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FLOW THROUGH PbROUS.MEDLA FROM A NUCLEAR cAVLTYf
University of California

Frank A. Morrison, Jr.*+

ABSTRACT

The transport of fluid from the cavity formec by an underground nuclear
explosion is investigated. Driven by the high cav:ty pressure, steam and
noncondensing gas enter the surrounding porous medium, Their subsequent mo-
tion through the medium is described and the extent of penetration determined,
The relations governing the transport are presented, An implicit iterative
computational methed is developud. The relative mer ts of this technique are
discussed. The method is applied to a nuclear test. Results of calculations
are presented and discussed.

INTRODUCTION

Among the problems associated with the containment of underground nucl)ear
tests is that of fluid flow from the nuclear cavity inte the surrounding porous
materials, In the past several years, the testing community has devotcd con-
siderable effort to developing an understanding of these flows and anability to
accurately and efficiently calculate the extent of such £low, Calculations of
the predicted cavity fluid penetration have become part of the formal pre-shot
containment evaluation. Such calculations are important in assessing such mot-
ters as depth of burial, stemming plans, and real estate conservation., Limits
on acceptable penetration may also be imposed by such features as geological
faults and neighboring emplacement holes.

The history of an underground cavity, following its formation, is de~
scribed in detail by Kennedy and Hipgins [1]. Cavity pressure mezsurcments,
from shortly after cessation of cavity growth until collapse, have also been
reported [2]. For our purposes, we may consider the cavity to be originally
filled with vapor at a pressure about the overburden pressure and a temperature
of several thousand Kelvin. The vapor is primarily superherted steam. As 2
result of heat and mass transfer fromthe cavity, the pressure and temperature
decay. The steam eventuvally begins.to condense and the pressure drops more
rapidly. The final stage is normally collapse of the cavity. The entire
process occurs over a period ranging from a few minutes to over an hour.

Empirically predicted pressure and temperaturc histories for a proposed
‘nuclear test are presented in Figs. 1 and 2. The primary object of this paper
is vo present a computational method permitting the u’f:chnt accurate calceu-
lation of flow from such a cavity into the surrounding medium.
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the auspices of the U.S. Energy Research & Development Administration under
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GOVERNING RELATIONS

The process is a tramsient, nonisothermal, two-phase, two-component
flow. Superhcated steam from the cavity is suddenly injected into a porous
bed which is originally at ambient temperature. The void volume of this
bed is initially occupied by air and any groundwater. Heat and mass trans-
fer are coupled as heat is transferred to the bed and a condensation~
evaporation mechanism stro.gl, influences transport.

The two phases move at separate velocities. Air and water vapor travel
together in a vapor mixture with an apparent-velocity w,. The liquid phase,
occupied by water, has apparent velocity ug. Aside from the initial response
quite near the cavity surface, these flows are characterized by low Reynolds
Viscous drag dominates and the phase velocities are given 1y a form

nunbeys.
For the vapor mixture,

of Darcy's law appropriate to multiphase flow.

k k
o . _tm 82 X
uv = Ty ax (1)

9p/3x is the local pressure gradient, U, is the vapor mixture viscosity,

and k is the permeability of the bed. k _ 1is the relative permeability

which varies between zero and one and expresses the reduction in vapor

mability because of liquid in the pores. The absolute permeability, k, .
may vary with position, x. The relative permeability depends upon the sat- .
uration, S,, the fraction of pore space occupied by vapor mixture. Liquid

velocity obeys an equivalent relation obtained from Eq. (1) simply by replac-

ing the subscript m by &.
In addition to these constitutive equations describing phase velocities,

the flow is governed by three conservation equations. These are mass con-
servation for each of the species and the first law of thermodynamics. Air

continuity becomes

-l u)med oSy @

while water continuity is . ) .
\
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p is the density and t, the time. Subscripts a and v denote air and water }
vapor, respectively. € is the porosity, the void volume fraction of the
bed. Porosity will vary with position. )

Fipally, with the assumption of local thermodynamic equiliﬁfium, a ; .
control volume form of the first law is written for solid and fluids. i ;
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h is the enthalpy per unit mass, ¢ is the internal energy per unit mass
and the subscript s denotes solid.

