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Abstract
Theory of Low-Energy Electron-Molecule Collision Physics in the
Coupled-Channel Method and Application to e—CO2 Scattering
Michael A. Morrison

A theory of electron-molecule scattering based on the fixed-
nuclei approximation in a body-fixed reference frame is formulated
and applied to e—CO2 collisions in the energy range from 0.07
to 1G.0 eV. The procedure used is a single-center coupled-channel
method which incorporates a highly accurate static interaction poten-~
tial, an approximate local exchange potential, and an induced
polarization potential. Coupled equations are solved by a modif:-
cation of the integral equations algorithm; several partial waves are
required in the region of space near the nuclei, and a transformation
procedure is developed to handle the consequent numerical problems.
The potential energy is converged by separating electronic and
ruclear contributions in a Legendre-polynomial expansion and including
a large number of the latter. Formulas are derived for total elastic,
differential, momentum transfer, and rotational excitation cross
sections. The Born and Asymptotic Decoupling approximations are
derived and discussed in the context of comparison with the coupled-
channel cross sections. Both are found to be unsatisfactory in the
energy range under consideration. An extensive discussion of the
technical aspecis of calculations for electron collisions with
highly non-spherical targets is presented, including detailed
convergence studies and a discussion of various numerical difficulties.

The application to e—-CO2 scattering produces converged results

in good agreement with observed cross sections. Varicns aspects of



the physics of this collision are discussed, including the 3.8 eV
shape resonance, which is found to possess both p and f character,

and the anomalously large low—-energy momentun transfer cross sections,
which are found to be due to Zg symmetry. Comparison with static

and static-exchange approximations reveal that neither predicts

the correct physical properties of the collision; accurate results

are obtained only in the static-exchange-with-polarization approxi-

mation.



Chapter 1. By Way of Introduction

¥...Where do you want me to begin?"
“"Begin at the beginning," suggested
Wimsey," go on till you get to the
end and then stop."

-Lord Peter Wimsey
in The Nine Tailors
(Dorothy L. Sayers)

One sometimes hears pundits declaim that atomic and molecular
physics are "dead fields" in which "ther. . :0 unsolved problems."
Such statements are patently fallacious, as attested by the not
inconciderable current journal and conference activity in this branch
of physics. What is true is that the foundations of this field
have been laid (by Schroedinger and others of the 1930 crowd of
theoreists). This contrasts, for example, with elementar particle
physics, where no one is quite sure how to proceed.

However, all this means for the atomic and molecular theorist is
that he can proceed with confidence to tackle the wide variety of
fundamental and practical problems in his field, The field is

conventionally (and incorrectly) subdivided into structure problems

(e.g., determination of molecular wavefunctions, calculaticn of

atomic spectra) and dynamics problems (e.g., electron-atom collisions,

heavy particle scattering). Most theorists ultimately acquire some

expertise in both areas, and in point of fact a variety of current



approaches to electron scattering (e.g., pseudc-bound-state, R-matrixz}
blur the distinction to the extent that it becomes virtually meaning-
less except to suggest orientation.

One group of problems of intense recent interest involve
electron-molecule collisions. Such problems are intrinsically more
difficult than their counterparts in electron-atom scattering since
the molecule, being multi-nuclear, is certainly not spherically
symmetric {although some understandably popular targets such as Hz
and CO are atypically spherical to a certain approximation). Hence
it 1is not currently possible to predict electron-molecule cross
sections with the precision characteristic of the best electron-atom
research.

We have been working in this sub-field for several years and have
developed an approach to electron-molecule scattering which is in
line with current research in the field. This technique, called

pseudo-bound-state (PB3) has been discussed at length elsewhereCI)

(together with an extensive survey of electron-molecule theory up to
1974) and published in the Physical Review(z) (see Appendix 1). We
shall say a bit about this work and other related investigations we
have pursued in the ccaclusion to this work (Chapter 9).

Partly as a consequence of our PBS studies, we became interested
in the problem of electron scattering from large molecules, systems of
practical interest such as C02, NZO‘ HZO’ and so forth. Theoretical
studies of such systems to date have typically employed highly
approximate methods such as the Born Approximation or the Distorted-
Wave Method. The reliability of such techniques for strongly

anisotropic interaction potentials is dubious at best., Yet,



pavticularly in light of the recent Interest in e-beam initiated gas
lasers, such cellisions are of considerable importance. At a2 more
fundamental level, it was not -lear at the time this research was
initiated how one went about a theoretical study of such systems;
nelither the more well-established approaches {such as close-coupling)
nor the new and comparatively untried Lz—variational techniques to
which we alluded carlier had been applied to problems of this
magnritude.

Therefore we undertook to develop a computational procedure for
handling electron collisions with large molecules. We decidad to
base our work on the eigenfunction expans.on methed (e.f., close-
coupling) and to try te calculate the highly important static
petential energy of interaction (electron with molecular target) very
accurately. The final scheme, which is discussed in Chapters 3-7,
incorporates exchange (via an approximate local interaction term)
and induced polarization effects. It can be (and has been) used to
determine total elastic, momentum transfer, differential, and
rotational excitation cross sections within the context of certain
approximations to be considered below. The solution of the scattering
equations is carried out by means of the standard integral equaticns
technique. However, extensive modifications and extensions of the
conventional procedure are reaquired to treat highly anisotropic
interactions.

As a test case, we selected electron-carben dioxide scattering,
The reasons for this were multiple. CO2 in its ground electronic state
is linear and has high symmetry yet is extremely large (or appears so

to a theorist) being ahout Aao long, Thus, the potential energy of



interaction of an electron with CO2 is sufficiently strong and non-

spherical to severely test the theory. Further, this is a wmolecule of
considerable practical interest. It 1is the most imf .rtant constituent
(3)

Closer to home, {0, is the

of the atmoipheres uf Mars and Venus. 2

hasis of one of the most successful continuous high-power lasers (about
which we'll have more to say in Chapter 2). To add to the lure of

CO, as a target, there existed an intriguing anomaly in the observed

2
low~energy momentum transfer cross section for e--CO2 scattering. Thus

CO2 was irresistible.

The present work presents the theory of low-energy electron-
molecule scattering together with all the computational and numerical
detail necessary to apply said theory. Throughout we use the e~CO2
system for illustrative purposes, ultimately using our theory to try
to explain the physics of this collision.

We thus commence our explorations in Chapter 2 by presenting
(hopefully) sufficient background on the CO2 molecule that the
sequel will be comprehensible to readers who have not spent a couple
of years with this target. This is a short chapter.

The theory proper begins in Chapter 3, where we present a detailed
analysis of the static potential as required in the scattering problem.
This potential characterizes the electrostatic (Coulomb) forces between
the scattering electron and the otherwise isolated target molecule
towards which said electron is plummeting. A second type of inter-
action is taken up in Chapter 4, where we turn to the elusive subject
of electron exchange. After pointing out why it is all but impossible

to take exchange into account rigorously, we show how to do it non-~

rigorously via a local (but energy-dependent) potential energy term.



Some effort is made at justifying this admittedly approximate exchange
potential, in Chapter 5 we take a breather from the rather lengthy
discourses of Chapters 3 and 4 to find out how to incorporate into our
theory the distortion ot the molecule due to the incident electron.
Thus in three chapteis we have aispensed with the potential.

We come then to Chapter 6, wherein the reader sees how to use the
potential, a computer, and several tricks to solve the scattering
equations. These (alas) coupled equations are derived, the approxi-
mations inherent in them are addressed, the numerical procedure used
to solve them is discussed in detail, and a whole host of numerical
problems are put to death one~by-one. Having successfully solved the
scattering equations, we proceed in Chapter 7 to derive formulae for
the extraction of a variety of cross sections from the asymptotic
form of the scattering wave function. We also derive a couple of
approximations which will be used in our study of the e—CO2 problem.

Chapter 8 contains a very detailed discussion (well larded with
examples) of the technical aspects of electron-big molecule scattering
together with our results and conclusions regarding e--CO2 scattering
in the energy range from 0.07 eV to 10.0 eV. This is followed in
Chapter 9 with some final remarks concerning possible future directions
for research in electron-molecule physics and a few other matters.

Summarizing,(4) we have found the theory here presented to be
successful in its application to the e-CO2 problem. It leads to
reliable total and momentum transfer cross sections, the latter com—
paring favorably with experiment, provides a theoretical explanation
of the aforementioned observed anomaly, enables us to gain insight

into the nature of another observed feature of e-CO2 collisions (a



resonance at 3.8 eV), and permits some understanding of the nature

of the scattering in various energy regimes. On the debit side, it is
based on a number of approximations, and in particular on a rather
severe approximation in the treatment of exchange, it is not purely
ab-initic, having one parameter (in the definition of the induced
polarization potential) which must be chosen in a somewhat ad hoc
fashion, and it is not cheap. We feel, however, that these are not

unreasonable considering the rather formidable nature of the system

we propose to attack.



Chapter 2. A Brief Barkground Look at the CO2 Molecule

The world is full of obvious things
which nobody by any chance ever
observes.

-Sherlock Holmes

in The Hound of the
Baskervilles

(Arthur Conan Doyle)

§2.1 Introduction

As we mentioned in Chapter 1, the CO2 molecuale in electron
collisions is the example to which we shall apply the electron-
molecule scattering theory which is developed in Chapters 3-7.
Thus it is appropriate to pause briefly before launching into
our theoretical development to get acquainted with C02. Hence
this chapter. 1In addition to pointing out important and/or
interesting properties of 002 and its behavior in electron
collisions, we here draw together and list in a hopefully
systematic fashion the huge number of references on this
system,

A casual overview of CO2 in isolation is offered in section
2.2. Next, in §2.3, we survey the enormous amount of experimental
(and very small amount of theoretical) work on e—CO2 scattering
which has been done to date. We close in §2.4 with a brief

mention of the all-important application of CO2 to laser physics,
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§2.2 Properties of the Isolated co, Molecule.(z)

Carbon dioxide is a 22-electron triatomic molecule. In its
ground electronic and vibrational state it is linear with the
nuclear configuration* 0-C-0, the oxyger~carbrm separation being
about 2.19 a . Thus the 0-0 separation is 4.4 a,. This is a very
large molecule to an electron-molecule physicist, a fact that will
return to haunt us in the sequel. The molecule belongs to the
point group(Z) D°°h and has a center of symmetry. Therefore it

is quite similar in its behavior under various symmetry operations
(3)

to a homonuclear diatomic molecule. The orbital occupancy®*

in this state is (see Chapter 3 and especially Table 3.1)

x12+: 102 102 202 302 202 402 302 l'xr4 1114
g u g g g u g u u g

For Z; states, such as the ground state of C02, the odd rotational
levels (i.e., odd j) do not appear in the spectrum. The momeant of

intertia of 002 is 71.1 % 10-40 gm—cmz, which yields (via the

familiar formula I = 2morzo) a CO bond distance of 1.157 x 10

cmz. The resultant rotational constant is BCo = 0.3937 cm.l.

2
Using the fact that 1 cm_1 = 1.2398 x 10—4 eV, we find that in atomic

units this constant is BCo = 1.795 x 10_6 au. This, in turn, suggests

2
that the rotational level spacing, at least for low-lying states of

(%)

8

COZ’ is quite small. Using the fact that the rotaticnal energy

.th .
in the j state is

*These conclusions are drawn from inspection of the observed Raman
spectrum of COZ'

**Also called the electroniz configuration.



E =he BCOA' (d+1), (2.1)

we find that for low j values, the level spacing is of the order
of 10-4 eV. This is at least two orders of magnitude smaller than
the scattering energies of interest in our application,* which

range from 0.07 eV to 10.0 eV.

The vibrational level spacing, by contrast, is quite large.

C0, has three vibrational modes:(s) tha n00 symmetric stretch

2
mode, the 0n“o bending mode, and the 00n asymmetric stretch mode.

These are illustrated with dumkbell models in Figure 2.1. The bending
mode is two-fold degenerate, i.e., there exist two normal vibrations
which have the same frequency, vz in the figure. (The superscript
2 on the bending mode notation labels the particular degenerate
mode under consideratiom.) This fact is consistent with the observa-
tion that a linear molecule has 3N-5 degrees of freedom and hence
3N-5 normal modes of vibration. (For COz, N = 3.) Moreover, we
expect Co2 to have degenerate as well as non-degenerate normal
vibrations, since it possesses one more~-than-two~fold axis of
syametry.

For completeness, we here list the symnetry elements of l)mh

and illustrate them for CO2 in Figure 2.2. We have

*This happy fact will help us when we get around to making certain
approximations in forsulatfng cthe collision problem; see Chapter 6,
especially section 6.2,

1l
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Figure 2.1

Vibrational normal modes of the CO, molecule together with the species
corresponding to each mode. The bending mode is two-fold degenerate.



Figure 2.2

The symmetry elements of the CO, molecule in its linear nuclear con-
figuration. The elements are discussed in the text.
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1). an infinite-fold axis of symmetry C_:

2). an infinite number of C2 symmetry axes perpendicular to C_;

3). an infinite number of vertical reflection planes % passing

through C_;

4). one horizontal reflection plane Uh perpendicular to C_.
There are also symmetry elements which follow from these, e.g.,
the center of symmetry and associated inversion operator £, which defines
the symmetry of a molecular state as eilther gerade or ungrade. Of
course, the potential energy is invariant with respect to all symmetry
operations permitted by the point group of the molecule,

The vibrational energy level diagram for the lowest several states

is shown in Figure 2.3. The average energy spacing for the various

are(l)
symmetric stretch (n00) 0.17 eV
bending (OnRO) 0.08 eV
asymmetric stretch (0OOn) 0.29 eV

Two of the modes,; the bending and asymmecric stretch, are optically
active and have assoclated dipole moments. For example. in the

6)

bent nuclear configuration, population analysis shows a polari~
zation of the electrons toward the oxygen atoms, leadlng to a
dipole moment divected from the oxygens toward the carbon atom.
Such observations are important, for in the harmonic approximation,

which has been shown to be adequate for reproducing fundamentals

and lower interband transitions, the intensity of the infrared
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Figure 2.3

The lowest several vibrational energy levels for the C02 molecule.
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(7

active* bands is proportional to the dipole moment derivative
for the vibration under consideration.

One especially interesting feature of the vibrational structure

of CO2 is the Fermi resonance.(a) As Figure 2.3 shows, the 020 and
100 levels have nearly the same energy. This accident leads to a
percurbation of the energy levels which pushes them apart.** Thus
the 100 level is raised and the 0200 lowered.

Our interest in the next several chapters is focused on the
electronic states, in particular the XIE; state. A great deal of
work on the structure theory of Co2 has been carried out(g-lg),
from the early work of Mullikan ard others to the recent highly
accurate computations of McLean and Yoshimine, which we discuss in
considerable detail In section 3.2. 1In addition, there has been
{20-24) -

some important work done on the CO2 ion, to which we return

in section 2.3 when we look at resonances in e--CO2 scattering.

§2.3. A Quick Survey of Electron-002 Scattering

An ¢normous amount of experimental work on e—CO2 scattering

(29~50)

has been carried out to date, beginning with the 1930

*By an infrared active vibration we mean simply(l) that a change in
the dipole moment jeads to emission or absorption of radiation at

the fundamentals of the normal frequencies; these appear in the
infrared. Symmetric molecules may have infrared inactive vibratiomns.

**Only the (Eg) 0200 level carn perturb the 100 level since it is Eg,
and only vibrational levels of the sane species (irreducible

representation to group theory fans) can percurb one another,



research of Ramsauer and Kollath and continuing to recent highly
accurate swarm experiments by Phelps and collaborators. Both
total and momentum transfer cross sections for elastic and
inelastic scattering are available, but no extensive studies of
differential cross sections have been published as of this
writing.

In all of this work, the results that are of especial
interest to us are (a) a resonance which has been observed at
3.8 eV; (b) momentum transfer cross sections at energies below
about 0.1 eV.

Boness and Schultz,(37) using a crossed-beam technique, observed
resonance behavior in vibrational excitation of CO2 by electron

iwpact and correctly ascribed the 3.8 eV peak to a compound state

of CO,. This resonance has been further studied experimentally

2
by other authors(gg’bo’so) and has received some theoretical
{20,22)
attention. As a result of the latter, it was tentatively

identified as a shape resonance in H“ symmetry. We have studied
the 3.2 eV resonance in considerable detail. Our conclusions appear
in Chapter 8 of the present work.

The low energy momentum transfer cross sections of Phelps
et al.(ag) are dear to our heart, since they initially motivated
the choice of CO2 as a target for our study. The key result and
source of considerable theoretical and practical interest is shown
in Figure 2.4, where we see that O nom at energies below 0,1 eV
is anomalously large, larger, in fact, than S o for some polar

molecules!

17
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Figure 2.4

Observed momentum transfer cross sections for electron scattering from
C0,, N,0 (polar) and N, (non~polar). Souces: CO, [R. D. Hake and A.
V. Phelps, Phys. Rev. %58, 70 (1967)1, N,0 [J. L. Pack, R. E. Voshall,
and A. V. Phelps, Phys. Rev. 127, 2084 (%962)], N, [A. G. Engelhardt,
A. V. Phelps, and C. G. Risk, Phys. Rev. 135, A1%66 (1964)].



Some early work which suggested that this was the case was
)
carried out by Tice and Kivelson,(sl’ who used cyclotron resonance
techniques to carry out experimental studies of low energy electron

molecule scattering. These authors investigated linewidths and fit

their cross sections semi-empirically to the form

-1
o =110<1"-) . (2.2)
co, 7,
Their momentum transfer cross sections are anomalously large at
low energy, and Tice and Kivelson posit an interesting "adiabatic"
model of the collision process based on the transient dipole
moment which obtains when the molecule bends. Unfortunately,

this model does not work at all well, predicting cross sections
about 16 times too large. The present author has studied this
picture of the collision in another context and found it to be

unsatisfactory.(sz)

The experiments of Phelps et al., which produce the data of
Figure 2.4, are swarm experiments* based on drift velocity measure-
ments. Extraction of cross sections from drift velocities and
diffusion coefficients is a highly involved process entailing
solution of the Boltzmanr equation. To suggest the highly peculiar
nature of the observed momentum transfer cross sections, we present

in Table 2.1 a list of various atoms and molecules in order of

*Chapter 2 of reference (54), contains all the author considers any
theoretical physics graduate student should say about swarm exper-
ments. See reference (49) for more detail.

19
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Atoms Molecules Order of Magnitude
Ne 1010
0

0y
He
Ar
H,
co
NO
Hg 10-15
Kr
Cl-l4
N20
Xe 10714
CO2
Cs 1013
NH3
N20
Table 2.1

Measured momentum transfer cross sections at v 0.1 eV in increas~

ing order (units are cmz).

From reference (53).



increasing omom at ~»0.1 eV. It is also interesting to note the
analogies between observed e-CO2 scattering and observed electron-
. (55)
rare gas scattering. See, for example, the e-Ar cross sections
of Figure 2.5. We shall have much more to say on this matter in
the analysis of our results (Chapter 8).
Before leaving the subject of momentum transfer cross sections,

consider for a moment the definition

2 W

d
o =yacpjsi» 046 (L~cee©) T3, 2.3)
© o

where do/dQ is the differential cross section. The momentum transfer
cross section is finite, in general, and the factor (1-cos@), which
goes to zero at small angles, causes forward scattering to be de-~

emphasized in O on’ This is in contrast to the total cross section,

20 T
dor
O =|dd |sm8d8 T4 > (2.4)
Yot j‘ (P d
o o
which equally weights all angles in the integrand. However, unless
there 1s substantial scattering in either the forward or backward

direction, Umom = Utot'

The momentum transfer cross section is of practical interest,
for example, because it aids in the study of the transport properties
of gases, enabling one to compute, say, transport collision fre~
quencies by appropriately averaging the momentum transport cross

sections over the energy distribution of the electroms, which might

be taken to be Maxwellian, e.g., the distribution function might

be(56)

21
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Figure 2.5

Total cross sections for e-Ar scattering in a static-exchange-with
polarization model. Source: D. G. Thompson, Proc. Roy. Soc. (London)
A 294, 160 (1966).
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where kB is Boltzmann's constant.

§2.4. Conclusion: The CO2 Laser

We would be remiss in closing cut this overview without saying

a word or two about the importance of CO2 to laser physics.(57_60)

(59

There does exist a pure CO2 laser, which is based on the fact

that population inversion due to electron impact is favored

at incident energies near 1 eV. The dominant energy loss mechanism
is excitation of the 001 level, cross sections for dirnay to other
levels being negligible at this energy (see Figure 2.6a).

Much more efficient is the Co,-N, {and COZ—NZ—He) laser
system.(ss) In this laser, N2 acts as a "carrier of excitation,”
the design exploiting the near degeneracy of the v = 1 level of

N, at 2331 em 1 and the 001 level of €O, at 2349 em 1 (see

2
Figure 2.6b). The active laser transitions are then 001 - 0200
at 960.8 cm_l and 001 » 100 at 1063.6 cm—l. The drain from 010 to

the ground state is comparatively slow.

Momentum transfer cross sections as well as cross sections for

vibrational excitation of, e.g., the 00l mode are thus of considerable

23
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Figure 2.6

{a). Vibrational excitation cross sections observed in e-CO, collisions.

Source: M, J. W. Boness and G. J. Schultz, Phys. Rev. Lett.2 21, 1031
(1968). (b). The CO2 - Nz laser,



ipportance o experinestal laser physicists.® ¥For this reason, the
application to Cﬁz Targets has a speeial appeal te us, as it addresses
problems of fundamental and practical imperrvance. In the next chapter,
we bepin building a theoreticnl Jiructure for the analysis of such

=ollistons, startieg {vhere else?) with the Schroedinger cfquation.

:"lvl(! ';:;':;Lt_éfully—’.;:.lcnm\'lodgc useful discussions with Drs. W. Leland
and A. M. Lockett of the Los Alamos Scientific Laboratory on these

matrers.
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Chapter 3. The Static e—CO2 Interaction Potential

No, there are still difficulties, but
the outline of the plot is clear and
will develop itself more clearly as
we proceed.

-M. Rozer to Lord Peter Wimsey

in the Nine Tailors
{(Dorothy L. Sayers)

§3.1 Introduction: What the Static Potential is All About

In the usual time-independent formulation of quantum mechanics,

we solve the omnipresent Schroedinger eigenvalue equation,

d’f'ZPE-'-EZPE , (3.1)

where the non-relativistic Hamiltonian describing the system is the
sum of kinetic and potential energy operators ff = T + V. For electron-

. i i = ¢ +
target collisions, we conveniently write H Htarget Telectron

vint’ where Htarget describes the target system (e.g., atom, molecule,

ion), T

- %V 2, and V

is the kinstic energy operator for the electron,*
electron

int is the electron-target interaction potential energy.

All these operators are fairly easy to write down even for a mole-

(1) We must here focus on V, =V, (;, ;,; ﬁ ),
in b 1

cular target. . in N

->
where we let r denote the (spatial) coordinate of the scattering

*Unless otherwise indicated, atomic units are used throughout this
chapter.



->
electron, r, the set of coordinates of the target electrons, and Ra

i
the set of nuclear coordinates. We shall take vint to describe the
electrostatic interactions due to Coulomb forces betwezen the scattering

electron and the undistorted molecular target. Thus, for a meolecule,

we have
LA
_a-o.q - - -ad 3.2
VoFi7 R e Z‘-l:-ﬁ'l'*; 1?-1 ! -2
o

where the first summation runs over the nuclei of charge Za and the
second over the molecular electrons. (A common origin of coordinates
is assumed.) Additional interactions (exchange and induced polariza-
tion) will be addressed in Chapters 4 and 5.

In the solution of our body-frame fixed-nucleus coupled-channel

equations,*

2

d 20244) 2 2 (m )

- {m) - m {m 3.3

[12 - ==+ ]ug (0 =22 V0 (T, 0

we need the static potential energy averaged over the ground electronic
W n

state wavefunction®* of CO2 and integrated over the spherical harwonics

Yg.(f) and Yz(?). (Recall that m, corresponding to the projection of

the scattering electron's orbital angular momentum, is a good quantum

*
A detailed derivation of these equations by the author can be found
in Chapter 4 of reference (2); they will be briefly treated in Chapter

6 of this work.

#%In a more general close-coupling expansion including several elec-
tronic states, we also need other matrix elements of V, such as those

between the ground and excited states.
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number For the problem under consideration.) Thus, if we derote the

averaged static potential, which we'll call the inner molecular marrix

element (IMME), by

V(7) <X‘$;l\ll;¢|x"2;> , (3.4)

then we require

V™ () = <A | V) [ LM >

247 (3.5)

The IMME of Eq. (3.4) is also used in laboratory-frame formulations*

of the close~coupling method.<3)

In this chapter, we derive and calculate V(?S and Vi:? and dis-
cuss their properties. The electronic wavefunction for CO2 in the
ground state is the subject of §3.2, and the expancion of the charge
density is treated in 53.3. How the coefficients are used to calcu-
late V(?), the expansion of this quantity in Legendre polynomials, and
derivation of an expression for Véze(r) are topics addressed in
sections 3.4 and 3.5. The calculated static expansion coefficients
vA(r) are presented in 83.6 and some discussion of the physics inherent
in them follows. In §3.7, we chat briefly about the effective poten-
tial, and, finally, in §53.8 try to put 002 into some perspective by

comparing its electron interaction potential emergy with that of a

couple of more familiar systems.

*Although this approach was abandoned rather early in this research
for reasons to be discussed in Chapter 8, a short description of it
appears (for completeness sake) in Appendix 2.



3.2 The Mplecular Target Elecironic VWavefunction for Cround-State CO2

An essential first step in the calculation of the averaged poten-
tial energy V(?) is selection of an electronic wavefunction for CO2 in
the ground state linear coniiguration;* that is, we need ?.:,.(?iﬁa)
in a form amenable to manipulation in the calculation of V(?) and
subsequent quantities.

Fortunately, highly accurate near-Hartree-Fock wavefunctions for

CO, in the ground state at the equilibrium C-0Q separaticn Ro-c =

2
2.19440 a, have been calculated by A. D, Mclean and M. Yoshimine

(6)

(5)

and are available in tabular form. As we chose to adopt these

functions, we should look brieflv at how they are calculated and at

their quality.

The wavefunctions are obtained within the context of self-consis-

tent-field molecular orbital theory(T) in an incarnztion referred to

as the expansion fnrmulation.(a) All this really means is that the

state (Xli+ here) is represented by a2 configuration®® made up of SCF

molecular orbitalscg) doubly-occupied with electrons of anti-parallel

spins. The molecular orbitals, in turn, are constructed from an SCF
atomic basis set of double-zeta quality (see below) augmented to in-

clude polarization functions. The atomic basis is built from Clementi's

Hartree~-Fock atomic basis(lo) in a fairly complicated manner described

*A general discussion of molecular structure theory by the author appears
in Chapter 5 of reference (2). See also Chapters TV and V of Schaeffer's
text. (4)

**%Je are using the word “configuration" in the standard though perplexing
quantum-chemical sense as, in general, a symmetry-adapted linear combi-
nation of Slater determinants. See reference (4), Chapter I, and try not
to confuse this word with an electron configuration as discussed in
Chapter 2, which quantum chemists call an orbital occupancy. The field
is not noted for internal consistency.
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in detail in reference {5). On top of this, the rigid-nucleus

Born-Oppenheimer approximation(lll is employed i.e., the motions of

the electrons and the nuclei are treated separately and Ro-c is frozen

at some pre-determined value,

(10,123

To translate, the double-zeta (DZ) basis set contains two

functions (of the same symmetry type) for each occupled atomic orbital
in the separated-atoms limit. Thus, the DZ basis set is twice the
size of the usual minimu: basis set of molecular calculaticns.(a)

Each atomic basis function is a symmetrized linear combination of

normalized Slater-type orbitals (STO) of the form

[ |
(13 .’ani aed

- &1 ‘
z‘,(n!m k5= ---é-:ﬁ-'rk P A Y,_m (rh) , (3.6)

-
where k denotes the atomic center with respect to which L2 is defined
and ;p is a non-linear parameter which is chosen to minimize the
separated-atom energies. Linear combinations of the xp (called

symmetrized basis functions) are chosen to reflect the fact that each

MO belongs to one of the irreducible representations of the point

group of the target in the problem.(la) Thus for CO2 we have Us,cu.

T, sT s erc. MO's which are built of basis functions of the general

form xp-i xp,, where xp and xp, are centered on symmetrically equivalent
nuclei (the twe oxygens, for example) and have the same quantum

numbers n, £, and m, and orbital exponents Cp = Cp.. (Obviously this
problem does not arise for MO's centered on the carbon atom.) A typical

wavefunction for a closed-shell system composed of N occupied orxbitals



(14)

{2V electrons)?® is just the usual Slater determinant

P2, N = [&,uu (N 22102 §,(3)4(3)-- 4, (zu)F ()], ¢-37)

where the ¢i are the aforementioned appropriately symmetrized crtho-
normal MO's.

Calculations were also carried cut which supplement the DZ basis
set with higher-£ atomic basis functions chosen to represeut the
polarization of the atomic electrons in the molecule and optimized to
minimize the total molecular energy.(ls) It is usually the case that
the most important such functions are of symmetry types with angular
momentum quantum number £ correspondinz to the lowest unoccupied
atomic orbital in the separated-atoms limit. Thus, for CO2 they are
d-functions (L = 2). We employ these "double-zeta plus polarization”
(DZP) functions.** The resulting wavefunction has an SCF energy of
--187.7037 hartrees and an electronic energy of -246.0339 hartrees.
This compares to the "close~to-Hartree-Fock” SCF energy of -187,7228

hartrees.

*The molecular orbitals with m>0 (e.g., #,A,...) are, of course,

doubly degenerate. For example, we have " and ™ orbitals
u uy
each of which is doubly occupied.

