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PREFACE 

The work reported herein was performed as part of the base technology 

activity urider the Flow Induced Vibration Programs (189a<'Nos. CA054 and 

CA070) sponsored by ERDA/RDD. The overall objectiveof the activity is 

to develop new and/or improved analytical methods and guidelines for 

designing LMFBR components to avoid detrimental flow induced vibration. 

Heat exchanger tubes and reactor fuel pins are long, slender, beam­

like components typically arranged in bundles and immersed in a flowing 

liquid. • As such, they are susceptible to flow induced vibration. The 

excitation mechanism may be associated with vortex-shedding, fluidelastic 

interaction, or random pressure fluctuations in the turbulent flow. 

Designing to avoid large amplitude motion, that is, to avoid a resonance 

condition.or instability condition, and the prediction of component 

response, require knowledge of the dynamic behavior of the components. 

However, cylinders in a closely spaced bundle do not respond as single 

cylinders immersed in a liquid, rather, interaction with the liquid causes 

coupled motion of groups of cylinders. The fundamental natural frequency 

of the coupled system will be lower than that of a single cylinder immersed 

in a liquid. 

Understanding and modeling fluid/structure interaction in cylinder 

bundles is a basic requirement in the development of analytical methods 

and guidelines for designing•heat exchanger and reactor fuel assemblies 

that a.re free. from component vibration problems. As a step toward satisfying 

• this requirement, in this report, an analytical and experimental study of 

tube banks vibrating in liquids is presented. Firstly, a. general method 

of analysis is presented for free and forced vibrations of tube banks 

including tube/fluid interaction; numerical results ar.e given for tube 

banks subjected to various types of excitations. Secondly, two cantilevered 
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tubes are tested in a water tank; the natural frequencies and forced 

responses of coupled motion are measured. Experimental data and analytical 

results are found to be in reasonably good agreement~ 

The analytical method presented is currently being extended to account 

for the flowing fluid in tube banks and will be used in the development 

of the mathematical models for crossflow- and parallel-flow-induced 

vibrations of tube bundles. Those models will be useful in predicting 

the response of tube bundles and in design to avoid detrimental vibration. 
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ABSTRACT 

Flow-induced vibration in heat exchanger tube banks is of great 

concern, particularly in high performance heat exchangers.used in nuclear 

reactor systems. In this report, an analytical and experimental study of 

the general dynamic characteristics of tube banks in liquids is presented. 

First, a method of analysis is presented for free and forced vibrations 

of tube banks including tube/fluid interaction; numerical results are given 

for tube banks subjected to various types of excitations. Second, two 

cantilevered tubes are tested in a water tank; the natural frequencies 

and forced responses of coupled motion are measured. Experimental and 

theoretical results are in reasonably good agreement. 



·~ 

-11-

I. INTRODUCTION 

Flow-induced vibrations of heat exchanger tubes have been studied 

extensively, either because of excessive noise or because of resultant 

damage [1,2]. The problems become more serious in high performance heat 

exchangers used in nuclear reactor systems. In the past, analytical 

studies were primarily made based on a single tube consideration; i.e., 

considering the motion of a single tube in a tube bank to establish the 

critical flow velocity at which large oscillations occur. Little effort' 

has been made to include the fluid coupling effect. 

In a tube bank, the motion of a tube will excite the surrounding 

ones due to fluid coupling; therefore, the tubes in a tube bank will respond 

as a group, rather than as a single tube. Unfortunately, the existing 

mathematical models for tube-bank vibrations are not based on the coupled 

vibration modes. The objective of this report.is to provide some addi­

tional insight into the general dynamic characteristics of coupled tube/ 

fluid vibration such that a better mathematical model incorporating fluid 

coupling effect may be developed. 

Fir_st, a general method of analysis is presented for free and forced 

vibrations of tube banks including tube/fluid interaction; numerical 

results are given for tube banks subjected to various types of excitations. 

Second, two cantilevered tubes are tested in a water tank; the natural 

frequencies and forced responses of coupled motion are measured. Experi­

mental and theoretical n~sults are in reasonably good agreement. 



II. ANALYSIS 

A. Tube/Fluid Interaction 

An elastic tub~ bank subject to a fluid flow experiences complicated 

fluid forces. Those forces may be classified as steady-state.and 

fluctuating components, or force components as functions of displacement, 

velocity, and acceleration. It is beyond the scope of this paper to 

consider all forces associated with tube banks vibrat.ing in a flowing 

fluid; rather, this study is restricted to the case of tube banks vibrating 

in a stationary fluid. 