This wodel of the flow has been used by Horrison [3] in the analysis
of a simpler {low using an expliciit computational method. The assunptions
and their justification are discussed in greater detail there. Laboratory
experimen.s, analogous to the flow described in {3], have yiclded rcsults in
excellent aprecment with caleulations [4].

COMPUTATIONAL METHOD

Calculations were performed ¢ a uniform, one-dimensional Eulerian mesh,
A node, densted by the index i, is located a distance (i ~ 1) Ax from the bed
inlet. The tecwporal increment, which need not be held coastant, is 46t. The
index j denotes the time level.

TRANSPORT

The transporvt, descirihed by the left-hand sades of Eqs. (2)-(4), ic cen-
vective transport. The finite difference representati~n employs a windward

or donor ccll, ec.g., see {5], diffcrencing scheme, The method is transportive
[6), i.c., calculated transport occurs only in the direction of the local ve-
locity. The difference scheme also satisfies global conservation.

For flow from i - ) to i to i + 1, the left-hand side of Eq. (2) becomes,
for illustration, .

5 . .
T3 b, u,) = (".,l-x“m,;-v. LR "m,sw,s)/Ax )

at node i. Extending a pracedurc developed by Runchal and Wolfshtein {7],
we produce the more gemeral expression.
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accounting for flow in either dircetion and for £low reversal. The “inmite
difference approximation of the midpoint velocities follows from Eq. (1)
and uses the node pressure at nodes adjacent to the midpoint.




Some numerical dispersion must result from using an Rulerian method.
A Lagranpian approach was not adopred, however, because the flow is pot char-
acterized by a single fluid velocity.

1

JMPLICIT PROCEDURE N

. Severa)l procedures, using expressions such as Eq. (6) and diffeving only
in the time levels of the teyms, can be developdd. ‘these procedures may have
strikingly different eharacteristics. Aa cxplicit procedure calculates the
fluxes using values at the old time level (J) in order to determine propertics
at the new time level (Jj + 1). Such a meihod is certainly the casiest o de-
velop and was ceaployed in {3]. In practice, however, a time step limitation,
imposed by a stability criterion chardcteristic of the method, severely re-

ostricted-its vtility, A method free of 1his restreciion was nceded,

The mothod finally produced was inspired by the work of Evans, Brousscau,
- and Keirstead {8) on the stabiliry o” finite difference approximations to the
diffusion cquation. Walie their stable iterative metheds have not been widely
used 1o svive th. diffvsion cyuation, ihese methods 10 pussess astivoctive choer-
acteristics that recommend their adaptation to problems as are treaced here.

To illustrate the characteristics, let us examine a foew numerical tech-
niques for solution of the diffusion equation.
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Becavse of the importance and lincarity of Eq. (7), much is known about its
solution. This provides valuvable guidance in developing methods for our re-
lated ponlinear equations,

The explicit approxination

J - ZJ + J J"] - é
14 3 i -1 1 1
TR )

(8x)*

to the diffusion eguation is the simplest wethod. The truncation error is of
order At, (Ax)?. The disadvantage of ‘this approach is the restriction

[ P
—tT ()]
(ax )Iz 2

for stability. Adaptation 1o the multiphase flow calculation requires so-
lution of the fiuite difference equivalents of Egs. (2)-(4) for local air mass,
water smass, and energy, respectively. These properties, together with state
relations, ave subsequently used to find the local thermodynamic state. The
solution tcchnique depends upon the water phases present. The time step is
lisiited in a manner similar to Eq. (9). - .
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The normal implicit method of solving the diffusion cquation is obtained
by evajuating spatial derivatives (fluxes) at the new (j + 1) time level.

