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DERIVATION OF THE POINT SPREAD FUNCTION FOR
ZERO-CROSSING-DEMODULATED POSITION-SENSITIVE DETECTORC

C_H. Nowim

ABSTRACT

The sork s 2 mathematnal drrivassn of 2 hghquiy spproxmatee o the pomt spread
fancton for poutuon-seastve detcctors (PSD3) that e puise-shopr modeltion 2ad (rosower Tume
demdulatrn. The approxsmtion s detesamned 23 3 geseral fanctoa of the mput spaals (o the
crossever detectoss o as to enasble bier detcrmumatios. of optimsems postion-decodimg fiuers for PSDs.
Thes work s precrely applaabic 1o PSDs that use cvber RC or LC transmesmon faee cocaders. The
cffects of randsm sanabics. seck a¢ charye coliectaont e w the emcodug prove s 20 mciwded. In
addition_ thes work preseats 2 scw. npotoss method for the desermmatrn of epper and lower bounds
for amditamal  rerssovcs-tmme detnbutwon functions (cdostly related 10 first-gassape-tame dstnbuton
fomuons) for acostrary sgmals 4.3 arbetrary ROt COvInance fumctoons.

1. INTRODUCTION

In this work. the point spread function (PSF) for position-semsitive detectors {1 5] (PSDs) is defimed
and calculated for the first time. This PSF will enable the later determination of impulse respowses of
optimum position-decoding filters for PSDs. These .mpulse responses will. m tum. enabie the desgn of
oplimum position-d-coding. pulse-shaping filters for PSDs. In addition. this work provides a generalized.
prescnbed provedure for the evaluation of exssting and propcied position-decoding fiiters. It s also
productive in evaluating exrsting and proposed pos-tion encoders (¢ g . RC position-sensitive proporironal
counters).

This work is 2 mathematical “erivation of the PSF jor 2 one dimentiona! PSD. However. since there 5
little interaction [3] between the two position-coordinate measurements for two-dimensional PSUs. our
PSF can be used for twodimensional PSDs also. Our theory s deveioped in general terms so 2s to be
precisely applicable to any PSD that uses cither pulse-shape or pulse-cpoch modulation ogether with
crossover-time demodulation. This class of F3Ds includes those that use a positior: encoder with an RC
transmssion line. a5 well as those that use an encoder with an LC delay line. The effects of thermal noise
generated in both the encoder and the preamplifiers are included. The effects of various other random
processes. such as electron cloud diffusion {6]. m the position encoder are also included. We do not include
the effects of correlated thermal noise in ou. final results. because such noise s fikely to e much less
important {7.8] than uncorrelated noise in determining position uncertamty . However. the basic theory
does include the effects of currelated noise. and only a few. although difficult. integrals would have to be
reevaluated to include such effects in the final resuits.

As part of the PSF derivation. we derive upper and lower bounds for the joint conditional
firstcrossover-time distribution for two stochastic processes. Each process is assumied to be the sum of 2
deterministic function and 2 purely random process. We derive the bounds in termss of the determimistic and
stockasuc properties of the processes. We show that our upper and lower bounds converge 1o the same
tunction with incieasing signal-to-noise ratios and that the lower bound s typically a high-quality
approximation to the joint first<crossover-time distribution function. The mast closely refated previous
derivations, those for the first-passage-time probability density function [9]. are limited to only 2 single
process that must be either 2 Wiener or 3 Markav process. In contrast. our derivation is valid for stochastic
processes that have any arbitrary autocovariance functions. Our method is indirect but tigorous and
versatile. Although we use it in this work to determine e Jistribution function for the first conditional
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crossings of the 2e1o level by two stochastic processes. it is also productive when applicd 1o determine the
distribution function tor the first conditional crossing of nonzerv levels by o or tw stochastic provesses.

in the vock that follows. we first define the PSF so that it completely characterizes ~ny PSD. Then. we
formuizte the PSF calculation so that our results are independent of the particular type cf pusition encoder
that is used. Next. an asymptotically correct appioximation te the PSF s derived in terms of the
deterministic and stochastic properties of the PSD. In the final section. we tell spevifically how to use the
various equations of this work to calculate tiw PSF of any PSD.

2. PROBABILISTIC POINT SPREAD FUNCTION

Tc detine the PSD PSF. we first define two position coordinate systems. One of these coordmate
systems is defined for the photon source. and the other is defined for the position encoder. Because we will
discuss only one-dimensional PSDs. we assume the source is a lime source. Then we define 3 to be the
general coordimate along the line source axis and x to be the general coordinate along the position encoder
axis. Furthesmore. we will add suitable superscripts to v and x to idicate particular values of these
coordinates.

We next consider photons ihat are emitt~d from the source at position coordinate vy. Becaus: of
randor errors in the measerement process. not cvery photon that is emitted at v = v, is assigned the same
estimated position coordinate by the PSD. We let X, denote the estimated position coordinate that is
assigned Dy the PSD. The circumflex () is used to show that the estimated position coordinate is a random
variable. Fmally. we define the PSD PSF to be the conditional probabiity density functien [10.11})
Pix,(ve). The product Ax,ive)dx, is the probabiity that x, < ;, < x, t dx, under the hypothesis that
;'. = vo. The variables x, and vy are the associated arguments {12] of the nrobability density function.
This probabilistic definition of the PSD PSF is in contrast with the determinstic definition of the optical
PSF [13. 14]. )

The PSF that we have defined characterizes 2 PSD completely. This fact may be proved by combining
[11] the defmnitions of conditional density funclions. joint density functions. and marginal density
functions to obtain 2 convolutiondike equation for the unceaditional probability densiiy function for the
estimated position ;, when the sousce density function is given. This convolution-ike equation is

A‘X"z f_-:. "X(i_lv'o' llV.,d}'.. a

The product 7(ys)dy, ©s the probability that a photon wt ch is detected by the PSD is emitted from the
source between ¥, and yo + dve. The probability density function 70, ) is obtained by normalizing the
source intensity function. The product A(x,)dx, is the probability that. for the given T(y,). a detected
photon is assigned an estimated position X, such that x, € X, < x, + dx,.

The PSF for a perfect PSD is a delta function. Howevar, for an operating PSD. the PSF is not a delta
function: but it is a function with nonzero full width at half maximum. This nonzero full width at half
maximum is caused by the interaction of several random processes. To calculate the PSF of an operating
PSD. the most important of these random processes are selected and included in a mathematical model of
the PSD. For any PSD model. no matter how many rangom processes are included. we simplify the
computation of the overall PSF by separating it into the computation of iwo simpler condiiional
probability densuity functions. We call one the “encoder density function™™ and the other the “decoder
density function,”

The decoder density function is Pyx,x.. ai. .... a,). It is determined from the random
processes that affect the encode: generated electronic signal after some position coordinate x_ is encoded



into it. This pusiti-) coordinate is refated to but is not necessarily the same as the interaction coordinate of
the detected photon. For an RC position-sensitive proportional counter. x,. is the position coordinate where
the photon-generated electrons are collected on the resistive center wire. The list of vanables(x_.a;. . ...
a,) s the hypothesis list. The varizbles in this list are assumed to be fixed parameters when
Ppx . _ay. ... a,) 15 calculat=d. However. the inclusion of 2 parameter in this list amicipates a andom
relationship between it and vo. For the variable x_. the random relationship can be zaused b; the random
penetration of the encoder by the photon. which is emitied from the source at position coordinate ¥y
betore the photon interacts with the encoder to produce an electronic signal. The other n parameters.
ay. .... a,. inths hypothesis list represent any vther parameters [6) that are anticipated to be random
and that affect ihe hgpe of the pulse before 1t is modulated x -ording to x.. Such variables as chargs
collection time and photon energy are included > this group. The primary density function describes how
all of the random processes. including thermal electrcnic noise. interact with the position-decoding filters to
determine the overall PSF.

