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ABSTRACT

1

The MIT bag model for hadrons is treated in the static

cavity approximation in three dimensions with a definite quark

number. The energy of the system is computed to second order
*
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described which permits the calculation of the energy as a

function of a collective variable. The bag cavity is permitted

to assume whatever shape is necessary in order to minimize the
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The method is well-suited for the calculation of the nuclear                ;,

potential -- in particular, the short range component of the               ·4
d.

two-nucleon force. In a preliminary study presented here, the              '

method is applied to a bag containing one quark and one anti-

quark and the energy as a function of the separation of the                ':.

1

quarks is evaluated.
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.
' where n is the unit outward normal to the surface. The quark1.  Introduction                                                                                                                                                     i

1 wave functions are

normalized  so   that                                                                                                I

The MIT bag model of hadrons  in the static cavity·

approximation accounts remarkably well for the masses of
the

f,· 1- n,n2                                                                    X -  3  .
light hadrons (the octets of pseudoscalar and vector mesons

and the lowest baryon octet and decuplet). The ingredients of (1.4)

the model are appealingly simple: the,currently fashionable3                                             They must also satisfy a quadratic boundary condition which is

discussed below.combination of quarks of three colors and three or four flavors

and an octet of colored vector gluons, confined to a finite For a cavity of arbitrary shape containing only quarks, the

volume by a uniform pressure, the key innovation of the model. hamiltonian to second order in the gluon coupling may be written

Non-strange quarks are massless, the hadronic mass'scale being
-:   et.  v      +   p  »,)   1   :           -          f  J  \1       F         F./. "H -   f 61 : 11 C J        rset by the confining pressure.

In the static cavity approximation2 the quark fields are                                                                                                4

+  gf Av  i; AY    +   f-Biv    +   E, (v),
expressed in terms of the fermion creation and annihilation Cl.5)           i

operators for the cavity eigenmodes

-Co.tt  _f .r lw.t 't)
where the gluons behave like Maxwell fields to this order:

 (x,t) =     ( 1.(St) C      94  '   ac..le    *L.
Cl.1) 5i-     JrAC     -   1, A; (1.6)

,1

where qn satisfies the Dirac equation for energy wn inside the

cavity
ir  -   2: i b.y r f:                                 c'.,

(-1 2.V + PM) 1'.(i) =  C * 1."LE)
. 4 4/.v(1.2)

3/F/1   -     1 4   in \1   444  nrF     = O  on  S.
and the linear boundary condition on the surface of the cavity Cl.8)

In. the usual notation g is the gluon coupling constant, Aa           /

ii. A  1-LE)  =   -ED  1*(i)
,

are  the  3x3  matrix  generators  of  color  SU (3)  normalized  so  that

(1.31 tr (Xa12 = 2. Because  of the linear boundary condition on Favv,

l
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only color singlet states can exist. The constant B is the term the energy is particularly simple, one faces the difficult task

which provides the confining pressure and is renormalized by the
of solving the Dirac equation and Maxwell's equations in a cavity

zero-point energy of the fields. The finite part of the gluon of arbitrary shape subject to the various linear boundary
and fermion zero-point energy is given   by Eo, which depends on conditions -- a task which is impossible analytically.  Various
the shape of the cavity. The fermion energy term is accordingly numerical and approximate techniques are available, however.

normal-ordered.  To find E (V) it is necessary to know the sum One could set up a coordinate mesh and solve the equations

of the eigenfrequencies for all fermion and gluon modes for a numerically.  A variational approach was taken instead, since it

cavity of arbitrary shape.  This problem is not addressed here. was readily adaptable to the problem of fixing a chosen collective

The order of magnitude of E  (V) is known from studies of the variable.  Trial fermion wave functions qn and trial gluon vector           j

light.hadrons, and its effect can be estimated qualitatively.2
potentials   A 

are constructed   for the ground state.      For a given
However, we have omitted it from our calculations of greatly fixed shape the parameters

characterizing q and A 
are varied

distorted shapes. and the stationary point

The shape of the cavity is determined by requiring that the

expectation value of the hamiltonian be minimized with respect ;  <   f (v)   114     112(v)>     =    o

to variations in its shape. This procedure results in imposing
(1.10)

a non-linear surface boundary condition on the fields, which can is located.  Actually the precise form of the hamiltonian (1.5)

be interpreted as balancing the field pressure against B, but for cannot be used, but if some care is taken the stationary point

computational purposes it is more useful to impose the boundary of the proper variational expression provides an approximation

condition variationally.  Thus for a given state to the solution of the Dir.ac and Maxwell equations and the -linear

i Y(V) > boundary conditions.

the condition Thus the problem can be regarded as being entirely varia-

i    <  4(v)  I    HI   11' C  v) >    = 0 tional with respect to the parameters characterizing the cavity

SV                                                                                                                                                                           shape  and wave functions. To find the energy as a function of

(1.9) the expectation value of an operator /,

determines the shape of the hadron.

