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DERIVATION OF THE POINT SPREAD FUNCTION FOR 

ZERO-CROSSING-DEMODULATED POSITION-SENSITIVE DETECTORC 

C H.Vowun 

ABSTRACT 
Thn m.«ct n j nulkratilical * tvwv <«•' J h«>^aaiN> aaan>UBal»>a t« ibr paml ipreai 

taacoun ft* p m m m m « m i n drtceton I fSOu Oof o r awbr-anpr a o + a b n m aatf i t w m - i a r 
aVahMMitpa. The aewroxawttna B i n » i — m < at * prarnl f — x t j * of tar aput wjaah Jo ikr 
i n x m r i 4rtrctor« > n i > i o o u H t b*rr * m —wimn of ofOaaaByuiw— a,co«p», fMtrt for PSD». 
Ths «ork B {wrench jpahiaMr io P5D» that a t cidtrr HC or IX" w i i w i n w hat c a o a m T V 
effects .>f raa+xn tanaMn. M K S a» dfcwjc a k i l M i n a r . a ihr cui<h%, proctn a*r ii-fcwfcj in 
attntom. the vnxfc ptarnrt J mem. np.» iw aKtbnl fat tfcr 4 H T I W « I P O of • • • *? awl BMWT > n — « I 
fur oAfa!*uoji i i ' twwcMia t dsmbMaaa faacnoanictoady •dates' 10 ftrw • • w •,» -a—r toinhmw 
fwKtBNtsl fur amtrxrv w n a b l a d arbrtrary BOHC nw MUMXTT ( a r t w i . 

1. MTROMICTION 

In d m work, the point spread function <PSF> for position-sensitive detectors |1 5) (PSDsl is defined 
and calculated for the first time. This FSF vnf enable the later determination of impulse responses of 
optimum position-decoding fitters for PSD*. These anputse responses will, in turn, enabie the design of 
optimum pmtion-dtcodhig. pulse-shaping filters for PSDs In addition, this work provides a generalized, 
prescribed procedure for the evaluation of existing and proposed position-decoding fillers It a, also 
productive in evaluating existing and proposed postiort encoders (eg.. RC position-sensitive proportional 
counters) 

This work is a mathematical derivation of the PSF for a otaedhnentiona! PSD. However, since there is 
little interaction | 3 | between the two position -coordinate measurements for two-dinvawonal PSDs. our 
PSF can be used for two-dimensional PSDs also. Our theory is dewioped in general terms so a to be 
predstl> applicabie to any PSD that uses cither pulse-shape or pulse-epoch modulation :<jgether with 
crossover-time demodulation. This class of FSDs includes those that use a position encoder with an RC 
transmission line, as well as those that use an encoder with an LC delay hue. The effects of thermal noise 
generated in both the encoder and the preamplifiers are included- The effects of various other random 
processes, such as electron cloud diffusion (6{. in the position encoder are abo included. We do not include 
the effects of correlated thermal noise in ou. final results, because such noise is likely to be much less 
important (7 .8 ] than uncorrelated noise in determining position uncertainty. However, the basic theory-
does include the effecb of correlated noise, and only a few. although difficult, integrals would have to be 
reevaluated to include such effects in the final results. 

As part of the PSF derivation, we derive upper and lower bounds for the joint conditional 
first<rosso*er-time distribution for two stochastic processes. Each process is assumed to be die sum of a 
deterministic function and a purely random process. We derive the bounds in terms of the deterministic and 
stochutK properties of the processes. We show that our upper and lower bounds converge to the same 
•'unction with increasing signal-to-noise ratios and that the lower bound is typically a high-quality 
approximation to the joint first-crossover-time distribution function. The most closely related previous 
derivations, those for the first-passage-time probability density function [ ° | . are limited to only a single 
process that must be either a Wiener or a Markov process. In contrast, our derivation is valid for stochastic 
processes that have any arbitrary autocovariance functions. Our method is indirect but rigorous and 
versatile. Although we use it in this work to determine ti?e distribution function for the first conditional 
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crossings of the zero level by two stochastic processes, it is also productive when applied to determine tit? 
distribution function tor the first conditional crossing of nonzero levels by or* or tw > stochastic processes. 

In the * o A that follows, we first define the PSF so that it completely characterizes -ny PSD. Then, we 
formulate rhe PSF calculation so that our results are independent of the particular type cr pt<sition encoder 
that is used. Next, an asymptotically correct approximation to the PSF is derived in terms oi the 
deterministic and stochastic properties of the PSD. In the final section, we tell specifically how to use the 
various equations of tins work to calculate the PSF of any PSD-

2. rmomAwajsnc wen sntEADFVNcnos 
To delate the PSD PSF. we first define two position coordinate systems. One of these coordinate 

systems is defined for the photon source, and the other is defined for the position encoder, because we will 
discuss only oae-dunensmoal PSDs. we assume rhe source is a one source- Then we define >• to be the 
general coordinate along the line source axis and x to be the general coordinate along the position encoder 
axis. Furthennore. we will add suitable superscripts to » and x to indicate particular values of these 
coordinates. 

we next consider photons that are emitfd from the source at position coordinate » 0 Because of 
randon errors in the measurement process, not every photon that is emitted at» = v„ is assigned »he same 
estimated position coordinate by the PSD. W> let x p denote the estimated position coordinate that is 
assigned by the PSD- The circumflex (*) is used to show that the estimated position coordinate is a random 
variable. Finally, we define the PSD PSF to be rhe conditional probabdity density function [10. II) 
ftxr\y%). The product f\xe\yt)dxe is the probabdity that xe < xr < x, • dx, under the hypothesis that 
vm = v . . The variables xf and » are the associated arguments | I 2 | of the probability density function 
This probabilistic definition of the PSD PSF is in contrast with die deterministic definition of the optical 
P S F | I 3 . 1 4 | . 

The PSF that we have defined characterizes a PSD completely. This fact may be proved by combining 
[111 the definitions of conditional density functions, joint density functions, and marginal density 
functions to obtain a convolution-like equation for the urcc.iditional probability density function for the 
estimated position xe when the souice density function is given- This convolution-like equation is 

Mxe)= f~m Hxr[v0i (\v0)d}9. <I) 

The product 7T>'» )dy» is the probability that a photon wr ch is detected by the PSD is emitted from the 
source between v 0 and y0 * dya. The probability density function 7\y0) is obtained by normalizing the 
source intensity function. The product Aixf)dxt is the probability that, for the given T\yn). a delected 
photon is assigned an estimated position xe such that xe<xe<xf* dxf. 

The PSF for a perfect PSD is a delta function. Howver. for an operating PSD. the PSF is not a delta 
function: but it is a function with nonzero full width at half maximum. This nonzero full width at half 
maximum is caused by the interaction of several random processes. To calculate the PSF of an operating 
PSD. the most important of these random processes are selected and included in a mathematical model of 
the PSD. For any PSD model, no matter how many ranaom processes are included, we simplify the 
computation of the overall PSF by separating it into the computation of iwo simpler conditional 
probability density functions. We call one the "encoder density function" and the other the "decoder 
density function." 

The decoder density function is Pdtxf[xc. a, a„). It is determined from the random 
processes that affect the encode-generated electronic signal after some position coordinate xr is encoded 
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into it. This positm coordinate is related to but is not necessarily the s?me as the interaction coordinate of 
the detected photon. For an RC position-sensitive proportional counter. xt. is the position coordinate where 
the photon-generated electrons are collected on the resistive center wire. The list of variables(x^. a, 
a„( cs the hypothec list The variables in this list are assumed to be fixed parameters when 
PjHx,.yxl . j , an) rs calculated. However, the inclusion of a parameter in this list anticipates a random 
relationship between it and va For the variable xc. the random relationship can be ~aused by the random 
penetration of the encoder by the photon, which is emitted from the source at position coordinate y n . 
before the photon interacts with the encoder to produce an electronic signal. The other n parameters. 
a, a r in this hypothesis list represent any other parameters |6) that are anticipated to be random 
and that affect th* :h«pe of the pube before it is modulated at wording to x f . Such variables as charge 
collection time and photon energy are included t? this group. The primary density function describes how 
all ot the random processes, including thermal ekctrcnic noise, interact with the position-decoding filters to 
determine the overall PSF. 

