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T W  SUBTERRENE ROCK-MELTING CONCl 'T APPLIED TO THE PRODUCTION OF DEE? GEOTHERMAL ZLLS" 

John H. Altseimer 
Univers i ty  of Ca l i fo rn ia ,  Los Alamos S c i e n t i f i c  Laboratory, Los Alamos, NM U.S.A,. 

Abs t rac t  

The d r i l l i n g  of w e l l s  comprises a l a r g e  f r a c t i o n  of t he  c o s t s  o f  geothermal ene rgy-ex t r ac tkz  p l a n t s .  an5 
b i l l i o n s  of d o l l a r s  f o r  wells w i l l  be  needed be fo re  geo themal  energy i s  n a t i o n a l l y  s ign i f i :mt .  
and c o s t  s t u d i e s  w e r e  made of t h e  app l i ca t ion  of t h e  Subterrene concept,  i.e., excavat ing  p e n e t r s t i n j  
rocks  o r  s o i l s  by mel t ing ,  t o  deep w e l l s  such as may b e  used f o r  dry-hot-rock or geopressur2 geother=-al 
energy e x t r a c t i o n  systems. 
of c u r r e n t  r o t a r y  d r i l l i n g  p rac t i ces .  
on t h e  borehole  w a l l ,  and nonro ta t ion ,  provide oppor tun i t i e s  f o r  t he  development of b e t t e r  ~ c l l  p r c f x t i : -  
t echniques  i n  hot  w e l l s .  A t y p i c a l  optimum-cost w e l l  would be  ro t a ry -d r i l l ed  i n  t h e  upper rsgions + r d  t i52 
rock-melted t o  t o t a l  depth. Ind ica t ed  c o s t  sav ings  are s i g n i f i c a n t :  a 33% o r  4.5 m i l l i o n  2 l l a r s  r f 2 u c t i z s  
from r o t a r y  d r i l l e d  w e l l  c o s t s  are es t imated  f o r  a 10  lan depth w e l l  w i th  bot ton  hole  tempersrures of 673 <. 
Even f o r  normal geothermal g rad ien t  condi t ions ,  t h e  savings f o r  t h e  10  km depth  is e s t i m a t e i  as 232.21- 2 
m i l l i o n  d o l l a r s .  

Tezhni:?l 

Technica l ly ,  i t  w a s  found t h a t  Subterrene requirements are comi;s:ible ~-5=h t b s e  
Certain f e a t u r e s  of t h e  rock-melting concept such as ;'ne g l a s s  liri:.s 

INTRODUCTION 

Objec t ive .  The ob jec t ive  is t o  s tudy  t h e  appl ica-  
t i o n  of t h e  Subterrene concept t o  the product ion  of 
deep w e l l s  such as may b e  used f o r  dry-hot-rock o r  
geopressure  geothermal energy e x t r a c t i o n  systems 
and make comparisons wi th  r o t a r y  d r i l l i n g  techniques 
and systems. 

Subter rene  Program. The rock-melting concept,  
c a l l e d  Subter rene  a t  t h e  Los Alamos S c i e n t i f i c  
Laboratory (LASL),had i t s  beginning i n  t h e  e a r l y  
1960's when a device  known as the electric d r i l l  
was t e s t e d ,  b u t  i t  w a s  no t  u n t i l  1972 when funding 
from t h e  Atomic Energy Comission and later from t h e  
Nat iona l  Science Foundation made i t  poss ib l e  t o  con- 
duc t  a s i g n i f i c a n t  study and research program. 
Af t e r  a thorough survey of n a t i o n a l  excavat ion  needs 
the research w a s  d i r e c t e d  toward h o r i z o n t a l  tunnel- 
i n g  and u t i l i t y  emplacements. 
ment of t h e  Energy Research and Development Adminis- 
t r a t i o n  (ERDA) t h e  sponsorship of t h e  program w a s  
t r a n s f e r r e d  to t h e  ERDA Divis ion  of Geothermal 
Energy w i t h  t h e  o b j e c t i v e  of developing a v i a b l e  
system f o r  producing geothermal w e l l s  i n  deep, h o t  
geologic  formations.  

With t h e  e s t a b l i s h -  

The mel t ing  excavat ion  concept has  been descr ibed  
ex tens ive ly  f o r  va r ious  app l i ca t ions  (see Altseimer, 
Hanold, Neudecker, Rowley o r  Sims [l-91). B r i e f l y ,  
it i s  a system of excavating and pene t r a t ing  rocks  
o r  s o i l  by me l t ing ,  sumultaneously providing t h e  
three major elements of a conventional excavat ion  
process:  rock  f r a c t u r i n g ,  deb r i s  removal, and w a l l  
s t a b i l i z a t i o n .  The element t h a t  makes innova t ive  
s o l u t i o n s  i n  these  t h r e e  areas poss ib l e  i s  the 

g l a s s  l i n i n g  t o  seal  and support  t h e  w a l l s  o f  t h e  
borehole.  The rock m e l t  a l s o  b inds  loose  s o i l  
materials e f f e c t i v e l y  i n t o  a s t a b i l i z e d  l iner .  

I l i q u i d  rock m e l t .  The m e l t  can b e  formed i n t o  a 

Ex- - 

cess l i q u i d  m e l t  can e i t h e r  b e  used i n  t h e  l 5 e r  ar 
it can be  s o l i d i f i e d  i n t o  p a r t i c u l z r  d e b r i s  f o r  
convenient removal. An 84-mm-diam z s l t i n g  -z:t tL:Z 
was designed t o  opera te  i n  hard ,  d e s e  rock .  S U C ~  2s 
b a s a l t ,  is shown i n  F igure  1. The 3 l e s  i n  =he 
f l u t e d  p a r t  of t h e  b i t  are melt-re-;-:al porzm 
through which t h e  m e l t  flows t o  be  I J l i d i f i t i  by P 
stream o f  coolan t  i n  a d e b r i s  f o r s z i o n  ch;-'-sr. 
The s o l i d  d e b r i s  is then  t r a n s p o r t e t  out of = l e  3sre 
hole by t h e  coolant. Vany me l t ing  b k s  f o r  -2ny 
rock  types  have'been t a s t e d  i n  LASL'; rock lz5orE- 
tory and a number of s-all-scale f i e l d  o p e r s z i o r s  
have been conducted success fu l ly .  TZe most zz!bi::xs 
f i e l d  r i g ,  shown i n  F igure  2, has  b s a  used z o  i:_- 
an  84-mm ho le  i n  s o l i d  b a s a l t  t o  a i*pth of 30 E. 