The encoder density function is the joint conditional density function PAx . a¢. ... a,:vy) It s
determined from the random processes that affect the shape of the encodergenerated electronic pulse
before the rosition coordinate x_ is encoded into it. The source position coordinate v, is 2ssume( "o be a
paameter when P (x_.a;. .. . a,lva) is calculated. Jf the random variatles are independent.
Pix_.ay..... a,ivo) can be factored into simpler conditional probability density functions. The encode’
density function is greatly influenced by the particilar type of encoder used in the PSD and by the desails
included in the PSD model. but it is independent of the position-decoding filter.

We use the encoder and decoder density functions together to determine the overall PSF according to
the marginal density equation [11)

Pxpo)= [T [T Pyxaxar @) PAx ar. . a,vaddxdey . da, . (D)

The vbstacle to the ready computation of the ovesall PSF with Eq. (2) is the determmation of the
decoder density function. The encoder density function i relatively easy to derive or measure.
Furthermore. for those PSDs where thermal electronic nope is the principal cause of random errors in
position estimation. the decoder density function 13 2 good approximation to the ovei>ll PSF. For these
reasons. we focus the remainder of this work on the determination »f the decoder density fuaction.

We begin the determination of the decoder density function by modeling a simpv.Sied PSD in which
electronic nvise is the only random process. We ignore the details of the encoder because its importan;
properties are described by the encoder density function. All of the variables in the hypothesis list of the
decoder density function are treated as parameters in this model. For brevity. we shorten the notation for
the decoder density function to Pdx.ix, ).

3. MATHEMATICAL MODEL OF THE SIMPLIFIED PSD

To derive P(x,ix_.). we assume an ensemble of PSDs such as the one shown in Fig. 1. All bias voltages
bias currents. and noise sources in the various members of the ensembie are in the steady state condition.

In the encoder. which is dlustrated by an RC position sensitive proportional countur in Fig. 1. of zach
member of the znsemble. a photon is detected and a carrier pulse is generated at time £, . All of the carrier
pulses before modulation have the same pulse epoch 1, and are characteri.ed by the same set of
parameters a;. . . .. a,. Sometime after 7, . the pulse shapes or the apparent pulse epochs are modulated
according to x . which is the same for each member of the ensembie. ‘
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For a single detected phoion. ane or more modulated pulses ae transmitted from each encoder. Since
neither 1y nor x_ is known. two crossover-time measurements must be made to determine either of them
from the t.ansmitted pulses. To agree with published descriptions of encoders [1-5] . two pulses are shown
transmitted from the encoder of Fig. 1 for each detected photon. One pulse is processed in channel 1. and
the other pulse is pro-essed in channel 2. A single crossover-time measurement is made in each channel.

The determinisiic transmitted pulses are cormupted by additive random noise in the encoder and in the
pream.plifiers. Hence. from crossover-ime measurements of signals received at D, and D,. it is ondy possible
to estimate fo, and X,. The estimate of 7o, is the random variable To,. and. as previously stated. the
estimate of x_ is the random variable X,. To ¢nable the quantification of the accuracy of ihese estimates.
we next mathematically characterize the d*termmistic signals and the random noise.

We 1irst mathematically characterize the signal and the noise at the outputs of the two wideband
preamplifiers. where the signal and the noise have been amplified sufficently so that additional amplifier
noise is not important. At the output of the channel 1 preamplifier, the total observed signal is

L SN MURY A Aoy A £5 71 b A0 Y Sy e A X1 B (3}

where vitx . a,. ... .a,. 1. )i the deterministic photon-caused puise. v,(r) an entirely random [15]
zero-mean-noise process. and f the real time. Likewise, at the output of whe channel 2 preamplifier. the total
observed signal is

Y PN S Ao I 2 RV Y R A IR R () 4)
where vyix_. a,. .... @, 2g.. 1) is the deterministic photoncaused pulse and 7:(:) is an entirely
random zero-mean-noise process. The functions v,(x . a,. . .. a . fo..0hand vylx . a;.. ... a,.l,.. 0
can be determined from the physical p-ocesses of the specific encoder used. However. for this work it is not
necessary to know the specific forms of these functions. and we assume they a-¢ elsewhere determined [2].

Although the determinnitic pulses v (x..a,. .... a5 fo . 1) and v,(x . a;. ..., a,.lo.- 1) are the
same for all members of the ensemble. the random processes ¥,(r) and 7,(¢) are different for the various
members of the ensemble. These processes include the effects of noise generated in both the encoder and
the preamplifiers. Because 7,(r) and 7,(7) are linear combinations of the currents that result from the
random motion of many electrons. their joint amplitude probability density function is normal {16].
Therefore. the probability density function for these processes is completely determined [17] from the
autovaniance functions and the crossvariance functions for y,(r) and y:(r). We denote the autovaniance
function for y,{£) by Ty (7). the autovariance function for y;(1) by I': ;(7). and the crossvariance function
by Iy:(r). We assume that 7,(r) and y;(f) are ergodic. Since. in addition. 7,{7) and 7:{) are entirelv
random processes. the variance functions may be determined experimentally as aut~correlation functions
and crosscorrelation functions. Altematively. these variance functions may be calculated from z detailed
model of the encoder and the preamplifier according to the Gefining equation [18]

C pr)= U0 Yo + 1P ‘ 5r

where the angle brackets denote ensemble averages. i and j are 1 or 2. and 7 is unrestricted.

For brevity. we will no longer write the paranviters a;. . ... a, as arguments of ik* pkuton<aused
pulse. Henceforth. v,(x_.a;. ... .4a,.1,.0) will at least be contracted to “v.(xr. foc- 1) and viix . 0;.
coov . Lo . 1) will 3t least be contracted to vy(x ./, . 7). Furthermcre, even these reduced argument

.-
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For a single detected phoion. une or more modulated pulses are transmitted from cach encades. Since
neither 7, nor x_ is known, two crossover-lime measurements must be made to determine either of them
from the tansmitted pulses. To agree with published descriptions of encoders [1-5]. two puilses are shown
transmitted from the encoder of Fig. 1 for each detected photon. One pulse is processed in channel 1. and
the other pulse is pro-essed in channel 2. A single crossover-time measurement is made in each channel.

The determinisiic transmitted pulses are corrupted by additive random noise in the encoder and in the
pream.plifiers. Hence. from crossover-time measurements of signals received at D, and D . it is only possible
to estimate 7, and x_. The estimate of 7, is the random variable 7. and. as previously stated. the
estimate of x_ is the random variable X,. To enable the quantification cf the accuracy of these estimates.
we next mathematically charactenize the d:termmustic signals and the random noise.

We yirst mathematically characterize the signal and the noise at the outputs of the two wideband
preamplifiers. where the signal and the noise have been amplified sufficrently so that additional amplifier
noise is not important. At the output of the channel 1 preamplifier. the total observed signal is

unilx..a,. ....a,

N LA 1 SO A Y W AS [TUR (3
where v tx_.a,. .. . a,. ly- £11s the deterministic photon-caused pulse. v,(?) an entirely random [[5]
zero-mean-noise process. and ¢ the real time. Likewise, at the output of wne channel 2 preamplifier. the total
observed signal is

ValXoo @y oL, T IV EVLX Ly, g 1) Y T) 4)
where valx,. a;. .... @, 7y 1) is the deterministic photoncaused pulse and 7:(:} is an enticely
random zero-mean-noise process. The functions v (x_.a,. . ... a.. to,.Nand vy(x .a;..... a,. .ty . 0

can be determined from the physical processes of the specific encoder used. However. for this work it is not
necessary to know the specific forms of these functions. ané we assume they a:¢ elsewhere determined [2].