Without knowing  in advance that the shape that minimizes d    =      < 1' (V)  I   o I  *(V)> *

(1.11)
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one simply adds the usual constraint term to the hamiltonian the gluon interaction switched off. Since the gluons are essential

H --- kl - 3 e
in ensuring that bag states have zero trialityl it is expected

(1.12) that in the absence of gluons, a two-quark bag could be pulled

and  from the stationary point, obtains  E (A)   and  8' (A). Because apart into two bags of a single quark each. Indeed, our compu-

A = dE/do may have multiple solutions the method of Flocard tation yields the expected result.

et al.4 was used instead, with the replacement The preliminary calculation, although not providing new

results, serves as a means of testing the concepts and techniques

H    -       H       +      c   (3- 9): of the computation.  These techniques will be applied in the ,

(1.13) calculation of the fission of a six-quark bag and a bag con-

The parameter c is chosen to be large enough that the quadratic taining a pair of quarks and antiquarks. These applications are

term  as a function  of  )  has a larger curvature  than  E (9 ). relevant to the study of the nuclear force and the decay of

When the constrained hamiltonian (1.12) is minimized, the resonances.

equations of motion and the boundary conditions are altered by                                                                                              I
the constraint. Since the new form of the equations of motion 2.  Quasi-Degenerate Second Order Perturbation Theory5

and boundary conditions can be rather complex, depending on the In the present calculation the separation of the quarks is

nature of the constraint, the variational approach is a con- achieved by constraining the orbitals to separate into a left

venient vehicle for the formulation of the constraint. orbital and right orbital while preserving the spatial symmetry

In the present manuscript we report the results of a pre- of quark occupation, which is present in the undistorted configu-

liminary calculation for a bag containing a quark and an anti- rations of the low lying mesons. Thus the spatial part of the

quark -- in particular we have considered the state corresponding wave function is

to the p meson with spin projection Ims' = 1 on the axis of

4(i, 2) =  11,6 (1)1·R (20 + 11.RO) 1.,12)deformatfon.  Its deformation as a function of the separation
(2.1)

of the quarks has been studied. We obtain the expected result
Expressing the left and right orbitals in terms of orthogonal

that the energy grows rapidly with quark separation, with a
symmetric and antisymmetric orbitals, we have

linear increase at large separation. We have also carried 6ut

the computation of the deformation of a quark-antiquark bag with
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4'      =    1|,s   - /* i      ;         1 R   =    lt,    + r 11'A the expression
11

L

E  -   loil' (  E„ +        1 \4,1.   )    +   'f l.(E6  +     1,)6.6
4 (44  -   45 0) i (4  - ri 1kAL V '*Alz). E0 - EnEo- E„

(2.2) * Vnk
+     2   Re  of '    7      VM"Thus we are led to consider a mixture of two orbital configurations

ED-En (2.4)

$2 and A2 with the mixing parameter u2 ranging from 0 to 1 for

maximal to minimal overlap between the orbitals. The mixing where
2

parameter v is to be determined variationally by minimizing the
1.1, la>  =    E. 1 © <n l  VIA>   =    Vni

constrained hamiltonian.

NOIL> = E,16> <n i   V 16>  =     \/n 6
The object of the present study is to calculate the separa-

tion energy of the quark-antiquark system to second order in the

gluon coupling.  If we regard the gluon interaction as a per- E   =      1 411-  Ed- +    I f l l  Eb  . (2.5)
turbation on the free fermion hamiltonian, the calculation reduces

to an exercise in stationary second-order perturbation theory. This result is obtained by an elementary variational calculation.
Since the levels 52 and A2 become degenerate if the bag were to With B=O i t reduces to the usual expression.  With Ea =E b i t

fission, it is necessary (expecially in anticipation of future gives the usual eigenvalue problem for degenerate perturbation

fissi6n calculations) to use quasi-degenerate perturbation theory: theory.