Consider a tube bank consisting of k tubes whose axes are parallel 

to the z~axis (Fig. 1). Each tube can move in the x andy di:rections. 

Let ui and u~+i designate the displacement components of tube i in the 

x and y directions respectively. The fluid inertia forces acting on 

tube i are given by Fi in the x direction and Fk+i in they direction. 

F. is given by [3] 
1. 

2k 2 
a u. 

F. = I y ij 
___J_ 

1. j=l at
2 

i = 1' 2' 3, . • . • 2k 

(1) 

where .t is time and yij is the added mass matrix. 

be written 

Equa~ion (1) may also 

I" 
( 

(2) 

where Ri is the r·adius of tube i, p is fluid density and vi.· is the added 
.J 

mass coefficient m~trix .. Whsn all tubes are of the same radius, yij is 

equal to v1j multiplied by th.e fluid mass displaced ·by the tube. 

Since y ij is symmetric [ 3] , for a group of k tubes, it possesses 

2k eigenvalues, designated by J.li (i = 1 to 2k). the eigenvalues of the 

matrix yij for a tube bank pJ~y the same role as the added mass for a 

solitary tube; those eigenvalues are called effective added masses. 



Fig. 1. Schematic of a group of tubes vibrating in a liquid 

I ..... 
w 
!· 
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The computational procedure for y .. is given in Ref. 3 based on the 
~J 

potent~al flow theory. It must be kept in mind the limitation of a potential 

flow analysis when applied to real-fluid flow analysis. 

B. Equations of Motion 

Consider the motion of a group of k tubes in a liquid. ·The equations 

of motio·n are [3] 

. 2 2 
aui a ui k 
-a- + mi -2- + l 

t at j=l 

2 a u. 
__.1 = ei 
at

2 
(3) 

where mi is tube mass per unit ·length, Eili is flexural rigidity, ci is 

damping coefficient, e. is excitation force, and the other variables have 
~ . 

been defined previously. Note that the variables with the index i (or j) 

from 1 to k are associated with the motion in the x direction while from 

k+l to 2k in the y direction. For simplicity, the simply-supported end 

condition is considered; i.e., at x = 0 and t, 

and (4) 

where t is the length of the tubes. Without loss of generality, the initial 

state of the tubes ruay be assumed as follows: 

ui(z,t)j . = gi{z) 
. t=O 

and (5) 

aui(z,t) 

at 
t=O 

Equations (3), (4), and (5) are the cbmplete mathematical statement of 

the problem. 

Let 

co 

l 
n=l 

q .(t)cj> (z) 
n~ n (6~ 
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where~ is the nth orthonormal function of the tube in vacuo; i.e., 
' n . 

} J.JI. ~ (zH · (z)dz = o 
)(, 

0 
m n mn 

Using Eqs .· (3), (5), (6) and (7) yields 

[M]{Q} + [C]{Q} + [K]{Q} = {P} 

and 

{Q}t=O = {A} 

{(Ht=O = {B} 

(7) 

(8) 

(9) 

where [M], [C], and [K] are symmetric matrices with elements mij' cij' 

and k .. , and {P}, {A}, and {B} are generalized· force, initial displacement, 
nl.J 

and initial velocity with elements pni' ani' and bni' in which 

cij = ci oij 

2 
knij = miwni 0ij 

t 
1 I . p . = - e.~ dz n1.. 2 

0 
1. n 

Q, 

b . = + I h.~ dz n1. )(, 
0 

1. n 

and wni is the nth natural frequency (in radian) of tube i in vacuo. 

C. Free Vibration 

For free vibration, neglect damping and forcing ·terms and let 

{Q} = {Q}exp(H"lt) 

(10) 

(11) 

Natural frequencies and mode shapes of coupled tube/fluid vibration are 

computed from the undamped homogeneous equations 

(12) 
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Let [S] be the weighted modal matrix formed from the columns of eigen-

vectors, it is easily shown that 

[ST K S] . - [A] 

and (13) 

[ST MS] = [I] 

where [I] is an identity matrix and [A] is a diagonal matrix formed from 

the eigenvalues n2
• 

In many cases, the tubes in a heat-exchanger tube bank may be considered 

to be identical. Furthermore, it is assumed that all tubes have the same 

mass m (mi = m), natural frequency wn (wni = wn). In this case, Eqs. (12) 

become 

(14) 

It can be shown that the solutions of Eq. (14) are given by 

(15) 

i = 1, 2, 3, 2k 

n = 1, 2, 3, co 

where ~i is the effective added mass, and nni is the natural frequency of 

a coupled mode. Equation (15) shows that the natural frequency of a 

coupled mode can be calculated from the natural frequency of a single 

tube and the effective added mass. 