The encoder density function is the joint conditional density function Pf(xc.al an:ytl). '• | S 

determined from the random processes that affect the shape of the encoder-generated electronic pulse 
before the losition coordinate xc is encoded into it. The source position coordinate » 0 a assumet' "o be a 
parameter when Pf{xc.a, «„!••»> » calculated- If the random variables are independent 
Prixc. a, an{\0) can be factored into simpler conditional probability density functions. The encode' 
density function is greatly influenced by the particular type of encoder used in the PSD and by the details 
included in the PSD model, but it is independent of the position-decoding filter. 

We use the encoder and decoder density functions together to determine the overall PSF according to 
the marginal density equation 111) 

Pixfli„)=f'_ /"_/j<VVfli V ^ V ' a„ly„)dxeda, ..tk„. (2) 

The obstacle to the ready computation of the overall PSF with Eq. (2) is the determination of the 
decoder density function. The encoder density function is relatively essy to derive or measure 
Furthermore, for those PSDs where thermal electronic noise is the principal cause of random errors in 
position estimation, the decoder density function is a good approximation to the oveirfl PSF For these 
reasons, we focus the remainder of this work on the determination >f the decoder density function. 

We begin the determination of the decoder density function by modeling a simplified PSD in which 
electronic noise is the only random process. We ignore the details of the encoder because its important 
properties are described by the encoder density function. AD of the variables in the hypothesis list of the 
decoder density function are treated as parameters in this model. For brevity, we shorten the notation for 
the decoder density function toP^x^x^. 

i MATHEMATICAL MODEL OF THE SIMPLIFIED PSD 

To derive Pjixr\x(). we assume an ensemble of PSDs such as the one shown in F^ I. All bias voltages 
bias currents, and noise sources in the various members of the ensemble are in the steady-state condition. 

In the encoder, which is illustrated by an RC position-sensitive proportional counter in Fig. I. of?ach 
member of the ensemble, a photon is detected and a carrier pube is generated at time t^ All of the carrier 
pulses before modulation have the same pulse epoch f 0 r and are character*, ed by the same set of 
parameters tf i a„. Sometime after f0(. the pulse shapes or the apparent pulse epochs are modulated 
according lo x(. which is the same for each member of the ensemble. 
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For a single detected photon, one or more modulated pulses are transmitted tram each encoder. Since 
neither t 0 c nor xc is known, two ctossom-tiine measurements must be made to determine either of them 
from the transmitted pulses. To agree with published descriptions of encoders [ 1 - 5 ] , two pulses v e shown 
transmitted from the encoder of FB». I for each detected photon. 0 m pulse is processed in channel I. and 
the other pube is processed in channel 2- A single crossover-time measurement is made in each channel. 

The determimsuc transmitted pulses are corrupted by additive random noise m the encoder and in the 
preamplifiers- Hence, from crossover-time measurements of signals received at Dt and Di.it a only possble 
to estimate i 0 c and xc. The estimate of f 0 f is the random variable t0f. and. as previously stated, the 
estimate of xc is the random variable xr. To enable the quantification ri the accuracy of ihese estimates, 
we next mathematically characterize die d^ternunttric signals and the random noise. 

We tint mathematically characterize the signal and the noise at the outputs of the two wideband 
preamplifiers, where the signal and the noise have been amplified sufficiently so that additional amplifier 
noise is not important. At the output of the channel 1 preamplifier, the total observed signal is 

f i U f . a , an.i0c.il = v,(xc.at a„. r 0 f . r ) * 7 , ( r ) . (3) 

where v , lx c . a , . . . . . a n . t^. rI a the deterministic photon-caused pulse. y,it) an entirely random (IS) 
zero-mean-noise process, and r the real time. Likewise, at the output of the channel 2 preamplifier, the total 
observed signal is 

v:t*c-«, <*„• i 0 c . n = v , U f . u, a„. t 0 c . t) * 7 : (r>. (4> 

where v ; U r . a, a„. : 0 c . t) is the deterministic photon-caused pulse and Jii:) is an entirely 
random zero-mean-noise process. The functions v,ur c . a, a_. r^,. r) and v 2 (jr f .« , «„. r 0 c . t) 
can be determined from the physical processes of the specific encoder used. However, for this work it is not 
necessary to know the specific forms of these functions, and we assume they a:e elsewhere determined (2 J. 

Although the deterministic pulses v, {xc. a, a„. t^. i) and v 2 (x r . a, a„. r 0 f . D are the 
same for all members of the ensemble, the random processes y,(r) and 7 2 (r) are different for the various 
members of the ensemble. These processes include the effects of noise generated in both the encoder and 
the preamplifiers. Because ytii) and yt(t) are linear combinations of the currents that result from the 
random motion of many electrons, their joint amplitude probability density function is normal [16] . 
Therefore, the probability density function for these processes is completely determined (17) from the 
autovaruncc functions and the crossvariance functions for y,(r) and ?;(M We denote the autovariance 
function for >,<rlby r ( ilr>. the autovariance function for 7i<f)by r 5 j ( r ) . and the crossvariance function 
by r i : ( r ) We assume that y,{r) and y2it) are ergodic Since, in addition. 7,1/) and 7 2(r)are entirely 
random processes, the variance functions may be determined experimentally as autocorrelation functions 
and crosscorrelation functions. Alternatively, these variance functions may be calculated from * detailed 
model of the encoder and the preamplifier according to the defining equation (18) 

V„M = (y,U) yftt*T» <5> 

where (he angle brackets denote ensemble averages, i and/ are I or 2. and / is unrestricted 
For brevity, we will no longer write the paramMers a, an as arguments of ih- photon-caused 

pulse. Henceforth. v , (x r . a an. t 0 r . i) will at least be contracted to y,(jr r. t 0 c . t). and v 2(jr r. a , . 
. . . . a„. r 0 r . /> will at least be .-ontracted to v,(.t f . r0f. /). Furthermore, even these reduced argument 
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lists will be varied to meet the conflicting demands of clarity and brevity. Hence. v,(jr(.. / 0 r . t\ may be 
written amply as v, if there is no need to specify the arguments, or it may be written as v,(x) if we 
wish to specify that the position variable is x rather than x f but if we are momentarily unconcerned 
with t0( and r In all cases, x with suitable subscripts and superscripts will represent the position 
variable, and t wth suitable subscripts and superscripts wil represent the time variable. A similar 
contraction rule will be implemented for the argument lists of v, and v,. Abo for brevity, we will 
frequently omit the time variable when discussing a stochastic process. 

