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ABSTRACT 

Recent research involving the direct computer simulation of 

pJastic deformation through planar dislocation glide suggests that 

plastic inhomogeneities such as the formation and growth of discrete 

slip bands are an inherent feature of deformation through glide* In 

rhis paper we shetll describe the sources of glide inhomogeneity and 

and discuss the influence of temperature, microstructural barriers, and 

applied stress on the heterogeneity of deformation in idealized 

crystals. 
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INTRODUCTTON 

At moderate temperatures the plastic deformation of a typical 

crystal involves the planar glide of dislocations against the resis­

tance provided by the microstructtire. 

In earlier work (1) the statistics of thermally activated glide 

were developed and useful approximations identified. Recently we have 

discussed how statistical analysis and computer simulation can be 

combined to provide new insight into 'he kinetics of glide In model 

crystals (2,3). In particular these results suggest that characteristic 

homogeneities will be observed in deformation through the simplest 

dislocation mechanism. 

BASIC EQUATIONS 

We consider the glide of a dislocation, modelled as a flexible, 

extensible line of constant tension, T, and Burgers vector of magnitude, 

h, through a field of point obstacles, whose density la characterized 

by the characteristic length E, . The resolved shear stress, T, 

impelling glide is given, in diraensionless form, as 

T* « \z b/2r CD 

The obstacles are distributed randomly on the glide plane, and 

assumed to be identical, localized barriers to the dislocation whose 

effective range of interaction (d) is small compared to their mean 

separation. They may hen*..** be treated as point obstacles (4). The 
It 

force, F , that the dislocation exerts on the k-th obstacle is aimply. 

In dimensionless form. 
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Sj - ?J/2r - Cos<~ **> C2) 

when* K\ Is the included atiftle between two dislocation arms (Kin- I). 

The Interaction between obstacle ami dislocation is Riven by th*? force 

displacement relation, 3(x/d), the maximum of which measures the mechani­

cal strength, B , of the obstacle. 

As discussed In references (.!»!), in thermally activated glide the 

dislocation encounters a sequence of obstacle configurations. Since 

these "glide paths" change with temperature and stress, the detcnoiua-

I ion of the velocity of glide through a random array of point obstacles 

is complicated. However, when the reaper-it ore (T*) is low or [he 

applied stress (i*) is very close to the critical value (t*) for 

athurm.il glide the dislocation lends to follow tlu- "minimum angle" path 

obtained under the requirement that activation occurs at an obstacle -it 

which the angle v, takes on its minlr-tim value <or equivalently, at which 
k ; takes on its maximum value, £.). U\ the linit T* • 0 ihe velocity is 

jf.iven by the Arrhenius equation 

<v*> » n 1 / 2 cxp{-a(fic - fi^l (3) 

where n is the number of obstacles in the glide plane, >i is the 

"dimensionless reciprocal temperature" (ci * (T*) •* 2!'d/kT) and 0. is 

the minimum of the $ t, i.e., the maximum force on The most stable 

configuration encountered during glide. In the limit T* •* *° the glluo 

path becomes a "random" path whose configurations arc obtained through 

a random sequence of activation events. 

http://athurm.il
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Given the analysis of Individual planes one nay treat the plastic 

deformation of an Idealized crystal niodelled as a stacking of planes of 

the same type, assuming that each glide plane contains active sources 

of non-Interacting dislocations so that the expected number of disloca­

tions If the same for all planes and alt t irae.s during steady state 

deformation. If the glide planes contain a finite number of obstacles, 

then there may he appreciable scatter In the expected glide velocity 

from om* plane to the other. This will he reflected In an inhoraogeneity 

of the crystal deformation, which will tend to concentrate on these 

planes over which glide Is easiest. As will he shown in the next 

sect irm, this plane-to-plane variation becomes less pronounced as the 

temperature in increased or stress is decreased, thus crystal deforma-

I Ian becomes more uniform. 

SIMULATION RESULTS AND DI.iaJS.SION 

The specific details of the computer code and how the data are 

obtained are discussed in reference 3. Here we will first discuss the 

effects of temperature and applied stress on plastic deformation. 

