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ABSTRACT

The MIT bag model for hadrons is treated in the sﬁatic
cavity approximation in three dimensions with a definite quagk
number. The enérgy of the system is computed to second order
in the gluon coupling. A constrained variational method is

described which permits the calculation of the energy as a

function of a collective variable. The bag cavity is permitted

to assume whatever shape is necessary in order to minimize'the
energy for a g;ven expectation value of the collective variable.
The method is well-suited for the calculation of the nﬁclear
potential -- in particular, the short range component of the
two-nucleon force. In a preliminary study presented here, the
method is applied to a bag containing one quaik and one aﬁti—
quark and the energy as a function of the separation of the
quarks is evaluated. V
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1. Introduction

The MIT bag model of hadronsl in the static cavity.
approximation accounts remarkably well for the masses of t@é
light hadrons2 (the octets of pseudoscalar and vector mesons
and the lowest baryon octet and decupiet). The ingredients of
the model are appealingly(simple:3 the ,currently fashionable
combination of quarks of three colors and three or four flavors‘
and an octet of colored vector gluons, confined to a finite
volume by a uniform preésure, the key innovation of the model.
Non-strange quarks are massless, the hadronic mass ‘scale being
set by the confining pressure.

In the static cavity approximation2 the quark fields are
expressed in teérms of the férmion creation and annihilation

operators for the cavity exgenmodes
4
b,; v "w"
Z(x{) Z(?(i)e A +i=z) ai)

(1.1)
where q, satisfies the Dirac equation for energy w, inside the

cavity
(=i Z9 4 pm) §ulR) = 0, gulX)
. ‘ a.2

and the linear boundary condition on the surface of the cavity

Px-h 5"(;) = ¥, 9.(%),

(1.3)

where n is the unit outward normal to the surface. The quark

wave functions are normalized so that

/?nf?m dx = 4.

They must also satisfy a quadratic boundary condition which is

(1.4)

discussed below.
For a cavity of arbitrary shape containing only quarks, the

hamiltonian to second order in the gluon coupling may be written

H-fo{\/:;f("'“'v +/5m)3: —-;;'- AV f;:F“/“"
cafiIAT e 3V B

where the gluons behave like Maxwell fields to this order:

f/:w L F A,, - DVA/" (1.6)

25“ ? a.n

FJv“: 0 on .S,

3/*5”’; - 3‘: inV and n,

(1.8)
In the usual notation g is the gluon coupling constant, A2
are the 3x3 matrix generators of color SU(3) normalized so that

tr(0%)2= 2. Because of the linear boundary condition on pawy
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only color singlet étates can exist. The constant B is the term
which provides the confining pressure and is renormalized by the
zero-point energy of the fields. The finite part of the gluon
and fermion zero-point energy is given by Eg. which depends on
the shape of the cavity. The fermion energy term is accordingly
normal-ordered. To find EO(V) it is necessary to know the sum
of the eigenfrequencies for all fermion and gluon modes for a
cavity of arbitrary shape. This problem is not addressed here.
The order of magnitude of EO(V) is known from studies of the
light hadrons, and its effect can be estimated qualitatively.2
However, we have omitted it from our calculations ‘of greatly
distorted shapes.

The shape of the cavity is determined by requiring that the
expectation value of the hamiltonian be minimized with respect
to variations in its shape. This procedure results in imposing
a non-linear surface boundary condition on the fields, which can
be interpreted as balancing the field pressure against B, but for
computatijonal purposes it is more useful to impose the boundary
condition variationally. Thus for a given state

[P (v)>
the condition

I g4 HI%Y =0
Y

(1.9)
determines the shape of the hadron.

Without knowing in advance that the shape that minimizes
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the energy is particularly simple, one faces the difficult task
of solVing-the Dirac equation and Maxwell's equations in a cavity '
of arbitrary shape subject to the various linear boundary
conditions ~- a task which is impossible analytically. Various
nunerical and approximate techniques are available, however;

One could set up a coordinate mesh ané solve the equations
numerically. A variational approach was taken instead, since it

was readily adaptable to the problem of fixing a chosen collective

variable. Trial fermion wave functions q, and trial gluon vector
potentials A: are constructed for the ground state. For a given
fixed shape the parameters characterizing q and A: are varied

and the stationary point

SCPW) I H TR =0

(1.10)

is located. Actually the precise form of the hamiltonian (1.5)
cannot be used, but if some care is taken the stationary point
of the proper variational expression provides an approximation
to the solution of the Dirac and Maxwell equations and ‘the linear
boundary conditions. H

