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PREFACE

The work reported Herein wés performed as part of the baéé technolqu '
activity under the Flow Induced Vibration Programs (lé9aJNds. CAO54 and.
CA070) spoﬁsorgd by ERDA/RDD. The overall objective of the activity is
to develop'new and/or improved analytical methods and guidelinés-fof‘ |
designing LMFBR components to a?oid detrimental flow induced vibrationf’

Heat exchanger tubes and reactor fuel pins are long, slender, beam-
like components typically arranged in bundles and immersed in a flowing
liquid. + As such, they are susceptible to flow induced vibration. The
excitation mechanism may be associated with vortex-shedding, fluidelastic
interaction, or random pressure fluctuations in the turbulent flow.
Designing to avoid large amplitude motion, that is, to avoid a resonance
condition(or instability condition, and the prediction of component
response, require knowledge of the dynamic behavior of the components.-
However, cylinders in a closely spaced bundle do not respond as single
cylinders immersed in a liqdid, rather, interaction with the liquid causes
coupled ﬁotionjof groups of cylinders. The fundamental natural frequency
of the coupled system will‘be lower than thét qf a single cylipder immersed
in a liquid. |

Understanding and modeling fluid/structure interaction in cylinder
bundles is a basic requirément.in the development of analytical methods
and guidelines for designing.heat exchanger and reactor fuel assemblies
that are free from component vibration problems. ‘As a step toward satisfying
this requirement, in this report, an analytical and experimental study of‘
tube banks vibrating in iiquids ié presented. . Firstly, a general method
~ of analysis is presented for free and forced vibrations of tube banks
including tube/fluid interaction; numerical results are given for tube

banks subjected to various types of excitations. Secondly, two cantilevered
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tubes are tested in a water tank; the natural frequencies and forced

responses of coupled motion are measured. Experimental data and'analytical

results are found to be in reasonably good agreement.

The analytical method presented is currently beiﬁg exténded to account.
fof Fhe flowing fluid in>tube banks and will be used in.the-development
of fhe mathematical models for crossflow- and parallei—flow—indﬁéed
vibrations of tube bundles. Those models will be useful in predictiné

the respbnse of tube bundles and in design to avoid detrimental vibration.
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ABSTRACT

Flowjinquea Vibratiop in heat exchanger tube banks is_of great
concern, particularly in highvperformance heat exchanger?lgéed in nuclear
reactor sysgems. In this report, an analytical and expefimental stﬁdy of
‘the general dynémic characteristicslof tube banks in liquids is presented.
First, a method of analysis is presented for free and forced vibrations
of tube banks inéluding tube/fluid inteféction; numerical resﬁlts are given
for tube'banks subjected to various types of excitations. Second, two |
cantilevered tubes are tested in a water tank; thé nafural freqﬁencies
and forced responses of coupled motion are measured. _Experiméntél énd

theoretical results are in reasonably good agreement.
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I. INTRODUCTION

Flow-induced vibrations of heat exchanger tubes havé been-studied
extehsively, either because qf excessive noise or because of resultant
damage [1,2]. .TheAprobleﬁs become more serious in high performance heat
exchangérs used in nuclear reactor systems. In the paét, analytical
studies were primarily made based on a single tube consideration; i.e.,
considering the motion of a single tube in a tube bank to eétablish the
critical flow velocity at which large oscillations occur. Little effort-
has been made to include the fluid coupling effect.

In a tube bank, the motion of a tube will excite the surrounding
énes due to fluid coupling; therefore, the tubes in a tube bank will respond
as a group, rather than as a single tube. Unfortunately, the existing
mathematical models for tube-bank Qibrations are not based on the coupled
vibration modes. The objeétive of this report.is to provide some addi-
tional insight into the general dynamic characteristics of coupled tube/
fluid vibration such that a better mathematiéal model incorporating fluid
coupling effect may be developed. |

First, a general method of analysis is presénted for free and forced
vibrations of tube banks including tube/fluid interaction; numerical
results are given for tgbe banks subjected to various types of excitations.
Second, two cantilevered tubes are tested in a water tank; the natugal

frequencies and forced responses of coupled motion are measured. Experi-

mental and theoretical results are in reasonably good agreement.
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II. ANALYSIS

A. Tube/Fluid Interaction

An elastic tubq_bénk subject to a fluid flow experiences complicated
fluid forces. Those forcgs maylbe clasgified as steady-state.and |
fluctuating components, or force components as functions. of displacement,
velocity, and acceleration. It is beyond the séobe of this paﬁer to
consider all forces associated with tube banks vibfating 1ﬂ a flowing
fluid; rather, this study is resﬁficted to the case of tube banks vibrating
in a stationary fluid.

Consider a tube bank consisting of k tubes whose axes are parallel
to the z-axis (Fig. 1). Each tubé can move in the x and y directions.
Let ug and U designate the displacement components of tube i in the
x and y directions respectively. The fluid inertia forces acting on
tuBe i are given by Fi in the x direction and Fk%i in the y direction.

