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ABSTRACT

Recent research involving the direct computer simulation of
plastic deformation through planar dislocation glide suggests that
plastic inheomogeneities such as the formation and growth of discrete
slip bands are an inherent feature of deformation through glide. 1In
this paper we shall describe the sources of glide inhomogeneity and
and discuss the influence of temperature, microstructural barriers, and
applied stress on the heterogeneity of deforwation in idealized

crystals.
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INTRODUCTION

At moderate temperatures the plastic deformation of a typlcal
crystal involves the planar glide of dislocations sgainst the resfs-
tance provided hy the microstructure.

In earlier work (1) the statistics of thermally activated glide
were developed and useful approximations identified. Receatly we have
discussed how statistical analysis and computer simulation can be
combined to provide new insight into the kimetlcs of glide in model
crystals (2,3). In particular these results suggest that characteristic
homogenefties will he observed in deformation through the simplest

dislocation mechanism.

BASIC EQUATIONS
We consider the glide of a dislocation, modelled as a flexible,
extensible line of constant tension, T, and Burgers vector of magnitude,
b, through a field of point obstacles, whose density is characrerized
by the characteristic length ZS. The resolved shear stress, T,

impelling glide 1s given, in dimensionless form, as

T* = tlsbIZP (1)

The obstacles are distributed randomly on the glide plane, and
assumed to be identical, loczlized barriers to the dislocation whose
effective range of interaction (d) is small compared to their mean
separation. They msy hence> be treated as point obstacles (4). The
force, F:. that the dislocation exerts on the k-th obstacle is simply,

in dimensjionless form,



k

k 1 k
81 - Fi/2r - Cos(i pl) (2)

where wk {9 the included angle between two dislocation arms (Fig. 1).

H
The interaction hetween obstacle and dislocation is given by tiw forece
displacement relation, 3(x/d), the maximum of which measures the mechani-
cal strength, Bc. of the obstacle.

As digcussed In references (2,3), {o thermally activated plide the
dislocat{on encounters a sequence of obstacle conf{igurations. Stuce

' chanpe with temporature and stress, the determina-~

these "plide paths'
t{on of the velocity of glide throuph a random array of point obstacies
ts complicated. However, when the temperature (T®) s low or the
applied stress (1%) ds very close to the erftival value (Y:) far
athermal glide the dislocation tends to follow the "minimum angle" path
obtained under the requirement that activation occurs at an obstacle at

wvhirh the angle ok takes on fts minimus value {(or equivalently, at which

i

;? cakes on its maximum value, El). In the limit T® = 0 the velocity s

piven by the Arrhenius equation

wt o 12 cxploate, - £))) )

where n is the number of chstacles in the glide plane, a is the

! = 2I'd/kT) and Bl is

"dimensionless reciprocal temperature” (u = (T*)"
the minimen of the §,, {.e., the maximum force on the most stable

configuration encountered during slide. In the limit T* =+ @ the glide
path becomes a "random" path whose configurations are obtained through

a randon sequence of activatlon events.
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Given the analysis of fnd$vidual planes one may treat the plastic
deformation of an idealized crysral modeiled as a stacking of planes of
the same type, assuming that cach glide plane contafns active sources
of non-interacting dialocations so that the expected number of disloca-
tions {v the same for all planes and all times during steady state
deformation. [If the glide planes contain a finite number of obstacles,
then there may be appreciable scatter in the expected glide veloclity
from one plane to the other, This will be reflected in an inhooogeneity
of the ctystal deformation, which will tend to concentrate on these
planes over which glide {5 easiest. As will be showm in the next
section, this plane-to-plane variation hecomes less pronaunced as the
temperature {s increased or stress is decreased, thus crystal deforma-

t fon becomes mare uniform,

STMULAT ION RESULTS AND DISCUSSION

The specffic details of the computer code and how the data are
obtained are discussed in reference 3. Here we will first discuss the
effects of temperature and applicd stress on plastic deformation.