Figure  1. Subterrene ex t rude r  b i t .  

* Work performed under t h e  auspices  of t h e  U.S. Energy and Research Development Administrarion. 
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Figure  2. F i e l d  r i g  a t  b a s a l t  test si te.  

Enough technical d a t a  are a v a i l a b l e  to a l low engi- 
nee r ing  assumptions f o r  b i t  l i f e  and ra te  of pene- 
t r a t i o n .  
t a i n e d  wi th  experimental  b i t s .  
e f f o r t  has been expended t o  improve t h i s  performance 
by developing new corrosion- and wear- res i s tan t  
s u r f a c e s  bu t  b i t  l i f e t i m e s  of a t  least seve ra l  hun- 
dred hours  should b e  wi th in  reach. Rates of pene- 
t r a t i o n  achieved t o  d a t e  are low, averaging only  

program is t h e r e f o r e  d i r e c t e d  toward inc reas ing  the 
rate t o  1 mm/s (11.8 f t / h )  i n  igneous rock. 

A b i t  l i f e  of up t o  100 h h a s  been ob- 
Re la t ive ly  l i t t l e  

1 - 0 - 2  m/s. A t op  p r i o r i t y  e f f o r t  of t h e  Subter rene  

Mamitude oE t h e  Geothermal Resource. 
f i e d  t o  ques t ion  whether t h e  geothermal energy re- 

One i s  j u s t i -  

source  i s  l a r g e  enough t o  warran t  l a r g e  R&D expen- 
d i t u r e s  f o r  improved w e l l  p roduct ion  systems. 
r ecen t  Geological Survey r epor t  by White and 
W i l l i a m s  [ lo]  p re sen t s  estimates; t o t a l  heat con- 
tents i n c l u d e  i d e n t i f i e d  p l u s  e s t ima t ions  of un- 
d iscovered  resources .  For hydrothermal convection 
sys tems (conventional steam and h o t  water t o  3 km) 
the  heat con ten t  i s  12,800 x lox8 J (3050 x 10" cal 
= 12.1  x lo '* Btu) whereas t h e  h e a t  conten t  of 
igneous systems (molten rock p l u s  c r y s t a l l i z e d  p a r t s  
and h o t  margins) i s  419,000 x lo'* J (100,000 x 10" 
cal = 400 x 10" o r  33 times h ighe r  t han  t h a t  o f  
convent iona l  hydrothirmal resources .  For r e g i o n a l  
conductive environments (0 t o  10 km under a l l  
s t a t e s o f  the union and n o t  i nc lud ing  a methane con- 
t r i b u t i o n )  the es t imated  va lue  is  - 33,50Oi:00 x 
1OI8 J (8,000,000 x 10" cal  = 31,900 x 10 
or 2600 t i m e s  convent iona l  hydrothermal va lues .  
Geopressure and DHR systems would e x p l o i t  t h e  l a t te r  
category. Compared t o  t h e  U.S. t o t a l  energy con- 
sumption i n  1972 of 75.9 x loL8 J (18.1 x 10'' cal = 
0.072 x l o u  Btu),  Report t o  94th Congress [ I l l ,  
the above resource  is immense, and e f f o r t s  towards 
e x t r a c t i o n ,  conversion, and u t i l i z a t i o n  should be  
very  worthwhile indeed! 

THE SYSTEM MODEL 

The computer model developed f o r  t h e  s t u d i e s  re- 
por ted  h e r e i n  is c a l l e d  GEOWELL. 
nical  and c o s t  i t e m s  used i n  GEOWELL are summarized 
below. 

W e l l  Designs. 
yea r s ,  d r i l l e d  under d i f f i c u l t  cond i t ions  and t o  

A 

Btu) 

.- 

The major tech- 

Two exp lo ra to ry  gas  w e l l s  of r ecen t  

-. 2 . _ _  
% 

record depths ,  used some of t h e  b e s t  r o t a r y  3riJ.L- 
i n g  technology a v a i l a b l e  today: (1) 5. R. Bazen !b. , 

1 d r i l l e d  t o  9158 m (30,050 f t )  and (2) Berciri  
Rogers No. 1 d r i l l e d  t o  9583 m (31,4;1 f t )  -k tha 
Anadarko Basin i n  Western Oklahoma b? Lone S z a r  ?re 
ducing Co. of Oklahoma Ci ty .  A f t e r  z v i e w i z z  wel l  
des igns  used i n  many o t n e r  w e l l s  boc- i n  t h e  U.S. 
and abroad w e  s e l ec t ed  che  des igns  of t he  a5mfe xv 
w e l l s  as gu ide l ines  f o r  GEOWELL. 
w e l l  de s ign  f o r  a t o t a l  depth  o f  10 :3 d r i l l r d  c:z- 
p l e t e l y  by r o t a r y  b i t s .  
f r a c t u r e  p re s su res ,  i .e.,  approximairly hydr2s t sz i c ,  
were assumed Iri t h e  upper  4300 [J. 
i.e., approaching l i t h o s t a t i c ,  were tssumed f r o =  
4300 t o  7000 m. T h e r e a f t e r ,  t o  t o t c  dep th ,  it -;as 
assumed t h a t  p re s su res  =ere moderate again.  

a 

F<l;ure 3 s iows  :.?e 

Moderate fc-=tion z2d  

Z g h  pres su re ; ,  

_. .- 

Figure  3. Well des ign  f o r  t h e  a l l - ro t a ry  L - i l l a i  
w e l l .  