Fi is given by [3]

2k azu.
F=Zvij—zl, ' _ (1)
= at .

i=1, 2, 3, ... 2k A,
where t is time and Yij is the added mass matrix. Equation (1) may also

be written {

2 2

2k R, + R.\’ 37u. - S A
Fy = L ( 2 ) Vi3 2 0 - ' =
i=1 , at

where R is the radius of tube i, p is fluid density and vy ‘is the added
mass goefficient matrix. When all tubes are of the same ladLub, Y45 is

equal to v j mulitiplied by the fluid mass displaced by the tube.

i
Since Yij'is symmetric [3], for a group of k tubes, it possesses
2k eigenvalues, designated by My (i =1 to 2k). The eigenvalues of the

matrix Yij for a tube bank play the same role as thc added mass for a

solitary tube; those eigenvalues are called effective added masses.
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The computational procedure for Yij is given in Ref. 3 based‘on the

. potential flow theory. It must be kept in mind the limitation of a potential

flow analysis when applied to real-fluid flow analysis.

B.

Equations of Motion

Consider the mofion of a group of k tubes in a liquid. The equations

of motion are [3]

34ui 8ui . 'azui 2k Bzu. '
B~ vy ety Tt Loy T ey (3

3z , at j=1

where m, is tube mass per unit length, EiI is flexural rigidity, oh is

i
damping coefficient, e, is excitation force, and the other variables have
been defined previously. Note that the variables with the index 1 (or j)
from 1 to k are associated with the motion in the x direction while from

k+1 to 2k in the y direction. For simplicity, the simply-supported end

condition is considered; i.e., at x = 0 and %,

and - (4)

where 2 is the length of the tubes. Without loss of generality, the initial

state of the tubes wmay be assumed as follows:
u (z,t)l =g, (2) ,
ot t=0 T

and | | | (5)

adi(z,tj
—_— = h,(z) .
dat £=0 i

- Equations (3), (4), and (5) are the complete mathematical statement of

the prdblem.

Let

- -]

ug(z,t) = J g ()¢ (2) , | ()

n=1

Y R
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where‘qbn is the nth orthonormal function of the tube in vacuo; i.e.,

1 2 . . .
E.Jo ¢m(z)¢n(z)dz - 6mn : ) . ' 7

Using Eqs. (3), (5), (6) and (7) yields

(M1{G) + [C]Q)} + [KI(Q) = (P} , o - ®
and )
@, = ),

- (9
{Q}t=0 = {B} s

where [M], [C], and [K] are symmetric matrices with elements mij’ cij’
and k_,,, and {P}, {A}, and {B} are generalized:force, initial displacement,
nij

and initial velocity with elemgnts P ys 2n1° and bni’ in which

mij = midij + Yij s
cij = cisij s
2
knij = miwniéij >
4 1 3
_aft d
a1 = 2| 8i%4%
.9
1 2
bni 1 JO hi¢ndz ’

and w g is the nth natural frequency (in radian) of tube i in vacuo.

-

C. Free Vibrécion

For free vibration, neglect damping and forcing -terms and let

{Q} = {Qlexp(i0t) . o 4 (11)
Natural frequencies and mode shapes of coupled tube/fluid vibration are

computed from the undamped homogeneous equations

K@) = 0@ . | ~ (12)
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Let [S] be the weighted modal matrix formed from the columns of eigen-

vectors, it is easily shown that

[sTks1= (A] |
and ) ' (13)

(r]

(sTus)
where [I] is an identity matrix and [A] is a diagonal matrix formed from
the eigenvalues QZ.

In many cases, the tubes in a heat-exchanger tube bank may be considered

to be identical. Furthermore, it is assumed that all tubes have the same

mass m (mi = m), natural frequency w (wni = mn). In this case, Eqs. (12)
become
—-— wn - ' . .
[Yij]{Q} - m(;z—?_- - 1) sij] {Q} = {0} . , (14)

It can be shown that the solutions of Eq. (14) are given by

o 172
9n1=(m+—ui) n 0 2

]
[
-
N
-~
w
-
.
8
-

n

where ui'is the effective added mass, and Qni

is the natural frequency of
a coupled mode. Equation (15) shows that the natural frequency of a
coupled mode can be calculated from the natural frequency of a single

tube and the effective added mass.

D. Forced Vibration

The responses of tube banks to an excitation can readily be calculated
from Eqs. (6), (8), and (9). In many practical situations, the damping
matrix may be assumed to be proportional to the stiffness matrix K or

the mass matrix M. Let .
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{Q} = [s]{w} . : _ (16);'

Using Eqs. (8), (13), and (16) yields a set of uncoupled modal equationms:

2 -
. N _
Yoy T zcnjgnjwnj 203" nj zzl SaeiPng a7
1=1,2,3, ... 2k ,
n=1, 2, 3, ... =

Cni is the modal damping ratio of the coupled modes. Equations (17) are

easily solved and the tube responses can readily be computed.