**McLean and Yoshimine's final basis set consists of (5s 4p 1d 1f)
functions centered on each nucleus. The f functions further account
for polarization but are an order of magnitude less important than
are the d functions.
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Notice that electron correlation is not included in this calculation;
such could be accomplished via a configuration interaction calculation(16)
if desired (and monetarily feasible!). The SCF approximation breaks down
quite stunningly for most molecules as they dissociate(17) {(e.g., as
Ro—c - ), Thus, the SCF potential energy curves predict unreliable
electronic energy separations. For some systems the situation is even
more serious (e.g., SCF theory predicts(l7) the wrong sign of the dipole
moment for CO!). But we probably need not worry, since our work is done
at the equilibrium separation and ground-state CO2 is non-polar.

There is no point in reproducing the expansion coefficients and
exponents here; however, the orbital energies, shown in Table 3.1, are

of some interest. Also included in this table are the energies of

the lowest unoccupied orbital of each symmetry type. Notice that lsu,
(18)

'y

an anti-bonding (or "nonbonding") orbital, lies slightly lower in

energy than does the ldg bonding orbital. It is also important to
note that the lowest unoccupied orbital, ch, lies & whopping 0.22 au
(2.99 eV) above the zero of energy. This will take on an ominous
significance in the sequel.

The question remains: How "good" is the CO2 wavefunction we have
selected? One way to tell is to compare the expectation values of
various operators with observed quantities. An "energy criterion" is
(5)

provided by the dissociation energy, defined by McLean and Yoshimine

as

D = a%m B0 - E . (DEP), (3.8)

where Eat o (DZ) is the appropriate separated-atom energy in the



Orbital Energy_(hartrees)
10u -20.64862
10g -20.64358
ch -11.46382
30g -1.53037
20 ~-1.47832
u

4cg -0.80052

3o -0.74399
u

i -0.71315
u

i ~0.54382
b4

SOg 0.21691

27 0.22606
u

4o 0.81091
u

2 1.34995
g

Table 3.1

Close~to~Hartree-Fock energies for molecular
orbitals in COZ: occupied and lowest un-

occupied of each symmetry.

{(From reference

6.) The total electronic energy of COZ(XIZ;)

is -246.0339 hartrees.
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(5)

double~zeta approximation. For COZ’ McLean and Yoshimine report

De = 11.12 eV compared with the observed(lg)

value of De = 16.85 eV.
These authors report their molecular-orbital expansion coefficients
as converged to four decimal places. Further discussion may be found
in reference (6).

As one additional test, we extract the quadrupole moment* of 002
from our vz(r) calculated using the Mclean and Yoshimine XIZ; wave-
function and obtain ¢ = - 3.8598 eaoz. In summary, we feel that the
xlz; wavefunction employed in this calculation is probably at least
as accurate as other approximations to be discussed below.

There do exist a few other C02 wavefunctions in the literature
which we could have used. For example, Snyder and Basch in their
extremely useful tabulation of molecular wavefunctions,(zo) report
Hartree-Fock wavefunctions based on a double-zeta Gaussian basis set
for C02. However, their calculations do not include polarization
orbitals, were carried out only at the equilibrium 0-C separation. and

yield a total energy of -187.5377 au, significantly above that of the

McLean and Yoshimine wavefunction.

§3.3 Expansion of the CO, Charge Distribution

Given the normalized electroric wavefunction for CO2 in the

desired state, we can easily form the probability distribution in the
%
(

usual way as Vﬂz+ 1,2,...,N)W1€+(1,2,...N). A quantity which is
d b}

*Further discussion of q and its extraction appears in sections 3.5
and 3.8.



easier to think about (and look at) is the charge distribution,

defined as*

c(-rié') =N 1}’,;(1,2,“.,!0) w‘t.; (42,..,N) dT, (3.9)
9

where we integrate over the spatial and spin coordinates of all but
one of the target electrons. As its name implies, this function
describes the distribution in space of the electronic charge of the
molecule. It is independent of ¢, the polar angular coordinate, be-
cause CO2 in the linear configuration has axial symmetry. The proba-

bility of finding an electron in a volume element dv = rzdr sinB 46 is
simply p(r,0)dv.

A useful expression for p(r,8) in the case at hand, where
v (1,...,N) is represented as a (single configuration) Slater deter--
minant, can be obtained by writing the charge density as an expansion
in Legendre polynomials. First potice that by substituting the form

of Eq. (3.7) for W'E"’ in Eq. (3.9), we obtain
b

M 2
e 6) = E:i N; |4 (] (3.10)

where Nj is the occupation number of the jth molecular orbital (e.g.,
N. = 2 for a Og orbital) and the sum runs over the M cccupied mole-
cular orbitals (M = 9 for COZ)' For example, for HZ(XIZ:), we have

->
p(r,8) = 2|¢10 (r)lz. Of course, the charge density must satisfy the
4

*#This function is alsc variously known in chemistry circles as the
"one-electron density function' and the "probability density." Care
must be exercised in using the latter phrase, as different scientists
sometimes have different definitions.
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relation
&‘?(F’) &’ = N, (3.11)

where N, the number of electrons, is 22 for COZ'

It is now no problem to expand p(r,0) as

227/
e(r, 6) = AZ 2,(r) Py (e 6), (3.12)
=0

(21 and the prime

where PA(cose) is an ordinary Legendre polynomial
reminds us that only even-)A coefficients are non-zero. This is true
because the point group of the electronic state of C02 under considera-

tion contains a horizontal reflection plane passing through the

carbon nucleus (see Chapter 2).

Using the orthonormality relationship of the Legendre polynomials,

2

+1
S:lpa(,‘) Py 6Yde = 2573 S:\)' , (3.13)

where x = cosf, we find
v

a’l(rw: %‘y?(f,e) %(%e) s;ﬂ 9 Jg. (3'14)

(~]

This is the expression we use to evaluate the necessary expansion
coefficients.

In passing we should note that the Mclean and Yoshimine molecular
orbitals are nucleus-centered, and that therefore we must convert
them to a common origin, which we handily take to be the carbon nucleus.

The coordinate transformations represent a trivial application of



high school plane trigonometry. However, nothing is too trivial for a
graduate student, so we herewith present the relevant formulae with
reference to Figure 3.1 for the obvious definitions; to convert

-> <> ->
functions in L and r3 to spherical coordinates in Ty» use

62 =% +b® +2rbcoe 6, (3.15a)
=+ b —2rb coa 8y (3.15b)
i
- —— 2 2
cuGB S a6b (e~ 3= b ) (3.16a)
i 2 12
e O, 20 b (nz+b -'fz‘). (3.16b)

A computer program* was written to evaluate the integral in Eq.

(3.14) using Gaussian quadrature.(zz)

For small values of A (e.g.,
A £ 10), a 24-point quadrature gives results converged to <1%Z
(compared with a 32-point quadrature) over the range of r-values

required. For higher A(10 < X £ 30), a 64-point quadrature was

necessary. All values of ay (r) used in this work are converged to

<1%.

*Called, for no particular reason, EXPCD. Part of the logic of
this code was taken from a similar code, ALAM, written by L. Collins
cf the Atomic and Molecular Theory group at Rice University.
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9,. 9 B 93

0 C
(H (2) (3
] b .\ b —a ]

Figure 3.1

The geometry of the CO, molecule. The coordinates shown are related
by equations in the text.



Beyond abcut 5.0 a s the aA(r) can be fit tu an exponential

form, which obviates the need for further quadrature. Thus we fit to

-k, T
a,0)= Aje A r2 5 0g, ©I1D

using a two-point fit. We find

- il ﬂzé’éz) (3.18a)

&, =
> -1

AX = gi e_"" " , (3.18b)

where vy and y, are the values of al(r) at adjacent points r and r,.

By far the most expensive part of the calculation of the expan-
sion coefficients al(r) is the evalvation of p(r,0) at the required
8-mesh, determined by the number of points required to accurately
spline fit al(r) in calculation of vl(r) [see §3.5 below]. Fortunately
p(r,8) need only be calculated once for a given mesh, and a code to do
this* was prepared and used. A 64-point O-mesh and 131-point r-mesh
calculation of p(r,®) required 273 secondson a CDC-7600 computer.**
Then each al(r) required < 15 sec.

It turned out to be necessary to compute 15 al(r) [{.e., ao(r),
...,a28(r)] in order to converge the potential (see below). This is
an unusually large number of terms even for electron-molecule

scattering and is a reflection of the enormity of the target (as

discussed in Chapter 2). Each al(r) typically peaks at the 0-C

*CHGDIST by name.

*%0nce p(r,8) has been determined it is used again in the calculation

of the approximate exchange potential we use. See Chapter 4.
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separation of 2.1994 a and dies off elsewhere [except ao(r), which
rises near r = 0, reflecting the influence of the carbon atom at the
origin]. A few typical aA(r) together with aO(r) (on a logarithmic
scale) are graphed in Figure 3.2.

In addition to hand checks of selected aA(r), a useful verifica-
tion can be carried out by means of Eq. (3.11), Substituting the
expansion (3.12) in (3.11), we obtain

&0

©

Using our ao(r) calculated from McLean and Yoshimine's wavefunction
we obtain 22.0052 for the left-hand-side of (3.19).% Since the wave-
function used is valid to no more than four decimal places, the
probability distribution is expected to be good to no more than two

places, suggesting that this minute amount of excess charge is no

real cause for alarn.

83,4 Calculation of the Averaged Static Potential Energy and

Expansion in Legendre Polynomials

At long last we are ready to consider evaluation of the averaged

+
static potential, V(z) = < xlz;]vintlxlzg > of Eq. (3.4) and of the

matrix elements Véz?(r) = <2mlv(?)l2'm > of Eq. (3.5), which appear

in the coupled equations (3.3) to be solved. Basically, this is just

*The slight excess charge of +0.0052 shows up as a Coulomb tail in
vo(r), the P projection of the average static potential energy. We
artificially remove this from vb(r) as discussed below.



2,

(2)

Figure 3.2

Expansion coefficients of the CO, charge distribution (ground electronic
state) for a Legendre-polynomial”expansion. (a). A ='0; (b). A = 2,
4, and 6. [See Eq. (3.12).}
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a lot of rather unexciting algebtra; the key results are Eqs. (3.39)

and (3.40) for V{(r) and (3.43) for VEE?(r)-

Onward ic the algebra! We first assault the inner molecular
matrix element (IMME), which, in the Born-Oppenheimer approximation,

is
Vo < [et ey, et e, o
5 3

where we integrate over all N target electronic coordinates. Sighs of
relief fill the room as we realize that we can simplify this hideous
integral by taking into account the known form of the electronic wave-
function. First let's introduce the interaction potential energy of
Eq. (3.2) into the IMME. Assuming ﬁﬁ to be frozen and using ortho-

normality of ‘l’,z_,_, we obtain

9
V@52, A e S e)s ==, B (R) dr (3.21)
T R R, 'r; el T W -V 1w’ ¢ Y )

which we'll write as
V@) = Ii () + T, (), (3.22)

separating the first (nuclear) and second (electronic) terms. For

co,, @ =1,2,3, and Z1 = Z., =8 and 22 = 6.

3

5>
We can now reduce Iz(r) to a sum of somewhat more congenial

2’

one-dimensional integrals. To this end, let's write the electronic

wavefunction as

1
lk#(?‘.pﬁ%(-if[}.m 2,02 .- )‘N(N)j; (3.23)
5

where we have introduced the singly-occupied spin orbitals li(j),
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- ->
3 = Y = d . The
e.g., Al(l) ¢1(r1) a(l) and 2(2) ¢l(r2) R(2) etc ihe sum in
Eq. (3.23) is over the N! possible permutations of the N spin-orbitals,
and the factor of (~1)P enforces antisymmetry of ?ﬁz4 under pairwise
electron interchange. Substituting this expression into IZ and using

the spin orthogonality of the Ai's. we find that

Z_ X; (i) ')t;(i) d1 (3.24)

=)
-> - > -
where we've let ry = T to clarify* r = |r1 - er. Returning to the

M spatial molecular orbitals ¢i(r), we obtain

LarEnlead sy . o

(34

Notice that this is just
13
L. (7F)= f(a ) . dry, (3.26)

where p(:) is the charge distribution of the molecule (see §3.3).

Putting it all together, we have

3

\’(a =- 5%“_, t( . (3.27)

#We'll use r and ?V interchangeably ir this chapter, preferring the
&

>
former but using the latter when clarity demands it. Usually rl is

our dummy variable of integration.



This form is neither especially useful nor illuminating. However,
=Y
it is valuable as an intermediary. We really want to expand V(r) ir
Legendre polynomials and use the result to calculate ngz(r) Let's

- -+
first attack Il(r). If we let R be a vector from the carbon nucleus

directed toward the oxygen along the +2 direction, we have for CO2

()—-—‘—-s’ -8 =

7 -R| IT+R)

. (3.28)

Let us expand:(23)
A
1 2 K
— = ) (3.29)
l?-R" '\Zo ?> P(Qﬁg

where P = min (r,R), P, = max {r,R) and 0 is the angle between ;

-+
and R, Similarly,

I +R ) Z M-:L (- D P (COSB) (3.30)

where we have used Pk[cos(ﬂ-ﬁ)] = (-l)A Pl(cose). Therefore, we

have
¢ )
T,(0= -2 —142 e R(w®),
.-o >

where only even-A terms contribute in the second term since

A
1+ (-1)" = 0 for odd values of A.
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Turning now to 12(?), we merely shove the expansion for p(r,0)

in terms of aA(r), Eq. (3.12), into Eq. (3.25). We have

g(r,é-)‘ 2 2,“1 aa(.-ﬁgc’(?), (3.32)

(24)

where we have used the well-known relation

% (et ©) = 2;.}31 Y (6,d4). (3.33)

If we further expand l/r1N as

o0 A

1 1
==3 -;f;;;_*)i Pl @), (3.34)
N

iN .\:o >

where r_ = min(rl, rN) and O is the angle between ;1 and ¥N’ and

(25)

<

convert to angular coordinates via
P(m.@) Z Y"(f) (r )* (3.35)
.'2&4.1_

we obtain

L) E 2,\41 Y {f )*

As0O

®j“(2(") 1 YM (7, 3Jr .

(3.36)

Turning the obvious cranks, we acquire the handy form



¢ X
I (r ) 2 {”1—5\'2)("1}2—&7’1)1” r_t Jt’i} P) (Mﬁp )) (3.37)

where we have used the orthonormality of spherical harmonics,(zs)

q.\(”(?)* w2 (2 )de =S (3.38)

o/
V(Z)=2 U:\(f,,)%(mgu ), (3.39)
ATO
where
A A
P 3
v(r)“"’g‘\c -\+1 (:).':1) 3 (_.‘\f,,,,_) ri‘arl , (3.40)
N

with, as before, p, = min (rN, R) and p, = max (rN,R).

The final step is evaluation of
(™)
v () =ij (IN(@IY™ (2) 42 . (340
R0 2 £
This is a piece of cake; we stuff Eq. (3.39) into (3.41) and let the

dummy variable of integration be defined relative to the body-fixed

axis, 2 = R. Once again wheeling in Eq. (3.33), we obtain

G Z U(")J;:;rif DRSNS ETIE
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The integral of three spherical harmonics is more-or-less conveniently

given(27) in terms of Ciebsch~Gordan coefficients,* and we obtain

<! 200 1)(20%1)°
\:4‘;':(..)% - e CR0;00) CUOE mm).  (3.43)

Notice that the matrix X(m)(r) is symmetric and that there are
numerous zeros imposed by the triangle relationczg) ACRR'A) and the
restriction 2¥R'+A = even.

This matrix, though even less transparent than was the function
V(?), is worth a moment of Buddhistic contemplation, for it defines
the partial-wave coupling in the coupled-channel differential equations
to be solved in Chapter 6. For example, the fact that the symmetry of
the target forces all odd-A coefficients VA(r) to be zero means that
only Al = ,2 - 2'| = even channels couple at all. Thus, the problem
splits into sets within each m which are conveniently defined by the
symmetry of the e+CO2 system, e.g., Zg (m=0; £=0,2,4,...),

Hu(m =1, £ =1,3,5,...) atc. Such a simplification is worthy of
respect; without it we would have to solve more than 60 coupled

equations. With this potential energy, that could turn out to be
unbelievably expensive at best or numerically impossible at worst.

In fact, the largest number of channels required is about 30.

*As is probably apparent by the references so far, we use the
conventions of M. E. Rose, Elementary Theory of Angular Momentum(24)
throughout. We have found this book, though not flawless, to be the
least error-ridden of the standard texts on angular momentum. How-
ever, a Rose by any other name would be an Edmonds.




§3.5 Computational Details and a Few Analytic Integrals.

This short section describes the irreducible minimum one should
know about how we compute vA(r); results are held for §3.6. In
actual fact, we do not compute Vg&z(r) at one whack. Instead we
determine* vA(r), store it on disc, and use it (plus additional
contributions to be discussed in Chapters 4 and 5) in the integral-

(m)

equation code to determine Vll,(r) as needed. For convenience in our

discussion, let's write vh(r) as

b

V() = -f—S AL L

4
AO P.\u. MEyYYl I(r), (3.46)

where we have introduced the integral I(r), defined as

°c >
I 559. (1) m,) ry de, . (3.45)
Y 1

Clearly calculation of I(r) is the tricky part of the evaluation of

VA(r). We can rewrite this integral as

12 -
e X
—— 2 -
T =ra+1ja"(ri)':4 Jr1 a e 3;(1'1\ '..11 A Arl . (3.46)
o r

Any non-pathological integral of the form gbf(r)dr can be evaluated
by a Gauss-Laguerre quadrature.(30)
It is useful, though tedious, to further transform I{r). We

recall from section 3.3 that beyond a certain radius, say R, aA(r)

is available as an analytic function given by Eq. (3.17). To avail

*The code involved and here discussed is called EXPPOT and requires
as input the coefficients a, (r) over a pre-determined r-mesh for
all desired A.
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ourselves of this fact, let's write the second integral in Eq. (3.46)
as follows: R
Y 1-) lj b
- = 1-)
r _S‘aa_\(n-‘h:_1 Ari r r:l,\(r,)g dr, [ a(r< R)J
r

>

+ r"f:,(g) 1‘11’7‘ dr
R’
where R' = max(R,r) and the first term on the right-hand side

(3.47)

vanishes if r > R. We can use Gauss-Legendre quadrature to evaluate

the first integral on the RHS,

We would like to put the second integral,

xQ
T=r ga (r,) 1 A dr 5 (3.48)
ef

into a form amenable to evaluation by Gauss~Laguerre quadrature, i.e.,
00 - . .
é e f(w)dw. A couple of transformations do the trick!

First we let u = r, - R' and use the known form for ax(r) for

r > R to get

o

-~ - ! ...d 1")
T- A, e 4“Rfe "u(u+l2’) du. (3.49)

]

If we Eurther introduce w = aAu, then we can write

T"\S\e—w{(w)d w, (3.50)

with

)1-)

(3.51)

*g(w)~ ('“W'I'R



Thus, at this stage, we have a3 marginally more tractable expression

for I1(r), r R
i 2. -
Itr)=rmy3afr1’a* “dry +r'\53;(‘1~.)f; ‘e, [SCr=R)
° r (3.52)

A ' C°
.g.‘-a ;z&. ea"°<\‘? f; GE"“DJ:(uJ) cllai.
-3 ©

’

Now consider the case r > .., for which our integral becomes
e r
._j'_ 3 )rh-zd +i_ g(,),.m—zd _’J'
I(r)=r.\+.1_ Ao ) dn ¥ S ) eI dn 2 Jl Gy
R

©

In the second integral we know an analytic form for aA(r), our old
friend Eq. (3.17). We can combine this result with Eq. (3.52) by

defining R'' = min (R,r) and writing, finally,

I(r) = Ii(r) +I2a () +IZ;(‘-) +:T, (3.54)

where we have defined the following integrals

L4

R
i
I,0)e l_ﬂ.fa,\(ﬁ) ri"*"’ Ari- : (3.55a)
L
T2l 37 S0oR) | 3, ()2 dy, (3.55b)
% 1-2
I,z rA S$(r<R) Sa,‘(&) 9 d".:l . (3.55¢)
r

The reason for this manipulation is not merely to consume space.

Integrals I1 and IZb (if appropriate) simply must be done numerically.
However, analytic forms for IZa and J° can be developed (for certain
cases) and used for purposes of checking the validity of the

quadrature and coding. (Such tests are useful at this stage since
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we're pretty far along in the problem numerically.) Also the form

(3.54) is very convenient for coding purposes and efficiency.

For J, we find that for A < 1,

. .
(1-)

A
~% R i 1-) -2
T(rl=raﬂ"e ARQZO (1-2-2)! 4 241 (r") .
= : A

(3.56)

As r increases, J get progressively smaller monotonically. 1In the

code we don't even bother to calculate it for r beyond the value at
R -8
which [Jf < 10 .
The second integral which is defined in a region where we have an

analytic form for aA(r) is I, . This can be shown to give (for r>R)

2a

i .“_l*z 1 1 A+2
. - = +2-2
IZa"‘:r-_“i AA(MZ)! C‘\-e A 22-‘—0 (.A +2-2)! x““"’ r ;) (3.57)

where
A2
~ R 4 1 242-2
: '\
CA e 1_2 m2-n! pa R ) (3.58)
=0
Both J and IZa have been evaluated numerically and analytically and
give identical results to eight places. The integrals I, and I, must

1 2b

be done numerically; we use Gauss-Legendre quadrature.
In order to minimize the number of points at which aA(r) [and
hence p(r,6)] must be evaluated, we first perform a cubic spline

fit(3l) of aA(r) over the range 0 < r < R, where R is the value at



which we can use the analytic form (3.17). This is a third-degree
interpolation scheme which can be highly accurate for well-behaved
functions. 1In point of fact, we found that extreme care must be
exercised in regions where the function being fit is thought to change
slope rapidly. As the graphs of Figure 3.2 suggest, in our case this
is in the vieinity of the oxygen nucleus (r 2 2.2 ao). The effect
here alluded to is illustrated in Figure 3.3, which shows the spline
fit of ao(r) for two fits, one a 37-point fit, the other an 82-point
fit. Put simply, the spline fit requires several mesh points for
each order of magnitude change in the function to be fit or in
regions where the curve is rapidly changing slope.

The "standard spline mesh" we finally settled on for all ak(r)
is 0.001 to 1.701 in steps of 0.1, 1.701 to 3.001 in steps of 0.05,
and 3.001 to R in steps of 0.l.

Each VA(r) required about 20 seconds of 7600 time to determine for
the standard integration mesh of 453 points.*

One final computational point should be mentioned. We remove
from VA(r) the leong-range tails for A = 0, 2, 4. The A = 0 tail is
the spurious excess Coulomb tail alluded to in section 3.3. The
A = 2 tail defines the quadrupole moment and the A = 4 tail the
hexadecupole moment. These latter two tails are added in again at

the integral-equation stage of the calculation; they are deleted

*See Chapter 8 for a discussion of the choice of integration mesh
and a description thereof.
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Spline fits of the A = 0 expansion coefficients of the CO, charge
distribution, Two fits are shown: a 37 point fit (solid zine) and an
82 point fit (dashed line). Circles are points calculated by direct
quadrature.



here so as to minimize the number of coefficients vl(r) which must

be stored. Thus we have*

(r) ~— Lex (3.59)

r->00 v 2

where the excess charge was found to be 9oy = 0.0052. Similarly, we

find that
(,.) ::-; - ’E; ’ (3.60a)
with q = -3.85981 ea ’ and
X
'U; Fom = (3.60b)
with x = ~-9,38166 au. We shall have more to say about the sign of q

in section 3.8.

§3.6 Results for CO2 and Discussion

Several typical vA(r) are shown in Figure 3.4. Little need be

said about these plots. However, it is useful to examine the behavior
of vA(r) near r = Ro-c for high)d . We can see from an examination of
Figure 3.5 and Table 3.2, which shows the value (in hartrees) of vl(r)
at r = 2.19 a, (essentially the peak value), that the full static
potential is exceedingly hard to converge.

The reason for this behavior and an extremely important key to the

#Cutoff functions are used rather extensively in handling the long-
range terms.
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Expansion coefficients of the static e-CO, interaction potential energy
in lLegendre polynomials for A = 0, 2, 4, and 14.
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Expansion coefficients of the static e--CO2 interaction potential
energy for A = 22 and A = 28,
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A vk(r = 2.19 ao)

0 -~0.8805
2 -3.2900
4 -4.9437
6 -5.6341
8 -5.9516
10 -6.1181
12 ~-6.2237
14 -6.3028
16 ~-6.3680
18 ~6.4230
20 -6.4700
22 ~-6.5083
24 -6.5392
26 -6.5631
28 ~6.5807
Table 3.2

Values of the expansion coefficients of the averaged static
potential v, (r) in hartress at a point near the oxygen nuclei.
[For this calculation, Ro-c = 2,19440 ao.]



computational problem at hand can be understood if we notice from Eq.

(3.40) that each vx(r) can be written as

- ve .go /4

'U:\(") = UE\" (r\ + U'i (r), (3.61)
where

b ]

- P<
nuc(r) \o i‘P:;:-: ) (3.62a)
"(r) a, (v, < rodr (3.62b)

2x+1 LTI I T S )
PY > 1

Thus we have a nuclear and an electronic contribution to each vA(r).
Clearly, the nuclear part is trivial (and fast) to calculate for as
many A as necessary. Au contrair, vil(r) takes considerable computer
time to evaluate. Moreover, once we reach fairly large values of A,
we must ask the question of just how realistic it is to try to extract,
say, P40(cose) information from an electronic wavefunction, even one
good as Mclean and Yoshimine's.

Fortunately, this problem can be resolved., By examining the
percentage contribution to vA(r) of the electronic part, we find that
vil(r) is negligible above about A = 30. For example, vil(r) con-
tributes 27%, 20%, and 107% tc vl(r) for A = 16, 22, and 28, respect-
ively. This behavior is also reflected in Figure 3.6, which shows
the electronic contribution v (r) for some of the cases included
in Figs. 3.4 and 3.5. (We here consider values r near Ro—c o)

In point of fact, the convergence trcuble reflected in the graphs

of vA(r) we have looked at arises because v;uc(r) narrows very grad-
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ually, the value at r = Ro—c converging slowly to a Coulomb
singularity for V(;). There is an upper iimit in the practical
coupled—-channel calculation imposed by the fact that for a fixed
number of channels, N, corresponding to some ultimate partial wave,

(m)

%nax’ the coupling matrix elements in VEQ'(r) are zero for

A > 28 , as can be seen from Eq. (3.43).
max
Details of the convergence of the cross section in A are more
appropriately left for Chapter 8. Here let us note that im the final

1
calculations we used 15 vf (r) and 41 v?uc(r), corresponding to

maximum XA of Ael = 28 and A"Y® = 80. This is a sufficient number of
max max

terms to converge the averaged static potential V(?) to <17 and hence
enough for the calculation of the cross sections. The essential

point here is that one does not need vil(r) for high A but can't do
without v;uc(r) for high A. Physically, this reflects the massive

size of the CO, molecule, with an internuclear separation of 4.3888 a0

2

from oxygen to oxygen, and the hefty positive charges on the nuclei

(z =6,z =8).
c (o]

§3.7 An Introduction to the Centrifugal Barrier and its Physics

Examination of the expansion coefficients v,{r) is helpful to
the perplexed physicist trying to "visualize" the highly complex

interaction potential. However, it is the matrix elements

e—CO2

Véig(r) that appear in the coupled equations we eventually must solve
and which reflect the coupling between partial waves. In the last

m . . . R
analysis, Viﬂz(r) contains other contributions than the static poten-

tial (see Chapters 4 and 5). However, there iz some valuable insight
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to be gained by a study of the diagonal matrix element.

To get into this subject, let's write the coupled equation (3.3)

as

éi--?ﬂfl’-zv""’( +1 ‘m)( )_ZZ (m() fn’l’
i = o )Y ()5 fv\!u, Ayl (3.63)

and define the conventional effective potential as

0(4+1)

- . (3.64)

VR ayo+

The second term is Viif(r) is called the centrifugal barrier. For

large %, it adds a repulsive part to the attractive static potential
matrix element Vgﬁ?(r) and therefore crudely speaking, acts to "keep
the electron away from the core region” near the nuclei.

The ramifications of this fact both physically and computationally
are of enormous importance, and, while some of the analysis must be
deferred to Chapter 8, it is appropriate here to introduce the general
ideas and look at some pictures in order to lay the foundations for
discussions yet to come.*

The importance of the centrifugal force to electron-molecule
scattering has been elucidated by Fano(32) and applied in an approxi-
mation called "low- £ spoiling."(33) Simply put, the centrifugal
barrier for large-% partial waves is so large that it prohibits

"information transfer" between the wavefunction in the internal region

(roughly inside the classical turning point) and in the external

*None of the admittedly qualitative (or intuitive) points we make
in this section will be altered by the inclusion of exchange or
induced polarization terms into vA(r).



region (beyond the barrier). Therefore, regardless of what happens

to the high-% partial wavefunctions near r = 0 (they grow very

rapidly as r increases from zero}, they themselves will not contribute
to the asymptotically-defined phase shifts except through indirect
coupling. In more physical terms, to a certain approximation, £ can
be considered a good quantum number for large enough values of £, and
the corresponding partial waves uncouple asymptotically. The validity
of this argument is clearly system dependent as well as energy depen-
dent. We would like to use the picture it suggests to think about

the physics of the e-CO, collision without actually making the "low-%

2
spoiling" approximation, which would be of dubious merit for CO2

L
We thus adopt the point of view that the barrier in some sense
"contains" the anisotropy of the molecular force field for partial

waves with large 2.