Thus the problem can be regarded as being entirely varia-
tional with respect to the parameters characterizing the cavity

shape and wave functions. To find the energy as a function of

the expectation value of an operator CY,

= <PWIoIBVY,

(1.11)
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one simply adds the usual constraint term to the hamiltonian
}{ — &4 - A C?
(1.12)
and from the stationary point, obtains E(1) and GY(A). Because
A= dE/dZ; may have multiple solutions the method of Flocard

et a1.4 was used instead, with the replaéement

—_ bR
}4 e P+ + cC ( o - CZ)'
(1.13)
The parameter ¢ is chosen to be large enough that the quadratic
term as a function of E; has a larger curvature than E(E;).
When the constrained hamiltonian (1.12) is minimized, the
equations of motion and the boundary conditions are altered by
the constraint. Since the new form of the equations of motion
andAboundary conditions can be rather complex, depending on the
nature of the constraint, the variational approach is a con-
venient vehicle for the formulation of the constraint.
In the present manuscript we report the results of a pre-
liminary calculation for a bag containing a quark and an anti-

quark =- in particular we have considered the state corresponding

to the p meson with spin projection Imél = 1 on the axis of

deformation. Its deformation as a function of the separation
of the quarks has been studied. We obtain the expected result
that the energy grows rapidly with quark separation, with a
linear increase at large separation. We have also carried out

the computation of the deformation of a quark—antiquark bag with
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the gluon interaction switched off. Since the gluons are essential
in ensuring that bag states have zero trialityl it is expected

that in the absence of gluons, a two-quark bag could be pulled
apart into two bags of a single quark each. " Indeed, our compu-
tation yields the expected result.

The preliminary calculation, although not providing new
resulfs, serves as a means of testihg the concepts and techniques
of the computation. These techniques will be applied in the .
calculation of the fission of a éix—quark bag and a bag con-
taining a pair of quarks and antiquarks. These applications are
relevant to the study of the nuclear force and the Aecay of

resonances.

2. Quasi-Degenerate Second Order Perturbation TheorysA

In the present calculation the separation of ‘the quarks is
achieved by constraining the orbitals to separate into a left
orbital and right orbital while preserving the spatial stmetry
of quark occupation, which is present in the undistorted configu-
rations of the low lying mesons. Thus the spatial part of the

wave function is

B(1,2) = (O E) + hOEE
' (2.1)

Expressing the left andjright orbitals in terms of orthogonal

symmetric and antisymmetric orbitals, we have




1kQ = 14; i'/AqkA

QPL = «ps _./A1%ﬁ

i, - it e -t HO k)

(2.2)
Thus we are led to consider a mixture of two orbital configurations

S2 and Az

with the mixing parameter u2 ranging from 0 to 1 for
maximal to minimal overlap between the orbitals. The mixing
parameter uz is to be determined variationally by minimizing the
constrained hamiltonian.

' The object of the present study is to calculate the separa-
tion energy of the quark—aﬁtiquark system to second order in the
gluon coupling. If we regard the gluon interaction as a per-
turbation on the free fermion hamiltonian, the calculation reduces
to an exercise in s%ationary second-order perturbation theory.

Since the levéls 82 and AZ

become degenerate if the bag were to
fission, it is necessary (expecially in anticipation of future
fissién calculations) to use quasi-degenerate perturbation theory:
Given a hamiltonian Hoiand perturbation V, let the perturbed
ground state be expressed as a linear combination of the lowest
(normalized) unperturbed states:
odlad> + gLy
! . (2.3
where |a|? + |8]2 = 1. If the potential V does not connect a

and b to first order, then the groﬁnd state enérgy to second

order in V is obtained by minimizing with respect to o and B

the expression

VLI ) + lfsl‘(EL + > Lﬁll

E"ld'\ (E‘*"-% _E—T— ™ Ep_EV\
*
" g, -E, : (2.4)

where
Hla> = E (>
Wi = E b

<nl| viap = an,.'
<:V\\ Vi ki) \/hb

u

Eo = l"(‘L Ea,+ IF‘LE]:‘

(2.5)

This result is obtained by an elemengary variational calcuiation.
With 8 =.0 it reduces to the usual expression. With E, = By it
giﬁes the usual eigenvalue problem for degenerate perturbation
theory.

