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PREFACE

The object of this work is to study fluid dynamics

using symmetry principles. An invariance algebra technique

which was originally developed by Lie is used co investi-

gate non-ideal fluid dynamics in the Navier-Stokes approxi-

mation. A novel aspect of our approach is to regard

particle interactions within the fluid as symmetry breaking

mechanisms.

The fluid equations of motion must be consistent with

the fundamental invariance principles of classical mechanics

and thermodynamics. An operator realization of the invar-

iance principles of fluid dynamics is derived in the first

chapter and displayed in Table 1.1. The interplay between

kinentatical and thcrmodynamical symmetry principles within

the N'avier-Stofces description leads to a characterisation

of fluid motions according to subgroups of an underlying

dynamical invariance group. The inequivalcnt subgroups

of the Navier-Stokes invariance group produce "similarity

variables," for which the one-dimensional unsteady Katvier-

Stokcs equations reduce to ordinary differential equations.

The group invariant coordinates for which this reduction

occurs are cataloged in Table 1. 3 and Table i. 4. tinder

the assumption that the flow variables in a group reducible

motion depend on space and time in the same way as the

boundary and initial conditions, the iroup invariants which

are displayed in the text are applicable to a rather large



number of physical situations. The group invariants lead

to classes of solutions of the Navier-Stokes equations and

provide cases of moving boundaries for which group reducible

solutions exist. The multiparamcter invariants of Table

1.5 are especially useful because they contain arbitrary

constants which may be adapted to the specifications of

particular problems.

Two types of symmetry-breaking particle interac'ions

are considered separately in Chapter I: (1) Mie-Gruneisen

deviations from a perfect gas equation of state; and (2)

temperature dependent dissipation. In both cases the

introduction of symmetry breaking reduces the invariance

group of a simple tsentropic gas to a subgroup, but it

does not alter the invariancc group structure. An empirical-

ly relevant elastic pressure interpolation function is found

for which the isentropic fluid equations admit more than

merely a kinematic (Calilcan) symmetry group. Analytical

characteristics and exact group reducible motions of isen-

tropic Mic-Gruneisen (power-law) fluids are presented. An

invariance algebra for dissipative fluids is also derived

and group reduced equations of motion are given. Although

no exact solutions for dissipative motion in the full

Savicr-Stokes description have been found in the present

work, first integrals are given in a special case.

In Che second chapter, dissipative fluid motions are

treated at the level of Burgers' approximation to the

Navier-Stokes equations. Burgers' equation governs the



final stages of weak shock wave formation in Navier-Stokes

fluids. Group theoretical techniques are used to construct

invariance principles and find classes of group reducible

fluid motions. The symmetry analysis produces operator

realizations of the invariance principles underlying the

convective diffusion process. These are listed in Table

2.1. It also classifies the group-reducible motions and

yields previously unpublished exact solutions for Pwrgers'

description (see Table 2.3). Finally, the famous Cole-

Hopf transformation between nonlinear and linear diffusion

equations establishes itself naturally in the process of

invariance analysis.

In addition to the material in I and II, explanations

of peripheral topics are collected in three appendices.

Primarily expository matters reside in Appendix A and

Appendix C. However, further new results are included in

Appendix B. Finally, the Bibliography contains an array

of modern and historical articles concerning the use of

symmetry principles in conjunction with dynamical laws.

Lie's invariance method for the integration of differ-

ential equations is summarized in Appendix c. The history

of the development and application of Lie's theory to

physical problems is surveyed. The physics background

which has led to a revival of Lie's invariance analysis

is given and the connection with modeling theory is des-

cribed. The method of Lie is a natural generalization of

the method of self-similar solutions. The deduction of
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invariance principles from given dynamics is implemented

in an example using the wave equation. The known conformal

invariance algebra of the wave equation is constructed and

realized as a differential operator algebra. Sample group

reducible solutions - which include

are derived from the operator algeb

also demonstrated for the boundary

d'Alembert's solution -

a. Lie's method is

alue problem.

The extension of invariance coijilditions to differential

manifolds is described in Appendix -'»• Invariance of a

differential surface element is central to the .ipplication

of Lie theory to differential equations.

In Appendix !•• tht Lie symmetry properties of Newton's

equations of motion in classical mechanics are shown to

lead to useful geometric invariance transformations on

particle trajectories. For example, Kepler's law relating

the period and size of planetary orbits appears as a scale-

invariance principle for the equation*? of motion. Lie's

method is employed in the consti-uction of the symmetry

algebra. The algebraic treatment of classical mechanics

constitutes a further illustration of invariance analysis,

this time for ordinary differential equations. The

geometric invariance principles of classical mechanics are

derived for various interparticle force laws. The associ-

ated group structures in each case are subgroups of the

projective group, which is locally isomorphic to SL(3,R).

A study is made of classical symmetry breaking for power

law, harmonic, centrifugal, and Newtonian - -i-. forces.
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The scaling laws of the particle orbits are obtained. The

harmonic and centrifugal forces are shown to possess "acci-

dental" symmetries. The introduction of symmetry breaking

terms in the force law reduces the differential operator

invariance algebra to a subalgebra. The last two state-

ments, along with the specific algebraic structures are

apparently new results.

V1.ll
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NOTATION

The most common symbols which denote physical quanti-
ties in the text are listed below. Wherever duplications
in usage appear, the meaning of the notation is clear from
the physical or mathematical context.

c Adiabatic sound speed c2 • fo )., = >̂ g

(also, the speed of light in vacuum)

cp Specific heat at constant pressure

cv Specific heat at constant volume

Djj Kinematic deformation tensor

57, j**1 component of gradient operator

ci Material derivative >r+ = A +• ^ r~

S;. Kroneker delta symbol

r A small parameter, often a field of infinitesimal
group parameters

7 Shear viscosity coefficient

<? Gruneisen parameter

I Internal energy per unit mass

R Thermal conductivity (also, adiabatic compres-
sibility)

l^s Adiabatic compressibility

L Characteristic dimension of flow

A Molecular mean free path

f?. Pressure tensor

p Scalar pressure

Q Infinitesimal differential generator of a Lie
group

xxii



q. Heat flux vector

^ Mass density

5 Entropy per unit mass of a fluid

t Time

6 Temperature (°K)

v Fluid velocity vector

u^ i^h component of velocity vector

u. .

V Volume per unit mass

v Constant velocity vector

x" Position vector

x^ i^ component of position vector

"? Bulk viscosity coefficient
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ABSTRACT

SYMMETRY BREAKING IN FLUID DYNAMICS:

LIE GROUP REDUCIBLE MOTIONS FOR

REAL FLUIDS

by

Darryl Dallas Holm

Co-chairmen: Roy A. Axford, G. W. Ford

The physics of fluids is based on certain kinematical

invariance principles, which refer to coordinate systems,

dimensions, and Galilean reference frames. Other, thermo-

dynamic, symmetry principles are introduced by the material

description. In the present work, the interplay between

these two kinds of invariance principles is used to solve

for classes of one-dimensional non-steady isentropic motions

of a fluid whose equation of state is of Mie-Gruneisen type.

Also, the change in profile and attenuation of weak shock

waves in a dissipative medium is studied at the level of

Burgers' approximation from the viewpoint of its underlying

symmetry structure.

The mathematical method of approach is based on the

theory of infinitesimal Lie groups. Fluid motions are

characterized according to inequivalent subgroups of the

full invariance group of the flow description and e:cact

group reducible solutions are presented.

xv



CHAPTER I

GROUP REDUCIBLE FLUID MOTIONS

After a brief introduction to the symmetry laws of

fluid dynamics, we study the invariance principles admitted

by an ideal fluid with a Mie-Gruneisen equation of state.

Energy dissipation by heat conduction and viscosity is put

aside until the last two sections of this chapter. Empiri-

cally derived equations of state for metals are fit with

symmetry - adapted functions and group reducible fluid

motions are determined. In the context of fluid dynamics

we determine how symmetry breaking occurs through inter-

action terms in the equation of state. The generators of

the basic invariance principles of classical dynamics and

fluid dynamics are realized in the form of differential

operators. These operators are used to derive the natural

group invariant variables for isentropic fluid motion with

a Mie-Gruneisen equation of state. The general analytical

characteristics of group reducible motions of such a f'uid

are presented. Similar calculations are made for a dissi-

pative fluid obeying an ideal gas equation of state.

A. The Fundamental Invariance Principles of Fluid Dynamics

A fluid consists of an indefinitely large number of

particles. Therefore it has an indefinitely large number

of degrees of freedom. The structure of its notion ut the

molecular level i» too complicated to study. However, it



has been established experimentally that the collective

effects of the molecules can be adequately described by:

(1) a very small number of flow variables, e.g.,

the density, mean velocity, and two thermodynamic functions.

(2) a corresponding set of transport equations.

These are the Navier-Stokes equations, which express the

conservation laws for mass, momentum, and energy.

(3) a few constitutive functions, which express the

energy and momentum flux densities in terms of the flow

variables.

The view of classical fluid dynamics is that the

constitutive relations are defined locally in terms of the

flow variables. The material-dependent coefficients which

appear in the transport equations enter as functions of

local scalar state variable'-' of the fluid, or as constants.

The medium itself is assumed to stay near local thermody-

namic equilibrium, so that its equilibrium equation of state

applies.

Consider one-dimensional motion of an ideal fluid.

Each fluid element moves isentropically. Erergy dissipation

between fluid elements by heat conduction and viscosity is

neglected. Except where steep gradients appear, or when

energy transfer mechanisms between molecular modes have long

relaxation times, the neglect of energy dissipation is a

good approximation.

In one dimension, the isentropic fluid dynamics equa-

tionc are given by the conservation laws for mass



(1.1)

momentum,

I K _ (1-2)

and energy,

In the continuity equation (1.1), n = 1, 2, 3 for planar,

cylindrical, or spherical geometry, respectively. Equation

(1.2) is Newton's Law, F = ma. Equation (1.3) expresses the

First Law of Thermodynamics for isentropic flow.

The form of the equation of state is taken to be

(1.4)

The choice of a specific relation for the equation of state

is postponed for a moment.

The energy balance or heat flow equation may be rewrit-

ten as

(1.5)

Then, remembering the definition of the sound speed and

substituting the mass conservation law (1.1) we have

- +
* U ) =•



The isentropic First Law, equation (1.3), gives

Hence, the sound speed is obtained directly from the equa-

tion of state, relation (1.4), when solved for I.

The inverse adiabatic compressibility <<s is a function of |

e and y - I
i

The isentropic fluid dynamics equations in one dimension, f
;,i

equations (1.1), (1.2) and (1.6), admit several types of f
''i

transformations. Let the boundary and initial conditions be I
I

ignored, or assumed to admit the same transformations. First I

of all, the universal symmetries of nonrelativisitic mechan- J

ics are admitted: the equations are invariant under time jj

translations, space translations, and Galilean boosts (n = 1, |

only. For n » 2, 3 there are preferred points). The ad- j

mission of these transformations means, as usual, that the ,

same fluid dynamical laws hold, regardless of when, where, f

or in which Galilean reference frame the experiments are • j
i

performed. The conservation laws are also independent of

the orientation of the experiment, so, in more spatial

dimensions, the balance equations would also admit rigid

rotations. The corresponding kinematic operations are given

by:



(1) space and time translations (1.3)

(2) rigid rotations

(3) Galilean transformations

U

These kinematic invariance transformations hold for all

classical nonrelativisitic systems, and, as such, yield equi-

valence classes of solutions. For example, letP= f(x,t),

Vs = g(x>t), and u =V(x,t) be solutions of the fluid con-

servation equations for some planar fluid motion. Then a

different flow, similar to the first one, but in the trans-

formed variables, is also possible. In other words, the

set of functions

£ - ^ ( > t t t + x e > t H , J (1-10)

y> ^ =(x 4 t± + x.v -LA to)

must also bf a solution set, for arbitrary constants x ,

Beside these kinematic arguments, dimensional conside-

rations also have a place in the discussion. The fluid

dynamics equations contain five different dimensional quan-

tities x, t, u, f , and p or I. These quantities have three



independent dimensional units, namely mass, length, and

time. The basic dimensional scales may be changed provided

the thermodynamic description of the fluid admits the scale

transformation. Generally the equation of state and the

constitutive relations place constraints on the scale in-

variance properties of the fluid description.

Suppose, however, that the fluid description does ad-

mit a scale transformation. Then there exists a family of

different flows which are similar to one another and are

derivable from a single solution by changing the basic

scales of length, time, and mass.

For example, suppose that the balance equations (1.1),

(1.2), and (1.6) admit a scaling transformation for some

choice of equation of state, given by

x -*> x' * &**. (1.11)

•fc -> t' x « * t

where *•, ̂  , V are scaling exponents for length, time, and

mass. That is, let the balance equations be unchanged in

form if the primed variables above are introduced. Let

P* f(x,t), ^ » g(x,t), and u * %r(x, t) be solutions for a

fluid motion. If the boundary and initial conditions also

admit the transformation to primed variables, then a new

possible motion can be described by the same functions

f» g» "V"i but in the new variables. The solution for the



new motion is expressed by the functions

The new motion is similar to the old one, differing only

in the mass, time, and coordinate scales. Note that the

equation of state must follow the transformation for a new

motion of the same fluid to obtain. In this way the sym-

metries of the fluid description yield equivalence classes

of solutions.

There exist fluid motions which are invariant under

the transformations admitted by the fluid description.

These motions are called group reducible (see Appendix C).

In a group reducible motion each of the flow variables

evolves in time and changes in space in a group invariant

manner. The spatial profiles of any of the flow variables,

say the density, at different times during a group reduci-

ble flow can be made to coincide by performing a group

transformation which leaves invariant the fluid equations

of motion. The function ^(x,t) which has this group

invariant property can be expressed in the form

(1.13)

The argument X(x,t) is a group invariant quantity. There-

fore the quantity PS(x,t) is also a group invariant.

For group reducible motions in one space dimension, the

system of partial differential equations of fluid dynamics
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reduces to a system of ordinary differential equations in

new unknown functions of the group invariant variable A.

This of course produces a mathematical simplification.

Group reducible solutions are of physical interest, as well,

because they represent the asymptotic limits of solutions

to non-group-reducible problems.

Group reducible motions which are derivable solely

from scale invariance are called "self-similar". In a self-

similar flow the spatial profiles of any of the flow vari-

ables at different times can be made to coincide by simply

adjusting the scales of length and mass. Thus during a

self-similar flow the spatial profiles of the flow vari-

ables retain their shapes although their dimensions may

change. A self-sircilar density function would be express-

e d by > t

The argument -xm is called a "similarity variable".

Thus, self-similar solutions are special cases of group j

reducible solutions. Conditions for self-similar solutions |

to exist, examples of self- similar fluid motions, and refe- j
i

rences are given in the books by Landau and Lifshitz, Sedov, " !

and Stanyukovich. Other examples of self-similar fluid

motions are referenced in the bibliography. j

In the first part of the present work our objective is j
I

to employ the general group invariance principles admitted

by the isentropic fluid description in order to find classes

of group reducible motions. The groups involved are Lie



groups - they depend continuously upon a space of parame-

ters. In order to employ the Lie group method, the infini-

tesimal generators for the invariance principles admitted

by the isentropic fluid description must be constructed.

Let us expand the transformations (1.9) and (1.11) in

a Taylor series in the group parameters. The results of

these expansions give infinitesimal variations which may be

realized on the space (x, t, u,p,y) as differential opera-

tors. The infinitesimal generators are given by

Space translations: jv .

Time translations: A

Rigid Rotations: s.;^ [ *; b~xtê
 ui A. ")

Galilean boosts: t -£- ^ £.,

Length scaling: *L a-x> (i» s^)

Time scaling: t- ft

Velocity scaling: n; ̂ u, * •"«> su^

Density scaling: f ^

Pressure scaling: f» r̂

The combinations of infinitesimal operators admitted by the

isentropic fluid equations for a specific choice of equation

of state will be derived in the next section.

B. The Derivation of the Invariance Algebra for Planar
Isentropic Flow

We are dealing with isentropic fluid motions. How-

ever, up 'til now the equation of state of the medium has

not been specified. The medium which we shall consider
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is a homogeneous metal at the pressures and temperatures

produced by explosives. Under high explosive conditions

in metals the experimental pressures range from about 10

atm to almost 10 atm during time intervals of tens of

microseconds. The accompanying temperatures may reach

2000°K. Because the pressures involved greatly exceed the

elastic limit of the material and because little heat ex-

change occurs across streamlines, the medium responds as

an isentropic fluid.

A model equation of state with general validity is

the Mie-Gruneisen equation of state, which can be written

as

f - f'Ol + ^(O (1

In the Mie-Gruneisen model the pressure,^ , and the specific

internal energy, I, of a material are divided into two parts,

an elastic part and a thermal part. The elastic pressure

term f(f») represents the modification to the equation of

state due to interparticle forces within the material. The

other term in the equation of state is the pressure due to

thermal motion. The assumptions and physical reasoning

which accompany the Mie-Gruneisen form of the equation of

state are reviewed by Barron (1957). Experimental proce-

dures for establishing Mie-Gruneisen relations at high

explosive conditions in metals - i.e., thermodynamic pro-

cedures for measuring f(^) and g(^) above - are described

in Rice, McQueen, and Walsh (1958).
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For high explosive conditions in metals, the Mie-

Gruneisen equation of st&te takes the form

Y ~- cV̂ c.,,9 H- -t(f) (1.16)

where "€ is a constant called the Gruneisen parameter. At

the temperatures concerned, the specific heat of the lattice

follows/the Dulong-Petit law,

<V ~ 3«k (1.17)

The specific heat is a constant, independent of volume.

The equation of state affects the isentropic fluid equa-

tions only through the adiabatic compressibility K*,. For

an ideal gas, K<T' is given by

K V * £t ? (1'18)

The elastic pressure term f(p) in the Mie-Gruneisen equa-

tion of state alter the compressibility of the material.

For equation of state (1.16) the compressibility is given

by

For many substances the elastic pressure f(^) obeys a

single power law in the density. Thus, over the relevant

range of pressure and density.

where C is a constant and the exponent /A is usually greater

than negative one.

1
V. N. Zharkov and V. A. Kalinin, Equations of State for
Solids at High Pressures and Temperatures, transl. by
A. Tybulewics (Consultants Bureau, New York, 1971).



12

Let us proceed to derive the invariance algebra for

planar isentropic flow of a Mie-Gruneisen fluid. Our ob-

ject is to construct a differential operator realization

of the invariance operations admitted by such a flow and

to find the corresponding group reducible motions. The

logical order of the derivation of the invariance algebra

is as follows,

(1) The basic equations of motion are written down.

C2) General forms of coordinate functions for infini-

tesimal transformations are assumed.

(3) Covariance of the equations of motion is used to

impose restrictions on the coordinate functions. The re-

stricting equations are linear partial differential equa-

tions which determine the coordinate functions.

(4) The restricting equations are solved for the

coordinate functions. The solutions yield the infinitesi-

mal transformations which leave the equations of motion

covariant. Because the coordinate transformations depend

on the equation of state through the adiabatic compressi-

bility, several analytic expressions for the compressibility

are discussed.

Once the coordinate functions for the invariance

algebra have been derived, group reducible fluid motions

are sought by transforming the equations of motion to group

invariant variables.

The basic conservation laws of isentropic fluid dynamics

in one space and one time variable are:
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< % W u e > x + -~~ u-£ = O (mass) (1.21)

•̂ t + u'^ x •+ -j $~* ~ ^ (momentum) (1.22)

Ft + u.|>fc * *".'(** + ~ O = G (energy) (1.23)

Only the planar case (n = 1) is explicitly considered, but

the results for cylindrical and spherical geometry are also

given. As written, the expressions in the balance equa-

tions are intended to have the following meanings and rela-

tionships ,

Dependent Variables: Independent Variables:

Pressure p = p(x,t) Position x
Density f = f(x,t) Time t
Velocity u = u(x,t)

a.
For the moment the bulk modulus <K"(f;»=fC is regarded

as an arbitrary function of density and pressure.

Let a Lie group of transformations on these quantities

be defined, to first order in the group parameter, by the

expressions

* •=- x -+ ?

* ^ t * £

« T 7 / ' (1-24)

In the expressions (1.24) £ is an infinitesimal group

parameter. The quantities X, T, U, R, P correspond to the

coordinate functions of the infinitesimal generators in

differential operator form. A general such operator Q will

be given by the expression
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a - X ^ T ^ ' J ) ^ .U » H (1.25)

The operator Q is defined on the combined space (x, t, u,

r , p). The coordinate functions correspond to independent

variations on (xk t, u, P , p).

