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ABSTRACT 

The electron-phonon spectral distribution function, a
2
(w)F(w), has 

been calculated for niobium. The energy bands and wavefunctions were 

obtained from a self-consistent APW muffin-tin potential, and the matrix 

elements were evaluated using the so called rigid ion approximation. The 

details of the calculation are presented and the results are compared 

with recent tunneling experiments, which confirm that the electron-phonon 

interaction is nearly three times larger for transverse phonons compared 

to the longitudinal phonons. It is shown that screening is of great 

significance and evidence is given which suggests that the same screening 

by d-electrons which causes the dips in the phonon dispersion curves of 

Nb is responsible for enhancing the electron phonon matrix elements and 

hence T
c
. An omission in the formulas of Gaspari and Gyorffy is pointed out. 
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For d- and f-band materials the relationship between normal state 

and superconducting state properties is still a major problem. In their 

phenomenological work McMillan' and, more recently, Allen and Dynes 
2 

have shown the importance of and need for a better understanding of 

such normal state parameters as the electron-phonon interaction, the 

density of electron states at the Fermi level, and the phonon spectral 

distribution. These properties are related in a very complicated manner, 

and sorting out the coupling mechanisms is a formidable task essential for 

determining the details governing superconductivity in high T
c

 materials. 

We present a first-principles numerical calculation of a2F for 

niobium which provides new insight into the electron-phonon interaction. 

In the first section the details of the calculation are presented and 

compared with the approach of Gaspari and Gyorffy.
3 

The second section 

gives the results of the calculations and presents a comparison with 

tunneling experiments made by two different groups4'5  (The experiments 

are reported in the proceedings of this conference.). 

I. Calculational Considerations 

The electron-phonon (e-p) spectral distribution function is given 

by 

2 1 dS' 
10-ClcV • E. (IC -fc'')I-k'')12 
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where the integrals are over the Fermi surface, E. and w. note the 

phonon eigenvectors and frequencies of the jth branch, and VV E stands 

for the screened e-p interaction. The e-p mass enhancement given by 

= 21a
2
(w)F(w) w

-1 
dw (2) 

where F(w) is the phonon density of states. It has been customary to 

approximate this expression by 

= m (2) (3) 

where 
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and the approximation is made by taking 

= F(w)wdw / $ Fww1 dw. (5) 

A simple method of evaluating 11 has been devised by Gaspari and 

Gyorffy
3 
(hereafter referred to as G-G). They used the so called "rigid 

ion" approximation in which VV is the gradient of the muffin-tin 

potential. This procedure ignores the tails of the atomic potentials 

in the interstitial regions as well as the electronic charge deformation 

and redistribution associated with the ionic displacements. G-G also 
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averaged wavefunction coefficients over the Fermi surface, a procedure 

which John
6 

has shown to be valid for cubic monatomic crystals. A 

drawback of the G-G method is that it precludes the consideration of 

individual phonons, hence the evaluation of Eq. (1) is not feasible 

within the G-G framework. A wide application of the G-G method for 

calculating i  has been made by Klein et al.
7 

The calculations presented in this paper used the APW energy bands 

and wavefunctions of a self-consistent muffin-tin potentia1.8  The actual 

expression used to evaluate the e-p matrix elements is given by Sinha.
9 

In testing the computer programs which evaluated Sinha's expression it 

was discovered that two terms had been overlooked. For completeness we 

include the correct expression in the Appendix to this paper. It can 

be shown that if E
k 

E
k' 

= E
F 

then 
Ia
k'k as given in the Appendix is 

equivalent to the matrix elements assumed by Gaspari and Gyorffy. Thus 

we are also neglecting screening effects as well as the tails of the 

atomic potentials in the interstitial region. 