E. -_Response to Random Force Inputs

The method developed above-giveé the tube response té deterministic
force inputs. In many cases, the forces are not completely predictasle.
The response to a random input will, in general, be fandom itself. 1If
the average values in the random process are constant with time it is said
to be stationary. The general solution for the steady state random case.
is considered.

The steady-state solution for LA obtained from Eq. (17) is
Voi T L Snyfai ey o

where . . . ' (18)

_ 2 2 -1
Hni(Q) - [(Qni -2+ 2/-1 FniQniQ] ¢

Using Eqs. (6), (10), (17), and (18), we can show that the mean-square

displacement Gi(z) is

2(2) =-jm o (z,2',2)do (19)
1 O UiUi

where ¢u " is thevpbwef spectral &ensity of the'displacement and is given
\ ii.

by



I

nms{

-is the c:oés spectral density of the generalized force and ¢

—187A:‘ ‘

: E ef 2k 2k 2k 2k

(z,2",9) = ) 7 ¥V T I's s (DE__(®)
Y% n=1 m=1 j=1 2=1 r=1 s=1 nim an m1r msr nJ

(@) ; . (20)

r

¢ (2)¢ (z")I

nmsf

nmsz

P . :
=L (" , . , :
Q) 22 IO [O ¢?sel(z,z ,Q)¢n(z)¢m(z )dzdz

egey

is the cross spectral denéity of the excitation. Based on those results,

the quantities of interest can be calculated once the excitation properties

are known.
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III. EXPERIMENTAL METHOD
| A system conéisting of two tubes is one of the simplést systems
having coupled motion. It can be used to demonstrate the essentiai
charaéteristics of coupled vibration. Therefore, tests are made with

two.cantilevered tubes.

The test rig is shown in Figure 2. The rig is fabricated of a four
side lucite box fastened to a brass plate to form a water tank allowing

easy observation of motion.

i

The. two specimen tubes are cénstructed of brass fubes, 30.48 cm (12")
long, 1.27 cm (0.5") 0.D., and 0.159 cm (1/16") wall thickness. EachAtube
is silver soldered to a brass baée. The brass bases are then fastened
to the tank base with provision to vary the gap between the bases. The
desired gap is set by use of shims of the required thiékness between the
brass bases, which are then removed after securing the bases to the tank
plate. |

The details inside each tube areshown in Figure 3. Two small permanent
magnets are mounted near the'top of the tube in two‘perpeqdicular directions
and two accelerometers are mounted to a small aluminum mounting‘block at
90° to each other and their sensitive axis in line with the magnets. The
leads to accelerometers are fauted through the tubes, brass bases, andl
tank plate. | |

The excitation is produced by the permanent magnets and external

coils. The coils are supported by aluminum bars fastened to the brass

base. The amplitude of the exciting force is held constant as the exciting
frequéncy is uniformly increased by the Hewlett-Packard 5451/71A ahalyzer.

The tube acceleration is continuously monitored.
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SR e

Fig. 2. Test assembly used to study coupled vibration of tubes in a liquid
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Tests were made for four different gaps between the two tubes. In
each case, thelfrequency response of ééqﬁ tube is measured in air. Then
the response is measured in water by exciting one tube and restraining
the dthér_to eliminate the coupling effect. Finally, the restraint is
removed aﬁd the coupled response is obtained by'eicitingvone of the tubes.

In'addition to the tests for steady-state responses, transienf
responses were also measured for out-of-plane motion.- In this case;
one of the tubes is given é small disturbance by plucking it. The:

accelerations of the two tubes are measured.
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IV.  ANALYTICAL RESULTS -

For presentation, stainless steel tubes with the following pfoperties'
are considered: outside diameter = 2.223 cm (0.875 in.), wall thickngss =
0.114 cm (0.045 in.), and length = 76.2 cm (30 in.). The tubes are arranged
in several patterns: row, array, and hexagonal arrangement. The pitch pf
tube banks is assumed to be 3.332 9m (1.312 in.) in all cases except in
the study of effective added mass where the pitch is varied. All tubes
are assumed to be simply-supported at both ends and submerged in é sodium
énd containing sodiﬁm‘at 516°C (960°F). The viscous damping coefficient c;
is assumed to be 4.1 kg—sec/M2 (0.0059 lb—sec/in.z). ‘

A. Effective Added Masses and Effective Added Mass Coefficients

Many tube banks are arranged in a hexagonal pattern as shown in Fig. 4.
The added mass coefficient vij’ and the effective added mass coefficient
-ui, which is the eigenvalue of [vij], are computed for three tube banks

. .
consisting of seven, nineteen, and thirty-seven tubes.