In our application the perturbation V is the elementary
two-quark, one-gluon vertex with fields expressed in terms of the
unperturbed cavity eigenmodes. - The state n consists of one gluon
mode in addition to quark and anti-quark modes. We have made a
number of simplifying approximations to Eq(2.4). For the dia-
gonal terms in |Vna|2 and Ian|2 we have kept only the quark
states a and b plus one gluon in the sum over n. Furthermore

- we neglect the difference between Eo’ Ea, and Eb in the

. denominators of the terms second-order in V. The latter approxi-



mation has the effect of rendering all gluon fields stationary.5
Although we are drawn to this approximation because it simplifies
our calculation enormously, it can be partially justified on the
4grounds.that when the‘a—b level separation is large so tﬁat the’
time-dependence of the transition current is important, the
mixing will naturally favor the lower energy state, thereby
reducing the value of 8 and consequently the contribution of the

- .exror in the important off-diagonal term V;a \ When the a-b

nb*
level separation is small, the approximation is valid anyway.
We are led finally to a calculation -of the expectation value

of the hamiltonian (1.5) on the state

|55> - p*lAA>

(2.6)
with the static equations
L ra — N M .
IEAY = - 37 = —?:?A ¥ 3
' 2.7
To make the form of the hamiltonian explicit, write
i
c
. %: Z (?u_éu + ?wdﬂr))
w=35A
(2.8)

where bs and bA annihilate a quark in the symmetric and anti-
symmetric orbitals. (The color, spin, and flavor quantum numbers

have been suppressed.] The terms in A?" which contribute to

second ordex are then

=10-

. a0 T T
AT 2 Ay (s b - dds)
- T
s 2A0 ( bj\ by - da 4a)

AA + +
ap, 1 o - dsd
+ Asf(bf\ l’S t b.‘i l”" AAA’ d A))

oo (2.9)
where the Azs are c-numbers. We have assumed the corresponding
currents are real for brevity. The c-number vector potentials

must satisfy »

.  lal

2 A MM ? A ¥

/ = - w v
AL Vi f
(2.10)

with boundary condition for the corresponding electric and
magnetic fields,

—
-> a4, a

ne Ei“v =0 ; N x B,, = 0.

As will be shown below in Section 3 these conditions can be
arranged to be satisfied by the variational calculation.

Let us consider the explicit expression for the expectation
value of the hamiltonian on the state (2.6). The fermion

contribution is simply

4
) \ﬁJF: = 2us T 2’“%\/“’ .
l-i»'/u’

(2.11)

The gluon contribution may be classified into the six diagrams
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of Fig. 1. It is evident that basically three types of static
gluon interactions are present: one invoiving the S-S5 current
coupling to the S-S current, one for the A-A current coupling to
" the A-A current, and the exchange one involving the A-S current.
Taking into account the spin dependence, we find that each
magnetic interaction either flips spins with respect to the de-
formation axis or does not. Corresponding to each type of inter-
action, we use the labels S,A,X where X denotes the exchange
interaction. We use the label J; to denote spin-flip and z to
denote non-flip. We use the label M and E to distinguish mag-
netic and electric energies.

The basic components of the static gluon interaction

energies are then nine terms of the type

~ g .—7 \/
Y = Lsts ‘:Bssz‘i\/ - jj;sz Assz g

Ms 2
= AV
Wusy = fBSSL RTTEA [ s s
> = AV.
WES - —;‘fEss'Ess aVv + fﬁ55¢55‘
’ (2.12)

Their contribution to the expectation value of the hamiltonian

is given by
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L P RN gy |
cha. = __E: (’Vvﬁqsz ):'aj‘.):'dzz + \~G4512H 0] 'AL 0; )

N

a1 1
. 2 (W )a,z+stJ_)0'|).0';,,
MS%
|+ a_ 1 (a4
/” +W Gt e+ WM 9 RN
sz
a
+ \”JEEK :h:k';\l ta
agl )-)«)
—-ﬁ- (me; ) ;07 “me.L ,"Az.o; N‘é’( '
+
L+ 1,4 1)
(g AT AT T
v 2 (Vhane ™ |
o shyAgd
&-
(W ,*)\ a, +WMAJ. >"¢
4___2:‘«_ MA% x,‘o;l)."a"l'

2
'+/‘" Wz 2 ST O Wi

+ Wex ./\. ) (2.13)

In this expression the terms have been grouped so as to corres-

pond to the Six graphs of Fig. 1. (The third and fourth graph

contribute equally.)