There may be some concern as to the appropriateness of a muffin-tin 

potential for these calculations.10  Two separate questions naturally 

arise 1) How good are the wavefunctions and eigenvalues (Fermi surface) 

obtained from a muffin-tin potential and 2) How good is the electron-

phonon matrix element evaluated within this approximation. Fortuitously 

the first question has been throughly investigated very recently by Naim 

Elyashar and Dale Koelling who performed a relativistic, self-consistent, 

a = 2/3, APW calculation using a completely general potential.11 "
1213 

They found that the energy eigenvalues were surprisingly accurate within 
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the muffin-tin approximation (e.g. the Fermi energy changed by only 

3 mRy in going from a muffin-tin self-consistent potential to a completely 

general self-consistent potential).12  The wavefunctions (and therefore the 

charge density) did show sensitivity to the non-spherical terms in the 

potential. There was an increased contribution to the L = 4 angular 

component of the density and non-uniform shifts of the order of 2% to 3% 

in the angular momentum character of the wavefunctions - generally in the 

direction of increased anisotropy.11 '
12

 Although these changes are 

significant for accurate X-ray analysis or for understanding the anisotropy 

in accurate induced form factor measurements by neutron diffraction, the 

changes are not as important for our calculations. In fact the greatest 

significance to us of the Elyashar and Koelling results is to give confi-

dence in the wavefunctions we are using from the muffin-tin potential. 

Of particular concern (as emphasized in the G-G technique) is the .-charac-

ter of the wavefunctions at the Fermi surface. A comparison between the 

a = 2/3 muffin-tin and general self-consistent potential results indicated 

that there were less than 2% differences in the different . components 

of the density of states at the Fermi level. 
13,14

 

The problem of assessing the quality of muffin-tin e-p matrix 

elements has not received as much attention. By only considering the 

contribution to the matrix element inside the muffin-tin spheres we are 

neglecting the contribution in the interstitial region. This is probably 

not too serious an approximation for the following reasons: 1) 85% of the 

d electron density is contained within the muffin-tin sphere for d-states 

at the Fermi energy, and p-d and d-f coupling is by far the dominant 
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contribution to 11; 2) the potential in the interstitial region is slowly 

varying. In future work we intend to investigate the size of the inter-

stitial contribution, however we believe the more serious approximation 

which deserves immediate attention is the neglect of screening for these 

matrix elements. A procedure for including screening is outlined in our 

other paper in these proceedings, and further details will be published 

elsewhere. 

The integrations over the Fermi surface were accomplished by adopting 

the clever tetrahedron methods which have been developed for evaluating 

the density of states. 15' 16  The irreducible 1/48th of the Brillouin zone 

is divided into many small tetrahedrans. Inside each tetrahedron the 

energy bands are linearly interpolated between the four corner energies. 

As the number of small tetrahedrons increases the linear approximation 

converges to the correct analytic result. Within a tetrahedron a constant 

energy surface is a plane whose area can easily be obtained, as can the 

gradient, vkE. In our calculations the Fermi surface cut through 231 

tetrahedrons in the 1/48th of the Brillouin zone. Wavefunctions were 

evaluated at the center of mass of each of the 231 planes compromising 

the 1/48th section of the Fermi surface. The summation over -I-<'' in 

Eq. (1) requires -I- ' to vary over the entire Fermi surface so that group 

theory is required to rotate those wavefunctions obtained in the 1/48th 

into the other sections of the complete zone. Our procedure then was 

to pick a IC in the 1/48th for which the incremental area AS and the 

gradient were known and let -1-<.' vary over the other 231 x 48 independent 

wavefunctions. In this manner a
2
(w)F(w) or X--,k  can be obtained for 

each k.. In principle we should have summed over all 231 lc' in the 1/48th, 
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but because of computational expense the summation was truncated. The 

73 I(' which had the largest weight (AS/ 1VkEl) were included. These 

account for 67% of the total density of states at the Fermi energy, and 

result in 816, 651 total matrix elements. Because each X-,  was calculated 

the convergence could be watched and we believe our final results are 

accurate to within 3%. This is supported by the comparison with the 

calculation of T1 by the G-G method as described below. The phonon 

frequencies and eigenvectors were obtained for each of the 816,651 matrix 

elements using an 8th nearest neighbor force constant fit.17 

While evaluating a
2
F we also calculated T1 as given in Eq. (4). 