D. Forced Vibration 

The responses of tube banks to an excitation can readily be calculated 

from Eqs. (6), (8), and (9). In.many practical situations, the damping 

matrix may be assumed to be proportional to the stiffness matrix K or 

the mass matrix M. Let . 
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{Q} = [S){W} (16) 

Using Eqs. (8), (13), and (16) yields ·a set of uncoupled modal equations: 

2 2k. 
w . + 2~ .n .W . + n .w . = I s njP n 

nJ nJ nJ nJ n] nJ i=l n~ n~ 
(17) 

i 1, 2, 3, 2k 

n = 1, 2, 3, co 

~ni is the modal damping ratio of the coupled modes. Equations (17) are 

easily solved and the tube responses can readily be computed. 

E~ · Response to Random Force Inputs 

The method developed above-gives the tube response to deterministic 

force inputs. In many cases~ the forces are not completely predictable. 

The response to a random input will, in general, be random itself. If 

the average values in the random process are constant with time it is said 

to be stationary. The general solution for the steady state random case 

is considered. 

The steady-state solution for w . obtained from Eq. (17) is n1 

2k. 

wni = I s . iH . (n) p . 
j=l nJ n1 nJ 

where 

2 2 -1 
Hni(n) = [ (n . - n ) + 2r-i r.: 

1
n 1n] · n1 .n n 

(18) 

Using Eqs. (6), (10), (17), and (18), we can show that the mean-square 

-2 displacement u.(z) is 
. 1 

{19) 

where ~ is the power spectral density of the displacement and is given u.u. 
1 1 

by 
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0) 0) 2k . 2k 2k 2k .. 

r L r L L s=r .. l 5nim5ntJ· 8mir8msriHnj (Q)Hmr(n) I 
n=l.m=l j~l i=l r=l 

• ~ (z)$ (z')I n(Q) n m · nms)l, 
(20) 

1 Ji JJI. . 
I n(Q) = 2 4> · (z,z' ,Q)~ (z)$ (z')<;lzdz' 
nms"' 1 0 0 esei · n m . 

I n is the cross spectral density of the genera.lized force and <I> nms)l, eset 

is the cross spectral density of the excitation. Based on those results, 

the quantities of interest can be calculated one~ the excitation properties 

are known. 

< ':.: •• 
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III. EXPERIMENTAL METHOD 

A system consisting of two tubes is one of the simplest systems 

having coupled motion. It can be used to demonstrate the essential 

characteristics of coupled vibration. Therefore, tests are m~de with 

two.cantilevered tubes. 

The test rig is shown in Figure 2. The rig is fabricated of a four 

side lucite box faste~ed to a brass plate to form a water tank allowing 

easy observation of motion. 

The. two specimen tubes are constructed of brass tubes, 30.48 em (12") 

long, 1.27 em (0.5") O.D., and 0.159 em (1/16") wallthickness~ Each tube 

is silver soldered to a brass base. The brass bases are then fastened 

to the tank base with provision to vary the gap between the bases. The 

desired gap is set by use of shims of the required thickness be-tween the 

brass bases, which are then removed after securing the bases to the tank 

plate. 

The details inside each tube are shown in Figure 3. Two small permanent 

magnets are mounted near the top of the tube in two perpendicular directions 

and two accelerometers are mounted to a small aluminum mounting block at 

90° to each other and their sensitive axis in line with the magnets. The 

leads to accelerometers are routed through the tubes, brass bases, and 

tank plate. 

The excitation is produced by the permanent magnets and external 

coils. The coils are supported by aluminum bars fastened to the brass 

base. The amplitude of the exciting force is held constant as the exciting 

frequ~ncy is uniformly increased by the Hewlett-Packard 5451,/71A a~alyzer. 

The tube acceleration is continuously monitored. 

... 
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Fig. 2. Test assembly used to study coupled vibration of tubes in a liquid 
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Tests were made· for four different gaps between the two tubes. In 

each case, the frequency response of each tube is measured in air. Then 

the response. is measured in water by ~xciting one tube and restraining 

the other to eliminate the coupling effect. Finally, the ~e!;traint is 

removed and the coupled response is obtained by exciting one of the tubes. 