Although the deterministic pulses v\(x .. a,. .... a2y fy.. 1) and v (x.. a,.....4,. Ly . 1) are the
same for all members of the ensemble. the random processes v, (1) and y,(7) aze different for the various
members of the ensemble. These processes include the effects of noise generated in both the encoder and
the preamplifiers. Because y,(1) and y;(r) are linear combinations of the currents that result from the
random motion of many electrons, their joint amplitude probability density function is normal [16].
Therefore. the probability density function for these processes is completely determined [17] from the
autovanance functions and the crossvariance functions for y,(7) and y.(7). We denote the autovariance
function for y;{rybyv I', ;(r). the autovariance function for y,(7) by I": ;(r). and the crossvariance function
by " :(7). We assume that v,(r) and ¥:(7) are ergodic. Since. in addition. v,{7) and ¥,(7) are entirely
random provesses. the variance functions may be determined experimentally as aut~correlation functions
and crasscorrelation functions. Altematively, these variance functions may be calculated from 2 detailed
model of the encoder and the preamplifier according to the Gefining equation {13]

0= G ylee o (5

where the angle brackets denote ensemble averages.i and j are 1 or 2. and 1 is unrestricted.
For brewity. we will no longer write the param-ters a,. . ... a, as arguments of ik~ pt_(on-caused
pulse. Henceforth, v, (x_.a;. ... .a,.1,..7 will at least be contracted to v,(x ., £). and viix . a;.
.G, Iy 0) will at least be contracted to v,(x .1, .. 7). Furthermore. even these reduced argument
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bsts will be varied to meet the conflicting demands of clarity and brevity. Hence. v, {x_.7, . 7} may be
written simply as v, if there is o need to specify the arguments. or it may be written as v, (x) if we
wish to specify that the position varisble is x rather than x_ but if we are momentanly unconcemed
with 7, and 7. In al cases. x with suitable sabscripts and superscripts will represent the position
variable, and ¢ with suitable subscripts and superscipts will represent the time variable. A similar
contraction rule will be implemented for the argument lists of v, ard v,. Also for brevity. we will
frequently omit the time variable when discussing 2 stochastic process.

As shown n Fig. 1. the stochastic process v, is the mpu1 signal to the linear time-invanant filter
with impuise response A, (7). and the stochastic process v, is the input signal to the linear time-invanant
filter with impulse response &,(¢). This output signal from the channel ! filter is

Silx o tgo D=0 xo to . DT RUD =ri(x Ly, . D)+, (). (6)

and the output from the channel 2 filter is

$olX foe- 1) S0 (X . tge 1) ® Rylt) = raix . Lo . 1)+ @4(0) . N
where the symbol ® denotes convolution. Signals 7, and 7, are deterministic and are given by

X fg.. D=V (X . tg.. 0)* k(1) (8)
and

Fdxe. foe- D) = Volx, .. 1) * Ry(0) . N

The argument lists of r,. 7;. {;. and §; have beer. contracted. using the same rules used for v, and v,.
The processes ¢,(1) and ¢,(7) are emiireiy random and are given by

6:(1) =7, (1) * k(1) (10)
and

0:(1) = 7,(1) * by (1) (1n

They are stationary and have a normal joint probability density function. The autovariance function for
o is [19. 20]

&= [ hiarda [T hBT, (r+a-Bdp. (12

the autovariance function for ¢, is

®in= 7 m@da [T mEITGra-8d8. (13)



and the crossvariance function for ¢, and ¢- s 21, 22|
¢ [T htarde [T h@T0va Ddg (14

In this fashion. we complete the mathematical charactenzation of the deterministic and stochastic
processes at the outputs of the linear filters. We next consider the crossover-time demodulation process
in detail.

To determine 14, and x,. §, is demodulated by measuring 7, . which is the time of the first zero
crossing of §,(x . rq.7) after {, exceeds a preset amplitude threshold: and {, is demodulated vy
measuring 7. . which is the iime of the first zero crossing of $alx . 1g.. 1) after §, exceeds a preset
amplitude threshold. Zerocrossmg demodulation is used rather than levelcrossing demedulation because
zero<ressing demodulation is unaffected by changes in pulse amplitude. that is. photon energy. In
practice. this demodulation is accomplished by feedinz the compasite signal {, into crossover detector
D, and the composite sigral {, into crossover detector D,. To ensure zero<rossing demodulation. we
require zero bias voltages at the inputs to D, and D, .

The previously mentioned preset amplitude thresholds are the “arming levels™ of the crossover
detectors. The arming level of D, is ¥,,. and the arming level of D, s ¥ ;. We assume that both V|
and ¥, are positive. This formulation of zero-crossing demodulation accurately reflects the behavior of
crossover detectors that are armed when their input signals first exceed 2 positive amming level. remain in
the armed state until they are triggered disarmed. and emit a standardized output pulse when their input
signals next cross zefo. Hence. 7, is the time when crossover detector D; of Fig. 1 is triggered. and I is
the time when crossover detector D of Fig. 1 is trigg2red.

Because §;, and . are siochastic processes. 7. and 7; are random variables. We define
P21y nix . 15.) to be the joint conditional probability density function for these random variables
for a specified ¥ and 1, . We extend vur practice of expanding and .untracting argument lists of
functions to include those of probability density functions In particular. we will refer to this density
function as simply P, when this designation is adequate. In the PSD of Fig. 1. the two random
varishles T, and ?; are reduced to one random variable. 7, = n - .. by using the output pulse
from D, as the start pulse for the time analyzer and the output pulse from D; a5 the stop pulse. This analog
computation does not preserve any information about the randory variables 7. and ?,. This selective
preservation of information is implemented in our mathematical model by changing variables in
Pialry. r:x . 15.) to obtain Pyy(r, . tyix . 1, ) and then contracting P, » to the marginal density function.
Piuryix,). Finally. Pgx,ix,) 1s obtained from P, by making the change of variable indicated by the
deterministic transtormanon that relates ?, 10 _Q,‘

It is important to remember that this mathematical model i developed for an ensemble of PSDs. cach
of which processes a single event. When the mathematical equations that arc based on this ensemble
cuncepi are applied to an operating PSD that processes all events in time sequence. the implicit 2isumption
is made that the cumulative distribution function for 7, is ergodic. This assumption is justified if the exent
rate is small enough so that the number of measured values of 75 that are not independent of all other
measured values of 7; is negligibly small.

The essential density function for the calculation of Py s P, :. Hence we begin the derivation of the
decoder function by deriving Py, as a function of Iy (7). Ty (1) T2 vi(x .. tg.. 1) valx 2, 1)
hi(r). and h,y(2).



4. DERIVATION OF THE DECODER DENSITY FUNCTION
4.1 Devivation of P, ,

4.1.1 General description of the method. To determine the probability density function for the first
zero crossing of even a single stochastic process at any time ¢ after the arming of the associated crossover
uetector, it is necessary to investigate the stochastic process during the entire tome interval between the
arming of the detector and the time r. The zero<crossing probability density function derived by Rice
(23.24) for stochastic processes with arbitrary autovariance functions is not applicable to this
determination because our timr interval of investigation is not required to be short enough to cause a
one-to-one correspondence between the stochastic process amplitude and time. Hence. to derive P; , we use
an indirect method.