Given a hamiltonian H  and perturbation V, let the perturbed In our application the perturbation V is the elementary

ground state be expressed as a linear combination of the lowest two-quark, one-gluon vertex with fields expressed in terms of the

(normalized) unperturbed states: unperturbed cavity eigenmodes. The state n consists of one gluon

0 6 1  43   +   B 1 6> mode in addition to quark and anti-quark modes.      We   have   made   a                                               '

(2.3) number of simplifying approximations to Eq(2.4).  For the dia-

where la 12 + 1812 = 1.  If the potential V does not connect a gonal terms in IV a 12 and IV b 12 we have kept only the quark

and b to first okder, then the ground state energy to second states a and b plus one gluon in the sum over n. Furthermore

order in V is obtained by minimizing with respect to a and B we neglect the difference between E0, Ea' and Eb in the

denominators of the terms second-order in V. The latter approxi-
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A't' =    2  A;51   C  1'1  6,    -  11: 4, j
mation has the effect of rendering all gluon fields stationary.

Although we are drawn to this approximation because it simplifies + 2 A"ti ( 61  A - It 1,)AA
our calculation enormously, it can be partially justified on the

t   i       _  At    4-1  -      1 0 3
grounds.that when the a-b level separation is large so that the·

, AirC 0  Ls +
6+ DA   A  )

time-dependence of the transition current is important, the

mixing will naturally favor the lower energy state, thereby
(2.9)

reducing the value of B and consequently the contribution of the
where   the  A    are   c-numbers.      We have assumed the corresponding

error in the important off-diagonal term VAa Vnb.  When the a-b
currents are real for brevity. The c-number vector potentials

level separation is small, the approximation is valid anyway.
must satisfy

We are led finally to a calculation of the expectation value

of   the   hamiltonian    l l.5)o n the state g' A T2*, - 9 F. A * irl, 1
155>     - FVAA> (2.10)            |

1 I with boundary condition for the corresponding electric and
(2.6)

magnetic fields,
with the static equations

A.  El   =  0,       A g D i,   =  o.

91Aar =   - JAr=  _ 2:  A43/;: . As will be shown below in Section 3 these conditions can be
(2.71

arranged to be satisfied by the variational calculation.
To make the form of the hamiltonian explicit, write

Let us consider the explicit expression for the expectation

e  =     I         (  1.6,4    +    ff Oe),
value of the hamiltonian on the state (2.6). The fermion

0      1= €A contribution is simply
(.2.81

where bs and bA annihilate a quark in the symmetric and anti- 2 ws  ¥  1 wAr 
 F =

symmetric orbitals. (The  color,   spin, and flavor quantum numbers
1 + 2+alihave been suppressed.1 The terms in A which contribute to

(2.11)
second order are then

The gluon contribution may be classified into the  six diagrams
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of Fig. 1. It is evident that basically three types of static 4  2 'cl -2   \./  . 140'1 \A

\ 61  =   314 < WM 52 x, 65  . AL u 1  + VvMS.1-"a  ' ' Al 0;1/)gluon interactions are present: one involving the S-S current
1 + r

coupling to the S-S current, one for the A-A current coupling to
, id-1.,4 /1

the A-A current, and the exchange one involving the A-S current. A·/r-*\Acrt   +  AJMs.1./ ,   '    ,
1

Taking into account  the spin dependence,  we  find  that  each                                                                        +     WM 52     1  W'     /11     1

magnetic interaction either flips spins w
ith respect to the de-

- 4 4 2 A,40;2 + WNXIA,ae'l. A'.dil+  MX* A'
formation axis or does not.  Corresponding to each type of inter-

A \ Ah
action, we use the labels S,A,x where X denotes the exchange

-le  WEE  .),1  . /'1   /

4 -1  4   1interaction.  We use the label 1 to denote spin-flip and z to

A24"AZOi'+WMX-LA' 5--'AL (Ii  +42'13)denote non-flip. We use the label M and E to distinguish mag-

. 34( WMilnetic and electric energies.