In addition to the tests for steady-state responses, transient 

responses were also measured for out-of-plane motion. In this case, 

one of the tubes is given a small disturbance by plucking it. The 

accelerations of the two tubes are measured. 
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IV. ANALYTICAL RESULTS -

For presentation, stainless steel tubes with the following properties' 

are considered: outside diameter= 2.223 em (0.875 in.), wall thickness= 

0.114 em (0.045 in.), and length= 76.2 em (30 in.). The tubes are arranged 

in several patterns: row, array, and hexagonal arrangement. The pitch of 

tube banks is assumed to be 3.332 em (1.312 in.) in all cases except in .. 
the study of effective added mass where the pitch is varied. All tubes 

are assumed to be simply-supported at both ends and submerged in a sodium 

and containing sodium at 516°C (960°F). The viscous damping coefficient ci 

is assumed to be 4.1 kg-sec/M2 (0.0059 lb-sec/in.
2
). 

A. Effective Added Masses and Effective Added Mass Coefficients 

Many tube banks are arranged in a hexagonal pattern as shown in Fig. 4. 

The added mass coefficient v .. , and the effec'tive added mass coefficient 
1] 

-~!,which is the eigenvalue of [v . . ], are computed for three tube banks 
1 1] 

consisting of seven, nineteen, ~nd thirty-seven tubes. 

Figure 5 shows -the variation of vi. with P/D where P is tube pitch 
. J 

and D is tube diameter. Note that "ii is positive and approaches one·as 

P/D becomes very large, while vij for i # j may be negative and approaches 

zero as P/D becomes infinite. 

Figure 6 shows the upper and lower bounds of~~ as functions of P/D. 
1 

For a group of k tubes, there are 2k effective added mass coefficients 

distributed between the upper and lower bounds. All ll~ approach one as 

P/D is increased, while the upper bound increases and lower bound decreases 

as P/D is reduced. 

From Figs. 5 and 6, it is seen that as the number of tubes increases,~~ and 
1 

the absolute values of v .. increase. The results for tube 1 and· ~ obtained 
. 1] 

from 19 tubes and 37 tubes do not differ significantly. The implication is 

that the coupling between a tube and other tubes which are not immediately 
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Fig. 4. Schematic of a tube bank arranged in a hexagonal pattern· 
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surrounding it can be neglected. For example, in the hexagonal arrange-

ment, only the effects of the six tubes s·urrounding the central tube have 

to be considered if the motion of the central tube is of interest;:. 

B. Natural Frequencies and Mode Shapes 

In the case of a solitary tube, the natural frequencies (in Hz) of 
I 

the tube is given by 

. (1) (yn)
2( EI )l/2 

fn = 27T T m + m' (21) 

n = 1, 2, 3, ... oo 

where y is a mode constant, and m' is the displaced mass of fltdd. The 
n 

values of f are well separated; for example, for a simply-supported tube 
n 

f /f = n 1 
2 

n . 

In the case of a group of k tubes, there are 2k natural frequencies 

corresponding to a single frequency fn for a solitary_ tube. Those 2k 

frequencies are distributed near the frequency f • More precisely, the 
n 

distribution of the natural frequencies for a group of tubes in liquids 

can be·represented in Fig. 7. 

quencies of a solitary tube. 

band with the lower an~ upper 

given by 

' 

(m 
+ m' t/2 f~ m 

f = 
n + ll i 1 n 

max 

and 

fu ( m + m' r'2 f = 
n m + lli I . n 

m1n 

f (n = 1 to oo) shows the natural fre­
n 

Corresponding to each f , there 
n 

is a frequency 

b di f i f~ and fu oun ng requenc es 
n n' 

which are 

(22) 

, I and ll'l denote the maximum and minimum values of the effective .. i max 1 mi~ 

added masses. The 2k natural frequencies· are distributed in the frequency 

band from fl 'to fu. For example, for a group of ten tubes, there are 
n n 

twenty natural frequencies distributed between fi and fu. Those frequencies 
n n 
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are--the natural frequencies of ·coupled moc}es including tube/fluid inter-

action effect. 

The mode shapes associated with each natural frequency are, of course, 

different~ For example, consider a group of tubes simply-supported at 

both ends. The axial variations of the motion are shown in Fig. 7. In 

the nth frequency band, the mode shapes associated with the axial variations 

are the same as the nth mode of a solitary tube. 

In a group of tubes, each tube will move in different directions. 

The modes for a group of nine tubes are shown in Fig. 8 for the natural 

frequencies in the first frequency band, where the arrows denote th~ 

directions of motion. Since the group consists of nine tubes, there are 

eigenteen modes in the first frequency band. It can be seen clearly that 

the frequencies are relatively close to one another. 

It should be noted that, if all tubes have the same end conditions, 

the mode shapes associated with the natural frequencies in the other fre-

quency bands are the same as those in the first frequency band except the 

axial variation. 