We begin by shifting our atiention from P, tv its camulative disnibution function F; 5 (¢y . 11 1x.. f9.)-
Then. we define an auxiliary cemulative distribution function F which. for a proper choice of parameters.
differs from F, ; by a negligible amount. Then. to determine F, we derive for F an upper bound F,, 2:<2 2
lewer bound F;. We express these bounds in terms of the deterministic and stochastic properties of the
PSD. Next, we show that for signal-to-noise ratios greater than 10. the significant nonzero values of
Pya(t,, 12ixc, to,) are concentrated on a finite range of ¢, 1. For this finite rzage. the difference between
F; and F is negligible for signal-to-noise ratios greater than 19. Finally, we conclude that either /., = 0 or
Py, = 3*Fy/a1,9t,. according to the values of 1, and I, that are specified. We begin our derivation with
several defmitions that lead to the cfinition of F aad to the relationship F,, = F.

4.1.2 Definition of F and its equivalence tc F; ;. To simplify further discussions, we first define some
important time variables that depend on the characteristics of the deterministic functions r(r). We define
these variables verbally here and define them graphically in Fig. 2. In Fig. 2 and throughout this work. the
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Fig 2 A sketch of those portions of r(1) that are necessary o illustrate the definitions of some important vajues of 7.



absence of a nuinkTiva subscript on a function or vaniable that normmally has the subscript 1 or 2 means that
both of the numerically subscripted functions or vaniables are implied ; for cxample. 7(?) is in lieu of r, (1) or
ry(r). We first define 1, . which is the nominal arming time of D, , as the smallest v=:iue of ¢ for which 7, (r)
= Vgy. We define 1,,,. which is the nominal aming time of D,, as the smallest value of ¢ for which (1) =
Vg2- We next define 1p, as the time when r,(7) reaches its first maximum after ¢ = £, . We define 1,3 s
the time when r,(¢) reaches its first maximum after 7 = {,, . We then define 1., as the time when 7, (1) first
crosses zero after 1 = 1, - In 2 similar fashion. we define /., as the time when 7,(¢) first crosses zerc afte: ¢
= 1p- . Finally. we define 1, as the time when =, (¢) reaches its first minimum after = ¢, and we define
t. as the time when 7:(r) reaches its first minimum after 7 = ¢,.

To begin the definition of F. we define the time interval T, by its beginning #,, and its ending ¢, . and
we say that tis in T; if and only if £,y < ¢ & 7. We aiso Jefine the time interval T, by its beginning 7, -
and itsending 7;. and we say that t s in 7. fand only if 75, K< 1,. Except that £;; €1, and 1y, < 1,,
the values of £4). 7, . £y3. and £, are not restricted yet.

Next. attention is focused o the behavior of the stochastic processes §(7) and $,(¢) during 7', and 7,
respectively. Each membe: of the PSD ensemble is characterized by four addi‘ional nonnegative integer
random variables. These random variables are ?ld. . 342.3,, i.and 3.,1. They are definsd as follows:

1. ny, is the total number of “downcrossings™ of {, (¢} within the interval ™, 1.  -c randomly chosen
member of the PSD casemble. A downcrossing occurs for $, (r) when ¢,(r)=0 and §, (1) <9 [24].

2. M, is the total number of “upcrossings™ of §,(¢) within the interval T, for one randomly chosen
member of the PSD -nsemble. An upcrossing occurs for {, (r)when &, (¢) =0ard {,(1)> 0.

3 ‘ﬁd, is the totai number of downcrossings of §:(t) within the interval T, for one randomly chosen
member of the PSD ememble. A downcrossing occurs for $2(f) when $,(7) =0 and $,(1) < 0.

4. n,, is the total number of upcroz.ings ot §,(f) within the interval T, for one randomly chosen
member of the PSD ensemble. An upcrossing occurs for {,(r) when §,(7) =0and {2(1) > 0.

The stochastic process f(l) is the time derivative of {(¢). The joint discrete probability density functi- n
for ’r‘c‘,.. ’r}d,, ?:,,,. ?:,,1 is Pedngy.ngz. ny;.nyz). We do not consider tangencies of {(f) in the above
definitions because the average number of tangencies of {(¢) in any finite time interval is zero [25.26].

Next, we define F(* .f,ixc.loc) to be the total probability for the occurrence of the event
{ngy = 1. 7igs = 1} without regard for the value of My, of 1y : that is.

Fit, tixc.to0)= Y, ¥ Y ¥ Pinginganuyng). (15)
Agy-1 Agy~) Ay =0 ny=0

Because the probability of any zero crossings by 2 stochastic process duriag a time interval that ends
before it begins is certainly zero. F = 0 for ¢, &1ty or 2 € ty;. In addition, if r, and r; (or their
representative sequence functions [27]) are absolutely continuous. then. for a fixed £,; and 1,;. F is a
continuous monotonic increasing function of 7, and ¢;. Furthermore. F(e, ®ix. tg.) = 1. because {,(7)
and §,(r} are certain to cross zero one or more times in any infinitely long time interval. Hence, for a fixed
fgy and fy9, Fity 1.1x.. toc) is a cumulative distribution function. Finally. because D; and D; have
positive arming levels and are triggered by downcrossings only. F is the same as F ; if the probability is !
for the occurrence of the event £,. which is defined as occurring if and only if D, is armed but rot
subseguently triggered before / = t,; 2nd D, is armed but not subsequently triggered before £ =¢,,.

'Io select £;, and 1,4 so that it is aimost certain that the event £, occurs. we assume that no D, or D,
in the ensemble is triggered before the carrier pulse is generated in the encoder: that is. we assume
Fyaltge. taclxe. toe) = 0. This assumption is justified by the common practice of adjusting crossover
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detectors so that they are not triggered by noise aione during an acbitrarily long observation period. In
addition. we have elsewhere modified’ the techniques that are developed in this work for zero-crossing
probability density functions and »pplied these modified techniques to determine a lower bound for the
probability that D, becomes armed but is not subsequently triggered between 1 = rg. and 1 =1, and D:
becomes armed but s not subsequeatly triggered between 1 = 74, and 7 = £, J'or typical experimertal
conditions [where the arming levels ¥, and V,» are more than 10 times *ie rms noise levels at D, and D; .
respectively. and 7,(f;,) 2 2V, and r5(1,2) 3 2V, ]. we have cakculated that this probability is greater
than | — €. where € = 10™'®. Because the probability that £, does not occur is 5o extremely >mall for
typical experimental condition:s. we conclude that

Fi:=F (16)

ifig) =tpy and gy =1y

Having Jdefined F and shown its relationship to F, ;. we next define pper and lower bounds for Fin
terms of stochastic averages which. i tum, are later derived 23 functions of the deterministic and stochastic
properties of {t7).

4.1.3 Defimition of upper wnd lower bounds for F. There are many possible upper and lower bounds for
F. To be useful in our work. the uppe: and lowsr bounds we chovse must have two important
characteristics. First. they must be expressible in terms of the deterministic and stolhastic properties of
$1() and {2(7). Second. when these bounds are expressed as functions of the deterministic and stochastic
properties of {;(r) ad {.(r). the bounds must converge rapidly and monotonically with increasing
signal-tonoise ratios so as to define F for typical opetating PSDs. We denote our specially chosen upper
bound of F by F, and our specially chosen lower bound by Fy. In this section. we select these functions
and then show that our sclection for F, does indeed define an upper bound for F and that our selection for
F; does indeed define 2 lower bound fo. F.

