classes of motions admitted by the
dynamics. This second, more general interpretation of
groun reducible solutions is relevant to nonlinear physics

and to the present investigation.
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