As shown in Fig. 1. the stochastic process v, b the input signal to the linear time invariant filter 
with impulse response A,(f >. and the stochastic process v, is the input signal to the linear time-invarunt 
filter with impulse response hz(ty This output signal from the channel ! filter is 

f,(.»c. t0c. t) = if,(jrf. t^. n * h,(t) = rt(xc. t0c. /) • 0,(r). (6) 

and the output from the channel 2 filter is 

fjU^ t^. t) = u2ixc. t0c. i) * h2U) = r2ixc, r 0 c . I) • *,(r>. (7) 

where the symbol * denotes convolution Signals r, and r, are deterministic and are given by 

r,ixc. t0c. t) = v,(jrr. t0c. t) • A,(r) (8) 

and 

r2(xc, r0c. l) = v,(jrf. l^. I) * A,(r> (9J 

The argument lists of r,, r 2 . f,. and fi have beer, contracted, using the same rules used for v, and v 2. 
The processes pt(t) and 0 2(f) are eniireiy random and are given by 

• I ( 0 * 7 I ( 0 * * I ( 0 <I0) 

and 

9JV) = JiU) • h2U) (111 

They are stationary and have a normal joint probability density function. The autovariance function for 
0i is [I9.20| 

• , , ( T ) * f~m h,(a)do f\h,(fi)r,,(T*Q -0)</0. (12) 

(he autovariance function for fe is 

• n O > * / * " *2(a)</a / * " * i W ) r , , ( T * a - « d 3 . (13) 



and the crossvariance function for 0i and • } is (21. 22) 

* , ; < T ) ^ / * " hx(a\Ja f*~ M ^ i r . i l r + o 3>d0 H4» 

In this fashion, we complete the mathematical characterization of the deterministic and stochastic 
processes at the outputs of the linear filters. We next consider the crossover-time demodulation process 
in detail. 

To determine t^ and xe. f, is demodulated by measuring r,. which is the time of the first zero 
crossing of ? i < * ( . r ^ . O after J, exceeds a preset amplitude threshold: and ?, is demodulated oy 
measuring t : . which is the time of the first zero crossing of f : ( * r . tCr. D after f, exceeds a preset 
amplitude threshold- Zero-crossing demodulation is used rather than level-crossing demodulation because 
/ero-crcssoig demodulation is unaffected by changes in pulse amplitude, that is. photon energy. In 
practice, this demodulation is accomplished by feeding the composite signal f, into crossover detector 
Dx and the composite signal f 2 into crossover detector D,. To ensure zero-crossing demodulation, we 
require zero bias voltages at the inputs to D, and D, -

The previously mentioned preset amplitude thresholds are the "arming levers" of the crossover 
detectors. The arming level of O, is Vtx. and the arming level of D2 n VaJ. We assume that both Vel 

and l'al are positive. This formulation of zero-crossing demodulation accurately reflects the behavior of 
crossover detectors that are armed when their input signals first exceed a positive arming level, remain in 
the armed state until they are triggered disarmed, and emit a standardized output pulse when their input 
signJs next cross zero. Hence, r, is the time when crossover detector D, of Fig. 1 is triggered, and f : is 
the time when crossover detector D: of Fig. I is triggered. 

Because f, and f : are stochastic processes, r, and /* are random variables. We define 
r*i:('i-'jir<.. t0c) to be the joint conditional probability density function for these random variables 
for a specified xc and / 0 ( We extend our practice of expanding and .attracting argument lists of 
functions to include those of probability density functions In particular, we wifl refer to this density 
function as simply P,3 when this designation is adequate. In the PSD of Fig. I. the two random 
variables r, and r: are reduced to one random variable. r« = r : - t.. by using the output pulse 
from D, as the start pulse for the time analyzer and the output pulse from D; as the stop pube. This analog 
computation does n<n preserve any information about the randor.i variables ?, «nd h • This selective 
preservation of information is implemented in our mathematical model by changing variables in 
Pi;(i, '. xr. i0c) to obtain P,)(t,.i>lxc.r0(.)and then contracting/*,. to the marginal density function. 
/ \<fi t ( ) Finally. P^xr\.x.) is obtained from Pt by making the change of variable indicated by the 
deterministic transformation that relatesi} lot , . 

It is important to remember that this mathematical model it developed for an ensemble of PSDs. each 
of which processes a single event. When the mathematical equations that are based on this ensemble 
concept are applied to an operating PSD that processes all evenu in time sequence, the implicit assumption 
is made that the cumulative distribution function for tt isergodk. This assumption is justified if the cent 
rate u small enough so that the number of measured values of f j that are not independent of all other 
measured values of t} a negligibly small. 

The essential density function for the calculation of Pa is P, 2 Hence we begin the derivation of the 
decoder function by deriving P,} as a function of T, ,(r). Ti J(T). T 2 2 ( D . v,(jr(.. r 0 f . i). v 2(jf f. r t , . t). 
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4. DERIVATION OF THE DECODER DENSITY FUNCTION 

4.1 Derivation of P, 2 

4.1.1 Gcaeral description of the method. To determine the probability density function for the first 
zero crossing of even a angle stochastic process at any time t after the arming of the associated crossover 
uetector. it is necessary to investigate the stochastic process during the entire time interval between the 
arming of the detector and the time t. The zero-crossing probability density function derived by Rice 
[23.24| for stochastic processes with arbitrary autovariance functions is not applicable to this 
determination because our timr interval of investigation is not required to be short enough to cause a 
one-to-one correspondence between the stochastic process amplitude and time. Hence, to derive P. 2 we use 
an indirect method. 

We begin by shifting our attention from «°i; to its cumulative distiibution function F, j{r,. f j lx c . t0c). 
Then, we define an auxiliary cumulative distribution function F which, for a proper choice of parameters, 
differs from Ftl by a negligible amount. Then, to determine F. we derm for F an upper bound Fui:il* 
lower bound Ft. We express these bounds in terms of the deterministic and stochastic properties of the 
PSD. Next, we show that for signal-to-noise ratios greater than 10. the significant noniero values of 
Ft iUi. ti\xc, 1(H) are concentrated on a finite range of t , t2 - For this finite r?nge. the difference between 
F/ and F is negligible for signal-to-noise ratios greater than 10. Finally, we conclude that either/*. 2 = 0or 
F\ i - b2Fildt,dt2. according to the values of t, and t2 that are specified. We begin our derivation with 
several definitions that lead to the definition of F and to the relationship Ftl-F. 

4.1.2 Definition of F and its equivalence tc F t 2 . To simplify further discussions, we first define some 
important time variables that depend on the characteristics of the deterministic functions r{t). We define 
these variables verbally here and define them graphically in Fig. 2. In Fig. 2 and throughout this work, the 

ORNu-OWG 7 4 - 3 5 7 6 

rit) 

ARMING 
LEVEL 

/ = / n = T H E 
NOMINAL ARMING 

TIME 

Fig. 2. A fketdi of diow portion* ofrit) that are neccsnry to iBuMrate die definition! of tome important vafci«* of t. 
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absence of * nutnerkaS subscript on a function or variable that normaHy has the subscript i or 2 means that 
both of the nurnericaly subscripted functions or variables are implied: for example, r{t) «s in lieu of r, (/) or 
r2(t). We first define f„ , . which is the nominal anning time of Dx, as the smallest vrjue of t for which r,(r) 
= Val. We define lHl. which is the nominal arming lime of £>2, as the smallest value of /for which r2{t)~ 
Vml.Vit next define tpl as the time when r,(r) reaches its first maximum after / = /,,,. We define tp 2 as 
the time when rtU\ reaches its first maximum after r = t„2 We then define / C | as the time when r,(/> first 
crosses zero after r = tp,. In a similar fashion, we define te2 as the time when r2(t) first crosses zero after / 
= tp-. Finally, we define r, t as »he time when rt(t) reaches its first minimum after t = tcl, and we define 
tr2 as the time when r2{t) reaches its first minimum after t = tc2. 

To begin the definition of F. wc define the rime interval T\ by its beginning ta x and its ending r,. and 
we say that t is :a T, if and only if ta t < t < t,. We also define the time interval T2 by iu beginning f,-. 
and its ending i2. and we say that/is in 7 2 K and only if f a I < / < f 2 . Except that r a , < / , andr, 2 < f2, 
the values of tfl,t,.ta2.mdt2 are not restricted yet. 