F igure  4 shows t h e  w e l l  des ign  when rock-rreltir: b i t s  
are used below t h e  660-nu (26-in.) >ole s e c z i o c .  It 
w a s  assumed t h a t  t h e  914- and 6 6 0 - r  h o l e s  ---oull 
a l i a y s  be  made by r o t a r y  d r i l l i n g .  3elow :Le b i t t o n  
of t h e  660-mm hole ,  r o t a r y  d r i l l s  w u l d  c o r z i n c t  :o 
be  used u n t i l  i t  was d e s i r e d  t o  s t z r ;  rock-=~elt::~. 
The s i z e  of t h e  hole a t  to ta l  deptk in t h i s  wel l  is 
i d e n t i c a l  t o  t h a t  shown f o r  t h e  a l l - r o t a r y  2as2. 
However, n o t e  t h a t  i n t e rmed ia t e  h o l t  and cEs ing  sizes 
are snal ler  due t o  t h e  advantageous use of =he rock  
g l a s s  l i n e r .  

Sur face  Equipment. Su r face  equipmezt requiremezts I 

f o r  a combined ro t a ry / rock  me l t ing  s y s t e m  ;re s-Li- 
lar  t o  those  now used f o r  all-rotarl; p r o j e c r s .  k- 
cause i t  is a n t i c i p a t e d  t h a t  i t  will be mosf eczso3- 
i c a l  t o  use r o t a r y  d r i l l  t o  produce the  co=3uccsr 
and s u r f a c e  h o l e s  t h e  i n i t i a l  r i g  sstup w i L i  irxlude 
a complete r o t a r y  s y s t e s ,  which w i 2  remai r  on :he 
r i g  f o r  t h e  j o b  d u r a t i o n  and b e  avz i l ab le  fsr l r t e r  
use i f  needed. Also, t h e  power l e r 2 l s  r e q r i r e i  for 
rock me l t ing  are compat ib le  w i t h  t t x e  a l r e a d y  re- 
qu i red  on r o t a r y  deep w e l l  r i g s ,  e.%.. up to 3CJO hp. 

__- __ 
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Figure  4. Well design f o r  rotaryfrock-melted w e l l .  

In GEOWELL, t h e  d r i l l i n g  c o n t r a c t o r ' s  c o s t  is  di-  
vided i n t o  r i g  (CRIG) and d r i l l - p i p e  (CPIPE) cos ts .  
For t h e s e  estimates 1973 o i l  and g a s  da ta  were com- 
p i l e d  from t h e  open l i t e r a t u r e  and then upgraded t o  
1975. 
t h e  r e s u l t a n t  curve- f i t  equat ions used i n  t h e  pro- 
gram a r e :  

Using EL as the t o t a l  t a r g e t  depth i n  meters, 

C R I G =  1453 4- 0.1184 (EL) -k 1019 x 
WIPE ~ 1 0 6 . 8  - 0.0419 (EL) + 20.55 x 10-6(EZ)2,$ 

D r i l l  Pipe. Design s t u d i e s  produced a Subterrene 
d r i l l  p ipe  capable  of car ry ing  both e l e c t r i c  cur ren t  
and t h e  downflow of d r i l l i n g  f l u i d .  The p ipe  is  
shown i n  Figure 5 and c o n s i s t s  of two concent r ic  
7075 aluminum tubes  separated by a 2-mm-thick l a y e r  
of material t h a t  s t ruc tu ra l ly  bonds the  tubes to- 
g e t h e r  and a c t s  as an e l e c t r i c  i n s u l a t o r .  A convew 
t i o n a l  t o o l  j o i n t  on t h e  o u t e r  tube serves  as t h e  
s t r u c t u r a l  connect ion with ad jacent  pipe.  The cur- 
rent i n  t h e  o u t e r  tube flows a c r o s s  t h e  thread con- 
tact s u r f a c e s  and the-smooth m e t a l  contact  and sea l -  
ing s u r f a c e  a t  t h e  j o i n t  l ead ing  edge. 
tube  has  a t i g h t  s l i d i n g  f i t  a t  t h e  j o i n t  f o r  e lec-  
t r i c  contac t  b u t  no a x i a l  f o r c e s  can be t ransmi t ted .  
Handling and o p e r a t i o n a l  c h a r a c t e r i s t i c s  of t h i s  
p i p e  are very similar t o  those of conventional d r i l l  
p ipe.  The i n i t i a l  c o s t  is approxinately t h r e e  t i m e s  
h igher  bu t  t h i s  disadvantage is reduced by an en- 
hanced opera t ing  l i f e t i m e  f o r  t h e  Subterrene p ipe  
due t o  t h e  f a c t  t h a t  Subterrene p ipe  does not r o t a t e  
and i s  not  exposed t o  the  usual  r o t a r y  pipe f a t i g u e  
stresses and f r i c t i o n a l  wear. 

(EL)',$ 

The inner  

A pipe  with an  0.d. of 140 mm (5.51 in . )  w a s  found 
to  f i t  w e l l  i n  a l l  s e c t i o n s  of the  borehole being 
s t u d i e d  and w a s  t h e r e f o r e  s e l e c t e d  a s  a s tandard.  
Thus, i n  t h e  GEOWELL a n a l y s i s  the 0.d. i s  maintained 
a t  140 mm, whereas t h e  o t h e r  dimensions a r e  var ied  
t o  meet cur ren t  and load c r i t e r i a .  Figure 5 shows 
t y p i c a l  d r i l l - p i p e  dimensions f o r  Subterrene use i n  
a 10,000-m wel l  wi th  a 50 K/km geothermal tempera- 
t u r e  grad ien t ,  i n  combination with a b i t  capable of 

. .  

EONDf 0 COAXIAL ALUMIMJH OR!LL PIPE FOR 
A TYPICAL 1O.OW m TOTAL DEPTH WELL 

Figure  5. Subterrene aluminum d r i l l - p i p e  concept .  
i 

a penet ra t ion  rate of 1.0 mm/s i n  rock a t  283 K. 
Costs  are c a l c u l a t e d  on t h e  b a s i s  of these  dimen- 
s i o n s  t o  a r r i v e  a t  a b a s i c  m a t e r i a l  and f a b r i c a t i o n  
cos t .  Other estimates are made as t o  d e l i v e r e d  pipe 
c o s t ,  p ipe  l i f e t i m e ,  d r i l l i n g  c o n t r a c t o r s  p r o f i t ,  
etc., t o  f i n a l l y  arrive a t  a Subterrene d r i l l - p i p e  
c o s t  in d o l l a r s  p e r  day. 