C. Steady-State Response of a Row of Tubes 

It is of interest to know how the effect of an excitation propagating 

to the neighboring tubes. Consider a row of tubes where, except the 

middle k tubes, all others are assumed to be rigid (see Fig. 9). It has 

been shown that for a row of tubes in a stationary liquid, in-plane and 

,out-of-plane motions are independent, and furthermore, the hydrodynamic 

coupling can·be neglected except the two neighboring tubes [4]. Therefore, 

the hydrodynamic force acting on tube i is 

2 2 . . a ui (a ui-1 
F i = y 11 -2- + ~12 . 2 + 

at at 

2 
a ui+l) 

2 . at 

Assume that tube 1 is subjected to an excitation e1exp(i2~ft). Let 

(23) 
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q exp(i2nft) be the response for the case of a solitary tube. The responses 
0 

for a group of k tubes are easily obtained: 

qi = q a.exp(i2nft) 
0 1 

_· sin(k- i + 1)6 
ai - sin(k + 1)6 

'[ 2 -1 m f 
.6 =cos 2y12m' (f2 .-

n 

1) - y 11] , 
y12 

where m is tube mass, m' is the displaced mass of fluid and f is the 
n 

natural frequency of the tube in vacuo. 

(24) 

The values of the response ratio ai are given in Fig.· 9 for a row 

of five elastic tubes. The responses are strongly dependent on the driving 

frequency f: 

(1) 
R. . u 

For f < f or f > f , the response of tube 1 is close to that of 
n n 

a single tube subject to the same excitation, and the responses of other 

tubes are small; that is, the effect of excitation deteriorates rapid!~~ 

Therefore, a single-tube assumption is applicable. 

(2) For fR. < f < fu, the respons~ of tube 1 is different from that of 
n n . 

a single tube, and the responses of other tubes can be very large; the 

effect of an excitation will propagate. to others without de·cay. In this 

range of frequency, only the coupled,-mode method will give accurate results. 

D. A Row of Tubes Sub1 ect to vortices 

A common cause of flow-induced vibration is an alternating force in 

the lift direction caused by th~ shedding of Karman vortices. The vortex 

shedding frequency is given as 

f = 
v 

(25) 

where St is the Strouhal number, U is the .flow velocity and D is tube 

diameter. For a single tube, St is approx~ately equal to 0. 2 for sub­

critical Reynolds number. For tub~ banks, the value of St is highly 

.. 
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dependent on tube spacing and pattern, and multiple values of St have been 

found. A summary of the experimental results is compiled by Fitz-Hugh [5]. 

Responses of a row of five tubes subject to vortices are presented 

in Fig. 10, where the damping ratios for the first five modes in the in­

plane motion are 0.041, 0.041, 0.042, 0.044, and 0.045. Solid lines are 

calculated forSt= 0.14 and all vortices bei'g out-of-phase, while dotted 

lines are for st= 0.38 and all vortices being in-phase. The values of 

Strouhal number are based on the experimental results obtained by 

Dye [7]. 

In the actual situation, the responses of the tubescare probably to 

follow the curve ABCDE as the flow velocity is increased. The modes of 

response also change with increasing flow velocity. For example, at B, 

the tubes vibrate predominantly in the out-of-phase mode, while at D, it 

is predominantly in the in-phase mode. In the other range of flow velocity, 

it will involve other modes. 

E.. Transient Responses of Tube Banks to Impingement Loads 

If a tube rupture occurs, thrust and jet forces caused by fluid dis-

charge may cause further damage to tube banks. Discharge fluid creates a 

thrust reaction on the ~ptured tube itself and impingement loads on 

neighboring tubes by the jet. It is desirable to know the response of 

the tubes due to those impingement loads. As an example, a seven-tube 

bank arranged in a hexagonal pattern is considered. 

The magnitude and duration of tube rupture forces in a tube bank must 

be available before the analysis can be made. For the purpose of illustrating 

the general characteristics, it is assumed that the jet and thrust are of 

equal magnitude and~can be represented by the step function. The responses 

of the tubes'are presented in Fig. 11 when tube 1 is ruptured with a jet 

acting on tube 2 in the x direction .. The magnification factor is defined 
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as the ratio of the displacement at midspan to that of the deflection o.f 

tube 1 in the x direction to a static load of the same magnitude. The 

damping ratios for the natural frequencies in the first frequency band are 

f"ound to be 'ranging from 0. 038 to 0. 046. 

Due to symmetry, tubes 1, 2, and 5 respond in the x direction only. 

