
PREPRINT l/CRL- 77415 

Lawrence Uvermore Laboratory 
rlOW THROUGH POROUS MEDIA FROM A NUCLEAR CAVITV 

Frank A. Morrison, Jr. 

October 17, 1975 

This Paper was Prepared for Submission to 
25th Heat A Fluid Mechanics Institute 
University of California, Davis, Calif.; June 21-23, 1976 

This is a preprint of a paper intended fo. publication in a journal or proceedings. Since changes may be made 
before publfcatfon, this preprint is made available with the understanding that it will not be cited or reproduced 
without the permission of the author. 



FLOW THROUGH POROUS.MEDIA FROM A NUCLEAR CAVITY* 
University of California 

Frank A. Morrison, Jr.** 

ABSTRACT 

Tho transport of fluid from the cavity formec by an underground nuclear 
explosion is investigated. Driven by the high cavity pressure, steam and 
noncondcnsing gas enter the surrounding porous medium. Their subsequent mo­
tion through the medium is described and the extent of penetration determined. 
The relations governing the transport are presented. An implicit iterative 
computational method is developed. The relative mer ts of this technique are 
discussed. The method is applied to a nuclear test. Results of calculations 
are presented and discussed. 

INTRODUCTION' 

Among the problems associated with the containment of underground nuc)ear 
tests is that of fluid flow from the nuclear cavity into the surrounding porous 
materials. In the past several years, the testing community has devoted con­
siderable effort to developing an understanding of these flows and an ability to 
accurately and efficiently calculate the extent of such flow. Calculations of 
the predicted cavity fluid penetration have become part of the formal pre-shot 
containment evaluation. Such calculations are important in assessing such mat­
ters as depth of burial, stemming plans, and real estate conservation. Limits 
on acceptable penetration may also be imposed by such features as geological 
faults and neighboring emplacement holes. 

The history of an underground cavity, following its formation, is de­
scribed in detail by Kennedy and Higgins [1], Cavity pressure measurements, 
from shortly after cessation of cavity growth until collapse, have also been 
reported [2]. For our purposes, we may consider the cavity to be originally 
filled with vapor at a pressure about the overburden pressure and a temperature 
of several thousand Kelvin. The vapor is primarily superheated steam. As a 
result of heat and mass transfer from the cavity, the pressure and temperature 
decay. The steam eventually begins.to condense and the pressure drops core 
rapidly. The final stage is normally collapse of the cavity. The entire-
process occurs over a period ranging from a few minutes to over an hour. 

Empirically predicted pressure and temperature histories for a proposed 
nuclear test are presented in Pigs. J and 2. The primary object of this p.npcr 
is to present a computational method permitting the efficient accurate calcu­
lation of flow from such a cavity into the surrounding medium. 
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GOVERNING RELATIONS 
The process is a transient, nonisothermal, two-phase, two-component 

flow. Superheated steam from the cavity is suddenly injected into a porous 
bed which is originally at ambient temperature. The void volume of this 
bed is initially occupied by air and any groundwater. Heat and mass trans­
fer are coupled as heat is transferred to the bed and a condensation-
evaporation mechanism strc^gl., influences transport. 

The two phases move at separate velocities. Air and water vapor travel 
together in a vapor mixture with an apparent'velocity v^. The liquid phase, 
occupied by water, has apparent velocity uj. Aside from the initial response 
quite near the cavity surface, these flows are characterized by low Reynolds 
numbers. Viscous drag dominates and the phase velocities are given by a form 
of Parcy's law appropriate to multiphase flow. For the vapor mixture, 

3p/3x is the local pressure gradient, u m is the vapor mixture viscosity, 
and k is the permeability of the bed. k m is the relative permeability 
which varies between zero and one and expresses the reduction in vapor 
mobility because of liquid in the pores. The absolute permeability, k, 
may vary with position, x. The relative permeability depends upon the sat­
uration, S r o, the fraction of pore space occupied by vapor mixture. Liquid 
velocity obeys an equivalent relation obtained from Eq. (1) simply by replac­
ing the subscript m by SL. 