- B i t s .  Subterrene melt ing-bi t  des ign  d e s c r i p t i o n s  
and t h e i r  development s t a t u s  are r e a d i l y  a v a i l a b l e  
i n  t h e  Subterrene l i t e r a t u r e .  The b i t  needed f o r  
producing w e l l s  is t h e  melt-extruder type u s i n g  
e i t h e r  gas o r  l i q u i d  as t h e  d r i l l i n g  f l u i d .  I n s i d e  
t h e  b i t  t h e  molten rock from t h e  excavation f a c e  is 
ducted t o  i n t e r s e c t  a s t ream of coolan t ,  a n i  t h e  re- 
s u l t a n t  small rock-glass p a r t i c l e s  and rock-wool- 
l i k e  d e b r i s  is  then t ranspor ted  up the  annulus  out  
of t h e  wel l .  In  GEOWELL t h e  assumed design-point  
b i t  performances are a l i f e t i m e  of 300 h and a rate 
of p e n e t r a t i o n  (ROP) of 1 mm/s (11.8 f t / h )  a t  a rock 
temperature  of 283 K. Note t h a t  rock temperature  i s  
s p e c i f i e d  because ROP v a r i e s  wi th  rock temperature.  
For example, us ing  GEOWXL es t imates .  t h e  above 
l-mm/s o r  3.6-mIh ROP i n c r e a s e s  t o  17.65 m/h i n  
magma at 1431 K. 

At ta in ing  and demonstrating longer  l i f e t i m e  and 
h igher  ROP remain development problems f o r  mel t ing  
b i t s .  Another problem i s  t h a t  ob ta in ing  s u f f i c i e n t  
c learance  between t h e  g l a s s  former ( located imme- 
d i a t e l y  behind t h e  melt ing face)  and t h e  h o l e  so  as 
t o  f a c i l i t a t e  b i t  t r a v e l  during t r i p s .  A c l e a r a n c e  
of s e v e r a l  millimeters on t h e  r a d i u s  is d e s i r a b l e  to  
prevent  b i t  damage o r  high-pressure drops a c r o s s  the  
b i t  during f a s t  t r i p s .  A t  least f i v e  approaches t o  
s o l v i n g  t h i s  problem have been i d e n t i f i e d ,  b u t  w i l l  
no t  be f u r t h e r  discussed.  P r a c t i c a l  s o l u t i o n s  a r e  
under s tudy and w i l l  be  developed. 

GEOWELL a l s o  included ro ta ry-b i t  performance esti- 
mates. 
s i t e  and opera t ing  condi t ions .  In GEOWELL a n  a t -  
tempt was made t o  s imula te  r e l a t i v e l y  easy r o t a r y  
d r i l l i n g  i n  t h e  sedimentary upper formations and 
harder  d r i l l i n g  i n  t h e  deeper ,  more c r y s t a l l i n e  
formations.  
depth used i n  t h e  program a r e  f o r  ro ta ry  p e n e t r a t i o n  
rate, RROP, at any r o t a r y  depth,  ROTEL, i n  meters: 

F i e l d  performances vary widely depending on 

The equat ions d e f i n i n g  performance v s  

RROP = 591.62 x   ROT EL);"^^^' , m/h 

and f o r  b i t  meterage: 

ROTEL < 1440 m: BITM = 884.0 - 0.553 (ROTEL), m/bi t  
ROTEL > 1440 m: BITM = 97.0 - 0.0033 (ROTEL), m/bi t  

I 



. /  

Some a d d i t i o n a l  performance v a r i a t i o n s  are i n d u d e d  
t o  account for mul t ip l e  opera t ions  l i k e  p i l o t  ho le s  
followed by hole-opener opera t ions .  
t i o n s  g ive  a range of ROP from 592 mfh a t  spudding- 
i n  t o  1.2 m/h a t  10,000 m depth. 
from 884 m i n i t i a l l y  t o  64 m a t  10,000 m depth. 

For r o t a r y  bi ts  w e  used ca t a log  d a t a  f o r  carb ide  
bits. The rock-melting b i t  c o s t s ,  PENC, are based 
on Subter rene  Program experience and a r e  defined by 
t h e  fo l lowing  equat ions ,  where DPEN i s  pene t r a to r  
diameter  i n  meters: 

P E N  = 1286 i- 20556 (DPEN) 4- 69053 (DPEN)’, 1975$ 

The above equ- 

Meterage ranges 

- Electric Power Generat ion and E n s m i s s i o n .  
mary d i scuss ion  of rock-meltiiii: power requirements 
follows. F i r s t ,  ac  is t h e  b e t t e r  choice over  dc 
€or s e v e r a l  important reasons,  t he  most important 
one being cor ros ion .  The presence of dc  electric 
power f lowing i n  a conductor immersed i n  mud o r  
d r i l l i n g  f l u i d  would enhance product ion of corro- 
s i o n  cells due t o  the  p o t e n t i a l  g rad ien t  a long  t h e  
conductor. 
de t r imen ta l  around any conductor anomaly such as a 
threaded  j o i n t .  By its i n a b i l i t y  t o  e s t a b l i s h  and 
suppor t  such cor ros ion  cells, ac has  a d i s t i n c t  ad- 
vantage. 

A second cons ide ra t ion  i s  impedance-matching. For 
example, to supply  200 kW t o  t h e  b i t  a t  5 km it is 
es t imated  t h a t  a dc  power source  of 1564 V and 477 
A would be requi red .  A t  1 0  km, t h e  power source 
would b e  2905 V and It77 A. Di rec t -cur ren t  equipment 
capable  of a continuous vo l t age  change over a range 
like th i s  would b e  c o s t l y ,  bulky, and d i f f i c u l t  t o  
c o n t r o l .  However, such vo l t age  requirements could 
be m e t  e a s i l y  by t h e  combination of ac power source 
and t ransformer  o r  s a t u r a b l e  r eac to r .  