Figure 5 shows the variation of v with P/D where P is tube pitch

i3
and D is tube diameter. Note that,vii is positive and approaches one’as

P/D becomes very large, while v for 1 # j may be negative and approaches

13
zero as P/D becomes infinite.
Figure § ;hows the upper.and lower boundsJof.ui as functions of P/D.
For a group of k tubes, there are 2k effective added mass coefficients
distributed between the upper'and lower bounds. All ui approach oneAas
P/D is increaéed, while -the upper bound increases and‘lower bound decreases
as P/D is reduced.
From Figs. 5 and 6, it is seen that as the number of tubes inéreases,u;.and
the absolute.values of vij increasé. The resu}ts for tube 1 and 2 obtained

from 19 tubes and 37 tubes do not differ significantly. The implication is

that the coupling between a tube and other tubes which are not immediately



~24-

____.

Yy

@
®
®
®

O
©
©
o

@

@
O
©

©
®

©
AOE
©
©)
®

@
0
O,
O
S

e
.
O
Q)
®

®
O

@

Schematic of a tube bank arranged in a hexagonal pattern

Fig. 4.



—--— k=1 TUBE

05 . .
—-—  7TUBES
————— 19 TUBES
37 TUBES
0 L 1 . -05 : L _ L .
125 - 150 175 | 2.00 , 125 1.50 LS 2.00
P/D | | PID

Fig. 5. Added mass coefficients as functions of the -pitch-to-diameter ratiop

._gz_.



-26-

L —
e —--—"k=1 TUBE

—-— T TUBES

~——— 19 TUBES
- 37 TUBES

" UPPER AND LOWER BOUNDS OF p
| no
o

o

ol— . 1 1
25 150 175 2.00

P/D

Fig. 6. Upper and lower bounds of the effective added mass coefficients
as functions of the pitch-to-diameter ratio



- =27~
surrounding it can be qeglected. For example, in the hexagonal arrange-
ment, only the effeets of the six tubes surrounding the central tube have
to be considered if'the motion of éhe4centra1 tube is of interest.

B. Natural Frequencies and‘Mode Shapes

In the case of a solitary tube, the natural frequencies (in Hz) of

the tube is given by

- () (Zaf(_m e e
n 27 L m+ m' ’ ) . }
n=1, 2, 3, ... ®» |
where Yn is a mode constant, and m' is the displaced mass of fluid. The
values of fn are well separated; for example, for a simply~supported tube
fn/fl = n’. | |
In the case of a group of k tubes, there are 2k natural frequencies
corresponding to a single frequency fn for a solitaryAtube. Those 2k
frequencies are distributed near the frequeney fn' More precisely; the
distribution of the natural frequencies‘for a group of tubes in liquids
can be.represented in Fig. 7. fn (n = 1 to ») shows the natural fre-

quencies of a solitary tube. Corresponding to eech fn’ there is a frequency

band with the lower and upper bounding frequencies fi and fz, which are

given hy
‘fz - m+m' 1/2 p
and - o (22)
‘u { m+m' 1/2
f o= f
n m + )Jil n
“lmin

U and pj| . denote the maximum and minimum values of the effective
1 |max min

added masses. The 2k natural frequencies are distributed in the frequency

u

e [
band from fn to fn. For example, for a group of -ten tubes, there are

twenty natural frequencies distributed between fi and f:. Those frequencies -
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aredthe natural frequencies of'coupléd,modes including'tube/fluid inter-
action effect.

' Tﬁe mode shapes associated with each natural frequenéy are, of course,
different. For example, consider a group of tubes simply-supported at
both ends. The axial variations of the motion are shown in Fig. 7. . In
the nth frequency band, the mode shapes associated with the axial variations(
are the same as the nth mode of a solitary tube.

In a group of tﬁbes, each tube will move in different directionms.
The modes for a group of nine tubes are shown in Fig. 8 for the natural
frequencies in the first freqhency band, where the arrOQs denote -the
directions of motion. Since the group consists of nine tubes, there are
.eigenteen modes in the first frequency band. It can be seen clearly that
the frequencies are relatively close to one another;

It should be noted that, if all tubes have the same end conditions,
.the mode shabes assoclated with the natural frequencies in the other fre—
quenc& baﬂds are the same as those in the first‘frequéncy band except the
axial variation.:.

C. Steadv-State Response of ‘a Row of Tubes

It is of interest to know how the effect of an ekcitation propagating
to the neighboring tubes. Consider a row of tﬁbes wheré, except the
middle k tubes, all others ére assumed to be rigid (see Fig. 9). It has
been shown that for a row of tubes in a stationary liquid, in-plane and
'oﬁt—offplane motions are independent, and furthermore, the hydrodynamic
coupling can be neglectéd except the two neighboring tubes [4]. Therefore,
the hydrodynamic force écting on tube i is

2y azu:L-1 a2“~1+1)

Fom vy, — ( -1,
i 11 Btz 12 at2 atZ

(23)

Assume that tube 1 is subjected to an excitation e exp(i2nft). Let

1
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qoexp(iZWft) be the response fdr the case of a solitary tube. The responses
for a group of k tubes are easily obtained:

q; = qoaiexp(12nft) K

_sin(k - i + 1)8 : ”
i sin(k + 1)6 ’ . (24)
o af m £ Y11
O =cos Mgl 2T Y -y
. Y12 £ Y12

where m is tube mass, m' is the displaced mass of fluid and fn is the
natural frequency of the tube in vacuo.