The transformation properties of the various partial

derivatives appearing in the fluid dynamics equations arc

defined using the chain rule. A given transformation is

called a symmetry operation when it leaves the conservation

laws invariant up to an overall multiplicative factor. The

equations which determine the coordinate functions of the

symmetry operations admitted by the conservation laws for

mass, momentum, and energy will be derived successively.

The order I terms in the expressions which enter the

continuity equation are given by

The extended coordinate functions R ^ , R^ x\ U^x^. etc.

are defined in Appendix B. In the barred variables, we have

ft

The invariance condition is that the order £ terms in

(1.27) vanish when the continuity equation holds. Thus the

bracketed term in (1.27) must satisfy

\+(W«J (1.28)



i:

A side calculation has eliminated the higher order depen-

dence in the multiplier e(x,t}. the bracketed term has a

long expansion which is not reproduced here. Upon equating

like coefficients of the bilinear product* of derivatives

in (l.*s), a set of determining equations for the coordinate

functions result*,

t - &» •• «* *£» • **!«„ *> s*

..

O

The other powers of derivatives insure only that

T • T{xft)

X - X(x,t> . (

Similarly, invariance of the momentum equation implies

that

Hence, equating coefficients of like derivatives,
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o

('»: " L r e , I i f - o-) (1.32)

Pt: T-rf * o J

ft: - ̂  T^ = o => T - T<t\ -> Rw,- J

Thus the invariance criteria for the continuity and momen-

tum balance equations lead to differential relations among

the coordinate functions. The following dependence on

(x, t, u,^ , p) has been determined,

T - T(t)

X - X(x,t)

U « U(x,t,u) (1.33)

R - R(x,t,f)

P - P(x,t,U,p) .

The invariance condition for the energy equation (1.23) is

derived from

The invariance condition for the energy equation, namely

X ) (1.35)

requires that, for like derivatives,
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V ** = ° (1.36)

V *v - Tt « e
The reduced determining equations for the eight quantities

T(t), X(x,t), U(x,t,u), R(x,t,f), P(x,t,p), c(x,t), m(x,t),

5(x,t), with arbitrary X(f»P)» are collected below. There

are twelve of them, four relations from each of the fluid

dynamics equations. In the twelve determining equations,

the inverse compressibility K appears only twice.

(1)

(2)

( 3 )

(4)

(5)

(6)

(7)

(8)

(10)

(11)

(12)

/

* x

fx

ft

i

+• u?^ -< X U * * O

- T t
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The solution of (1. 37) goes as follows. Conbining equa

tions (3) and (4), we find

The sane equation for U is obtained froa (6) and (7) or

from (11) and (12). Now solve for (T -X ) separately fro«

(2) plus (7) and froa (8) plus (12). Subtracting and add-

ing the results gives,

_ r c <T \
- , - .. ̂  4 - J ( 1 < 4 0 )

Hence,

Equations (2) and (10) along with (140) imply that

^(KfR+K^* f f - ^ - W (1.42)

If c, m, and £ are constant, then

U M *. - ±(c- &•} (1.43)

Hence, from (6) and (I.43) we find

X = f « - C - » f ^ X 4 ^/'O (1.44)

and as a consequence of (144 ), now (1.41) takes the form

U - -i'*- ̂ ^ - ^ N u.45)
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From (1. 43 and (1.40) we have

Consequently P • P • 0. Since P * 0 and X - const,

then U - 0. Then (5) implies that U( - 0 and f"(t) - 0.

Thus, f(t) * a • bt.

Finally, from (1.39) and (I.44), since Tx • 0, we can

integrate T . The results so far are collected below.

~X(K,t\ - x ( £ - t - y

Mi 4 I -

The last equation in (1.4 7) can be rewritten as
4

or

Cŵ -t-̂ ^̂ , + H ; ^ - ^K - O (1.49)

where the new constants are defined by

In terms of these, the coordinate functions take the form
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T <o * - r., «,y., * -t9

Ulu\ - b - I v (1.51)

rsl expressions for the compressibility must be consid-

ered.

(1) ̂ (f.p) is arbitrary. Consequently, fro* (1.49),

s r• p ̂  T- o , or in terms of the other constants., p - &,

c - £ - >*t . The resulting four parameter algebra has

coordinate functions,

"^ ~ - c- -1 t,

^r , i (1'52)

Its differential operator basis is given by

^ - ^ space translations

H - <̂t time translations
o . .x (1-S3)
P - ***+ •̂''t. x/t invariant scaling
<S - -tJx i ̂ u Galilean boosts

These operators form the kinematic algebra of classical

mechanics, plus scaling, in the absence of length, or time

scales. In more dimensions, rigid rotations are added, as

well as translations and boosts along the other spatial

directions. In one-dimensional cylindrical or spherical
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coordinates, the fixed axis or fixed point breaks the

space translation and Galilean transformation symmetries,

leaving only scale invariance and time translations.

(2) A. (f,p) is derived from a Mie-Gruneisen equation

of state,

* < *= ( y + i ) £ » _ v f £•',.•> - r , f \ ( 1 . 5 4 )

For convenience equation (1.49) is rewritten

" " h - l ' ^ f + '«*5)f>K p - <*. t< » O (1.49)

Substituting the Mie-Gruneisen form for l< in (1.49)

results in an equation for f(<?).

/« - S ) f * f " - « {a * ' - * ) + ^fif.r, - ^ (1.55)

In order for the fluid motion to acquire more symmetry than

(1.53), the elastic pressure f(p) which enters the Mie-

Gruneisen equation of state must satisfy the equidimensional

differential relation (1.55). The solution of (1.55) for

\K + 5) T* O is given by
K

(1.56)

where A and C are constants.

If (̂f + I) =̂  o , but & ?=• o , then the elastic pressure is

given by

T ( f ) = U ^ + t\. { . 1 . 5 / J

If fCso , but S,f>7^ O , then f(^) is given by

(1.58)
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The parameter >̂ may vanish in equation (1.58). Thus we

have found four classes of elastic pressure interpola-

tion functions including positive and negative powers, and

logarithmi behavior, for which the fluid dynamics equa-

tions may admit a wider symmetry algebra than the purely

kinematic invariance (1.53). Mie-Gruneisen equations of

state which are not in one of these classes do not admit

a wider algebra than (1.53).

(3) K(P,p) is not in Mie-Gruneisen form. In a similar

manner, equation (1.49) may be integrated directly for

K(P>p)« T n e general solution is

K( r,y>- C^
+S F [(«* + &{ ̂ 1 (1.59)

where F is an arbitrary function. Since we are interested

only in the Mie-Gruneisen form, results stemming from this

general solution are not included.

The four classes of interpolation functions for the

elastic pressure reduce to only one if logarithmic depen-

dence in the density is ignored. Let the elastic pressure

f(p) from (1.56) appear in a Mie-Gruneisen equation of state.

£> * <rp T •+ C,p^+ A? - ^-~° (1-60)

where the group parameters K and S" are related by the expo-

nents in the elastic pressure.

5 ,

The logic of the gvoup analysis which follows is that the

experimental value of u imposes a relation between 1/ and S" .

This constant reduces the symmetry group of the ideal gas to
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a subgroup.

Equation of state (1.60) is physically relevant. Power

law interpolation functions can be used to describe the Mie-

Gruneisen equations of state for most materials (see Zharkov

and Kalinin) in regions of physically interesting pressures

and densities. For example: f* = 2 corresponds to van der

Waals binary interaction correction; M = -1 yields the

"harmonic" lattice model of solids; and A = 0 (or 1) results

in the "stiff gas," which is applicable for a large class

of solids under moderate compressions ( •/ - •'*, - '•' - ) .

The mathematical character and the invariance transfor-

mations of the resulting fluid motion depend on the particu-

lar value of the exponent /A . When LK takes on a specific

value, the group space is reduced to relative values of ^

and o which satisfy (1.61). Thus, the exponent it breaks

the symmetry. Rather, M restricts or reduces the symmetry

group to a subgroup one less in dimension. The other con-

stants which appear in (1.60), C, A, and te> , are integra-

tion constants. As such, they depend on the specification

of the problem which is to be solved. They do not affect

the mathematical character of the solution, but they do

refer to physical properties of the medium. For example,

a shift in energy or pressure has the nature of a change in

the initial conditions. Rewrite the Mie-Gruneisen equation

of state (1.60) in the form
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Thus, t and A correspond precisely to shifts in the values

of the pressure and energy, respectively. Mathematically,

this means that L and A are inessential constants and could

be set equal to zero. However, physically, fe, and A are

connected to the "stiffness" of the medium. Suppose that,

for a moment, the constant C vanishes in (1.60), so that

it is written,

+- ^ ( f - ^ (1.63)

The adiabatic compressibility is then given by

u ~ / (1.64)

If (a ^,) is large, say 10 atm, then at normal pressures,

the material described by (1.63) will be almost incompres-

sible. The constants a and Po are to be interpreted as

the sound speed and normal density, respectively. While

the mathematical character of the solutions for nonzero

a f0 is not distinct from that for a fo~ 0, the physical

nature of the motions of a fluid whose equation of state is

described by (1.63) is vastly different from an ideal gas.

In fact, if the compressions are not too high, the equation

of state (1.63) adequately describes the essential features

of a large class of materials. In particular, it applies

to metals under moderate pressure ̂ 10 atm.

The remaining integration constant C in (1.60) multi-

plies Pf . Therefore, it cannot be arbitrarily set to

zero without affecting the character of the solution.
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However, mathematically it could take on any nonzero real

value. On the other hand, like jS and A, the constant C is

a parameter which depends on the physical situation. It

sets the scale for the relative thermal and nonlinear

(M-^~ i) elastic pressure and energy content.

Let us finally give the differential operator basis

for the Lie invariance algebra for the isentropic motion of

fluids governed by Mie-Gruneisen equations of state (1.60).

The coordinate functions are given by

The differential operator basis is given by operators (1.53)

plus the scaling operator

(1.66)

The pressure translation operator J L also appears, but: for

now it is discounted from the mathematical discussion. The

finite transformations of the operator C! are given by

x --*. x. ~ e * x

t -~ I = t
T ( ^ l \ (1.67)

^ _ U, = e IA
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Thus, it has four inequivalent group invariants

The operator GL. leaves invariant the dimension of the con-

stant C, which has units of yoK. It also leaves invariant

the ratio of the pressure to the kinetic energy density,

'/ow* , and the relation UL'«*> f ' which pertains to the

nonlinear elastic part of the sound speed squared.

The operator Cl^ may be written as

(1.70)

where the operators C-̂  and CQ are given by

and

when ^z* = 0 or 1 the group parameters /< and 5 are decoupled

and the symmetry group is given by (1.53) plus both CQ and

C,. This occurs because when M. = 0 or 1 the Mie-Gruneisen

fluid is equivalent to an ideal gas.

The operator C, commutes with all other invariance

operators, except pressure translation. Thus C^ is in the

center of the subalgebra, omitting p . If Q is a symmetry

operator and A = 1, then Q + -0 C, is also a symmetry opera-

tor, where -̂  is an arbitrary constant. The value of \) in
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some cases may be determined as an eigenvalue from the re-

quirement that the boundary conditions be satisfied, as in

the treatment of the wave equation, Appendix A.

Finally, we mention that one more operator is admitted

when ^ = 1 , >' - p; (where n = 1, 2, 3 for planar, cylin-
r

drical, spherical geometry, respectively) and the multipliers

c, £ , m in (1.37) are allowed to depend linearly on the

time. The additional operator is

Operator F was noticed by Ovsjannikov for the case n = 1

only, and for the ideal gas equation of state. The invari-

ants of F are

-• x-ut. p t (WJb)t- l-l«'4J

The operator F, and the presence or absence of space trans-

lations and Galilean transformations, are the only aspects

of the group analysis which depend on whether the one-

dimensional geometry is planar, cylindrical or spherical.

In summary, we have proven that fluid motion admits

invariance principles which correlate thermodynamic state

variables with velocity and position, provided that the

elastic pressure isentropes essentially follow a power law

in the density. The classical kinematic Galilean symmetry

laws for fluid mechanics have also been derived. Galilean

invariance holds for an arbitrary equation of state because

Galilean transformations do not affect the relationships
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between the thermodynamic state variables. Invariance of

the "internal" thermodynamic relationships in addition to

the kinematical symmetry laws restricts the allowed trans-

formations of the dynamical equations.

A differential operator basis L £ M for the invariance

algebra of the isentropic flow equations with equation of

state (1.62) is given in Table 1.1

Operator Significance

i> = &x. Space translations

H - &t Time translations

(r ̂  i<)x -v-«5u Galilean Boosts

£* - *^ x +• t J t x/t invariant scaling

-dependent scaling

Table 1.1. The Basis L E M of the Lie Algebra for Euler
Equations in One Planar Dimension.

The commutator table for L £ M is displayed in Table 1.2.

The algebra L £ M is a semi-direct product of the Galilean

algebra with the abelian scaling algebra generated by S

and C i/. .



D

H

c*

D H

D

D H 0 0 0

-D

-D -H 0 0 0 0 0 ^

0 0

0 0

Table 1.2 The Commutator Table of the Lie Algebra L P M .
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Let us reiterate how the Mie-Gruneisen power law term

in the equation of state breaks the symmetry of perfect fluid

motion. The M = 0, 1 components of C^ apply to the case

that C = 0 in (1.62). The two operators which take the place

of C^ when the /̂* term vanishes in (1.62) are

and

The P' term in (1.62) forces a relation between the group

parameters for the transformations of an ideal gas and there-

by reduces the symmetry group to a subgroup. The other

terms |5 and A in (1.62) are not symmetry breaking terms

because they do not change the essential character of the

medium.

Let us say a word about the physical meaning of the

invariance operators. The first three operators in Table

1.1 are the classical Galilean invariance operators. The

operator S appears because, although no fundamental length

or time enters the description, a characteristic speed

appears. Namely, the sound speed of the material enters

the description and must be left invariant. The operator

C M. represents a scaling transformation which preserves the

form of the equations of motion as well as the relative

thermal and elastic pressure contributions. The operator F

in (1.73) is more complex. It correlates the fluid motion

at different space-time points in a manner which depends on
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the value of the time. It may also be related to the exis-

tence of a Legendre transformation which exchanges the roles

of dependent and independent variables and linearizes the

first two Navier-Stokes equations.

In the Mie-Gruneisen equation of state (1.62) an inter-

polation function has been introduced in order to describe

lattice site interactions at high pressures. The group

theoretical result of adding the C f^ term in (1.62)is to

couple the A" and J characteristics and group orbits, thereby

breaking the symmetry of the linear interpolation function

and reducing it by one in dimension. When the group para-

meters K and 5~ are independent, their orbits and charac-

teristics are disjoint. Upon coupling them through the

equation of state (1.62), the separate t>c and tiT orbits

degenerate and become identical. In order to study the

effects of symmetry breaking through the equation of state,

in the group analysis which follows, *• and S are treated

independently and then reconnected for LK ̂ 0, 1, after the

invariant coordinates have been found. Later on, further

comments are made concerning the physical effects of the

interaction term in the equation of state.

We are dealing with the isentropic motion of a fluid

whose thermodynamic state is described by (1.62). The

corresponding Lie invariance algebra can be realized as a

set of differential operators through the coordinate func-

tions, X, T, U, R, P, rewritten now as

• *
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•X •»- (c/ + *i) x 4- bt -\ (K

"U = dw • fe> (1.77)

where,

«' - - C i £*"*-<» (1.78)

and

I/I * - ( | + w ) -=• d - n~ (1.79)

For the moment, d and eC are taken to be independent, as in

the case of an ideal gas, also for the "stiffened gas,"

simplified equation of state for metals. The corresponding

operator realization of the infinitesimal variations given

by (1.94) is found by setting each group parameter (a, b,

c, d, n, «* , ̂  ) to unity in turn, while making the other

six of them vanish. The resulting ideal gas operator alge-

bra is listed below.

a.: -fc> - dx Space translations

c ' ^ * * Time translations

k '. S-= 't"M.'+ *i*. Galilean boosts

'A • Si - *P + t J. x/t invariant scaling (1.80)^ t
2

d ' C - x^ ••• KP -2p>o (U/X,PU ) invariant scaling

K : C, - Wfc. + (Jp p/p invariant scaling

"p '. £.„-}*> Pressure translations
2

Together CQ and C, leave invariant the ratio P/̂ > u of the

pressure to the kinetic energy density. The same ratio is I
i

left invariant by C ^ for arbitrary A\, as well as the
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other ratios P/p/* and u/x, corresponding, respectively, to

the ratio of the total pressure to its elastic component

and the ratio of flow velocity to a characteristic length.

C. Group Invariant Coordinates

The group invariant coordinates of the operators (1.80)

are found, according to Appendix C equation (C.62) from the

identities

<U _ Jt_ du _ df ^ (i.si)

Note that the value of £<r controls the character of the

group reducible solutions. When the group parameter Ac is

allowed to vanish, the nontrivial density and pressure

transformations are eliminated for degenerate (x and d.

Therefore, in what follows it is important to distinguish

between zero and nonzero values of b<-.

From the first identity in (1.81), the invariant inde-

pendent variable X(x,t) is determined.

Jy (d+n)x + lot -«• a- (1.82)

or

a'*'- y«7 .__ (*' ̂»^ - V(t~t^ (1.83)
(

The symmetry exponent k = —p- determines the form of the

invariant coordinates. In shifted coordinates (1.83) is

i _ . * - v t (1.84)
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Hence, for k j* 0, oo , we have for the group invariant

coordinate,

A>,t^ « T*f * "* T ~ - , ) (1.85)

The function A(x,t) given by (1.85) contains five arbi-

trary parameters a, b, c, d, n for use in fitting the

subsidiary conditions and physical context of a specific

problem. When V - 0, the group invariant A(x,t) reduces

to x/t , which is the customary form for similarity vari-

ables in fluid dynamics. To the author's knowledge, no

solutions for V f 0 have ever been applied in the litera-

ture.

When k • 1, corresponding to d * 0, equation (1.85)

becomes

-£•»- \TXoot (1.86)

or, alternatively,

The transformation corresponding to d « 0 and A given by

(1.86) or (1.87) is purely kinematical when «: and d are

coupled through the equation of state. It is kinematical

in the sense that the density and pressure do not transform.

The solutions which result when the therraodynamic variables

are invariant, have everywhere constant entropy.

The other special values of the symmetry exponent k

occur for the vanishing of n, of (d + n), and of both d and

n. The general invariants for each case are arrayed in
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Table 1.3. The seven parameters a, b, c, d, n,^,fe, can

be used to fit a wide variety of subsidiary conditions.

The physical assumption of group reducible fluid motion is

that the flow variables depend on the independent variables

in the same way as the boundary and initial conditions. In

Table 1.3 appear the general forms of combinations of

position and time for which this assumption can be true.

Special values of the general invariant quantities are

obtained by setting the group parameters a, b, c, d, n

equal to unity for each value of the symmetry exponent k.

Examples are listed in Table 1.4.

As mentioned before, the invariants in the first row

of Table 1.4 have the usual similarity form. Included

among their group reducible solutions are self-similar

solutions and centered simple waves. In the fourth and

fifth rows appear the similarity variables discussed pre-

viously by Stanyukovich and Sedov, whose solutions are

called "self-similar in the limit." The independent

variables in row three are of similar character to those

in the fourth and fifth rows of the table. The variables

in rows six and nine can be found by separation of varia-

bles. They correspond in their simplest forms to steady

and uniform flow respectively. However, travelling waves

^L. I. Sedov, Similarity and Dimensional Methods in
Mechanics (Academic Press, New York, 19 59).

3L. I. Sedov (1959), p. 174.
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Table 1.3. General Independent Group Invariants of Fluid Dynamics.