The other tubes vibrate with whirling motions. The absolute value of the 

magnification factor for tubes 1 and 2 is close to- 2 and is smaller for 

other tubes. As the time incre~ses, as expected, the absolute value of 

the magnification factor approaches 1 for tubes 1 and 2 and zero for 

others. 
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V. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS FOR tWO CANTILEVERED 

TUBES 

The method of analysis presented in Section II can be applied to a 

group of tubes vibrating·in a liquid. In order to compare the analytical 

result with the experimental data, the detailed analysis for two cantilevered 

tubes is given in Appendix A. The numerical results for two tubes are 

based on the model given in Fig. 16 on page 48, 

The frequencies measured in air are used to establish the 

. torsional spring constant at the support. Then the frequencies 

of uncoupled modes can readily be calculated. The natural 

frequencies of uncoupled vibration obtained experimentally and 

analytically are given in .Table 1 where the measured values of 

damping ratio are also given. It is seen that experimental data 

are in reasonably good agreement with the-analytical results. 

The natural frequencies- of the coupled modes are presented 

in Table 2. In every case, there are two natural frequencies; one 

corresponds to the in-phase mode and the other to the out-of-phase 

mode. The general. characteristics are similar to those of simply-

supported tubes [8]. 

Figu-res 12 and 13 show the frequency response curves. Figu~e 12 

shows the response of tube 1 to an excitation acting on itself 

and ·,Figure 13 the response of tube 2 to an excitation acting on tube 1. 

There are two peaks: one. associated with the out-of-phase mode and 

the other with the in-phase mode. Note that the response of t~be 2 

is larger than tube 1 in the frequency range Qetween·the. two peaks. 

This means that although tube 2 is not directly excited, its response 

can be larger than the other, which is directly excited in certain · . , 
frequency .ranges. 



TABLE 1. Theoretical and experimental values of uncoupled frequencies 

Measured Natural 
Tube DirecJ;ion Gap-to-R_adius Dimensiopless Frequency, Hz 
No. of Motion Ratio .. Spring Constant, : 

p In Air In Water. 

0.2 78.0 77.63 69.05 

In-plane 0.45 76.7 77.60 69.32 

1.2 71.1 77.45 69.65 

4.2 76.7 77.60 69.42 

1 
0.2 68.1 77.36 69.11 

0.45 52.9 76.76 69.10 
Out-of-plane 

1.2 70.0 77.42 69.24 

4.2 81.1 77.70 69.80 

0.2 112.6 77.20 69.10 

In-plane 0.45 113.4 77.21 68.97 

1.2 86.3 76.81 69.30 

4.2 113.4 77.21 68.95 

2 
0.2 75.4 76.57 69.08 

0.45 129.7 77.37 69.18 
Out-of-plane 

1.2 82.3 76.73 69.52 

4.2 84.7 76.78 69.13 

Measured 
Damping Ratio 

In Air In Water 

0.0022 0.0059 

0.0022 0.0031 

.0. 0026 0.0036 

0.0024 0.0029 

0.0014 0.0037 

0.0016 0.0045 

0.0012 0.0055 

0.0026 0.0065 

0.0037. 0.0048 

0.0017 0.0042 

0.0020 0.0032 

0.0028 0.0043 

0.0020 0.0058 

0.0025 0.0043 

0.0025 0.0067 

0.0025 0.0054 

Calculated 
Natural 
Frequency 
Water, Hz 

68.51 

68.97 

69.26 

69.54 

68.28 

68.23 

69.23 

69.64 

68.33 

·68.82 

68.87 

69.37 

67.77 

'68.96 

68.79 

68.99 

in 

I 
w 
·oo 
I 
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Table 2. Theoretical and experimental values of' coupled frequencies 

Direction Gap-to-Radius Measured Calculated 
of Motion Ratio Frequency, Hz Frequency, Hz 

66.78 65.31 
0.2 

" 71.38 72.02 

67.30 66.47 
0.45 

71.33 71.60 

In-plane 

68.23 67.65 

1.2 70.63 70.57 

'69.37 69.07 
4.2 

70.28 69.86 

66.58 64.92 
0.2 

71.27 71.61 

67.53 66.16 
0.45 

71.31 71.32 

Out-of-plane 

68.63 67.59 
1.2 

70.83 70.52 

69.35 68.48 
4.2 

69.80 69.54 
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The transient response~ in the out~of-plane motion of the two tubes 

are shown in Figs. 14 and 15. In Fig. 14, tube 1 is given a small distur­

bance, while in Fig. 15, tube 2 is g:l.ven the disturbance. In this test, 

the coupled frequencies are 68.02 Hz (in-phase mode) and 71.46 Hz (out-of­

phase mode) for the gap-to-raqius ratio equal to 0.45 and 69.72 Hz (in-phase 

mode) and 70.56 Hz (out-of-phasemode) for the gap-to-radius ratio equal 

to 4.2. The beat phenomenon can be seen clearly from the response curves. 