For the p meson with spin projection |ms| =



|
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& .
Near= - 1e/3 PRENELE
\ z ’

e, -
Nertoarnt e ‘le/.3
>‘|¢O—I‘L‘ :-a-‘l = 0.
.>?-01i . )I“(T;% = ,L’/3

Ak et = 32/3.

)

(2.14)

< In the following section we discuss the mechanics of the

variational computation.

3. The ﬁariational Approach to the Quark and Gluon Energies

In this section we discuss the way the variational principle
is put into practice by considering first the component parts
of the éaﬁﬁuéétiéh;as(though they were independené of each other,
and finally, the pesuit of combining them into a simultaneous

variation of all parameters at once.

a. The Bag Geametry
In the present study a three-parameter azimuthally symmetric
surface has been considered, defined in cylindrical coordinates
by
z 2
PRSI ( l+az /d.>
pr= g " n*(1 - 27d%) ’

(3.1)
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where n is the cylindrical radius at z = 0, d is the length of
extension in z and

a=20 ellipse

-l <a<o distorted ellipse - bulge in
middle
0 <ac<l distorted ellipse - flattened

in middle

1l <a peanut shape
a=+wo, n-+0 fission
- < a < -1 - two bags (3.2)

A considerable variety of shapes can be studied with such
a parameterization, although it has a distinct limitation in
that at the point of fission the two bag components have a tear-
drop configuration. This leads to a slight over-estimate of the
two-bag energy at this point which could be remedied byradding

texrms cubic in 2? and higher.

b. Fermion Wavefunction in Isolation

The variational approach to finding the ground state wave
function for the Dirac equation is complicated by the fact that
the hamiltonian is not positive definite. Thus we have chosgn

to minimize the expectation value of the square of the Dirac

hamiltonian . ‘}
i [ gHleadaptcinT om0y /1

. (3.3}

4dVv.

Since the linear boundary condition is not reproduced by an
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unconstrained variation of this expression with respect to q, it

is imposed explicitly in the construction of the trial expression

for q:
= =y - _ Y% (%) on .S
Ld’.ﬁjfx)— 3/3()
(3.4)
Variation of w? with g so constrained leads to the boundary
condition .
P4
. = e XYLV +ABAM
" &en (-AO“V"‘IAM)? = ¥ /8 )Z_
(3.5)

which is compatible with (3.4) when g satisfies thé Dirac
equati-on.6 .

Although minimization of (3.3) leads to an upper bound on
the true value of the square of the ground state energy, it does
not determine the eigenfunction uniquely, since particle and
antiparticle wave functions give the same value for w?. Thus given
any trial function ¢, which minimizes w?, there is a one-parameter
family

95 = ei”/rxfio = w2 fo ¥ At Nle g, (3.6)

which has the same value of w?. To select the function which
‘most nearly represents a state of positive energy, it suffices

to maximize

w, ___‘/‘JV?;(-L@A{}Z/BM);) //‘,{\/?TZ

(3.7}
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with respect to A. Our choice of trial function has the feature
that it maximizes w, automatically, so this step is unnecessary.

For the present study the trial function is

Yu

j-: Lf-?‘fu / !
(3.8)
where U is a Pauli spinor and
P = /5(e)+ «(2)R*
2. OR/» ; 2= 1VRlpg
R'= Ro + f)t—g‘f%)
2o max 4°(2).
ﬁ?o - vﬁé z
(3.9)

The quantity R2 is a genéralization of the square of the spherical
radius. For the sphere it is just rz, and if q2 were sufficiently
general, for a cylinder, it would be p% and for two spherical

2, the radius squared of the individual

bags it would be rlz and r,
spheres. The vector § is constructed so that it is the unit
normal to the surface when evaluated on the surface [p = q(z)].
For the sphere it is ;/Ro and so vanishes\at theiorigin.