In addition to these constitutive equations describing phase velocities, 
the flow is governed by three conservation equations. These are mass con­
servation for each of the species and the first law of thermodynamics. Air 
continuity becomes 

- & *. «.) - « & (P. S.) W 
while water continuity is . 

" h <Pi Ut + (P. V = E ft (P* h + Pv V <*> 
p is the density and t, the time. Subscripts a and v denote air and water 
vapor, respectively', e is the porosity, the void volume fraction of the 
bed^ Porosity will vary with position. 

Finally, with the assumption of local thermodynamic equilibrium, a 
control volume fora of the first law is written for solid and fluids. 
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li is the enthalpy per unit mass, c is the internal energy P c r unit mass 
and the subscript s denotes solid. 

This model of tl.c flow has been used by Morrison [3] in the analysis 
of a simpler flow using an explicit computational method. The assumptions 
and their justification are discussed in greater detail there. Laboratory 
experiments, analogous to the flow described in [3], have yielded results in 
excellent agreement with calculations [4]. 

COMPUTATIONAL METHOD 

Calculations were performed c a uniform, one-dimensional Eulorian mesh. 
A node, denoted by the index i, is located a distance (i - 1) Ax froa the bed 
inlet. The temporal increment, which need not bo held constant, is At. The 
index j denotes the time level. 

TRANSPORT 

The transport, described by the left-hand sides of fiqs. (2)-(<i), is con-
vective transport. The finite difference representation employs a windward 
or donor cell, e.g., sco [5], differencing scheme. The method is transportivc 
[61, i.e., calculated transport occurs only in the direction of the local ve­
locity. The difference scheme also satisfies .global conservation. 

For flow from i - 1 to i to i + 1, the left-hand side of Eq. (2) becomes, 
for illustration, 

- h ( p . H»> = (p.,.-> v . - * - p . . i . i s i * * ) / A x ( s ) 

fit node i. Extending a procedure developed by Runchnl and Kolfshtcin {7), 
vc produce the more general expression. 

• ; ! x - ( p . "J* fo.,1.1 <»-,«-* * X i - i i l } 

accounting for flow in either direction and for flow reversal. The 'initc 
difference approximation of the midpoint velocities follows from Eq. (1) 
and uses the node pressure at nodes adjacent to the midpoint. 



Some numerical dispersion must result from using an Kulcrian method. 
A Lagrangian approach was not adopted, however, because the flow is not char­
acterised by a sinclc fluid velocity. 

IMPLICIT rnocnniBn 

Several procedures, using expressions such as Eq. (f>) and differing only 
in the tine levels of the terms, can he developed. These procedures may have 
strikingly different characteristics. An explicit procedure calculates the 
fluxes using values at the old time level (,i) in order lo determine properties 
at the new time level (j * 1). Such a method is certainly the easiest to de­
velop and was employed in [3J. in practice, however, a tine step limitation, 
imposed by a stahility criterion characteristic of the method, severely re­
stricted its utility. A method free of this restriction was needed. 

The method final))' produced was inspired by the work of Evans, Bronsseau, 
• and Kcirste.id [S] on the stability e r finite difference approximations to the 
diffusion equation. IViiiic their stable iterative methods Have not been widely 
used to solve th . diffusion eijuaiion, these method* to possess attractive. ch.it* 
actcrir.tics that recommend their adaptation to problems as arc trcr.ccd here. 

To illustrate the characteristics, lot us examine a few numerical tech­
niques for solution of the diffusion equation. 

£± .-?•£• • (7) 
»«' * 

Because of the importance and linearity of Eq. (7), much is known about its 
solution. This provides valuable guidance in developing methods for our re­
lated nonlinear equations. 

The explicit approximation 

c1 - 2c1 •> c' c'*1 - c' 

m2 6 t 
(8) 

to the diffusion equation is the simplest Method. The truncation error is of 
order fit, (fix)2. The disadvantage of this approach is the restriction 

_ * L . < 1 ( 9 ) 

for stability. Adaptation to the multiphase flow calculation requires so­
lution of the finite difference equivalents of Uqs. (2)-(-l) for local air mas*, 
water mass, and energy, respectively. These properties, together with state 
relations, avc subsequently used to find the local thermodynamic state. The 
solution technique depends upon the water phases present. The time step is 
limited in a manner similar to Eq. (0). • 

http://ch.it*


The normal implicit method of solving the diffusion equation is obtained 
by evaluating spatial derivatives (fluxes) at the new (j + 1) time level. 