The values of the response ratio a, are given in Fig. 9 for a row

i
of five elastic tubes. The responses are strongly dependént on the driving
frequency’f:

(1) For f < fi or f > fi, the response of tube 1 ié close to that of
a single tube,subjgct to the same excitation, and the responses of other
tubeé are small; that is, the effect of excitation deteriorates rapidly.
Therefore;'a single;tube assumption is ;pplicable.

(2) ‘For fﬁ < f < fz, the rgsponsé'of tube 1 is different from that of
a single.tube, and the responses of other tubes can be very large; the
effecf'of an excitation will propagate to others wifhout.debay. In this
range of frequency, only the éouple@—modé methodAwill give accurate results.
D. A Row of Tubes Sublect to Vortices

A common cause of flow-induced vibration is an alternatiﬁg force in
the liftvdirection caused by the shédding of Karman vortices. The vortex
shedding frequency is given as

e - E X . , . (25)'

v D 4
where Stis‘fhe Strouhal nuhber,?U is the.floﬁ velocity and D is tube

diameter. For a single tube,St is approximately equal to 0.2 for sub-

critical Reynolds number. For tube banks, the value ofStis highly
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dependent on tube spacing and pattern, and multiple va}ues of S¢ ﬁave been

found. A summary of the experimental result$ is compiled by Fitz-Hugh [5].
Responses of a row of five tubes subject to vortices are presented

in Fig.lo,.where the damping ratios for the firsf five modes in the in-

plane motion are 0.041, 0.0Ai, 0.042, 0.044, and 0.045. Solid lines are

calculated fof‘St= 0.14 and all vortiges beigg out-of-phase, whiié dotted

lines are for 5.~ 0.38 and all vortices being in-phase. The values of

Strouhal number are based on the experimental results obtaine& by

Dye [7].

4In the actual situation, the responses of the tubes are probably to

follow the curve ABCDE as the flow velocity is increased. The modes of

response also change with iﬁcreasing flsw velocity. For example, at B,

the tubes vibrate predominantly in the out-of-phase mode, while at D, it

is predominantly in the in-phase mode. 1In the other range of flow velocity,

it will involve other modes.

~

E.. Transient Responses of Tube Banks_to Imgingemént Loads

If a tube rupture occurs, thrust and jet forces caused by fluid dis-
charge may cause further damage fo tube banks. Discharge fluid creates a
thrﬁst reaction on the ruptured tube itself and impingement loads on
neighboring tubes by the jet. It is desirable to know the response of
the tubes due to those impingement loads. As an example, a seven-tube
bank arrange& in a hexagonal pattern is considered, |

The magﬁitude and duration of tube rupture forces in a tube bank must
be available before the analysis cén be made. For the purpose of illustrating
the general characteristics, it.is assumed that the jet and thrust are of
equal magnitude and”can be represented by the step function. The responses
of the tubes are presented in fig.ll when tube 1 is ruptured with a jet

acting on tube 2 in the x direction. - The magnification factor is defined
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as the ratio of the displacement at midspﬁn’to thaﬁ of the deflection of
~tube 1 in the x direcﬁion to a static load of thevsaﬁe magnitude. The
damping ratios for the natural frequencies in the first ffgquency band are
found to be ‘ranging from 0.038 to 0.046.

| Due to symmeéry, tubes 1, 2, and 5 réspond in the xvdirection only.
The other-tubés vibrate with whirling motions. The absolute value of the
magnif;cation factor for tubes 1 and 2 is cldse to- 2 and is smaller for
other tubes. As the time increases, as expected, the absolute value of
the magnification factor approaches 1 for tubes 1 and 2 and zero for

others.
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V. COMPARISON OF THEORETICAL AND EXPERIMENTAL'RESULTS FOR TWO CANTILEVERED
ToBES '4
The method of analysis presented in Section II can Be applied to a
group of tubes vibrating in a 1liquid. In order to compare the anaiytical
result with the experimental data, the détailed énalysis for two cantiievered
tubes is given in Appendix A. The numerical results for two tubes are

based on the model given in Fig. 16 on page 48.

The frequencies measured in air are used to establish.the
_torsional spring constant at the support. Then thé frequencies
of uncoupled modes can readily be calculated. The natural
fréquencies of uncoupled vibration 6btained experimentally and
analytically are given in Table 1 where the ﬁeasured values of
damping ratio are also given. It is seen that experimental data
are in reasonably good égreement with the.analytical results.