The basic components   o f the static gluon
interaction                                                                                                                                   a.       2        -022  +  'NM A.LA,   (71 1.  >12·01.L  )

energies are then nine terms of the type +  2/2'  ( \,4,Al >" 4  '  ***
W                                 1    f  i              ·   TE:, 2  .t V     -    j  555 2  '  /55 2

44 1 +r052 - 1 J 552 & 1 k 1
1    A         .2  j : (TI t  +   V#MA  1   )"   ';     4   GI

W           1  (B     . 13    JV -j   ssi     ss.L[3 ·A 'W
. 2'2  ( WMAL A. di   '.M51 - i J ssi ssl 4     1    L     1

f  ,    A    W. I
*r* +  V /IvIX, Ardi 2,1.Lai* + WM)(1,1 1  Al di.I fi   .      AN  +  j Fss TssW E S    =   -S j     55 55

t  Ex >' A:-')
(2.13)

(2.12) In this expression the terms have been grouped so as to corres-
Their contribution to the expectation value of the hamiltonian

pond to the Six graphs of Fig. 1. (The third and fourth graph
is given by

contribute equally.)

For the p meson with spin projection  ms' = 1
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1  4  2  *  =      - 1 6/3 > 3  X 1 4   = 1 6/3 where n is the cylindrical radius at z = 0, d is t
he length of

A; 42. )14012. -16/3 a=0 ellipse

 t 1- extension in z and

-1<a<0 distorted ellipse - bulge in                    1
1  8-  rr -1. A: 0-,1   = 0. middle                                          i
P, Vi

) i  42  .   I  L (r; 2   =
16/3 0<a<1 distorted ellipse - flattened

in middle                                       i

1 1 4/-1.  · ,a. a.:1  0 32/3 1<a peanut shape
/,1    1

a+ co,n+0 fission                                         !
1

-<a<-1 · two bags (3.2)

(2.14)

A considerable variety of shapes can be studied with such                  
'

  In the following section we discuss the mechanics of the
\. a parameterization, although it has a distinct limitation in                   '

variational computation.
that at the point of fission the two bag components have a tear-

drop configuration. This leads to a slight over-estimate of the                
3.  The Variational Approach to the Quark and Gluon Energies

two-bag energy at this point which could be remedied by adding
In this section we discuss the way the variational principle

2terms cubic   in   Z and higher.
is put into practice by considering first the component parts

of the comiputation,as , though   they were independent   of each other, b. Fermion Wavefunction in Isolation
2

and finally, the result of combining them into a simultaneous The variational approach to finding the ground state wave

variation of all parameters at once. function for the Dirac equation is complicated by the fact that

the hamiltonian is not positive definite.  Thus we have chosen
a. The Bag Geametry

to minimize the expectation value of the square of the DiracIn the present study a three-parameter azimuthally symmetric

hamiltonian
surface has been considered, defined in cylindrical coordinates

by c*  =   f  1+ C c w.9 +P»0 (-,<.3 + p.) i 4v/ f 1ttlv.

yal  ( 1 + a 21/19,
P L   =      11(2)   =      n z(1-

2 (3.3)

Since the linear boundary condition is not reproduced by an
(3.1)

..».                            -                                                                                                                        ..- ..I-   1
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unconstrained variation of this expression with respect to q, it with respect to X. Our choice of trial function has the feature

is imposed explicitly in the construction of the trial expression that it maximizes wx automatically, so this step is unnecessary.
for q:

- / tpu  ,

For the present study the trial function is

i Z A 1 (7) =   - 701
(50 OYL ...

  -  C ir.Tfu),
(3.4)

Variation of w 2 with q so constrained leads to the boundary
(3.8)

condition where U is a Pauli spinor and

S. A (- al.9+ Mi) 1 = -5.(-Cut.V-+18„01 Lf .  (2) + O*(2) Rl
(3.5) 7 . FR/, , ,-1 VR 'f=*,2,

which is compatible with (3.4) when q satisfies the Dirac

6                                                                                                   Ri- 2    * 2 +   1--  1, (2)equation.

Although minimization of (3.3) leads to an upper bound on
RD 1  2       V' AX   12(2)e

the true value of the square of the grbund state energy, it does

not determine the eigenfunction uniquely, since particle and
(3.9)

anti.particle wave functions give the same value for w2.  Thus given
The quantity R  is a generalization of the square of the spherical

2

any trial function go which minimizes w 2, there is a one-parameter radius.  For the sphere it is just r2, and if q2 were sufficiently               I

family general, for a cylinder, it would be p · and for two spherical

AA<4
bags it would be r12 and r22, the radius squared of the individual

Sh = e     50     -I bb spheres. The vector s is constructed so that it is the unit4       -   000  3   d        +   4-t  i  Yo 15.  0 -) (3.6) ..