A sum- 

Such cor ros ion  would be p a r t i c u l a r l y  

The use  of a c  h a s  a l s o  some disadvantages such as 
i n e f f i c i e n c i e s  due t o  h y s t e r e s i s ,  d i e l e c t r i c  l o s ses ,  
and changing p a r e r  f ac to r s .  However w i t h  proper  
des ign ,  t h e  small l o s s e s  remaining i n  t h e  t rans-  
miss ion  c i r c u i t  and o t h e r  r e l a t e d  equipment are 
acceptab le .  

For power-cost estimates, GEOWELL inc ludes  ca lcu la-  
t i o n s  for t h e  c o s t s  of d i e s e l  e l e c t r i c  genera tors  
amort ized over 10  y e a r s  as w e l l  as d i e s e l  f u e l  
cos t s .  

D r i l l i n g  F lu ids .  
mel t ing  system has  t o  perform t h e  following func- 
t i ons :  (a) form s o l i d  d e b r i s ,  (b) cool  t h e  g l a s s -  
former s e c t i o n ,  (c) c o n t r o l  formation pressures  and 
prevent  caving, (d) ca r ry  out  deb r i s ,  (e) hold s o l i d  
a d d i t i v e s  i n  suspension under s tagnant  flow condi- 
t i o n s ,  ( f )  reduce cor ros ion ,  and (g) l u b r i c a t e  
moving p ipe  or casing. 

The d r i l l i n g  f l u i d  f o r  a rock- 

’ Based on r o t a r y  d r i l l i n g  experience,  d r i l l i n g  f l u i d s  
l i k e  water ,  water-based muds, oi l -based muds, e t c . ,  
could perform Funct ions (c) through ( g ) .  It is es- 
t imated that Funct ions (a) and (b) could also be 
handled even though t h i s  c a p a b i l i t y  has  not ye t  been 
demonstrated experimentally.  
s e t  up f o r  this s tudy  i n  which high formations pres-  
s u r e s  are pos tu l a t ed ,  muds are deemed e s s e n t i a l  t o  
c a r r y  out  Funct ion (c). 

Open- l i te ra ture  d a t a  f o r  mud c o s t s  i n  o i l  and gas 
w e l l s  were used t o  estimate the  mud costs  for t h e  
r o t a r y  w e l l  model. 

For t h e  we l l  models 

For normal geothermal g rad ien t s ,  

- F- - __ -_ _I- I__ 

c 
t h e  t o t a l  mud c o s t s ,  CMLID. are: 

EL < 1354 m: OID = 2903, 1975$ 

EL > 1354 m: CMUD = 21912-28.64 (EL)+O.O108(EL) , 2 

1975$. 

For Subterrene mud c o s t s ,  t h e  b e n e f i c i a l  e f f e c t s  of 
t h e  p rec i se  ho le  s i z e  c o n t r o l  w i th  rock rnelters 
compared t o  ro t a ry  and a l s o  g l a s s  l i n i n g  b e n e f i t s  
i.e., i s o l a t i o n  of mud from t h e  formations,  IC- 
s u l t e d  i n  an es t imate  t h a t  Subterrene mud c o s t s  are 

: -0 .75  times ro ta ry .  

Hole Support. 
i s t i c s  were assumed: (1) t h e  s o l i d i f i e d  m e l t  seals 
t h e  ho le  e f f e c t i v e l y ;  (2) t he  co l l apse  s t r m L c h  of 
t h e  rock-glass l i ned  w a l l  is  h igh;  (3) l i i i -  wa l l  
th icknesses  a r e  con t ro l l ab le ;  and (4) lin.:. t e n s i l e  
s t r e n g t h s  are neg l ig ib l e .  

For t h e  steel cas ing  used i n  t h e  modeled w e l l s ,  t he  
conductor and su r face  cas ing  are made of low-cost 
K-55 grade steel, whereas t h e  remainder is made 
from a h igher  grade such a s  P-110. 
w e r e  obtained from i n d u s t r i a l  ca ta logs .  Cementing 
c o s t s  i n  d o l l a r s  pe r  cubic  volume a r e  mainly based 
on our  DHR d r i l l i n g  experience.  With t h e  i n p u t  
dimensions, t he  program c a l c u l a t e s  t h e  weight  of 
t h e  cas ing  and the  del ivered-casing c o s t s .  For 
cement c o s t s ,  the t o t a l  volume of de l ive red  cement 
is ca lcu la t ed  f o r  t h e  wel l  model being cons idered ,  
and t h i s  volume is mul t ip l i ed  by t h e  appropr i a t e  
c o s t  i n  d o l l a r s  per  cub ic  m e t e r .  

Other Assumptions Rela t ing  t o  Thermal and Hydrau l i .  
Analyses. I n  add i t ion  t o  t h e  va r ious  assumptions 
descr ibed above, t h e  program inc ludes  t h e  fol lowing 
assumptions f o r  an  a n a l y s i s  of thermal and hydraul ic  
condi t ions  dur ing  Subterrene opera t ion :  

The fol lowing g l a s s - l i ne r  cha rac t e r -  

Casing c o s t s  

Geothermal temperatures  inc rease  l i n e a r l y  wi th  
depth. . 

A t y p i c a l  d r i l l i n g  mud, based on water p r o p e r t i e s  
as a func t ion  of  temperature  and p res su re  is  
assumed, w i th  m u l t i p l i e r s  of 1.5, 30.0, 0.77 on 
dens i ty ,  v i s c o s i t y ,  and hea t  capac i ty ,  respec- 
t i v e l y  . 
The flow rate of t h e  d r i l l i n g  f l u i d  i s  based on 
te rmina l  v e l o c i t y  of s p h e r i c a l  p a r t i c l e s  i n  t h e  
upper annulus mul t ip l i ed  by 1.5. 

Maximum p a r t i c l e  diameter  is  10 mm wirh a dens i ty  
of 2700 kgfm’. 

F r i c t i o n  f a c t o r s  of p ipe  and annulus are based 
on abso lu te  roughnesses of 4.57 x lo-’ and 
3.05 x lo-’ meters,  r e spec t ive ly .  