The natural frequencies-of the coupled modes are presented
in Table 2. 1In every case, there are two natural frequencies; one
corresponds to the in-phase mode and the other to the out-of-phase
mode. The general. characteristics are similar to those of simply;
supported tubes [8]. “

Figures 12 and 13 show the freéyency responsé curves. 'Figureﬁlz
shows the response of tube 1 to an excitation acting.on itself
and ‘Figure 13 thé response of tube 2 to an excitation acting on tube 1.
There are two peaks:. one~assoéiated with the out—of-phase mode and
the other with';he iﬁ—phase mode. Note that the response of tube 2
is larger than tube 1 in the frequency range between the. two peaks.
This means that although'éube 2 is not’diréétly excited, its‘resﬁonse
can be larger than the other,which ig directly excited, in certain

frequency .ranges.



TABLE 1.

Theoretical and experimental values of uncoupled frequencies

Measured Natural Measured Calculated
Tube| Direction Gap-to-Radius | Dimensionless Frequency, Hz Damping Ratio |Natural
No. of Motion Ratio .. Spring Constant, : a Frequency in
p In Air | In Water { In Air | In Water|Water, Hz
0.2 . 78.0 77.63 69.05 0.0022 | 0.0059 68.51
. 0.45 76.7 77.60 69.32 | 0.0022 | 0.0031 68.97
In-plane
’ 1.2 71.1 77.45 | 69.65 0.0026 | 0.0036 69. 26
4.2 - 76.7 77.60 69.42 | 0.0024 | 0.0029 69.54
1 : '
0.2 68.1 77.36 69.11 06.0014 | 0.0037 68.28
0.45 52.9 ' 76.76 | 69.10 | 0.0016 | 0.0045 [  68.23
Out-of-plane 1.2 70.0 77.42 | 69.24 | 0.0012 | 0.0055 69.23 -
4,2 81.1 77.70 69. 80 0.0026 | 0.0065 69.64
0.2 112.6 77.20 69.10 0.0037 | 0.0048 68.33 -
0.45 113.4 77.21 68.97 0.0017 | 0.0042 68.82
In-plane
1.2 86.3 76.81 | 69.30 0.0020 | 0.0032 68.87
4.2 113.4 77.21 { 68.95 0.0028 | 0.0043 69.37
2 ,
0.2 . 75.4 76.57 69.08 0.0020 § 0.0058 67.77
0.45 129.7 77.37 69.18 06.0025 t 0.0043 "68.96
Out-of-plane 1.2 82.3 76.73 | 69.52 | 0.0025| 0.0067 | 68.79
4,2 84.7 76.78 69.13 0.0025 | 0.0054 68.99

- -8¢-
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Table 2. Theoretical and experimental values of coupled fréquencies

Direction Gap-to-Radius Measured Calculafed
of Motion Ratio Frequency, Hz Frequency, Hz
. 66.78 65.31
0.2
. 71.38 72.02
67.30 66.47
0.45 :
: 71.33 71.60
In-plane
68.23 - 67.65
1.2 70.63 70.57
'69.37 69.07
4,2
70.28 y 69.86
66.58 64,92
0.2
- 71.27 71.61
67.53 66.16
0.45 .
4 , 71.31 ‘ ' 71.32
Out-of-plane - - -
- 68.63 67.59
1.2
: 7Q.83 ‘ : . 70.52
69.35 68.48
4.2
69.80 69.54
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The transient responses in the out-of-plane mption of the two tubes
are shown in Figs. 14 and 15. 1In Fig. 14, tube 1 is given a small distur-
bance, while in Fig. 15, tube 2 is'given the disturbance. 1In this test,
the couplea frequencies are 68.02 Hz (in;phase mode) and:71.46 Hz (out-of-
phase mode) for the gap-to-radius ratio equal to 0.45 and 69.72 Hz (in;phase
ﬁode) and 70.56 Hz‘(out—of—phase’mode) for the gap-to-radius ratio equal |
to 4.2. The beat phenomenon can be seen clearly from the response curves.
The amplitude—modul#ted accelerations have a frequency equal to the avérage
frequency of the in-phase and out-of-phase modes, wﬁileAthe beat frequency

is equal to the difference of the two coupled frequencieé.
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VI. CONCLUSIONS

A method of analysis is presented for tube banks in_liquid subjected
to various fypes of excitation including deterministic and random forges.
The analysis is based on the coupled modes incorporating tube/fluid inter-
action. With the method of analysis, one can calculate the ﬁatural fre-
quencies, mode shapes and tube responses. The‘method.is being extended
to include the effect of flowing fluid.

Two cantilevered tubes are tested in a water tank; natural frequeﬁcies
and forced respoﬁses are measured. It is found that the analytical results
and experimental data are in reasonably good agreement.