The simulation results of an ideal crystal made up of ten parallel 

glide planes are Illustrated in Fig. 2, where we have plotted the glide 

velocity (-tn<v*>) ns a function of a for four values of applied stress 

i*. The light curves show the data for each of th- individual glide 

planes making up tho crystal; the heavy line gives the resulting average 
3 

velocity for the crystal as a whole. Each plane with &o area of 10 Is 

assumed to contain a uniform distribution of non-interacting disloca­

tions and a Poisson distribution of obstacles with strength of S = 0.6 

http://DI.iaJS.SION


and an interaction function, 0(x/d), of simple step form. The glide 

velocities for the individual planes vary over a range v ilch increases 

.is the temperature is lowered or as the stress is raised. The source 

of this scatter is straightforward, and may be easily seen from 

equation 1: when the reciprocal temperature a is large the velocity is 

quite sensitive to overall plane-to-plane variations in the value of 

B., the maximum force exerted on the most stable confjuration encountered 

in ^lide along the minimum angle path. In a finite array the variation 

is significant, and tends to increase with the stress, i*. As tempera­

ture is raised the properties of the most stable configuration become 

les« dominant. In the high temperature limit the glide velocity is 

determined hy an average over the forces. Unless i* is so near to T* 

that there are only a few stable configurations in the array this 

average tends to be Independent of the specific array, and the variation 

uf <~j*~> becomes very small. 

The consequences of the plane-to-plane variation in glide velocity 

arc illustrated in Fig. 3, where we show the appearance of a hypothecJcal 

bar made of our model crystal and strained 20% in tension at each of 
-3 the two resolved shear stresses, T* = 0.4, at temperatures T* = 10 

and T* = 10~ . At low stress (T* = 0.01) the deformation is markedly 
-3 inhomogeneous at the lowest temperature (T* =10 ), but rapidly 

becomes homogeneous as temperature is raised. At high stress (T* = 0.4) 

the deformation remains i.ihomogeneous even at T* = 10 which roughly 

corresponds to the highest dlmensionlesa temperature obtainable in a 

Typical metal (r:d ai its melting point). Hence, crystal deformation 
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becomes more uniform as stress is lowered at constant temperature or as 

temperature is raised at constant stress. 

The plane-to-plane variation in glide velocity is enhanced by the 
3 small array size used in this simulation, HO as opposed to a physical 

realistic number of perhaps 10 . Were the array size increased, the 

variation would become less pronounced. Specific simulations of very 

large arrays (5) have, however, shown that the plane-to-plane variation 

remains significant when the number of obstacles is increased to 10 or 

more (Fig. U). For crystals containing mare than one type of obstacle 

the plane-to-plane variation remains qualitatively the same. 

The deformation at constant strain rate becomes rapidly homogeneous 

as T* is increased, since both the increase in temperature and the 

decrease in flow stress favor homogeneous tlip. Fig. 5 illustrates the 

variation of flow stress, with temperature- The result depends on the 

precise value of the average velocity chosen, when T* > 0 the flow stress 

is an increasing function of strain rate. Since in this simple example 

there is no athermal component to the flow stress, the flow stress 

becomes zero at a finite value of T* which increases as strain rate 

increases. 

The effects of temperature and stress on the heterogeneity of 

deformation discussed above depends on the particular choice of disloca­

tion-obstacle interaction, which was taken to be of simple step form. 

Introduction of any shape of force displacement diagrams is fairly 

straightforward and can he handled easily (5). Preliminary results 

indicate that by taking the interaction to be of the parabolic or 

triangular form changes the T* versus T* curves to become steeper and 
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the temperature at which T* • 0 to be lower. 

The effects of obstacle distribution and dlslocation-alslocation 

interaction as well as specific details of the effects of temperature 

on the flow stress are currently being investigated. 
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Fig. 1 
Equilibrium of a dislocation under stress. 
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The effect of temperature and stress on the Inhomogenelty of 
plastic deformation. 
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Atherraal gl ide s t ress versus array size for S = 0.01. 
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Fig. 5 

Flow stress versus temperature at two strain rates . 