We first select F, to be
F.= Gaynaz) (17
= Z Z Z 2 ngngay PAngy. nga.ny,.n,7). (18)
Agy=® Bg2=0 ;=0 ny3=0

Equation (18) is ohtained from Eq. (17) by applying the techniques [28] for the computation of ensemble

averages of functions of discrete random variables. Since muitiplication by ny,ny; makes every nonzero

term in Eq. (18) greater than or equal to the corresponding term in Eqg. (15), F,, is an uppe: bound® of F.
Next, we select Fjto be

Fi=B-C, (19)

1. Work not publithed.
2. For a single stochastic pocess and 4 positive arming level, a suitable upper bound for the zeto-ciossing-time
cumulative distribution functionis (ng'.
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where

8= ‘;dl;'dz) - (;-l;d;') . (;dl;uz) + ('?n :;-2) . (20)
C= [' f_o W e, a,)da,da, . (21
W ia, . a,)is the int probability density function for 0, and a.. a, = f.ll,, )ad a. = f,(t,, )

Tu prove that Fy is 2 lower bound for F. first B i. calcuiated from Eq. (26) as

b= z Z 2: f. NMingy.ngy. ny; . ngy). 22)
Rg1™0 Rgz=0 My =C Ay2=0

where
NMngy.ngy nyy.ng:V=(ngy g Nayy — ) Pelng, . ngy.n,y-ny3) .

Since upcrossings and downcrossings must altemate. P, is zero unless 4, = g, and Ay, =ngy. o8 A, =
ngyandn,, =ngs tl.ora, =ng tlandn,, =ng; orn,, =ngy t1and ngy =nygy * 1. By using this
property of P_ together with Eq. (22). we find. after discarding the negative terms tha' result from the
expansion of Eq. (22). that

B<lU+V, Q3

where

U= 2: z Pf‘”d""‘lZ":Jl . I-"d}"‘l) '24)
n44°0 ng2:0

V=L L Pngi.ngrng ting+l). 25
ngy 0 nga2°o

Because 'r;,,, and 7, 2 are nonnegative integers. P(0.0, -1. ~1), Pc(ng;.0.n4, - 1. -1). and P (0. ny,.
-b. ngy ~ 1) are all zero. For this reason. the lower limits for both 14, and ny; of Eq. (24) can be changed
fram 0 10 1 with no change in the value of U. Then. after changing these limits. Eq. (24) becomes the same
as Eq. (15) except that the values assumed by 7, and n,; in Eq. (24) are 3 subset of the values assumed
by 1, and n,y in Eq. (15). Hence. since ¥, is always positive.

USF (26)
is obtained immediately.

To continue the procf that F; is a lover bound for F, we note that the occurrence of the event
{Ryy =Figy + 1. Ayp =gy + 1} requites the occurrence of the event {$,(1,;)< 0. *3(1,,) <0}, but not
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vice versa Hence. we conclude that V is Jess than or equal to the total probabibty that the evemt
{S3lte1) <UL $217,2) <O} oucurs without regard to the valves of Ay, or ny;- This conclusion. together
with Eq. (21), yields

¥<C. 2n

By ccmbining Eqs. (19). (23). (261, and (27).
F,<F (28)

is fmally obtained. Hence. Eq. (1) does. indeed. define 2 lower bound’ for F. This lower hound
complements the upper bound defined by Eq. (17).

In this section. we have defined upper and lower bounds for F which are functions of (g, ng2).
Fgany ). By Rgy). Buyigz). and W,. In the next section we will contimue our derivation of the primary
dewsity fanction by deriving (417,70, Agyiy ). Bgyfigy). Gy Rgy). W,. and. as a result. Fyand F, x
functions of the deterministic signals 7(/) and the 2ut0- and crossvaciance functions for ¢(7).

4.1.4 Desivation of F; and F,, 21 functions of the determimistic snd stechamtic sreperties of (7). In this
section. we first derive (g y;). Ry yngy). (g Ry ;). and Gy Ay ) a8 functions of A1), #1117). ®,:(7).
and ®,,(r). Cramer and Leadbetter [25. 26] have rigorously derived such ensembie averages as (74,).
Giu1). etc.. for a single stochastic process. The presentation of their desivation modified for two stochastic
processes 8 beyond the scope of this paper. However, using Cramer and Leadbetter’s published derivation
as 2 model. we have completed such 2 modified derivation. As a result of this derivation. we find that all of
the ensemble averages that are needed in £; and F, can be represenied by the generic function

A 1
';l\il"il)zf": ':: P', "|. | 51 )d'gd'] . ‘29)
with
Piey.1)= ff'f.l(ll W2 (02X WIS, (0, )= . $3(12) = 0.8,(e, ). §5(0: N I\ R 2 30)
R

whcrcundnepnsenlat!mdocudepmdmonllnproduct that is averaged over the snsembie and where
Wit (1)), $2(12). {,(l. ) {g(l, )] is the tome-dependent joint amplitude probability density function for the
indicated random variables. The various boundaries for the region R; and the values assigned §, and {; in

Eq. (30) result from the equivalence of 2 downcrossing with the condition ¢ = 0. { < 0. and the equivalence
of an upcrossing with the condition { =0, { > 0. To calculate (ig;7gy), first Pyg is obiained by evaluating
the double integral of Eq. (30) ower the regior. Ryg. which. because of the way we have defined a
downcrossing. is the quadrant of the {,. {, plane defined by §, <0, {; < 0. Then. Gig1742) is obtained by
using Pyq 23 the integrand in Eq. (29). Samilary. Gigrhuy) is cakculated from Pgy. which is obtained by
evaluating the double integral of Eq. (30) over the region Ry, (this is the quadrent defined by $,<0.
§2 > 0). The ensemble average Gum.n) is calculated from P, g, which is obtained by evaluating the double
integral of Eq. (30) over the region R, 4 (this is the quadrant defined by ( 1 > 0, {; < 0). Finally. G.,,n, Y

2. For a sngle wtochastic process am‘l. a positive arming level, a suitable lower bound for the zero-crossing-time
cnmulative distribution function is (np - (ny).
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B caculated from P, . which is obtained by evalvating the double mtegral of Eq. (301 over the region R,
(this is the quadrant defined by ¢, >0.{, >0).
fn matrix notation. the probability dexsity function W is given by (29]

WME, 8280820 =20 A Ve exp[-(2 - RPMZ - RN2). 31)

where the tilde symbol is used to indicate the transpose of 2 matrix: Z is the row matrix {§ (7, ). §:(1: )
Sl k. 5x(12)): B i the ro= matnx [rydn, h ry(t; ) £ (1, ) 7202 )] : 7(2) 5 the time derivative of #(r); M=
K': K is the covariamce matrix for the random vasiables ¢, (1, ). (12 ). $2(7,). 2nd $:(7>): and A is the
determinant of K

The clement of the matrix K i the ith row and /i _oluma i k;. Since K b symmetric. only ten matsix
clements are nceded to specify K. With 7y, =1y 1,. the clements m the first row are givea by [39] &, , =
.00 ks =9 212 ) &, =0.andk..=ld0.z(1)Idr],:,,_.Tltneededdunenuildlesecmdrow
aregven by k:; = @:,(0). kyy = - k; 4. 2nd k34 = 0. The needed clements in the third row are given by
kyy = |-d’®,\(r¥dr?], .o and kyy = [-d*®,,(rWdr?|,., . Finally. the hast element & kyy =
[ 2@, (rVdr?],.,.

Until this point we have asumed that v,(7) and 7,(7) [and. hence. ¢,(r) and ¢:(1)] are correlated
tecause this assumption complicated the derivations only shightly and because these processes are indeed
correlated. They are correlated because components of both processes have a common origin in the encoder
and because noise generated in the preamplifier of channel ! s coupled via the encoder into the
preamplifier of Vannel 2. and vice versa. However. because continued assumption of corvelation will cause
considerable difficulty in the evahmtion of the integrals for Eq. (30) and because we expect the effects of
correlated ncise 10 be much less important than the effects of uncorrelated noise in determining the
distribution of X,. we will assume that Ty ,{7) = 0 = #, ,(7) for the remainder of this work. As a result of
this assumption. the elements of the matrix M are zero except the diagonal elements. The diagonal elements
aregven by vy, S Uk, . myy = 1kys.myy = 1/kyy. and my, = ke, Use of this specification for M in
Eq. (31) yieids

Mf:-fz'f.n-s;:)=(2')_3lA“P("l +uy)) 2 . 32

uy =0 20 Wy +r 2 VR #1802 - 28 ratn)) Tk, 4 lf.|2 - 2§.| r(t))ikss .

u; =121, Vky; "-12('2 Vhkaa # (827 - 287 72003))ikay + R:z - 2§-: "z('z)l/ku .