Next, attention is focused o.i the behavior of the stochastic processes f , ( / ) and foC) during T, and 7*2. 
respectively. Each member of the PSD ensemble is characterized by four additional nomegative integer 
random variables. These random variables are nJt, itj2, nu f . and nu2. They are defhvd as follows: 

1. ndl is the total number of "downcrossings'* of f i ( 0 within the interval 7, io. c randomly chosen 
member of the PSD e.uembte. A downcrossing occurs for f i(r) when f i ( / ) = 0 and t i ( r ) < 0 [24]. 

2. n U | is the total number of "upcrossings" of f t (f) within the interval 7", for one randomly chosen 
member of the PSb ensemble. An uncrossing occurs for f, (t) when f i (t) = 0 and f i (f) > 0. 

3. T d , is the totai number of downcrossings of $i(/) within the intcval r 2 for one randomly chosen 
member of the PSD ensemble. A downcrossing occurs for f 2(t) when f,(r) = 0 and J 2(r) < 0. 

4. n u 2 is the total number of upcrot^ngs ot f2(M within the interval 7*2 for one randomly chosen 
member of the PSD ensemble. An upcrossing occurs for f 2 ( f ) when ? 2(f) = 0 and f 2 (f) > 0 

The stochastic process f(/) is the time derivative of f(r). The joint discrete probability density fundi n 
for njx. nj2, nut. nu2 is Pcinjt,nd2.nui.nu2). We do not consider tangencies of J(f) in the above 
definitions because the average number of tangencies of f(r) in any finite time interval is zero [25 .26] . 

Next, we define F f ^ . f j i x , . . / 0 r ) to be the total probability for 'he occurrence of the event 
1"</ l > 1. « j : > J} without regard for the value of nux or nu2: that is. 

f( / , . /j iJf r . f 0 r )= £ £ £ £ PAndt'"d2<»ul"u2) (IS) 
"Jl -'• "t/2"' "u\'° "u2 = 0 

Because the probability of any zero crossings by a stochastic process during a time interval that ends 
before it begins is certainly zero. F = 0 for tx <tal or t2 <ttt2- In addition, if rx and r2 (or their 
representative sequence functions (27)) are absolutely continuous, then, for a fixed tat and ta2. F is a 
continuous monotonic increasing function of t\ and t2. Furthermore. F(o°.«>lxc. t0c) = I. because f i(/) 
and f. (r) are certain to cross zero one or more times in any infinitely long time interval. Hence, for a fixed 
tal arid ia2, F'.t\.i.\xc, t0c) is a cumulative distribution function. Finally, because Dt and D2 have 
positive arming levels and are triggered by downcrossings only. F is the same as F12 if the probability is I 
for the occurrence of the event F,. which is defined as occurring if and only if D, is armed but rot 
subsequently triggered before / = /„, zn&D2 is armed but not subsequently triggered before t - tt2. 

To select fal and ta2 so that it is almost certain that the event E„ occurs, we assume that noD\ or D2 

in the ensemble is triggered before the carrier pulse is generated in the encoder: that is. wo assume 
Fiidoc- ' o f l f f 'o f ) = 0 This assumption is justified by the common practice of adjusting crossover 
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detectors so that they are not triggered by noise alone during an arbitrarily long observation period. In 
addition, we have elsewhere modified1 the techniques that are developed in this work for zero-crossing 
probability density functions and applied these modified techniques to determine a lower bound for the 
probability that D, becomes armed but is not subsequently triggered between t = r0c and t = tp\ and Dz 

becomes armed but is not subsequently triggered between i = t9c and t = tp2. Tor typical experimental 
conditions (where the arming levels VaX and Va2 are more than 10 times the rms noise levels at D, and Dz. 
respectively, and r , ( f p l ) > 2Val a n d r 2 ( r ? 2 ) > 2Vtl], we have calculated that this probabflity is greater 
than I - e. where t - 1 0 ' * Because the probability that Et does not occur is so extremely anall for 
typical experimental conditions, we conclude that 

FtJ=F (16) 

if'*i =tpt andr , : =tpZ. 
Hiving defined F and shown its relationship to F, 2 . we next define :'Pper and lower bounds for F in 

terms of stochastic averages which, in turn, arc bter derived as functions of the deterministic and stochastic 
properties of ?U) 

4.1.3 Definition of iipper *wi lower boanas for "̂. There are many possible upper and lower bounds for 
F. To be useful in our work, the upper and lowtr bounds we choose must have two important 
characteristics. First, they must be expressible in terms of the deterministic and oodu i tk properties of 
f i(r) and f ;U) Second, when these bounds are expressed as functions of die deterministic and stochastic 
properties of f , ( / ) and Jj(f). the bounds must converge rapidly and monotonkaUy with increasing 
signal-to-noise ratios so as to define F for typical operating PSDs. We denote our specially chosen upper 
bound of F by Fu and our specially chosen lower bound by Ff. In this section, we select these functions 
and then show that our Selection for Fu does indeed define an upper bound for F and that our selection for 
Fi does indeed define a lower bound fn. F-

We first select Fu to be 

f u = (•r<j)nd2> (17) 

» m m -m 

~ £ £ It L nd\nJil'M<li-n<i7-nu\'''ui)- (18) 
"d\'n ndl~° ":il r° nul~° 

Equation (18) is obtained from Eq. (17) by applying the techniques (28] for the computation of ensemble 
averages of functions of discrete random variables. Since multiplication by nj,nj7 makes every nonzero 
term in Eq. (18) greater than or equal to the corresponding term in Eq. (IS), Fu is an upper bound1 of F. 

Next, we select F/ to be 

Ft-B-C. (19) 

1. Work not published. 
2. For a single stochastic process and a positive arming level, a suitable upper bound for the zero-crotsinp-time 

cumulative distribution function isoi^-. 
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where 

* = <i^,Hrfj> <*i,,,ii^;) <nlitnul)+<nuiiiul). (20) 

f = f ° / * fcya,.o.)da,Ja, . 121) 

M^(a,, a,) is the join' probability density function for », and a. .a , = f i Utl). and <*: = Sitiat). 

To prove that f> is a lower bound for F. firs* B t» calculated from Eq (20) as 

* = £ £ £ £ M**,.«rf2.««..«.!). (22) 
n j l - 0 nd2-0 n,,, = C » B 2 - » 

where 

.V(«j , . Hj j - nul'nmZ ) = ("«/l " m K*rfj -"w2^' f 'r(' l rfi»'»rf2-'' i i l- , , »2)-

Since uprrossings and downcrossings must alternate. #*f is zero unless n„, = ndl andn B 2 -"rfi-or/iB r = 
«ji and « H l = « j 2 ± I. or nal = « j | t I and it*] = tjj.ot nal = n j | t I and #r>2 - nj2 * I - By using this 
property of Pc together with Eq. (22). we find, after discarding the negative terms tha'. result from the 
expansion of Eq. (22). that 

B<l*V. (2J> 

where 

v = £ £ PMJI"J2',JI i.«j2 - n (24) 
V l O "J2* 

and 

Because»„| and»„2are normegative integers.r*c(0.0. -l.-\),Pc(n<n.Q.njt - I. -1). andPr(0.n^j. 
I. n^2 - I) are all zero. For this reason, the lower limits for both »,,, and ndl of Eq. (24) can be changed 

from 0 to I with no change in the value of V. Then, after changing these limits. Eq. (24) becomes the same 
as Eq. (IS) except that the values assumed by nu1 and nul in Eq. (24) are a subset nf the values assumed 
by n„, and nul in Eq. (15). Hence, since Fe is always positive. 