Nonzero Zero
k Parameters Parameters A, Ut R, P Significance

1. /•£ »=,,</=£ «.,.*>, c i ^ . ; , £ , e t " /}>i-~ Self-similar (SS)

2 - ' n-f, b = <£ A ;d /C/ | ^0 ->e 3 t ) , a - | -£ , rC ,%" t ~ ' < Galilean #1

3* ° </ = - n * - f * ( b,c y U+h) ^ Kt , f t " , ytT Separated variables

4- ° d I~A" ' f >,c,^-^) x-.£&jt(« t e ^ w t , ^ 1 ^ * SS in limit

5* ^ c.».d*. y <K, iaty\ xe * , ^ e , ^ e " , pe"* SS in limit

6 - ~ c * ' «. ,b , < w X, <A, ̂ € \ . j ^e" Steady flow

7 - ~ t ^ f i ^ ^ f *,d, n ^ - ^ 1 * ^ iA-£t, ^e"* !>€"*• Galilean #2

x8* ~ L " < <K,C,J,* -t , «- f }{t \f>& Galilean #3

9 - ~ * " ( b, *,<*,» t , * t £&"* ^*«* Uniform flow

Table 1.4. Special Invariants of Fluid Dynamics.

^-*&v%';&u&^^^
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are included by combining row six and row 9. In rows two,

seven, and eight appear invariants associated with Galilean

transformations, which had not been noticed prior to

Ovsjannikov (1962), and to the author's knowledge, have

never been applied. These solutions are studied later on

for Mie-Gruneisen equations of state.

Thus, the general multiparameter invariants of Table

1.3, upon specialization, reduce to a catalog of group

invariant variables for self-similar motion. The invari-

ants lead to the classes of solutions of the Navier-Stokes

equations, and provide cases of moving boundaries for which

group reducible solutions exist. The multiparameter invar-

iants of Table 1.3 are especially useful because they

contain arbitrary constants which may be adapted to the

specifications of particular problems.

The effect of the nonlinear elastic pressure term in

the equation of state (1.62) is to couple two of the group

parameters d and ft. When the exponent/* in (1.62)

vanishes, or equals unity, the parameters d and « which

appear in Table 1.3 and Table 1.4 will be independent of

each other. Otherwise d and K are coupled, so that

^ ~\ (1.88J

For example, when d and K are connected, the last four

special invariants and the second one in Table 1.4 have

4Appendix C, equation (C.145) and sequel.
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f< = 0, while in the remainder o< is given in terms of d by

(1.88). Tables 1.3 and 1.4 also contain the invariants

for a general equation of state, in which case c* * d = 0

everywhere, and the flow has constant entropy.

D. Representative Group Reducible Solutions

Let us explore the effect of the power law elastic

pressure on representative group reducible isentropic

fluid motions. The group invariant variables generally

allow a partial integration of the fluid dynamics equa-

tions. Most often, as in the case of self-similar motion,

the group reduced representation reduces the problem to a

phase plane analysis and quadratures.

So far we have found an empirically relevant elastic

pressure interpolation function for which the isentropic

fluid equations admit more than merely a kinematic symmetry

algebra. In the context of fluid dynamics we have deter-

mined in detail how symmetry breaking occurs through inter-

action terms in the equation of state. In addition, the

basic invariance principles of classical mechanics and

fluid dynamics have been formulated quantitatively as dif-

ferential operators and have been used to derive the natural

symmetry-adapted variables for isentropic fluid motion with

5L. I. Sedov (1959).
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Mie-Gruneisen equation of state (1.62). We shall now

present the general analytical characteristics of group

reducible motions. We shall see that invariance analysis

unifies and systematizes previously scattered concepts.

Thereby it leads to both a firmer control of existing

methods of analysis and a deeper insight into their basis

and possible modes of generalization and extension.

We wish to consider one-dimensional planar isentropic

flows of an "interacting gas" whose equation of state is

given by (1.62). Let us write the equations of motion for

flows of this type. Referring to equations (1.21), (1.22)

and also (1.23) we obtain the following system of equa-

tions for the density, pressure, and velocity, as functions

of position and time.

Ct -+ Kfx + £ivx *=. o (1.89)

= O (1.90)

In equation (Io91) we have reset the zero point of the

pressure so that the symbol p stands for the quantity

The invariance groups for the equations (1.89) through

(1.91) have already been derived and enumerated in the

previous section. We have also seen how the invariance

principles admitted by the fluid dynamics equations deter-

mine the natural variables of the system. The group
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invariant quantities are tabulated above. In these varia-

bles the system of partial differential equations of fluid

dynamics reduces to a system of ordinary differential

equations for new unknown functions of the appropriate

independent group invariant. Let us derive these group

reduced equations and analyze them for various choices of

invariant independent variables. In Table 1.3 and Table

1.4 a large number of choices are available.

In the group reduced representation of fluid dynamics

the interaction term for }* f 0, 1 changes the character

of the motions. Unless M- is equal to one of its "accident-

ally symmetric" values, an additional connection occurs

between the transformations of the kinematical variables

(x, t, u) and the thermodynamical variables (f, p) which

limits the form of the solution. The physical explanation

of this group theoretical effect is that the sound speed -

which connects the kinematical and thermodynamical quanti-

ties - has two components, a thermal contribution and an

elastic contribution, which scale differently unless A « 0

or 1. The isentropes for the equation of state (1.62) are

given by

Thus the sound speed has two components which scale differ-

ently,
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The expression (1.93) tells us that the thermal and elastic

parts of the sound speed cannot scale the same way with

density, because if they did, the denominator of the second

term would vanish. But for M = 0, 1, the elastic part

itself vanishes and a simplification occurs. For I* - 0, 1,

the sound speed takes on the ideal gas form, and the isen-

tropic Navier-Stokes description gains on extra symmetry

principle.

1. Group Reducible Solutions of Self-Similar Type.

Let us derive the group reducible representation of the

fluid dynamics equations for nonzero group parameters d, n,

U. According to Table 1.3 the invariant coordinates are

given in this case by

- —

u

The group reducible representation of the fluid dynamics

equations is gotten by solving (1.94) for (u,f , p) and

substituting into (1.89) through (1.91). From equations

(1.94) we find
X J_

(1.95)
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Substituting the group reducible expressions

(1.95) for the coordinates into the starting partial dif-

ferential equations for fluid dynamics, we obtain, first of

all for h • 1, the group reduced representation

(W- ^ ) > R ' = -(LT+ sL^ri)R. (1.96)

(1.97)

(1.98)

Equations (1.96), (1.97), S (1.98) comprise the group

reduced representation of the balance equations for mass,

momentum, and entropy, respectively.

When M j* 1, 0 the last equation changes, and d and K

become connected by (1.88). The new equations, with

expressed in terms of u, d, are given by

R X U ' + (U- ^)>,R /* ~Lu*j^7&)& (1-99)

(1.100)

(i.ioi)

We first study the case where AA • 1. The mass equations

(1.96) and the entropy equation (1.98) may be rewritten

in the form

- O (1.102)

^ ° (1.103)
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where the constants 4, D, £ are defined by

^ ~ ^7T^ (1.104)

These equations admit a first integral, an algebraic rela-

tion between all of the variables. From equation (1.102)

multiplied by EP we subtract equation (1.103) multiplied

by DR. The result appears in the form,

A first integral is thus obtained from the mass and entropy

balance equations

^ T (1.106)

This integral, to be called the adiabatic integral, exists

because of conservation of entropy along particle paths in

the flow. In general, each group reduced fluid conserva-

tion law should have a corresponding first integral.

We see that equations (1.100), (1.102), (1.103) are

invariant under two scaling laws,

It — e ^ R —+ e**K
<^c/ (1.107)

The invariants of these scale transformations which cor-

respond to the original invariance principles CQ and Cĵ

in (1.80) are given by
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W = (U> -A*) , i - ~ (1.108)

In terms of w, z the group reducible pressure and density

become, through the adiabatic integral,

-'•'*"* (1.109)
W

where

" (1.110)

Substitution of (1.109) into the group reduced representa-

tion (1.100), (1.102) and (1.103) leads to complicated

expressions for jy and jy . The general expressions are

omitted. They are best treated numerically.

A simplification for which the results are more tract-

able occurs if S = 1, i.e., if d * T+T n • In this case

the adiabatic integral (1.106) becomes

( U r gX (1.111)

In terms of the invariants X, w, z the differential condi-

tion for the adiabatic integral (1.111} to exist when E - D,

is simply,

w ^ Vi ~ ~5^" X (1.112)

Rewriting the momentum equation with w, z, and setting £ *

D, we have
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— (W 2-S^\AJ' + A 2.'=. - rz-4-<>v + &X'w-t-/i-r5] (1.113)

Regard these two equations as a linear algebraic set of

equations for w' and z1. Because of the choice of

invariant variables w, z, an expression may be found for

~ which is independent of the invariant X . By Cramer's

Rule for linear equations we find,

^ * (w».=\ _ Y w « "" (1-114)

T~, = -r^- • T"—; (I 115~)

,X (wa-H.i — ^rws (1.116)

Thus, in the general £ * 1 case, the solution is reduced

to a first order differential equation ^ « F(w,z), one

quadrature, and the adiabatic relation (1.111). However,

the formulas are still too complicated to afford much

analytical insight.

2. U * A Floors. If we assume in addition that U *

A • ^-^ , then exact solution is made possible. Compati-

bility with the group reduced equation for U * A implies

through (1.102) and (1.103) that

D » E - 0 (1.H7)
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Thus, from (1.104) we have

~ ^ ~ (*+>N A (1.118)

and the momentum equation (1.100) reduces to

A ( 4 l >>

The solution which results under these assumptions is given

by

w •- 4 - , £ s. t RfX^ . p>-i JPO^ A- t? (1.120)

where R(A) is an arbitrary function and P(A) is given in

terms of R(A ) by

For R(A) - A"1 » — the solution (1.120) becomes

u - ? r r ? • < - - i » ̂  = c ^ ^ (i.i22)

At a given time the velocity and pressure have a linear

spatial profile, while the density decreases inversely with

distance. This flow preserves the ratio of the pressure to

the kinetic energy density. From (1.122) we have

£ew*- " d.123)

Consider a more general U * A flow. Let R(X) * KA . The

solution (1.120) becomes

i ~ f-^i^\* .Li. -5 . fM.O.i.'atA ( 1 . 1 2 4 )
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At a given instant the velocity profile is linear again,

but the density and pressure profiles follow power laws.

The flow (1.124) also preserves the ratio of the pressure

to the kinetic energy density. From (1.124) we have

^ e u ^ ~ J + 2 (1.125)

Recalling the remark after equation (1-80) we realize that

all of the group reducible solutions derived in this way,

and all of those generated by operating upon them with an

invariance transformation of the fluid dynamics group,

preserve the quantity P/^u . Note that, under the trans-

formations of the fluid dynamics group (generated by the

operators (1.80)), the solutions listed above transform to

four parameter families of new solutions. The new solu-

tions derived by transformations of the rest of the group,

are said to be equivalent to the old ones up to a symmetry

transformation.

Let us extend our analysis of U • A flows to the case

that the elastic pressure exponent^ is not equal to zero

or unity. Wheny~ ^ 0 , 1 the group reduced equations

(1.99) through (1.101) take the forms

W - f u - A ) * (1.126)

U--O (1.127)

C 1- 1 2 8 )
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where the constants ht D, E are given by

1*4 d
A -

ii+ A

and we have already used (1.88) to relate d and <X. For

compatibility when U =L , we require D = 0 in (1.126) and,

hence,

A = 2

' (1.130)

The result of setting U - A in (1.128) is that

Consequently, from (1.127) with U * Z we find

R - K ^ , k - [-^^li-f"' (1.132)

Therefore, the result of the elastic pressure term in the

equation of state is to reduce the class of flows for which

f"U * A to a single member, namely (1.124) with \) f. .
AWNote that, in (1.131) the expression ^ is precisely the

nonlinear elastic part of the sound speed squared in

(1.93). The physical reason that the entire sound speed

did not appear in (1.131) is that while the group reducible

motion for U = ^ has. constant entropy along particle paths,
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the entropy is not constant everywhere. The constant

entropy relation (l.yj) cannot be expected to hold for

a general isentropic flow, but in this case "part of it"

is satisfied.

In our analysis, we have consistently found that

symmetry breaking reduces the range of available group

reducible solutions. This occurs in essentially the same

manner in which the number of degrees of freedom of any
7

system is reduced by imposing a constraint. The nonlinear

elastic pressure could have conceivably had another type of

effect: it could have completely changed the character of

the motion. In fact, this would be, a priori, the most

likely possibility. Except for the limiting ideal gas

behavior when C is small, the nonlinear elastic component

may be completely unconnected with ideal fluid flow.

3. Degenerate Self-Similar Motion: Separated

Variables. Let us present another example of the group

reduced representation of the fluid dynamics equations,
I.

this time for self-similar motions with group parameters I

d and n initially connected by d + n = 0. The connection S

between d and n forces the symmetry exponent k to vanish . f

and changes the analytical character of the solutions. \

According to Table 1.3, the invariant coordinates are given * |

by I

7See also Appendix C.
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A =

(* + a ) C1.133)
R oo -. p +,

1 v

The group reduced representation is gotten by substituting

the invariant forms into the fluid dynamics equations

(1.89) through (1.91). In the group reducible flow

variables the coordinates are separated,

X - x

•A * jrirt*) (1.134)

p - t* ̂ rx>

In terms of a similarity representation, the length scale

is constant and the velocity scale goes like 1/t. This is

a singular case. The density scale is set by

exponent B = %+ 2 , which is a uniform limit of the density

scala in a self-similar representation.

The results of the substitution of the group reducible

flow variables (1.134) into the fluid dynamics equations

are, respectively, for the mass, momentum, and entropy

balance,

RW+ IIR' = -t$+-2)R (1.135)

^ U C1<136)
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In these equations, when C f 0 we have, for compatibility

of dimensions,

« ~ /-~l (1.138)

When C ^ 0, no free parameters remain. When, however, the

nonlinear elastic pressure is not present, an adiabatic

integral can be gotten straight forwardly. Setting C = 0,

from (£ + 2)R times the entropy equation we subtract (££)

times the mass equation. The result is

o

and the adiabatic integral for C = 0 is

J&+2.) fjri
Jf T r (1.140)

The group reduced equations (1.135) through (1.137) with

C = 0 are invariant under the following scaling laws (see

equations (1.67) and (1.68))

e x
R

2 — ^f

These operations correspond to C and C-,, above, which are

independent of time.
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The invariants of these scale transformations are

U F
W = — ' 2 = {TVR (1.142)

"fli«>p C f 0 a scale transformation derived from C ^ in

1.1 is admitted.

U _ e^^U (1.143)

The transformation (1.143) has the same invariants (1.142)

From the adi&batic integral (1.140) we get, for C - 0

now,

with

£ -- r^ (1.145)

In terms of U and z the group reduced representation

becomes

SW + (3~
 + 0 g ^/ ~ ̂ + 2 ^ (1.146)

!^U-f^]u' -fnU!'-- 1 (1.147)

"P, (1.148)
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Adding the entropy equation to the mass equation, we obtain

'+ ~ * ' - 2- (1.149)

Combining this equation with the momentum equation we get

an equation for U1(x) and for z'(x).

As.

U [

Hence, an equation appears for U(z)

When £= 1 a simplification occurs. First of all, £ * 1

corresponds to

Therefore,

*' = " h TTTT. (1.154)

(1.155)
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Consequently, from (1.156) the expression for U(z) becomes

irtz.) = 2 r e~ ̂  (i.i57)

and from (1.154) and the expression for U(z), we have

The integrals involved are related to incomplete gamma

functions, or degenerate hypergeometric functions. The

U ̂  x/t solution in this case corresponds to * - 0, i.e.,

it corresponds to isothermal motion. Therefore, even for

the perfect gas, the isentropic solution by separation of

variables (1.144) apparently can be gotten only implicitly,

at least for 6 * 1 .

Further progress can be made when B * - -y- . For

this case we have

and the dependence on U in the adiabatic integral (1.140)

drops out. Consequently, (1.140) becomes

= <t~*L) (1.160)

and the group reduced balance equations, namely

= -|rR (1.161)
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T-TLX't- Ml ~ \J (1.162)

can be reduced to

- ̂ r3j £L' =. ^ LT (1.164)

Moreover, if K" 2 as well, two simple solutions for con-

stant entropy flow result:

(1.165)

B (*-x
/ 3'

(1.166)
B
-t-

6(fX+^ -3
u-

(1.167)

2 , R/== ̂

where A and B are constants.

Before proceeding to a new type of fluid motion, we

note that, although the transformation to the invariants

(1.142) partially separates the variables in the equations
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of motion for n « 0, 1, the group reduced equations (1.135)

through (1.137) with arbitrary /*• , even when written in the

invariant combinations w, z, cannot be separated into a

phase plane form: —. « F(w,z). Thus the symmetry break-

ing term dynamically connects P, U, and R, and changes the

character of the solution. We remark that the other

simplifying aspect of the motion - the adiabatic integral -

has also eluded us for /*• ¥ 0, 1.

4. Galilean Flows. Let us discuss the types of flows

generated by Galilean invariance. This type of flow has

been noticed only once before, by Ovsjannikov (1962) for an

ideal gas. We wish to study its physical significance and

to determine the effects of equation of state symmetry

breaking on the analytical character of the fluid motion.

A simple Galilean flow is found by taking c< and b non-

zero in Table 1.3, while forcing the other five parameters

(a, c, d, n,8) to vanish. The dimensionless group param-

eter «• labels the scale transformations on p and f together.

This thermodynamic scale change leaves invariant the quanti-

ty -y/P ii with dimensions of speed. The other group

coordinate, b, labels the Galilean transformations and also

has dimensions of speed. If K * 0, then the kinematic

Galilean boost remains: t->t, x-»-(x + bt), u~v(u + b),

£-**f» P-*"P« T n e Galilean boost involves an invariant time

and a family of equivalent uniform velocities (inertial

frames). Under a Galilean boost, time is unchanged, veloc-

ity is translated, and position mixes linearly with time.
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The first step in the symmetry analysis for Galilean

flows is to write down the invariant coordinates for b

nonzero. The group reducible representatives of the flow

variables for Galilean flow of this type are, according to

the last line of Table 1.3,

IA ^ - + lift)
(1.168)

In this flow, spatial dependence appears only in the combi-

nation x/t, with units of speed. The invariants U, R, P in

(1.168) have dimensions corresponding to the notation. The

velocity is linear in x/t, with an additional time depend-

ent term which modifies its temporal behavior. At a given

instant, the flow has a linear velocity profile and an

exponential pressure and density shape. The pressure and

density have the same profiles, except for a time-varying

relative scale. The type of physical situation for which

such a flow could develop would be an initial value problem

(because t is invariant) with a characteristic velocity and

density. For example, at t * 0 a spatial density distribu-

tion of moving gas might be set up, with a given velocity,

which then expands into a vacuum. The subsequent motion
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takes the form (1.168)

The Galilean/thermodynamic scaling group reduced form

of the fluid dynamics equations is obtained upon substitut-

ing (1.168) into the isentropic partial differential equa-

tions, (1.89) through (1.91). The result of the substitu-

tion is

(Rt)' -v f UR. = O

i -^ ^ o (i.i69)

Immediately we notice that, because of the exponential in

the last equation, nonlinear interaction pressures in the

equation of state cannot be accomodated unless * * 0. When

c< vanishes, the first two equations in (1.169) corresponding

respectively to mass and momentum balance, give

Then the last equation becomes

Equation (1.171) can be integrated to give the isentropic

form,
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In other words, for vanishing * the group reducible motion

of the purely kinematic Galilean group is given by

. _ , . LA.

i. > v - -t • r t*-ti /̂ -(K4-i)'-t ' (1.173)

Because the pressure and density are independent of position,

the isentropic relation (1.35) or (1.172) holds throughout

the flow. Clearly the ideal gas (or stiffened gas) result

can be gotten from (1.173) by setting C • 0.

Thus the «<• 0 Galilean "flow" corresponds to a con-

stant entropy, strongly coupled, driven pressure-density

response, with a velocity response which increases linearly

with position in the material. As time increases, all of

the flow variables in a finite region decrease to zero.

For completeness and comparison, the x- * 0, 1, rtf 0

Galilean flow is presented. When the nonlinear part of the

elastic pressure vanishes, C - 0 and the last group reduced

equation in (1.169)- the entropy balance equation - becomes

Comparing equation (1.174) and the group reduced mass

balance equation in (1.169) we see that ( ?i r) and R differ
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at most by a constant factor. Consequently, in this case

the adiabatic integral is given by

(1.175)

and the group reduced momentum equation can be directly

integrated to give

t , £T, t (1.176)

Rearranging the mass balance equation gives

d.177)

Hence, upon substituting (1.176) we have,

R- i" ̂ f ( | - l^h) (1.178)

Then from (1.17 5)

(1.179)

When <*» 0, the solutions for U, R, P reduce to their

constant entropy, C « 0 values, with P * (const) R

When £ « 1, the group reducible representatives of the

flow variables become

IX =. •£ ~ -£ k -^~ (1.180)

(1.181)

J 1. (1.182)
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Let us choose the constants <*, b, K, to satisfy K * ^ ) « 1

Then for *f 0, ^ f 1 the flow is given by

* • • * •

/ t v "PL t + V N ? | (1.185)

and for K ? 0, *• 1 the flow is given by

-£. (1.186)

ci.188)

The last six formulas were essentially given by Ovsjannikov

in 1962. Ovsjannikov's work, however, is purely of a mathe-

matical nature. He gives no discussion of physics or

applications.