We begin with the expression for the diagonal matrix element,

A /
’ .
V‘;"(,.)=3 ClU mO) (LA L 00) vy (F), (3.65)
AsQ
where xcont = 22hax is the upper limit of the A-summation and, as
usual, only even-A terms contribute. One potential problem (sic)

becomes immediately apparent: we rarely have access to vl(r) for
values of A as large as ZRhax (which can be as large as 120). What
saves the day in this case is the centrifugal barrier, which for

large % so overpowers Vé??(r) that the effective potential is un-

*In fact, for some symmetries and energies, this approximation
gives cross sections off by as much as 60% from the true answer.
This 1s illustrated in Chapter 8.
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affected by the neglect of higher-A terms. These terms do make a

Cer (m) .. . .eff " . . "o
difference to Voo (r), but it is Vo (r) that "participates” in the
scattering. This is illustrated in Figure 3.7, which shows two cases,

£ =6 and £ = 12, with two values of A for each [A is defined
max max

to be the maximum value of A actually included in the summatiom in

Eq. (3.43)1.
This problem out of the way, let's look at some typical effective

potentials. For m = 0, Vi;f(r) for £=1, 2, 3, 7, and 10 are shown

in Figure 3.8. The behavior of V;;fo(r) is typical of other high- £
cases. Notice how truly enormous VZéf(r) is for £ > 7; clearly
these partial waves will be of no consequence beyond 3 or 4 ao.*

Another interesting (and verv useful) effect is on display in
Figure 3.9, which shows VZif(r) for m = 0, 1, 2, and 3. 4As m increases,
the effective potential is increasingly dominated by the pure 1l/r
barrier. This suggests that the dominant contributions to the cross
section will arise from Z(m = 0) and Il(m = 1) symmetries. This, in
fact, turns out to be the case; higher-m symmetries do not “experience"
enough of the strong short-range potential to be substantially phase
shifteid.

Lest we get carried away with interpretations based on these
admittedly appealing physical pictures, a caveat must here be issued.
These are fairly crude, essentially potential-scattering arguments.

T

In fact, only in a very restricted "asymptotic" semse is it meaning-

ful to even talk about an "% = 3 electron;” in fact the £ = 3 partial

*This point, craftily inserted here, is the key to the truncation
procedure to be discussed in Chapter 6. It is most emphatically mot
true that these partial waves can be neglected alvogether; they
strongly couple to lower waves in the region near the target.
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The effective potential energy for e-C0, scattering (a) for 2 = 6,

m=0 and (b) for £ = 12, m = O. 2
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wave is strongly coupled in the small-r region to £ =1 and R =5
waves, and so forth. Nevertheless, the effective potential provides

a useful tool in trying to understand the physics of the collision
process and, as we shall see in Chapter 8, in making certain important

decisions at computation time,

§3,8 Some Terminal Remarks on the Static Potential and the

Quadrupole Moment

In concluding our study of the static potential, we would like to
corment briefly on the reason for the quadrupole moment of CO2 being
negative and to compare static potentials for a few other systems to

that of COZ'

The quadrupole moment tensor is defined in general as

®“(‘= %S(’tﬁgr‘,- r"S;P) AT) (3.66)

where pt = pt(x,y,z) is the total charge density (of electrons and
nuclel) and rl = x, r2 =y, r3 = gz, The integral is carried out over
all space, dT = dxdydz. Since the iinear (fixed-nucleus) configuration

of €O, at equilibrium has no dipole moment, the quadrupole moment is

2
origin~independent. Moreover, CO2 has a two-fold axis of symmetry

and GGB is a second-rank tensor, so the quadrupole moment can be

uniquely specified by a single scalar quantity

$= @z% =-2 C-DM3 =~ 7) @33 , (3.67)



and the off-diagonal elements are zero.

A selection of values of q for CO2 are given* in Table 3.3,
Given the range of values that have been determined by various in-
vestigators, we do pretty well. It is the sign of q (negative) that
is of interest here; more familiar systems (e.g., Hz, NZ) have posi-
tive quadrupole moments. In terms of the charge distribution,(aa) it
is generally true that negative charge distributed in a plane perpendi-
cular to the internuclear axis R will contribute z positive amount to
q while negative charge along ﬁ contributes a negative amount to q.

In fact, a (very) simple model for Co, can be conjured up to

explain why q < 0, Referring to Figure 3.10a and using the drastic

simplification that

3
z-.— Zi g‘- gl" , (3.68)
=

we argue that carbon, with Z = 6 and an atomic orbital occupancy of
1522522p2, has two valence electrons while oxygen, with 2 = 8 and a
1522522p4 occupancy, has two "valence holes" and a stronger nuclear
charge. We suggest that a small amount of negative charge will be
pulled from the central C to each O giving the structure shown in the
figure. In fact, A. D, McLean has determined(35) that this is the
case; the partial charges are -0.22e on each oxygen and +0.43e on the

carbon. Using Eq. (3.67) and these charges, we get q = ~2,12 eaoz,

clearly negative and not really too bad a2 value considering the

#It may be useful to note that to convert q from CGS units for q,

2 2
10 esu-cm , to atomic units eao » one multiplies q times 0.7445.
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Figure 3.10

Crude models of (a) CO2 and (b) H, used in the text to illustrate
features of the quadrupnle moment,



q (CGS units) q {atomic units) Source

4.3 x 1020 -3.2014 34
~2.50 x 10°2° -1.8613 35
_5.25 x 10~ 2° -3.9086 36
-26
~4.3 % 10 -3.2014 37 (exp)
_5.18 x 10" 28 -3.8598 us
Table 3.3

A modest anthology of quadrupole.moments for CO2
including the present work.
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appalling crudity of this model. The reverse case obtains for H2,
where the structure of the bonding is considerably different from COZ'
Here an excess negative charge builds up between the nuclei as in
Figure 3,10b; this produces bonding in H2 and leads to a positive
quadrupole moment, q = +0.49 eaoz.

As should now be apparent, CO2 is not your average target for
scattering calculations gsuch as the ones reported here, and it is
probably not a bad idea to present a ccuple of familiar benchmarks
for comparison. We've chosen those old standbys, H2 and NZ' In Figure
3.11 we have plots of vA(r) for Hz with % = 0,2,4,56. The convergence
in the vicinity of the nuclei r = 0.7, is much more rapid than in CO2
as attested by the fact that for H,» VA(0.7) = -1.2027, -2.7073,
-2.8129, and -2.8149 hartrees for A = 0, 2, 4, 6, respectively. The
first three vx(r) for NZ’ for which RN-N = 2,068 a , are shown in

(39) Finally, vl(r), v3(r), and vls(r) in CO are shown

(40)

Figure 3.12a.
in Figure 3.12b, 0f course, for CO, a heteronuclear mclecule,*
even- and odd-A coefficients contribute to the expansion of V(?).
Granted that CO is not am exceedingly strong polar molecule, the
contrast with CO2 is still rather striking.

We believe our static potential for e--CO2 collisions to be quite
accurate. It is, however, the easiest part of the interaction poten-
tial to handle, because given a reasonable amount of computer time and
stamina, it can be calculated ab initio and with great accuracy. Not
so the far more insidious exchange interaction. Guile and craftiness

are required to correctly incorporate these contributions and we turn

to exchange in the next chapter.

%In Figure 3.12b, r is measured from the center-of-mass of the CO
molecule. This 1s standard operating procedure in dealing with
polar molecules.
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Expansion coefficients of the e—H2 static interaction potential energy
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Chapter 4: nclusion of Exchangg“Interactigp§7ggénﬁggggygg=:;=g£u

Local change Potential

It is the customary fate of new
truths to begin as heresies and
to end up as superstitioms.

-T. H. Huxley
(1825-1895)

In order to attain the impossible
one must attempt the absurd.

=Miguel de Unamuno y Jugo
(1864-1936)

§4.1 Introduction: The Need for Approximate Treatments of Exchange

Exchar je effects are encountered in virtually all quantum mechani-~

cal problems which involve interacting identical particles.(l) They

are a consequence of conditions imposed on the wavefunctions which
describe states of the system; these in turn arise from the anti-
symmetrization requirement, which states that the full system wave-
function ¥(1,2,...N) must be antisymmetric under pairwise electron#*
interchange, e.g., ¥(1,2,...,N) ;—:&; -¥(1,2,...N). In the orbital
approximation, whick we implicitly use throughout this work, this

condition or ¥ has direct consequences through the Pauli Exclusion

#This in turn, is a consequence of the fact that electrons
are fermions. See reference (1i).
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Principle. 1In fact, the double occupancy of non-degenerate molecular
orbitals by electrons with anti-parallel spins is one wanifestation of
this principle.

The effects of electron exchange pose difficulties in both
structure and scattering problems. In structure theory (and in some
formulations of collision theory) one must deal with Slater determi~
nants instead of simple product wavefunctions (as we saw in Chapter 3),
with the Hartree~Fock equations rather than the vastly simpler Hartree
theory,(z) and co forth. Essentially, the source of all the trouble is

the fact that exchange is a non-local interaction.* This gives rise,

for example, to the non-local exchange kernel of close-coupling
formulations(a) and to exchange integrals in Hartree-Fock theory;<14)
all of these are non-~local terms in already complicated equations.

To suggest the magnitude of the problems caused by exchange in
scattering calculations, it is useful to glance briefly at the coupled
integro~differential equations which obtain when exchange is taken into

account. We'll pick a very simple (perhaps unrepresentative) case:

collisions in the body-frame (fixed-nuclei approximation) with no

e-H2
. . 1.+ . .(3)
electronic excication (Hz in the ground X Zg state)., We find
R
[AT‘ =z th U —Q;VM, (P15 (n) (4.1)

20
= KOt v Yu™ (e ) dr, .
.IZ’-S 171 2 i l"1

*That is to say, the value of the exchange potential at ; depends on
the value of the wavefunction over all space. See Eq. (4.2).



The exchange kernel K(£L'; rlr) in Eq. (4.1) is defined as

K(,Q,e" \ r“S'!P,”(r rz,R]YM(r')[ ot F, 21 )

_zv:-%t"]lk‘ "3;R)Y (I’ )dr 43 A\" (4.2)

%

where we have let rqy = r = the scattering coordinate for clarity in
Eq. (4.2).

Physically, one can think of exchange as having a two-fold
influence on the scattering wavefunction in electron collisions.*
First, exchange behaves like a short-range attractive interaction in
its effect on the wavefunction. 1In fact, considerable success was
achieved by Lane and Geltman(s) in an early study of e-H2 scattering
in the close-coupling formulation by "mocking" exchange with a very
simple, local, short-range, attractive (square well) potential energy
term. In some respects, this work prefigures our own treatment of
exchange.

Second, exchange, manifested through the Pauli Exclusion Principle,
acts to prohibit a scattering electron of given synmetry** from
occupying any of the filled target orbitals of that symmetry. Thus,
a Ug scattering-electron wavefunction in an e—H2 collision is ortho-
gonal to the core log molecular orbital. This important point, used
as the basis of a treatment of exchange by Burke and others,(7) was

applied by N. Lane and the author in our pseudo-bound-state approach

*Mathematically speaking, in the Hartree-Fock theory exchange terms

also act to cancel self-interaction terms in the HF equations.(ls)

#**This is a pretty loose useage. We are referring to decompositions of
the scattering-electron wavefunction asymototicallv inteo partial waves

(6)

and the consecquent identification of symmetries.
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to electron-moleculz scattering. For a variety of reascns to be dis-~
cussed below, we choose not to adopt this procedure.

Although methods exist for coping with the ghastly computational
problems that arise when treating exchange® directly in the coupled
equations,(3) these would be risky at best in the context of our parti-
cular case. The numerical problem encountered in doing just the static
problem (see Chapter 6) are sufficient to make us tread warily when
considering the numerical solution of more complicated equations for
e—CO2 collisions. The same argument applies to the application of
Burke's orthogonalization procedure, although the nature of the possible
numerical difficulties inherent in this approximation is less clear.
More discussion of this alternative can be found elsewhere in this
chapter.

We chose to begin with the approach which seemed computationally

the easiest, namely the use of a local exchange potential. Such

potentials have a long and distinguishad history in structure theory

and have been applied with some success to electron-atom coilisions

(see 84.3). Only one electron-molecule collision has been so treated.(s)
In that case the molecular target chosen, HZ, was highly spherical.

In light of this fact and the enormous difficulties associated with
more precise treatments for collisions with big molecules, the present

application has some theoretical and practical significance beyond its

immediate motivation: to get the e—-CO2 problem done correctly.

#In fact, the formalism for dealing with this case in the integral
equat:ons approach has been worked out (see discussion and references
in Chapter 6). However, this technique necessitates separation of the
exchange kernel (an approximation) and could be numerically formidable.
To date it has not been applied to real problems.



The game plan for this chapter is as follows: 1In §4.2 we get
acquainted with local exchange potentials by reviewing and commenting
on their application to structure problems. The use (and misuse) of
such approximations in scattering theory is considered in 84.3, which
leads us to the derivation in §4.4 of our particular choice of poten-
tial. Results for CO2 are presented in §4.5. We conclude this chapter
with a short discourse on alternate ways to include exchange, models
and otherwise.

The underlying idea behind all this is to develop a physically
reasonable model of the exchange interaction. The best we can hope
for is a local potential which in some average approximate way mimics
the true effects of exchange; we would prefer (for aesthetic reasons
at least) to avoid artificial scaling or adjusted parameters at this

point. That this can be achieved is the thrust of this chapter.

§4.2 Local Exchange Potentials in Bound-State Problems

In 1951, J. C. Slater introduced to molecular physicists every-

9

where the concept of a local exchange potential. Based on the free-

electron-gas model of an atom (or a molecule, for that matter),
later's work suggested that one could take account of exchange in an

approximate sense vid a local potential proportional te the one-third
pover of the local electron density. A second important concept

introduced in the same paper was that of the exchange hole (or Fermi

hole). This is a region surrounding each electron in the target; it

consists of a "deficiency" of electronic charge of the same spin as the
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electron at the center.®* Embedded in the notion of the exchange hole
is the fact of the short-range nature of this interaction.

Since its introduction, the Slater Exchange Potential and related
ideas have been widely applied to problems in atomic structure. In
fact, it led to the SCF-Xo method, which is currently employed exten-
sively in structure calculations in a diverse spectrum of fields.

. Let's look briefly at the aspects of this theory which are relevant
to our problem. At the core of the Slater exchange potential is the

10 of the system. Let's

aforementioned free-electron gas (FEG) model

suppose that the electrons are at T = 0°K and occupy one-electron orbi-

tals. The energy of the uppermost filled orbital is defined to be

the Fermi Energy, EF' The picture we have of the free electron gas is

of the electrons lying below the Fermi ernergy and floating about in
(11)

accordance with Fermi-Dirac statistics. In other words, the

electrons are treated as non-interacting fermions. Exchange is there-

fore taken into account only through the Pauli Exclusion Principle; no
"exchange interaction" is explicitly included in this theory.

This picture is closely allied to the free-electron approximation
for solids.(lz) It leads, as we shall see, to a local exchange poten-
tial Vex based on the principle of translational invariance in the FEG
and to the famous average exchange potential V;x. It is worthwhile
commenting on derivation of Vex(;); details can be found in reference
(13).

The wavefunction of an FEG electron (conventionally in a Hartree-

Fock orbital) is given by a plane wave, viz.,

*Slater likes to divide the total electronic charge into two parts,
one due to all the electrons with spin up and the other due to
electrons with spin down.



ﬁ
. R d
1 et k; ¥, 4.3)

U, (#) =

<>
where ki is the electron wavevector. The distribution of these elec-

11

trons in the gas is given by the Fermi-Dirac distribution functiom,

1
N.() = expl(E:-E) /8, T 1-1

) 4.4)

for an electron of energy Ei. Here k_ is Boltzmann's constant, kB =

B
1.3806 x 10"t erg/ek.

Very briefly, to obtain Voy W€ begin with Slater's form of the

4
Hartree-Fock exchange pot:ent:ial(1 ) for an electron with coordinate
%5 i.e.,
n

k=a | U (=) “"(l;)

u‘.‘ (xJ_ ) uﬂ; (x,)

2
e

12
where x. denotes spatial and spin coordinates and the sum is over all
one-electron spin orbitals. Into this expression we substitute the
plane-wave form (4.3) for the orbitals uy and u, and then average over
the potentials acting on electrons with various wavevectors. The
derivation is extremely involved and need not be repeated here since
we didn't use this formulation of vev'

The result is

Y

V

4X

L
3 M\?
_4[;3-1; -';4;) By, (4.6)
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where N/v is the density of electrons in volume v, N is defined by

L}

4.7)

-~

n

4
-

and

1-5* 1
Fly= =+ -,_‘—g M{I—f{ ) 4.8)

->
with kF the Fermi wavenumber and k the wavevector of the electron

under consideration. Averaging over occupied states in the Fermi

distribution, Slater obtains(ls) the famous averaged exchange poten-~
tial,*
L
— 3 N)Y)3
V, =-3(3v %] - x

It is useful to rewrite Eq. (4.6) as

o (7)== 2 [30%1% Flyp),

129
where we let p = N/v.
We can now make a small but significant improvement on Eq. (4.10)
by observing that usually we can determine the charge density of the
>
system®™* as a function of r. Let's use this fact and the FEG approxi-

-»
mation to derive an expression for Vex(r) involving the Fermi wave-~

->
vector as a function of r. The density of states in energy (number of

states/unit volume)} in the FFG mod -1l is given byclé)

*This uses iﬁszﬁéfﬁlﬂh?mthc average of F(n) aver the Fermi sphere is
3/4.

#%Gpe §3.2 for the appropriate definitions and notation.



H(e) = 1%2 l% ,}E ) (4.11)

where V is the volume under consideration.* The total number of par-

ticles in the "box" (volume V) which have energy E < E_ is

3 \Y 23/" 3
N:S;&(E)JE = =5 EF,‘. (4.12)
(<]
Therefore the Fermi energy is
/
E.= =1=-_- C 311‘(’ 3 > (4.12)

where p = N/V is the density of electrons.

1,

Let's now replace” the FEG constant electron dersity p by

M
the full quantum-mechanical density p(r) = X Nil¢i(;)l2, obtaining
i=1

oy 1 a 2/3
E.(P) =3 [3wp (™I

(4.13)

- >
Hence the Fermi wavevector, kF’ is also a function of r, since

leF(?-") =~1 2EL(P) . (4.14)

In terms of the Fermi wavevector, we have [from Eq. (4.10)]

*This expression is derived by applying periodic boundary conditions
on a volume V which is small compared toc the total volune of the gas
but large compared to the deBroglie wavelength A. Clearly, this
breaks down at lower energies.
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V, ()= —5 Rk APIF(y). (.15)

We should keep in mind that the discussion is valid for bound
states of the N-electron system. Thus, Vex(?) is an approximation to
the interaction potential energy of a bound electron due to exchange
with the other N-1 electrons in the system; the entire electronic
system (all N electrons) is described by the charge distribution
p(2).

A word or two should be said about K in Eq. (4.3). UWe would like
to suggest a very crude but nonetheless useful interpretation of this
quantity in the context of the FEG model which we'll employ in extend-
ing the theory to collision problems. In Slater's Theory, E, the
wavevector associated with the electron under consideration, is not
considered to be a function of ?; it eventually disappears when he
averages to get V;x' If the electron energy is large enough and we
are careful, we can think of k in a "classical sense" as a local
momentum of the accelerating electron. Suppose the electron's total
energy is Eo' A reasonable way to get an expression for k would be

to use the correspondence principle and write

E T+ V (4.16)

°

i T
2 k

]

_,VS(;;) (@), (4.17)

where VS(?) is the static potential of Chapter 3. This relaticnship
yields
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lez(f‘")=2[50‘\’s #-V,, (;-”)] ; (4.18)

clearly E =‘E(¥), son = n(;) by Eq. (4.7). This interpretation of the
vavevector ﬁ, although good only in a very restricted sense for the ¢
case under consideration in this section will have importance impli~
cations when we get to the electron scattering problem.

We should probably re-emphasize the point that this entire
theoretical structure is predicated on the rather crude FEG model
and is only valid provided that the local wavelength of the electron
under consideration, A(;) « 1/k(¥), is small compared to the distance
typical of substantial changes in the potential. Certain regions
of r will not be treated correctly in this picture; e.g., very
small and (or course) very large r. The range of r in which the

a7 as the Thomas-Fermi

model is applicable is often referred to
region. For large systems, the TI' region can be quite substantial in
the sense that a considerable fraction of the electronic charge
distribution is concentrated therein. 1In such cases suclh a local
exchange approximation can be quite successful.

In closing, let us observe that the approach outlined herein

(18) which begins

differs substantially from the Thomas-Fermi theory,
with the assumption that thr averaged atomic potential in which an
electron finds itself varies slowly over a deBroglie wavelength. This
potential is taken to be approximately constant, and the system is

treated as a FEG, 1t is further assumed that the gas "fills" the

potential; in other words, that
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E =EF(#’)=-~\!("-"). (4.19)

Using this assumption and Poisson's equation, it is possible to derive
an equation relating the charge density p(;) to V(;) and to thence
solve for p(;). (In our apprcach, we simply pull p(;) irom the
quantumn mechanical structure calculation.) Thus the Thomas-Fermi
theory amounts to a statistical averaging process which effectively
(19)

"smears-~out"” the structure of the true electron distribution.

This approximation would seem to be doomed from the start for highly

aspherical molecules.,

§4.3 Local Exchange Potentials in FElectron Scattering Theory.

The importance of exchange in electron-molecule collisions® is

well—established.(zn) Some of the procedures that have been developed
over the years to introduce exchange effects into problems in these
areas were mentioned in the Introduction to this chapter. The local
exchange potential idea has been employed to some extent in work on
electron-atom scattering, and a useful though brief discussion of

this work together with a presentation of a new approximate potential

appears in reference (21).

#In cases of strongly polar (heteronuclear) molecules, it is likely
that the long-range interactions {especially the r—z Pl dipole
interaction) so overwhelmingly dominate the total and momentum
transfer cross sections that exchange effects are negligible by
comparison. However, short-range effects can be important in

(22)

determination of particular j » j' cross sections.



Certain theoretical difficulties obtain if one tries to blindly
apply the Slater effective potential of, say, Eq. (4.15) to the
electron collision problem. For one thing, the scattering electron is
not represented in the electronic charge density p(;), which, in the
scattering problem, is referred to the target. For low energy
collisions, the scattering electron is certainly not localized in
space. Depending on how you interpret the notion of a "Thomas~Fermi
region," it loses significance, since the scattering electron wave-
function is in no sense contained, being itself a plane wave. It is
difficult to view the electron as part of a free electron gas without
really stretching the model.

A number of early investigators chose to apply Slater's averaged

potential directly to problems in electron-atom scattering using the

form
(#) = ~2nr % [3n® f(").' (4.20)

(8)

where Oy is a constant. As pointed out by, Hara, such an approaczh
represents a rather considerable misunderstanding, since Eq. (4.20)
is obtained by averaging F(n) over the Fermi sphere. At the center
of the Fermi sphere, we have n = 0, F(n) = 1, and at the surface
n=1%1, F(n) = %. But for electron scattering problems n > 1! The
average potential is inappropriate for the scattering electron, which
has a definite energy and wavevector.

Riley and Truhlar have {correctly) applied a variety of local

exchange potentials to e-He and e~Ar coliisions and found some of

them to be highly successful. We won't go into all the details of
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these approximations: we should remark that they are all excellent
approximations at high energies (> 50 eV) and that the particular
approximation which we extend to the case of molecular target, the
Hara Free-Electron Gas Exchange (HFEGE)} approximation, is quite good
at very low energies and smaller orbital angular momentum quantum
numbers £. At higher energies, this potential was found to give phase
shifts somewhat smaller than those obtained with close-~coupling cal-

culations.

The only application to date of local approximate exchange poten-
tizls to electron-molecule collisions is that of Hara.(s) The system
studied was e—HZ, and Hara's results are most encouraging., Due to the
highly spherical nature of the target molecule, Fara decided (correctly)
that it was appropriate to spherically average his approximate exchange
potential. We certainly cannot do this for the e—CO2 system;¥ this
should be apparent from our discussion in Chapter 3 of the expansion
coefficients of the CO2 charge distribution.

This introductory out of the way, we proceed in the next section
to a derivation of the particular local exchange potential employed in

the calculations of Chapter 8 and a discussion of how this potential

is incorporated into the formalism we have outlined thus far.

#In fact, a few test runs in the energy range 0.07 eV to 10.0 eV
making the spherical averaging approximation produced cross sections
which differed by an order of magnitude from the true result.

i e



§4.4 Derivation of the Modificd BFEGE

(8)

The derivation here presented follows closely that of Hara,
s0 we shall merely outline the steps, filling in some detail where we
deviate from his analysis in order to adapt the HFEGE to the problem at
hand. For simplicity of illustration, we'll consider at first a two-
electron target and then make the obvious generalizations.
Our starting point is the familiar expansion of the scattering
(33)

function in target states, We use a properly antisymmetrized

linear combination of product functions in accordance with the Paul:i
Exclusion Principle, viz.,
Y.(4,23 )=;{é"(1,2)§(3)¥(1,2,3) + §,(33)F, (1) X,,(2,3,1)
(4.21)
+4,6,DF (Y, (34,2 ],

We have denoted the target states by ¢n(i,jl the scattering function
by Fn(k), and the system (e + target) spin function by Xn(i,j,k).

The Schroedinger equation for this case is

3 i
(= H+2 )P (42,3 = E‘@E(f’u 2,3), (4.22)
3 iy 30 E

i 2
'?H;"‘“'iv = - - - (4.23)

By definition, ¢n(i,j) satisfies the corresponding eigenvalue equation

for the target, i.e.,

‘ s . o
(4, + 4, +:L.‘5)tﬁ,,u33 = £, 4, (c,j).

’




For the case of the target in a singlet state, the spin function is

W (G4,k) '-'J'i—',[dfi)(j(j)-d(j)?(i)].({k)' (4.25)

Substituting Eq. (4.21) into the Schroedinger equation (4.22) and

using Eqs. (4.24} and (4.25), we obtain the usual coupled equations,

59 V&) --h]F(r)+Z\I (F)F, ()

n#0
I VRIRGE) =0,

-
where Vs(rs) is the static potential energy averaged over the ground

(4.26)

state, i.e.,
1,4 4 L .4
VA=~ ?;.."?;..)*5‘90(‘;1’(% g )b itz wm

The static excitation potential, which gives rise to polarization

terms (cee Chapter 5) is

1 4
Vosn(;; ) :yﬂ*(djz)(r +v: ) cﬁ‘ (5,25d142. (4.28)

i3 >

Finally, the exchange term in Eq. (4.26) is
* 4.2 )
X r.o - - - -
Vi ("a)Fn('s]'j(go('Jl’[ 2V " a T n (

4%5)-—(E-E,,):(a?n(z,a)Fn(i)Aié2.

(4.29)

There is one such term corresponding to each target state included in

the expansinn of Eq. (4.21), and the full exchange potential is simply

the sum of these terms; we have
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(6, 30)

Ve, 3= 2V U(H).

4x  J

Let us now make the assumption that only the pround state (n = 0}
contributes significantiy to the summation and carry out the integral

d2 in (4.29). Using the Schroedinger equation for ¢o(1,2), we obtain®

VYPBIRGE )=~ [(e;ib} )y ;;*ms,mal

(4.31)

1
+ﬁ:m = R0d1]y, (3),

where % kg = E1 = FE - Eois the incident kinetic energy. If we now

assume that Fo(g) is orchogonal to xb(;), Eq. (4.31) reduces to

vu(:,xg(:;z.:-.-jx:m A F, () d1 X, (3). 4.32)

Next, we trcat this expression for the exchange potential in a

fashion completely analogous to Slater's treatment(lz) of the Hartree-

Fock exchange potential for bound states (as discussed in §4.2); we

obtain
V@ = - %—' ke (P F (3), (<.33)

where the Ferni wavevector k. (F) is defined by [see Fq. (4.14)]
kF (@) = [3“.2 e(:)]‘ll’:s (4.34)

with p(?) the charge distribution of the target. The function F(n) is

->
*Here xo(r) is a core molecular orbital, one of these making up

¢0(i,j), and corresponds to energy eigenvalue €,
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of the usual forsm face Eg. (A.8))., i.e.,

F‘7)°—;: + é?;‘?]'—iul i‘:‘g !, (4.15)

with

x~
Py
3

{4.36)

7s

Finally, k{:} is defined by

i
",
k]
ugt

R*(* = 2[e.-wa], (6.37)

V(;J being the total porential ewnergy {statie ¥ exchangs) and Ei the
incident Rinetic enerpy. From the definitien of the Yersd onerpy oz
the encrpy of the sost energotic edoeatron in the target e (see
§4.2), we can relato EF(?) to the first jouizazion potontis] of the
target 1 {by defintcion, 1 > 0) by writing 7 + V & ¥ for the “Formi

eleatron,” viz.

‘z; (YN (#Y= 2T, (4.38)

where ve have assumed that the fersi clectron sces the sase potentia)

>
V{r} az does the scatteving clectren.? Therefore we have

L) = k; () +Q (g, +T). (4.39)

ke, N o oY . “»
#This is certalaly a reasenable assueptiosn for values of v {n the
vicinity of the nuelei, the most imporeant rogion,



The presence of T in g, (4.39) is extremely [mportant; asfde

from this the forn of the equations we have just cbtained and those of

4.2 is the same. The reason for its presence is that the scattering

electron is not part of the X-electron "fermi sca.” Thus there is a
negative encrgy gap between the zero of erergy and the Ferni encrgy
KF s defined by Eq. (4.13). The colliding electron cannot scatter
with an energy in this gap, since to do <o it would have an imaginary
mipentun,  One way of looking at what we have done by introducing 1
would be fo say we have cope gp with o new Ferml energy for the entire
+2!I. This can bhe a coniosing perspective, though,
ginee {n point <7 fact, the scattering electron is still not part of
tha Formi sea.

A objection to this approzimate poteontial raised by Hara him~
xclitﬁ) and echord by others {8 that the asveprotic kinetic energy

one prodicrs for the scatrerving electron based

e

. (4.39) is

an

g, * 1 rather thas £, ag it should be, At hiph eneruies this is not

i
3

a probleom since Ki + 1 = ti if ai is large cenough. At low energies,
the interpretation of ﬁ(?) as some sort of ¢lassical local momentum
for the acceleration (scattering) electron as discussed in 34.2 begins
ro run into difficulry. This interpretatien, in tuvrn, is central to
the ohjaction we are addressing. Firally, it should be noted that the

shovierange soture of exchanpge to some eoxtent mitigates the problem.