Expanding the wavefunctions in the angular momentum representation inside 

the muffin-tin spheres the s-p, p-d, and d-f contributions to 1 have 

been evaluated and are given in the first row of Table I. The row 

labeled G-G(1) gives results using the G-G method as published.3'6 

The discrepancy between the results was traced to the neglect by G-G of 

a term arising from the discontinuity in the second derivative of the 

radial wavefunctions caused by the muffin-tin potential discontinuity 

at the sphere radius. Understanding how and why this term arises is made 

clearer by considering appendix 1 in the paper by Evans, Gaspari, and 

Gyorffy.18  The radial integral to be evaluated is 

r 
dV 

I = dr U
t TIT 

u
t+1 0 

where in their notation U
4, 

is the radial solution to SchrOdinger's 

equation multiplied by r. Reference 18 shows that the integral is equal 

(6) 
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to 

I 
WO)  

= [i(U t+1 Ut Ut+1 ) 
U l U l 
4,-/- 1 

u r 

t+1 t t 
u
 t+1 r=0s 

(7) 

To evaluate this expression the value of the radial wavefunction and its deri-

 

vatives at the sphere radius are required. Evans, Gaspari, and Gyorffy sub-

 

stitute the values of the radial wavefunction and its derivatives that 

are valid just outside the muffin-tin sphere - which is equivalent to 

keeping the unphysical singularity at the muffin-tin sphere in Eq. (6). 

An appropriate form of the radial function in the interstitial region 

where the potential is zero is 

U p
 = R(r) = j

t
(JE r) cos(E) - rt

,t
(JE r) sin E,(E) (8) 

where 8
,
(E) are the scattering phase shifts of the muffin-tin potential 

evaluated at the sphere radius. With the normalization of Eq. (8) and 

using atomic units Eq. (7) yields 

I = sin(t)- 
8t+1)

 + V(r
s 

Lit 
+1 

(9) 

where V(r
s
) is the value of the muffin-tin potential just inside the 

muffin-tin sphere. The integral in Eq. (6) can easily be evaluated 

numerically and shows that Eq. (9) is indeed correct. The second term 

in Eq. (9) has been neglected previously. The row labeled G-G(2) are the 

results using the corrected formula. The small remaining differences are 
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probably due to the lack of convergence in our summations. Our calcula-

tion includes cross terms
6 

(arising from p-d transitions in one matrix 

element in Eq. (4) but d-f transitions in the other) and yields a total 

value of T  of 10.33 eV/R2. 

II. Results 

The calculated a
2
F function, Eq. (1), is shown as a histogram in 

Fig. 1 along with the phonon density of states F(v). The value of X 

obtained from Eq. (2) was 1.87 (equivalent to setting (w2 )2  to 183 K). 

The usual approximation of Eq. (5) yields 195 K for (w2) and using 

Eq. (3) would give X = 1.64, which shows that the so called "constant 

a
2
" approximation is not very good. The value of 1.87 for X is about 

a factor of 2 larger than the range of accepted values
1
'
2 

and strongly 

suggests that screening effects are important. (We do not expect X to 

change greatly with different potential precriptions for calculating the 

band structure.) 

Figure 1 shows that a
2 
for the lower transverse peak is enhanced by 

nearly a factor of three over the a2 for the longitudinal peak. This is 

also observed in the tunneling measurements.19  The tunneling spectra 

appear to have some broadening probably caused by intrinsic phonon life-

time effects and/or surface effects.20  Figure 2 shows the tunneling data 

of Bostock et al.
4
'
21

 from a polycrystalline sample. Although there is 

some question over the values of 4*  and X obtained in these experiments 
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the shape of a2F seems to be rather insensitive, and we therefore have 

some justification for comparing the shape of our calculated a
2
F with 

the experimental results. 