The function ?7 depends on two functions of z, which were

parameterized by



-17-

_/55 =1 G(S = cji

Somhn2lhotn = €y Fekgetd

I\

£

(3.10)
for the symmetric and antisymmetric states considered in the
present study. Because g becomes the unit normal 6n the surface
the trial state satisfies the linear boundary condition expli-
citly. A more general function

g u

T linFXu

(3.11)
night be used to improve the calculation. It would satisfy the

linear boundary condition if‘? = x on the surface.

c. Magnetic field

For the calculation of the gluon energy to second order in
the gluon coupling, the self-interaction of the gluons may be
neglected. The magnetic field obeys Maxwell's equations and the

linear boundary condition
- a = a TE?:AA m V
VXBu.V = J = ;u iv
. N .
nx i§ wv - o 2
(3.12)

where q, is the trial fermion wave function for the symmetric or

antistmetric orbital. Both conditions may be achieved varia-
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tionally by writing B2 = yxAa and minimizing

(B E '“‘/74' A AV
we L]® .

(3.13)
with respect to variations in ZX. This procedure is quite
straightforward, except for the added complication that the

current 33, being composed of only approximate solutions to the

Dirac equation, is only approximately conserved. Thus by
replacing Ra . Ra 4 Yy one can make the energy W arbitrarily
negative. A simple remedy is to fix the gauge of Ra by adding

the term

W, — Wu t if(?';\’“)zdv'

(3.14)
If we write x& = V-A2, then minimizing Ep with respect to
arbitrary variations in Ra yields the equations
— a — a N
VB s e VXD a V .
o a a 5,, (3.15a)
AxBY=0 and XTz0 om 2 '
(3.15b)
The first equation yields
2 ) Fa
vV'X*= - v-J ’

(3.16)
and so for a conserved current, gives together with the boundary
condition (3.15b) x® = 0, i.e., no change in Wy If the

current is not conserved, the minimum value of WM is
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gegdv- 4 [(7A) Ay,

(3.17)
where the second term compensates to some extent for the lack of
current conservation. ‘

The trial vector potential was patterned after its exact

expression for the spherical and cylindrical cases:
— A a2
A (f).z): A G'X?A(/))%)
4 ¢
+ +a,R
A((/’;‘?)= a,+ &,k +a, R 3
(3.18)
where the a; are odd functions of z or constants depending on
whether the current represents’ a transition between symmetric and
antisymmetric orbitals or it is diagonal in the orbitals,

respectively.

d. Electric field

The electric field must satisfy

- . a

EE :; = - Y7 96“v in V
e a

V Euv’ = fJuv

AEL =0 in S

(3.19)
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This condition can be satisfied by demanding that the expression

w. = - E~E%dv +ff‘¢‘4"
B 2
' : (3.20)
be stationary with respect to variations in ¢2. Actually the
stationary point in this example is a maximum rather than a
minimum.7
The trial parameterization was chosen in analogy to the

exact solution in the spherical configuration:

# é) >
b= bR+ b RN+ HRE + (ERYHR + b ROIZ]

1 wrFlwe)+ wrih(we),

(3.21)
where the parameters by -~ bg are odd functions of z or constants
depending on whether the corresponding charge density is a tran-
sition charge density or a diagonal charge density. (In.actual

practice only one or two parameters were used to characterize

bo - bs.)

e. Constraint

In the present calculation the constraint is imposed
directly on thé quark wave function. We suppose that left and
right orbitals can be distinguished by an operator zg which has

the property



|
|
|
|
}
]
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2,{%(!) 2 2,’4‘,‘,(1)/' -EK#,%(Z) = 2, Y t2).
(3.22)
Then using (2.2)

§= <2-20 = 2/"(”/‘L)/'l/;{';2’) hz)adv.

¢

,+/“ (3.23)

Thus § measures the average separation of left and right
orbitals. It is naturally linear in u.
The constraint is implemented by adding to the variational

hamiltonian the term

fJ — .*4 t Cy ('5:'3;)1

(3.24)

f. Combined Variational Calculation

Combining the several components of the variational express-—
ion and varying with resbect to all parameters at once leads to
a numbex of interactions among the terms. The equations of
motion for the fermion are altered by the constraint term. Théy
are also modified by the presence of the gluon field. In the
latter case the modification can be interpreted as an approxi-
mation to the introduction of the minimally coupled vector
potential into the Dirac equation. The gluon terms interact among
themselves to some extent with the gluon fields responding to

the total currents to which they couple, as they indeed should.