R 5

This is not o supeest that the theoretical objection is net a valid

*

o

ore oo el os that it is not particularly significant,=

surh Bitler pills must be swalltowed fu order to go aloay with

Spae

spelication af o toeal exchangs poteatial. For oxmaple, iz is somo-
ehing of o leap of faith to olain thar ground=state 80, Qs o free
clectren gzas!  However, the proad of the pudding is in the catine, o

coedn o cliche, and ve refer the sheptical reader te the results of
Chapter 5.
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(21)

Riley and Truhlar have proposed a rather simple way off the
horns of this dilemma: ignore I and use instead of Eq. (4.39) the

relationship
(P = ke (P) + 2L E, . (4.40)

They applied this potential (called the asymptotically adjusted free

electron zas exchange or AAFEGE potential) to e-He and e-Ar collisions

with some success. We believe, for the reasons suggested above, that

the ionization potential should be present in the expression relating
-> ->

k(r) to kF(r), particularly for low energy collisions such as those of

interest to us. Moreover, it is perhaps a bit misleading to refer to

=he potential using Eq. (4.40) instead of (4.39) as asymptotically

adjusted since, of course, dropping T will affect k(;) for all r.

However, we did try several test caleculations of e-CO2 cross
sections using the AAFEGE, the results of which will be presented in
Chapter 8. Suffice it to say that in addition to exacerbating the
already quite severe numerical problems with which we were trying to
cope (e.g., convergence), the AAFEGE gave very poor results in the
energy range 0.07 eV to 10.0 eV. For thesc reasons we dropped it
and returned, with considerably greater success to the HFEGE.

Notice that the HFEGE potential derived above is energy dependent,

i.e., the incident (scattering) kinetic energy appears in Eq. (4.39)
for k(?) and hence in Vex(;). However, once p(;), which, of course,
is not encrgy dependent, has been calculated, computation of Vex(;)
at any energy requires a trivial amount of computer time. Since we

have to determine (xr) over the appropriate integration mesh anyway




in order to calculate the static potertial energy of Chapter 3, it is
no problem to go ahead and get Vex(¥).

We do not spherically average p(?) but instead use the full
function p(r,6) for the CO2 target. Therefore vex = Vex(r,B). In
order to incorporate this exchange potential into our formulation of

the collision problem, we call upon the familiar expansion in Legendre

polynomials, viz.,

oo
\,, (@) = Azzo'v;*m P, (coe ©), (4.61)

vhere as usual only even-) terms contribute to the sum. It is worth
pointing out that the exchange potential energy is in faect a correction
to the electronic part of vk(r) as derived in Chapter 3 [see Eq. (3.61)
and the ensuing commentary]. Thus there is, mercifully, no need to

calculate, say, vgg(r). We stop at A = 28 for consistency with our

limic* on v?t'el'(r).
Once we have determined vfx(r) at the scattering energy of
interest,** we simply add it to the appropriate static expansion

coefficient, obtaining

‘U’h(r) = v:\d‘ (r) 4—1}:\‘" (r). (4.42)

*In this chapter, we shall tack on a subscript "st” to the static
expansion coefficients to distinguish it from the exchange terms.

#%Qur code to do this is called EXCHPT. It does 32-point angular
Gauss-l.egendre quadrature similar to that discussed in Chapter 3.
The charge distribution as computed using CHGDST is input along with

the usual assortment of parameters.
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As a check on the code, we can do one case by hand with alacrity,

namely the r -+ 0 1limit. We have

\V, ) 57 "‘— [(3m f(' 9)] (6.43)
since
i
'7.:5\(71' and F("]) o - (6.44)

At very small r, p(;) reduces to [see Eq. (3.12)) the A = 0 expansion

coefficient, i.e.,
()(',-‘) ~ a,o(r). (4.45)
Thus the exchange potential in this limit can be wvritten as

1 /3
V(P57 ~F [’Sn‘ao(r)] . (6.46)

This expression was used to verify the code which calculates Vex(;).

As a further check, we also reproduced Hara's e-—H2 cross sections.
It is interesting to observe that using the HFEGE without the addi-
tional approximation of spherical averaging produces only slightly
better cross sections for e--H2 scattering.

Fortunately, there are no particular numerical problems or
such associated with calculation of the HFEGE. Therefore we'll

move right along into a short look at the results of these computations.



54.5 Results and Comments: Local ExcLange Potential for e—CO2

Collisions

Typically, the calculation of vix(r) for » = 0,2,...,28 over our

standard integration mesh (see Chapter 8) required <16 seconds of CDC

7600 time. The largest part of this was accessing and storing the
charge distribution over the predefined r- and O-mesh discussed in
Chapter 3.

Figure 4.1 shows vix(r) in the HFEGE model for r = 0.0 to 3.0 a,
at an energy Ri = 0.07 eV for two quite different cases, X = 0 and
A = 14. The behavior of viz(r) is typical of that of the exchange
expansion coefficients for large values of A. The magnitude of vix(r)
decreases as ) increases and its effect on becomes significant
only in the vicinity of the oxygen nucle. (v = Roc = 2.19440 a, in
this application). Three intermediate cases, X = 2, 4, and 6, are
illustrated in Figuvre 4.2.

On the whole, the efifect of Vex(;) is clearly attractive: it
deepens the potential V(;) over the static-only case, VSC(;). At the
level eof the potential energy expansion coefficients, there are small
regions of r for certain A where vk(r) is smaller in magnitude than
v;t(r). [Remember that each vk(r) multiplies PA(CDSS) in the expression
for the potential energy V(;).] Nevertheless, the general effect is
clear. TFigure 4.3 shows grapbs of the static [v;t(r)] and total
[vA(r) = vit(r) + vix(t)] expansion coefficients for several values of
X,

It may appear from Tigure 4.3 that, after all, the effect of
the exchange potential 1s rather small and therefore that the multiple

machinations of the chapter really amount to much ado about nothing.
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The HFEGE potential energy: expansion coefficients for A = 0 and A = 14
at 0.07 eV for e~CO2 scattering.
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Static (solid) and total (dotted) potential energy coefficients for
e=CO0, for A = 0, 2, 4, and 14 using the HFEGE potential energy at
0.07 eV.




Wrong! For as we shall discover when we actually study crsss sections

(still a couple of chapters awayv in 8), the addition of the exchange

potential has a huge influence on the results chbtained from the coupled-

channel calculations. The same is true of the induced polarization

terms, which we'll get to in Chapter 5.

The energy dependence of Vex(;), to which we alluded in the pre-

. ceeding section and which appears in Eq. (4.40) for k(;), makes so small

a change in vix(r) that it doesn't even show up well on a graph. The
two extremes of the cases we considered, 0.07 eV and 10.0 eV, are com-
pared for A = 0 and A = 4 from r = 0.0 a tor = 3.0 a in Figure 4.4,
Even this small difference affects the cross sections, though.

The AAFEGE, mentioned briefly in §4.4 and used by Riley and Truhlar
in e~atom problems, is more attractive than is the HFEGE. The two
potentials are compared for A = 0 and A = 2 at an energy of 0.07 eV in
Figure 4.5. We did carry out a couple of calculations using the AAFEGE,

so this figure is presented for completeness.

§6.6 An Alternate Approach to the Exchange Question

In a sense, we have focused so far on one of the two effects of

exchange which were mentioned in 84.1, namely, the short-range attrac-
tive character of the interaction. 1In fact, it is entirely possible

(though rot ciear) that some of the orthogonalization aspects of ex-

change are incorpeorated in the potential we employ. In any event, an 3
alternate approach to the problem of the inclusion of exchange exists
due to Burke and co~workers. The philosophy behind Burke's approach is

quite different from ours; it is predicated on enforcing orthogonality 5
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of the scattering function to the core orbitals which have the same
symnetry.

We chose not to adopt this technique for reasons to be presented
below. However, it is an important contribution, and so we should
consider it briefly here.

The first in a series of papers developing this approach was
(24)

written by Burke and Sinfailam and is important to the present dis-

cussion mainly as a precursor. These authors use the Kohn variational
principle(zs) to derive coupled equations for electron-molecule scattering
in a body-fixed reference frame, They take into account exchange,
obviously; otherwise we would not here be considering their work. They
do not include polarization effects. Single~center coordinates are
employed, and a single~configuration fully antisymmetrized molecular-
orbital wavefunction for the system (e + molecule) based on SCF target
orbitals is incorporated into the theory. In deriving the coupled
equations [using the tiresome but apparently inevitable expansion of
v(r) in Legendre Polynomials a 18 Eq. (3.39)], Burke and Sinfailam
explicitly use the orthogonality constraint in the exchange term.
Having obtained the resultant coupled equations, cross sectiong in the
lab frame are derived from the body-frame S-matrix by a transformation
which neglects the rotational spacing of the target.*

A significant advance in this work, which is really rather tradi~

(26)

tional, was subsequently made by Burke and Chandra, who developed a

*We have performed a somewhat similar analysis in our derivation of
the rotational excitation cross section from body-frame T-matrix
elements. See Chapter 7 for details.
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new way to treat exchange which is conceptually based on the notion
. (27) . . .
of a pseudopotential. This procedure entails replacing the exchange
. 2
terms in the usual coupled equations by Lagrange multipllers( 8 which
are determined so as to force orthogonality of the scattering orbital

to bound orbitals of the same symmetry. The resulting coupled differen-

tial equations take on the form

[£ 2D gy -2 ; Vopr (DU ()

dr® s
(4.47)

Ml
(Am)
= 3;;; jk“'ce* (1‘))

where the summation on the right-hand-side runs over all bound or-

. (4m) . (m)
bitals, @a (r) which have the same symmetry as uy (r), assumed to

be M' in number. Techniques for solution of these equations are dis-
cussed in reference (26). These authors believe that the rescltant
terms have the effect of diminishing the influence of the nuclear
singularities by keeping the elcctron out of the vicinity of the nuclei.

However, the effect as seen in their convergence studies on e-NZ

"

collisions is none too striking and sugpests a consequent "saving" of

only a couple of terms, c.g., vl?(r) and vla(r), over the more con-

ventional tresitment.

(29)

The same authors have presented an outline of how to carry out

a similar calevlation oun the eztremely challenging problen of e—Hzo
collisions. However, to date ne calculations using this method on
this prablem have beon vreported.

A couple of furcher less sipnificant but nonetheless inceresting
appd fens fons amd extensions of Ehis appraach bave arpeared,  These

Juctets o cxnioelarion of retaticnn! encitavion cvose sections in e-l,
2
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(30) (31)

docuzentation of a computer code bhased on this work,

(32 to a heteropolar target, CO. i

collisions,
and application of the methad
Why, then, did we choose not to adopt this procedure at the outset?
First, there are certain problems with the theoretical underpinm ngs of
the method. For example, it in no way adjusts scattering wavefunctions
corresponding to symmetries for which there are no core orbitals to
orthogonalize to. This could be a serious complication. For example,
let's consider e—N2 scattering. This is precisely the system which .
Burke and Chandra(26) choose for their initial study. Now, there is a ;
fairly well-known zﬂg resonance at an incident energy of about 0.2 Ryd.
This resonance is thought to be almost purely d-wave. The problem is

that the orbital occupancy of ground state N2 is 4

X'z Agrle Lot 202 30t 1w, 4.48)

There is no core ﬂg orbital., The aforementioned resonance does not

appear in the correct energy range in the static-exchange calculations

(26)

of Burke and Chandra. They do ultimately produce the resonance

by introducing a polarization potential and appropriately adjusting

the cutoff parameter (see Chapter 5). This is an entirely appropriate

way to proceed, but It does make the polarization potential engirely
responsible for the rescnance. This may present an unrealistiec
physical picture of the scattering. Moreover, the deficiency here
illustrated could conceivably be more serious in other cases. For
example, in e—H2 scattering, where the target has only 1og orbitals,

(33)

how do you produce the 3.4 eV PG resonance,

(34)

which arises in part

from S, scattering functions?
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In contrast, the local exchange potential, however inelegant the
assumptions on which it is based, at least corrects all symmetries.
The problem suggested above with the orthogonalization procedure can
be viewed as a partial consequence of the fact that it simply neglects
one rather important aspect of the effect of exchange.

A second probable problem caused us to shy away from Burke's method
as a first crack at the exchange question. As should become apparent
in Chapters 6 and 8, the solution of the coupled-channel equations for
e-CO2 by the integral equations technique is by no stretch of the
imagination straightforward or easy numerically. Indeed, in some ways,
our problem pusheé this approach to the scatterirg far beyond previous
applications. Given this fact, it was not clear that the further
numerics associated with the orthogonalization would not make these
computational complications even worse.

Finally, taking a ruthlessly pragmatic point of view, it seemed
clear that introduction of a local exchange potential, which was
theoretically somewhat more appealing for the reasons suggested above,
would be much easier than the orthogonalization procedure.

Had the modified HFEGE not performed so spectacularly, we would
probably have gone ahead and tried a combination of the two ideas.

In fact, such a scheme seems to us to be the most interesting and
reasonable way to approach the problem of exchange, which will con-

tinue to haunt us so long as we seek to solve electron scattering

problems involving many-electron targets. In the simple case of, say,

an H2 target, it is possible tc make clever simplifications(35) of
the exchange kernel appearing in the coupled equations for the
scattering and thence to solve said equations to a relatively high

degree of accuracy. However, when confronted with a 22-electron,
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inordinately anisotropic target, it is less clear how to proceed.
"Electron-big molecule" problems zre not likely to go away and will
remain of fundamental and practical importance in the forseeable
future. At present, it seems that these problems, which would put
considerable strain on even the newer less-well-established Lz—
variational approaches to electron-molecule collisions (see Chapter 9),
could be profitably attacked along the lines suggested here. Clearly,
all one's intuition and skill at "model building" will have to be
brought to bear on such systems.

However, returning to earth, 002 is not the place to start such an
admittedly fascinating study. One should hegin with simply atomic
targets, say He and Ar, then go to simple homonuclear diatomics such
as Hz and Nz, and perhaps a mildly polar molecule, say CO. Then perhaps
it would be reasonable {if numerically feasible)to try C02. Our goal
at present is to get reliable cross sections for e-CO2 scattering, and
we find that the modified HFEGE presented in §4.4 works quite well.

We shall see this once we plow through a short discussion of polari-
zation potentials (Chapter 5) and a not-so-short presentation of
coupled-channel equations and their solution by integral equation

methods (Chapter 6).




Chapter 5. Long-Range Terms and the Induced Polarization Potential

Solomon saith, there is no new
thing upon the earth. So that as
Plato had an imagination, that all
knowledge was but rememberance,

so Solomon giveth his sentence,
that all novelty is but oblivion.

-Francis Bacon

Essays (LVIII)

§5.1. Introduction: Why We Need a Polarization Potential.

And now for something completely different. In the last two
chapters we studied various kindsof interactions between the
scattering electron and the undistorted target molecule. The
derivation of the static contribution to the electron-molecule
potential energy was more or less straightforward, but in the last
chapter we plunged headfirst into the world of exchange, a universe
of eerie approximations, weird models, and strange assumptions.
Throughout these discussions, furtive reference has been made to
additional potential energy terms; it is to these induced long-range
terms that we turn in this brief chapter.

The static and static~exchange approximations neglect all
perturbations of the target by the scattering particle. This
assuinption is not, in general, particularly reliable, The incident

electron, heing a charged particle, will act to distort the target
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if its kinetic energy is not too large. This effect can be
incorporated into the theory by means of the inclusion of a

- 3 + - »
simple analytic term Vp(r) in the potential energy, yielding for

the final potential energy

V('F) = Vst(?) "’VM () +VF (). (5.1)

In section 5.2 we will examine the physical origin of
this additional term and the theoretical justification for the
particular analytic form we employ, Eq. (5.16). We do this
initially in the context of electron-atom collisions because
most of the pioneering work in this area focused on such problems.
We then turn in section 5.3 to the particular case of 002, examine
its polarizability, and close by summarizing the results we have

obtained for the total potential energy.

§ 5,2, Adiasbatic Polarization Potentials in Flectron Scattering

The siatie and static-exchange approximations could be cuite
useful for scattering by electrons with large incident kinetic
energies, kz, since the target electrons will not have sufficient
time to adjust to the perturbing influence of the electron :zipping
by. In point of fact, the response of the target in this case is
highly non-adiabatic and is manifested by electronic excitation
of the rtarger.

The hitch is that we are concerncd here with slew collisions,




In such cases, it is appropriate(l) to view the response of the
target as occurring adiabatically*, This concept sets up an
appealing physical picture of the electron, when viewed from

the perspective of one of the target electrons (to anthropomorphize)
as frozen at position ;. This electron will thereby set up a

static external electrie field which will polarize the target.

In fact, we shall see that a dipole moment is induced in the

target. It is therefore proper to ascribe the effect to an

induced polarization interaction and to call the resulting potential

(2)

an adiabatic polarization potential.

This theory was first introduced in the study of e-H collisions

where(l) the potential energy has the long-range form

ad f
V‘,(r) e Tae %Lme), (5.2)

(3)

a being the static polarizability of hydrogen (in atomic

units, 4,5 au), In order to understand the origin and nature of
the forces reflected in polarization potentials, let's take a
look at this comparatively simple problem.

The logical if obvious way to obtain a potential energy
within the picture suggested above is via time-independent

(4 The first relevant quantity is the

perturbazion theory.
*Ti:e proliferation of the word "adiabatin" and its cohorts (e.g.,
"impulse”) in electron scattering theory is a source of nearly
limictless confusion. Care must be taken to understand what is
respending adiabatically, Contrast, for example, the adiabatic
fixed-nuclei approximation to the approxilaation here discussed,
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(1)

first-order perturbed wavefunction for the target:

:E: )
=,-E,
where ¢°(¥1) is the unperturbed ground-state target wavefunction, .

the sum in the second term runs over all target states, and the

excitation potential matrix element is defined by

(\") S‘P (t')rv 2 cpyr( )J o (5.4)

The wavefunction in Eq. (5.3) goes to zero asymptotically as

-2
r .

Of even greater significance is the second order correction

to the potential;(s) this is the induced polarization potential.

We have

Vw il
\/(r) Z Vo 7 ” 5.5)

One can show(e) by direct evaluation of the potential for e-H

>
scattering that Vp(r) in Eq. (5.3) satisfies the requisite as-
suptotic condition (5.2} with a equal to the static polarizability,

Alternately, Martin et. al. demonstratecl) that

<yI¥ lo>|
g -i | ™
V3232 TE, - 5 o

114




i o T SRR S AT T 4 Ty,

O R

A T A N KT ER  , DEAT BR F K B TR

Since the polariz.hility is given by

5 l<xI@lo>1"
=3 2 : (5.7)
37t0 Ey-Eo |

Eq. (5.6) reduces to (5.2) as required. Clearly, as asserted
earlier, an induced dipole moment has appeared!
Important light was shed on this subject by Castillejo,

Percival, and Seaton(s), who showed that if the incident energy

k2 is so small that inelastic coliisions are energetically

forbidden®, then the adiabatic theory is valid as r » <, The

asymptotic form of the full system wavefunction for the £

partial wave becomes (to first order in the distertion)

"
.= L Ly
where #' is given by Eq. (5.3) and xft(;) is the scattering

function. <Castillejo et. al. further show that if we introduce

+
a radial scattering function uz—(r) in the usual way, then

the equation this function satisfies can be written asymptotically

as

£ 2D o
Llr‘ : + Kk ]u {r} = (5.9)

rz

. 2
“For clectron-hydrogen scattering, this amounts tn k~ < 0.75.
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This last point is particularly interesting. Expounding
a bit on it, what Castillejo and colleagues did was to write

-~

the usual coupled equations for the ground-state case,

[Vz v, ]Yo('ﬂ = % U, ()X, (7, (5.10)

ard proceed to prove thet the coupling terms on the right-hand- .
side could be replaced by a diagonal potential energy, which for
large r varies as - a/2r4, with o given by Eq. (5.7). The reason-
ableness of this idea is suggested by the observation that as
r grows to infinity, the matrix element Uyy,(¥) for Y #Y'
goes to zero as fast as rhz.
In slightly more physical terms, this result means that
the effect of closed channels in the eigenfunction expansion
method is to take into account induced polarization effects,
One of the most interesting conclusions reached by these authors

is that for e-H collisions, including all of the closed bound

(discrete) hydrogen atom states only gives 817 of the polarizability; ;

the rest comes from continuum states of the target. One is

saved from having to include all these states in an actual

calculation by the fact that it is valid to take the experimentally

(or ab-initio theoretically) determined polarizability, incorporate .
the long-range form into the potential energy, and just ignore

closed channels insofar as induced interactions are concerned.

#*Their matrix elemoent includes the nuclear repulsion term as
well as electron-electron interactions.
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In fact, life is not quite that simple. We suggested ahove
that this picture breaks down as the scattering energy increases.
Well, it also ceases to be valid for small r, Thinking intuitively,
we find that this makes sense, for as the scattering electron
"speeds up" as it approaches the target, the adiabaticity of
the response of the target becomes unrealistic., Martin et. al.
showed(l) that if one uses the perturbation theory expression for
Vp(;) directly for all r, the effectlof the perturbations is
over-estimated at small r, the error being particularly serious
for s-waves in electron~hydrogen scattering.

This difficulty is easily circumvented by the use of a cutoff
function, which effectively removes the r—4 polarization potential

at small r values.(lo)

Such an approach is usually taken in electron-moclecule
collision problems.(ll) Much of the analysis described above and
the validity of the adiabatic polarization potential gemneralize
readily to molecular targets. There is one huge difference,
though: the polarizability of a molecule is not spherically
symmetric.(7) This results in a Pz(cos 8) term in the long-range
analytic form along with the usual Po(cos 0) contribution.

Another interesting situation obtains in the case of
molecular targets. Here we have electronic excitation plus
two additional kinds of motion and corresponding excitations:

rotational and vibrational. These require so little energy that

one can study the related inelastic processes within the context
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of the adiabatic approximation presented in this section.(l3)

The standard analysis of the polarizability of a molecule
proceeds to generate two constants, G, and a, , the components
of the polarizability parallel and perpendicular to the inter-
nuclear axis. (These quantities are often denoted o, for the
parallel component and o for the perpendicular component.)

Usually, these are combined to yield the spherical and non-

spherical polarizabilities,

o = 5 (w2 oL) (5.112)
Z .
« = 3 (e, -, ), (5.11b)

respectively. The resultant long-range polarization potential

is given by(lz)
V(R) o3z =25 Plen®) =22, B (cn &
‘,(r Y3 .'E'—" o Lo ) ZT" a Levd )) (5.12)

where we have left in Po(cos 8) = 1 for clarity.
The usual application of Eq. (5.12) to electron-molecule
problems is to incorporate the aforementioned cutoff functionm.

A typical such function might have the form

_ P
C(r\ =1l-e K P (5.13)

where r, is the cutoff radius and p is the cutoff exponent.
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Other more complicated forms have been investigated for particular
targets with considerable success.(13)

Before we examine our particular application of all this
theory, we should point out that intuitively one expects polari-
zation forces to be quite important at low energies for angular
momenta & > 0. Thinking classically, we recall that the impact
parameter is b ~ &/k, so for slow collisions (small k) and finite
angular momentum, the "distance of closest approach" isn't

really very close, keeping the electron in the far region, where

polarization forces will dominate. Granted that this argument

is crude, it is true that in electron-atonm scattering, polarization
(1) . . -

forces are found to be the dominant influence for sufficiently

small k. The analysis is complicated enormously for electron

collisions with molecular targets because of the hatad partial

wave coupling, without which this report would be substially

shorter.

§5.3. Application to €O, Targets.

For COZ’ the parallel and perpendicular components of the
14)

polarizability are determined to be

O(l\ = 0.4 "10-25 CMB (5.14a) L

=25
O(l = 1.q'7 % {0 cm3 (5.14b)
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From Eq. (5.11) we obtain the spherical and non-spherical

polarizabilities, viz.,

oy = 26.5 10" em®

11.90 3o
-1
13.6 x (0~ cm? (5.15b)
919 av,
s 3

where we have used the fact that 1 a03 = 1.4804 x 10-2 cn

(5.15a)

s

and 1 au = eao3 for polarizabilities to convert to atomic units.
To put this quantity in perspective, we present polarizabilitics
for several other familiar molecules in Table 5.1. Clearly,
there is nothing particularly striking about the valves for COZ'

We choose to employ a cutoff function for the induced polar-
ization terms of the form (5.13) with rcp = 2.5% a, and p = 6.
The value of p was selected to give a fairly sharp cutoff; this
choice is quite standard for electron-molecule problems. The
choice of 2.59 a, for the cutofi radius is somewhat less cbvious,
Since it involved values for particular cross sections, we shall
defer the explanation of this selection to Chapter 8.

There 1s one further long~range interaction which shruld be
kept in mind: the r_3 quadrupole term discussed in Chapter 3.
This is a P2(cos 8) contribution. It differs markedly from the
non-spherical polarizability term ir that it is not induced;
rather it is an intrinsic property of the target charge distri-
bution (sece §3.8). Since wa choose to remove this interaction

from the determination of the vz(r) static term far coavenicace,
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we must define a quadrupole cutoff function for use when we
add the interaction term back in at the time of solving the
scattering equation (see Chapter 6). We again use the form (5.13)
. q -
with r.o=® 4.0 a, and p = 6.

Putting all this together, the full long-range part of the

electron-CO2 interaction potential energy is

To this we add Vex(;) as given in Chapter 4 and Vst(;) with the

quadrupole removed as described in Chapter 3. The final penultimate

potential energy is then

V(F’) =Vse(?) '*'V_,,((?’) + Vv.n (). (5.17)

After all the work of the last three chapters, what do we
do with this potential energy now that we have it? The answer

will be found in the next chapter, where we look a® the scattering

equation.

122




Chapter 6. The Scattering Problem: Solution of Coupled Eaquations by

Integral Equations Techniques

I dare say that's an idea which

has already cccurred to you,

but with the weight of my great
mind behind it, no doubt it strikes
the imagination nwore forcibly.

-Lord Peter Vimsey
in Strong Poison
(Dorothy L. Sayers)

§6.1. Introduction

In this chapter we at long last confront scattering theory.

OQur goal is to get from the potential V(r) of Eq. (5.17) to the
T-matrix from which we can extracst cross sections. We shall defer
discussion of the calculation of actual cross sections to Chapter 7,
preferring to keep our attention here focuscd on the coupled radial
equations and their solution.

We shall briefly outline the derivation of the radiel coupled
equations in the body-frozen reference frame in §6.2; 2 very detailed
presentation of this material by the author is available elsewhere.(l)
The next two sections show how to solve thase equations in general
via the integral cquations algovithm: the method is exnlicated in the

context of single-channel scattering in §6.3, and extensions to
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multi-channel coupled eguations are considered in §56.4. The calculation
of the T-matrix is taken up in §6.5. A couple of important modifications
to the standard integral equations formulation are discussed in 56.6,
and various numerical problems which must be addressed in solving our
particular problem form the substancec of §6.7.

The integral equations method, which forms the maln topic of
this chapter, has been applied to a number of problems with some
success(z-s). If it 1s possible to treat exchange in an approxfmate
yet physically reasonable way*, e.g., as a local interaction along
lines outlined in Chapter 4, this method provides an accurate and effi-
cient means for solving radial coupled equations, However, application
of the algorithm to realistic systems such as the one under consideration
here necessitates considerable care and a nurber of extensions of the
standard methodology. We shall examine these modifications in the

sequel. The actual calculations we performed for e—CO2 scattering are

the subject of Chapter 8.

§6.2. Obtaining the Coupled Radial Equations

For completeness, we here survey the derivation of the radial

coupled equations in a body-fixed reference frame‘(l) We make the

fixed-nuclei approximation, allowing for no rotation or vibration

%If one actually includes the exchange kernel in the algorithm, as
conventionally formulated, one in effect nust solve twice as many
equations as really necessary.See reference (3).
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of the target®, The CO2 molecule is assuimed in our application to
be frozen in its symmetric linear nuclear configuration in the gzround
electronic state (see Chapter 3). This picture is reasonable on
physical grOunds(lo) provided that the incident electron xinetic
energy 1s rot less than %10_6 eV. Ye thus chcose the internuclear
axis to lie along the polar axis of our single-center ccordinate
system. We make the further approximation that the full interaction
potential energy can be represented by a local function of the scattering
coordinate. This assumption has been discussed at length in Chapter
4, and 1in Chapter 5 we presented detailed expressions for the total
potential energy.

Now, we begin with the non-relativisitic Schroedinger equation

for the electron-molecule system, i.e,,

(H-BEYL (7,7; RY= 0, 6.1

where R appears parametrically and R not at all, since we are

working in body-fixed coordinates. The Hamiltonian in Eq. (6.1)

is conveniently written as

1
-ﬂ =ﬁ+a\'3€t - Evz-*-vm}(?, ?i | R) . (6.2)

*This does not mean that we cannot calculate these excitation cross
sections eventually (See Chapter 7)! For example, if certain con-
ditions are satlsfied we can use the adiabatic nuclei approximation to
determine them. This theory was discussed by the author in reference

1.
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The interaction potential energy was discussed in section 3.1, The

target functions are eigenfunctions of ths molecular HEamiltonian,{.c.,

#4..,“- € (7:3R) = e, €,(7:;R), (6.3)

wher2 en are the SCF energies In the model employed in this work
and the functlons ¢n(?i;R) are the wavefunctions determined by
McLean and Yoshimlne and discussed in Chapter 3.

We now expand the system wavefunction in the complute set

of target states defined by Ea. (6.2), obtaining

P (F7;R) = % F. (PP, (#:4R). (6.4)

-»
We further expand each scattering function Fn.(r) in spherical

harmonics, viz.,

Foltr= £ ™ (), 6.5

2me W'm'

where we denote the incident channel by (£ n). [Notice that we work
in the formalism of "asymptotic" partial waves(l). Thus the set

of functions used will have to be appropriately combined in order

to produce the true scattering function, which must behave asymp-

totically like an incident plane wave plus an cutgoing spherical

scattered wave.] The summation in Eq. (6.5) is restricted by the

L



syrpwtey of the ¢-C0, system. Thus if the state under considerztion
is gerude(ll). only even- terms contribute to the sum, while iIf it
is ungerads, only odd-l terms contribute. For this reason, we nmight
label the wavefuncrion with an additional subseript, call it n, to
denote the symmetry of the total system. Howevar, in our formulation
this is not really recessary, since the prclection of the electron's
orbital angular momentum along the iunternuclear axis is a good quantum
number, Thus, the potential matrix element vwhich couples various
partial waves within the ground electronic state if diagonal in nm P
[see Eq. (3.43)]. 3
Dropoing 211 but the ground electron’'c state in the summation
of Eq. (6.&4), taking the above facts into account, and using the

matrix elements determined in Chapter 3, we obtain the coupled radial

differential equations

2
d 2(2+4) ) 2 ) -
SN sk () =
(6.6)
(m) {m)
12 \]“, (r) u,y (r). ;
2%0
In this set of equations, kz is the incident electron kinetic energy E
(m) £

(in Rydbergs), VER‘ is given by Fq. (3.43), and we have sup-

-

pressed the label n = 0 for the ground state on the scattering wave-

function.