which has the same value of w 2. To select the function which
normal to the surface when evaluated on the surface [p = q(z)].

most nearly represents a state of positive energy, it suffices For the sphere it is $/Ro and so vanishes at the origin.

to maximize The function   depends on two functions of z, which were

02 - f.whi  (-i al,·e + p™) th / f 14 fl parameterized by

(3.7)

i
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=1 0 s  =  CiS                                                                     tionally by writing da = Vxla and minimizing

BA    =    it  16  9,2/1               04    =     c,   .2,<,  1
, /C Z/

W.1 =      1  .1  8.. E..,lb'    - ·  f Y:  ii'.,/ v1

(3.13)

(3.10) with respect to variations in X.  This procedure is quite

for the symmetric and antisymmetric states considered in the straightforward, except for the added complication that the

present study.  Because & becomes the unit normal on the surface current 3a, being composed of only approximate solutions to the

the trial state satisfies the linear boundary condition expli- Dirac equation, is only approximately conserved. Thus by

citly.  A more general function replacing Xa  + Ka + 90 one can make the energy W arbitrarily

/   q u .1 negative.  A simple remedy is to fix the gauge of *a by adding

.. = l LF.lxu/ the term

,     It  v ..A·r  a V .
(3.11)  M A  AJM +  i J i.

might be used to improve the calculation.  It would satisfy the (3.14)

linear boundary condition   if   f  =   X   on the surface. If we write Xa = V.Aa, then minimizing EB with respect to

arbitrary variations in Xa yields the equations
c.  Magnetic field

For the calculation of the gluon energy to second order in
9  X  F A.    =        ' 4   +     V X A-       '.4       

(3.15a)
the gluon coupling, the self-interaction of the gluons may be

A    x  N  4   =     O         4..i         *  A  =   O     0,1      •S 

neglected.  The magnetic field obeys Maxwell's equations and the
(3.15b)

linear boundary condition

9 x :61 =  1   =  1'.t1A..1,  i. 
V The first equation yields

-

V  1% 4    =         -    v·  LT'
A     ZE  a.

A       A S (3. 16)n X  D w  =   v
and so for a conserved current, gives together with the boundary

(3.12)

condition 0.15b) Xa = 0, i.e., no change in WM.  If the
where qu is the trial fermion wave function for the symmetric or

current is not conserved, the minimum value of W  isantisymmetrtc orbital.  Both conditions may be achieved varia-

L.
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f -C. -A I.,_ 12 f (V· A*) olv, This condition can be satisfied by demanding that the expression

WA    =          -1   J   B     .8      «  v                  J

WE = - Ji   4E- -LV +  f  "+4/V
(3.20)

(3.17) be stationary with respect to variations in $a.  Actually the

where the second term compensates to some extent for the lack of stationary point in this example is a maximum rather than a

current conservation.                                                               7minimum.

The trial vector potential was patterned after its exact The trial parameterization was chosen in analogy to the

expression for the spherical and cylindrical cases: exact solution in the spherical configuration:

K.(T,21 = X. 2' x,r A((,f) =    6 R 2+  6, R'+ + 6 Rk   +  (4£564/20* 4.29/374

A ( f, 42 ) =  a.o + a., R L + a.1 R4 + <3 R d,
(3.18) + w, r 1 (uoe) + War313(008),

where the ai are odd functions of z or constants depending on

whether the current represents a transition between symmetric and
(3.21)

antisymmetric orbitals or  it is diagonal in the orbitals, where the parameters bo - b5 are odd functions of z or constants

respectively. depending on whether the corresponding charge density is a tran-

d.  Electric field sition charge density or a diagonal charge density. (In actual

The electric field must satisfy practice only one or two parameters were used to characterize

bo - b5·)

Fl   '   -V 96 L:    1   i. V e. Constraint

V   E 1.   =        f.1
4                                                In the present calculation the constraint is imposed

directly on the quark wave function. We suppose that left and
-4' *

in     .S' . right orbitals can be distinguished by an operator zR which hasA. E »v  = 0
(3.19) the property
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4.  Preliminary Results and Conclusions

2  1!k  ( ' )    =     2,  '11|8  6 1)   /:        2·R  '   (2)    =     21   /1  
(2).

a.  Ground States without Constraint

Exact results have been obtained in Ref. 2 for the light
(3.22)

hadrons, assuming a spherical cavity shape. It is interesting
Then using U.21

to compare them with the results of the variational calculation.