Surface contamination is a well known problem in tunneling experi-

ments using d-band metals. Some arguments have been made that the high 

energy phonon induced structure is smeared more than the low energy 

structure because the high energy electrons have a shorter mean free path 

and thus are affected proportionately more by the surface crud.
20 

In 

the absence of any rigorous way of taking into account the effect of the 

surface, we assumed the inverse of the penetration depth to be propor-

tional to the width of a Gaussian function with which we broaden the 

calculated a2F histogram of Fig. 1. Results by Lo et al.21  indicate 

that this broadening should go as w
2
. We thus broaden with a Gaussian 

of standard deviation a = bw2; where b = 2.5 x 10
-3

 meV -1, and is adjusted 

roughly to fit the observed width of the transverse peak. The heights of 

the two curves have been normalized at the transverse peak as shown 

in Fig. 2. The agreement at high energy is not very good. Since the 

energy dependent broadening arguments seemed to be made in order to account 

for the small longitudinal peak, and since our calculation indicated 

this is mostly due to a2; we tried broadening the histogram of Fig. 1 

without any energy dependence. The theory curve in Fig. 3 is obtained 

using a Gaussian of standard deviation .82 meV - which was again picked 

to give approximately the experimental transverse peak width. Now the 

high energy region is in substantially better agreement. The preliminary 
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to give close to the experimental transverse peak width. Now the high 

energy region is in substantially better agreement. The preliminary 

results of Robinson, Geballe, and Rowell
22 

are shown in Fig. 4. The 

theory curve in this figure is exactly the same as the theory curve of 

Fig. 3 except for the change of scale. With the theory curve as a 

guide the experimental curves of Figs. 3 and 4 are seen to be very 

similar, with only the low energy region being significantly different. 

The conclusions given below are qualitative and do not depend signifi-

cantly on the assumed broadening function. 

It is immediately clear that our calculations corroborate the 

experimental result that the longitudinal phonon peak is suppressed 

relative to the lower transverse peak, and that this is not an effect 

caused solely by poor surfaces. In addition the region between the two 

peaks in the calculated a2F is about 30% lower than the observed renor-

malized spectrum. This indicates screening affects this part of the 

spectrum less than it does the overall spectrum. In a previous paper
23 

we showed that screening by d-electrons near the Fermi level could 

account for the phonon anomalies observed in many high T
c

 superconductors 

(in particular Nb and NbC). A consequence of the ideas developed there 

was that there should be lessened screening (i.e., relative enhancement) 

of the e-p interaction in the regions of the anomalies. Specifically the 

screening of the e-p matrix elements require the elements of the matrix 

(1 ) )
1 
where the elements involve pairs of virtual transitions 

between pairs of orbital states. is a generalized susceptibility 

matrix and V the q-dependent Coulomb coupling coefficient between charge 
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density waves corresponding to the transition. For Nb we expect the 

transitions within the predominantly t
2g
-like d-band complex at the 

Fermi surface to dominate. As discussed in Ref. 23 and in our other 

paper in these proceedings, for a sufficiently high density of states 

at E
F 

and a correspondingly large x, the intra d-band elements of 

(1 + 1,./. ) can become quite small for q near the zone boundary, leading 

to both anomalies in the dispersion relations and relative enhancement 

of the e-p matrix elements in those regions. Unfortunately the a2F 

spectrum is w- rather than q- selective, but it is significant that the 

differences between the two curves in Figs. 3 and 4 correspond exactly 

to the frequency range of the longitudinal phonons in the regions of the 

anomalies. In the low frequency region there also appears to be a 

relative enhancement of a
2
F over our calculated spectrum. This may be 

due to the softening of the low frequency transverse phonons in Nb at 

low temperatures as observed by Shapiro et al.,
24 

compared to the values 

we used which were based on room temperature data. Experiments are now 

in progress at the Ames Laboratory research reactor to obtain a more 

complete analysis of the low temperature phonon dispersion curve of Nb. 

We should also remark that Shapiro et al.  observed stronger coupling to 

the transverse phonons (about twice as large as the average over all 

the phonons). 