A=k| (kzgk,)k“ .
After substituting Eq. (32) into Eq. (30) and performing the indicated integrations {31]. we cbtain “
Pagley 1) =Mt 1) G-y, (1)) Gl-y2(11)] . kR3]

’d,,(h I)= '*”Mh .’))(;l ."l"! ” GI*}':"; " . (“3“)



14

’ld" . '1 ): —Mf. . l; )G[*V."l )l G[-_\’:(f:“ N ‘35‘

Pty 1:)= M1, 1)V G4x,(6,)) G[+va(12)) . {36)

K, . t0)=H (1, H, (1)

H(6,)= -2k, ) "2 ry(e,) expf~uste, V2] .
Hy(ty)= —(2k32) M 2 ryqey) expl-ua(t2 V2] .
uy(1)=r 2 Wky,

ult;)=r.2t Vkq,y .

GON=0S5[1+erfy+x V25! exp—v*)] .
ylE) = W2k, 5) V2
yalt2)=ra(12)(2kea) M2

and erf is the error function. In addition, there is the very useful identity
Gy)+ G(-v)=1. a7

Equations (33) — (36) are used in Eq. (29) to yield expressons for (14, 74,). (Mg, Ay ). My y 1g3). and
(R, 17 ;) 28 functions of the deterministic and stochastic properties of {(7). Then these expressions are vsed
according to Eq. (17) to completely determine F,, and according to tgs. (19) and (20) to partially
determine F;. The results of such use are

F, = f2 f“ Gl-¥i(v))] Gl-y2(v;)] H(w,.¥2)dv,dv, . (38)
(g2 7 1q)
B= f2 h ”(l’l ,yj)d’|d’2 . ‘39)
ta2 v lay

To complete the determination of F;, C [which is defined by Eq. (21)] is next derived as a function of
the deterministic and stochastic properties of {(r). The probability density function W, is given by [29]

Walay a2)=(280) " 857412 exp[-(Z, - RMy(Ze ~ Re2] . (40)
where i, is the row matrix [a;, a;]. ﬁ, is the row metrix [ry(tg5), 72(141)). M, = C ', C is the covariance

matrix for the random variables a, and a,, and 4, is the determinant of C. The matrix C is symmetric. and
C| ] =k| |,C|1 =¢|1"‘1 o 'ﬂl)~ md¢‘11 =k31- Fof‘blj‘f)go, thc u”oqu. (40)|n Eq.(ﬂ)yllds



C=025 eifilritigy 212, 3 Y3 arfclrte M2k 27 Y%} “n)
where erfc is the complementary etror feactivn. Equations (39) aad (4]). when combined according to Eq.
(19). completely determime F; 25 2 function of the determmnistic and stochastic properties of {(r). We
continee owr work by using F; and F,, 10 determine F.

4.1.5 Caicuintion of P, ; fer signal-to-asise raties greatey thas 10.

4.1.5.1 General discussion of this celwistion. In the previous section. we derived F; and Fy, s
fum-tioms of r{¢) and ¥(7). For those denvations. we did mot restrict I, of I,>. Now. however. to make F;
and F, weful m the caboulation of P, ;. we require that 1, = I, and 1., = 1. In addition. 10 sumplify
further discussions i this section. we defime the region M of the 1, . 7: plame a3 that part of the plane where
1y <1, <1,y amd 1y, <ty <ty For the sume reason. we defim= the region i as the remainder of the
1,.1, plane. Furthermore. we defime the signal 10-noise ratio of chamnel 1 s

SNy =ity '\/t_n a2
and the signal-to-notse ratio of chanmel 2 as
SNy =rally, yvi;; - (43)

With these defmitions 2ad the requirement that 7, = Iy, and £,> = Ip3. we will next prove that the
cumulative probability of the ordered pais of random variables (7, . 7; ) being in i converges monotonically
10 0 as SN, and SN; mcrease without bound. Then. we prove that on M. F converges monotonically and
untformiy 10 F; as SN, and SN; mcrease withoui bound. After fimishing these convergence proofs. we will
discuss the effects of finite SN, and SN, on the diffe;ence between these cumulative probabilities and their
limits. Finally. we will calculate P, ; on Mand M.

4.1.5.2 Comvergence 10 0 of the cumvlative probability thet (1,. 1) is in M. To enable the proof that
the cumulative probability of (7,.7,) being im i converges to 0 monotonically as SN, and SN; imcrease
without bound. we define

5= II’- 2By BaIx, . lg ) dv dyy | (44)
N

Since the entire 7, . 1, plane comprises M and W and since the cumukitive probability that - <7, < = and
=<7, <=is [ 6 can be caiculated from

§=1 - f!’. 1w, . ps Xe. 'or’ald’z . ‘45)
M
Smce F); = Fand since A1, . 1:1x.. Tgc) = 0for 1y K1y, 01 13 < £, we obtain from Eq. (45)
§=1- R nlx.190). (46)
Then. since F; < F. we have. after combining Egs. (19), (39). and (46).

81 Fft,,.t,3lx..1o.)=D . (47)
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D=C+L (48)

'_ =] - f") for n'..'gh(. ’..—'d'.d': . .“)
fp2 “ipy

Simce 7,(7) and (1) are absolstely contimwous [27] and momotomic in M. each of the iicidted single
mtegrals in Eq (49) may be interpreted as a Sticltjes mtegral [32]. By wsing this interpretation. tagether
with Eqs. (41). (47), (48), and (49),

§<140.25[erfcB,, erfcf,; + erfc y; exfcl,, - exfc By eric ] . (50)

By = (Ipe N2k )7 '12
B =’|(’-|N3ur”2 .

By1 =rylip: N2k2) "2

B2 =ryltg W 2k;5) Y2

is obtained. Equation (50). when coupled with the defimitions giv' 1 by Eqs. (42) and (43), proves that §
converges mono’ >sically to O as SN, and SN; mcrease without bound.

4.1.5.3 Convergence of F 10 F; on M ax SN, end SN, increase without bound. To enable the proof
that F converges monotonically and uniformly to F; on M as SN, and SN; increase without bound.
8(1,.13) .3 defined by

8t1.6)= Rty ty1x. . toc) - FAty . iz X Ioc) - (s1)
Then. we observe that
80, . 02) S F (e, t3lxc, 1gc) — Fty . 131xc. toc) (52)
=C+Gl1y.13),
where

2 £N
Y E . d d .
Gln, f:)'f’pzf’p' (vy.v3)dvidy,



B, 0)=E, 1y 10V E ey 13) .
E.ll..l;'=‘¢xp‘-:i—i3‘l| , - .C"I,l,i:,’ -

Eutt. 12)=x, 00,V x%:003) G- )] G[-¥:0220) - 1.

‘:,"'k,,‘kll'l z'k“ k::" : .

The intermediate vanables of Eq. (52) [mamely. v, (7, ) ¥2(13). 5507, ). 2nd 0, (12 )] - 25 well 35 the fanction
Gy} are defimed it Eq. (36). Then. simce v, and v, are negative on M.