These solutions have the characteristics which we

anticipated following the group reducible representation

(1.168). In particular, the ratio /̂  depends only on the

time. However, the solution for M i 0 does not have every- j

where constant entropy, as evidenced by the adiabatic

integral, relation (1.175). The spatial variation of the j
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flow variables appears only the combination x/t: linearly

for the velocity; and exponentially for the pressure and

density, In the case «*, • 0, only the constant entropy

solution comes forward.

5. Three Parameter Galilean Flows. Let us extend our

analysis of Galilean flows to the case d j* 0, so that we

can analyze the nonlinear elastic flow with the aid of

additional thermodynamic group transformations. We wish to

study the case that three group parameters b,c<, d are non-

zero, while the rest vanish. From Table 1-3 line four, or

by directly integrating (1.73), we find the group reducible

representation of the flow variables,

A - t

As expected, for Galilean flow, the time is the group

invariant. Thus we are again dealing with an initial value

problem. In the group reducible representation (1.189) the

velocity retains a linear spatial behavior, but the position

dependence of the density and pressure no longer track one

another. The (b, tx, d) group reduced equations of motion

are given by
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- o

IX = O (1.190)

In the group reduced balance equations (1.190) the group

parameter b is absent. When the exponent M is not equal to

zero or unity, the group parameters tx. and d are connected

throughout by the symmetry breaking relation,

2 z prrx ci
Equations (1.190) have already solved themselves for the

derivatives R1(t), U1(t), P'(t). After some manipulations

we find

This is the adiabatic integral. In addition we find,

\ (1.193)

Finally, because the momentum equation is a Riccati equa-

tion for U(t) in terms of P/R, we have

From (1.193) and (1-194) we find a particular solution for

U(t) by letting y1 * z, y" * z~| , and integrating twice,
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Equation (1.195) holds when

This form for U(t) results in a familiar expression for the

velocity

,. - z * -L v
u - FTT T ~ 3 "ETi. (1.196)

Once U(t) is known, R(t) and P(t) follow by directly inte-

grating equations (1.196). Aside from unimportant constants

the results for the density and pressure are

f ^ t-cir (i.i97)

P *.

We note, as a check, that

I , t* , F.^ - ^ (1.199)

The first relation holds in general, because of the group

reduced momentum equation. We see that (1.192) and (1.193)

are satisfied by

"t •» jf - «*rt "t (1.200)
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In all of the equations (1.197) through (1.200) we must

Suppose we now let M j* 0, 1, and we employ the parti

cular solution (1.15*5) for U(t). Then by (1.196) a rela-

tion is enforced between M and V, namely

For the particular value of u. given by (1.201) a solution

of the group reduced equations (1.190) is possible. The

analysis of the equations is presented, because the outcome

of the solution is that the fluid motion for M / 0, 1 has a

completely different character than that of the simpler

cases. By solving the group reduced continuity equation

for U and substituting into the group reduced entropy equa-

tion we find

R/
ft R ' (1.202)

where the constants D and E are given by

:D ~ ; r r d ^ + '*'M) (1.203)

E - CC/A-I') -^2 (1.204)

Thus,

and we find that the adiabatic integral takes the form
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— ^ (c^t)R + T T T ^ ^ = ~. (1.206)

The relations (1.195) and (1.206) implicitly determine the

flow. We note that in this case the symmetry breaking in

the equation of state completely alters the analytical

character of the flow.

E. Invariance Principles for the Dissipative Navier-
Stokes Equations with an Ideal Gas Equation of State

We have characterized the change in isentropic Navier-

Stokes flow which occurs upon introducing symmetry breaking

interaction terms into the Mie-Gruneisen equation of state.

However, other types of symmetry breaking interactions do

occur in fluids. For example, the thermal energy may be

distributed, as in a plasma, among different interacting

species of particles (along with a radiation temperature

field, say), so that relaxation effects occur. Or the

particles may interact during the flow to dissipate energy.

In the Navier-Stokes approxiication, the latter type of

interaction is described by transport coefficients of
Q

viscosity and thermal conductivity.

In this section we briefly present the results of our

derivation of the invariance principles for the full Navier-

Stokes equations, vrith dissipation, and in one dimension.

The coefficients of viscosity and thermal conduction are

8Landau and Lifshitz (1959).
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allowed to depend on temperature, as in a real material.

However, the equation of state is assumed to be that for

the simple gas (equation (1.62) with M •* 1), namely

, X^C^.9 (1.207)

The medium is specified with constant Gruneisen parameter

and constant specific heats. Eliminating the pressure in

favor of the temperature, £9 , the dissipative Navier-Stokes

equations in one dimension become

= O (1.208)

(1.209)

where k - V^?v, and the temperature dependence has been

included in the coefficients Ki£) and ^(9) , describing

thermal conduction and viscous dissipation.

We wish to determine the maximal set of iuvariance

principles which belong to equations (1.208) through

(1.210). Let a set of transformations on the quantities

x, t, u, ̂ ,# be defined to first order in Taylor expansion

by the expressions:
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x =

- t

w. =. (1.211)

In these expressions £ represents a field of infinitesimals.

The quantities X, T, U, R,&, correspond to the coordinate

functions for the infinitesimal generators of the transform-

ation group, in a differential operator realization. A

general such operator takes the form

^ + R^ e -f ©<) 9 (1.212)

As usual, the transformation properties of the various

derivatives appearing in the dissipative gas dynamics equa-
9

tions are defined by the chain rule of differentiation.

A given transformation is a symmetry operation when it

leaves each of the fluid flow equations invariant, up to an

overall factor. The result of a calculation which is analo-

gous to that presented earlier for an isentropic Mie-

Gruneisen fluid (but extremely tedious due to the presence

of second derivatives) proves that first of all for general

thermal dependence in the transport coefficients, only the

kinematic operations of classical mechanics are allowed:

See Appendix A
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i> — <̂ x space translations

M - <*t time translations (1.213)

G- = t <*x -+- <^ Galilean boosts

The viscosity and conductivity

introduce fundamental lengths which violate the (x/t) -

invariant kinematic scaling law of isei.tropic flow. However,

if the coefficients ̂ {0) and K(0D vary with temperature

according to the same power law - so that ^ is a constant,

as is often experimentally valid - then two more invariance

principles are admitted. Namely, the scaling laws generated

by,

(1.214)

The viscosity and conductivity coefficients depend on tem-

perature according to a single power law,

KM

(1.215)

The exponent m is calculable from kinetic theory, given the

particle interaction. Kinetic theory predicts m • 1/2 for

the hard sphere model, and m • 1 for "Maxwell molecules"

(with an intermolecular potential energy which has an

inverse fourth power dependence on separation distance).

1(h. W. Ford and J. D. Foch, "The Dispersion of Sound in
Monoatomic Gases," in Studies in Statistical Mechanics V, J.
deBoer and G.E. UhlenbecK, Eds, (North-Holland,New York 1970)
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Adding and subtracting the operators in (1.214)

eliminates the exponent dependence in one case,

L (1.216)

The commutator table of the invariance algebra for dissipa-

tive flow is displayed in Table 1.5. This algebra is a semi-

direct product of the Galilean algebra with scaling laws (c*)

When the coefficients f and K both vanish, the result

is the algebra of operators (1.80) but with pressure re-

placed by ik&£ ). For comparison we display the full

invariance algebra for "? - K- O. The results for the

coordinate functions are, in planar geometry,

U - h(x

& = - 2

c =• - "sut + f i- w)

kVl t - fht -I ( S ~ « + ^ )

with group parameters g, h, a, b, c, d, n. Translations of

internal energy, although also allowed, are omitted in

(1.217). An operator basis which results from the set of

coordinate functions (1.217) is given by,
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H - x t^ + t\ 4 ( x" l l t)i Projective transformations

ID ^ x<2* + w.^ + 29ae (x , u,./©1 ) sca l ing

•& = •fcJx •+• <?u. Galilean boosts

/\ - ^ y Space translat ions (1.218)

^ = x ^ + t J t ( x > t ) s c a l i n g

Q = J. Time translations

G ~ C ^ Density scaling

The effect of symmetry breaking dissipative interactions

is first of all to reduce the symmetry group of the nondis-

sipative equations, by establishing relations among the

group parameters. In particular, the group parameter g

becomes related to d and n by,

3 - 2(n-i) d - w (1.219)

Then, because second derivative terms appear in the result-

ing group reduced representations of the fluid equations,

the dissipative terms actually alter the character of the

flow in an essential way. A few of the analytic properties

of group reducible dissipative fluid motions are discussed

in the next section. In a later article, we plan to numer-

ically investigate the fundamental group reducible dissi-

pative motions of a Navier-Stokes fluid.



73

D H

D

H

0

0

0

~D

-D

0

0

-D

-H

H

0

D

0

0

-2G

D

H

0

0

0

D

-H

2G

0

0

Table 1.5. The Commutator Table of the Invariance

Algebra for Dissipative Flow.
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In the present work a group classification of dissi-

pative flows is given. For K and f nonzero, the group

parameter h vanishes and (d, g, n) become connected by

(1.219). The catalogs of group reducible representatives

given in Table 1.3 and Table 1.4 still apply to the case of

dissipative flow; with appropriate modifications in the

last two columns of each table for the change to a thermal

description, rather than a pressure description. These

modifications are shown in Table 1.6 and Table 1.7. In the

subsequent symmetry analysis of the group reduced equations

the symmetry breaking condition on the group parameters

(1.219) is imposed. The resulting ordinary differential

equations are second order, rather than first order, in the

group invariant independent variable ^(x,t). Two different

group reduced representations of the dissipative Navier-

Stokes equations are given.

F. Self-Similar Dissipative Flows

Let us derive the group reduced representation of the

diss'.pative fluid dynamics equations for nonzero d, n, g.

According to Tables 1.3 and 1.6, the group reducible

representatives of the flow variables are given by



Parameters Invariants

•= o

Qe

= O

_£.

_ f

0

Table 1.6. Modifications of Table 1.3 for Thermal Description.



Nonzero
Parameters

Zero
Parameters R(A) , ©

Q

OO c — A = 1

c = /

b= c - {

A -

/ i

, c/ , n

t 4, v)

I , 0

O

. 9

Table 1.7. Modifications of Table 1.4 for Thermal Description.
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(1.220)

Substituting (1.220) into the dissipative equations (1.208)

through (1.210) we have,

RW + [u - (f+OXj/l' = ~ ̂  R- (1.221)

-i
j (1.222)

(1.223)

The powers of time in these equations can only be eliminated

if

- i (1.224)

which is, of course, a rewriting of the symmetry breaking

relation (1.119). However, even when the factors of time

are eliminated from the group reduced equations (1.221)

through (1.223), a formidable set of ordinary differential
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equations still remains. Equations (1.221) through (1.223)

may be written as

j[s?) (li225)

where L, M, N are given by

L - [LJ - A)R.

M - LX-T + k&R- ytl' (1.226)

N * |L<9 + M U - ^LIS* - K6>'

when £ = 0 the quantities L, M, N are constants of the motion.

Let us now consider self-similar motions with group

parameters d and n connected by

c/-tw - O (1.227)

The connection between d and n forces the symmetry exponent

k to vanish. Hence, the group reducible flow variables

gotten from Tables 1.4 and 1.7 are given by

X * x

U - ~ LT < *) (1.228)

The resulting group reduced dissipative flow equations may

be expressed

(ISR)' - (ZJtt-OR. (1.229)

(1-230)
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(1.231)

-1

where the symmetry breaking relation (1.224), namely

g = 2m-l, has already been assumed.

When m = 1 some simplification occurs.

' "- f< (1.232)

U R * ^AW®)' (1.233)

(1-234)

At this point invariance principles from the previous sec-

tion have been used to reduce the Navier-Stokes equations

with power law temperature dependent transport coefficients

to ordinary differential equations and for a special case

first integrals have been obtained. Further progress with

the full set of fluid equations can best be made numerically.

In the next chapter we discuss the group reducible fluid

motions of Burgers' approximation to the Navier-Stokes des-

cription. The fluid invariance laws established for Bur-

gers' description lead to solvable group reduced equations

of motion. The associated group reducible fluid motions in

Burgers' approximation are relevant to the dissipative

Navier-Stokes description in a weak shock, asymptotic limit.
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CHAPTER II

WEAK DISSIPATIVE SHOCKS: BURGERS' APPROXIMATION

Burgers' equation - a prototype fluid equation - is

employed to study how dissipative effects alter a wave

profile as it propagates. Group theoretical techniques

are used to construct invariance principles and find

classes of group reducible fluid motions. The analysis

applies to the propagation of a weak shock in a dissipative

fluid, e.g., the formation and attenuation of finite ampli-

tude sound waves in air. In the regime of interest, both

convection and dissipative effects (viscosity, self-

diffusion, thermal conduction) are present. Under these

conditions a balance may be struck between the convective

wave-steepening tendency and the relaxation effect of dis-

sipation. The weak shocks which result, rather than being

discontinuous, have a thickness and an internal structure.

A. Burgers' Model Fluid Equation

The simplest fluid equation which combines nonlinear
2

convection with diffusion is Burgers' equation,

*The attenuation and dispersion law for sound waves in
monatomic gases is investigated from a kinetic theory
viewpoint by G. W. Ford and J. D. Foch (1970). The
question of the evolution of the wave form due to diffusive
effects is broached by Lighthill (1956).
2Burgers (1974). Equation (2.1) has received much attention
in the literature. It first appeared in a paper by H.
Bateman, "Some Recent Researches on the Motion of Fluids,"
Monthly Weather Rev. 4_3, 163-170 (1915). A survey of pub-
lished solutions has recently been given by Benton and
Platzman (1972). See also Whitham (1974).
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t« + MH>f — \? u. xx- (2.1)

where J is a positive constant. This equation is a simpli-

fied form of the fluid momentum balance equation. The

quantity u has dimensions of velocity

(2.2)

while >) plays the role of a kinematic viscosity with dimen-

sions

(2.3)

The Burgers' equation (2.1) may be regarded as a differen

tial conservation law,

with density D and flux F given by

0>* LL , F » ( f - vUx) (2.5)

In the conservative form it is argued that the flux F

depends quadratically on the local momentum density D and

linearly on the momentum density gradient. The flow is

driven by the kinetic energy density -̂  . It slows down

when it encounters regions of positive ux, but it speeds

up when it meets a negative ux. Consequently in the evolu-

tion of a Burgers wave, the negative slopes (u x<0) are

steepened but the positive slopes (u x>0) slacken and
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diminish to zero. If the diffusion coefficient is small,

an initially sinusoidal wave train will eventually take the

form of a steady sawtoothed row of triangular waves.

Burgers' equation (2.1) is not a true fluid wave

equation. Because no pressure gradient term is present,

its solutions do not reduce to ordinary sound waves. How-

ever it has recently been shown that Burgers1 equation

governs the final stages of weak shock wave formation for

general Navier-Stokes fluids.

rf.—»—

The physical length and time scales for a weak shock

wave are

L = shock width

tc = L/u, convection time scale (2.6)

tjj * -=• , diffusion time scale

The time scales defined in equations (2.6) correspond to:

(1) the time interval required for a signal to propagate a

distance L at the convection velocity u; and (2) the average

time it takes for a disturbance to diffuse a distance L, by

means of one of the diffusion mechanisms which attenuate

the wave. The ratio, f , of the diffusion time scale to

the convection time scale is equal to the Reynolds number

^W. D. Hayes, Gasdynamic Discontinuities (Princeton Univer-
sity Press, 1960); J. P. Moran and S. F. Shen, "On the
Formation of Weak Plane Shock Waves by Impulsive Motion
of a Piston," J. Fluid Mech. £5, 705 (1966).
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A

of the wave motion.

tt -) C A. U.'J

In equation (2.7) c refers to the local sound velocity and

/. is the average diffusion mean free path,

/ -- -̂ (2.8)

The manner in which a wave form evolves depends on the

relative magnitudes of tc and td. If the diffusion time is

considerably less than the convection time, then the dis-

turbance will decay away, and nonlinear effects will not be

important. However, if "<""1, nonlinear effects are

important. The waveform then steepens and a balance may be

established between shocking-up and relaxing. The result

is a stable waveform.

Historically Burgers' equation (2.1) has been studied

for its shock-like solutions, i.e., solutions with steep

fronts of the form

=. £ I * •- f t ) , C - t (2.9)

4A precise definition of the Reynolds number for a Burgers'
wave is given by ^

-co

The Reynolds number defined in this way is a constant of
the motion. Thus the relative importance of convection and
diffusion does not change as the wave propagates. The
constancy of Re is equivalent to momentum conservation
(uniform asymptotic motion).
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Such solutions result fro* space and tine translation

invariancc. In order to study these solutions, the shock

form is substituted into the Burgers equation.

Integration with respect to x produces

i ( z - ci1 =. J^9 • '—'-:. (2.11)

Far ahead of the front s • sa, while far behind it s «

sb i* sa. Neglecting the gradient *_ away frow the front

leads to

~ * ~ c * c- '. (2.12)

or

~ ^ - ;i-*- •,. • (2.13)

where the shock stability condition has been used.

The integrated fora above can now be written as

This equation has the solution

with

/5
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The solution has the for* of a kink which propagates at

constant speed c, and acts like a shock: it changes the

state sa, ahead of the kink, to the state sb, behind the

kink. Note that its amplitude As and width L are inter-

related via the diffusion coefficient. As •) decreases at

constant amplitude, the kink gets steeper and the width

decreases. Vice versa, at constant viscosity the shock

thickness L decreases with increasing amplitude.

In a series of papers beginning in 1940, Burgers used

equation (2.1) to develop a zeroeth order theory of turbu-

lence. Then in the late 1940*s, it attracted the interest

of other physicists and mathematicians. Cole (1949) and

Hopf (19S0) found a linearizing transformation which

relates Burgers equation to the linear diffusion equation.

The Cole-Hopf transformation between Burgers waves and pure

diffusion is given by

i-V I V/t* - - i J .r̂ jV, w fM.)j (2.18)

where u(xyt) satisfies Burgers' equation and w(x,t) dif-

fuses linearly, with the same diffusion coefficient,

v -- ̂ J\MKir (2.19)

Thus, any solution of the diffusion equation will give a

solution of Burgers' equation by applying (2.18).

From the point of view of theoretical physics, the

Cole-Hopf relation is an unexpected bonus. It tells us

that, in the appropriate space, Burgers waves can be added
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linearly. This means, in turn, that Burgers shock inter-

actions can be studied exactly. Burgers' wave description

with Cole's and Hopf's contributions has become a testing

ground for ideas about various types of nonlinear phenom-

ena.

B. The Derivation of the Burgers' Equation Invariance
Algebra

In order to characterize the symmetry structure of

Burgers' equation and to derive representative group reduc-

ible motions, an algebra of invariance operators must be

constructed. These operators generate infinitesimal

transformations

* - t w T (*^ (2.20)

£, -̂  w t s ~\J f * ,V)

which leave invariant the Burgers' equation

JÂ  "V U W ^ - M.xx =r O (2.21)

Units are chosen to make the diffusion coefficient equal

unity. The invariance condition is that the order E terms

vanish with (2.21) in the expression

5Cole (1951) conjectured that the existence of the trans-
formation (2.18) between static and convective diffusion
equations depends on the invariance operations admitted by
both equations.
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\J (u, +w ** -uiex'} (2.22)

or

The extended coordinate functions which appear in the

invariance condition (2.23) are given in Appendix 0.