The various symmetries are defined by m and tha allowad vilues

of 4 according to the inversion svmmetry of the state. We have

23-‘ m=0, 2=0,2,4,... (6.7a)
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2, m=0, 2=4 3 5. (6.7b)
T, ° wm=4, L=24,6,.- (6.7¢)
TTy: m=2, L=43/S,.. (6.7d)

and so forth,

The radial wavefunctions ul(m)(r) obey the usual partial

. .o 1
wave scattering boundary condltlons( 2),

15“'"’(0) =0 (6.8a)
1)~ 5 (1S — (k) K (6.8b)
o ' yon JetRT I, T Wy 20, )
where K££ (m) is an element of the K~matrix and 20 denotes the
o]

initial channel. For the S-matrix, we use 5 and the familiar result

S =(g+e£)-(1-e§)’i (6.9)

~ ’

where 1 is the unit matrix, and the T-matrix is related by
o
T - i - S‘ (6.10)
~ ~ L

We obtain cross sections from the T-matrix as described in th: next
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chapter.

It is worth remarking that the coupling of partial waves in
Eqs. (6.6) is governed by restrictions on the matrix elements parading
through these equaticns. These "selection rules" were discussed in
Chapter 3; many of them are consequences of particular Clebsch-Gordan
coefficients which appear in Eq. (3.43).

A more 'physical” factor influencing the relative importance
of various partial waves with finite angular momentum is the
centrifugal barrier, -2(& + 1)/r2, as manifested through the effective

potential, which appears on the left-hand-side of Eq. (6.6), i.e.,
eﬁe o - ao(p"‘i) - (m
V.ltm (r)= ¥ QV_”! {r) (6.11)

We discussed the physics of the effective potential in 83,7 and will
return to it later in this chapter. In terms of this quantity, Egs.

(6.6) take on the slightly more illuminating form

2

d eH 2 " 17

LAV D+ Ju () = 25 N ) u™ (). (6.12)

dr Lm - =, Ko’

£32
In closing, we should say a word about matrices. Although

we initially present the integral equations procedure (in the next
section) in the context of a single-channel problem for purposes of
clarity, the multi-channel matrix generalization is of immediate
importance.

The point to be made is that each of Egqs. (6.6) is a second-
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(13)

order linear ordinary differential equation. Therefore , there

are 2N linearly independent solutions to the set (where each solution,

of course, has N components, one for each partial wave coupled into

the problem). Of these solutions, N are regular at the origin and

N are irregular. Physics, as manifested in the boundary conditiom .
of Eq. (6.8a), immediately demands that we dump the N irregular
solutions, but this still leaves us with a total of N linearly
independent solutions to Eq. (6.6). Thus it is appropriate to tack
an additional subscript, a "solution index", onto the scattering
f.action, writing, say, uzv(r). Thus, each set of N solutions to
Eqs. (6.6), each element of which has N components, is quite ap-
propriately represented by a matrix g(m)(r). In fact, the solution
index corresponds tc¢ the initial channel, which we called 20 in

Eq. (6.8b). Thus, using an alternate form of the boundary conditions, :

we have

_ilkr-27) o lkr-2Z)

()
U, e Sop “S4 € . (6.13)

In the partial wave analysis, the solutions evidently do not

satisfy the required secattering boundary conditions(lz),

.h’
.h_"‘ e" .
yk(.‘!) vt et "+ = -Fh(??, (6.14)

"~
vhere fk(r) is the scattering amplitude from which one obtains

e A L L i S Mo
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total cross sections and other sundries. There is no cause for panic,
though, since we can always form a linear combination of the solutions,

1)

viz,,
= S e, u™ (DAY (6.15)
#" o> Y £

and determine the expansion coefficients so that Eq. (6.14) is
satisfied.

One further point should be made and then we shall begin.
The method to be outlined below is quite general in the sense that
it is well applied to body-framo mquations such as (6.6) or to the
set of coupled equations which obtains in the laboratory (nr space
fixed) reference frame. This approach to the electron-molecule
problem is outlined in Appendix 2. It is usually forrmulated by coupling
the electron's orbital angular momentum to the molecular rotatiomel
angular momentum to form a total angular momentum. The resultant

coupled equations look like

d* 210" 1] T (7)
[Z:i- r* +h J (r) -Z \J ’jl upu(r) i-c‘ef (r (6.16)

where (j%) denote the initial channel. These equaticns separate into
sets according to J. The matrix elements in Eqs. (6.13) are quite
different from our old friends of Eq. (3.43). The feature to ba noted

here is that the mathemalical form of Eqs. (6.16) and its attendant
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boundary conditions,

Ky = 6.17
?‘j u, (O) - o ( . a)
. R :
I8 . ~ilk;r-23) ks T by Y‘J'{)
u).;lr (v) ..~>.»8 3 ‘-;—O'S:ij' - (’5:. ) Sj’lj'-l' 3 , (6.17b)

is the same as that of the body-frame equations (6.6) and (6.8).

{In fact, this is a key point in the frame transformation theory of
electron-molecule scattering. See reference (15).} Provided one is
very careful to keep his indices straight, precisely the same
numarics can be used to solve both sets of equations. In point of
fact, we began our study of the e—CO2 problem in the lab frame,
shifting over to a body-fixed frame only when it became apparent

that such a frame was more appropriate owing to the enormous

number of partial waves required for convergence. Nevertheless, the
numerical aspects of the problem were the same in both cases,-and

we have codes to treat both frames.

8¢.3, The Integcral Equations Algerithm: the Single-Channel Case

There exist a wide variety of approaches to the problem of
solving a set of coupled, second-order linear ordinary differential
equations. One of the most videly used of these is the Numerov

. 16 . . .
algorlthm( ), which takes the equations on their own terms and solves
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then as differential equations. An alternate plan of attack is to
convert the set of coupled differential equations into a set of
coupled integral equations and solve these using quadrature(z—g).

This is the scheme we have adopted and modified to tackle e--CO2
scattering.

In words, we shall take our set of coupled differential
equations with appropriate boundery conditions and write a general
solution matrix as the sum of a homogeneous solution which is regular
at the origin and an inhomogeneous (or particular) solution. Ve
then obtain an integral equation for the particular solution in
terms of a Green's function which has built into it the aforementioned
boundary conditions. (We also determine the homogeneous solution
with ease.)

To solve the remaining integral equation, we write it so that
it separates into a homogeneous equation, which turns out to be a
Volterra equation of the second kind, and an inhomogeneous equation,
the solution of which turns out to be equal to a constant times the
homogeneous solution. Thus the solution of the whole problem is
reduced to solving a Volterra equation, which is accomplished by
quadrature.

An excellent presentation of the standard wmethod in the case
of coupled equations is available in reference (17). Believing that

new numerical methods are best introduced in a simple context, we

here present a fairly detailed derivation for a potential scattering
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problem. The multi~channel equations cppear in the next section.

The familiar partial-wave scattering equation for a spherical

potential(ls) is

L
{%'Ju - l_(_-_l‘_rt._&)_ Ve "’h‘] Uee ()= 0, (6.18)

where % = 0,1,2,,.. correspond to s-, p~, d~wave scattering, etc. and
where U(r) is the potential energy in Rydbergs. {[Notice that a set
of N such equations obtains if we set the off-diagonal matrix elements

in our coupled equations equal to zero.] As usual, we require

= 0. (6.19a)
U, 0)=0
The asymptotic boundary condition can be written as

. T . z
ilhe-2%) _ Su el (he- £%) (6.19b)

‘H“(r);;; e ,

where we have assumed that rzU(r) goes to zero as r approaches infinity.

An equivalent boundary condition is

Uy () = tin (kr-2T) +K“ coe (hr 2 E), (6.19¢)

b ataatme S et e e e

where the (now) scalar K-"matrix" is related to the phase shift

by




K,, = anz, (0. (6.20)

k

For convenience, let us define the differential operator

a2 (242
,Dx = ger -2 ,J‘ +r° (6.21)

so that Eq. (6.18) becomes simply

B, 6= V) u,, (e (6.22)

Any solution of Eq. (6.22) can be written(lg) as the sum of a homo-

geneous sclution uzg(r), which is the general solution of the homo-

geneous equation

eb_g 'b‘:ﬂfr) =0, (6.23)

and a particular solution uﬁg(r), wvhich is one solution of Eq. (6.22).
(Sometimes, the homogeneous solution is called the "complimentary

function" and the particular solution the "particular integral"”.) Thus

we have

. 4
U, (V= uy, G + ul, () (6.24)

The solutions of the homogeneous equation (6.2-) are the famiiiar

135




136

(20)

Ricatti-Bessel and Ricatti~Neumann functions » which we shall
) ~
write jl(kr) and nl(kr), respectively. Equivalently, we could use

the Riccati-~Hankel functions of the first and second kind, defined as

AL:D(kr) = —:],9 (hf) ri ??_, (k') (6.25a) .
f&"’(hr) = j_, (kr) = i n, Cler). (6.25b) -

These various functions all satisfy the spherical Bessel equationj

they differ in their asymptotic behavior as

}‘3;("“'3 e sin (Re-2 E) (6.26a)
ﬁl(lzr} = - coa (hr-2%) (6.26b)
!::;”(kr) TS i gilhrd *) (6.26¢)
i\;"(lw) 2 ie”? (hrt %) i (6.26d)

They are all related to the corresponding spherical functions as,
for example, jz(kr) = krjz(kr), etc, Clearly, only the Ricatti-
Bessel function satisfies the boundary condition at r = 0, viz.,

Eq. (6.19a). Therefore the homogeneous solution is




g
BT e e e Y L T

‘u’,;, (-) = j’ﬁ, (kr). (6.25)

We solve for the particular solution by using Green's function

methods(zz). We seek the solution of the equation

o%@(r,r') = y(r-r’), (6.28)

where 8(r - r') is the Dirac delta function, with the usual property

that

yF(y) $le—x)dx = F () . (6.29)

Then the particular solution to Eq. (6.22) is simply

u:,(r) =S‘(_:,(f,r’)U(r') u,‘:, (~*)dr. (6.30)

For r # r', Eq. (6.28) becomes

obgc:a(r,r')= 0 (r#r’) (6.31)

It follows that the Green's function is given by

339("") r<r’
G,c(';") = bt;;”(hr) ropt (6.32)
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where we have chosen the particular Ricatti function for r>r' to
match the desired boundary conditions (see below). To determine
a and b, we match across the boundary at r = r'. Integrating between

r' - ¢ and r' + g, we obtain(23)

q r'+e
Ln'm EG:'Q(',")L,_? =4 (6.33)
tT->0

Integrating again, we find

r'+e
lilﬁn CEP (')f') ,

< 6.34
g0 r'-c 0 ¢ )

If we substitute Eq. (6.32) into (6.33) and (6.34), let € ~ 0, and

carry out some rather lengthy and boring algebra using the relationship

Y

d
Jr f,(r) = .‘.:9'1 () -+ -Ee(r) (441),

which 1s satisfied by any of the four Ricatti functions, and lots of

scratch paper, we obtain the full desired Green's function, viz.,

kRrr’ h‘u' (&r) 3', (he) rer’

l) = (6. 35
G..-ﬂ(r" ker! hJ“' (kv) j, (ke?) c>r )

where we have also used the fact that
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4

Yoy (kX k)= Joerk b2 fee) = = iy - (6.36)

Now, where are we? We set out to solve the Schroedinger
Equation (6.18) for the ch partial wave subject to the boundary

conditions of Eq. (6.19). The solution ukz(r) is giver by

oo

ukﬂ")= j; ("-f)"' Gl(r)r') V() uu (v )Jr‘ (6.37)
[0}

where Gz(r,r') is given by Eq. (6.353)., The asymptotic and r = Q
boundary conditions ere contained implicitly in this equation with
the Green's function we are using. Equation (6.3%) is an integral
equation for ukz(r); by solving it and examining the solution in the
limit r + ®, we can determine phase shifts and cross sections for
the Zth partial wave.

Perhaps a word or two about integral equations in general

is in order. The general form for such an equation is(25)

b
)\Sk(x,j)'ffj)asj,'l' 3(’:) = h(x)‘F(x),

where f£(x) is the unknown function, A is a constant parameter, and

h(x) and g(x) are known functions, K(x,y) is called the kernel

of the equation. Several special cases have been the subject of
(26)

intensive study s €a8uy

h(x) = 0 Fredholm Equation of the First Kind 3
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h(x) = 1 Fredholm Equation of the Second Kind

K(x,¥) = 0 y > x Volterra Equation

We seek to use this knowledge to solve our equation, (6.31). §

To do so, we reluctantly introduce some new notation(z). Let

3;” (r) = 511 (h.r) (6.38a)

(6.38b)

95" (+) = b, (ke

and define r_ = min (r,r') and r, = max(r,r'). Thenthe Green's function 4

becomes
/%

G}Q (eye) = krr’gp("(r‘) 3,,"’ (r5), (6.39)

and the integral equation (6.3%7) can be written as

oo
Uy () = hrﬂg"'(d +\ kre 39"” A )9 “{r,) Ulrv) Upes (r)dr’

o

or, equivalently if less clearly, as

3
!
i
|
f
!

Ul = lerseas(r) -I-’zrﬁ O (4} |4 (,,)u(,.)u Gl der ‘
+% o\(‘-‘ e ) 3 (“(r YO(er) ‘Jk_{,krl) Jr’ - ;

U
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The problem is that this equation is not obviously in a convenient
form such as those alluded to above. However, by biting the bullet

and rewriting this equation one last time we can convert it into a

special type of Volterra equation(zs). We begin with

u“(f‘ = k\:j:”(r) + kra}”(kr)ygom(r') 0¢) uu (r') dv’
°

- ’&fscu'(r)‘s\\"'se(q(r') V) Upeo (rrd)de?

o
*llfjfnff,g rlse(t) (¢'YO(r) Upes (rt) ¢,
0

If we now make the identifications in the general form:
£6) = U, (6.40a)
oo
3&)= h"ﬂnm (r)Sr'ge“’(r')U(r') U, (r)de' el (6.40D)
o

K(X,“)) - kr[jq(“ [r)ge(&l(':) —32(1‘(" ) 9.'(1\0.,)] U('l, (6.40c)

hix)=1 (6.404)
- -/ 6.40
X=v, y=r (6.40e)
we see that we have a Volterra equation of the second kind,(zz) with

the inhomogeneous term, g(x}, given by Eq. (6.40b).

Introducing homogeneous and particular solutions to this
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equaction, say uﬁz(r) and uiz(r), respectively, we find thar the

homogeneous solution satisfies a Volterra equation of the first kind,

(r) = IP.rS @ (r) + kra ‘v(r)igemfr') V() u,fz ()de !
(6.41)

r
- Izr‘a‘m(r ,j;"lﬂem (r)YO(r) u:, (t)de’

while the particular solution satisfies the aforementioned equation

of the second kind.

To solve for the particular solution, we shall introduce a

normalization constant C defined as

Loy
U, =C 'Xu (. (6.42)

Because the particular solution satisfies an inhomogeneous Volterra
equation, the normalization is not arbitrary, and we cannot just
define C = 1, for example. If we substitute this definition into

the particular equation and choose C such that

fr’a:“(r')ocr') UaHlr) +C X, (e lder = (6.43)

then the particuiar equation reduces to
r

Y (r) = krﬂew(') +kY‘jem{r) r’g “@eor) Uter )7( (r'“r

- krﬂc (r)J‘ 5:““')()(:") YIQ (r')dt
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which is identical to Eq. (6.41)! Therefore we have

Yk! (r) = u; (r) ’E

£
and the inhomogeneous solution is related to the homogeneous

solution via

u:l(r)= C'U;:‘l (r) (6.44) L

Finally, the full solution for the ;‘lth partial wave is simply

U (r) = (i"'c} Llo (r). (6.45)
ke e

This means that all we have to do to treat the problem at hand is
to solve for the homogeneous solution. Solving for C in Eq. (6.42)

we find

< b _4

C= [S‘g;”(r')um ue (,»u,] [i-jas‘“(r'i Otr ) up cmar-] s (6.46)

o °

so that the full solution can be written as
-

fol i (‘ ¢ €% g -4 6.47

'Z(k’e(r)= 'Hkg(r) 1")"39 /r')U(f')u’,u, Cetddye . (6.47)

¢
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It is important to keep in mind that we solve (by quadrature)
for the homogeneous solution uzz(r), not for the physical solution
ukl(r). We determine the latter once we reach the asymptotic region
(i.e., values of r such that the potential is effectively zero) via
Eq. (6.47) and extract the phase shift by boundary matching to a
linear combination of Ricatti-Bessel and Ricatti-Neumann functioms,

Je (k) =10,,0)

"‘an’y&(k) = — . (6.48)
n, (kr) :

So, how then do we solve for ugz(r)? The equation under

consideration is (6.41). Although a variety of useful techniques ?

for developing analytic solutions to integral equations have been

developed,(26> it is not in general possible to so attack our equation.

For example, we feound in Chaptes 3 that over a certain range of values

of r, we only know the potential energy appearing in the equation as
a table of numbers. Thus, we replace the integrals in Eq. (6.41)

by quadrature sums, obtaining

(r) kr. 3“’(r Y+kyy; ‘"(Q)Z 9‘”(r Y U(r;)

"L

(6.49)

R e

LC) UZ—C('S )Wj - 'l{!". 1'(f )iaﬁ-)(g) U(f"” u’:‘ (rs) WJ- ’

fo
L

vhere the set of numbers r; defines a mesh of r values over vhich -8
:

we propose to calculate the solution and where v, are the quadrature §
53

3

ag

R
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weights, These depend on the particular quadrature scheme to be
used. Tables of the quadrature points and weights are available;
see, for example, reference (27).

If we plough right into the solution of (6.49), we would have
to do so iteratively, a ghastly prospect. However, a moment's

h

thought reveals that the 1*™" terms in the summations cancel, and

the equation reduces to
(-1
e = () (v
u,u(r‘-)- k'l'ﬁe (r;) ”‘"dez (Q)ngﬂ:n ()0 (e) “:,('})Wj

(6.50)

i-1
~k9, () 2 GVl ug, Gy .
2

This equation enables us to simply step our way out into the large-~r
region, since we know the initial condition on the wavefunction at

r Moreover, the value of the homogeneous solution at T, depends

0°
only on its values at Tgs Tps eves Ty g0,

Before turning to the multi-channel generalization of these
results, let us take advantage of all this work to extend the formalism

to the case where the equation to be solved possess an inhomogeneous

term g(r), e.g., suppose we are confronted with

gu“(r) = ()(r)u“(r) +-3 (). (6.51)

We go ~fter this equation just as we did (6.22) with the homogeneous

solution given by (6.27) and the particular solution being the
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solution of the integral equation
)
uf () = y@(r, AVEIE ) + g G [ dr (6.52)
(]

The Green's function is unchanged; it is given by (6,35). Notice
that we must require that rzg(r) + 0 as r + « for the derivation to
carry through. The solution of Eq. (6.52) proceeds as before with

U(r)uiz(r) replaced by U(r)uﬁz(r) + g(r).

§6.4. The Integral Equations Algorithm: The Multi-Channel Case

In the coupled-channel case we seek to solve Eq. (6.6). Here
we focus on the situation which obtains when all the channels of
interest are open (the case of closed channels is treated in reference
17). The analysis proceeds exactly as in the previous sections
except that we introduce several matrices. If we have N coupled
channels, then we shall define an N X N potential energy matrix,

X(“‘) (r), the %2' element of which is V{g)(r), an N x N diagonal
matrix for the centrifugal barrier contribution, %(r), the 24!
element of which is [£(% + 1)/r2] 622, and a diagonal k2 matrix.
1f we further let each solution (corresponding to a particular v)

be denoted by an N-compounient column vector, then the full solution

is represented by an N X N matrix, %(m)(r). With all these defi-

nitions, the coupled equations are written as
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2
Sy = [V e L -k T u™ o, 6.5%)

Let us define the diagonal matrix sj(r), where#

[gj(r)L‘, =Gl &,., (6.54)

with
G';(r) = JA! (kr) (6.55a)

(kr) (56.55b)

\
Fl“

G =

Further, let us introduce yet another matrix,

er (rle?) = 'Gf(r) - g-‘i (). (6.56)

Then the matrix counterpart of Eq. (6.37) can be written as
r

K(m'(r] ‘Gﬂ(r) + G-'zfr']r) -\Lm,(r') . zir"’(,-’) de’

(6.57)

+g‘ li(r’ r) V(“‘(r’) u(”'(r')dr
r™

o have chosen slighily different notation in this section in order
to conform to other published discussions of this algorithm such
as those of references (3) and (17),

147




We now introduce homogeneous and particular solutions, which
we shall denote %o(r) and %l(r) in order to avoid confusion with

R m .
the true solution u( )(r). The homogeneous solution turns out to
N

satisfy
WA = G4 4 G¥ () Y -yt (e e
[«

«

(6.58)
{0t Y™ 4 () g -
&
and the particular solution is given by
1 Y
UCY= y°Cr) - C (6.59)
where the constant matrix S is
A 1
E = [L_E'Gz(r,).y'(m’ rl).uofrl)érl] .
o i
2o (6.60) :
[SQ%("')'VM’(W) 'Eo(")""'l-
° -~ j
The full solution is simply %
o0
2 (mi -4
u™(el= u°(r)-[1-_[‘§, (r’)-y_ (r')'gf/r') dr’] . (6.61) b

We should poiut out that the integrand in Eq. (6.61) must be calculated

anyvay in the process of developing the homogeneous solution and hence

148



may conveniently be stored, making it a trivial matter to extract the
T-matrix.

It is conventional to introduce a little more notation. This will
aid us when we examine the quadrature formulas used to ccmpute the

homogeneous solution. Thus, we shall define

(V') S‘G- (rd- V(mlr') MO(I") dv’ (6.622)
I e V= ‘YG- (+" V"'" (r)-u* (r)dr’. (6.62b)

In terms of these integrals, Eq. (6.58) takes on the more elegant form
2 2 1
U = G-I - G-I . (6.63)
A Lad g A s
The physical wavefunction is related to the homogeneous solution by
u™() = ull). (L+C). (6.64)
~r lad (o ~

In these equations, we have explicitly introduced the minus sign in

the definition of Gi(r) so that Gi(r) = {1/k) ﬁl(kr) henceforth.

It follows from these definitions that

1+¢ = [I*(e17t

since
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[I%)3""[2-1%(aV] .

(6.65)

The computational details of the solution for go(r) represent

trivial modifications of these equations along lines suggested in

§6.4. Defining

1
T (r._ )_ Z Gicf- Vm(f" u‘(f )W (6.662)
2 =3 Jgi o
-4
10 = £+2 GH) V) ule dwy (6.66b)
J=
we have
0 . Y e 2y, T2
w0y = Gl )1 (0 V- o) I70n,), (6.67)
The constant matrix E is simply
: 2 -t 2 ()
C= [In ] [L-I ()] (6.68)
where Toax is the largest value of r used in the step integration

defined by Eq. (6.67).

Notice that the I-matrices of Eqs. (6.66) can be generated

from the convenient formula




;-Ej('.:-j_) ‘..:-I:J(r,:-.,_) .,_%3 (ri-i)'i(m(f;‘-:) ’}:’(f[—g ) w;_, - (6.69)

The relevant initial conditions on these quadratures for starting

the integration at r = 0 are

I%0)=0 (6.70a)
T2*(y= 1 (6.70b)
ZLO(O) =0 . (6.70¢)
Lad Mo d

[In some applications of this method it is appropriate to start the
solution or certain channels of the solution at scme non-zero value

of r. See reference (17).]

Hand calculation verification of the computer code which
implements these equations is facilitated by noticing that if L)

is zero, then

u’(r;)= G () (6.71)
L =6 () X)) - 6 M e w,y (6.722)
'_'L;z(ri) =1 +§—7‘(q)- y{m’(r,_) -Q‘L(r,_)wi_ (6.72b)
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These results further tell us the useful fact that Il(r) = O for
n

small values cf r,

8§6.5. Extraction of the T-matrix.

We carefully chose the Green's function in Eq. (6.55) to

correspond to the asymptotic boundary condition
. ™ m ™
%(nﬂ(v) ~ sin (kr‘iz)s‘u +K.u' m(b_r-ﬂ 'z_) {(6.73)
® o

The K-matrix so defined is real and symmetric, while the S-matrix,

related by Eq. (6.9) or equivalently

§=[(i—$‘)+1£!§;]-(}b*—!§i)'i (6.74)

(21)

is unitary and symmetric.

Letting r become large in Eq. (6.64), we obtain

{m .
w2l bin u°l) (1+C), 6.75)
A pedps ~r ~ ~
r=Doe
The behavior of the homogeneous solution in this limit is given by

LND;\ %0(') = sir) 11(ao) + ,5-1- .(.:..(") . _2:’1 (N); (6.76)

r-)u La'd ”~
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where we have used Eq. (6,58) and introduced two new sin and cos

matrices,
[g(»)]u. = sim (hr-£ T )5_““, (6.772)
™
L@, = con (Rr-23 )8, (6.77b)

and the diagonal constant matrix %. A little manipulation yields

U sl v el) BT I ([IMNTE

But the K-matrix in the multi-channel case is obtained from(ls)

(m -% 2/2
U 757 s vl kT K BT

Making the obvious identifications, we have

!S = E“"._I_"(h) -[;2(“)]-1. ‘é"z_ (6.77¢)

2 -1 2 -1
Of course, we do not actually use I“(=)  but rather [I°Crpad)

where ¥ ay MUSt be in the asymptotic region as defined above.
We shall ultimately obtain cross sections in terms of the

T-matrix, which is complex and hence can be written as

(o S~

T=R+i£,
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A little algebra using Eq. (6,74) and E =1 -~ § leads to
v

S
n

—2!&(&1—!(-5)—1 (6.78a)

N |
1

-K.XI. (6.78b)

M P

R

The calculation of cross sections from 5 and % will be detailed in

Chapter 7.

This concludes the discussion of the standard integral equations
fermulation. 1In the next section we take a look at the machinations

required if one 1s to use this technifque on any but the simplest

systems,

86.6., The Transformation-Truncation Procedure*

In this section, we shall introduce a fairly substantial
modification of the integral equations algorithm discussed above.
The primary motivation for use of this procedure rests in severe
numerical di%ficulties which were encountered in our early efforts.
It turned out that in addition to resolving the most serious of these
difficulties, the transformation-truncation procedure has some
theoretical interest in so far as it addresses the physical wave-~

*le are most grateful to Dr. Lee A. Collins for his invaluable assistance
in the development of this procedure.



function and the question of the relative importance of large-f
partial waves to the final cross section. In this last regard, we
shall harken back to the discussion of the effective potentiai in
Chapter 3.

By way of introductory, let us recall from Eq. (6.64) that
the physical wavefunction g(m)(r), from which we obtain physically
meaningful scattering data, differs from the homogeneous solution
zo(r) for which we solve in Eq. (6.63) by a constant matrix. In the
physical wavefunction we can identify channels (elements) with
particular partial waves; these channels couple, in some cases quite
strongly, in the region of small and'intermediate r, but asympto-~
tically we can (for some systems and some svmmetries in the e—002
problem) actually identify particular distinct f-channels. The point
is that these "physically meaningful" channel solutions are mixed
in the homogeneous solution. [In the standard formulation of the last
section, we return to the phvsical wavefunction once we get to the
asymptoliec region by multiplying by [izﬁw)]-l.]

For nice nearly spherical targets, these featurec of the al-
gorithm pose no serious problems, although it is usually necessary to
"stabilize" the wavefunction. [See reference (7) and sectilon 5.6C
below fer discussions of this proceedure.] However, for the highly
anisotropic case of e—CO2 scattering, we have a very strong static
potential energy and must retain a hugze numbar of channels to achieve

convergence. What, precisely, is the problem? Well, in the region
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of high anisotropy (i.e., the vicinity of the nuclei), the mixing
of physical channels to which we alluded above does no real harm,
since the high-f solutions are pretty large in this region. (This is
negated somewhat by the centrifugal barrier considerations for very
large partial waves; see below.) These functrions die away beyond
the centrifugal barrier. Problems arise because some of the solutions
are too large to be treated computationally by conventional means.
The end result is a loss of significance and a singular (or nearly
singular) Iz-matrix. In fact, this phenomenon was first noticed
when we observed that in calculations where a large number of
channels were retained, the product %2(w)-l . %2(w) was not
equal to the unit matrix, but had huge off-diagonal elements.
Intuitively, one would think that beyond some value of r
considerably smaller than T oax® the offending high-% solutions
components would be superfluous; the reasons for this were explicated
in Chapter 3 in our comments on the effective potential. BReyond
this value of r, these channels carry no flux themselves and so do
not contribute to the cross sections. Moreover, it is ridiculous
to expect them to 'back-couple"” significantly to the small-%
components, which do make significant contributions. These arguments
are most emphatically not valid in the region of highest anisotropy,
and this i1s what makes the calculations rather forbidding.

It is thevefore reasonable to truncate a large number

7
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of these "superfluous” channels, say, all £ *~ztrunc beyond a

cercain radius, say T runc® But to do this in a meaningful mranner,
one must first transform the homogeneous solution being calculated
into the physical solution, for one cannot just mindlessly lop off
rows and columns from the homogeneous solution -without also tossing

out flux (i.e., contributions to the cross section) along the way.