H i „ i* J l+> !•» I 

(OX)' " 

"Hiii; J'OITI has the sane truncation error as tlic explicit form, but is uncon­
ditionally stable. The size of the tiine step is restricted only by require­
ments of accuracy. Unknown (j • 1 level) values at three spatial Jocrtions 
appear in Uq. (10). Consequently, values at the j • 1 time level arc found 
by the solution of a set of finite difference equations with a tridiagoi-.ul 
coefficient matrix. An efficient algorithm |9] for the solution of a tridi-
agona] set of u equations is available and requires only Sn - 2 storage lo­
cations and a number of operations of Older n. 

The extension of this implicit approach to multiphase flow calculations 
would remove the stability limit but coupling unknowns at different nodes 
introduces oilier objectionable features. Because the multiphase flow equations 
arc coupled and ; incc new time level properties at three nodes would appear, 
the bandwidth would be at least nine. The actual width would depend on the 
state relations and the amount of solution done by the programmer. The solu­
tion of these equations is considerably more costly and time consuming than the 
solution of tridingonn] sets. Further, the equations to be solved depend upon 
the phases present at each of the nodes. Finally, since the conservation 
equations arc nonlinear, iteration should be necessary. 

The iterative schemes of Uvans, Brousscau, and Kcirstcad present an op­
portunity to perforin unconditionally stable calculations while avoiding the 
inversion of large bandwidth matrices. Of these methods, wc consider one that 
reduces to the form ' 

,»•>•> . 2cJ*,•''+, • c l* ,• , , J*1''*1 - J 
1*1 I J-l T T 

W x ) 2 At (") 

The superscript p is an iteration index. Values are known for iteration level 
p and sought at level p • 1. The zeroeth iteration corresponds to values at 
the old (j) time level. Note that only the unknown at node i appears. The 
solution docs not require simultaneous solution at all nodes. Knilo the mctiiod 
is iterative, the adaptation to nonlinear problems would be iterative in any 
event. 

The convergence rate of the iteration may be improved by using the most 
recent values from the neighboring nodes. For a calculation proceeding in the 
direction of increasing i, the relation 

1 4 1 i '-» _ J L /i->i 

should converge faster than Eq. (11) while introducing no additional labor. 
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Air continuity provides a simple relation to demonstrate application of 
the method to flow. Consider the case when water is superheated. The mixture 
saturation and relative permeability are each unity. Equation (1) is sub­
stituted into Eq. (2) and the result reduces to 

ax ̂ p. u m ax ) E at • • ^1A) 

The finite difference form is produced as follows. Windward differencing 
is employed. Permeability, kj , is the effective permeability in the range i 
to i + 1. q is the average porosity in the cell surrounding node i. No 
iteration is performed on transport properties. These are evaluated at the old 
tine level. Iteration is done on all thermodynamic properties. Most recent 
values are used for thermodynamic properties. 

The nonlinearity produces a product of unknown density and pressure which 
is removed by linearizing between iterations. 

A product of the density difference and pressure difference is discarded. 

For flow in the direction of increasing x and calculations proceeding in 
the same direction, the finite difference form of Eo<. (1X) reduces to 

*»'» rJ+1'»»' .J* 1'?*' J*'.P*» n c
 E' ( A X ) /J + *<P** „l 1 K.l-l «?. -Pl-1 " " T E ( p . . l P..l ) 

i-> (IS) 

A computer program, CERBERUS, that uses this approach has been written. 
Equations, equivalent to Eq. (15) but accounting for flow reversal, were de­
veloped for air and water continuity and the first law of thermodynamics. 
These, together with state relations, are solved to determine the thermo­
dynamic state at each node i. 