Equating like coefficients on each side of (2.23) results

in an over-determined set of linear partial differential

equations for the coordinate functions X, T, U, and for the

multiplier P(x,t,u). A side calculation convinces us that

more general dependences in X, T, U, P do not occur for

Burgers' equation. The set of determining equations is

quicklv reduced to six members

(2.24)

- •<£ (2.25)

(2.26)

(2.27)

(2.28)
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The last two equations imply that

T ~ T't) (2.30)

17 = *t(*,±\ + .*i«S*) (2.31)

Remaining are five equations for f, g, X, T, P . We use

(2.30) and (2.31) to reduce the determining equations

(2.26) and (2.27) to

•F - T't) * f (2.32)

-P - 2.^ K * £ (2-33)

Hence, by subtraction

-f - 1* * T''<±\ (2.35)

Equations (2.34) and (2.35) imply that Xxx • 0 and Pu • 0.

Consequently,

2C * £ T (ft> -f ̂ K > (2.36)

Substitution of (2.30), (2.31), and (2.32) separates (2.2S)

into two terms.

Thus

K i K (2.38)
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and

- X * <2-39>

Finally, substituting (2.31) with (2.38) and (2.39) into

the first determining equation (2.24) gives

= o

or

(2.41)

The last two terms in (2.41) vanish. The first two terms

must also each vanish separately. Therefore,

' A * ° (2.42)

and

H" - a t 1 + 2st + t% (2.43)

/4 » fe* + F* (2.44)

where c, s, h, b, p are integration constants.

From (2.36) the coordinate function X(x,t) must be

Now

-f » - {T' r -Cct + s) C2.46)
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and finally,

2> - - i<i± + s) (2.48)

Collecting terms, the coordinate functions (2.20) satisfy-

ing (2.23) are given by the expressions

X - c xi-L 4 Jx + bi + f*

y ^ c-t* * *vt + k (2'49)

A differential operator basis, Lfi, is found for the Burgers'

algebra by individually letting each of the group param-

eters (p, h, s, g, c) be unity, while forcing the others to

vanish. Table 2.1 lists the members of Lfi along with their

invariants and geometrical significance.

Appearing in the Burgers• algebra are space and time

translations, Galilean transformations, scaling transforma-

tions, and conformal transformations. Space and time

translations, along with Galilean transformations, are

universal symmetries of planar flow. The scale transforma-

tion S leaves the units of the diffusion constant

invariant. The last transformation, C, is a time dependent

scaling operation. The operators in the basis Lfi satisfy

the commutation relations given in Table 2.2.

An interesting subalgebra of Lg is formed from{-d,;f^

which has SU(2) commutation relations corresponding to

f-T J" -X ] respectively. Other subalgebras may also be

picked out of Table 2.2. The algebra of invariance
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OPERATOR
P * b

H • ̂ t

S * xdv • 2td-.

SIGNIFICANCE

Space translations
x(P) • x0 • p

Time translations
t(h) « to • h

Scaling: x(s) * esx

INVARIANTS

t, u

x, u

u(s) - e"suf

G » t^v + ̂  Galilean Boosts: t, x-ut
X x(g) - x • gt

u(g) - u + g

Conformal transforma- x x-ut
tions: t" '

f the
Algebra for Burgers' Equation.

Table 2.1. The Basis LQ of the Lie Invariance

P H S __ G C

P - o P o c ;

H O - 2H P S >

S -f -2H - G 2C i

G O -f -G - O

..... .i '

Table 2.2. The Commutators of the Basis Lfi
for the Burgers' Equation.



92

operators for the linear diffusion equation is precisely

the same as Table 2.2, except that [ G , P j » 1. Thus, the

linear diffusion equation admits the central extension of

Lg. The relation between their invariance algebras is a

clue that Burgers1 equation and the diffusion equation are

more deeply related,

The general families of invariant surfaces under Lg

are found by integrating the characteristic equations

Jt d*. (2.50)

in closed form. Rearranging the first equation and defin-

ing new constants (xQ, tQ, V, a) we have, for c ^ 0

Let x and t correspond to shifted variables. Then equation

(2.51) reads,

—-

Rewriting equation (2.52) as

* { + -**! *\**- C2.53)

we have by integration,

-h A
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/ is tha constant o£ integration. The expression A(x,t)

const describes invariant curves in (x,t). A four param

eter family of group trajectories results.

(x-x.i - V(t-t.) ,
===;— i2.55)

or
~~7Tm (2.56)

In the

case that c = 0, we can return to equation (2.50) and find

other classes of invariant surfaces.

Next, the functional form of the solution correspond-

ing to the invariant surfaces (2.56) is derived. Rearrang-

ing the second identity in equation (2.50) for c M we

have

5<£o = —^TF77— <2-57>

In the shifted variables x and t the determining equation

(2.57) is expressed by,

(2

Now x may be eliminated for X and t by substituting the

relation,

X » X-fr^+oi + Vt (2.59)

into equation (2.58). The result of this substitution is,
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d U - v ) ^ >VtS^' - (n-v)t (2.60)

or, when the velocity is shifted, as well,

_j£ _ t l + ( V — (2.61)

Equation (2.61) may be rewritten as

^ X (2.62)

Consequently, the second family of invariants for c j* 0 is

given by

(2.63)

or, in terms of the original coordinates.

X_r f A) = (k- V)*/(t-1 ")*•* °< ~~ A (t- to) (2.64)

C. Group Reducible Burgers' Fluid Motions

A group reducible solution of Burgers' equation for

c t 0 lies on the characteristic surfaces in (x, t, u)

determined from (2.50). The characteristic surface may be

coordinated by the families of group invariants, A and

U(X), given by equations (2.55) and (2.64), respectively.

In terms of A and U the Burgers' equation becomes

(2.65)

As expected, on the characteristic surfaces of its
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invariance group, Burgers' equation reduces to an ordinary

differential equation in the invariant coordinates A and

Equation (2.65) integrates to

- K + j^iu^^a-X3-) (2.66)

which is a Riccati equation. Upon making the standard

substitution,

(2.67)

we find a second order linear differential equation for

K",*--.^ (2.68)

Equation (2.68) can be transformed to the classical equa-

tions for either confluent hypergeometric functions, or

parabolic cylinder functions.

Before we write a closed form group reducible solu-

tion, let us comment on the linearity of equation (2.68).

Of course, mathematically, it is linear because (2.66) is a

Riccati equation. However, the physical meaning of this

linearity is that, in the right space, Burgers waves can

be superimposed. Thus, equation (2.67) represents the

counterpart of the Cole-Hopf transformation (2.18), taken

on the c j4 0 characteristic surface of the Burgers invar-

iance group.

Equation (2.68) is related to the confluent hyper-

geometric equation and to Weber's equation for the
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parabolic cylinder functions.

(1) Let o(X) - e ^ V ^ > , Afx)~ S (2.69)

then

'-fcv = o, k^(4-H) (2.70)
,

The solution is given in terms of the confluent hypergeo-

metric function

L^ ( \) = e ~ (Ff (|̂  ; -=: ; ̂) (2.71)

(2) Let * ^ t ^ , ^ f ^ = -v^) (2.72)

then Weber's equation appears,

where

-2-A = C(aft+n , C2 s </g (2.74)

The solutions for y(X) are given in terms of parabolic

cylinder functions

and

(2.76)

^G. M. Murphy, Ordinary Differential Equations and Their
Solutions (D. Van Nostrand, Princeton, 1960).
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Now, transforming back to the invariant U(X) via

relation (2.67) gives

where C is a constant which is related to k and B.o

Finally, the relation (2.55) and (2.64) or, in the shifted

coordinates,

(2.78)

restores us to the original variables.

The solution given by (2.77) and (2.78), or its equiva-

lent in terms of parabolic cylinder functions, comprises a

four-parameter family of group reducible solutions. This

family of solutions corresponds to the group reducible solu-

tion generated by the infinitesimal operator C, while

simultaneously incorporating the finite transformations of

the rest of the invariance group. In a similar manner,

other group reducible solutions may be produced. Represen-

tative examples of nontrivial Burgers waves are listed in

Table 2.3. Details of the derivations are not shown. The

wave form (2.7?) and (2.78) can be represented in terns of

various special functions of mathematical physics. The

parabolic cylinder functions have already been aeutioned.

Hermite functions, error integrals, and exponentials in

A~ nay also be nstde to ipptar. In terns of x and t, the



Operator Invariants Group Reducible Form

X- u - Lf (*-

H x- I- U =- -L + l-T (x - ^

00

Vt*«

Table 2.3. Representative Classes of Group Reducible Solutions
for Burgers' Equation.



99

error function solution initially looks like a Gaussian.

Then, as time progresses, its height decreases and the

"hump" may be described to "lean" to the right, acquiring

a steeper gradient on the side toward positive x. This is

the expected character of the motion, corresponding to

wave form steepening and attenuation.

In Table 2.3, the (cP + H) solution is the shock-like

solution (2.16) discussed earlier. The S group reducible

solution is Burgers' similarity solution for which U(>) is

given in terms of Hermite functions. The (H + G) solution

can be written in terms of Airy functions. The last three

lines are special cases of the general C f 0 solution

derived abcve. In each case the transformations of the

rest of the invariance group lead to families of group

equivalent solutions.
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APPENDIX A

EXTENSION OF INVARIANCE TO DIFFERENTIAL MANIFOLDS

Lie's method for the study of partial differential

equations depends explicitly on the transformation proper

ties of the derivatives

under the action of a Lie group defined on (x,u) over E .

The equations for the local action of a Lie group are given

to first order by,

X. - X;

(A. 2)

where,

(A.3)

Note: no letter distinctions are made for the appropriate

ranges of the subscripts in this appendix.

The "extended11 coordinate functions u|k), u j k l ) , etc.,

are calculated from the coordinate functions on E , directly

from the chain rule. The n extension refers to how the

n partial derivative transforms. In this appendix, the



101

forms of the first few extensions are calculated and tabu-

lated for use in the text.

Although we make no explicit notation for it, the

partial derivatives of interest are always to be evaluated

on a characteristic surface of the group concerned. Thus,

implicit dependencies abound, because we are operating with

i~y, on functions F(x,u(x)). In order to simplify the

notation, the total differential operator is introduced,

^ cr ••• UJ c JT: . + •<•; •_ -c?: +••' CA.4)

Expression (A.4) accounts for both the explicit and implicit

coordinate dependence.

The derivatives transform, to first order in £,

according to,

»K - £Zj Ul* I (A.6)

Expanding the right side of (A.6) using (A.4) we have

also A. Cohen (1911) p. 40 or Bluman and Cole (1969).
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Expression (A.7) gives the first extension of the group

(A.2).

The second extension of (A.2) is found from

"ii,ik -

''

(A.8)

7

In general the q-th extension of (A.2) is found by applying

the operator

to the (q-l)th extension and adding the negative term,

- -k**rr M.. . . • (A.9)

where
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(A.10)
-U : = i,z,..., ^

For the infinitesimal transformations given by

the expressions (A.5), (A.6), (A.8) are tabulated below.

If
(A.12)

*[lJ* * (Uu-3t-)n;, -T»ut - X»uJ - 7; Mj,ut J (A. 13)

- 1J+ + (-V- S. ' ut "'^•t M*~'« w*~ -^u^t-^x 1 (A. 14)

n* - X U 1 < u3
x -U1< u3
x - T ^ M* w t (A.15)
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- [utt + (2UU-T t> t -
(A.16)

u
t 7

. 1 / }

(A.18)

* * t

J
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APPENDIX B

GEOMETRICAL INVARIANCE ALGEBRAS AND
SYMMETRY BREAKING IN CLASSICAL MECHANICS

The symmetry principles of nonrelativistic mechanics

have traditionally been of great interest to physicists.

In this work we have no intention of adding to the multitude

of review articles about canonical transformations in phase

space. However, we would like to point out that the sym-

metry principles of Newton's equations of motion lead to

useful geometric invariance transformations, which refer

directly to particle trajectories. In fact, the space-time

transformations of particular mechanics problems often lead

to constants of the motion. Occasionally they give exact

solutions. Thus, the invariance principles of Newton's

equations provide some insight into the character of the

motion.

The nature of the symmetry principles which we discuss

here is more geometrical than the phase space formalism of

mechanics. First of all, we work only in configuration

space, so we are interested in the mapping of a space-time

flow of possible paths into itself. Our subject is the

transformation properties of orbits in configuration space.

In the simplest case, we are concerned with families of

trajectories whose elements are geometrically similar.

This is the sense in which a symmetry group in
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configuration space is geometrical in character.

In what follows the free particle in uniform motion in

one dimension plays a central role. All of the work is

performed in one spatial dimension. The introduction of

more spatial dimensions is conceptually straightforward, but

it is not done here. The kinematical group of the free

particle, i.e., the group of space-time transformations

which maps uniform motion into uniform motion, is the planar

protective group, also isomorphic to SL(3,R). Under the

action of the protective group, straight lines are mapped

into straight lines. When an interaction potential is

present, the projective symmetry is usually broken.

Consider a particle moving in the presence of an

external force which varies spatially according to a power

law. The kinematical symmetry group in the general case

reduces to a two parameter subgroup of the eight parameter

projective group. The kinematical group decreases in size

because the warping of the trajectories produced by the

external force tends to make them less symmetric. Howevers

in two special cases Newton's equation admits an accident-

ally larger algebra. In both cases, the extra symmetry

occurs because the corresponding family of space-time

trajectories is especially symmetrical. The first case is

the centrifugal 1/r3 force, whose three parameter kinemat-

ical group of the projective group is isomorphic to

SL(2,R). The second,even more symmetrical case is the

linear harmonic oscillator (LHO). The one dimensional LHO



107

has an eight parameter kinematical algebra, which, when

written using the complex normal modes as coordinates,

becomes identical to the free particle projective algebra.

The introduction of linear damping does not break the

structure of the kinematical LHO symmetry, but damping does

alter its differential operator realization. In the

undamped LHO case, when centrifugal force is present, the

symmetry algebra again reduces to SL(2,R).

Our justification for appending such simple examples

of invariance analysis to the present work is first of all

that the harmonic oscillator treatment (which was obtained

in collaboration with Professor Roy Axford) is apparently a

new result. Secondly, in the construction of the kinemat-

ical symmetry algebras we use the same methods as in the

rest of the present article. Thus, the kinematical treat-

ment of classical mechanics constitutes a further illustra-

tion of Lie's methods, but this time for ordinary differen-

tial equations. Thirdly, the present kinematical classical

examples provide a good contrast to the analogous, but

qualitatively different use of similar group methods in

quantum physics.

A. Forces Obeying a Power Law

Newton's equation of motion for a particle moving under

the action of an external force which varies spatially

according to a power law is given by

3" -+• G-^Jj1""' = O (B.I)
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In (B.I) G is a coupling constant and n is the spatial

exponent in the potential energy V(y) * Gyn. Newton's

equation (B.I) is assumed to admit a Lie group whose

infinitesimal variations depend on both the position y and

the time x:

3 *,jO (B.2)

X = X •+ £ X (*, $}

One could very well allow the coordinate functions to also

depend on velocity v^y 1. And indeed, when this is done, an

even larger algebra results than the one which will be

presented momentarily. However, for our current geometrical

considerations, the simple space-time "point" transforma-

tions (B.2) rather than more general "contact" transforma-

tions depending on velocity, are sufficient. When consider-

ing transformations such as (B.2) one should worry about

having violated Newton's concept of uniform time. We have

admitted transformations of our time variable, called x,

which depend on the motion y. In this view, space and time

are still absolute (in particular, they are unaffected by

the presence of mass). But the time now is somehow con-

nected with the space coordinate. The point to remember is

that the transformations (B.2) do not take a space-time

point along a trajectory, they take one entire trajectory

into a neighboring one. Thus the relation between corre-

sponding points provided by (B.2) is not a dynamical

relation concerning the motion along a particular path.
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Rather it is a geometrical relationship among corresponding

points on different possible paths.

Either by following Appendix A or by simply substi-

tuting the barred variables into the equation of motion,

we find that

^ ^ ^ ] (B.3)

where

(B.4)

For invariance, the order £ terms in (B.3) should vanish

when the equation of motion is satisfied, i.e.,

The form of the multiplier in (B.5) can be derived from the

classical Lie theory (see Eisenhart's book on continuous

groups).

Equating coefficients of like derivatives in (B.5) we

obtain the determining equations for the coordinate

functions X(x,y) and Y(x,y).

5 •

" -V 5 y .fe (B.6)

K'1' *\? - 2 V" — .O

/ (' - _ S ̂  - P̂

4*\ X ^ = o
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From the last four equations in (B.6) we find the relations,

valid for arbitrary exponent n,

5
(B.7)

where the functions of time a(x), b(x), c(x) are integra-

tion functions. Now using the last equation for Y in the

second determining equation, we have the relation.

Thus, R -̂ 0 unless n * 0, 1, 2. For an arbitrary value of

n, the first determining equation, along with (B.S) and

the middle equation in (B.7), gives

ex. •= c • s o

/ 2

(B.9)

Thus, for arbitrary exponent n the coordinate functions

X and Y are given by

(B.10)

From (B.10) the operators follow by setting A, B equal to

~ (n + 2) and unity, respectively,
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-A

The operators A and B are the geometrical symmetry opera

tors for Kewten's equation of Motion under a spatially

homogeneous force. The operator B corresponds to tine

translations. The operator A is a self'Similar scaling

rule. Sanely, under

particle trajectories transform among themselves. The

invariant of the transformation A gives a relation between

corresponding space*time points on geometrically similar

trajectories. Namely,

or

liquation (B.I4) is a scaling relation between corresponding

times and lengths characterizing different motions under

the sane power law force. The interpretation of (B.14) for

several values of n is tabulated below.
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n l-n/2 Physical Problem Meaning of (B.14)

2 0 Harmonic motion Period independent of
amplitude

1 1/2 Constant force Time to fall -v square
root of height

0 1 Zero force Uniform motion

•1 3/2 Kepler motion (Period)2 proportional
to (length)-5

-2 2 Cotes1 spirals ., ime, % 2 characterizes
(length)^ t h e o r o i t

Of course, these particular results are standard and were

known even to Newton (as cited by Whitaker, 1904, p. 47).

We have, however, shown that, up to time translations,

expression (B.14) represents the only relation between

different orbits. The operators A and B in(B.ll) close

under commutation to form a two parameter Lie algebra of

the third type. When rewritten in terms of Lie's canonical

variables the ordinary differential equation (B.I) is
2

integrable by quadratures.

Let us proceed to discuss the special values n = 0, 1,

12, for which extra symmetry occurs. First of all, for

free particle motion (n • 0) the group analysis after (B.8)

takes a different turn, resulting in coordinate functions

*A. Cohen (1911) p. 159.

2A. Cohen (1911) p. 171.
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where the eight integration constants A, B, D, E, F, II, I,

J are the group parameters of the kinematic symmetry group

for uniform motion. The infinitesimal generators and their

commutation relations are given in Table B.2 and Table

B.I respectively. The group corresponding to the coordi-

nate functions (B.15) has the finite transformations,

Thus, the expressions (3.15) are the coordinate functions

for the classical protective group in the x-y plane. The

planar protective group, which is isomorphic to SL(3,R),

maps straight lines into straight lines and therefore takes

the family of uniform motions into itself. Included in the

protective group are operations of scaling, rotation, trans

lation, and of course, projections in the x-y plane.

When n = 1 the external force is uniform in space and

constantly accelerating motion results. The group analysis

yields coordinate functions X and Y which are the same as

(B.15), but with additional polynomial terms in the time

variable. The eight group parameters remain the same, and

the resulting algebra is the same as the protective algebra.

Since no modification of the group structure occurs, the

results for constantly accelerating motion are omitted.

When n = -2, corresponding to Cotes' spiral motion,

where y is now a radial coordinate (Whittaker, p. 83), an

intriguing extra geometrical symmetry emerges. The
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Table B.I. Commutator Table for the Real Basis of the Harmonic Oscillator Algebra.



Table B.2
Harmonic Oscillator Algebra

Infinitesimal
Operator

Finite
Transformation

Projective Algebra

Infinitesimal
Operator

Finite
Transformation

a-b He = -

W
cc, =.

* • *

/ •

Y » _

ex.

s --



Table B.2 continued

Harmonic Oscillator Algebra Protective Algebra

Infinitesimal
Operator

Finite
Transformation

Infinitesimal
Operator

Finite
Transformation

z*
If *

w*

Kg

X*

Y*
=• e x...