In point of fact, merely truncating as suggested above is

not sufficient to resolve all the numerical glitches in the prcblem.
One must transform the homogeneous solution to the physical solution

. To understand why this is true,

at values of r smaller than r
trunc

it is necessary to look at the procedure being proposed in some
detail. So enough words; on with the equations!

What, if anything, is the effect on the integral equations
algorithm as presented in section 6.4, of applying a constant

transformation, say R to %o(r) at some r aloung the way of the

integration? In other words, consider the transformed wave-
function
- e 2,0 [
Ule) = u°lr)- D (6.79)
~ ~ ~

where %o(r) satisfies Eq. (6.63). What equation does u(r) satisfy?
"
To answer, we multiply Eq. (6.63) on the right by the transformation,

obtaining 3

E (r)= %L(r) . iz(r)- C;';,z(r) . i" (v) (6.80)

S
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where the transformed I -matrices are simply

_:l—.-':(ﬂ = T)-D Ci=1,21 (6.80b)

For purposes of calculation, the quadrature formulas of section

6.4 are easily generalized to

uly) = ,G;i(‘e) -iz(r}_,) -%z(r‘-)-:Tzi (r:_,) (6.81)
and

T = T+ ) W) e w0

The numerical procedure for transforming at rtrans is clear.
] i
ave u (r and I (r . Hence we can generate transformed
We h " ( trans) N ( trans) 5

wavefunctions and I -matrices at r via Fq. (6.78) and (6.80).

trans

We then proceed with the algorithm exactly as before: the computational
form of (6.81) and (6.82) is the same as that of their untransformed
counterparts (6.67) and (6.69). This important observation has
happy consequences for the frustrated programmer trving to modify
an already complicated computer code!

We are all set except for one thing: the K-matrix. The obvious

way to proceed is to calculate
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L) ;‘(a):[ . hE (6.83)

But is this identically equal to E as determined by Eq. (6.77c)? If
not, we cannot extract useful cross sections from the matrix in

Eq. (6.83) and are in a lot of trouble. Well, the answer is yes.

To see this, we just shove Eq. (6.80) for 1 = 1 and i = 2 into Eq.

(6.83), recalling from some distant course in natrix algebra, that

N -2 4 -, -4
[I (»)-D1] =D . [_g_ (oc)] ™" (6.84)
~ ~ -~ A
In no time at all, we see that the two matrices are identical.

The truncation procedure is comparatively trivial to carry

out. Once we have stepped out to we rerely transform one

r
trunc’

Iy

more time, returning to the physical wavefunction, identify the
offending unwanted channcls, and dump them from the wavefunction
matrix in the calculatiom.

There is one furthar point that should be addressed. 1In
the actual calculation, we found rather abruptly that one trans-
formation is not sufficient. The potential iz simply so strong
that no sooner do you undo (by transforming) thes numerical damage
the potential has done than it is in there znain, nmessing up your
devaloping tranaformed wavefunction. Thus Freruvent traasforarcions

are usually regulred, especially for syvrmostvies requiring o lauv. o

U
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number of channels (e.g., Zg’ which, as we shall see in Chapter 8,
is a virtually endless source of difficulty).
Are multiple transformations a problem? Certainly not; otherwise
we'd never have raised the question. The reason is that when we
reach a second transformation radius, say r,, we hit the transformed

wavefunction not the homogeneous solution with, say, D2. Thus

TiCRE i‘("—) - Da (6.85)
= u°(ry-D.D, (6.86)
A A

The produce of the two constant transformations is equivalent to a
single transformation, say E =D * D,.
& » say 5 =20 O,y

The next logical question is: what do we use for the constant

transformation matrix, D? In line with our earlier comments, the
n,

most desirahle choice would be

Q = [5"(&)]-1) (6.87)

for then the transformed wavefunction would in fact be the physical
wavefunction. This would be grossly inefficient, though, since we
calculate £Z(r) via Eq. (6.67) and hence would have to do the problem
twice, for we can't get [,3{212(00)]*1 without transforming, which we can't
do without %20”).

A way out of this problem is provided by defining
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[ lz(rhans ) ] (6.8
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so that

E(mm\ = ?.‘,o('hm ) ° [;‘Ez(r'l'rans )] i- (6.89)

Once we have transformed in this manner, we can truncate the unwanted
channels provided that we are at large enough r that %?(rmax)=£?(w).
In our application, to.be illustrated in Chapter 8, we found by
direct examination of {2 and by convergence tests in Ty runc that our

choice for this quantity was adequate to satisfy this criterion

even though it was much closer to r = 0 than to r = T hax®

The truncation procedure therefore saves computer time as
well as helping get around the numerical difficulties which originally
motivated it. Beyond the truncation radius, we propogate a much
smaller wavefunction matrix (e.g., 5 channels rather than 32 channels)
and need to calculate consequently fewer matrix elements and Green's
functions. The major saving, however, comes in the reduced matrix
manipulations.

One final word must be said about multiple transformations.

Suppose we have transformed at r = r; and are happily propogating,

viz.,

16l
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E(r) = _Zzl"’(r) . [;[’2 (r},\]-i (6.90a)

.Ef(r) = 1:':&) . [;E"(r,_)] 'i, (6.90b)

We then reach r,, where we decide we must transform a second time,

We use
_ _1
,P;k =1 I ("1)] ) (6.91)

rather than Iz(rz)'-l so that the traunsformation on ’E‘(r) effectively
"

"undoes” the first transfirmation, i.e.,

) = W) 32177

4N |

w00 [T [T - [17¢2)

- .
—_ ulv) = u°lr) °[:£2(r,_)] (6.92)

This is done so that as we move along, the multiply-transformed
wavefunction will resemble the physical solution as closely as
possible. (It is also more convenient computationally.)

In the final anmalysis, we found that by using the transformation

procedure and exercising extreme care in certain other numerical




aspects of the calculation (see below) it was possible to properiy
converge the cross sections for e—CO2 scattering. 1In effect, the
transformation tries to "segregate’ the very small wavefunction
components from the important not-so-small low-% components in the
developing u-matrix, It is not an approximation. Tie second step
of the procedure, elimination of superfluous chamnels at the
truncation radius, is an approximation but, as we reason and shall
see in the sequel, it is a very good one,

Lastly, let us say a word about our choice of the parameters

and In general, one can use the graphs of the

r L .
trunc trunc

effective potential cnergy (e.g., Figure 3.7) to predict these guan-
tities, although the caveats issved in section 3.7 regarding care

in using such arguments nust be kept in mind., It is true, for example,

that beyond r = 4.0 ag» the {4 = 12 partial wave does not contribute

at all to the scattering for, say, Zo symretry, and can be summarily
g

dropped from the calculation. Nevertheless, the acid test of any

such procedure is convergence; we try a couple of values for each

parameter and ensure that the cross sections are unchanged. The

number of partial waves which must be retained does depend on the

symmetry under consideration. For example, for I_ we could use

=]

16

]

2 10 with r = 4,0 a_, vhile for Il we recuire £ =
trunc trunc B - 8 Y Ttrunc
with the same truncation radius. More computational details can be

found in section 8.2,
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§6.7. Still More Numerical Difficulties

We now must address the undeniably boring subject of little,
picky, numerical problems which we encountered along the way in our
studies. However tedious all this appears, these matters must not
be skipped over, for if one blindly vses standard computer codes to

calculate standard quantities in a problem as extreme (in some ways)

as is ours, one is guaranteed no end of trouble (and incorrect answers).

A. The Trouble With Bessel Functions.

One might think that something as innocuous as calculations of
the various Ricatti functions appearing in the equatiomns of section.
6.5 would be quite straightforward; there are hundreds of codes
floating around the physics community to perform just such a task(zs).
Alas, we find that very many channels being required in our problem
for r valves near the origin lead to problems. The calculation of
the required functionsis a little tricky and (potentially) expensive.

The spherical Bessel and Neumann functions obey the recurrence

relation(zo)

20+4
-S_Q_i(x)+§2+1(x)= 7: S:Q(x)_. (6.93)

which is at the heart of most standard techniques for evaluation
of these functions., The obvious (and usual) thing to do is to take
into account the known and easily evaluated analytic foims for these

functions at small orders, e.g.,

wh




. 41 4

(x)= = sinx n(x)z=5 coa x
jo * ’ ° x (6.94)
. i .
j,(:)-'. xi;' Sinx-% coa X R n,‘(u)="x—, Cos X~ -; Smx,

and recurr upwards to obtain the corresponding function of the desired

order.

However, it is preferable for especially large orders in the
calculation of the spherical Bessel functions, to use a downward
recurrence scheme;(zg) more accurate values of fz(r) are obtained
in this manner, the problem arising because the spherical Bessel function
gets very small for large orders and small arguments, The idea is
to introduce a new function proportional to the desired one. If we

are interested in, say, jm(xo), we write

E(x7= Pj_e (x). (6.95)

Next, we select some N > m, say N = 2m, and set
FM ("a) =1 (6.96a)

Fualt,) = 0 (6.96b)

where Eq. (6.96b) is arbitrary. The larger N we choose, the better
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will be our answer. However, machine limitations (see section D
below) can throw a monkey wrench into the works.

Now, using the recurrence relation (6.93), we step DOUN to
Fo(xo), saving Fm(xo) along the way. We can then determine the

proportionality constant p from

Fo(xo) = Pjo(XO) = P%‘o Sin X, (6.97) )

Then we find the desired quantity via

'jm(ﬂo) = % FM (xo)‘

As a general rule of thumbh, we recommend

upward recurrence for x2 > (L + 1)

downward recurrence for x2 <R+ 1)
However, this still does not resolve all the problems. At
small values of the argument for large orders, the factor (22 + 1)/x
can become quite small. An additional factor cf this magnitude is
accumulated for each step down. The end result is usually a number
so small that most computers underflow.
The way around THIS problem is to use the series representation

(30)

for the Bessel function s loe.,

v (ot 2k
:‘:(ﬂ%g’)g k!r‘(gi’k.*i) (gi) . (6.98)
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This result is valid for all real arguments. It is easy to derive

from this an expression for the spherical Bessel function, to wit:

J (x)zé(l)if (_nkzzu-rhi){,q_i-ku)! (_x_)z“ (6.99)
T e R!'L2lsksd 1! 2/ -

We find the series to be convergent by k = 2 for x < 0,01 and 2 up

to 58.

A handy recurrence algorithm can be developed based on Eq.

(6.99). We find
. 1 xyd =
)J&(x)= ‘z‘('-i) E: Ch(i,‘x)_, (6.100)
=0

with the coefficients generated by means of

1) %?
Yo ~ (o + (5.101
Ch+1 (!,'x (R+1) (2ma+2)(2m+ 43 Ck (,Q, 7‘)! )
where é

wmz= R+ k4 1 (6.102)
and

2L
g2t (e
. (6.103)

€= (22+2) 1
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All the techniques in this subsection were coded in a subroutine
in the electron-molecule code and extensively checked using a hand

calculator, other codes, and various published tables.(3l)

B. The Trouble With Clebsch-Gordan Coefficients

The usual procedure for calculating Clebsch-Gordan coefficients
is to use a combination of the analytic forms and recurrence relations
for these coefficients; these formulas can be found in reference (31).
Initially, such was our procedure. However, as we increased the
number of channels and hence the value of the maximum argument, we
found that these nice convenient formulae give incorrect answers
due to a loss of significance in the calculation. 1In particular,
one cannot trust the result for C(j1 j2 j3; my m, m3) for jl’ jz,
or j3 greatecr than about 10 if standard formulas in single precision
are used,

Fortunately, a code exists due to Caswell and Maximon(33)
which gets around the problem and will calculate Clebsch-Gordan
coefficients for values of ji up to about 80, This program uses
a combination of logarithm arithmetic and double precision to perform
the calculation and is highly recommended to anyone faced with the
prospect of calculating large numbers of coefficients im this range.
As an indication of the efficient uéture of this code, we found that
it toolk less time to re-evaluate the coefficients needed to calculate

matrix elements each time the integral cquations code was executed
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than it did to calculate them once and read them in for each execution.
(Of course, this conclusion is highly machine dependent and should be
taken with the usual grain of salt.)

One thing should be noted. The code in question calculates
Wigner 3] coefficientsrather than Clebsch-Gordan coefficients. However,

the convergence is easily made(32) via

. R R k] prepyore R TR
C(_’)._‘-;J«_,;m,m;ms\: l'i) (25,+1) " ™, _;3 . (6,104)

Having once been burned, we performed very extensive tests of
the validity of this code using the invaluable though difficult to
use tables of Rotenberg et. al. for comparison. For all wvalues of
ji of interest, the code performs without error.

For even larger values of ji’ which we mercifully need not

concern ourselves with, there exist recently developed(Ba) formulae

which are very efficient. These are here mentioned for completeness.

C. Stabilization

As has been noted by other authors, in the generation of the
homogeneous solution via the integral equations algorithm, it is
possible for linear dependence to creep inte the solutions due to
numerical loss of significance in certain channels. This situation
is particularly egregious when lots of channels are invelved.

A procedure called stabilization has been developed(4—9)
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to address this particular computational problem, and a clear and
detailed discussion of it is available in reference (35). Essentially,
the methc * entails decomposing the homogeneous solution at the stabi~
lization radius, where we intend to stabilize, into the product of
upper~ and lower-triangular matrices and replacing the homogeneous
solution matrix with the resultant upper-triangular matrix.(36) This
forces linear independence of the N solutions being developed at
the stabilization radius,

Frequent stabilizations can be required, because creeping linear
dependence can re-infect the stabilized solution. Moreover, one must

apply the stabilization step before the solution matrix becomes

singular; once this has happened, you can't save the situation.

D. The Ad Hoc Neumann Cutoff Procedure

Unfortunately, we are not quite out of the jungle of numerical
complications yet. Fortunately, we do not run into the problems
discussed in A when calculating Neumann functions, for these are not
small at small r, The problem is that they are large at small r.

In fact, the computer overflows in trying to calculate them for small
argument and large order. For example, the spherical Neumann function
for £ = 56, which is required for Zg symmetry, at kz = 0,005 and

r = 0.001 is larger than 10312, the machine uppeir limit for a CDC
7600. On less impressive machines, the limit is much lower and the
problem consequently encéuntered for small orders.

There are a variety of ways to treat the problem. The most

elegant and exact is to scale the I'-matrices and thereby avoid

et U



either the overflow at small r of the spherical Neumann function or
the underflow of the spherical Bessel function. The latter cccurrence
effectively starts certain high-order solution channels "late", i.e.,
at some r # 0. We have tested the importance of this for the T
matrix elements by artificially inducing the same effect in our
computer program. The answers are unchanged until the starting

radius becomes much larger than the values of r for which thé machine
can calculate the spherical functions.

A simple though approximate way to tackle the overflowing
Neumann functions is to simply cut them off., In other words, when
in the recurrence nl(kr) grows to some predetermined upper cutoff,
we just replace all larger values of the function with a (large)
constant. This procedure is founded in the expectation that a
nuaber of such huge magnitude 1s so large compared to other elements
of the matrix, that it can reasonably be replaced by anothef large
nunber without significantly affecting the wavefunctien being
developed.

Because of the admittadly ad hoc and approximate nature of
this trick, very thorough tests of its effect on wavefuncticns,
Ii-matricos, and T-matrix elements were carried out. To‘cur astonish~-
mont, we found that not only did the procedure resolve the problem
here presented but it enabled us to converge the Zg cross sections,
which had begun to show characteristics of diveregence owing to
numeiieal instabilicdies in the calculation. his problew, how this
procedure resolved it, arnd other ways around it, will be discussed

in Chapter §, vhere we loo% at some numbers,
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§6.8. Conclusion

Chapters 3 - 6 completely describe the collion problem theo-
retically up to but not including the actual calculation of cross
sections. The theory we have described if used with care can probably
be used to treat electron collisions with any molecule smaller than
or about the same size as COy. The application to heteronuclear
targets is quite straightforward, requiring allowance for even- and
odd-A terms in the expansion of the potential energy in Legendre
polynomials. In fact, the author (in collaboration with Dr. L.
Collins) has carried out some calculations in the lab frame using
our codes to study e-CsF scattering. The modifications required
were straightforward. The further extension to non-linear molecules
(say, water) remains a challenge and might involve rather extensive
cede revision. The theory should apply, however.

At the risk of redundancy, let us stress in conclusion that
without the procedures of sections 6.6 and 6.7 or their equivalents
the integral equations method cannot be applied to problems such as
e—CO2 scattering. But what of the Numerov algorithm? Might we adopt
it?

We decided against this approach for several reasons. First
the integral equations algovithm used in coajunction with the
etabilization procedure discussed above is a more stable method
thau Numerov, which cncouaters similar numerical problems sooner
in the integration. Second, the integral equations method is faster,
since inward-outward intcgration is not required.

These arguments are less compelling if exchange must be inclu-

¢ err—— e e e s me e
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ded via a kernel in the integral equations procedure. See reference

(3) for a discussion of this case.
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Chapter 7. Diverse Cross Sections for Electron-Molecule Scattering

Little Jack Horner
Sits in a corner
Extracting cube roots to infinity,
An assignment for boys
That will minimize noise
And produce a more peaceful vicinity.

~Frederick Winsor
The Space Child's Mother
Goose

§7.1. Introduction: The Point of it All

In this, the final phase of our theoretical amalysis of
the electron-molecule collision problem, we shall present formulae
for the calculation of actual cross sections. It is these quan-
tities which permit us to compare with the experimental results
discussed in Chapter 2 and that permit ultimate insight into the
physics of the scattering event. They are of paramount importance.

Our starting point is the T-matrix. As we showed in Chapter
6, we first calculate the real symmetric K-matrix via Eq. (6.77c)
and then extract from it the real and imaginary parts of the T
matrix using Eqs. (6.78). We shall assume here that we have
obtained these quantities and seek to use them,

With one exception, all the numericul quantities we shall
discuss in the "results 'apter", which follows this one, are
extracted by formulae to be revealed here, from the T-matrix.

We do use the eigenphases, though, and they are derived from the

A A AN S I




Krmatrix(l). We simply diagonalize the K-matrix and take the
arctangent of the resulting eigenvalues; these are the eigenphases

(or eigenphase shifts). If used with care, the eigenphases zné

associated eigenvectors which emerge from the diagonalization,
can be a useful tool in the study of electron-molecule physics(z).
We shall have considerably more to say about eigenphases in Chapter
8.

We present formulas for the total cross sections in §7.2,
for differential and momentum transfer cross sections in §7.3,
and for rotational excitation cross sections in §7.4., This
section also discusses briefly the transformation from body-
fixed to space-fixed (or laboratory) reference frame. The last
two sections of this chapter present two approximations which will

be used in the sequel: the Born Approximation (in a partial

wave analysis) and the Asymptotic Decoupling Approximatien.

§7.2. Total Cross Sections for Elastic Scatterimng
3)

As the author has shown in detail elsewhere » the total

cross section for elastic scattering is given in terms of the

body-fixed T-matrix elements by the simple formula

= o 1T, .0

20'm

%%

ot

where k2 is the scattering energy in Rydbergs. The formula is

obtained by first deriving an expression for the cross section in
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the body-fixed reference frame and then averaging said expression
over all molecular orientations.*

Notice that in Eq. (7.1) we sum over m, the quantum number
corresponding to the projection of the orbital angular momentum
of the scattering electron along the z axis. This is a good
quantum number, since the system has axial symmetry [i.e., V(r,9)
is independent of the polar angle ¢], so there uo exist solutions
of the scattering equations the ¢-dependence of which is given
by eim¢ and can be factored ocut. However, to obtain a scattering
function which satisfies the plane-wave scattering boundary
conditions [C.f., Eq. (6.14) and accompanying discussion] we must

im$

sum over a1, including the factor of e s of course. This is

reflected in Eq. (7.1).

In practice, we shall take advantage of the fact that our
problem separates by symmetries of the full e-C0y system
(see section 6.2) and treat each symmetry separately, sumning

at the end of obtain the total cross sections.

8§7.3. Differential Elastic and Momentum Transfer Cross Sections

An equation for the differential cross section can bhe obtained
. 3 . . .
by derivxng( ) a fixed-nuclei expression for this quantity, trans-
forming to a space-fixed reference frame via the ever-popular

*#For convenience, the average is actually performed by integrating
over the directions of the incident wavevector. See reference (3).



D—matrices(a), and then averaging over the Euler angles which
define the orientation of the target with respect to the space-
fixed axes. The rather formidable algebraic contortions necessary

to derive the formula can be found in reference (4). The result,

3)

presented here to correct an error in the earlier document

de T 2. Z z (2u+4) [(29*‘1) (20'+1) (20 +1)

2'm 35'm
(224 C T/L;00) C(L7TLy ~m ) .2
Clady, oo)c(n,u_, -m, ) (A2 (L -2

m
29’ JI’ P (e ©).
In trying to cope with such a hideous expression, it is
"

LY
useful to introduce the notion of a channel index i, defined as

» 1is

i= (R.i, 2.1', mi). In terms of this index, Eq. (7.2) can be

slightly more conveniently written as

dr _ 1 N
36 g Z Z (zm.u [t 1020/ 42) 245 +2) (2841y)

C(-!"lj:‘ b;OO )Cu;.fj,l.;oa ) C(-f,:'ll' L; ~Mo, M ) .3)

(2-41) (ﬂ;-lj')-rm; T ™ *

Cl 4 Lyom,my) (-¢) PP
585

PL(COS 6 ) .

There is a whole series of restrictions on the summations
in Eq. (7.3), A Clebsch-Gordan coefficient C(j1j2j3,mlm2m3)

(3) . - 3 3 .
is zero unless my = m; +m,, A(3;3,34), |m1] <3gs lmzl < iy
and lm3| < j3. Moreover, C(j1j2j3,000) = 0 unless jl + j2 + j3
is even. Applving these to Eq. (7.3), w2 see that for any set

of channel indices (ij), the correponding terms in the summation
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are zero unless
"M;_ I < min (1;,11:' ) (7.4a)
IMjI £ pn (15,15')  (7.4Db)

(Ml < L, (7.4c)

where we define M = mj - m. Also we must satisfy

XL+ 2+ L = evew (7.52)
.Q‘-_l + ,Q; +h = even (7.5b)
Al 4 L) and AU;’IJ-' L), (7.6)

or, equivalently,
max(u‘--ﬁjl,lﬂ{-lj’ l) ) PR “g-'-lj 4 +4;! ). (7.7)

In the actual calculation, we only determine T-matrix elements
for partial waves up to some Zmax’ chosen by effective potential
considerations such as those discussed in Chapters 3 and 6 and by
experience. For example, for Zg synmetry, we have m = 0 and

typically %= 0,2,...,8, while for Zu we have m = 0 and %= 1,3,...,9.
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Notice, however, that the sum over m; and mj in Eq. (7.3} rums

over positive and negative values, i.,e., for each term corresponding
to m; or mj non-zero, we have contributions due to i_mi and/or

+ mj as appropriate.

For practical reasons, it is desirable to develop an efficient
computational scheme for determining the differential cross section
from this formula. Equation (7.1), with its seven summations,
won't do. Because of its fairly wide potential applicability,
we here prasent a sketch of a procedure which we developed to
perform these computations.

Let us introduce the real and imaginary components of the

T-matrix as in Eq. (6.78), and write Eq. (7.3) in terms of them as

dr 4 <%
£iTms g<¢°,e)§c£§ (R:Rj +I; I;), .

where N is the number of channels* as defined by the channel index

introduced above, and where Ri = R:iz vs etc. The coefficients
i"1

L
i3

c are developed as

KA
T . J;-JQ'
c;i = Lt 010/+0) (2004 )24'+ )]
.- .’
-0 574 clg; 0,0, 000 €095 L; 00) O Li-memy) (.9
’
C(Q::-Q:‘L', -m;,,'ms ) .

#*These are assigned based on the particular symmetries and partial
waves retained in the integral equations calculation as the first
step in our code (DCSMOM) which evaluates these cross sections,
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In deriving Eq. (7.8) we have used the fact that cijL = cjiL
so that when sumred the imaginary part of T JHoT ,mj i
liﬂi Zjli !

is zero. Defining a new matrix, call if As as

I RR +T. T (7.10)

and using Jij = in, we can write Eq. (7.8) as -

bman N
1 Y 2 L
%9:';,;: (7ev2) P (ens O <4 J:: |
L=0O et :
N1 N (7.11)
+212. 2 c:.- T4
sS4 3¢
where Imax = 2 Zmax, 2max corresponding to the largest 2 partial :

wave included (for any symmetry). Finally, let us define one more

coefficient, viz.,

(ﬁ%)[zt. cii Jei+2 Z > < 3 J3e5 4, .12)

{1 J"L

so that the differential cross section assumes the convenient

form

1 bs,.,
- T z L Py (cos ©). (7.13) .

Q-‘CL.
@19

We can use Eq. (7.13) to derive a handy formula for the -

(5}

monentum transfer cross section, The latter is defined as
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v T
e (g de
om™ |49 |sin€dO (L-cea®) T3 (7.14)
© °
which can be written as
w
. do-
Orupm > Ty ~ 27| 506 d0 e0a© y5 > (7.15)
°

where, of course, the total cross section is (by definition)

2y ¥
T =§d&f5fnedé fﬁ . (7.16)

We now substitute Eq. (7.13) into (7.15) and use the ortho-
gonality relation(ﬁ) of the Legendre polynomials on the interval

f-1,+1), obtaining

T
o = Tt ~ 3> 91 (.17
and
LI
Ut = e* 90 - (7.18)

Thus we see that the total and Umom cross sections emerge as
happy byproducts of our calculation of the differential cross
saction,

For the application to electron collisions with CO,, the

phase factors in the differential cross section vanish, since it
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is always true that [Ri - Zi'l and Ili - Ej'l are even
(this, in turn, is a consequence of the fact that the target
possesses invarsion symmetry).

Finally, we should point out that it is efficacious not to
have to explicitly include positive and negative values of m;

and mj in the channel index table. This can be avoided by the simple

expedient of replacing cijL in the definition of dL’ Eq. (7.12),

by a new coefficient, call it bijL’ and summing over channel
indices 1 and j defined to incorporate only non-negative values

of my and nﬁ. We thus define

b_
biy = € (825 085" e my VL0 400575 -mc m) (8-6,0.0)

Lo 2-0.70." m. = mh -
+ C (l‘l,ltl‘,,m,, m;) (1 550) (7-19)

+ MUy 48 mmgmmy ) (4-3,,0) (1-8,50)-

where we have explicitly indicated the quantum numbers on each
cijL of Eq. (7.9) and where the delta function kills off unnecessary ;
terms.

The above algorithm was coded and very carefully tested, We .
incorporated several internal consistency checks, such as independently

calculating the total cross section by Eq, (7.18) and then by Eq.

(7.16) using our differential cross sections and numerical quadrature.
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We then compared the results with the total cross section determined
by summing the cross sections for individual symmetries in the integral
equations calculation, 1In all cases, we found agreement.

The "acidd" test of the code was performed by taking T-matrix
elements for e—H2 scattering at several energies and reproducing
published differential cross sections(7) to three significant figures.
Such extensive testing was deemed necessary when our calculated
differential cross sections for e-C0, scattering began displaying some

rather peculiar behavior; see Chapter 8 for a discussion.

§7.4. Determination of Rotational Excitation Cross Sections from the
Body Frame T-Matrix

In this section we seek to determine rotational excitation cross
sections for electron-molecule scattering making the fixed-nuclei
approximation. We have the fixed-nuclel T-matrix elements in the body
frame. The first step 1s the transformation of this matrix into the
laboratory frame. In order to determine this transformation, we must
first obtain the unitary transformation which relates the body and
laboratory frames. We shall use unprimed coordinates to refer to
the body frame and primed coordinates to refer to the lab frame.

The two frames are defined by the angular (rotational) functionms,
and the T-matrices in the two frames are just matrix representations

of the T-operator in the two bases:
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¥ . ctat '
-[;!‘3,’,'-'-<le14 I Tije'Tmd (7.20a)
T:;:, c<<Aam| T2 awm >, (7.20b)

where |j2JM> refers to the coupled angular momentum rotational

functions in the lab, i.e.,
IM A .
Yo (B0 CETmmM SR A aa
mjmj

or, in general (for states with m # 0)

y }r:n (#{ap')’) = ZC(j!J‘,’mjm,M)}i"x(;,) 'q)j a2 (dP YY), (7.22)

In this expression, mj is the projection of the reotational angular

momentum of the target along the space-fixed axis z', while A is the

projection of same along the internuclear axis. Further, wjm A(aBY)
J
ie the symmetric top wavefunction for Euler angles afYy, which define

the orientation of the body frame with respect to the lab frame. Thus

we have

2i+1 [
w‘jmjl(ﬁfﬂ =i '%"1;-"1 QD—W;:\ (o((ﬂ')% ' (7.23) :

In the fixed-nucleil approxzimation, the body~frame basis functions i

are the spherical harmonics
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[E3Am> = ij-) (), (7,24)

where we have used the convention that m is the projection of the
system (electron + molecule) angular momentum along the body frame
z axis (i.e., the internuclear axis). These functions were used to
define the T-matrix in the body frame. (XIf we do not make the fixed-
nuclei approximation in the body frame, the rotational hamiltonian
will couple different values of m-A and the problem will not separaée
so nicely.)