Results of calculations vith CERBERUS are presented in the next section. 
It is worthwhile here to compare the computer time required for that run with ' 
the time requirements -">f an alternative explicit calculation. A bed with 400 
notfes was used. At each time step, however, calculations were performed for 
fewer nodes. Starting at the cavity, calculations were done at each node un­
til the local pressure differed from ambient pressure by less than about a 
pascal at four successive nodes. The time step was chosen to bo 1 second and 
JO iterations wore done at each time step. The resulting calculation, for two 
hours of rail time, required 1J.6 minutes of machine time on a CDC 7600. Ex­
perience with the explicit program indicates that the equivalent "100 txide ex­
plicit calculation with pressure test would require an estimated day of machine 
time. ' . 
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Furtbyr savings can be obtained with better parameter choices for the 
implicit calculation. The example choices arc by no means optimal. In 
particular, ten iterations is quite excessive. 

RESULTS OF CA>.CU1,ATI0N'S 
The example is based on a proposed experiment at the Nevada T_'st Site. 

The anticipated cavity pressure and tempcraturc'histories are shown in 
Figs. 1 and 2. The cavity contains steam. The distance hetwccn the predicted 
cavity ceiling and ground surface is 1,140 metres. The emplacement hole is 
stemmed. Figure 3 shows that portion of a proposed stentiling plan lying above 
-the cavityceiling. As a prudent measure, plugs are ignored and arc not pre­
sumed to contain any flow. The emplacement hole is cased and should be dry. 

The pressure distribution in the stemming was calculated using CEJIBEP.U5 
and is shown in Fig. 4 for several selected times after the detonation. The 
coupled water saturation distribution at the same times is shown in i:ifi. i>. 

The 10-, 20-, and 40-minirte curves arc characteristic of the early re­
sponse and closely resemble the similarity solution of Morrison [3]. Features 
in Figs. 4 and 5 are related and should be compared. A saturation region is 
passing through the column. The column ahead of the saturation front contains 
air at aiabient temperature and low pressure. As the front passes, the column 
becomes wanner and tiio saturation pressure increases. It'ater, as liquid and 
vapor, displaces the air. Behind the liquid is a regie;, of dry superheated 
steam. Tan liquid transport is accomplished priaarily by evaporation and con­
densation. 

The 80-minutc curves exhibit some features of late time behavior. 
Figures 0 and 7, showing properties two hours after detonation, show these 
more clearly. The cavity pressure boundary condition has dropped to ambient^ 
The pressure within the column remains higher. The high column pressure is 
produced by vaporization of lic,uid in the high temperature portion of the 
saturated region. This will continue until no liquid remains at temperatures 
greater than the saturation temperature at ambient pressure. 

The displacement of air by the steam is seen in Fig. 6. The dotted line 
shows the partial pressure of the water vapor. Nearer the cavity, the total 
pressure is exerted by the water vapor. Farther from the cavity, the partial 
pressure of air dominates. The slight mixing results from numerical dispersion 
but remains acceptably small. 

The penetration of cavity fluid into the column can be determined here l-y 
the position of the saturation front. The extent of penetration is crucial in 
containment evaluation. The progress of the saturation front is shown in 
Fig. $. ' 



DISCUSSION 

The flow from a nuclear cavity lias been described. A stable iterative 
numerical technique has been devised to calculate such flow. The resulting 
program, CERBERUS, is over two orders of magnitude faster than the correspond­
ing explicit program. This increased speed permits the routine calculation of 
these flows in detail. Itcsults of one such calculation were presented and the-
advance of the cavity fluid determined. 

NOMENCWTURE 

c «= diffused quantity 

c «= internal energy per unit mass 

h •= enthalpy per unit mass 

h •= permeability 

k » relative permeability 

p = pressure 

S « saturation 

t «• time 

u «= apparent speed 

x = position 

e = porosity 

u = viscosity 

p «= density 

Subscripts 

• * air 

I « spatial index 

t = liquid 

» = mixture 

a « solid 

» •= water vapor 

Superscripts 

j «• temporal index 

p * iteration index 
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Fig. 1 Cavity pressure history 
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Fig. 2 Cavity temperature history 
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Fig. 4 Pressure in column above cavity 
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Fig. 5 Water saturation in column above cavity 
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Fig. 7 Temperature and saturation in column 
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Fig. 8 Penetration of cavity fluid 