Table 8.2. The Comparison between the Complex Extended HO Algebra and the
Protective Algebra.
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corresponding coordinate functions are given by (B.15) with

B, G, H nonzero.

y. - £,«*••*- •%?* -*- H
(B.17)

The differential operators which appear when E * 1, F • -1/2,

H • 1 are called J_, J , J+ respectively in order to suggest

their commutation relations,

where

J_ t *£ Jy -» "*«ix Projective transformations

Jo - - ̂ ^ - " ^ Scaling: ^ « const (B.19)

T _ i Time translations

The commutation relations (CR) in (B.18) are SL(2,R) CR

which are the same as SU(2) CR, but with one wrong sign.

The SU(2) CR can be obtained by relabeling (J+, JQ, J_) by

(J_, -J , -J +)- In any case, the operators (B.19) generate

projective transformations. The action generated by J.

(for E * 1) leaves - ^ invariant. The finite transforma-

tions of J_ are given by

x =. x°

(B.20)

where the subscripts refer to the value of £. The group
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parameter s vanishes at the untransformed points. The

transformations generated by JQ and J+ are identified in

(B.19).

Finally, when n * +2, in the case of harmonic vibra

tion, the equation of motion is given by

In the group analysis of the harmonic oscillator equation

the integration functions a(x), b(x), c(x), P(x), R(x) are

given by

CK f * 1 •=. A 5> i n <*JK +• B

- F S'l'nMJ'? + G-

(B.22)

I ' + H

- - 3

There are eight integration constants in the coordinate

functions, corresponding to an eight parameter Lie invar-

iance algebra with parameters A through H. A differential

operator basis is given by
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A — — s">"i LOX 5x •+ i-j2- co jut*. a

(B.23)

E - °̂ x

J1

H a ^ 5

The notation for the operators in (B.23) corresponds to the

nonzero group parameter involved. The action of the opera-

tor H is to scale the amplitude of oscillation. H is

admitted mathematically because Newton's equation for har-

monic motion is homogeneous in the amplitude y. The opera-

tors F and G correspond to superposition of solutions,

admitted because (B.I) is linear. E is the time translation

symmetry operator, which arises because x does not appear

explicitly in (B.I). Each of the other operators A, B, C,

D, acts on the phase of the oscillation. The operators A

and B, respectively, shift the cotangent and the tangent of

the phase angle T = x, and produce nonlinear transforma-

tions on the amplitude y. The invariant quantities under

A and B are respectively, s^u}
 and c^TJV • Thus, A and

B make phase changes, but preserve the amplitudes of the
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normal modes of oscillation. The operators C and D essen-

tially scale the tangent of the phase angle and the ampli-

tude, but they preserve the quantities Z^TsUx. and gĵ IZJk •

The eight parameter dynamical algebra of point

transformations for the harmonic oscillator closes com-

pletely. Its commutator table is given as Table 8.1.

It is natural to inquire about the structure of this

algebra. It turns out that the complex extension of the

HO dynamical algebra is isomorphic to the protective

algebra of classical mathematics, i.e., the complex extended

algebra is isomorphic to SL(3,R). Remember that the projec-

tive algebra is the symmetry algebra for a free particle

y" - 0.

A differential operator basis for the complex exten-

sion of the HO algebra is given by the eight operators.

(B.24)

Y - i(H*;

plus their complex conjugators, Z*, W*, X*, Y*. The

practical usefulness of the complex extension algebra is

that its finite transformations may be calculated more

easily than those of the real basis. In terms of the

invariants of the complex extension algebra, namely the
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normal modes,

A. — tj e
(B.25)

the operator basis (B.24) takes on a simple polynomial

form. For example,

W ~ 2^-L * X = T ^ / "Y*^ o.^ (B.26)

In TableB. 2 the differential operator bases and the finite

transformations for the complex extended HO algebra and the

protective algebra are displayed side by side, according

to one-parameter subalgebras.

When the operator correspondence of Table 8.2 is made

between the algebras, the commutator tables for the complex

extended HO algebra and the protective algebra are precisely

the same. The two algebras in Table B. 2 also have the same

set of invariant forms, namely (a, b, a/b) and (x, y, x/y).

However, corresponding operators only have the same form as

the invariant when they are identical. The commutator

table for these two isomorphic algebras is given as Table

B.3.

It is interesting to notice at this point that the

SL(3,R) algebra is the same as minus the SU(3) algebra,

except for four essential "wrong" signs. A correspondence

can be made between the SL(3,R) algebra and the SU(3)

algebra by multiplying the generators of SL(3,R) by appro-

priate factors of «s/~l>. We mention the unitary algebra



w z* w* X* Y*

(2Y+Y*) Z*

W -X -(2Y*+Y) -W*

X 0 -Z W -(Y-Y*) -X

Y -Z

Z* 0 (2Y*+Y)

-X W*

X*

X*

Z*

to
tSJ

W* -(2Y+Y*) -W -w* -X*

X* -I* w* (Y-Y*) -X*

Y* 0 W -Z* 0 •X*

Table B.3. The Commutator Table for the Complex Extended HO Algebra and the
Projective Algebra SL(3,R).
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SU(3) because it is usually seen in conjunction with the

three dimensional harmonic oscillator, where it is the time

independent phase space symmetry group of the Hamiltonian,

rather than the symmetry group of the equations of motion.

In contrast, the point transformation group (B.24) is a

mapping of one x-y space into another, for which the change

in the definition of time is crucial. In particular, the

operators W and W* are nonlinear transformations for which

the new value of the time depends on the motion. For

example, using Table B.2, the operator W infinitesimally is

seen to transform the time according to

where x , y refer to the original (£ - 0) point. The

nonlinear transformations induced by W and W* cannot be

found by using linear operators in the solution space. The

operators W and W* operating in the (x,y) plane, replace

y by y2f(x), and so induce nonlinear transformations on y.

In addition, the transformations W and W* are not canonical.

Since they are special to the harmonic oscillator, they

will not leave invariant every canonical equation of motion

in Hamilton's form. However, because the algebra structure

which includes W and W* refers directly to the dynamics of

the harmonic oscillator, the energy integral for the motion

of the oscillator follows directly from the algebra.

The equation of motion may be rewritten in terms of

the invariants of the algebra. The invariant and 1st and
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2nd differential invariant of (B.24) are

(B.28)

along with their complex conjugates. The harmonic oscil-

lator equation clearly admits (B.24), since it can be

written in terms of the invariants of the algebra. Now

taking the ratio of the time derivatives of a and a* we find

& ( ' / ) "̂ (B.29)

And by complex conjugation,

4 +- lujk =; (jj' + <*JJ$ )€. = <-*TA«Tf (B.30)

Thus, the Dirac variables appear, y'± iwy, and by multi-

plying together (B.29) and (B.30) the energy integral

obtains,

whence the solution preceeds as usual.

In the invariant phase space (a1, a) ® (b1, b) the

orbits of the solution are straight lines,

"g-/ J^ • fB 321

Physically, this means that the normal modes are decoupled

(which follows also from the superposition principle).
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During the course of the motion, as time progresses the

Dirac variables change phase in opposite directions.

Of course, the derivation presented here is not

rigorous, because the first integral is obtained from the

solution for the normal modes. However, a completely

analogous procedure is valid in more usual cases where the

symmetry group is obtained without first solving the equa-

tions of motion!

B. Damped Harmonic Motion

The introduction of linear damping does not break the

harmonic algebra symmetry. For the equation of motion

<3" -t- -a-pij' + UJ3*^ — O (B.33)

an exactly analogous calculation to the one presented for

the homogeneous force law results in an operator algebra

whose real form is given by

B * - ^

•+

= T" S'fM

F = e

G -

H =

(B.34)
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where 4 - V«A- £*• . The basis (B.34) generates mappings of

the (x,y) plane into itself, forc^Vj^*1. Each of these

operators limits to a corresponding operator for the

undamped harmonic oscillator when the damping coefficient,

fe, tends to zero. And the geometrical meaning of each

operator is analogous to its undamped counterpart. Time

translations are contained in the basis (B.34) in the form

<?x * E +^H. However (B.34) is written to exhibit the

connection to the algebra of the undamped harmonic motion.

The complex extension of (B.34) is defined by the

operator combinations (B.24) as before. The invariants of

the complex extended algebra are given by

(B.35)

In terms of the invariants a and b, the dynamical algebra

of the damped harmonic oscillator has precisely the form

given in Table B.2. Thus the algebras for the damped and

undamped oscillators are both isomorphic to the projective

transformations in the (x,y) plane and to each other.

As a proof of its invariance under (B.24), the damped

oscillator equation of motion may be rewritten in terms of

the invariants of its dynamical algebra. The invariants

are
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(B.36)

along with their complex conjugates. The invariant

expression,

A " +• a ^ ^ -«• w * ^ ^ e'A + ̂ X ( ^ + ^ H 7 - ^ ^ ) CB.37)

makes it clear that the damped harmonic oscillator equation

is invariant under the complex extension of (B.34). The

result of dividing c/* by ^ is simply,

Hence, taking the product of (B.38) with its complex conju-

gate, we have the constant of motion,

(B.39)

The expression (B.39) is an explicitly time dependent first

integral of the damped motion. According to (B.39) the

oscillator energy falls exponentially with time and

linearly with an effective frictional work term. For

initial conditions y(o) * A, y'(o) * 0, we have E • —^ .

In this way, the initial potential energy of the oscillator

is dissipated by friction.
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We have derived an eight parameter Lie invariance

algebra for the damped harmonic oscillator and have shown

that it is isomorphic to the dynamical symmetry algebra of

the undamped motion. In fact, the algebras are identical

when written in terms of their respective invariants. In

addition, a constant of the motion was found directly for

the damped harmonic oscillator which is the analogue of the

Hamiltonian for undamped motion. At every step the undamped

case is the uniform limit of the damped motion.

Let us finally discuss the case of undamped harmonic

motion including a centrifugal force. The equation of

motion is

Jl" - ^ +" < ^ 3 = O (B.40)

While linear damping modifies the LHO algebra but does

not actually break it, the centrifugal term scales differ-

ently than the others in (B.40), and thus breaks the LHO

algebra. The group analysis, which is again straight

forward but tedious, produces three-parameter coordinate

functions,

The corresponding differential operators are

U> — ~ S/HZ.LOX <5x- •+ M «-*V 2-wJX JLJ

C!I = - i « Y 2 u ) x (^, + a S'm 2UIX ^ (B.42)

E =- ^
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Clearly the eight parameter LHO algebra has been reduced to

only three of its original members. The analogous reduc-

tion occurs between uniform motion and Cotes' spiral motion.

In both cases the breaking of the original symmetry reduces

it to a subgroup, rather than completely changing its

structure, e.g., by contracting it. Referring to (B.23) we

see that, with the introduction of centrifugal force, the

invariances under scaling, H, and superposition, F and G,

along with the motion-dependent transformations A and B,

have all been lost. Remaining are time translations and

phase scaling of two kinds. Identifying

with the SU(2) angular momentum operators -(«J+, JQ, J_J- we

see that, again as in the case of free motion, including

centrifugal force reduces the symmetry from SL(3,R) to

SL(2,R). For ready comparison the SU(2) and SL(2,R)

commutator tables are written down. Note the difference

in signs at opposite corners.

J*

Jo

J .

0

J+

- 2 J o

J o

-J+

0

J_

J .

2 J o

- J .

0 J

J +

0

2J
o

0

J .

" 2 J o

-2J_

0

SU(2) CR SL(2,R) CR
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APPENDIX C

LIE'S INVARIANCE METHOD

Lie's invariance method for the integration of differ-

ential equations is summarized in this appendix. The

history of the development and application of Lie theory

to physical problems is surveyed. The physics background

which has led to a revival of Lie invariance analysis is

given and the connection with modeling theory is described.

By referring to the Euler fluid example of Appendix A, the

method of Lie is shown to be a natural generalization of

the method of self-similar solutions. The deduction of

invariance principles from given dynamics is implemented in

an example using the wave equation. The known conformal

invariance algebra of the wave equation is constructed and

realized as a differential operator algebra. Sample group

reducible solutions - which include d'Alembert's solution -

are derived from the operator algebra. Lie's method is also

demonstrated for the boundary value problem.

A. Historical Development in Physics

In this work some of the properties of real gas flows

are derived from the invariance properties of their equa-

tions of motion. The infinitesimal group methods which are



131

used originally appeared in nineteenth century geometry.

These methods stem directly from the work of the Norwegian

mathematician Marius Sophus Lie. About a century ago, Lie,

following Euler and in collaboration with Klein, was con-

cerned with the use of local geometry to integrate differ-

ential equations. The underlying assumption for Lie's

integration method is that there should exist motions which

have the same local invariance properties as the dynamics.

The primary technique for integration is the method of

characteristics, Lagrange's method.

Since Lie's investigations one hundred years ago,

infinitesimal variations and Lie algebra methods have

completely permeated physics, both in analysis and in

interpretation. No attempt to chronicle the dissemination

of invariance analysis in physics is presented here. How-

ever, a rather extensive bibliography has been included in

order to provide a guide to the literature. The applica-

tions of symmetry analysis are manifold. In fact, subse-

quent developments have extended symmetry methods far

beyond Lie's purely geometrical intent.

As for the line of development which did follow Lie's

intent, namely the application of transformation groups to

solve partial differential equations, little was accom-

plished until about 1950. Purely mathematical reviews and

*S. Lie, "Allgemeine Untersuchungen liber Differential-
gleichungen, die eine Kontinuierliche endliche Gruppe
Gestatten," Vol V£, Abh III, pp. 139-223.
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applications along this line were given, e.g., by Cohen

(1911), Dickson (1924), Eisenhart (1933), Franklin (1927),

and Campbell (1903). However, in the first half of the

twentieth century Lie's work had little impact in physics.

This happened because the most popular problems in physics

then were linear, and more powerful mathematical tools than

Lie's methods were used by physicists, namely spectral

theory and group representation theory. General relativity,

particularly Weyl's contribution, is perhaps an exception,

but nothing will be said about it here.

The theory of continuous groups was probably first

applied to the construction of invariant solutions of

specific partial differential equations in phy?ics by

Garrett Birkhoff (19S0). Birkhoff discussed hydrodynamics,

using one parameter invariance groups, which he found by

inspection. Morgan (1951), in his doctoral dissertation,

and Michal (1952), who was Morgan's thesis advisor, later

gave formal methematical conditions, under which an invar-

iance group may be used to reduce the number of independent

variables in a partial differential equation. Michal and

Morgan's results generalized the similarity method. Morgan

applied invariance group conditions to solve two nonlinear

problems in boundary layer theory.

2The detailed references appear in the bibliography.

3H. Weyl, "Gravitation and the Electron," Proc. Nat. Acad.
Sci. 15., 323 (1929).
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After Morgan and Michal, little was done explicitly

with Lie's methods for almost a decade. In 1962 the Soviet

mathematician L. V. Ovsjannikov4 again applied Lie algebras

to the hydrodynamic equations. Ovsjannikov used Lie's

invariance analysis to classify the solutions of Euler's

equations for an ideal gas. There followed a flurry of

Soviet publications amplifying Ovsjannikov's work and ex-

tending it to other problems, mainly in fluid flow and gas

dynamics. The publications in this field after Ovsjannikov

are documented in the bibliography.

In order to appreciate the modern interest in Lie's

classical methods for partial differential equations, a

brief digression to explain the physical background is

necessary. First of all, we are dealing with nonlinear

physics. In fact, it is the nonlinear experimental behavior

which is most intriguing. In certain media, for example,

the nonlinear response to an excitation can be tuned to the

medium relaxation characteristics, thereby producing a

stable propagating signal, as in the self-induced trans-

parency effect. In other experiments, nonlinear wave

"shocking up" is balanced by dispersion or dissipation in

the medium, again leading to stable signal propagation.

Fascinating nonlinear effects are outstanding experimental

features of several modern fields of physics. Calculation-

ally, however, the presence of important nonlinear effects

4L. V. Ovsjannikov, Gruppovye Svoystva Differentsialny
Uravneni (Novosibirsk, 1962), (Group Properties of
Differential Equations, G. Bluman, transl. 1967).
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means that the available analytical tools are comparatively

weak and primitive. The nonlinear effects themselves are

of main interest, so linearization techniques can produce

only limited results. However, because of the mathematical

difficulties inherent in the nonlinear description, only a

fsw special cases have been treated analytically. Conse-

quently nonlinear wave phenomena are not well understood

theoretically. See Scott, et. al., (1973) for an excellent

review of both the theoretical and experimental status of

idealized nonlinear wave descriptions.

It is traditional in physics to invoke symmetry prin-

ciples as a first step toward a more complete understanding.

In the case at hand Lie's invariance analysis comes forward.

Knowledge of the symmetry structure of physical laws tends

to reduce arbitrariness and relate previously unconnected

concepts. For the nonlinear problems of current interest,

the symmetry structure also provides a tool for solution of

the equations of motion. Invariance analysis expedites the

calculation of particular solutions by reducing the number

of independent variables. As well as yielding solutions to ;

particular problems, group invariant solutions represent

general classes of motions.

B. Modeling Theory I

Before explaining Lie's program for invariance analysis, ;

we should comment on another, rather parallel, line of I
I

reasoning which appears in fluid dynamics. This is modeling j
I

theory, whose principles for hydrodynamics were first j
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proposed by Helmholtz (1873), almost simultaneously with

the publication of Lie's theory of integration. In Helm-

holtz 's paper all of the modeling parameters admitted by

the continuity and momentum equations of (isothermal)

hydrodynamics are given. These parameters were later

named in honor of Reynolds, Froude, Euler and Mach.

In the present work the physical description of the

fluid, which includes the transport coefficients and con-

stitutive relations such as the equation of state, is to

be invariant. The transformations of interest to us relate

different possible states o_f the same fluid. These trans-

formations will be used to construct solutions which have

the same symmetry as the equations of motions. The trans-

formations of modeling theory differ in this respect. They

are applied to an existing solution, for a fluid flow, say,

in order to find equivalent solutions, but for other fluids.

General transformations of modeling theory were established

by Bateman (1938, 1944), Haar (1928), Tsien (1939), and

Prim (1949). Further developments have been made more

recently, and are referenced by Castell and Rogers (1974).

The transformations of interest to us here relate

different possible states of the same fluid flow. In fact,

we are interested in solutions to the equations of motion

which have the same invariance properties as the dynamics.

A useful class of solutions of this kind in fluid dynamics

can be found using dimensional analysis. Dimensional

reasoning relies on the premise that the motion cannot
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depend on the choice of units, and thus can be represented

as a set of relations among dimensionless quantities. The

resulting motions are described by similarity solutions.

Similarity solutions

exist when the physical laws are scale-invariant and the

effects of the subsidiary conditions limit uniformly to

zero. Often they are more easily found than the general

solutions, because the similarity relationship reduces the

number of independent variables by one.

C. Laplace's Equation

Another example of the simplification due to invar-

iance properties of the dynamics, is provided by Laplace's

equation for electrostatics:

V2"^ - O (Cl)

The Laplacian is invariant under rotations, so one can look

for solutions which are also rotationally invariant. They

will, of course, only depend on the spherical radius, r.

Consequently, the angular differentiations in the Laplacian

will vanish when they operate on <§(r)» an<* Laplace's

equation will reduce to an ordinary differential equation

in r. The solution ^(r) found this way will be an invar-

iant solution under rotations, because it does not depend

on angle. It is the X ' 0 radial solution for r ^ 0.

= A + i. , A^ <wt, (C2)
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Laplace's equation is also invariant under the scaling

law,

T — r' = Ar

i ( C ' 3 )

s— 5'- X*£

where X is any constant and X is the scale parameter. If

§5 is not invariant under rotations, but it is to transform

according to the radial scale change as above, it may have

the functional form

This form leads to a partial separation of variables and

evidently to the definition of the spherical functions

(cf. Jackson, 1965, p. 55).

The Laplacian example is a good illustration of the

difference between finding invariant solutions and another

often-used tool of physicists for solving partial differ-

ential equations, namely separation of variables. Invar-

iance analysis is generally less powerful than separation

of variables, because it depends on a local rather than a

global property of the solution space. The solutions of

Laplace's equation form a multidimensional (linear) mani-

fold in the coordinate metric space. Separation of vari-

ables is possible whenever the multidimensional solution

manifold is really a direct-product space of one-dimen-

sional manifolds. On the other hand, invariance analysis

applies whenever an invariant manifold exists within the
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solution space. The difference is between a separation of

the solution space into a direct product of one-dimensional

subspaces and a reduction of the solution space to an

invariant manifold embedded within it. Sometimes the exis-

tence of an invariance algebra is a clue that the space of

solutions may be completely separated, but this is not

always true. The examples of invariant solutions cited

above - similarity solutions for fluid dynamics and radial

solutions of the Laplace equation - are constructed from

very simple transformations on the dynamics. In one case,

under simultaneous scaling of x and t the Euler equations

are invariant (up to a constant). And in the other case,

under rotations and a scaling transformation, Laplace's

equation is invariant. The first symmetry of Laplace's

equation occurs because the Laplacian operator is a dot

product,

^ - 2-V (C.5)

The second symmetry of Laplace's equation arises because

Laplace's equation is homogeneous in r and 3T, and the

coordinates 9 and f are independent of linear dimensions.