Tool- joint  p re s su re  l o s s e s  a r e  zero  i n s i d e  t h e  
d r i l l  p ipe  because of f l u s h  design.. Outer - jo in t  
l o s s e s  a r e  estimated. # 

Heat t r a n s f e r  through t h e  wa l l  of t h e  c o a x i a l  
aluminum pipe  i l l u s t r a t e d  i n  Figure 5 i s  included. 

Heat t r a n s f e r  t o  o r  from t h e  surrounding rock i s  
included, based on t r a n s i e n t  hea t  conduct ion i n  
a semi- inf in i te  s l a b  as a func t ion  of d r i l l i n g  
time 

Heat a d d i t i o n  t o  t h e  d r i l l i n g  f l u i d  from t h e  
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,-• * d e b r i s  and cool ing  of t he  g l a s s  l i n i n g  is in- 

cluded as a lump sum a t  the  pene t r a t ion  loca- 
t i on .  

Heat a d d i t i o n  along t h e  l eng th  of t h e  stem due 
, t o  power-transmission l o s s e s  i s  included. 

STUDY RESULTS 

Hole Control.  No eva lua t ion  of an  advanced d r i l l -  
i n g  system would be complete without a s tudy  of 
ho le-cont ro l  methods. 

Ea r ly  d e t e c t i o n  of a downhole pressure  inc rease  is 
c r i t i c a l l y  important.  According t o  r o t a r y - d r i l l i n g  
l i t e r a t u r e ,  t h i s  is  done by herd ing  such i n d i c a t o r s  
as a n  inc rease  of f l u i d  i n  t h e  mud p i t s ;  a sudden 
increase i n  pene t r a t ion  rate usua l ly  accompanying 
a downhole l o s s  of overbalance; l a r g e  gas bubbles 
expanding as they rise, causing a r ap id  unloading 
o f  the mud and producing gas k i cks ;  a change i n  
c i r c u l a t i o n  p res su re  because of mud d i l u t i o n ;  t he  
development of gas-cut mud due t o  small gas bubbles;  
d i r e c t  shows of t h e  i n t r u s i o n  f l u i d ;  and a flow of 
mud from t h e  w e l l .  A l l  t he se  i n d i c a t o r s  of abnor- 
mal pres su re  apply  a lso t o  mel t ing  b i t s  except t h a t  
t h e  p e n e t r a t i o n  rate w i l l  decrease  r a t h e r  than  in- 
crease when f ace  p re s su re  inc reases  t o  upset t h e  
t h r u s t  condi t ion .  Two i n d i c a t o r s  exist  which may 
be s u p e r i o r  t o  those  a v a i l a b l e  t o  r o t a r y  d r i l l e r s .  
F i r s t ,  sudden h igh  f a c e  p re s su res  on t h e  m e l t  could 
cause  erratic flow through t h e  m e l t  b leedoff  
channels  o r  a t  least could change t h e  b i t  ope ra t ing  
characteristics. Second, a very r ap id  i n d i c a t o r  
would be  any change i n  b i t  t h r u s t  loading  requi red  
t o  maintain a pene t r a t ion  ra te ,  due t o  a change i n  
f a c e  p r e s s u r e  pushing upward on t h e  b i t .  
most r ap id  reading  o f  t h r u s t  dev ia t ions  and ind ica-  
t i o n s  of i n  s i t u  pressure  changes, a t h r u s t  load 
cell  mounted d i r e c t l y  behind t h e  b i t  would b e  es- 
p e c i a l l y  usefu l .  

The use  of heavy muds necess i t a t ed  by abnormal pres -  
s u r e s  can l e a d  t o  a swabbing problem where t h e  
thick, v i scous  mud adhering t o  a t r i p p i n g  p ipe  
causes  the p res su re  a t  hole  bottom t o  drop. 
i n i t i a l  overbalance is  not l a r g e  enough t h e  hole  
becomes underbalanced and in t rud ing  f l u i d s  might 
cause t rouble .  H e r e ,  a good co l l apse - re s i s t an t  
glass l i ne r  would be  advantageous because t h e  l i n e r  
could  coun te rac t  t h e  temporary underbalance as t h e  
p i p e  i s  pul led .  Th i s  c a p a b i l i t y  would add addi- 
t i o n a l  o p e r a t i o n a l  f l e x i b i l i t y  and s a f e t y  t o  t h e  
fob. 

For the  

If t h e  

It is concluded t h a t  ho le  c o n t r o l  w i th  rock-melting 
systems is  no t  more d i f f i c u l t  t han  with r o t a r y  
d r i l l s .  Indeed, i t  seems t h a t  any change i n  m e l t -  
ing-penet ra t ion  performance caused by a r ap id  
change i n  formation-fluid pressure  could be  de t ec t -  
ed ve ry  r ap id ly .  A l s o ,  a measurement of t h e  change 
i n  t h r u s t  be ing  app l i ed  t o  t h e  b i t  would r e s u l t  i n  

These i n d i c a t i o n s  o f f e r  oppor tuni ty  of developing 
a pressure-de tec t ion  system t h a t  would g ive  t h e  
d r i l l e r  more t i m e  f o r  co r rec t ive  a c t i o n  and a l so  
provide  more p o s i t i v e  da t a  on t h e  p re s su res  being 
encountered. 

Technlca l  Analysis.  The GEOWELL a n a l y t i c a l  r e s u l t s  
g iven  below f o r  thermal hydraul ic ,  and stress con- 
d i t i o n s  i n  t h e  w e l l  are l imi t ed  t o  t h e  most severe  
t e c h n i c a l  cond i t ion ,  i . e . ,  a rock-melting b i t  
ope ra t ing  a t  t h e  bottom of a 10,000-m deep w e l l  a t  

'- 

r( a good estimate of the  pressure  change dowhole.  

_ _  

a pene t r a t ion  rate of 1 mm/s i n  roc i  of 283 E, 
s u l t s  are given f o r  both a normal .-eatherma1 ze-sri- 
t u r e  g rad ien t  of 25 K / k m  and a h ig9  gradienr. a f  
75 K/km. 