Ex(ry .ty <expf-vy2(e,) - ¥230y))
052 "2 “xi(eprexp(-vi ez )] + volrz ) expl ¥ Zing ) - (53)

is obtain~d. By using Eqs. (12) 2nd (13) and the defimitions of k. which are given i comjunction with Eq.
131). all of the intermediate variables in Eqs. (52) and (53) cam be rewritien as the product of appropriats
sgnal-to-noise ratios and normaliced response functrons. However. we will omit the detaills of sech rewriting
and pomt out that. after such rewriting. the Limit of El7,.1:) 23 SN, amd SN: mcrease without bousd &
the same as the Limit. before rewriting. of ElZ,.1:) as uy. u;. vy. and v, mcrease withowt bound.
Furthermore. we point out that. after such rewnting. K is zot 3 fuactiom of SN, or SN;. Therefore.
according 10 Eqs. (52) and (521, if 7y(fc,) % 0 amd 75(2.2) # 0. and 7,(r) and r, (1} are contimwous on M.
then £l1, . 1) converges monotonically and un-‘ormly 10 0 on N a3 SN, and SN; increase without bownd.
Then. since the measure of M s finite. Gir, . 17 ) converges monotonically and uniformly to O on M a3 SN,
and SN, increase without bound. Fimally. since Eq. (41) shows that C converges monotomscally to 0 as SN,
and SN; increase without bound. it is clear that 81, . 1, ) converpes monotonically and uniformly t0 0 on N
a3 SN, and SN. increase without bound.

4.1.5.4 Effects of jinite values of SN, and SN; on § end §. The effects of fimite SN, and SN; on § cn
be calculated from Eq. (50). For ry(1, ) = - 7,(tp ).73(132) % -72(1p3). SNy > 10. 20d SN; 3 10.5 s less
than 10°2%. This upper bound for 3. which i the total probability of the pais of random variables (7. . 7;)
being in M. is small enough compared with | that. after noting that P, ; is nowhere negative. we conchude
that

P|3=0 (54)

on Mif €5, > 10 and SN; > 10.

Unfortunately. we have not been able to formulate an expression for § that does not require numerical
integration to implement it when SN, and SN, are finite. However. because of the monotoaic convergence
of 8 to 0 as SN, and SI¥, increase without bound. a numerical calculation of the maximum value of § on &
for particular pulse shapes, 7, (f) and 7;(r). and particular values of SIN; and SN, establishes for these pulse
shapes an upper bound for the maximum value of 5 on M for all greater values of SN; and SN; . For these
reasons. we have used numerical integraiion of E(r,.7;) as indicated by Eq. (52), combined with the
straightforward calculation of C, to calculate 8(r,.7;) on M for representative pulse shapes. From the
results of these calculations. we conclude that

Sy - irh oo
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on M f SN, > 10 and SN: > 10. Sence the maumem value of § on M for represemtative pulse shapes 5.
axordimg 10 Eq. (55). negligible compared with values of F near ws mean (wheve F s of the order of 0.25).
we conclude aaat

F=F (56)

on M SN, > 102ad SN. > 10

4.15.5 Sprcification of P, (1, . 1;ixc_ le ) for SN, > 10and SV ; > 10. By combmang Eqs_ (19). (M)
(A1) (541 2nd (56). we find that for SN, > 10 2md SN > 10 the jomt probability deasity function P, . is
pren by

P.,ll.-h;x,.l.,k.l..hlﬂh - ”|)L-|"| 1Y Ar; "1"-1'.1 ). ishH
where (A2) is the wait siep function aad M1, . 1) is defined i commection with Eq. (36). The requirement
dut SN, and SN; be greater shan 10 is not restsictive for owr application becawse the signal -to-noise ratios
of typical operating FSDs ase geeater than 100 [33].

4.2 Masginul Desnity Fumction Py(1,ix,)

4.2.1 Desination "’(l,ll"-)h Py oy 'lkt' loc) TO“’)“)L“-)"“’| 8y 0yix,. l.".
frst Py 5(1,. 15ix,. 1g.) is Obtaimed by mmplementing the transformation

H=E6.
Iy =8y — fy -
Since the Jacobian of this transformation is 1. the result of this implementation is

Pyyiny. tyix . 5o ) =Bty . 1y 1) ALy - 1) UAlyy - 1) Uty - 10} W1y, - 1y). (58)

fj3=lpy - Iy, .
Iy3=lyy - Ip) -
fh =(lga - 1) A1y, - 1y - 1;) 415 Uy - 1y3 +1y).
Iy 2tz - YU - 13+ 0)) 41y Ullyy - 14y - 1)
The region in the 1,, 1, plane within the bousdaries defined by the unit step functions of Eq. (58) is called

O. The region O is the image of the region M.
Next. P, is obtained from P, ; by calculating the marginal density function
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’,‘a’;ll’t.= I-_ P, slf, . Aylx,. lecVdn, . 59)

To mmplement Eq. (59). approxisations for 7, (7) and 7:(r) e wsmally mecessary. We believe the wse of
lmcar approxmsations effects the best conpromise between accaacy of results and complexity of
'|uf. n=ua ‘(|5'| . 'w.

. 0= £,.5,;. ¢61)

S" = l&l‘-‘r- "ull Ten

Spy = (Wytx. 0], .

The pulse epoch. 7o.. mmy be taken ~3 O when calculating S,y 2ad S, ;. By cving Eqs. (58). (60). and (6})
and the defmtion of N from Eq. (36) m Eq. (59). P, is éceermined to be [34]

Pinyix ) =0.5020) Vi 20, Quapy. 1y 1)V Rty Yexpl -1, 20y %)

where

',"" -0y .

fs=lcy Iy .
0,=0,3%0,;.

o, =k, /8,1

0:} =k;,. 5,570 .

Qipy .ty 05 V= el |20y, . 15)] - ef 205y 057)) .
Zt.1,)= 27" 30,7 W1 - 100050, +0,0,71,) .
S V=W U - ).

0 2llpy 1) 10y - 1yy).

= (tyy 1) (1) - 1p,).

As expected. P, is completely independent of pulse epoch. g, .
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4.2.2 Efiect o P, of the ux of hursr approximations for 7{7) Some emor s mtrodeced mto Eq_ 159)
a3 a result of wsing limear approxamations for 7, (7) and 7:(7) m the r-gpon M However. thrs error cunverges
monotonically and wniforsmaly to O on A as SN, and SN mcrcase wathout boead. This comverpence occers
becamse 7 (1) appeas m the equation for P, 23 2 negative exponens of ¢.

To determume the magnitede of this errur for fimise SN, and SN; . we have selected typucal respusse
fanctions 7,(r) : nd 7 (1) 2nd ward semencal mecgranon of P, ;. as mdicated by Eq. (590 to calcuiate P,
for vasiows SN, and SN .. We compared these results with corresponding calculations of P, accordmg 1o Eq.
162) for Gawssian-shaped pulses. For SN; = 20. SN. = 20. and amy 1. the differemce between these oo
cabculated values of P, u typecally bess tham 1.5 X 10 2P0 1,:x,). Hemee. we conclude that Bq. (62) 5 more
toe adequase to predict the performance of operatmg PSDs. for whach SN, and SN: are typecally mmch
peater thaa 0. Huwever. for partcular PSDs for which there 5 doult 23 to the validity of the lmcar
approxamations for A1), semencal megration car be wsed mstead

423 Apprezimation of P, with 3 seomsl probubiity deasgy fusction Egqumtion {62) cam be
smplificd 10 St for 2 sormal probability demsity fumction with negligible change m the values of 5. To
make this sasmplification. QVfyy.1,,.1, ) is replaced with 2. and the smitching fenctzon SI1,') B replaced
with 1.