V<F (26) 

is obtained immediately. 
To continue the proof that F{ is a lover bound for F, we note that the occurrence of the event 

{/}„, =«</| + I, nUI = nJ1

 + 1} requires the occurrence of the event { f i ( / , i )<0 . t'1{ttti)<0}, but not 
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vice versa. Hence, we conclude that F is less than or equal to die total probability that the event 
tJiU«i)<0. ?2"«i)<0V occurs without regard to the values of nj , o r « j z Thb conclusion, together 
with Eq (21). yields 

V<C. (27) 

By c^nbining Eqs. (19). (23). (26». and (27). 

F,<F (28) 

is rnaHy obtained. Hence. Eq. (19) docs, indeed, define a lower bound3 for F. This tower Sound 
complements the upper bound defined by Eq- (17). 

In this section, we have defined upper and lower bounJs for F which are functions of </r</,iirfi>. 
G*«/i"«A <*«i*di)- v^|i«i)- and Wt. In the next section we will continue our derivation of the primary 
density fjucton by deriving Gj\njiK v ^ i " ^ - vrBln^2>. fcui*u{>. Wa. and. as a result, f) and F„ as 
functions of the deterministic signals Hi) and the auto- and crosvariance functions for #(r). 

4.1.4 Pemnonn nf f> andF. asrnncowns nf the detiinunjiik and i f than* wwyetties nff fl/>. In this 
section, we first derive vVin^2>. vr^i*^). Gfdi*ui>- and d*vlJtar2^ * functions of/(r). • ' ' ( ' ) - *i i' T)-
and +zi(r)- Cramer and Leadbetter (25. 26) have rigorously derived such ensemble averages as <HJO-

<«BI). etc.. for a single stochastic process. The presentation of their derivation modified for two stochastic 
processes is beyond the scope of this paper. However, using Cramer and Leadbetter's published derivation 
as a model, we Inve completed such a modified derivation- Asa result of this derivation, we find that aB of 
the ensembk averages that *«e needed in Ft and FH can be represented by the generic function 

£.i"/2> = f/^ / £ Pn (F, . FJ )<#»,<*>, . (29) 

with 

^ i . r 2 ) = / / ! f , ( / , ) l l j 1 ( f 1 ) | l i ' I M / l ) = 0 . f t ( f J ) = 0 . f , (r , ) , f I (r 1 ) | i / f I of 1 . (30) 

where i and / represent either d or u depending on the product that is averaged over the msembJe and where 
*ltI('I ). Sii'z ). ti U, X itiij)) is the time-dependent joint amplitude probability density function for the 
indicated random variables. The various boundaries for the region Hf and the values assigned f i and f j in 
Eq. (30) result from the equivalence of a downcrossing with the condition f = 0. j < 0. and the equivalence 
of an upcrossing with the condition f = 0. f > 0. To calculate £</ (n d l), first PJJ is obtained by evaluating 
the double integral of Eq. (30) over the regio* RJJ, which, because of the way we have defined a 
downcrossing. is the quadrant of the f,. f, plane defined by {, < 0. j j < 0. Then. &d\ndd ° obtained by-
using PJJ as the integrand in Eq. (29). Similarly. (nj%nuj) is calculated from Fju. which is obtained by 
evaluating the double integral of Eq. (30) over the region Rju (this is the quadrent defined by f i < 0. 
f i > 0). The ensemble average <nu i nd 2> is calculated from Pud- which is obtained by evaluating the double 
integral of Eq. (30) over the region Ruj (this is the quadrant defined by f, > 0, jj < 0). Finally. (n„ ,nuJ> 

I. For a ancle stochastic process and a positive arming level, a suitable lower bound tor fhe zero-crossing-time 
c'lmub'rw distribution function is <nj> - <nu>. 
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is calculated from Pmm. which is obtained by evaluating the double integral of Eq. |3©» over the region kuu 

(this is the quadrant defined by j , > 0 . f 2 >0) . 
In matrix notation, the probability density function */is given by (29] 

• W . - f I . f i - r I > = < 2 » r 2 A , / J e x p H 2 RpKZ R*2| . (31) 

where the bJde symbol is used to indicate the transpose cf a matrix: Z is the raw matrix (Jiff, X liit-X 
f i ( ' i i- itUi)\: B n the tws matrix (r,(r,) .r ,( / ? ». /,(f, y. r2(tt I] :r(r) is me time derivative of liiyM-
K"': K is the covariance matrix for the random variables * , ( / , K ^('ifc. # , ( / , ) . and ^ ( f i >: and A u the 
determinant of K. 

Hie element of the matrix K m the rth row and /tb ^dumn is ft j . Since K i> >ymmetr.<:. only ten matrix 
dements are needed to specify K. With r 2 l - t 2 l,. the elements n the first row arc given by |30] * , , = 
• n ( O I . t , : = • n ( r ; i ) . * , , =0 . and x,« = (<#+, >(ryaY) T : r > t .The needed elements in the second row 
are given by k22 = • : : ( 0 > . t ; , = - A , 4 . and * J 4 =0 . The needed elements in the third row are given by 
* , j = I </ 2 *n(r) f<rY , | T , 0 and * J 4 = J - ^ 1 * , , * ! ) / * 2 ! , ^ , . Fmaty. the bat dement is **« = 
I J2+21ir)ldT2lt.m 

Until this point we have assumed that y,U) and y2(0 (and. hence, ^ ( f ) and +2U)\ are correlated 
because this assumption complicated the derivations only sbghtly and because these processes are indeed 
correlated. The>- are correlated because components of both processes have a common origin in the encoder 
and because noise generated in the preamplifier of channel I is coupled via the encoder into the 
preamplifier of channel 2. and vice versa. However, because continued assumption of correlation will cause 
considerable difficulty in the evaluation of the integrals for Eq. (30) and because we expect the effects of 
correlated noise to be much less important than the effects of uncorrehted noise in determining the 
distribution of xr. we will assume that r, 2\r) = 0 s • , J(T) for the remainder of this work. As a result of 
this assumption, the elements of the matrix M are zero except the diagonal elements. The diagonal elements 
are given by T M = I/*; i . m I 2 = llk22.miS = !/*, j .and m« 4 = I/it.* Use of this specif -cation for M in 
Eq. (31) yields 

where 

«i = ' . ' ( ' , V* . , *rt

 2(r, y * „ • I f , ' - 2f, r,(r, ) ) / * , , • ( j , 2 2f, #- , ( / , ) | / *„ . 

»i = r2

7U2)lk12 *r2

2UJykA.*[(1

1 - 2S, r2(i2))lk22 • [(,7 - 2f, M r 2 ) l / * 4 4 . 

and 

A-k, zk22kiakt4 . 

After substituting Eq. (32) into Eq. (30) and performing the indicated integrations (31). we obtain 

rdj(tih)sIXl,.ti)G\y,ih)] G[-y2{t2)] . (33) 

' * , ( ' i - h) - M ' I . h) 0\ y,U, )1 Ct +>',(/, )| . 34) 
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*im('i.*i) = «l'i.»jiCIt.v I(f,) | GKv,(r,)) . (36) 

where 

lf I (r I ) = - (2«* , , ) , / I » ;

1 ( / I ) exp( -H J ( r ,y2 l . 

»r( ' I )=- (2»* 2 I ) - , / 2 r 2 (r I )exp[- i i4 ( /2V2| . 

«,<f,) = r 1

J ( / , V * , 1 . 

«4<fJ) = r :

2 (r I V*i2 . 