The remaining non-trivial property of Laplace's

equation, namely conformal invariance, involves more subtle

operations than scaling and rotation. Conformal invariance

for Laplace's equation (even in n dimensions) is well known.

The existence of conformal invariance is evidence for

invariance transformations which are more general than the
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simplest geometrical operations. These more general

symmetries lead to other classes of invariant solutions.

For their construction, a sufficiently general and system-

atic transformation method is useful. Such a method is

provided by the classical theory of Lie.

D. Lie Groups

Lie group theory deals with first order variations of

local coordinates in an N-dimensional space E . The

coordinates of EN are of two types,

x = (x x-,..., x ) (n components) (C.6)

and

u * (u.,, U-,..., u ) (m components) (C.7)

where n + m * N, the dimension of E . The space EN is a

differentiable metric space, but it need not be linear.

The requirement that EN be differentiable implies that near

any point (xo, u o ) , functions on E^ may be expanded in a

Taylor series. The first order terms in the Taylor series

define a linear vector field near (xQ, u Q ) . Lie's mathemat-

ical goal was to characterize all possible classes of

geometry on spaces E according to the finite dimensional

groups of motion admitted by EN.

A Lie group G of point transformations on E is essen-

tially 2 mapping of E into itself, which depends continu-

ously on a space of parameters. The finite action of G

on points in E is given by
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*l = £'J*>^> *"> ">iL Xt = f. (x,u;x-o) (C.8)

and

u-j = ^.(x;«;^ "'& uj ~ *;^,u-. K-a) (C.9)

where

* = ( c a o )

denotes the general element of the group by its set of v

parameters (group coordinates). The functions f^ and gj

are analytic functions of (x,u) and x. Assume now that

f. and g. form a realization of the point transformation

group, i.e., assume that the group axioms are satisfied by

the system (C.8) - (CIO).

Let us look at the infinitesimal transformations of

points in EN. Expand (C.8) and (C.9) in a Taylor series

in the group parameters. To first order in /V, one obtains,

K-o

where

f =• ', 2, • . . , VV7 (C.13)
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and the Einstein sum rule on repeated indices is employed.

Thus, the infinitesimal action of the Lie group G induces

vector fields X.j and U-̂ , on EN. The functions Xiv, and

U-,j are called the "coordinate functions" of the group.

They correspond to independent infinitesimal variations of

x. and u-.

The coordinate functions describe the local action of

t*"> - parameter Lie group G on the N dimensional space of

points (x, u), to first order in the group parameters.
M

Equivalently, the local action of G can be realized on E

by the differential operators

These "directional derivative" operators, also called "Lie

derivatives," are the generators of the group action on

functions over E . The characteristics of the set Q are

the group trajectories of G acting on points in E . Thus

the infinitesimal vector with components (X,^, U.̂ ,) is

tangent at (x, u) to the group trajectory generated by Q^

which passes through (x, u). The group trajectories in E

can be found by integrating the characteristic equations

of Qj.

For a finite dimensional group, the set Q closes under

commutation to form the r parameter Lie algebra L, of the
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Lie group G. The Lie algebra structure of a Lie group is

independent of the assignment of coordinates either in E

or in the group space. Of course, its realization though

depends on the parameterization of both spaces.

We now look at the infinitesimal transformations of

surfaces in E N. A surface J in E is a set of points

satisfying a system of defining relations of the form

- O

where the functions g are assumed to be differentiable.
m

When the gm are functionally independent, the dimension of

the surface J is equal to
dim J • N - M

If M • N, then J reduces to a point. A surface I C E is

called a G-invariant surface if a point (x, u) initially

found in I, remains in I under the action of the Lie group

G. In other words, set

I is an invariant surface under G when

. -frKw l"(x,vo - O (C

Expansion of this condition to first order in the group

parameters gives a determining equation for the invariant

surface I in terms of the group coordinate functions X.

and U.. To first order, we have
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or, more compactly,

Here 2 represents the group parameters, whose indices are

suppressed in order to simplify the equations. It follows

that f (x,u) will vanish when fm(x,u) does, thereby satisfy-

ing condition (C.18), if

This is the invariant surface condition for G acting in E .

The multipliers A ^ are auxiliary functions on E , which

also depend on the group parameters. Because each Qj is a

differential operator, it will leave invariant an entire
Nfamily of surfaces in E , labeled by a set of constants.

The members of this family are the characteristic surfaces
Nof Qg, in the sense of classical analysis. A surface in E

which is invariant under Q,), lies entirely on a character-

istic surface of Q^. Transformations between characteristic

surfaces take one invariant surface into another.

Let us present an example of the invariant transforma-

tion of surfaces. The example chosen is the Lorentz trans-

formation in one-space/one-time dimension. The Lorentz

transformation serves not only to demonstrate the manipu-

lations involved in invariance analysis. The physical
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implications which are drawn from Lorentz invariance act

as a model for the general use and interpretation of the

invariance of laws in physics. In the example of the

Lorentz transformation, the manipulation of invariance

concepts is presented first rather mechanically, followed

by comments on the physical meaning of Lorentz invariance

and its implications to the present work.

The characteristic surfaces of Lorentz transformations

in two dimensional space-time are hyperbolas, parameterized

by the invariant proper time t(x,t),

T-*- =̂  5* - e 1 ^ = x*-e^- 1 (C.22)

where c is the speed of light. See Figure C.I.

Under an infinitesimal Lorentz transformation the

space-time variables change. The form of this change is

given by

' (C.23)
tt -*• It - Ct + £cT'fx,t)

X(x,t) and T(x,t) are the coordinate functions of the

Lorentz transformation. Invariance of the value of the

proper time, according to condition (C.22) or condition

(C.21) with vanishing multipliers, produces an algebraic

equation which determines the coordinate functions. The

relevant solution is, to first order in £,

* ~ ci- (C.24)
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Figure C.I. The Characteristic Surfaces of the LoTentz
Transformation.
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Therefore the infinitesimal operator for Lorentz transforms

in (x,t) in the form (C.14), is given by

Q - ft}^ + x ̂  (C.25)

The operator Q annihilates ?*\ The characteristics of Q

are determined from

_dJL X _ ct
d(ct) " c T ~ x (C.26)

or, rearranging,

— - -3p - *& (C.27)

The integration constant in the solution of the first

identity gives back the group invariant, the proper time.

We now solve for the group parameter, £. Obvious manipula-

tions of equation (C.27) result in

(C.28)
C*tz - X a

so that the group parameter may be resolved as

£ r i ^ ' 1 — (C.29)

For uniform velocity frames} — is the velocity or; and we

have

Under Lorentz transformations generated by Q, the group

parameter £ changes linearly. The differential operator
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form of Q, equation (C.25), can be written as

3
(C.31)

which may easily be verified. In Lie's theory, £ satisfy-

ing (C.31) is called a "canonical coordinate of the second

kind." In Hamilton-Jacobi theory, £ is called an angle

variable. As £ increases, an arbitrary point (x,t) moves

along a ?~2 = const path toward increasing fe>. As B tends

toward too, k limits toil. The lines of constant £ coincide

with lines of constant p.

Under two successive Lorentz transformations the group

parameter changes according to

e. -- e, * ex (c.32)

The linearity in £ leads to velocity changes of the form,

3 ) ^ (C.33J

Equation (C.33), of course, is Einstein's formula for the

relativistic addition of velocities.

The Lorentz transformation example serves to dramatize

the general procedure for the manipulation of invariance

concepts. In other cases the procedure for deriving

coordinate functions, invariants, and group parameters is

analogous to this illustration. In addition, the physical

implications of Lorentz invariance act as a model for the
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use and interpretation of invariance principles in physics.

In what follows we first recall the meaning of the proper

time according to the active and passive views of invariance.

Then we comment on the physical implications of invariance

in general.

The proper time £-(x,t) is a correlation between two

events labeled by (x,t). In the passive view, this cor-

relation of events is regarded as being independent of the

rest frame of the observer. One event is taken to be at

xl = tl ~ °» a s measured in both frames. The other event

is at x- * x, t» = t, as measured in the "rest" frame; and

at X- • x", t_ • T, as measured in the (uniformly) "moving"

frame. The speed of light c has the same value in each

frame. In the equivalent active view, which is usually

taken for calculations in this work, the formulation of

Lorentz invariance is slightly different. Let the states

of a physical system be labeled by (x,t). Also let the

laws which govern its evolution be independent of global

uniform motion. Finally, let the speed of light be inde-

pendent of the reference frame in which it is measured.

Then, according to the active view, Lorentz transformations,

i.e., transformations which preserve the value of the

function *f(x,t), take given (x,t) states into states

which are also physically possible under the same (invariant)

laws of motion, but at different values of x and t.

In other words, if the laws of motion are Lorentz

invariant, then given a physical state, Lorentz
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transformations take this state into other possible states

of motion. Thus each allowed solution lies entirely on a

characteristic surface of the Lorentz transform operator in

(x,t). This situation leads to fundamental classes of

solutions admissible under Lorentz invariant equations

(Wigner, 1939). Spaces of solutions are sought which are

mapped into themselves by Lorentz transformations, i.e.,

solutions are sought which lie only on invariant surfaces

of the Lorentz transform operator. In this way, the number

of independent dimensions in the domain of the solutions is

lowered, and the solutions themselves are automatically

classified according to their transformation properties.

Thus, Lorentz invariance produces conclusions about the

nature of the allowed motion.

These physically important conclusions are, in fact,

independent of whether the Lorentz invariant laws are

linear. Only the forms of the solutions and their relation-

ship to one another, e.g., superposition, depend upon the

linearity of the equations of motion. The classification

of the fundamental solutions of a physical law according

to an invariance principle relies only upon the existence

of the invariance principle itself, The general conclusion

that one should seek the fundamental solutions on the

invariant surfaces remains as a guide, even in the study

of a nonlinear system. Thus as Laporte has often said, "By

their transformations shall ye know them."
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It turns out that a mathematical technique for both

deducing the invariance properties of a given partial dif-

ferential equation and for seeking its solutions on

invariant surfaces was worked out by Lie. It is fortunate

that Lie, in the classical era, has already developed the

mathematics for precisely the task which is relevant to

modern physics. After all, it is attributed to F. Klein,

whose Erlanger Program (1872) was correlated with Lie's

work, that "With the theory of groups, the mathematicians

have finally invented something of no possible use to

natural scientists."

We must go on to describe Lie's method in detail.

However, even at this stage, its outline should be clear.

Let a Lie group G describe an invariance principle. The

coordinate functions of G define the infinitesimal operators

Q. The characteristics of Q, in turn, determine invariant

surfaces in E under G. Lie's method, as we shall use it,

is to seek physical motions which lie entirely on a

characteristic surface of one of the Q's. The use of Lie's

method, both for the deduction of invariance principles and

for the description of characteristic surfaces, relies

primarily on the invariant surface condition.

The invariant surface conditions (C.21) can be viewed

in two ways; according to whether the invariant surface, or

its invariance group, is regarded as unknown. In the first

view, equation (C.21) is a relation which determines the

unknown invariant surface, I, from the given infinitesimal
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generators, Q. I:i the second view, given the surface I in

E , conditions (C.19) determine the coordinate functions

of the Lie group which leaves it invariant. Thus, the

invariant surface condition has a dual interpretation. In

the example of the Lorentz transformation the second view

is adopted. However, by equation (C.27) the group invar-

iant, the proper time, may be recovered from the coordinate

functions.

Lie found it possible to extend the invariance condi-

tion (C.19) to include differential manifolds, i.e., to

include surfaces in the space of x, u, and derivatives of u

to arbitrary order. The extension is obtained directly

from the chain rule. Let the infinitesimal action of a

point transformation group G be given by the expressions,

(C.34)

The action of G on the partial derivative

is given by

"u)tx u ,/i (C3S)

The extended coordinate functions U|i) (x,u,u') are calcu-

lated from the chain rule, according to
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J57 = 5*. Ib,, (C36)

The total differential operator

J^ - A + *; ; £ . - *J /V ~ - — (C37)

accounts for both the explicit and implicit coordinate

dependence. The coordinate functions for the first exten-

sion of (C.34) take the form,

- - ^ M. (C38)

The calculation of higher extensions and explicit tabula- j

s

tions of the extended coordinate functions are given in 1

Appendix A. \

Suppose that the extension to manifolds, including I

higher derivatives of u has been accomplished. Let the i

statement of the dynamical problem of interest be (S,B,C), j

where typically S is a system of linear and/or nonlinear j

partial differential equations of order f. • j

B is a set of boundary conditions for S, prescribed on a

region R in space and in time, bounded by curves C, i.e.,

B k(^H,\O-- O ; *>=),*,..,,8 (C.40)
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on curves

C, f*> - O , C = I,*, ... ,Q CC41)
c

The dynamical statement is invariant under G if (S,B,C)

forms an invariant manifold under the transformations of G

in the extended space. The set of extended invariance

conditions are analogous to the invariant surface condition

(C.21). Namely, (S,B,C) is an invariant differential

manifold if (S,B,C) is related to (S,B,C), to first order

in £, by

and

on curves

A ^ W (C44)

The multipliers ^, >,yw are auxiliary functions which depend

on the invariance operations. The invariance conditions

mean that (JS,B~,(T)follows from (S,B,C), under infinitesimal

group transformations in the extended space. These condi-

tions produce a system of partial differential equations

which determine the coordinate functions of the Lie invar-

iance group G.

Under the invariance group of the dynamics, in E the

solutions transform among themselves, i.e., the solution set

N
forms an invariant surface in £ under G. Although this
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property may seem perfectly natural because of previous

experience with invariance principles in physics, let us

prove it in a special case. Suppose the solution of

(S,B,C) is unique and given by

u. - 6?.(x) (C45)

Putting bars over all of the variables cannot change the

form of the solution. In the new coordinates (x,u), the

solution is

H. = ^.(x) (C.46)

Then, to first order in £,

ViS; .<•*>-'tfy .' (C47)9A) ^ * 9(x) uj

Now, the left side of (C.47) must vanish when the right

side does, by uniqueness. Consequently, the solution is an

invariant surface under G, because the braketed term must

vanish with (0.= (x)-u.) .

In general if (S,B,C) admits G, then G leaves invariant

the solution set of (S,B,C). In other words, if u. = .9. (x)

is a solution, then u- = 0-(x) is also a solution.

As an example, suppose that (S,B,C) admits the inter-

change of the first two independent variables, say x and t.

Such a transformation is a discrete symmetry rather than a

continuous one, but the same type of reasoning applies.

Let

Hj - S>.fv,-t) (C.48)
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be a solution. The action of (x,t) interchange is given by

— i

If (S,B,C) admits this operation, then for the pair of

values (x,t)

(C.SO)

and for the pair of values (t,x)

(C.S1)

Consequently, for all (x,t) we have )\ = 1, ^*±lt and

*. ~ 6U£,t-) ̂  + [_U. - Q.'^tJ (C.52)u.

Thus, a characterization of the solution set has been

achieved. Under interchange of x and t, the solution sur-

face either reflects through the (x,t) plane or it stays

the same. There &re only these two classes of solutions

when (S,B,C) is invariant under (x,t) interchange.

Let the operations admitted by (S,B,C) form a Lie

group, G. The coordinate functions of G define the infini-

tesimal operators Q. The characteristics of Q, in turn,
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determine invariant surfaces in £ under the action of G.

N

Lie's method is to seek solutions of (S,B,C) in £ which

lie entirely on the characteristic surfaces of each distinct

subgroup of G. In this way, the number of independent

dimensions in the domain of the solutions is lowered, while

at the same time the solutions themselves are classified

according to their transformation properties.
E. Synopsis of Lie's Method for Partial Differential

Equations'

Let us now describe details for the actual procedure

of Lie's method when the dynamical statement admits an
invariance principle. A general solution surface of

N(S,B,C) in E has the form,

C - I, 2 . ... ^

with dimension N - m * n. Let us seek solutions which lie

entirely on a characteristic surface of an r-parameter

subgroup of the main group G, admitted by (S,B,C). The
Ncharacteristic surface C in E is defined by R relations

for the invariants of Q, where Q stands for the set of

r > R generators of the subgroup Hr of G. Let P be the

total number of functionally independent invariants of Q

in E . Then C is determined from R independent relations

for P invariant quantities.

C \ aiXyix,*.) s o <>« c (C.54)
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where the subscript ranges are,

^ - '<«.••',*" (C.5S)

The invariant surface C has dimension

din C = N - K (C.56)

because it is the result of placing R independent first

order restrictions on the N dimensional space E . The

numbers R and P are determined from the classical theory of

differential equations (Forsythe, 1906). The set <Qj> forms

an algebra. When the Qj are all functionally independent,

they form a "complete linear system," in the sense of clas-

sical analysis. In this case R, the number of independent

equations (C.54), equals the rank of the matrix of coeffi-

5
cients appearing in (C.54).

K,' .-• x, n u;... 17/
(C.57)

Let N>R, i.e., suppose there are more columns than rows in

equation (C.57). There are R independent equations for P

invariants in an N dimensional space. Therefore,

t < N- K. (C.S8)

The first question which Lie asked a prospective student
was "Do you know how to solve a complete linear system?"
(Private communication, Prof. R. A. Axford).
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The maximum number of functionally independent invariants

equals (N - R)• P is less than (N - R) whenever any opera-

tors in <Qj} are linearly connected. If H is a nontrivial

one parameter subgroup of G, then R equals unity.

Suppose P equals its maximum, then

Am C = A/-K * £ (C59)

and the set of independent invariants -Cl-)* can be used as

coordinates on C. Let condition (C.59) be satisfied, so

that we can choose a set of coordinates which are invariant

on C. Now suppose that the first m invariant coordinates

are solvable for u., and that the remaining P - m invariants

on C, labeled *C/\t)-> depend only on x-. Then a solution

surface on C can be expressed in the invariant form,

(u,x) ~ £XV*0 (C60)

where

j - 1,2,.... M

(C.61)

Compare (C.60) and (C.61) with (C.53). By assumption, the

<I.> can be solved for {u.}. Hence, the restriction of the

solution surface to C essentially reduces the number of

independent variables by R, provided that P equals its

maximum value.

If the inequality holds in (C.5S), then the solution

surface has more essential dimensions than an invariant
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surface under H . Consequently, it cannot be coordinated

by the invariants <I > of the particular subgroup H which

is chosen initially. Also, if R * N, then, from (C.56),
NC reduces to a set of invariant points in £ , upon which

the coordinate functions vanish. In this case, no invar-

iant functions appear at all, and P * 0.

The invariant coordinates -(I > on C are obtained in

practice from the invariant surface condition (C.21).

The characteristic form of equation (C.21) may be expressed

as,

dX[ d * i * i, a,,,.

where the coordinate functions are to be evaluated on C.

Note that the u dependence in the coordinate function X.

has already been factored out, according to the assumptions

above. This factorization allows the first set of equali-

ties in (C.62), namely,

_ y ^

(C.63)

to be solved for the group trajectories of H in x-space.

The integrals of (C.63) are given by,

k*. t,zjt,t/vi-R (C.64)



160

Now let equations (C.60) be resolved for u. on the invar-

iant surface C.

Mi ^ ̂  '/>c ' *' v' x>} (C.6S)

Equation (C.65) is the form of the solution, which remains

on C under H . Upon substitution of (C.65) into (S,B,C),

a new system of equations is obtained for the set fv.(^)\.
- i

Expressions such as (C.65) will be called "group

reducible" solutions, because they can be cast into

"manifestly" group invariant form. The group reducible

form (C.64) includes the self-similar form as a

special case. The n-R group invariant coordinates X are

analogoi 3 to similarity variables. The m functions v(A) in

(C.65) are roughly the analogs of the "shape functions" in

the self-similar solution.

Lie's program is a constructive and general mathemati-

cal technique which includes the method of self-similar

solutions. The implementation of Lie's method takes the

following steps:
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(1) Find, or solve for G, the Lie group corresponding

to the invariance principles for (S,B,C). The required
N

result is a set of coordinate functions on E .