In conclusion, the results of this calculation together with the 

recent tunneling measurements clearly indicate the importance of 

screening and suggest that the same d-electron screening effects respon-

sible for the dips in the Nb phonon spectrum also enhance the e-p 
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interaction and hence T
c 
as we had speculated earlier.23  Since this 

effect is rather sensitive to the density of states at the Fermi level, 

a corresponding comparison for Mo would be very worthwhile. We have 

also shown that the rigid ion matrix element calculation yields the 

correct qualitative features regarding how a2 F differs from F, but that 

quantitatively it is not a good approximation and neither is the usual 

practice of separately averaging over the phonons. 
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Finnemore, W. Kamitakahara, D. D. Koelling, W. Butler, B. M. Klein, 
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Table I 

11 s-p p-d d-f 

Eq. (2) 0.80 4.91 4.18 

G.-G. (1) 0.61 3.78 4.53 

G.-G. (2) 0.82 4.83 4.11 

Comparison of the results of Eq. (4) using 816,651 matrix 
elements with the results using the method of ref. 3. G.-G. (2) 
is with the corrected formulas. Units are eV/g2. 



FIGURE CAPTIONS 

Fig. 1. The electron-phonon spectral distribution function, a
2
F 

(histogram), compared with the phonon spectrum F(v)• Both 

curves normalized to 3.0. 

Fig. 2. The polycrystal tunneling results for a
2
F (ref. 4) compared with 

the energy dependent broadened theoretical a2F of Fig. 1. The 

curves are normalized to have the same transverse peak height. 

Fig. 3. The same polycrystal tunneling results compared with the 

broadened theoretical a
2
F. The broadening is energy independent 

and the curves are again normalized at the transverse peak. 

Fig. 4. The same theoretical curve as shown in Fig. 3 but compared with 

the preliminary experimental a
2
F of ref. 5. 
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Figure 1. The electron-phonon spectral distribution function, 
0/2F (histogram), compared with the phonon spectrum 
F(v). Both curves normalized to 3.0. 
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Figure 2. The polycrystal tunneling results for a

2
F (ref. 4) compared with 

the energy dependent broadened theoretical a 2F of Fig. 1. The 

curves are normalized to have the same transverse peak height. 
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Figure 3. The same polycrystal tunneling results compared with the broadened 

theoretical a2F. The broadening is energy independent and the curves 

are again normalized at the transverse peak. 
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APPENDIX 

A thorough discussion of the electron-phonon matrix element has 

already been given by Sinha.9 In this appendix we restrict ourselves to 

correcting and rewriting the expression [Eq. (A6) of Ref. 9] for the 

electron-phonon matrix element. The interested reader is referred to 

Sinha's paper for details concerning notation. 

For matrix elements taken within the muffin-tin sphere it is con-

venient to expand the Bloch functions in the angular momentum representa-

tion: 

Ok(1-) = BI 
m
(k) yr) Y

t,m
(il) lrl < rs

 

where r
s 

is the muffin-tin radius. Then Sinha's Eq. (A6) can be correctly 

written as 

[ Tk'k h2 2 t(t+2)  2m 
-"a = 2m rs 2 

+ — 2 [V(r 
s
 )-E
kr

 + L ) L + 1 -(L -Lt )] 
s 

t+1 t r 
s 

t+1 
r
s 

-Pt 

it+1  

m,m
E 

1 
B (k) B (k') +1' 1,t A k2t+1 t,m t+1,m 1 m',m-m' m-m',a 

p
t-l)(t+l)  

r
s
2 

+ 
2m 

tt
2 
[V(rs)-Ek]-(72.L  + L )L + t+ 

r
1(L L 

t-1 t t t-1 

x (I) (2t+1) m,m'
  

E B(k) B
t (1(1) Ct -1,m' m',l Am-m' m-m1,a 



where L represents the logarithmic derivative (M/Rt ) evaluated at the 

muffin-tin radius. L
t 

is evaluated at E
k 
and L

1 
at E

k'
. For E

K
=E

k' 

the epxressions inside the square brackets can be simplified using the 

scattering phase shifts similar to Eq. (9). In fact if Ek=Ek,=EF, 

and if Ia  is used as the matrix elements in Eq. (4) then one obtains 

exactly the Gaspari-Gyorffy formulation for 7 (including the correction 

term discussed with Eq. (9) and the off diagonal term discussed by 

John
6
). 
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