CO') = 0.5[l + erf^ + i r -" 2 >- 1 exp(-/>l . 

yiUl) = rlttl)(2kii),l2. 

j ' i (r i )»r ' i ( f iM2*44)" , / 2 . 

and erf >s the error function. In addition, there is the very useful identity 

dy)*G{-y)=l . (37) 

, A >V y% / \ A / » 
Equations (33) - (36) are used in Eq. (29) to yield expressions for (njlnj2^.(njinui).(nutnt/2>.>nd 

<nBi/i u 2)as functions of the deterministic and stochastic properties of f(f). Then these expressions are used 
according to Eq. (17) to completely determine Fu and according to bqs. (19) and (20) to partially 
determine F/. The results of such use are 

f « = f'1 f ' Cl -M*,) ) C|-v,(v 2 ))H(p„ p^d^dpj . (38) 

B = f'1f',mPi,i>i)dvtdvt. (39) 

To complete the determination of F/, C (which is defined by Eq. (21)) is next derived as a function of 
the deterministic and stochastic properties of lit). The probability density function Wa is given by (29 J 

Wa(a, J a J )=(2ir)-' V , / 2 exp|-(2« - R,)»M*, - **n\ . <«0> 

where \ a is the row matrix \a,, a 2 ) , R a is the row mctrix (r, ( f # , ) , r 2 ( r a l ) | . M, = C "*. C is the covariance 
matrix for the random variables a, and a 2 , and A, is the determinant of C. The matrix C is symmetric, and 
f n s * n . f u =* i j ( ' t f 2 '<ri).andc 2 2 -A; 2 2 .For4> l 2 (r) = 0,theuseofEq.(40)inEq.(2l)yields 
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C^OJ^crfvir.j;,,:::*,,} , ' I J- fc j - ' ; ! r . i Hl* : : ! ' ; ! (41) 

where erfc is thecompiemtntary error function- Equations (39) and (41 ). when comtuatd • muhni. to Eq. 
(19*. completely determine f) as a function of the deterministic and stochastic properties of Jlf ). We 
continue oar work by using ff and Fm to determine F. 

4.1.5-1 General dbruxun* of dm nirmkntm. In the pre wows section, we derived f ) and Fm as 
functions of i(f) and *<r)- For those derivations, we did not restrict /«-, or i , 2 - Now. however, to make Ft 
and Fm useful m the cafcvfaijoa of r», j . we require that tmt = f̂ ( and r - 2 = f # t . In addition, to sanpufy 
further dncusaom in tins section, we define the region M of thef,./; plane as that part of the plane where 
'p\ < '• < '»i Mdrp2<'i <'w2 For the sane reason, we defin? the regian AT as the remainder of the 
f,. r ; pfane. Farthernme. we define the TtyMl-to-aoise ratio of rinunH I as 

SK.=rifr, i ftAii (42» 

and the sinul-to-noise ratio of channel 2 as 

SNi = 'li'-i kV*77 143) 

With these JeFautions aod me requirement that ',, = tpl and tt2 = ip2- we wiB next prove that the 
cumulative prubabiMy of the ordered pair of random variables (tt.7j) being in M con vtigt* monotonkalK 
to 0 as SN, and SN> increase without bound. Then, we prove that aaM.F converges monotonicaBy and 
uniformly to Ft as SN, and SN2 increase wrtboui bound- After (hashing these convergence proofs, we wiB 
discuss the effects of finite SN, and SN, on the difference between these cumuhove probabilities and their 
bimK. Finally, we wiB calculate F, t on AT and AT. 

4.1.5.2 Convergence to 0 of the cwmdatnr prababibty that it,. ?2i is m AT To enable the proof that 
the cumulative probability of (?,. r : ) being at AT converges to 0 monotomcauy as SN, and SN : increase 
without bound, we define 

* = JfP,2li>,. »jlx>. ^oV.oV} . (44) 
M 

Since the entire !•,. r } plane comprises AT and AT and since the cumulative probability that « > < ? , < * and 
-"• </•.<"• is 1.6 can be calculated from 

5 = 1 - ffp, , | P , . * : xc. r0(.)dV,</r2 . (45) 
M 

Since F, j - Fand since Fit,. t2\xf. t^) = 0 for f ( < tpl or r2 < tpi. we obtain from Eq. (45) 

1=1 fl/,.f,Uf.^). (46) 

Then, since f) < F. we have, after combining Eqs. (19). (39). and (46). 

8«SI F r ( r . , . r . iU r . r S r )>0 . (47) 
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D = C*L (48| 

1 = 1 f'"2 f'** m*i.*z\x(.t»c\d'idw1 (49) 
J,P2 J'P% 

r,{i\ and rt(t) are absohtfety continwoiu (27] and monotone in AT. each of the tUntcd 
huepab in Eq. (49) nay be interpreted as a Stiefcjes integral (321. By using this interpretation, together 
with Eqs. (41). (47). (48). and (49X 

&<l«0.2S(crfc^ lerfcA.z*erfctfp:erfcd. l erfcfc, erfc&2) . (50) 

A, =',('.,M2*,,) " * . 

^i=r2{tw2mk2i)"1 

» obtaned. Equation (501 when coupled with the detnritions pr-\ by Eqs. (42) and (43). proves that 6 
converges monof A Jcafly to 0 as SN( and SN2 increaat without sound. 

4.1.5.3 Comergmce of F to Fi on M as 5/V, and S>\2 mcrmx without bound. To enable the proof 
that F cunveines rnonotonicaUy and uniformly to f/ on M as SN, and SN2 increase without bound. 
6<f i. f j ).$ defined by 

Mr,. f,) * flr,. t, lx r. f^) F/(f,.;, lrc, r0<.>. (51) 

Then, we observe that 

A(r i . f s )<# > ^r i . r s U r . r t c ) - / i ( r i . r i lx r . r # c ) (52) 

• O G ^ . r , ) . 

where 

Giti,ti)*f'3 C'1 Eivt.^dvtdvi 
J'piJ'pt 
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E\t, . t; ) = £, U, . tj i f 2 (f , . tZ ) . 

£ , u , . r, I=AT exp {( * , l r , ) *u(r 2 )1 /2; . 

£ . | / . . r ; > = »,lf,».Kj«r21 C| .v ,<r , l |C( .r ; ( / j» | I ; . 

The Mtcnnedate variables of Eq. (52) faameh.i ,(r, \.rsUt I msU, K and «.(r : | | . as well * the rwacuoa 
M.vl are defined ae Eq. 136). The*, since r, and v 2 are negative on AT. 

£2U,.f: »<exp( v , J ( r , ) ysUtt »| 

OS*" 1 ' 2 _»,(*, >«xp[-rs2lf2»| + rjfr.F-expl-jrrfr, )) - (53) 

isobtaaR^d. B>using Eqs. l!2)and < 13) and die definitions of * , . which are g ^ a congnction win Eq 
131). al r»f the intermediate variables in Eqs. (52) and (53) can be rewritten as the product of appropriate 
signai-toitorje ratios and normalued response functions. However, we wnl omit the details of such rewriting 
and pomt out that, after such rewriting, the mnh of £|r, . r 2 j as SN, and SN 2 increase without bound B 
the same as the limit, before rewriting, of £ t r , . r : ) as « , . * , - .»,. and .•> increase without bound. 
Furthermore, we point out that, after such it i n ting. AT is not a function of SN, or SN 2 . Therefore, 
according to Eqs (52) and (53). if r , ( r c , ) * 0 and rt{tel)*0. and r,U) and r:U)are continuousonM. 
then £!r,. r 2 ) converges monotonkaly and un^ormly to 0 on Jf as SN, and SN; increase without bound 
Then, since the measure of M is finite. (Hi,. t2i converges monotonies!)and wuformt) to 0 an Jr* as SN : 

and SN, increase without bound. Finally, since Eq. (41) shows that Ccunieiges reowotomcaB> to 0 as SN, 
andSN2 increase without bound, it is dear that bit,. r 2 ) convnges rnonotonicaiS and uniformly to 0 on Af 
as SN, and SN-. increase without bound. 