Based on the presented results,-sévéral general conclusions can be
made:

(1) In a group of tubes, there are infinite number of frequency bands.
corresponding to the infinite numbe? of natural frequencies in the case éf.a
solitary tube. 1In each frequency band, there are ZR nétural frequencies |
for a group of k tubes; those frequencies are distributed near the frequency
of the corresponding single tube.

(2) The natural frequencies of the coupled modes for tube banks can
be obtained in terms of the natural frequencies of a solitary tube and tﬁe
effective added masses.

(3) In a tube bank, the values of the effective added mass become
more widely spread as the number of tubes is increased.

(4) Within each frequency band, the steady state responses of a tube
bank are significantly different from that of a single tube. However, in
other frequency ranges, the coupling effect is small and the effect of an

excitation will decay rapidly from one tube to another.
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(5) -Vorticeé can excite various coupled modes in a tubé'bank'and
the predominant mode of response may,change with incrgaéing flow vélocit&.
(6) Fluid jet‘and tﬁrust associated with tﬁbe rupture can cause
whirling motions inia tube bank, and the tﬁbes not direct;y’éicited mgy".<

have a significant amplitude.



-47-

APPENDIX A

ANALYSIS OF TWO TUBES IN A LIQUID

The méthematicalimodel for the tubes is shown in Figure 16. 'Mi ahd
Mé‘represent the concentrated masges accounting for the permgnent magnets,
accelerometers and aluminum mounting block. The support. is considered'as
" elastically restrained by a torsional spring and theAexciting‘fOrce is |

acting at z = . The problem is described byﬁthe following equations of

~motion [8]:

4 2 2 .2

9 u du 2 u R Ju
1 1 - 1 - 2 2
E I +e, —5 + (o + I M) —5 - AMu, (=)
11 4 1,2 171 g2 1°3 '} 2 e2
= El §(z - 1),
and :
al'u2 au, 32u2 R 2 Bzul
EI +c, —= + (o, + g M) —= - M u,(=)
27274 2 ot 2 " V2T 2 23R, .2
= F, 8 - 1), S (A.1)

where the index 1 denotes tube 1 and 2 denotes tube 2, z {s axial co-

ordinate, t is time, u, (1 = 1,2) is tube displacemgnt, mi‘is mass

per unit length of the tube, E /I, is flexural rigidity, cy is damping

coefficient, Ri is tube radius, M, is displaced mass of fluid by the

i
tube, R is the distance between the centers of the two tubes, ﬁl’ EZ’

and ﬁ3 are added mass coefficients, and A = 1 for in-plane motion and

-1 for out-of-plane motion. The boundary conditions are: .
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Fig. 16.

Schematic'of two tubes vibrating in a liquid
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At z = 0O:
u, = o , u, = o,
22y u 32y au
E.I 1. 1 E.I 2 o 2
11 .2 19z 272 2 T %29z
9z : 9z .
and at x = &: | : ' : | A _ (A.2)
u =0 , u, =0 ,
S LR LV 2u, 2%,
EL 3 oM 5, E)y =3~ =M, —5~ .
3z ot ' 9z at
Let
w = Lo, 6,, 11,2, - (a.3)
n=1 :

: ﬁhere ¢ni is the modal function for the tubes.<_Assumiﬁg tbe'édjoint
modal function is wni' Those modal functions, and the correspbnding
eigenvalue Yoi and natgral frequenéy w 4 can be calculated following
the method presented in Appendix B. Substituting Eq. (A.3) irito (A.1)

and using the biorthogonality condition yield

B . 2 . - . -
91 ¥ 2551 Yn1 Yp1 T 01 Inp T A g 8m 2 T P12
and ' (A.4)

2 Aa

* 2802 Unp g FUpp Iy T A

8~
o'l
B
as
-]
H

qn2

where
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- 2 . ' -2
S , _ HgMRy
4 T2 _ ’ % =22 R
M o F
- 1 - i
B a2 Pag = A+ BY (D) c@m oy
1 - 1My
- l ' - pr— 1 .
anm = Jo ¢m2?n1d€-+Bl¢m2(1)wnl(1)’ bnm = Jo'¢mlwn2d£-+62¢m1(1)wn2(1>' (a.5)

Equation (A.4) consists of an infinite number of ordinary differential
equations. However, typically, only a finite number of equationé is
taken f:om case to case according to the desired accuracy. . As an approxi-~

mation, two equétions are taken in the following calculations; i.e.:

.. . 2 - .
933 * 2811932977 F 99391 T 23397959 T Pyy s
and
a + 2C.,w & + m2 4., - Aa.b a =p (A.6)
12 12%12%2 F 91295, 2°11%1 ~ P12 .