Figure  6 p l o t s  t h e  mass flow ra te  r rqui red  t 3  l i i c  
t h e  d e b r i s  i n  t h e  annulus a s  a fuczzion o f  i=b r i i  
diameter. For t h e  naximua p a r t i c l e  s i z e  of 10 tl, 
t h e  requi red  mud flow r a t e  is 46.1 Lals.  Fi+;lre 7 
shows the mud temperature througho.:: t h e  bors,lole 
a t  the  46.l-kgls rate while expose5 :o a 75-9/ko 
geothermal grad ien t .  The maxinum zzzpera tur2  i s  
only  312.6 K. I f  t h e  maximum p a r t i r l e  s i z e ,  a n i .  
hence, flow rat-e i s  reduced t h e n  tk-. corress.=adi=g 
inc rease  i n  m a x i m u m  mud temperaturr is as s2x.n 1- 
Figure  8. 

mum mud temperature would s t i l l  be a r e a s o r z 5 l e  
336.5, even a t  t h e  h igh  geothermal Z a d i e n t  ---it5 d 
rock t enpe ra tu re  of 1033 R a t  t o t <  depth. Tzus. 
t he  mud f l o u  ra te  i s  e s t a b l i s h e d  ti t he  p a r z l c l e -  
removal c r i t e r i o n  and no t  by t h e  r-f temperzzure.  

52- 

Even i f  t h e  flow rate is i a l v e d  == 23  k ; : ~ ,  
=,le -=+- - corresponding t o  a p a r t i c l e  s i z e  ci 2.5 mm, 

Porticls Diameter(-I 

Figure  6. 
diameter.  

Typical mud flow rate :S d e b r i s  ;.art<rLt 

F igure  7. Mud temperature f o r  tZ+  10 mm 7zrtich 
diameter condi t ion .  
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Figure  8. Nax imum t y p i c a l  mud temperatures.  

- GEOWELL PREDICTIONS FOR WELLS WITH 
673 K BOTTOM HOLE TEMPERATURE - 

;.;, 1 * (  

. _ _  . . . , . . 

For a p a r t i c l e  diameter of 1 0  mm t h e  horsepower re- 
qu i r ed  from t h e  w e l l  i n l e t  t o  t h e  o u t l e t  i s , -  720 
hp. Taking i n t o  account su r face  i n l e t  p re s su re  
drops  and motor i n e f f i c i e n c i e s ,  t h e  actual pump 
power m i g h t  have to  b e  as h igh  as - 9 0 0  hp -- w e l l  
w i t h i n  t h e  range of power levels on c u r r e n t  d r i l l -  
ing rigs. 
p i p e  and t h e  annulus f l o w  channels i s  18.04 MPa 
(2620 p s i ) ,  of which 11.56 MPa (1680 p s i )  i s  i n  t h e  
d r i l l  p i p e  and 6.48 EPa (940 p s i )  i s  i n  t h e  annulus. 
In contrast t o  t h e  normally h igh  drops ac ross  r o t a r y  
b i t s ,  the drop a c r o s s  t h e  rock-melting b i t  is 
n e g l i g i b l e .  

Using the c o a x i a l  aluminum p ipe  considered i n  
F igu re  5 f o r  a 10-km w e l l  and inc lud ing  an allowance 
for a 650,000-N (146,000 l b )  breakaway load ,  t h e  
maximum stress i n  t h e  aluminum p ipe  is  364,000 kPa 
(52,700 p s i )  a t  a yield-to-load s a f e t y  f a c t o r  of 
1.33. Under normal ope ra t ing  cond i t ions  a t  t h i s  
dep th  t h e  maximum stress i s  only 170,900 kPa 
(24,800 ps i ) .  
i nd ica t ed .  

C o s t  Analysis.  For the fo l lowing  cases, in which 
r o t a r y  and rock-melting techniques are both  used i n  
each w e l l ,  the depth of w e l l  d r i l l e d  by r o t a r y  
methods i s  chosen so  as t o  minimize o v e r a l l  w e l l  
cos t .  
could have been s h o r t e r  bu t  t h i s  p o s s i b i l i t y  was 
r e s t r a i n e d  by t h e  dec i s ion  t h a t  t h e  0.914- and 
0.660-m-diam h o l e s  at t h e  top of the  w e l l  w i l l  al- 
ways b e  made by r o t a r y  d r i l l s .  The mel t ing  ROP is 
nominally 1 mmfs a t  283 K rock  temperature. 

F igu re  9 shows t h e  t o t a l  w e l l  costs f o r  w e l l s  made 
i n  a geothermal g rad ien t  of 25 K/km,  which i s  ap- 
proximately normal. 
t h e  very  deep cases, e.g., 8 t o  10 km. 
sav ings  compared to r o t a r y  d r i l l e d  h o l e s  are s i g n i f -  
icant; 23% or  approximately 2 mi l l i on  d o l l a r s  pe r  
well f o r  10 km depths.  A t  6 km, f o r  t h e  w e l l  model 
analyzed, t h e  sav ings  i s  18X. The crossover  poin t  
a t  2.9 km is  caused by t h e  inc reas ing ly  h igher  ROP 
Of t h e  r o t a r y  d r i l l  i n  t h e  upper formations com- 
pared  to  Subterrene.  

F igu re  10 summarizes t h e  c o s t  p red ic t ions  f o r  w e l l s  
w i t h  much h igher  downhole temperatures.  The s o l i d  
l ines  correspond t o  cases having 673 K bottom tern- 

The t o t a l  pressure drop between t h e  d r i l l  

Thus, no severe stress problems are 

I n  most cases'the ro t a ry -d r i l l ed  p o r t i o n  

,- The model i s  most accu ra t e  f o r  
The c o s t  

_ *  6 

pera tu res .  The dashed l i n e s  i n d i c a t e  cons t an t  gee'- ~ 

the h igh  temperatures r e s u l t  i n  increased  c o s t s  f o r '  , 

b i t s ,  d r i l l  p ipe ,  ca s ing ,  cement, and muds. With 
Subter rene  systems, c o s t  p e n a l t i e s  a l s o  occur  f o r  
cas ing ,  cement and muds bu t  some savings  are expe- 
r i enced  because o f  improved b i t  performance i n  
h o t t e r  rock. The net r e s u l t  is to t h e  advantage of 
the Subterrene.  A t  10 km depth sav ings  over  r o t a r y  
d r i l l e d  w e l l s  is  33% o r  4.5 m i l l i o n  d o l l a r s .  A t  6 
km depth  t h e  sav ing  is  28% o r  1.2 m i l l i o n  d o l l a r s .  

thermal g rad ien t  cond i t ions .  With r o t a r y  systeu?s, s 

/ 

*; i ; ;  ; ; + S ib 
Tofol Depth (km) 

Figure  9. 
geothermal grad ien t .  