The amplitude-modulated accelerations have a frequency equal to the average 

frequency of the in-phase and out-of-phase modes, while.the beat frequency 

is equal to the difference of the two coupled frequencies. 
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VI. CONCLUSIONS 

A method of analysis is presented for tube banks in liquid subjected 

to various types of excitation including deterministic-and random forces. 

The analysis is based on the coupled modes incorporating tube/fluid inter­

action. With the method of analysis, one can calculate the ~atural fre­

quencies, mode shapes and tube responses. The method is being extended 

to include the effect of flowing fluid. 

Two cantilevered tubes are tested in a water tank; natural frequencies 

and forced responses are measured. It is found that the analytical results 

and experimental data are in reasonably good agreement. 

Based on the presented results, ·several general conclusions can be 

made: 

(1) In a group of tubes, there are infinite number of frequency bands. 

corresponding to the infinite nun1ber of natural frequencies in the case of a 

solitary· tube. In each frequency band, there are 2k natural frequencies 

for a group of k tubes; those frequencies are distributed near the frequency 

of the corresponding single tube. 

(2) The natural frequencies of the coupled modes for tube banks can 

be obtained in terms of the natural frequencies of a solitary tube and the 

effective added masses. 

(3) In ·a tube bank, the values of the effective added mas~ become 

more widely spread as the number of tubes is increased. 

(4) Within each frequency band, the steady state responses of a tube 

bank are significantly different from that of a single tube. However, in 

other frequency ranges, the coup~ing effect is small and the effect of an 

excitation will decay rapidly from one tube to another. 
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(5) Vortices can excite various coupled modes in a tube bank and 

the predominant mode of response may.change with increasing flow velocity • 

.(6) Fluid jet and thrust associated with tube rupture can cause 

whirling motions in a tube bank, and the tubes not directly excited m~y 

have a significant amplitude. 

·I 
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APPENDIX. A 

ANALYSIS OF TWO TUBES IN A LIQUID 

The mathematical model for the t,ubes is shown in Figure 16. ·Mi and 

M2 represent the concentrated masses accounting for the permanent magnets, 

accelerometers and aluminum mounting block. The support is considered as 

elastically restrained by a torsional spring and the. exciting force is 

acting at z = t; The problem is described by.·the following equations of 

motion [8]: 

+ cl 

= F l 6 ( z - t), 

+ C-2 

= F o (z -· t), 
2 

+ 
R 2 

AM- (_2) 
- 1113 R 

(A.l) 

where the index 1 denotes tube 1 and 2 denotes tube 2, z· is ~ial co-

ordinate, t is time, ui (i = 1,2) is tube displacem~nt, mi is ~ss 

per unit length of the tube, ·Ei Ii. is flexural rigidity, ci is damping 

coefficient, Ri is tube radius, Mi is displaced mass of fluid by the 

-
tube, R is the distance between the centers of the two tubes, ii

1
, ii

2
, 

and ii3 are added mass coefficients, and A = 1 for in-plane motion and 

-1 for out-of-plane motion. The boundary conditions are: . 
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Fig. 16. Schematic of two tubes vibrating in a liquid 
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. 
' 

(A.2) 

00 

L qni <l>ni ' 
n=l 

i = 1, 2, (A. 3) 

where <l>ni is the modal function for the tubes. Assuming the.adjoint 

modal function is 1/Jni" Those modal functions, and the corresponding 

eigenvalue yni and natural frequency wni can be calculated following 

the method presented in Appendix B. Substituting Eq. (A.3) irito (A.l) 

·-
and using the biorthogonality condition yield 

qnl + 2r,;nl 
. 2 r .. 

wnl qnl + wnl qnl - A.al a ~2 = Pnl nm m 

and (A. 4.) 

. 2 r b 
.. 

qn2 + 2r,;n2 wn2 qn2 + wn2 qn2 - A.a2 nm qnl = pn2 
m 

where 

r,;ni = 

.. 