We first comsider the effect of replacimg QU 1,,.1, ) with >. For amy 1, m O. Qutgy . 10y 15)
comverges wmformly and mowotosically to 2 as SN, aad SN mcrease withost bownd. Furthermore. for
SN, =SN; = 20.0; =0;. ilfy ) = 1ikty ) 72llpy3) = 720020 3md ity 051 € 20. the difference 2
QUpy.1gy.1,) 8 less than 107" 5. Proofs of these statements ave facilitated by notimg that o,SN, =1,
fy, amd 0:SN; > 1.y 1. Smce the difference 2 - (\iyy.ip, .15 ) s swnll 20d since the requuement
i3 /0. < 20 excludes very little of the P, distribution. we consider P, adequately repeesented by 2 normal
dewsity function with standard deviation 0; and mean 7. tremcated accordimg to N7, ).

We mext comsider the effect of sntruncating the P, density fenction. Smce f,” < 0;SN. + o, SN; and
1= 1. the efsect of the switching fenction SI7, ') for SN, > 20 aad SN: > 20 is 1o use the truncated
normmal density function 10 be O for valwes of 7,” where the valwes of the untrencated wormal dewsity
fwnction are less them 107" 7 times the maximem value of P, . Hence. we simplicy Eq. (62) by replacing
Siry") with |. With this ssmplification. P; is given by

Pytryx ) =02m) " 20,7 expt-1,2 120,y 63)
for SN, axd SN; greater tham 20. The probability density fumction P,(7-'c,) characterizes the output
variable from the tome analyier in Fig. 1. We next consider the transformation of this probability density
function to that for the random vasiable X, .

4.3 Asymptetic Appreximstion to the Decoder Density Function
4.3.1 Derivstion of P (x.ix.) from Py(1,ix.). The decoding equation 15{x.). whnch s needed to
transform Py(1,ix.) mto an asymptotic approximation to the decoder demsity function. is implicitly
defined by the system of equations.
’|‘X,.’|)’o.

’1‘X¢.'3”o. (64)

20, 0.
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To apprexsmate the function 7363, 0 impled by Eq. (04). we uixc vk two-sansdle bacar Tavkor wenes
e\panson to approumate £1(c,. /; ). and we ust 2 secund one (v approxmate 73X, 17 ). These Tastor

sees afe

';'l,. l.|=€x( I‘-6'| "h "-!5!|

ad

rAx, 1207 0x, X WSpr YUy L2052 1651
where

S =farux nax), oo,
and

S.: = |or:tx nvax], I .. x:x,

Agmn._ the pulse episch may be taken as revo to cabkculate S;;_ S:2. S;;. and S, . In addnwa. akthough
we have not mndrcated 1t exphatiy. alf of these parameters are functxas of e, . .. .6, s wellas o x,
Then. Eqs. 164) and (65) are used together to yield
LX) =6(x,)  IH=(x, xS (66)
where
$=5,5n" 557"
By using Eq 1661 10gether wath Eq (631 we finally obtan
Pix,ix =20 o Y expl tx, x.V 20,7} =PAx, x ). [ 34}
where
al: = 03: .Sz .
Because of the approximations we have used in the derivation of Pix ix ). we explicitly mdicawe that it s
only approvimately equal to Pix, ix, ).
Ifx. = 1.°2 and the encoder is operated n e balanced mode »i.e.. except for extra delav in channel 2
fo make the stop pulse always arrive after the start pulse. cianne! ! ind channel 2 are identical). ther Sy =
Sy 2. and the equatwon for o, reduces to

0. =k, (250 )=k 28,0 7). O

4.3.2 Effectom P ixix., of the use of limeas approximetions fo- rix. 7). For amy given exaci “3(x,) and
for a given nonzero S. the evror i P(x,ix. ) caused by the use of Eq. (66} converges monotonically and

laa o
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uniformly to 0 for 0 < x, < [ as SN, and SN, increase without bound. Before this error can be
characterized further. the encoder moduiation characteristics [v;(x.. 2o.. 1) and vi(x,.fo.. 1)] and the
impulse responses [k, {7) and A, (7)) of the filters must be specified. Then. numerical methods can be used
to calculate the exact 1,'(x,} and the error in P, ihat is caused by the use of linear approximations. For an
optimized PSD that uses an RC pusition-sensitive propertional counter [1] with SN, = SN, = 20. we lind
this error to be less \han 4 X 10 Py(x ix.) for x, = 1/2 and 0 < x, € I.. Hencs we conclude that the
effect on P, of this approximation is negligibie {or signal-to-noise ratios grzater than 20.

4.3.3 Convergence of P ix,lx, )} to Pi{x,lx, ). Because. as we have pointed vut at the appropriate places
in this work. the separate errors caused by cur varivus approximations converge monotonically to zero. the
total-error function Ef{x,. x.). where

Erix,. x. )= Pylx,Ix.) - Pyix,ix.).

converges monotonically to zero with increasing SN; and SN, for all x, and x. and for all 7, and r,.
Furthermore. our numerical calculations of Ey for Gaussiar-derivative-shaped , and 7, indicate that. for
SN] = SN: =20.

IEfX,. x J<2X 107%P, .

where P, is the maximum value of Py4. In addition. E{x,. x.} typically changes sign. so that o, as givea by
£q. (67! differs from the numerically calculated square root of the second moment of P about its mean by
less than 0.5% for SN, = SN, = 20. Fur these reasons. we believe Eq. (67) is. when used with Eq. (2). more
than adequate to predict the performance of and to derive the optiinum position decoding filters for
operating detectors. where SN, and SN, are typically greater than 20.

$. APPLICATIONS

The starting point for the computation of the overall PSF for a PSD is specification of the functional
forms of the photon-caused pulses vy(xc. ay. .. .. dp. foc. ) and v2{Xc. @), ... @p, foc. 1) and the
noise autovariance functions I'y ;(r) and I";;(7). The functions v; and v; are inust easily Cetermined by
calculations based on a model of the particular position encoder bei.ag used. However, the autovariance
functions ', ; and I';; can be determined either from theoreticai calculations ur from Fourier transform
inverses of experimentally determined noise power spectial densities.

Altkough we have assumed for purposes of illustration that these functions are specifivd at the cutputs
of the pcsition encoder. there is no change in the computation method for specificatior of v; and Iy at
one arbitrarily chosen point p, in the chain 5 amplifiers and filters that comprise channel 1 and the
specificatior of vy and I, ; at another arbitrarily chosen point p, in the chain of amplifiers and filters that
comprise char.nel 2. For any py. k() is the impulse response ot the portion of channel ! between p, and
the crotsover detector D; . Similarily. for any p,. #,(1) is the impulse response of the portion of channel 2
between p; and the crossover detector D, . For anaysis of a PSD, the points p; and p, ran be chosen so
thai h; and h, are delta functions. For determinatior of optimum filters. p, and p, are chosen so that the
noise ai each point is white.

Next, ki, and k,, are computed from T'y,. ;3. Ay, and h; by using Eqgs. (12) and (13) and the
definitions associated with Eq. (31). The response functions 7, (x.. a,. . ... an. toc, 1) and ry(xeay. ...,
ay. toc. 1) are calculated from vy, va. Ay, and /2 by using Fgs. (8) and (9). For typical operating P3Ds, for
which the signal-to-noise ratios are greater than 100, the various approximations we have used are
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completely justified. For these PSDs. the various parameters ot Pylx ix..ay. ..., ap ), particuiariy vy, arc
calculated from k,,. k... 7,. and r, and the definitions of Eqgs. (61), (62). {65), and (67). However, for
PSDs with signal-to-noise ratios less than ZJ. the validity of the various approximations should be
investigated by numerical techniques as we have indicated. Fo- PSDs for which electronic noise s the
dominant reason that P is not a deita function. Pdx lx.) is the overall PSF. For other PSDs. the overall
PSF Ax.ivo) is calculated from Pylx Ix . a,. . ... @x) and the encoder density function P{x., a;. . ...
a,{vo). which must be specified according to the domirant statistical processes in the particular encoder
being used. according to Eq. (2).
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