Costs of deep w e l l s  produced i n  25 K/km 

14r 

---EXTRAPOLATIONS ALONG CONSTANT 

GEOTHERMAL GRADIENT CONDITIONS // 
o ALL- ROTARY D R I L L E D  

ROTARY 4- SUBTERRENE 
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Figure 10. 
thermal g rad ien t s  and wi th  bottom ho le  temperatures 
of 673 K, 

Cos ts  of deep w e l l s  produced i n  high geo- 

-. - _ _  _-- 



. . . ... 

- _  

A bottom h o l e  temperature of 673 K i n  deep w e l l s  
S L ' C ~  as are being discussed here  has  never been en- 
countered i n  o i l  and gas w e l l s .  
nology. r o t a r y  d r i l l e r s  could n o t  push much beyond 
t h i s  temperature  l i m i t  without excessive c o s t s  i n  
t i m e  and money. However, t h e  Subterrene concept 
opens up new o p p o r t u n i t i e s  t o  push i n t o  ever  higher  
temperatiires. 
can b e  minimized by f u r t h e r  development and use o f  
glass l i n e r s .  
mud problem, al lowing s impler  muds o r  d r i l l i n g  
f l u i d s  t o  be used. D r i l l  p ipe s t r e n g t h  and corro- 
s i o n  problems can be solved by developing continuous 
c i r c u l a t i o n  systems. The nonro ta t ing  Subterrene 
p i p e  should b e  an important advantage here .  Cements 
p e r  se, cannot b e  helped much by Subterrene except  
that t h e  g l a s s  l i n e r  use can minimize t h e  amount of 
cement needed and f a c i l i t a t e  i ts  i n s t a l l a t i o n .  

A mel t ing  b i t  l i f e t i m e  range of  100 t o  1000 h w a s  
surveyed t o  determine t h e  inf luence  of l i f e t i m e  on 
o v e r a l l  w e l l  c o s t s .  
t h e  above range. A s  shown i n  Figure 11; an in- 
crease i n  l i f e t i m e  from 100 t o  300 h provides  a 
c o s t  sav ings  of 5% o r  most of t h e  p o s s i b l e  savings.  
Thus, l i f e t i m e  does n o t  a f f e c t  o v e r a l l  c o s t s  s i g n i f -  
i c a n t l y .  

Assuming a n  average b i t  l i f e t i m e  of 300 h,  t h e  pro- 
gram w a s  run  over  a melt ing ROP range of 0.2 t o  
1.4 mm/s. 
p o r t a n t  parameter than l i f e t i m e .  Increas ing  t h e  
rate t o  only 0.4 m / s ,  which i s  t w i c e  t h e  state- 
of-the-art va lue ,  sa-ves 25% i n  w e l l  c o s t s  and a t  
0.6 mm/s t h e  sav ings  is  33%. 
0.6 mm/s t h e  savings become increas ingly  less s ig-  
n i f i c a n t .  For a Subterrene program t a r g e t ,  t h e  
1 mm/s rates appears  t o  b e  s a t i s f a c t o r y .  From t h e  
f i g u r e  one can a l s o  deduce t h a t  a t  0 .3  mm/s i n  
normal g r a d i e n t  w e l l s ,  t h e  c o s t s  of r o t a r y  and Sub- 
t e r r e n e  produced w e l l s  w i l l  be n e a r l y  equal. 
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Using present  tech- 

Casing i s  a major c o s t  i t e m  and i t  

The g l a s s  l i n e r s  a l s o  help so lve  t h e  

Cost changes only  - 7% over  

Figure 12 shows t h a t  ROP i s  a more i m -  

However, beyond 

CONCLUSIONS 

A d e t a i l e d  eva lua t ion  of t h e  Subterrene rock-melt- 
i n g  concept appl ied  t o  t h e  product ion of deep geo- 
thermal w e l l s  i n d i c a t e d  t h a t  no insurmountable 
t e c h n i c a l  impediments ex is t .  
t h a t  rotary and m e l t i n g  techniques be combined to 
r e a l i z e  minimum o v e r a l l  w e l l  cos t s .  The c u r r e n t  
b i t - p e n e t r a t i o n  rate has  t o  b e  increased from 0.2 
mm/s (nominal) t o  a t  least  0.3 mm/s t o  match t h e  
c o s t  o f  t h e  modeled r o t a r y  d r i l l e d  w e l l  i n  a normal 
geothermal grad ien t .  B i t  l i f e t i m e  does n o t  have 
as l a r g e  an  e f f e c t  on o v e r a l l  w e l l  c o s t  as  penetra- 
t i o n  rate. A t  a nominal rate of  1.0 m/s t h e  Sub- 
t e r r e n e  shows a 23% savings over  a r o t a r y  d r i l l e d  
10 Ian w e l l  a t  normal grad ien ts .  A t  6 km, t h e  
sav ings  is 18%. For w e l l s  i n  h igher  geothermal 
g r a d i e n t s ,  t h e  sav ings  i n c r e a s e s  t o  33% f o r  1 0  km 
and 28% f o r  6 km, i.e., 4.5 and 1.2 m i l l i o n  d o l l a r s  

'- p e r  w e l l ,  r e s p e c t i v e l y .  Using t h e  rock-melting 
concept ,  t h e  p o t e n t i a l  f o r  innovat ive t e c h n i c a l  
improvements a l lowing deep p e n e t r a t i o n  i n t o  in-  
c r e a s i n g l y  h igher  temperatures ,  e.g., > 673 K, 
appears  promising. 

It is recommended 
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