4.1.5.4 Effects of fimrewmkta of SS, ami SA, cm &*wf 6. The effects of finite SN, andSN : on 6 can 
be calculated from Eq. (50). For r , (r T l ) * --',<»>, ) . r 2 ( r» 2 ) * r z ( r p 2 ) . SN, > 10. and SN, > 10.6 is less 
than 10 " " . This upper bound for 6. which is the total probability of the pair of random variables ( r : . r 2 1 
being in M, a small enough compared with I that, after noting that P, 2 is nowhere negative, we conclude 
that 

P,i=0 (54) 

onAfif f/», > IOandSN] > 10. 
Unfortunately, we have not been able to formulate an expression for 5 that docs not require numerical 

integration to implement it when SN, and SNj are finite. However, because of the monotoak convergence 
of 6 to 0 as SN, and SNj increase without bound, a numerical calculation of the maximum value of 6 on M 
for particular pulse shapes, r, (/) and Mr ) , and particular values of SN, and SNj establishes for these pub* 
shapes an upper bound for the maximum value of 4 on M for all greater values of SN, and SN 2 . For these 
reasons, we have used numerical integraion of £(t,.tt) as indicater1 by Eq. (52), combined with the 
straightforward calculation of C. to calculate &(r , . / 2 ) on AT for representative pulse shapes. From the 
results of these calculations, we conclude that 
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&ii,.i;l< 10 :*u, rp,Ht: trZnti, / r i » ' « / , . *>2»"' 1551 

on M 4 SN, > 10 and SSZ > 10. S K C me B U \ I — I n h t of « <m M for repraeatatne pub* shapes «. 
according to Eq. 155*. ueghpMr coeapaied with values of Fnear Ms nieaa (whew F a of the order of 0 251. 

F*F, 156) 

mMttSS, > 10 mi SSZ > 10 

4.1.5-5 SrrifiemkmofFtiUt. hixe. t^forSS, > 1 0 W £ V : > 10. •ycou*inaigEqt.fl9M3»li 
I4IK (54L a d I56L x M d B i f o f » , > 10and SN : > 10 dbe joint prubja*i> density function **,: it 
•men by 

r I i ( f , . f ; j t < - . f # c ) = «Hr,.f;»Mr1 f , i)t'U.i f,»Mr ; r f j ) U / , 2 r.>. i57» 

where U p a the unimep function and da>,. r,) isdefined• en—retain mm Eg.136).The w p w w m 
dm SN, and SNj be pcater 4HU IQnnot fotnemefor OW ipphtitinuhuiuat the Hg—l-to-none ratios 
of typical openting RDfe w gamer than 100 [3JJ. 

4.2 tmmmi Denary ramwan FtUti*c) 

4.2.1 OcrwuwMi of #M'sU r) * • • **i 2«'i- '*l*r> 'or* To obtain /Mr jU c ) front F, jlr,. f,ir r . r^l. 
fint F, ,(r,. r,Urr. t*t)9 iibtiinrd by jnapdi atmting the transformation 

f, « f , . 

ti * ij - ' i 

Shtce the Jacobeanof tins tjaaifunwuttoa • I. therestdt of dus unpktnfntation • 

F, , ( / , . t3lxe. ft*) - mi% .it*t») W'i - >n) W'»j h) t/U, f f l)f/Jf., t,). (58) 

••Kit 

'it »(V»" '»>Wr,i- r»t - ' J > * ' » I W/J -tpi*ipt). 

'ui *('»! " »»)«[»> N l • '»!>• »»t W'rt ~ 'wi - '3) 

The region in the f,, / , plane within the boundaries defined by the unit step functions of Eq. (58) is called 
0. The region 0 is die image of the region M. 

Next. #*, is obtained from F, > by calculating the marginal density function 
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A,<.-,u,.| = / "_ P, , | / , . ttixc. i^ldi, 

Eq- IS9|. ajtproumms far r,U) mi r.ff> 
effects the best uir.ywMr 

r,U«..r> = (t r c l f f r l 

r , | r c . r » * ( i tr:8, ' /2 ' 

S„ = | * . U f . ' * * | , , c i 

I59» 

ike • « of 
of 

f60> 

<6I) 

Tfce pake epoch. r k . w b t uhea s 0 w i n c f a h w ; 5,, mi S,2. By aim. Eqs. ($•». MO*, and 161 > 
aad the mfmtkm of *T frow Eq- 1361 • Eq. (59). f, b deietMed to he (3«| 

1621 ^s l r i t r c >*aS ia r r , , " , * j " , 0 / / I . f . l . » , ' ) J | f , * | eap1 - / , , 2 - J»s , l 

' j * ' n ' r i • 

a , 1 = o , 1 • o , * . 

• » * - * J I . . S f 2 * -

ari , . f», .r , '>«eTf|Z(f . , . f , '>l - erf|Z(f f l.f, '>l . 

S(r, '»»Mf,' f / ) f 4 f B ' - r,'». 

As expected. /*j is completely independent of puke epoch. /»< 



4 2 . 2 Effect o a f , of ate ase of faw M M O M M l e M r ) Soaw m o r s a d d u c e d a«ohq 159) 

as a result of M M haear a a u M i i a a w i for r , i r ) a a j r ? ( r ) w <Wr*pgmM Howrwcr. ihs error cuaverecs 

aaaaMnaacaay aad aaaanaty to 0 oa AT as SN, aad S N ; aaciease without buead- The? aamrgeace ocean 

I I I I M * ( r ) i p | i i l anhr ri| in in fin * , n i | i n r | T ' -

To aiaiaaai the aanjsataae of t i n error for faasr SNi aad S N 2 . we bate selected typical response 

faactjoas r,U) ;ad r . t r laad astd a — rnrd amyatioa of >*,, . at aaacatfd by Eq t 5 * t to cakaiaier*. 

for various SN, aad S S : . We <oaawred darse resales araa conei|i imaaM eakutamaH o f f , accordaaj to Eq. 

162) for C w w a a»i»d pulses For SN, = 2 0 . S N : = 20. and any r,. tbe daTercace betweea these tt»> 

ukahacd vaWes of r , a typical) tea> tbaa I 5 X |Q V , | r , j r f t Hence, we Loaclaae tbat Eg |62nsau»re 

daw adequate to predui the perfonaance M npri HBM. PSD*, for aanck SN, aad S S r are tyotcalK a n * * 

gaaaer dua 20 Huacttr. for parncalar PSDs tor which there a doubt as to dar «abaa> of the haear 

tawpiffad to that for a aonaai pronaiaaty dranry faaitaai waft nr|hynh change ai the vaaes otr, To 

an te das sauaaakaoon. C U / , . r » , . / , ' > is replaced wan 2. aad the satfdaag fuacUonSU,') B replaced 

wan I 

We fast coasakr the effect of repboag 0 » ; , . » „ . ( , l audi 2. For aay i,' m O.Oii,.im,-i,'t 

loanupu antfomdy aai aaaaiioak my to 2 as SN, aad S N ; utcrease waaoaf bound. Fartheranre. tor 

SN, = SN 2 = 20. o, = » , . M / F I j * 'li'vi). rzUp2) * M ' . j ' - «a l ut' • , ! < 20. thediftereace 2 

n f | , . r . , . / , ' > a l m i h a B 1 0 " Proofs of mot umammtsmtfaemmttvy aotaajthat o,SN, * / c , 

r , , aad o : S N : * r r I tft - SSace the difference 2 C1r f , . ; a l . r J ' l i ssaaa ' aad savor rhe reqareuKBt 

i f j ' /o j : < 20excfadrnery atdeof rher*) dimibaliua.aecuaadri *» adequately representedby aaorani 

draaty fnmnua with it aid ad dt nation o, aad mean t,. tinar.ntd aoi mdaa; io5<r , ' ) 

We aext coasakr me effcet of aatraacabag die » , deasity faacuon. Siace tm' * o , S N : • ©,SN, aad 

il' * tm'. rhe effect of dttswitdaag faactioaSIr/) for SN, > 2 0 a a d S N ; > 20 is to caase the traacated 

aonaai density faaniua to be 0 for values of r,' where rhe values of the ani iuani iJ aonaai density 

iaacnoa are less daa 1 0 ' * T * tunes dK nauinaaw value of A, . fleace. we rjaailry Eq. (62) by repbdaf 

S i r / ) with I . With das aaadifiLitioa.F, is given by 

»,(r,gr<.» = l 2 » r ' 2 o»"' expf r, ' 2 2 o , 2 ) 163) 

for SN, and SN 2 greater rhaa 20. The probabihty deasity faactioa M l . U ( l chancteraes the oatpat 

variable from the (nne mutyiet m Fig. I - We next comma the traasformafioa a( tins pmbabdrty deasity 

fancbon to that for the raadom variable *, 

4 J . I Duiiatiaa of Pt(xrar) tnm ^ , ( / , U r > The decoding equation t>(*,). which is needed to 

tnasform P>ity\xc\ into an asymptotic approximation to da? decoder deasity function, is implicitly 

denned by the system of equations 

r , ( j r , . r , ) « 0 . 