3 =   < eg- EL  =

"It';f,f i c„  ,«c„, 1,
If the cavity is forced to remain spherical in shape we obtain

a value for the energy of the massless fermion which agrees
(3.23)

extremely well (1.5% high) with the exact result. Our result
Thus 4 measures the average separation of left and right

is EQ·R = 2.071, whereas the result of  Ref. 2 is 2.043.  Theorbitals.  It is naturally linear in u.
parameter M which measures the strength of the color magnetic                   '00The constraint is implemented by adding to the variational
contribution to the energy from massless quarks is not in as

hamiltontan the term
good agreement (25% high). We obtain M = 0.322, compared

00

A  -*    9  +   cs (5- So)k with 0.259 from Ref.2. Since the variational expression yields

f. Corobined Variational Calculation the fact that errors in trial fermion wave function are re-

(3.24) an exact solution to Maxwell's equations for the trial current

in the spherical cavity, the discrepancy is undoubtably due to

Combining the several components of the variational express- flected in the form of the fermion current. This problem could

ion and varying with respect to all parameters at once leads to be diminished by the use of an improved parameterization of the

a number of interactions among the terms. The equations of fermion wave function.

motion for the fermion are altered by the constraint term. They When the shape of the p meson is permitted to deviate from

are  4160  modified  by the presence  of the gluon  f ield.     In the sphericity, it is found that the energy is reduced. This is to

latter case the modification can be interpreted as an approxi- be expected, since the magnetic dipole field exerts a non-

mation to the introduction of the minimally coupled vector uniform pressure on the bag surface. In the case of the p meson

potential into the Dirac equation. The gluon terms interact among the deviation from sphericity is prolate for the state with spin

themselves to some extent with the gluon fields responding to projection Ims'= 1 onto the axis of deformation and oblate for

the total currents to which they couple, as they indeed should. the state with spin projection ms = 0.  With the zero point energy
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omitted and gluon coupling a = .5 the ratio of the polar radius The s]ope expected from the cylinder approximation is

to equatorial radius is 1.11 t .01 for the p meson with Im 1 = 1.

/=i/30£         =    F. 71The reduction in energy for the same state is 0.4%. Thus the LE  / 15    =

energy levels computed for the light hadrons in Ref. 2 are

expected to remain essentially unaffected by treating non- The value from this computation is 6.00. The radius in the

spherical shapes so as to satisfy the non-linear boundary condi- cylinder approximation is

tion for the gluon field. The A meson is still spherical since

f    =     ;'i            =     .  5 0 7.its gluon fields exert a uniform pressure on the surface.

The value obtained in this computation is in the range .800
I b. Deformed States with Constraint

to .833.  In Fig. 3 are presented the shapes of the hadron
In the present preliminary calculation the gluon self-energy

corresponding to the various points indicated in Fig. 2.  Theterms   in   Eq.     0.13)   have been omitted, except where   they  must   be
contribution to the energy from the gluon electric and magnetic

kept in order to satisfy the boundary conditions for the fields.
fields are shown in Fig. 4. The electric field obviously contri-

Six parameters were used to characterize the quark and gluon

butes the major portion of the energy at large separation with
fields in addition to the three parameters specifying the surface

the volume term giving most of the rest.
and the parameter P specifying the orbitals. In Fig. 2 the

In the absence of gluons (a = 0) the energy rises briefly
deformation energy as a function of the expectation value of the                                                                                           '

and then plateaus at a value about 10% higher than the actual
separation parameter 6 0.2 3)i s presented   for two values   of   the

energy of two bags with one quark each. If we consider the
gluon coupling constant, a = 0.5 and a = 0.0.  The energy is given

shape of the bag, shown in Fig. 3, we see that the n ck1/4 -1/4in units of B and separation in units of B Calculations
radius shrinks to zero in the bag without gluons, indicatingof the masses  of the light hadrons2  give  Bl/4 82:  145  MeV  or
that it undergoes fission. The 10% energy difference can be8-1/4= 1.29 fm.
attributed to the inadequacy of the three-parameter descriptionIn the presence of gluons the energy rises quite steeply as
of the surface, which causes the two bags to assume a tear-drop

the quark orbitals are separated. The slope at large separation
shape at the point of fission.

agrees quite well with the result obtained from the cylinder

approximation8,9.

'

I
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confidence to the more difficult problems of resonance decay

and the nuclear force, where confrontation with experiment is

possible.
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