The simulation results of an ideal crystal made up of ten parajlel
glide planes are illustrated in Fig. 2, where we have plotted the glide
velocity (~Zn<v*>) as a function of a for four values of applied stress
i, The light curves show rhe data for each of the indfvidusl glide
planes making up the crystal: the heavy line gives the resulting average
velacity for the crystal as a whole. Each plane with av area of 103 is
assumeed to contain a wniform distribution of non-inreracting disloca~

tions and a Poisson distribution of ohstacles with strength of Bc = 0.6
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and an interaction function, 8(x/d), of simple step form. The glide
velocities for the individual planes vary over a range v iich increases
as the temperature is lowered or as the stress 1s raised. The source
af this scatter is straightforward, and may be easily seen from
equation 3: when the reciprocal temperature a is large the velocity is
quite sensitive to overall plane-to-plane variations in the value of
Bl' the mawimum force exerted on the most stable confipuration encountered
in glide along the minimum angle path. In a finite array the variation
is slgnificant, and tends to increase with the stress, 1%. As tempera-
ture is raised the properties of the most stable configuration become
lesy domipant. In the high temperature limit the glide velocity is
determined by an average over the forces, Unless 1* 13 so near to T:
that there are only a few stable configurations in the array this
average tends to be Independent of the specific array, and the varfation
af <2*> pecomes very small.

The consequences of the plane-to-plane variation in glide velocity
are {llustrated in Fig. 3, where we show the appearance of a hypothecical
bar made of our model crystal and strained 20% in tension at each of

the two resolved shear stresses, 1* = 0.4, at temperatures T* = 10—3

and T* = 10-1. At ltow stress (t* = 0.01) the deformation is markedly

inhomogeneous at the lowest temperature (T* = 1003), but rapidly

becomes homogeneous as temperature 1s raised. Ar hiph stress (1% = 0.4)
-1

the deformation remains iihomogeneous even at T* = 10 © which roughly

rorresponds to the highest dimensionless temperature obtainable in a

typical metal (Cd at its melring point). Hence, crystal deformation
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becomes more uniform as stress is lowered at constant temperature or as
temperature is ralsed at constant stress.

The plane-to-plane variation in glide velocity Ls enhanced by the
small array size used in this simulatrion, ’LO3 as opposed to a physical
realistic number of perhaps 106. Were the array size increased, the
varigtion would become less pronounced. Specific simulations of very
large arrays (5) have, however, shown that the plane-to-plane variation
remaics significant when the number of obstacles {s increased to 106 or
more (Fig. 4). For crystals containing more than one type of obstacle
the plane~to~plane variation remains qualitatively the same.

The deformation at constant strailn rate becomes rapidly homogeneous
as T* 1s increased, since both the increase in temperature and the
decrease in flow stress favor homogeneous t#lip. Fig. 5 illustrates the
variation of flow stress, with temperature. The result depends on the
precise value of the average velocity chosen, when T# > 0 the flow stress
is an increasing function of strain rare. Since in this simple example
there 1s no athermal component to cthe flow stress, the flow stress
becomes zero at a finite value of T* which increases as strain rate
increases.

The effects of temperature and stress on the heterogeneity of
deformation discussed above depends on the particular choice of disloca~
tion-obstacle interaction, which was taken to be of simple step form.
Introduction of any shape of force displacement diagrams is fairly
strajghtforward and can be handled easily (5). Preliminury results
indicate that by taking the intera~tion to be of the parabolic or

triangular form changes the T* versus T* curves to become steeper and
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the temperature at which T* = 0 to be lower.
The effects of obstacle distribution and dislocation-aislocation
interacrion as well as specific details of the effects of temperature

on the flow stress are curcently being i{nvestipated.
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Fig. 1

Equilibrium of a dislocation under stress.
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Fig. 3

The effect of temperature and stress on the inhcmogeneity of
plastic deformation.
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Fig. 5

Flow stress versus temperature at two strain rates.