From Eqs. (A.6), it is seen that the frequencies of uncoupled modes are

given by Wy and Wy The frequencies of the coupled modes can be solved

easily. Those are Q

1 ?nd 2y3
: 2 1/2
_ 2 2 2 2 - - 2 2 .1/2 . - - 1/2
& = <k“11f*“12)"[(“11“'“12) +hajaya) byiwe,l 2L -agegal b )],
. (A.7)
2 2 2 1/231/2 | 1/2

_ 2. 2 2.2 - = - - =
% = (i ey + [Ty -ulp) +hagegdy Breyery] T ) /120 - agega BT

Based on Egqs. (A.3) and (A.6), the responses of the tubes to an arbitrary
excitation can be célculated rather easily. The procedure is the same as

that given in Reference 8.
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APPENDIX B
FREE VIBRATION OF AN ELASTICALLY

SUPPORTED TUBE WITH A CONCENTRATED
MASS AT THE TIP

Consider a tube which is elastiéally supported by a torsional spring
‘with spring constant k and a mass M’ attached to the free end. The'eduatiOn
for free vibration is

d ' 9
EI—a—z—lz:- +mfa—t§- = 0, ' (B.1)

and » - (B.2)
u _ dTu _ L, -
322 o, EI-5;3 =M 3cZ 3t 2 2,

where EI is flexural rigidity andm is mass per unit length of the tube.

Using the standard method of separation'of variables, one assumes

u (z,t) = ¢(z) exp (iwt). ' _ (B.3)
Substituting this form in Eqs. (B.1) and (B.2) results
d 4 ,
,EZL -Y¢=0, | | (B.4)
2 C _ .
= d = —?- =
¢ o, d_gg' p at at ¢ o,
(B.5)
2 3
d7¢ _ d7¢ _ -4 S
&%—Q,d—-g%—vsda at £ =1,
where
£ = 272,
- M
T 4 2 ~
p=ki yA.2EU : .~ (B.6)
EL EI ‘

ahd 2 is the length of the tube.
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14

Note that the eigenvalue YA appears in the last boundafy condition;
therefore, the eigenfunctions are not orthogonal in the ordinary sense.
To overcome this difficulty, extend the space such that the space

_ ‘ N .
consists of two component vector § (¢) whose first component is a real
functién ¢(£) and whose second component is a real number ¢a.‘ Define the

> >
. scalar product of two vectors § and @ as follows:

> =+ 1 o
< ¢, ¥ >= ¢(8) v(&) dg + ¢a ¢a- - (B.7)
o . .
Now the eigenvalue problem of (B.4) and (B.5) can be written
) 4
- > . ) ’

L¢ = =y ¢ . ' ' (8.8)
a3¢(1). ' , : ;
dg

. >
Therefore the domain D of the operator L is the set of all function ¢ in a

linear vector space which have a piecewise continuous fourth derivative,

which satisfy the following equations:

¢=0,%€% =p%at £ =0, _ (B.9)

and
¢a = B$(1). A '
Using'the definition of scalar product in Eq. (B.7), one can find the

adjoint system: :

Loy 3
=[0 b3t at - v, ddE3_(,1)

A
et
t
et §
v
A

*

=< L (8.10)

el
el 4
\%
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From Eq. (B.10), the adjoint. operator is given by

4
_d312§12
dg3
_ ) o |
¢=0,j—€%=p% at £ = 0, : (B.11)
2

and

b, = (D).

. * _ .
The eigenvectors of L and L. subjected to the boundary conditions can

be solved rather easily. The results for the original systems are as

follows:

$(8) = &l cos y& + 62 sin £ +,33 cosh yg + &4 sinh Y , .

where -

- ~2y sinh vy - p (cos Yy + cosh y) =

p (sin vy + sinh Y) Aa"l: (8.12) -

Gy = =0, ,

-2y sin vy + p (cos y + cosh y) &

4~ p (sin vy + sinh v)- 1’

and the value of eigenvalue y is determined from the equation

1l + cos Yy coshy + (B + % ) (cos y cosh Yy — sin vy sinh ¥v)
2

-2 155 sin y sinh y = 0. i . (B.13)
Equation (B.13) has a series of solution; let the solution be Yo (n=1, 2, 3...x).
Corresponding to each Yn’ one has the corresponding modal function ¢n angd

natural frequency w . Therefore, the eigenvectors of L are



~54-

y .

¢_ (&)

n

n

1o

B¢ (1)]. | S (B.18)
. . . * . ' . ’ . ) .
It can easily be shown that the eigenvalues for L are the same as those for

‘ * .
L and the modal function wn.and eigenvectors of L are given by

wh €, \
(B.15)
> Yy (&)
Yy (1),
- -+

~ The eigenvectors §n and @n possess biorthogonality conditiqns; i.é., the

‘ x .
eigenvectors of L and L correspond to different elgenvalues are orthogonal,

>

> -
U = . .
P ¥> =6 . , o (B.16)

> >
In Qn and ¥ , there is a constant 51. &1 has been chosen such that.
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