jel j+1 §41 Jta J
Gea "% Y4, .9 -4 10)
(Ax)z ot

“This Jorm has the same truncation crror as the cxplicit form, but is uncon-
fitiona)ly stable. The size of the time step is restricted only by require-
wents of accuracy. Unknown (3 + 1 level) values at three spatial lecetions
appear in Eq. (10). Conscquently, values at the j + 1 time level are found
by tlic solution of a set of {inite diffcrence cquations with a tridiagonul
cocificient matrix. An cfficient algorithm [9] for the solution of a tridi-
agonn) se1 of n cquations is available and requires only S5n - 2 storage lo-
cations and a nunber of operations of oxder n.

The extension of this implicit approach to multiphase flow calculations
‘would rcmove the stability limit but coupling unknowns at different nodes
+ introduccs othicr objectionable features. Because the multiphase flow cquations
are coupled and :ince new time level propertics at three nodes would appear,
the bandieidtin would be at least nine. The actual width would depend on the
state relations and the amount of solution done by the prograrsier. The solu-
tion of these cquations is comsiderably morc costly and time consuming than the
solution of tridiagonal sets. Further, the equations to be solved depend upon
the phases present at cach of the nodes. Finally, since the conservation
equations arc aonlineer, iteration should be necessary.

The itcrative schemes of Evans, Brousscau, and Keirstead present an op- :
portunity to perform unconditionally stablc calculations while avoiding the . o
inversion of large bandwidth matrices. Of these methods, we consider one that
reduces to the form ‘

jsl,p J+t, ptl l").l’ 1¢4),p%2 )
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The superscript p is an iteration index. Values are known for iteration level
p and sought at icvel p + 1. The zeroeth itcration corresponds to values at
the old (j) time level. Note that only the unknown at mode i appears. The
solution does not requite siaultancous solution at all nodes. While the metiod
is itcrative, the adaptation to nonlinéar problems would be iterative in any
cvent.

The convergence rate of the iteration may be improved by using the most
recent values from the neighboring nodes. For a ca.culation procceding in the
. direction of incrcasing i, the relation

J+1,p+} l*l.n+! j4l el ]

j+l,p
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should converge faster than Eq. (11) while introducing no additional Jabor.
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Air comtinuity provides a simple relation to demonstrate application of
the method to flow, Consider the case when water is superheated. The mixture
saturation and relative permeability are each unity. Equation (1) is sub-
stituted into LEq. (2) and the result reduces to
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The finite difference form is produced as follows, Windward differcncing
is cmployed. Perwmeability, k;j, is the effective permeability in the range i
to i + 1. g is the average porosity in the cell surrounding nede i, WNo
iteration is performed on transport properties. Yhese are evalvated atl the 01d
time level. lteration is done on all thermodynamic properties. Most recent

b . values are usced for thermodynamic properties. .

© The nonlinearity produces a product of unknown density and pressure which
is removed by linearizipg between iterations. .
j41,P+) §41,P41  j41 +1 +1,p+1 +1 +3,

’ - 0 P (24 *})’ P Ps Pl f+1,p P: P (14)

i T Fe, i i s.d. N o,

j+1,pt)
s, i,

A product of the density difference and pressure diffcrence is discarded.

For flow in the direetion of iicreasing x and calculations proceeding in
-the sawe direction, the finite difference form of Ea. (33) reduces to

. K f4+1,ptl  JH1.P §+1,p, J¥1,p _ J41,pH1 41, p
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A computer program, CERBERUS, that uses this approach has been written:
Equations, equivalent to Eq. (15} but accounting for flow reversal, were de- :
veloped for air and water continuity and the first law of thermodynamics,
These, together with state rclations, are solved to determine the thermo-

dynamic state at each node i.