Mi 
ai = -m. R. 

l. 
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(A.S) 

Equation (A.4) consists of an infinite number of ordinary differential 

equations. However, typically, only a finite number of equations is 

taken from case to case according to the desired accuracy. As an approxi-

mation, two equations are taken in the following calculations; i.e.: 

and 

(A. 6) 

From Eqs. (A.6), it is seen that the frequencies of uncoupled modes are 

given by w11 and w12 • The frequencie·s of the coupled modes can be solved 

easily. Those are n
1 

and n
2

; 

n = 
2 

Based on Eqs. (A.3) and (A.6), the responses of the tubes to an arbitrary 

excitation can be calculated rather easily. The procedure is the same as 

that glven in Reference 8. 
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APPENDIX B 

FREE VIBRATION OF AN ELASTICALLY 
SUPPORTED TUBE WITH A CONCENTRATED 

MASS AT THE TIP 

. 
Consider a tube which is elastically supported by a torsional spring 

·with spring constant k and a mass M' attached to the free end. The equation 

for free vibration is 
4 . 2 

EI a u a u . a;-z; + m atT = 0, (B.l) 

and the boundary conditions are 
2 a u - au 

u = 0, EI a;7 = k az at z = 0, 

an.d (B.2) 
~2u 3 ~2u 
a 0 EI a u = M' o n a;7 = , a;1 at! at z = Tv, 

where EI is flexural rigidity and m is mass per unit length of the tube. 

Using the standard method of separation of variables, one assumes 

u (z,t) = !j>(z) exp ·(iwt). 

Substituting this form in Eqs. (B.l) and (B.2) results 

d4t 4 
. dE; - y !I> = 0, 

- d2~- ~ ~ ~ 0, dE; - p dE; at ~ = 0, 

where 

d
2

cP d
3

<t> 4 
~ = 0, W = -y B<P 

~ = z /i, 
M 

6 = mi ' 

p = ki 
EI 

. 4 2 
·4 = mi w y 

EI 

and i is the length of the tube. 

at ~ = 1, 

' 

(B.3) 

(B~4) 

(B.S) 

(.B. 6) 
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4 Note that the eigenvalue y appears in the last boundary condition; 

therefore, the eigenfunctions are not orthogonal in the ordinary sense. 

To overcome this difficulty, extend the space such that. the space 

consists of two component vector ~ (~) whose first component is a real 

function ¢(~) and whose second component is a real number ~ • Define the 
a 

-+ -+ 
. scalar product of two vectors ! and ~ as follows: 

Now the eigenvalue problem of {B.4) and {B.5) can be written 

-+ -(~ ~-L ! 
~~p (1). 

{B. 7) 

{B .• B) 

Therefore the domain D of the operator L is the set of all function ~ in a 

linear vector space which have a piecewise continuous fourth derivative, 

which satisfy. the following equations: 

-+ 

2 0 ~ s ~ 1, 

d
2

4> - d<j> 
4> = 0, ~ - p ~ at s = 0, (B .• 9) 

z 
~~~ = 0 at s = 1, 

and 

<P = aHl). a 

Using the definition of scalar product in Eq. {B.7), one can find the 

adjoint system: 

-+ -+ =f ~ d3<P(l) 
< ~' L ! > 

lJi ds d~ - lJi d~3 a 

* 
-+ -+ 

= < L ~' ! >. (B .10) 



-53-

From Eq. {B.lO), the adjoint· operator is given by 

d2~ _!1f 
~ = o, d~ = p d~ at ~ = o, (B.ll) 

d21)J 
diZ = 0 at ~ = 1, 

and . 

1)J = ~(1). 
a . 

* The eigenvectors of L and L subjected to the boundary conditions can 

be solved rather easily. The results for the original systems are as 

f()llows: 

where 

= -2y sinh y- p (cosy+ cosh y)· -
a2 p (sin y + sinh y) al, (B.l2) 

- = -2y sin y + p (cos y + cosh y) -
a4 p (sin y + sinh y) · al' 

and the value of eigenvalue y is determined from the equation 

1 + cos Y cosh y + (8 + .!. ) (cos y cosh y - sin y sinh y) 
p 

2 
-2 ~ sin y sinh y = 0. (B.l3) 

p 

Equation (B.l3) has a series of solution; let the solution bey (n=l, 2, 3 ••• oo). 
n 

Corresponding to each y , one has the corresponding modal function ~ a~ n n . 

natural frequency w • Therefore, the eigenvectors of L are 
n 
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cf> -n (B.i4) 

* It can easily be shown that the eigenvalues for L are the same as those for 

* L and the modal function ljJ . and eigenvectors of L are given ·by· 
n 

ljJ~ (~), 

(B.l5) 

-+ -+ 

The eigenvectors cf> and~ possess biorthogonality conditions; i.e., the 
-n -n 

* eigenvectors of L and L correspond to different eigenvalues are orthogonal, 

-+ -+ 

<4> ,1/J>=o -m -n mn 
(B.l6) 

- -
In cf> and ljJ , there is a constant a

1
. a

1 
has been chosen such that. 

-+ -n_. -n 

<4> ' ljJ > = 1. -n -n 
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