-22-

4. Preliminary Results and Conclusions

a. Ground States without Constraint
Exact results have been obtained in Ref. 2 for the light
hadrons, assuming a spherical cavity shape. It is interesting
to compare them with the results of the variational calculation.
If the cavity is forced to remain spherical in shape we obtain
a value for the energy of the massless fermion which agrees
extremely well (1.5% high) with the exéct result. Our result
is EQ-R = 2.071, whereas the result of Ref. 2 is 2.043. The
parameter Mg, which measures the strength of the color magnetic
contribution to the energy from massless guarks is not in as
good agreement (25% high). We obtain M., = 0.322, compared
with 0.259 from Ref.2. Since the variational expression yields
an exact solution to Maxwell's equations for the trial current
in the spherical cavity, the discrepancy is undoubfably due to
the fact that errors in trial fermion wave function are re-
flected in the form of the fermion current. This problem could
be diminished by the use of an improved parameterization of the
fermion wave function.
When the shape of the p meson is permitted to deviate from
sphericity, it is found that the energy is reduced. This is to
be expected, since the magnetic dipole field exerts a non-
uniform pressure on the bag surface. In the case of the p mesoﬁ
the deviation from sphericity is prolate for the state with spin
projection.[ms|= 1 onto the axis of deformation and oblate for

the state with spin projection mg = 0. With the zero point energy
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omitted and gluon coupling a = .5 the ratio of the polar radius
to equatorial radius is 1.11 # .01 for the p meson with |mg| = 1.
The reduction in energy for the same state is 0.4%. Thus the
energy levels computed for the light hadrons in Ref. 2 are
expected to remain eééentially unaffected by treating non-
spherical shapes so as to satisfy the non-iinear boundary condi-
tion for the gluon field. The 7 meson is still spherical since

its gluon fields exert a uniform pressure on the surface.

b. Deformed States with Constraint

In the present preliminary calculatién the gluon self-energy
terms in Eq. (2.13) have been omitted, except where they must be
kept in order to satisfy the boundary conditions for the fields.
Six parameters were used to characterize the quark and gluon
fields in addition to the three parameters specifying the surface
and the parameter p specifying the orbitals. 1In Fig. 2 the
deformation energy as a function of the expectation value of the
separation parameter & (3.23) ié presented for two values of the
gluon coupling constant, o = 0.5 and o = 0.0. The energy is given

1/4 174

and separation in units of B~ Calculations

1/4

in units of B
of the masses of the light hadrons2 give B 2 145 MeV or
8% 1.29 fm.

In the presence of gluons the energy rises quite steeply as
the quark orbitals are separated. The slope at large separation
agrees quite well with the result obtained from'the cylinder

. . ...8,9
approximation .

-24~

The slope expected from the cylinder approximation is

AE/ds = Va4m lezx = 5,79

The value from this computation is 6.00. The radius in the i

cylinder approximation is

f) = ¢/7;/;‘;77T = 0807.

The value obtained in this computation is in the raﬁge .800
to .833., In Fig. 3 are presented the shapes of the hadron
corresponding to the various éoints indicated in Fig..Z. The
contribution to the energy from the gluon electric and'magnetic
fields are shown in Fig. 4. The electric field obviously cdﬁtri-
butes the major portion of the energy at large ;eparation with
the volume term giving mosg of the rest. ‘ ~

In the absence of gluons (o = 0) the energy rises briefif
and then plateaus at a value about 10% higher than the actual i
energy of two bags with one quark each. If we consider the
shape of the bag, shown in Fig. 3, we see that the n ck
radius shrinks to zero in the bag without gluons, indicating
that it undergoes fission. The 10% energy difference can be
attributed to the inadequacy of the three-parameter description
of the surface, which causes the two bags to assume a tear-drop

shape at the point of fission.

e e~
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Figure Captions

Diagrams for the gluon coupling to second order in
perturbation theory.

1/4

Total energy of the bag in units of B 2~ 145 MeV as a

function of the average separation of the quark orbitals

1/4

§ in units of B~ for two values of the gluon coupling

constant. The shape of the bag at points A,B, and C is
indicated in Fig. 3.

Shape of one quadrant of the bag in longitudinal section at
the four points A,B, and C of Fig. 2. The z-axis is the
symmetry axis.

Contribution to the total bag energy from the color electric
and color magnetic field in units of 51/4 versus the average

separation of the quark orbitals §, for two values of the

gluon coupling constant.
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