(2) Solve for the invariants of Q. Here Q is a set of

infinitesimal operators on £J corresponding to a distinct

r parameter subgroup H of G. The required result is a

complete set of invariant coordinates for the characteristic

surfaces, C, of Q.

(3) Transform to invariant coordinates on C and seek

solutions of the form (C.60). The result is (S,B,C) reduced

to C, whose solutions give the fundamental group reducible

motions on C. These motions transform reducibly under Hr.

A mathematical aspect concerning details of the group

structure of G is worth mentioning. Care has been taken

above to call H a "distinct" subgroup of G. If two sub-

groups H ^ ' and H^2' can be related set theoretically, by

then H*- J and H^ ' are called "equivalent," as opposed to

"distinct." The group reducible solutions f and ^ of

equivalent subgroups H ™ ' and H^2^, respectively, are

themselves equivalent, relative to G. They are equivalent

in the sense that there exists a group transformation T,

such that,

_ ro (C69)
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for some transformation T<sG. Equivalent solutions are

regarded as not different, because they lie on the same

family of characteristic surfaces in E .

The equivalence relation (C.68) separates the set of

all subgroups of G into distinct classes, each class con-

taining equivalent subgroups. A distinct group reducible

solution follows from each distinct subgroup of G. Under

the action of separate distinct subgroups, a given group

reducible solution leaves its family of characteristic

surfaces in E , and may even cover E entirely (see Figure

C.2). Thus, having found a group reducible solution^. (x)

for a subgroup H CG; other solutions, equivalent to the

frl
first one, may also be found by operating on (p. (x) with

the remainder of group.

The algebraic analogs of equivalent subgroups are

equivalent subalgebras. The equivalence relations for sub-

algebras Q. and Q of a Lie algebra LG are defined by the

set theoretic equality,

xJ GU (C.70)

for some element X of L~. This relation may also be

written symbolically, as

where,

(c.72)
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Figure C.2. The action of distinct subgroups of G. The
non-parallel surfaces represent characteristic surfaces of
distinct subgroups. The parallel surfaces represent
characteristic surfaces of equivalent subgroups.
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is an element of the adjoint group of linear inner auto-

morphisms of the Lie algebra. The adjoint group can be

used to find classes of distinct subalgebras of the main
6

algebra LQ.

F. The Wave Equation

Evidence has already been submitted that, when an

invariance principle is known, Lie's method may produce

useful and general results. Even for the nonlinear problem

of ideal fluid flow, an invariance principle provides the

key to characterizing the scaling group reducible solutions

as simple waves. Previously, it has also been mentioned

that the extended invariant surface conditions, (C.42)

through (C.44), might be used to actually solve for the Lie

group of invariance principles, which is admitted by a

dynamical problem. However, the systematic deduction of

nontrivial invariance principles from given dynamics has not

yet been implemented in an example. Thus, as another intro-

ductory illustration of Lie's method, but this time starting

immediately from the statement of the problem, we look at

the linear one-dimensional wave equation.

« O (C.73)

The object of this illustration is to sample once again the

completeness and quality of the results produced with the

invariance approach; and to make its procedure even more

concrete and definite.

Ovsjannikov (1962). Such decompositions were first made
by Cartan (1952), p. 304.
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We present the wave equation as an ab_ initio example

of Lie's method. It will be seen that Lie's method recovers

naturally each of the classical results for linear wave mo-

tion. The finite part of the Lie invariance algebra for the

wave equation is the conformal algebra. The operations of

the conformal algebra map the solution space for the wave

equation into itself. The boundary value problem for stand-

ing wave motion is also discussed from a group theoretical

vantage point.

After Laplace's equation, the wave equation has been

the most deeply studied partial differential equation of

mathematical physics. As early as 1747, d'Alembert obtained

the general solution of the one-dimensional wave equation as

the superposition of two simple waves, moving with the same

speed c in opposite directions,

+ q(x-KLfc) (C.74)

d'Alembert used his solution of the wave equation to discuss

the vibrating string. He was followed by Lagrange (1781),

who used the two-dimensional wave equation to study water

waves; Poisson (1807), who derived the Poisson Kernel*for

it; Cauchy (1841), who coined the word "characteristic" to

describe the wave fronts; Riemann (1860), who recognized

that the zone of influence from a point in (x,t) is wedge-

shaped, and who used the adjoint equation and the so-called

Riemann function to solve it. Then came virtually all of
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the classical mathematical physicists of the nineteenth

century - Liouville, Helmholtz, Kelvin, Kirchoff, Maxwell,
7

and Poincare.

The wave equation has sufficient structure to provide

an interesting illustration of Lie's method. Also, it is

Lorentz invariant, so it connects well with the earlier

discussion. In this section the following procedural areas

will come to light:

(1) How to determine the coordinate functions X, T, and

U from the invariance of the starting equation (S, in the

previous notation).

(2) How the fundamental solutions are found from the

set (Q.) and the invariant surface condition.

(3) How the subsidiary conditions (B,C) restrict the

invariance algebra of S.

(4) How the structure of the group enters into the

classes of admissable solutions.

The starting equation, S, is the one-dimensional wave

equation,

"*•* - n t t = o (C.7S)

where units are chosen to make the wave speed c * 1, since

it is assumed not to transform. The initial and boundary

conditions are put aside until later.

A preliminary calculation shows that it is sufficient

7G. Birkhoff, A Source Book in Classical Analysis, (Harvard
University Press, 1973), pp. 403-434.
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to consider a Lie group whose coordinate functions have the

following dependences,

-t ^ -t + & T f » ) t ) (C.76)

oL = tA •+- £ LJ ( x , -t y w.^

The extended invariant surface condition, correspond-

ing to equation (C.42), for the wave equation if

The functions X, T, U, P which are to be determined, could

have depended more generally on u and its derivatives. In

this case, (C.76) would represent contact transformations,

instead of point transformations. However, the preliminary

calculation, which is the same as the one to be shown

except for including higher order dependence, has already

eliminated the higher order functional dependence in X, T,

u. P.8

The condition of invariance is that the O(£) terms in

(C.77) vanish together. Expanding (C.77) to first order in

£, we find

CC78)

8Ovsjannikov (1962), p. 183.
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The second-extended coordinate functions which appear in

the invariance condition (C.78) are calculated in Appendix

D, formulas (D.14) and (D.15). The second extensions

depend on u and on its first and second derivatives. Equat-

ing like coefficients of 1, u , u , u , u , u , and their

bilinear combinations, on each side of the invariance

condition (C.78) produces an over-determined system of

linear partial differential equations for the coordinate

functions X, T, U, and for the multiplier P(x,t,u). This

system of equations quickly reduces to

^xx - T^tt ~ ° (C79)

2̂ -** - T w - T;* (C.80)

« * K t t " ^ * * (C81)

13^ = O (C.82)

T x - ^C t (C.83)

Equations (C79) to (C.84) are the so-called "determining

equations" for the coordinate functions. To solve them,

we first combine the last two equations. The result is,
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(C85)

(C.86)

Thus, the coordinate functions X(x,t) and T(x,t) each

satisfy the wave equation. Hence, from (C.80) to (C.82) we

find

- O (C'87)

So U is a constant, say a. Then from the first equation,

(C.79) , we have

XI - <x ̂ + <p<*,t) (C.88)

where Cp[x,t) satisfies the wave equation. Equation (C.88)

represents two properties which are common to the solutions

of all linear equations. Namely, that they remain solutions

when they are scaled and/or superposed.

Because T satisfies the wave equation, the function

P(x,t) must also obey it. From equation (C.84) we have

-lfc> = T - T * - i > (C.89)

Thus U(x,t), X(x,t), T(x,t), P(x,t) each satisfies the wave

equation, and the wave equation admits an infinite dimen-

sional group, parameterized by its own solutions. The

infinite dimensional group of the wave equation is a formal
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mathematical property which is related to the possibility

of exchanging independent and dependent variables in one

space dimension. When the wave equation is written in the

Cauchy-Riemann form,

* * (C.90)

we see that (x,t) could be exchanged with (u,v) without

changing the form of the equations by simply inverting.

The result of inverting (C.90), namely

then leads to the wave equation expressions,

**«. - V V v =* O (C.92)

for the position in terms of (u,v), and also

- O (C.93)

which iu a similar wave equation for the time. This purely

formal variable exchange property goes away when more

spatial dimensions are present. Of course, the other

infinite dimensional property - superposition - remains in

higher dimensions because of linearity.
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The finite part of the wave equation algebra is gotten

by making P and Ptt vanish separately. In this case we

may take,

(C.94)

where s, d, e are constants. Now from (C.84) we have

X » sx + c/xz -+ acx-fc + Pit) (C.95)

T * st +• 2-<l*t + et"1 4- ̂ (*) (C.96)

The integration functions f(t) and g(x) are determined

from Tx * Xt, i.e.,

^ (C.97)

As a consequence of this relation, we find that

U 1- In (C.98)

U + )»• (C.99)

where b, h, p are new integration constants. Thus we have

for the coordinate functions of the finite part of the wave

equation algebra,

= <MA. (C.102)

with integration constants, a, b, d, e, s, p, h.
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The seven arbitrary constants are the seven independent

group parameters of the finite dimensional part of the wave

equation Lie invariance algebra. A differential operator

basis, Q, is found by individually letting each group param-

eter be unity, while making the rest vanish. Table C.I

lists the members of Q, along with their invariants and

geometrical significance.

The operators in the Basis Q satisfy the commutation

relations given in Table C.2.

The entry which appears in the j-th row and k-th

column in Table C.2 is the commutator(Q.,Q ).

The subsets of operators Q which form subalgebras can

be picked out of the commutator table. The six parameter

subalgebra (P, H, S, B, D, E) is called the conformal

algebra. It is the well-known invariance algebra of the

wave equation, which has seen a lot of action in relativ-

istic particle physics.

The basis Q preserves the null space of the wave

operator, W, given by

V * ^ - ^ (C103)

In other words, Q maps the solution space of W^(x,t) * 0

back into itself. We may check this invariance property

for the elements of the conformal subalgebra of Q, by

noting the commutator relation,

(C.104)



OPERATOR SIGNIFICANCE INVARIANT

P • ^x Space translations

H * ht Time translations x

S * x^x + t^t Space/time scaling x/t

B • tbx + x^t Lorentz boosts x2 - t2

D - 2xt&x + (x
2 + t 2)^. Conformal

* t

h - (x2 + t2)hx + 2xtht Transformations I(x2 - t2)

A * u^u Scaling of u F(x,t)

Table C.I. The Basis Q of the Lie Invariance Algebra for the Wave Equation.



H

B

D

p

0

0

-p

-H

-2B

-2S

0

H

0

0

-H

-P

-2S

-2B

0

S

P

H

0

0

-D

-E

0

B

11

P

0

0

-E

-D

0

D

2B

2S

D

E

0

0

0

E

2S

2B

E

D

0

0

0

A

0

0

0

0

0

0

0

Table C.2. The Commutators of the Basis Q for the Wave Equation.
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where,

& € { K Hy 5>

and P(x,t) is given by equation (C.94). Equation (C.104)

implies that WQ ty = 0, whenever W2/* = 0, which means that,

under Q, solutions are mapped into solutions.

Such operators Q are the analogs of dynamical symmetry

operators in quantum mechanics. In the quantum case the

operator W is replaced by K = >kd -H, where H is the

Hamiltonian. The vanishing of the commutator £K,QJJ maY be

written as

« o (c-106)

Equation (C.106) is the quantum condition for the eigenvalues

of the operator Q to be constants of the motion.

Let us continue with the wave equation example,

liquation (C.100) through (C.102) represent the required

result for admission to"the last step in Lie's program.

The coordinate functions on (x, t, u) have been resolved

and a basis for the Lie algebra, Q, has been
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constructed. In Table C.I the invariants of Q appear.

The Lie algebra Q has been identified with the conformal

algebra.

Before we proceed to construct group reducible solu-

tions, it should be verified that the Lie algebra which

appears in Tables C.I and C.2, really does include the

generators of conformal transformations. In order to make

this validation, the finite transformations generated by

(P • E) and (H + D) are calculated. First, let us consider

the operator

The group parameter corresponding to (P + E) is found by

solving the characteristic equations,

(C.108)
zxt

Let the quantities 2 + be defined by

Z± - x ± t (C.109)

so that

Of course, &+ * const is a characteristic of Wu * 0. It

follows from equation (C.108), that

(C.lll)
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Hence,

We now drop the subscript on 2-+ , because everything is

symmetric under the interchange of subscripts. The result

of equation (C.112) is that,

= £««,(€•+<*) (C.113)

where

Hence,

(

Equation (C.115) for 5^e> has the form of a conformal trans

formation

The condition for the conformal transformation (C.116) to

be nonsingular, i.e.,

«.of - lot * a (C.117)

corresponds to

-— ^ <̂> (C

which restricts ff to be non-imaginary.

Clearly the operator H + D generates the same finite

conformal transformation as (P + E), except for the
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interchange of x and t. Thus, by calculating the appro-

priate finite transformations, we have verified that the

wave equation algebra includes the generators of conformal

transformations. Now we can proceed to derive group reduc-

ible solutions of the wave equation from its invariance

algebra.

According to Lie's theory, each distinct subalgebra

of Q generates a distinct group reducible solution. Let us

present three examples of the construction of group

reducible solutions for the wave equation.

Up until now, the boundary and initial conditions

(B, C) have been put aside. However, if subsidiary con-

ditions are present, they must also be left invariant, in

order for group reducible solutions to be admitted. In

principle, the invariant coordinates of the Lie invariance

algebra of S. say L , will determine the most general

"moving boundaries"

q C ) t (C.119)

upon which auxilliary conditions could be invariant. In

practice, however, the requirement of invariance of (B, C)

usually restricts LG to a subalgebra, which leaves invar-

iant both the boundary conditions, B, and the curves, C,

upon which they are prescribed.

Suppose, for the wave equation example, that group

reducible solutions are required for the vibrating string

problem with fixed endpoints. Let the boundary values of
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the amplitude and velocity vanish on the unit interval,

(C.120)

In order to find a group reducible solution to this problem,

we must leave the boundary conditions invariant. Invariance

of the endpoints, x * 0 and x * 1, requires that

* =• x + £ X I", t) = x u'Uf̂  x . O/ I (C.121)

Hence, referring to the coordinate functions given by (C.100)

through (C.102), we have

=>- S = b = c / ^ - e * 'I (C.122)

Thus, the boundary conditions restrict the non-zero

constants in the coordinate functions to a two parameter

subset,

x -- o
1" = h (C.125)

In other words, for the vibrating string problem, (S,B,C)

is invariant (up to superposition) only under time transla-

tions and scaling of the amplitude. The infinitesimal

operator corresponding to these transformations is given by

Q . = \ • - M . ^ , «-* * f; (C.124)

We shall see that the values of the parameter <J, in equa-

tions (C.124) must be restricted, for a group reducible
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solution to obtain.

A group reducible solution in (x,t,u) space lies on a

characteristic surface of the differential operator Q given

by equation (C.12-1). Such a surface is illustrated in

Figure C.3. Thus, in accord with Lie's program, we seek

a subspace in (x,t,u) which is invariant under Q. The

invariants of Q are found from

Gl-TC -.t.«N « D (0.125*

or, in characteristic form

0 f " j * i . . . » I

The invariants are given by

Note that for this problem, M * 3, R • I, and P • 2, in our

earlier notation, so that P attains its aaxi»u» value. Con-

sequently, the group reducible solution can be coordinated

by the invariants of the group. Group reducible solutions

are now sought by transforming to the invariant coordinates,

in the invariant coordinates the characteristic surface of Q

is given by

2 . * If i I/V (C.128)

See Figure C.4. In terns of the old variables, the group

reducible solution is expressed by
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Figure C.3. The Characteristic Surface of Q Kq. (C.124)
in (x,t,u) Space.

Figure C.4. The Characteristic Surface of Q Eq. (C.124)
in (I.,I.) Space.
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u = e.>t"LTfx^ (C.129)

The group reducible solution thus appears in separated

form. The eigenvalue spectrum, the set of allowed values

€OT'JJ, is determined from the condition that u(x,t) be a

global solution, i.e., that u satisfy the boundary condi-

tions. The rest of the problem, of course, follows the

familiar pattern. However, we would still like to carry it

out to its conclusion.

When the separated form is substituted into the start-

ing equation, a differential equation in one less independ-

ent variable is obtained.

U"(*) - 'sJa•Ut*^ •* O (C.130)

Imposing the boundary conditions restricts the possible

values of the parameter ̂  to a discrete spectrum

C O as in-jr ^ •» a . i.t , . • ( C . 1 3 1 )

and results in the standing wave solutions,

nt«,t)« A t SMI^ITX1) (C.132)

Thus, the group reducible solutions for the vibrating string

are its normal modes.

The character of this example tends to recur whenever

Lie's method is applied. First, as expected, the number of

independent variables decreases and a partial (or complete)

separation of variables occurs. Second, the relative values
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of the group parameters are restricted by imposing the

boundary conditions. Third, a family of group reducible

solutions appears, labeled by the (restricted) values of

the group parameters.

When the problem is posed in an infinite domain,

requiring only that the solution vanish at infinity, the

full invariance algebra of the wave equation is admitted.

In particular, space and time translations leave the wave

equation invariant, because the independent variables x and

t do not appear in it explicitly. Under translations of x

and t,
x —* x - x + f>

t -*- t - t + *"» (C.133)

The solution u, itself, is invariant. The other invariant,

required for group reducible solvability, is giver by

X ^ x -(f/hlt (C.154)

The group reducible solution is sought in the invariant

form,

(C.135)

Substituting (C.135) into the wave equation yields an

ordinary differential equation,

\i ~ tWfj F"rA> = O (C.136)

Therefore, the relative values of the group parameters p
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and h are restricted to,

= * < (C.157)

i.e., space and time translations are only allowed which

move u(x,t) along a characteristic. Because u • F(A), the

wave profile does not change shape as it moves along a

characteristic. For arbitrary p and h, the trivial solution

Fs / V f * - ^ ) ^ + fe (C.158)

results, but it is zeroed out by the vanishing conditions

at infinity. The d'Alembert travelling wave solution

reappears when the group reducible solutions are superposed.

u. * F ' * - M -+ & t * + M (C.139)

where F and G are arbitrary functions. Finally, we note

that, as in the case of fluid dynamics, the similarity

variables actually define the characteristics.

, _ dx

X + = *• t t (C.140)

The path of the propagated wave fronts follow lines of

constant A. Thus, these solutions are simple waves in the

sense of fluid dynamics. However, unlike the simple waves

in fluid dynamics, the solutions of the lir ;ar wave
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equation retain their wave profile as they propagate.

In the travelling wave case, the relative values of

the group parameters are restricted, not by the boundary

conditions, but by requiring a non-trivial solution of the

group-reduced differential equation (C.136). The travel-

ling wave solution is an example of a degenerate case,

which seldom occurs. Namely, the group reducible solution

is functionally invariant, i.e., arbitrary functions appear

in the final solution.

The object of the invariance analysis of the linear

wave equation has been to sample the character of the group

reducible solutions, and to make the procedure for obtaining

them more definite. The types of wave motions obtained in

this example - namely, standing waves, travelling waves, and

centered simple waves - are representative group reducible

solutions of the wave equation. In the case of standing

waves, although the symmetry of the wave equation is broken

by the boundary conditions, enough invariance remains to

produce a nontrivial wave motion. In fact, the boundary

conditions choose a discrete spectrum of allowed wave

motions. A family of solutions results, labeled by the

relative values of the parameters in the symmetry algebra.

In the case of travelling waves, the conditions at infinity

do not break the symmetry of the wave equation. The group

reducible solutions which result from space and time trans-

lation invariance comprise a family of travelling waves of

arbitrary shape, whose members propagate along characteris-
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tics without change in form. These wave motions fall into

two discrete classes - leftward and rightward moving waves.

The discrete classes are again labeled by the relative

allowed values of the group parameters.

It has been shown that, even when boundary conditions

break the symmetry algebra of the equations of motion, group

reducible solutions may still be obtainable and meaningful.

However, group reducible solutions are not of interest

merely because they are examples of solutions to particular

problems. We have seen that the group reducible solutions

can also represent the classes of motions admitted by the

dynamics. This second, more general interpretation of

group reducible solutions is relevant to nonlinear physics

and to the present investigation.
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