. Results of calculations with CERBERUS ave presented in the next section,

1t is worthwhile here to compare the computer time required for that run with ;
the time requircements of an alternative explicit calculation. A bed with 400 {
nodes was used. At cach time step, however, caleculations were performed for

- fewer modes. Starting at the cavity, calculations were done at cach node un-
til the local pressure differed from ambient pressure by less than about a
pascal at four successive nodes. The time step was chosen to be 1 sccond and
10 iterations were done at cach time step. 7The resultving calculation, for two
hours of real time, required 11.6 minutes of machine time on a CDC 7600. FEx-
perience with the explicit program indicates that the cquivalent 400 tode ex-
phcu caleulation with pressure test would require an estimated dn) of machine

time,
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Further savings can be cbtained with better parameter choices for tie
implicit calculation, The example choices arc by no means optimal. In
particular, tep iterations is quite excessive. .

Y

RESULTS DF CALCULATIONS

The cxample is based on a proposed experiment at the Nevada Test Site.
The anticipated cavity pressure and temperature historics are shown in
Figs. Y and 2. The cavity contains steam. The distance between the predi~ted
cavity ceiling and ground surface is 1,140 metres. The cmplacement hole is
stermed.  Figure 3 shows that portion of a proposed stciming plan lying above
Zhe cavityceiling. As a prudent measure, plugs are ignoryed and arc not pre-
sumed to contain any flow. The emplacement hole is cased and should be dry,

The pressure distribution in the sicmming was calculated using CERBERUS
and is shown in Fig. 4 for several selected times after the detonation. The
coupled watex saturation distribution at the same times is shown in #ig. 5.

The 30-, 20-, and 40-minute curves arc characteristic of the early -
sponsc and closely resemble the similarity solution of Morrisom {3]. rcatures
in Figs. 4 and 5 are related and should be compared. A saturation rezion is
passing througb the column. 7The column ahead of the saturation front contains
air at aubient temperature and Jow pressurc. As the front passes, the column
becomes warmer and the saturation pressure increases, Water, as liquid and
vapor, displaces the aix. Behind the liquid is a regien of diy superncated
stcam. The liquid transport is accomplished priwariiy by cvaporation and cua-
densation,

The 80-minute curves exhibit some features of iate time behavior,
Figures 6 and 7, showing properties two hours after detonation, show these
more clearly. The cavity pressure boundary condition has dropped to ambient,
The pressure within the column remains higher. The high column pressure is
produced by vaporization of liquid in the high temperature portion of the
saturated region. This will continue until no liquid remzins at temperatures

. greater than the saturation temperature at ambient pressure.

The displacement of air by the steam is scen in Fig. 6. The dotted line
shows the partial pressurce of the water vaper. Nearer the cavity, the total
pressure is exerted by the water vapor. Farther from the cavity, the partial
pressure of air dominates. The slight mxxlng results from numerical dispersion
but remains aceeptably small.

The penctration of cavity fluid into the column can be determined herc ly
the position of the saturation front. The extent of penetration is crucial in
contaimment evalvation. The progress of the saturation front is shown in
Fig. 8. . .




DISCUSSION

The flow from a nuclear cavity has been deserided. A stable iterative
numerical technique has been devised to calculate such flow. The resulting
program, CERBERUS, is over two orders of magnitude faster thar the correspond-
ing explicit program. This increased speed permits the routine calculation of
these flows in detail. Results of one such calculation were presenied and the.

_ advance of the cavity fluid determined.

NOMENCIATURE

¢ = diffused quantity ' Subscripts

e = internal cnergy per unit mass a = air !

h = enthalpy per unit mass b= spatial index ° - .

k = permeability L = liquid 3
1 H = relative permeability ‘m = pixture i

P = pressure s = solid . .

S = saturation ¥ = yater vapor

LI time i )

~u = appareat speed 5ugcrscrints
X = position j = temporal index
€ = porosity ) p ~ iteration index

u = viscosity

p = density
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