Now, let's determine the unitary transformation g that converts

the lab basis set into the hody basis set, i.e., we seek cij such that

(W 12
¢ = 'JZ C .q"j P (7.25)

where the lab basis functions are defined by Eq. (7.22) and the body

functions by E¢. (7.24). The expansion coefficients are therefore

ccj”< lﬁ;u'H;‘u) =<4 ')\TMI.Q' Am> ., (7.26)

To determine these coefficients, we shall transform the jth

lab frame function into the body frame and carry out the coordinate-
space angular integration in Eq. (7.26) in body coordinates, Using

the well-known relation (see reference (4), Eq. (4.29a))

185




VM )= Z

P‘M'

(,Y5 5') ( ), (7.27)
we obtain

(0 2:+L
'l[) ZC(Jﬂ' M_,‘M_,M) ""— m_,a o Ym’ (.,. (7.28)

where we have used the form of the rotational wavefunction for the

internuclear orientation. We now combine the two D-matrices appearing

in this result using the series

J"", OB;‘”‘_ C(JIJ-A.J)M,H:)C(JU'&J ;j‘j‘;) bﬁm,«»m;,/u.f/u (7.29)

and substitute the result into our expression for cij' Carrying

out the easy integration we obtain

Cij = %%C(‘)!T MM_,_)C(J.QLI, j,-m‘)
J

207 ol (7.30)
;a1 -),-mn’ J’i”?‘oﬁmjm‘,m (o«fz‘() Syt

We can further simplify this result by noting the delta function

implied by the presence of the Clebsch-Gordan coefficient in

Eq. (7.30), obtaining, finally,

:rm (oY!i’) Sﬁﬁ-’ . (7.31)




Notice that for sigma target states (A = 0) this reduces to

| 23+ e T
Cy; -’ S C(JJ.T)OM)JM.’“ (4‘37), (7.32)

Our next task is to transform the matrix representation of the

T-operator in the body frame into the lab frame. We have

T, g ATHU WD Tom.,

(7.33)

®@LL” Am I;,'J!'XITM > dlap¥),

where we also integrate (average) over the Euler angles defining the

molecular orientation. In matrix notation, this result can he written

T(U = Z Tt d(u{aﬁ’) (7.34)

kn Crp P‘a ‘&"
where
T _ %
cﬁ" = C,mé . (7.35)
Substituting our result for €43 into the above equation, we
find

.TJT

242"
Sayet = 1) % CLTLj 3o, m-2)CUTL - m=-D) T;:,) (7.36)
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(4)

where we have used the orthogonality of the D-matrices to carry
out the Euler-angle integration. Again it is worth noting that for
I states this expression reduces to

TJ’

I 3'1 = (— ﬂz C(T‘GJ ,'ﬂl M)C(TﬁJ } m‘lﬂ )TJ': ’ (7.37)

Now (at last) we can calculate rotational excitation cross

sections. In the lab frame, they are derived from the formula(ll)

lz.

. (7.38)

ar r
G}J' '.:ka(zr_i) % (23"’1)2 ,Tjﬂ,j'l'

20

Since we make the fixed-nuclei approximation, we ignore the spacing

of the rotational energy levels and set

2

kT = k

J

(all j ), (7.39)

where k2 is the scattering energy in Rydbergs. It is useful to in-

troduce notation for the real and imaginary parts of the T matrix,

to wit:

m
TM = R l Iﬂjl ) (7.40)

29’ L2’

whence the formula for excitation from j to j' becomes

7
Z \23'4'1)2 [ 2 + Ijn,j'.e'z 1 . (7.41)



Using the above derived transformation, our final reselr for

the desired cress section is

s 2 l a
033' hiu" ”2(23+1)“2’ (J mm)[ L, L, ] (7.42)
m

where we have defined a coefficient

L0,
P--.(M ‘i Y = C{T.Qi ~m,m-}) C(Ilj ~m, m-A)
' (7.43)

@ C(Tfj,-m m-3) C(Tﬂd" - W =2)
for convenience. We should note in closing that formally the sum
over J runs J = 0,1,2,... and the & summations are then defined by
the value of J, §, and §' subject to rhe usual trizegle restrictions,
For a given value of J, m can take on values (iatezral) comsistent

with the restrictions
(wmle T, aud Imls T, (7.464)

where we must keep in mind that for non-zero values of nm the surmnition
includes both positive and negative values.

The total cross section is invariant under the unitary traas-
fornation wo have obtained and can be caleculated in the body frame

from the familiar formula

o " g »
oS ST 9

or in the lab [rame {rem the rotaticunl excitation cross sections vin
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g =2 Ty (allj)_ (7.46)

§7.5. Electron-molecule Scatterins in the Horn Approximation

The familiar Born Approximation (BA) is a highly appenlieg
way to study collislons bocause it is simple conceptually sad - an
computationally. If ir works well, sne zight supiest, all the above
labor is sopewhat anilogous to using a sledpchammer o BELY 8 pnasz.
Thus in Chapter 8§ wo shall examine the validicty ef chiy approach,
and kence fc is necessary for us te devive a couple of eguations
here.

The essential idea‘lg’ of the BA iz the soplact of thoe
distortion of the Incident planc wove by the scarterer. Georluoy and
Stein(lﬁ, demonstrated the validicy of this approxisation for clectron
molecule collisions at very low snergies. This rosult emay appear con-

sradictory, since the BA is usually thousht to betis}

8 high cncray
approximation. The point is thar for cloctron-wsolecule collistonn ot
lov energics, long~-range multipola and induced intervact ions dominate
the scactoring. We discussed thiz point in Chapeer 5.

Our objoctive here is to 29ply the BA to elastic scottering

ef electrons from horonueloar wolecules in a single-center psreial

wave oxpansion. The undistorted ﬁth parcial vave is jest the



A
Ricatti-tessel fuanction jl(kr), which solves the usual equation

d* 20D -
proc i -—:— lz} (ke) = O, (7.47)

Thus the wavefunction matrix %(m)(!) which is in general non-diagonal

is given in the Born Approximation by

A
u;(r)=s‘;i"_ j“.(hr) . (7.48)

(5)

Now, the K-matrix can be calculated in general from

= --'!‘- (r) -Ulr) - ""(r) dv, (7.49)

k.

X g

whora
[V, = <hum | V@I 4m > (7.50)

and E{r} " ;E{r) in atomic units. Of course, V(r) is the electron-
molecule interaction potential energy averaged over the ground state
of the tavger. We shall consider only long-range terms, as discussed

in Chapter 5. Hence the potential of interest is
oLy o, (l
V(@)= =55 ( . ) B (eos©), (7.51)

In the Borm Approximation, Eq. (7.49) becomes

191



8

Ef— "'i;:' ”‘ (r) - (2_(-)- y._c(r)clr. (7.52)

Writing the usual expansion of V(;), Eq. (3.39), in terms of spherical

harmonics, we find

V@) = Z V; (')‘12.\1-1 Y, (7). (7.53)

If we now define the quantities

m VOofsa Mj A A
IquM - 4 MJ\ S“S\ (r P (\‘)Yz) (f)d\’ (7.54a)
J— (2, ;m; & mj\ = 2»,1 I;‘ (i m; 45 MJ) (7.54b)

then the matrix X(t) becomes

[\!,(r\];s =2 ('U;(r) Jy Lem L m; ), (7.55)

\so

-~

where we acknowledge that for our system (in the fixed-nuclei approx-~
imation) m is a good quantum number. The integral IA it easily evaluated
as shown in reference (4).

We now substitute Eq. (7,55) into (7.52) to obtain an expression

for Kij in the Born Approximation, viz.,
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K?j= -—2ka j;(,Q;m ljm) Ra(l,'lj),

A=0

where we have defined the radial integral
o
Rau;l,-) =Sj—!‘-(kr) 14 {(r) jgslhr) rtdr.
[+
For the potential energy of Eq. (7.51) we have the integrals

0
oy { - 2 ®
R, (4:45)= -a-gaﬂ.-fkf" At (ke) de

Rzu‘-.!:,) = “.% :)l..(hf)r"j,j(’v’) Jr-QSj!‘(ﬁ-'h’"j:s (v} d o
°

wvhich suggests the convenient notation
oo
'"' - - N .
R {'Q‘.j,-).;gs!‘.(hr)r j{,. (kr)dr,
(4]

Kow, from Eq. (7.56), we have for the Born K-matrix

K;'; = AR T () R (8:0,) +T, (4 m8; IR, (2:25)7].

But C(2, 0 £.;000) =&, , so we have
i i £ i'\'j

]-;(«(;m -i’jm] = A:.’-'j .

(7

(7.

(7.

(7.

(7.

.56)

57)

58a)

+58b)

59)

.60)

61)
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Using this fact and Eq. (7.54), we can rewrite Eq. (7.60) as

Kpye = ke, 0005, + Ry E T, (mt'm) [ < R™(L")
(7.62)

+2Q R™ (227 .

To evaluate the radial integrals R(n) (¢A £j), we lntroduce

Bessel functions of the first kind via

&I(L')z 2'1:‘ T (hr) (7.63)

r L2+%

and use the 1ntegra1(15)

a-L

ST )], Gt) £ 2 de = i;;' rfex)

-} +s
P(=t5—) (7,66
)
(:‘""“"")r(")"“" )r (}«nu-l-ti )
vhich is finite and exists provided that
/,,.\,...1:",\ >0 aaxd avo. (7.°5)

In our case, this excludes the possibility R’i = R‘j = {}. Using the
well-known properties of the gamma funuction, e.g., '{(n+ 1) = n!
for non-negative integers n, we find
r{*=2)
%

Q) . r
Rt P (A (et (aeize® (7.662)




Tk M=)

R"‘(ﬂ;ﬂj) = ¢
-4 o R
M (et Y ()
These can be simplified as

i
nla-1) r(l.' "_‘i 43 )f'(""',_" +3 )

T
R‘ﬂ(‘p‘,s ‘= —f

wk PF(a+d)
Hawd) plarged )| (NP (TE2Y)

{2} -
(% f]k]h)'
where we have defined an integer
1
ns T (L+0)

and used various Jther properties of the gamma function.

Equations (7.67) in conjunction with (7.62) enable us to

(7.66h)

(7.67a)

(7.67b)

(7.68)

evaluate 5 in the Born Approximation at any desired energy and for

any syvmmetry except Zg [recall the limitation imposed by Eq. (7.65)].

Given the K-matrix we can obtain the T-matrix using the formulas

of section 6.5 and the total cross section using the results of

section 7.2.

Alternatively, we can diagonalize the K-matrix, take the

arctangent of the eigenvalues, and thereby obtain the eigenphases

n;. Then the cross sections for each symmetry can be obtained from

(17)
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™ == ‘% s’m"'% . (7.69)
3
Notice that for m # 0O, a(m) must be multiplied by 2 in computing
Ofot in order to take account of the two-fold degeneracy of molecular
orbitals with |m| > ©.
In closing, lec us note that a2 simple analytic form for the

diagonal elements of the K-matrix in the Bora Approximation obtains

in the special case where we take account only of the quadrupole inter-

action term in Eq. (7.51), viz.,

m 4 ' ‘
K,‘Q: = hag (.i)m .czrf:nC(MZ; 00) C (9-'2, ™, -m). (7.70)

The expression given above is useful for hand-checking tke code which

carries nut BA calculations {called BORMNO1).

§7.6. Con-lusion: The Asymptotic Decoupling Approximation

Ve mentioned in Chapter 6 that the so-~called low-% spoiling
approximation, which assumes the asymptotic partial wave to be uncoupled
and approaches the cvollision problem in this framework, is not expected
to be valid in general for highly anisotropic targets such as C02.

We shall look at calculations in an equivalent to this approximation

in the next chapter. This is the asymptotic decoupiing approximation

(ADA).




In the ADA ve go ahead and determine the full aymprotic T-
matrix as in Chapter 6, taking into account all relevant interactions,
but when calculating cross sections we uncouple the partial waves
in the asymptotic region. There are two ways to effect this: we can

introduce the eigenphases, replacing Tlg'm with

m 2i
T‘;;. =S“. (1-e (ham ) (7.71)

or, equivalently,

™ R .
Toyr =§9,(i-m.,'l7w -i MS»;M). (7.723
An alternate procedure is to simply sect Tgp.m = 0 for L # L' in

Eqs.(7.11) etc. This is preferable in general since we caunot always
uniquely assoclare each elgenphase shift with a single partial wave
for e—coz. (This is, in general, possible for less anisotropic
cases such as H2 or, perhaps, Nz.)

This concludes the theoretical edifice in which we choose
to study electron-nclecule collisions. We now turn to the results

obtainerd from the calculations outlined in Chapters 3 through 7.
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Chapter 8. Electron-CO, Collisions: Results and Discussion of

e e AT AL Y A A d e o] (=P .

the Calculation

Our sum machines never drop

a figure, nor our looms a

stitch; the machine is brisk .
and active, when man is weary;

it is clearheaded and collected,

when man is stupid and dull; it

needs no slumber, when man must

sleep or drop...

-Erewhon
(Samual Butler)

§3.1. Introduction

In this chapter, we finally turn to the details of the
e—COz calculations we have performed and the results thereby
obtained. The background for the discussions herein has been
laid in Chapter 2 - 7, and we shall assume familiarity with this
material.

Because of the rather large amount of material to be i
presented here, this chapter is divided into two main sections.
Folloﬁing this brief introduction, we begin in section 8.2 with

a detailed analysis of the technical aspects of the computations. . |




This part will hopefully serve as a guide to carrying out electron-
molecule calculations in the theoretical framework heretofore
outlined and focuses primarily on numerical procedures and facets
of tihe calculation which were not addressed in earlier chapters,
especially the question of convergence. [See especially sections
3.6, 3.7, 4,5, 6.6, 6.7, and 8.2 for details.,] Of course, e-Co,

is used as an example throughout. In section 8.3, we present our
final converged cross sections and related quantities for the e-Co,
problem. It is here that we address various physical questions
associated with the collision and try to see what can be learned
from all this work. Thus, §8.2 is recommended to readers gearing
up to perform their own calculations and §8.3 to those interested
in physics.

It is impossible to present all the numbers we obtained
throughout various stages of the calculations; the convergence
tests alone would fill a small library. We have chosen to supply
a large selection of results in the "physics section" 8.3 and to
try tec give enough detail in section 8.2 to justify our assertions
and conclusions.

We shall be looking at several types of cross sections (see
Chapter 7) in the course of this chapter. In addition to the total

and momentum transfer cross sections, Ctot and S nom? respectively,

m

we shall focus on Gém)’ where n = g or u for gerade or ungerade

symmetry respectively. These cross sections are defined for

a particular symmetry (c.f., section 6.2) such as Xg (n = 0,

199



n=g), Hu (m=1, n=u) etc. At one level more basic, we

may have occassion to comment on particular partial wave contribu-
tions to the cross section, Gé?? . These quantitues are related
to T-matrix =2lements by

{m [ 2
(%[ f, = ]fi l.[;;, I .

Finally, we shall look at eigenphases and their sums for particular
symmetries (see section 7.1). Although a certain amount of

physical insight can be derived from cautious use of these quantities,
their primary usefulness (in our orinion) is in convergence studies

of the sort discussed in the next section.

The numbers here reported were obtained in the body frame of
reference in Chapter 6. We initially began our studies in the lab
frame, and a few numbers and conclusions from this early work appear
in Appendix 2 along with a derivation or two. However, as we studied
the problem it became apparent that the nature of the interaction
potential necessitated partial waves with very large values of §
in thz interior region. In the lab frame, this means an enormous
number of channels, because each additional rotational state intro-
duces only a few channels. In tﬁe body frame, the number of part.ial
waves is equal to the number of channels. Since about the same
number of partial waves are réquired in the two frames, it follows that
the convergence problems are less severe in the body frame. Finally,
one should keep in mind that owing to the very small spacing of the

rotational energy levels in co, (see Chapter 2), there are on the



order of 100 open rotational channels in the lab frame at a scattering

energy of only 0,01 Ryd. [Of course, not all of these (by any means)

are required for convergence., See reference (1).]

§8.2. Low-energy Electron-Molecule Scattering: Technical Aspects.

The computer program used to carry out these calculations
exists in both lab- and body~frame versions. In both cases, we made
very extensive tests of the program using e—H2 scattering as our
"benchmark" case. These included:

(1). 1lab-frame tests at scattering energies from 0.03 Ryd.

to 1.5 Ryd with and without polarization for comparison with the

results of Lane and Geltman;(z)
(2). body-frame tests in the same energy range for comparison
with the results of Tully and Berry;(3)
(3). body~frame tests including exchange as described in
%)

Chapter 4 for comparison with cross sections of Hara and with

results of Henry and Lane.(s)
In all cases, agreement was excellent.

This code has provisions for variable step size in the inte-
gration mesh. It is necessary to have a fairly tight mesh in the
region of strong potential, especially near r = 0 and near the

nuclear singularities. The final integration mesh used in these

calculations (including long-range interactions) is {in units of ao)
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0.0 to 0.02 in steps of O
0.02 to 3.00 in steps of O
3.00 to 27.0 in steps of 0
27.C to 90.0 in steps of 0
90.0 to 130.0 in steps of O

The choice of r = 130 a, as a final integration point was
determined by examining T-matrix elements, eigenphases, and cross
sections at integration points r; and Tin and letting i increase
until our convergence criterion was met. Convergence will
be discussed in detail below; for now let us remark that unless

otherwise stated all cross sections we present will be converged

to better than 1Z.

At the outset, we calculated cross sections for several values
of m, choosing to concentrate on two scattering energies, 0.005 Ryd.
and 0.05 Ryd. It fast became apparent that the contribution to the
total cross section due to values of m > 1 was negligible at the
scattering energies of interest., For example, at 0.005 Ryd. the
converged total cross section in the static-exchange approximation
(a0 =0y = 0) including Z and Il symmetries is 59.9941 aoz, while the
contribution from m = 2 is 0.9426 a°2, and that from m = 3 is 0.3002
aoz. Similar results obtain at other energies and with the inclusion
of polarization (see Chapter 5). Therefore we shall focus on
z, Zu, Hg, Hu symmetries.

g
We can easily understand the relative importance of low-m

\
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syrmetries from elementary effective potential arguments such as those
of section 3,7. For m greater than 2, the effective potential is
essentially pure barrier, so the electron in a high-£ parctial vave

1s unable to "feel” the strong short-range potential directly (see
Figure 3.9). Of course, the long-range iorces still have some

effect on the scattering wavefunction, but in the final analysis

this is less important than that of the short-range forces.

The initial convergence studies were carried out in an artifi-
cial potential obtained by using the static e--CO2 potential of
Chapter 3 without the r-3 quadrupole tail. Since we were primarily
interested at this stage in acquiring a feel for the problem, this
potential seemed desirable, primarily because it is necessary to
integrate only to 15 a, to converge the cross sections in r. The
procedure we adopted was to freeze NA' the number of expansion
coefficients in the expansion of the static potential, Eq. (3.29),
and study convergence in Ncc’ the number of coupled cha.mels ( = the
number of partial waves) included in the calculation. The resultant
behavivi is seen in Table 8.1, which shows cross sections at 0,05
Ryd. with X = 0, 2, 4, and 6 included, indicating that con-
vergence is smooth but that cases with far too few states give results
which are off by as much as 502, It is not satisfactory, in other

vords, to mercly Freeze Roe and do the calculation; convergence tests

arve mandatory.

Of course, the problen solved fn this table is not e~C02
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Nee
Symz. 2 3 4 3 6 7 8 9
Eg 5.2278 86.7671 76.1237 69.8322 68.7291 68.4519 68.3818 68.3717
Zu 0.0776 0.0111 0.0006 0.0008 0.0018 0.0022 0.0028 0.0030
Hg 3.2(-4) 4.5(~4) 0.0020 0.0329 1.1554 0.1119 0.0846 0.0812
Hu 20.9103 59.8970 20.6928 5.8042 3.7624 3.3697 3.3027 3.2929
Ag 1.1(-4) 1.1(~4) 1.1(-4) 1.2(~-4) 1.2(=4) 1.2(-4) 1.2(-4) 1.2(-4)
Au 1.0(-8) 1.0(-8) 1.0(-8) 1.1(-8) 1.1(-8) 1.1(-8) 1.1(-8) 1.1(-8)
Total 26.2162 146.6760 96.8193 75.6703 73.6490 71.9359 71.7716 71.7784
TABLE 8.1

{m)

Cross Sections O

and Opor in the static approximation with q = 0 in units

of ag2 . The scattering energy is 0.05 Rydbergs. N;. is the number of

channels. The final converged cross section for this case is 71.7449 aoz.
Included are coefficients for A = 0, 2, 4, and 6.




scattering even in the extreme static-no-quadrupole approximation;
it is some artificial problem defined by a potential with only
four expansion coefficients in the potential energy. The results
do illustrate the large number of channels required for even this
simple case. When one recalls (from Chapter 3) that the final
converged potential energy required up to Ael = 28 and Anuc = 80,
this comment begins to acquire some perspective.

To study convergence as we approach the true e-CO2 potential
in this model, we increased NA’ converging the cross sections in
Ncc at each stage in the calculation. In Table 8.2, we show cross
sections for NA up to 10; again, the purpose here is to illustrate
the convergence behavior of the problem. It is worth noting from
these two tables that, as expected, large-m contributions to the
cross sections are small and converge most rapidly., Moreover, we
find that for a particular value of m, the "bonding symmetries"
(Zg, Hu’ Ag’ etc.) converge more slowly than do the '"non-bonding
symmetries'". This is readily understood; for example, Zg symmetry
corresponds tom =0, £ = 0, 2, 4,..., while Zu corresponds to
m=10, £=1, 3, 5,... Clearly, the symmetry with the s-wave
contributor will be most affected by the short-range potential.
Alas, it is true that the most important contributors to the to*al
cross sections are invariably those which converge most slowly. In

point of fact, the cross sections of Table 8.2 certainly are NOT

converged.

in the course of obtaining these results, we first encountered

205



90¢

aax
Syum. 2 4 6 8 10 12 14 16 18
28 48.8966 94.1177 68.3702 59.6961 54.7470 51.6689  49.7088  48.4416 47.6084
Zu 0.3159 0.0520 0.0030 0.1045 0.4805 2.0771  25.8069  20.4357 3.2939
ns 0.07387 9.5032 0.0867 0.3476 0.0689 0.0102 0.0045 0.0029 0.0022
Hu 7.3529 4.6366 3.2916 4.0311 7.7086 17.6299 40.9668 89.5212 174.3648
Ag 7.4(-5) 1.4(-4) 1.2(-4) 1.2(-4) 1.2(-4) 1.1(~4) 1.1(~4) 1.1(-4) 1.1(-%)
Au 8.4(-7) 8.5(-8) 1.1(-8) 1.0(-8) 1.0(-8) 1.0(-8) 1.0(-8) 1.0(-8) 1.0(-8)
Total 56.6392 108.3100 71.7449 64.1796 63.0052 71.3862 116.4872 158.4016 225.2694
Nec 6 9 11 13 15 17 18 20 20

TABLE 8.2

Cross sectioans in ag2 at 0.05 Ryd. for A = 0, 2, ..., Ayax using vy(r) for
e-C0y scattering. Only short-range static interactions are included, and
all cross sections are converged in number of partial waves to better

than 1%, and the final row shows the number of channels required for this
criterion.
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the need for the transformation-truncation procedure of section

6.5, For values of Amax up to and including 8, the transformation
procedure made only very small changes, and those in the smaller
contriputions of oég? to the final cross sections. For calculations
including more coefficients in the potential energy, the procedure
is necessary. The clue to its importance comes from an examinmation
of the inverse of %2 at r oo We recall from section 6.5 that this
quantity is required for calculation of the K-matrix a la Eq. (6.75).
We found that for large NA’ the product of this matrix and its
inverse, which should be the unit matrix, had huge off-diagonal
elements, typically of the order 103 to 105; i.e., the inversion
was not proceeding as it should. Fortunately, it is invariably
elements corresponding to high~2% partial waves that are most affec-
ted,

A very important question in implementing this procedure is
where (and how frequently) one must transform. We initially tried
transformation at only one point and found that if we waited "too
long" to transform (i.e., choose too large an rtrans)’ the
results were incorrect. TFor example, Table 8.3 shows an ll-channel
short-range-only case with six terms in the potential expansion.

For this potential, we found that within the range r = 0.1 a,

trans

t = 1.0 a , cross sections are independent of where we

° rtrans
carry out the” transformation. Also shown in the table are some
multiple-transformation runs. In general, it is mandatory to do

multiple transformations for strong and highly anisotropic potentials
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w 0.19) 1.0 1.5 1.7 2.0 4.0 5.0 6.0 7.0 11.0
Syum.

Zu 0.4789 0.4789 0.4789 0.4795 0.2721 0.8230 0.3534 0.6790 0.3888 0.6353
Hu 7.7711 7.7711  7.7711 7.7757 14.8702 0.4930 0.4238 0.3345 0.4984 28.6388
Total 8.2500 8.2500 8.2500 8.2362 15.1424 1.3161 0.7772 1.0135 0.8872 29.2741

M 1-0(5-0)(b) 2.0(2.0) (b) 9.0(2.0) (b) (3’6)(b) 300(300) (c)

Zw 0.478Y 0.2721 0.2665 0.4789 0.2176

Hu 7.7711 14.8702 0.5877 7.7711 0.4689

Total 8.2500 15.1424 0.8542 8.2500 0.6865
TABLE 8.3

Cross sections in ag for N, = 11, Amax = 10, q = 0, ungerade symmetry at k2 = 0.05 Ryd. illustrating re-

sults of transformation procedure. In the top rows, we transform only once, at r = Terans'

(a). Results at 0.1, 0.2, 0.30, 0.5, 0.7, 0.9, 1.0, and 1.5 are identical.
(b). Transform every 5.0 a, beginning at 1.0, etc.
(c). Stabilize every 3 points inside the barrier and every 6 outside,




in electron-molecule scattering; the reasons for this were dis-
cussed in Chapter 6. However, if sne waits too long to do the ’
first transformation, all is lost - the Iz-matrix will not be in-~
vertible regardless of what one does. Finally, it is interesting
to observe from the table that in this example, where we include only
six VA(I) coefficients, it is possible to achieve the same results Z
by frequent stabilizations. For more realistic potentials, this |
is not the case, and, in fact, when long-range terms are included one
must both stabilize and tramsform to avoid numerical instability.

The final version of the transformation procedure simply
incorporates an input variable, Ntrans’ which tells the code to

transform every Ntrans points in the integration (quadrature).
Similar parameters define the frequency of stabilization within and
beyond the limit of the centrifugal barrier.

The truncation procedure is easier to implement and quite
reasonable physically, since, as we suggested in Chapter 6, one can
reliably use the effective potential as grounds for such truncation.

We simply introduce a truncation radius, and, at this point

Ttrune®
in the integration, throw away all channels in the physical wave-
function with 2 Z-gmax' the latter being a second parameter of input.
Scveral examples can be found in Table 8.4 for the same case usad
to 1llustrate the tramsformation in Table 8.3,

As wve saw in Chapter 3 (scction 3,7), the effective potential is

different for different symmorries. This must be kept in mind in

determining the tvo truncation pavametiers, ler example, in the
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r
trunc

2.0 4.0 10.0 (@)
trunc

0.0727(X)  0.4789(Z) 0.4789(L) 0.4789(L)

? 77.8271 (I 7.7712(I) 7.7711()  7.7711(M)
3 0.4754 (%)
7.7727 (D
7 0.4788(X)
7.7717(D
13 0.4789(Z)
7.7711 (I

TABLE 8.4

The truncation approximation illustrated for N.. =
11, Apax = 10, ungerade symmetry at k2 = 0.05 Ryd.
Short~range static interactions only are included.
All channels with 2 > f¢pypne are removed at r = rerunce

(a).

No truncation.
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full static-exchange-with-polarization calculations, to be discussed

below, w. found % = 10 to be satisfactory for £ , £ , and I
trunc g u u

symmetries, but £ = 16 was required for Hg symmetry ovex the

trunc
= 4,0 a,»

energy range of interest. Throughout we choose Terunc
although sensitivity checks suggest that values as small as 3.0 a,
are satisfactory for some symmetries and energiles,

When we include the long-range quadrupole interaction in our
calculation, it becomes necessary to integrate to a considerable
distance to achieve stable cross sections. We use Thax = 130 2,
which provides our usual better~than-17 convergence for the total
cross sections. In this case, it is necessary to both transform and
stabilize. This manifests itself in two ways:

(1). contributions °§§2 corresponding to large values of
2 and L' are unreasonably large;

(2). the T-matrix is not symmetric.

In part, these features reflect the fact that we must integrate over
a much larger mesh when long-range interactions are incorporated in
the calculation. Consequently there is greater opportunity for
linear dependence to creep into the homogeneous solution being
developed.

In such cases we still truncate at 4.0 a,. Moreover, it is

not necessary to transform at r values beyond r c? since the

trun

truncation radius is well beyond the location of the nuclear sin-

gularities and the strong coupling, which mixes very small high-%
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components with very large low-% components, won't be present.

Naturally, all of these conclusions are potential-dependent
and must be checked as we include more and more expansion coefficients
in the potential emnergy, or as we introduce different kinds of inter-
actions (e.g., exchange). We shall not reproduce here all the
convergence tests we carried out; suffice it to say that the parameters
given when we do quote results correspond to the aforementioned
convergence criterion.

In studies of polar meclecule scattering (in particular, e-LiF
collisions) in a laboratory frame, it has been found(16) that including
long-range interactions improves convergence of the total cross sections
in NA’ allowing convergence by Amax = B at low energies. This
is not the case for e-CO2 collisions, as attested by Table 8.5,
which presents cross sections in a model potential defined by aug-
menting vz(r) with a q/r3 interaction with q = -3.85981 au and
rcq = 1.4 2, P = 6. Two energies a decade apart are studied.