' I ( * < . . ' J > - 0 . (641 

i> - l i ' • 
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To approumatc the function /j(.ir»implied by fcq. I©*i. we IUC uflc r»^^.-ufcir baear T»yW senes 
expansion u> approximate r, <xe. i-t t. and we use a second oae tu approximate />lx r . tz >. These T«vtur 
series are 

r J tx , . r ,»=(x r x c i S „ * l f , r c ,»S r i 

a«d 

*•;<*,. r:I = U , x . - iS , . * ! / ; / . ; l S , ; . 165i 

•here 

5,, = {*-,ix. nfe), , : , c 

and 

S»: = i * r : u - r»«x|, , . , ; , , 

Afwi. the pots* epoch may be taken as zero to calculate Sn. Sn. S X I . and 5tZ fa addition. aHhotajn 
we bate Rot radicated it exphatly. afl of these parameters are functions of« , . . «„ as wei as oi x{ 

Then. E<p IM) and (65) are used together to yield 

/ , U r ) = r ,U , l r, = |x, x , t f . i66> 

where 

S-Sx,Sn St^St2 

By using Eq t66i lofethrr with Eq. 1631, we finally obtam 

r V U ^ x , . ! ^ * ! ' : a ¥ ' exp| lx r x r ) J 2n, : | *f»j(*r^r»- «67i 

where 

• . - • • o v ' S 8 . 

Because of ihe approximations we have used in the derivation of Pjxrixet. we expbcitly indicate that it .s 
only approximately equal tr>Pj<xfixcl 

lf x r = /. 2 and the encoder is operated in she balanced mode <i.e.. except for extra delay in channel 2 
to make the stop pube always arm* after the start pulse, channel ! ind channel 2 are identical}, then St, -

S, 2. and the equation for o, reduces to 

a„3 = *, , <2Sti*) = *,:l(2St2

2). fc^i 

4.3.2 EtTecto«/V^irr,ofrlHuseofKnearaDproxinii>tionsf<Kr(r. / ) . For am g i w exac-, .'..(x.-iand 
for a given non/ero 5. the error in P,{xf\xr) caused by the use of Eq. (66> converges monotonically and 
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uniformly to 0 for 0 ^ xe < /. as SN| and SN. increase without bound. Before this error can be 
characterized farther, the encoder modulation characteristics [v,(jr,..t 0 l.r) and v ; ( x r . t 0 c . t ) \ and the 
impulse responses [h,{t) and h2{t)\ of the filters must be specified. Then, numerical methods can be used 
to calculate the exact '/(.*>) and the error in Pd ;hat is caused by the use of linear approximations. For an 
optimized PSD that uses an RC position-sensitive proportional counter (1] with SN, = SN; = 20. we find 
this error to be less ihan 4X10"* Pa(xr\xK.) for xc = U2 and 0 < xr < /.. Hence we conclude that the 
effect on Pa of this approximation is negligible for signal to-noise ratios griaier than 20. 

4.3.3 Conveijence of Pa{xf\xc\ to Pj{xe[xc). Because, as we have pointed out at the appropriate places 
in this work, the separate errors caused by our various approximations converge monotonically to zero, the 
total-error function Ej\xe. xc). where 

Er{xe,xc)=PaixAxc) PjiXrlXf). 

converges monotonically to zero with increasing SNi and SN. for all xr and xc and for all r, and r2. 
Furthermore, our numerical calculations of ET for Gaussiar.-derivative-shaped r, and r2 indicate that, for 
SN, = SN2 = 20. 

\Er<xe.xc»<2X 10* Pm. 

where Pm is the maximum value of Pj. In addition. Ej{xe. xc) typically changes sign, so that ax as given by 
Eq. (67) differs from the numerically calculated square root of the second moment ofPj about its mean by 
less than 0.5^ for SN, = SN5 = 20. For these reasons, we believe Eq. (67) is. when used with Eq. (2). more 
than adequate to predict the performance of and to derive the optimum position decoding filters for 
operating detectors, where SN, and SN2 are typically greater than 20. 

5. APPLICATIONS 

The starting point for the computation of the overall PSF for a PSD is specification of the functional 
forms of the photon-caused pulses v ,U f . a, a„. t0c, /) and sjixc, ai- - - •• an< ' o c ') a n d t n e 

noise autovariance functions T, ,(r) and r 2 2 ( r ) . The functions v, and v2 are in.ist easily determined by 
calculations based on a model of the particular position encoder bei.ig used- However, the autovariance 
functions T, ; and r 2 2 can be determined either from theoretical calculations jr from Fourier transform 
inverses of experimentally determined noise power spectral densities. 

Although we have assumed for purposes of illustration that these functions are specified at the outputs 
of the position encoder, there is no change in the computation method for specification of v, and T, i at 
one arbitrarily chosen point p, in the chain :,' amplifiers anJ filters that comprise channel 1 and the 
specification of v2 and r 2 2 at another arbitrarily chosen point p2 in the chain of amplifiers and filters that 
comprise channel 2. For any p , . //,(/) is the impulse response of the portion of channel ! between/), and 
the crossover detector Df. Similarity, for any p2, htit)\% the impulse response of the portion of channel 2 
between p2 and the crossover detector D2 • For analysis of a PSD. the points p, and p2 can be chosen so 
thai h, and h: ate delta functions. For determinatior of optimum filters, p, andp 2 are chosen so that the 
noise at each point is white. 

Next. * , , and k22 are computed from T, , . r 2 2 , h,, and h2 by using Eqs. (12) and (13) and the 
definitions associated with Eq. (31). The response functions r,(xt. a, a„. f0c, f) andr 2(x r,u y 

an- 'oc ') *fe calculated from v,, v 2 , / i , , and ft 2 by using F.qs. (8) and (9). For typical operating PSDs. for 
which the signal-to-noise ratios are greater than 100, »he various approximations wc have used arc 
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completely justified. For these PSDs. the various parameters ol Pdtxe\xc.ai . a„ ), particularly u x , arc 
calculated from k,,. k: 2 . r,. and r: and the definitions of Eqs. (61). (62). (65). and (67). However, for 
PSDs with signal-to-noise ratios less than 20. the validity of the various approximations should be 
investigated by numerical techniques as we have indicated. Fo- PSDs for which electronic noise is the 
dominant reason that P is not a delta function. P,Axe\xc) is the overall PSF- Fcr other PSDs. the overall 
PSF H|x,iv 0) is calculated from Pjixe\xc. a, a*) and the encoder density function P^xc, a t 

anl.l'o>- which must be specified according to the domirant statistical processes in the particular encoder 
being used, according to Eq. (2). 
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