Notice that here we actually converged one symmetry, Hg,
at 0.005 Ryd. In fact, cross sections cofresponding tom > 1
are converged in this model by Amax = 14 but contribute very little
to the total cross section. It is clear from Table 8.5 that we
are nowhere near a truly converged realistic e--CO2 interaction
potential,

A careful study of our particular short-range static expansion
coefficients led to the separation of each coefficient into electronic

and nuclear contributions (as discussed at length in section 3,6)
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Jv.
\\;;E§¥ffi 14 16 18 20

Zy 9.8107 15.5461 22.9074 21.4859
Z, 52.6655 71.1432 93.2714 118.5601
m 0.2091 10.3407 0.9419 0.6589
I 9.7451 13.3127 18.1534 24,.2224
Total 73.8456 111.7578 136.6891 176.3423
N 16 17 18 19
cc
E = 0.005 Ryd
symm X 14 16 18 20 22 24 26

To

N

Zg 9.2877 17.1737  27.5739 40.1108 54.6637 71.1237 89.5775
Zu 11.5434 12.2994 13,0034 13.7248 14.4646 15,2167 15.9846
Hg 0.3615 0.3835 0.3798 0.3792 0.3789 0.3788 0.3789
Hu 4.4684 4,9165 5.6182 6.7965 8.9211 13.3933  25.2019
tal 26.9509 36.1380 47.9401 62.3761 79.7930 101.4772 132.5076

16 17 18 19 20 21 22
cc

Table 8.5

Cross sections in a2 at two energies showing convergence behavior
in A in a model potengial incorporating a 1/r~ long-range interaction.

ax . X . .
Total &ross sections include m = 2,3,4, and 5 contributions, [N =17,
= 4.0, % =10, r __=130a, N___, = (3187%

’ ’ “max o’ “stab e

? trunc

Lerune ~ Ttrunc
xd = 1.4, p = 6]
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and consequently to the convergence of the potential. This is
illustrated in Table 8,6, which shows cross sections at 0.05 Ryd.
in our old short-range (q = 0) model potential and in the g = 3.85981
model. Clearly, convergence is at hand. In fact, one can obtain
cross sections converged to within 5% with a maximum electronic

A of 22 and nuclear A of 60, For our 1% criterion, we choose
maximum values of 28 and 80, respectively. We have found in all
cases that this is adequate. The behavior of the cross sections
at our lower test energy of 0.005 Ryd. were similar to those showm
in Table 8.6. This step was one of the key advances in performing
the calculation, and without it converged cross sections would not
have been attained.

Using the above facts and technijues, we were able to calculate
cross sections in the true static e—CO2 potential. These results
will be presented and discussed in the next section.

Before turning to a look at exchange, perhaps a word about
eigenphases is in order. Thus far we have not presented any of
these here, although we did calculate them in our pfogram. For studies
such as those of this section, the eigenphases are moderately useful
as indicators that comvergence in the cross sections is near, However,
they converge sooner than do the cross sections of physical interest.
Thus a 1% difference between two eigenphases (or eigenphase sums)
in a convergence study may signify a 10% - 20% discrepency in the
cross sections. This is particularly acute at low energies. Never-

theless, eigenphases have their usefulness, and we shall present




N q=20 q = 3.85981
w
symm 40 50 60 70 40 50 60 70 80
£ 45,7125 45,6472 ~ - 139.9995 173.2146 187.6373 191.8965 193.0149
(45.6877)
I 0.1847 0.1520 0.1400 0.1367 —_— — _ 192.3641 190.9954
u (0.1338)
1 0.0013 - — —- 0.5026 0.4971 0.4961 0.4959 -
€ (0.0013)
N, 456.8214  429.9505 424.1398  423.2734 -~ — — 109.9524 110.0790
(423.1910)
Table 8.6

Cross sections in two model potentials (with and without long-range interaction) at
0.05 Ryd using Ncc = 24 and a maximum electronic A of 28. 1In ghis table, Anuc is the
waximum A for which nuclear contributions were included in V(r). (Other paraweters are

the same as for Table 8.5). The numbers in parentheses show corresponding calculations

for % = 26.
max

N
[
n
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some in the sequel.

Incorporating exchange via a local potential as outlined in
Chapter 4 has a considerable effect on the cross sections, as we
shall see iIn the next section. Of concern at present is the effect
on convergence of saild cross sections in number of channels. Since
on the whole the exchange contribution deepens the potential (i.e.,
makes it more attractive) we expect to need more channels, Sure
enough, this is precisely what happerns, and we encounter as a result
a whole host of new numerical problems, most of which were #ealt
with in section 6.7,

The AAFEGE potential, which was dropped on theorctical grounds
(see section 4.4) is the stronger of the two local exchange potencials
we considered and hence the mcst difficult to converje. This
is suggested by the results of Table 8.7. [It is worth reminding
ourselves how important stabilization can be. To this end, we show
in parentheses in this table a couple of results for 25 channcls
without stabilization.] Having chosen not to study the AAFEGE
potential further, we proceeded to try to converge the HFEGE potential
case.

This suddenly brought up the exploding Neumann functions
previously introduced in section 6.7D. To suggest the regions of
r where this becomes a problem, we show in Table 8.3 that value of
r at vhich the Ricatti-Neumann function exceeds 10300 tor two values

of k and for several values of Ncc and gbaV' This led us to

introduce the Nezumann cutoff procedures described in Chapter 6.

B
£
2
i

i
o
d
b
il
b



7’); et o :fﬁ

o« A4, 881 PR , :
£, (331, GH95) p L IS UK 60.4553%
- 1.385%5 9
L £7.4%6%) 7.30L7 s
2 0. 25045 . e
. 3.9433 P —
ﬁ“ (3. 1535) 3.94%7
& P.GEY e —
L&
& D.BAAY o v
L

TARLE 8.7

*
Static-eschunge crods gections in a, using the

AMFEGET  a convargence study.  The energy is 0.0
Byd., 4 = LBWSL asowith ol » 4.0, and p = 6.
fncluded ave ahwori-vavge c@pessiow coelliclents up
to Aag = 28 and Rg,o o B0 [Neegne ® Te Fregns ©
2.0, Lppunc * 10, Suvay * (3,6), Yimny, © 130 a,l.
Numbuers in parcnthoeses for 8 = 25 show resules
without ntabilization.
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rcut
N . K2 = .005 2 = .05
29 56 0.001 —
36 58 0.002 —
3 60 0.003 0.001
32 62 0.004 0.001 ?
33 64 0.006 0.002 |
34 66 0.009 0.003
35 68 0.013 0.004

TABLE 8.8

Radii rgye at which the Ricatti-Neumann function
exceeds 10312 for two energies. N,, is the
number of channels which would be included in a
calculation corrasponding to the values of

2 and r shown.
max cut
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Our first thought was to simply use the largest available
number, 10312, as a cutoff constant. However, curiosity regarding
the procedure led us to try to determine just how low we could set
this constant. The results were rather suprising, to say the least.
As Table 8.9 reveals, a very small cutoff constant, say, 10130,
must be reached before the results detericrate, Even more suprising
is the observation that reducing this constant can resolve numerical
difficulties which would otherwise produce divergent cross sections
in Zg symmetry as Ncc is increased. This is a result of some im-
portance, since this contribution to the various cross sections of
interest to us is by far the largest at low energies. Thus, in Table
8.10 we see that a cutoff exponent of 240 gets us much closer to con-
vergence than coes 312.

A couple of ancillary points should be mentioned at this
juncture. First, the divergence seen in Table 8.9 is potential
dependent. To demonstrate this, we returned to the static ap-
proximation at 0.005 Ryd., where we had converged Zg cross sections
in the static approximation by Ncc = 27 and where none of the
difficulties here under discussion were present. Using a cutoff
of 10312, we pushed Ncc up to 32 without obtaining peculiar behavior,
Second, the symmetry of the T-matrix imprcved as we decreased the
cutoff constant (provided that we did not go to the ridieculous
extreme of, say, 10100, which is simply too small). [Stabilization

improves the symmetry of the T-matrix to the point that such lack

of perfect symmetry as remains does not affect the cross seciions,
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[~ (4

n, (exp) a® 6:m o Ggum
Noe cutoff 42.6438 -0.1439 - -
312 — — 45.6297 -0.1485
308 42.6438 -0.1439 45.6188 ~0.1485
300 42,6438 -0.1439 45.60064% ~0.1484
290 42.5913 -0.1438 45.8203 -0.1488
280 42,5910 -0.1438 41,602} -0.1422
260 42.5910 -0.1438 51.7236 -D.1424
240 42.5910 -0.1438 41,7237 -0.1424
200 42,5910 ~0.1438 41.7237 ~0.1424
150 42.5910 ~-0.1438 41.773 ~0.1424
130 42.5932 -0.1438 42.5931 -0.1438
100 51.3421 -0.1570 51.3421 -0.1570

TABLE 8.9

Cross sections and eigenphase sums for I, symmetry

at 0.005 Ryd. in the e-COy static-exchange problem
using the HFEGE. N.. is the number of channels.

Other parameters are the same as in Table 8.7.

(Only the power of 10 for the Neumann cutoff parameter
is shown in the leftmost column.)




N

CccC
28 29 30 31 32
n_(exp)
<
312 42.6438 45.6207 50.5259 — —_
240 42.5910 41.7237  40.9753 40.3354 57.7477

(-0.1438) (-0.1424) (-0.1412) (-0.1602) (-0.1638)

TABLE 8.10

Convergence studies for two Neumann cutoffs in
static-exchange (HFEGE) e-C0; scattering at
0.005 Ryd. Parameters are as in Table 8.9.

The numbers in parenthesces are eigenphase sums.
Orly Xg symmetry is included here.
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One can live comfortably with asyiametry in, say, the third or fourth
decimal places.] Third, sensitivity to the cutoff constant is
greater for larger Ncc' as reflected in Table 8.9.

One must be careful to distinguish the divergent behavior
of certain cross sections from the Neumanr overflow. As we saw in
the 28 channel case, it was in 2 sense coincideatal that the two
effects appeared simultaneously. Had we been working on a smaller
computer, the Neumann overflow would have bkeen discovered far

sooner.

These results all suggest that we can converge our KF cross

&

sections (and other symmetries) via judicious choice of the cutoff
constant. But what is the cause of the divergent behavior which we

are trying to get rid of? Well, it teo is tied up in the ipversion

of the Iz-matrix.

Recall that we first tackled this problem by means of the
transformation procedure. To see that the inversion difficulty is
back again, we showed that one can achieve the same result by trans-
forming very fequently as he achieves by reducing the cutoff constant.

Thus, if we set the constnat equal to 10312 {so the computer can

caluculate all the numbers it requires) and sets Ny pans = 2+ we
obtain precisely the same results (for several cases studied, i.e.,
the two in Table 8.9, for example) as with a constant of 10150
and Ntrans = 10. Clearly, it is preferable from a monetary point

of view to reduce the constant and keep the frequency of transformation

as large as possible, since each additional transformation entails
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iaversion of a large matrix.

Howvever pleasant it may be to just decrease the cutoff constant
and watch ones cress sections converge, a word of caution is in order.
Ve must repeatedly verify our choice of the cutoff constant, since
this parameter is dependent on the potential, on the scattering
energy, and on the number of channels., Fortunately, the range of
valid choices for the constant for a partricular calculationr is
quite large, so this problem is diminished considerably in actual
practice.

There is still another way to address the problem directly,
and that is to carry out the matrix manipulations (addition,
multiplication, inversion, etc.) in double precision. This is
perhaps the world's worst way to treat this situation, since on
some machines (e.g., a CDC machine) double precision is a software g

rather than a hardware feature, and, as such, it is unbelievably

time consuming. Nevertheless, we did verify that this produces
the same results as the Neumann cutoff procedure in one case,
Ncc = 28, [The run in question took on the order of 9 times as much
computer time as did the corresponding single-precision calculation.
Clearly, this isn't a feasible way to proceed in practice for production
runs. ]

In retrospect, the vhole problem could have been avoided

by scaling the Green's functions at small r. One could scale Gl(r)
N

up and Ez(r) down or, alternately, simply calculate the product
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Sl(r) . gz(r), which is all that is needed until we reach the
asymptotic region, where we must extract %2(rmax) for inversion and
calculation of the K-matrix. This poses no problem, though, since
it is only at small r that this heinous problem arises.

Although induced polarization (see Chapter 5) has a considerable
effect on the cross sections for electron-CO2 scattering, it does
not significantly alter the convergence behavior in Ncc discussed
thus far. Essentially, this is because only vo(r) and vz(r) are
affected by this interaction, and these are not greatly altered.
Moreover, vz(r) already has taken into account a stronger long-range
potential, the r--3 quadrupole interaction in the static potential.

This, however, brings us to one last important technical
detail. There is in our definition of the contribution to the total
potential energy due to induced polarization interactions a cutoff
radius, wvhich we call rcp. There is no ab-initio way to determine
this paramzter if one proposes to use the analytic form we have
selected for the long-range potential energy. Of course, we
could have arbitrarily declared there to be a particular region of

space within which the static potential was to be some prechosen

percentage of the full potential and adjusted rcp accordingly ,
We chose instead to take advantage of the well-established

3.8 eV resonance in the Hu symmetry, This so-called shar ¢ reso-

nance corresponds to a quasi-bound state (crudely visualized, an

electron trapped between the hump in the potential energy and the
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origin) rather than to a negative energy state. We can adjust the
position of this resonance by varying the polarization cutoff radius
and thereby changing the term vz(r)Pz(cos 8). The polarization
interaction, which is clearly treated semi~empirically in this
formulation, has the net effect of making the electron-molecule
interaction potential surface more attractive. This, in turn,
causes the resonance to move doum.

It turns out that tne resonance is quite sensitive to the
choice of polarization cutoff. This is illustrated in Figure 8.1
and the accompanying Table 8.11, which show the variation in the
resonance energy and the cross section for selected values of rcp.

We see from the table that the choice rcp = 2,59 a, leads to a

resonance energy of 3.8 eV, the experimentally determined value.

For contrast, we also present in this table part of our studies

at a slightly different resonance energy, 3.4 eV; we shall use this
extra case to illustrate sensitivity of cross sections to the
potential in the next section.

Notice that in a sense we scale only the Hu symmetry, the
potential thereby obtained being used for all symmetries over 2 wide
range of energies with no further adjustment. This is especially ;
important since, as we shall see, different symmetries dominate :
in different energy regimes. The symmetry here adjusted is dominant

only in the vicinity of the resonance.

o Sa ey,
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9ct

Eres = 3.8 eV
rg’ 2.50 2.55 2.56 2.57 2.58 2.59 2.60 2.65
G:' 16.9404 49.6280 61.542) 74.1833 84.8322 89.91C1 87.4401 38.0579
ngm '-0.4790 -0.8717 -1.0093 -1.1748 -1.3661 -1.5726 1.3605 0.6625

Eres = 3.4 eV

rcp 2.40 2.50 2.60
ol 8.4286 98.0350 16.9069
1
2 -0.3078 ~1.4328 0.3958
TABLE 8.11

Tuning of the ]I, resonance: cross sections and eigenphase sums for e-CO, scattering in the SEWP approx-
imation using the HFEGE, with 0p = 17.9, oy = 9.19, q= -3.85981, r.9 = 4.0, p = 6, Neyans = 7 Trrunc, =
o

4.0, Lerune = 10, rpay = 130 g, and Neg = 23. The cutoff radius is in a_ and cross sections in a
Eigenphase sums are in radians. e
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Figure 8.1

Cross Sections for e~C0, (Il symmetry) in the SEWP approximation
showing the sensitivity of the behavior near resonance to the pola~

rization cutoff parameter.
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§8.3. The Final Converged Results for e-CO, Scattering

Having traversed im the last section the labarynthine paths
of the computations we carried out, we can at last look at some
final cross sectlons, Without further ado, we present in 1able
8.12 converged cross sectimns for e—CO2 scattering in all m = 0 and
m = 1 symmetries for energies from 0.07 eV to 10.0 eV. There is
a resonance at 3.8 eV in Hu symmetry, as required. We shall refer
to this as CASE 1 to distinguish it from the comparison calculations
with Eres = 3.4 eV, which will cleverly be dubbed CASE 2. These
cross sections are converged to less than 17 in Zu, Hg, and Hu
syminetries and to better than 3% in Zg symmetry. The parameters

for this (and subsequent) results are (once and for all)

OLO = 17.9 au
0y = 9,19 au

q = ~-3,85981 au
r%=4.0a

c o

r P =259 a, (CASE 1) or 2.5 a, (CASE 2)

N =32 (Zg), 23 (Hu), 14 (Zu, Hg)

ce
AT - g

ZMaX _ g

nuc

Tmax 130 a,

Ntrans =7

n, = 10250 {(Neumann cutoff)
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E(eV)
0.07

Converged cross sections (in aé!) for e-CO7 scattering (Case 1).

defined in the text.

0.1 0.5 1.0 2,0 3.0 3.5
Symm
Zg 226.7339 179.4213 37.9240 15.1480 6.8633 5.1104 4.6909
:u 3.7153 3.4513 3.8029 6.0101 10.5967 13.9785 15.1616
Ho 0.2106 — 0.1148 —_— 0.1136 —_— 0.0948
Hu 9.3535 10.6070 12.6696 9.3535 4.6191 6.7117 30.5329

E(eV)

4.0 5.1 5.9 8.0 10.0
Symm
ZO 4.3939 3.9877 3.8261 3.8702 5.3371
Zu 16.0546 17.1792 17.4502 16.8578 15.4439
Hg 0.1332 0.3106 0.5096 1.2089 1.9802
Hu 45,3868 4.7014 3.7756  ° 4.6436 5.8722

TABLE 8.12

We use the parameters



™~

<

4.0 a
Terunc 0 o

2
trunc

Nstab =6
Exchange Potential = HFEGE potential

The corresponding eigenphase sums are presented (for completeness)
in Table 8.13.

In Figure 8.2, we show graphs of these cross sections for
Zg, Zu, and Hu symmetries, The Hg symmetry ylelds very small
contributions, and is a special case which we shall take up below.

Before turning to a discussion of each symmetry in turm, it
is worth glancing zt Table 8.14 and comparing the results therein
with those in Table 8.12. The former table presents cross sections
at selected energies calculated in the Born Approximation. The
related theory was presented in section 7.5, Clearly, the BA is
quite unsuccessful for total cross sections. In contrast, it is
true that one can reliably prediet particular T-matrix elements in
the Born Approximation. For example, for |A2| = 2 and & and &'
large, say, greater than 5, the T-matrix elements obtained at low
energies agree with the coupled-channel results to four decimal
places. (These are, however, less important by far than other
elements, which is why the results of Tables 8.12 and 8.14 don't
agree too well.) This suggests the possiblity of using the Born
Approximation for certain channels and a more accurate procedure

for others. A procedure like this has been used in electron-polar
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o

0.07 0.1 0.5 1.0 2.0 3.0 3.5
Zg 0.2927 0.3120 0.2982 0.2279 0.1050 -0.0092 -0.0637
Zu -0.0444 -0.0523 -0.1203 -=0.2043 ~0.3695 -0,5155 ~0.5802
Hg -0.0068 —— -0.0096 - ~0.0013 - ~0.0198
Hu 0.0377 0.0479 0.1225 0.1518 0.1546 0.2291 0.5641
“omiew) 4.0 5.1 5.9 8.0 10.0
Zg -0.1157 -=0.2170 -0.2754 -0.3405 -0.2509
Zu -0.6400 ~0.7552 -0.8269 -0.9781 ~1.0905
Hg -0.0315 ~0.0566 -0.0775 =0.1318 -0.1763
Hu -0.8611 -0.3377 -0.3356 ~0.4236 ~-0.5236
Table 8.13
Eigenphase sums corresponding to the cross sections of Table
8.12 (Case 1). (Radians are used.)
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Figure 8.2

Cross sections for e-CO, in the SEWP approximation for Z , Z , and
I symmetries. The parameters for this calculation are fefifled in
the text.

232



233

2vu

ENERGY (e V)

[}
(e @) SNolloas 55032



L

0

60

Q
T

(3% ) wousas

5309

ENERSY (eV)

234



13 X4

\\;;;ET~ESeV) 0.07 0.1 0.5 1.0 2.0 3.0

I, 2.7785 2.1083 0.3050 2.6969 10.3103  16.3992
(3.7153)  (3.4513) (3.8029)  (6.0101) (10.5967) (13.9785)
i 0.1987 0.1760 0.1134 0.1922 0.4868 0.8550
g (0.2106) - (0.1148) - (0.1136) -
i 10.2075  11.7177 25.9399  37.8507 50.0600  52.5170

(9.5901) (10.6070) (12.6696)  (9.3535) (4.6191) (6.7117)

Table 8.14

Test of the Born Approximation for e-CO, scattering: cross
sections in a taking into account only long-range interactions
(quadrupole afd induced polarization). Numbers in parentheses
are coupled-channel results from Table 8.12.
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molecule scactering(a), but its extension to our prublem is not

cransparent due to the overwhelmingly important partial wave coupling.

e FO PP P J ’

Before leaving the subject of the Born Approximation, it is i
worth pointing out that even the shape of the individual-symmetry
cross sections vs. energy is wrong for most symmetries. There

doubtless exists an energy low enough that the Born Approximation is

LA Bt L

valid for this problem, but it clearly is not 0.07 eV.

Certain features of the scattering fair leap out from the
tables and graphs presented thus far. At low erergies, below, say,
0.1 eV, the Zg symmetry is overwhelmingly dominant. 1In point of

fact, it isscattering in this symmetry, largely due to short-range

LS LT = e

forces, which gives rise to the enormous low-energy cross sections

observed in the experiments discussed in Chapter 2 (see the results

s e

for total and momentum transfer cross sections belcw)., Convergence,

as we saw in section 8.2, is slow but sure in this symmetry. The

N T

eigenphase sums are dominated by s-wave at the low energies, which
is precisely the partial wave most affected by the short-range
potential. At slightly higher energies (say, 0.1 eV to 1.0 eV)

d-waves begin to contribute, and above a few eV, even g-waves

R TR S A

are important,
0f considerable interest is the other "bonding symmetry",
Hu, for it is the resonant symmetry. Figure 8.3 shows the eigen-

phase sums for this symmetry in CASE 1 (the solid line) in a

fashion which clearly shows the resonant behavior. Examination of

the individual eigenphases and asscciated eigenvectors reveal that

.
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Figure 8.3

Elgenphase sums for e-CO, scattering in II symmetry showing the sen-
sitivity to the choice oé polarization cuboff parameter., The SEWP
approximation is used with parameters as defined in the text.




is a p-f resonance, about 60% p and 407% £.

The behavior of the eigenphase sum as energy decreases
reflects the influence of the long~range forces, which begin to
dominate as k2 approaches 0. We see the sum increase from zero
initially (all these results are modulo 7), which is due to the
repulsive r-3 quadrupole interaction. This is, in fact, predicted
by the Born Approximation [see Eq. (7.55)]. As energy further
increases away from zero, the attractive r_4 induced polarization
interaction begins to take effect and pulls the sum down again.
Eventually, it grows enormously as we approach the resonance
energy, where it plumets through an integral multiple of w
and, in the figure, goes negative. The behavior here elucidated
is reflected in the cross sections of Figure 8.2c.

It is important to understand the sensitivity of such features
as those we have been discussing to the potential and, in particular,
to the one "arbitrary" feature of our efforts, the polarization
cutoff radius. Such a comparison can be made with the aid of
Table 8.15, which shows cross sections and eigenphase sums in CASE 2
for certain selected symmetries and energies which are displayed
for CASE 1 in Table 8.12. (See also Table 8.13.) We should emphasize
that the change in the potential between the two cases is very
slight; we merely move the cutoff radius a mere 0.09 a, closer to
the origin. The effect 1is quite interesting.

There clearly are differences in the quantitative results,
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0.07 0.1 0.5 1.0 2.0 3.0

4.0

z 329.1171 259.3198 56.4800 23.2204 9.6117 6.1743 -

& (0.3589) (0.3828) (0.3797) (0.3122) (0.1932) (0.0827) -
Z - 3.4243 3.6920 5.8008 10.2579 13.5954 15.6793
v - (~0.0521) (-0.1185)  (-0.2009) (-0.3633) (=0.5074) (~0.6304)
1 -— 0.1817 0.1101 0.1373 0.1283 C.0868 0.1078
g - (~0.0081) (-0.0067) (-0.0035) (-0.0015) (-0.0058) (~0.0222)
Hu 9,6972 10.7700 13.4541 10.5369 6.5195 23.5981 9.3905
(0.0380) (0.0483) (0.1267) (0.1622) (0.1868) (0.4601) (-0.3730)

Table §.15
Cross sections in a2 and eigenphase sums (in parentheses) in radians

— i 2 = € p =
for e CO2 scattering in Case 2 (EreS 3.4 ev and r. 2.5 ao).
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However, the important qualitative features remain unchanged, e.g.,
dominance of Eg at low energies and, as the dotted line in Figure
8.3 attests, the nature of the resonance.

These results suggest considerable sensitivity to the
polarization cutoff, so it is worth trying one further case (called
CASE 3). We choose here the rather extreme value of rcp = rcq,
which, recall, was 4.0 ag. This produces a rather considerable
reduction in the polarization notential. We have chosen to examine
only the resonant symmetry for this case, cross sections for which
can be found in Table 8.16. The resonance is considerably broadened
and moves up in energy to V6.0 eV (see the dotted curve in Figure
8.3).

A different sort of sensitivity study can be performed which
addresses the energy dependence of the HFEGE potential [recall
Eq. (4.39)]. Although calculation of this contribution is certainly
not a major part of the total effort required to obtain cross sections
at any one energy, it would be nice if we could ignore the energy
dependence of the exchange potential and simply compute it once
and for all. To study this possibility, we freeze Ei’ the scattering
energy in the definition of the exchange potential at 0.005 and
calculate Hu cross sections at a number of energies. The results,
labelled CASE 4 in Table 8.16, are discouraging, and indicate that
this is a poor way to proceed, except at the very lowest energies,

In the work reported here the HFEGE potential is recalculated at

each scattering energy.




%

E(eV) 0.07

2.0

3.0 3.5 4.0 5.0 §.0 6.5
Case 3 8.8997 G.5995 0.6862 1.3659 2.3314 5.9186 32.8714  54.5505
(0.0358) (0.0391) (-0.0270) (~0.0527) (-0.0684) (-0.0310) (0.4817) (~1,6398)
Case & 8.8997 0.7560 0.5716 1.1471 2.2205 19.4999 12.4425 --
(0.0358) (0.0492) (-0.0060) (-0.0228) (-0.1791 (0.3290) (-0.6600) -
Table 8.16

. 2
Cross sections in a
of e-CO, scattering to the potential.

The symmetry is Hu'

for two special cases chosen to reveal the sensitivity
Case 3 corresponds to rz = 4.0 a,
is the same as 3 except that the HFEGE potential is held constant at K

Case 4
= 0.005.



We remarked above that Eg symmetry was rather special, The
first point to note is that the cross sections for this symmetry are
the smallest of those under censideration; this is clear from Table
8.15. The cross section in CASE 2 appears in Figure 8.4, from which
it is evident that these cross sections wiggle about more than the
typical electron-molecule results. The reason for this behavior is
that long-range interactions are more important for this symmetry

than for the other three we have studied. It is also significant

that more partial waves contribute equally (or nearly so) to: scattering

in this symmetry than in the others examined,

Further insight into this case can be gained by a study of
the eigenphases. In contrast to the other three important symmetries,
in Hg scattering, there is no single dominant eigenphase in the sum.
The two largest eigenphases together with the sum are shown in Figure
8.5, which clearly reveals considerable cancellation.

A second manifestation of tihis sensitivity to comparatively
high-2 partial waves and to long-range forces is the need for a
larger value of the truncation order tham in other symmetries. For
example, at 0.1 eV, the eigenphase sum is 0.0004, -0.1336, and

-0.0035 for 2 = 10, 12, and 16, respectively. The chzuge in

trunc

the cross section is not quite so great; we find cross sections of
0.1326 aoz, 0.1352 aoz, and 0,1373 ao2 for these three cases.
1f one is satisfied with a less stringent convergence criterion

than we here employ, these problems can be swept under the rug, As
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Cross sections in the SEWP approximation for e--CO2 scattering (I
symmetry) using a cutoff parameter cof 2.5a° (CASE™ 2). &
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The two largest elgenphases (solid curve) and the sigenphase sum (dashed
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we shall see below, the effect of ignoring this symmetry on the
total, momentum transfer, and even differential cross sections is
not great.

Computed total and momentum transfer cross sections in both
atomic units and square angstroms for CASE 1 are presented in Table
8.17, where the latter are compared with the experimental results
of Phelps et. al.(g) As the table reveals, agreement is quite good.
We see that at low energies ( around 0.1 eV ), the total and momentum
transfer cross sections are approximately equal, reflecting the un-
importance of forward scattering at these energies,

The reason: for the behavior of the total cross sections as
a functicn of energy are clear from the discussion of the cross
sections for the individual symmetries as given above. In order
to obtain a deeper understanding of these results, we studied the
changes induced in the total and momentum transfer cross sections
when selected symmetries were deleted. The results for CASE 1
appear in Table 8.18 for selected (hopefully) illustrative energies.
We find that Hg is essentially unneces- ry, while the other ''non-
bonding' symmetry, Zu must be included. WNotice that at 0.07 eV
scattering in the Zg symmetry contributes almost 95% of“the total
and momentum transfer cross sections, while at 2.0 eV, Zu is clearly
the principal contributor.

Lastly, we should look at differential cross sections. These
are calculated accoxding to the formulae and procedures of section
7.3 and are shown in Figure 8.6 for CASE 1 at several energies.

The first thing one notices about these results is that they are




9%t

E(eV) 0.07 0.1 0.5 1.0 2.0 3.0 3.5
Gtot(T) 237.9836 194.6609 54.5459 30.5319 22.1906 25.8061 50.4730
(66.6354) (54.5050) (15.2728) (B.5489)  (6.2134) (7.2257) (14.1324) (19.2090)
°mom(T) 216.8731  173.5418 45,9881 30.7730 26,4095 28,4128 50.1233
(60.7245) (48.5917) (12.8767) (B.6164)  (7.3947)  (7.9556) (14.0345) (19.3452)
mom(E) 228,57 —_ 38.57 - 18.75 —_ —_
(64.00) (10.8) (5.25)
E(eV) 5.1 5.9 8.0 10.0
otot(r) 26.1767  25.5627 21.6867 28.6318
(7.3295) (7.1575) (6.0723)  (8.0169)
omom(T) 24,9316  22.5867 7.1040 24.4773
(6.9808) (6.3243) (6.5856)  (6.8454)
omom(r:) — — — 43,21

(12.19)
TABLE 8.17

o]
scattering (Case 1). Experimental momentum transfer cross sections obtain from

reference (9).

[l o
Total and momentum transfer cross sections in a 2 and A2 (in parentheses) for e=-C0y




Lyz

E(eV)

0.07 0.5 1.0 2.0 10.0
All Symm 237.9836  54.5459 — 22.1906 28.6318
(216.8731) (45.9881) (26.4095)  (24.4477)
No I 237.7749  54.4334  30.5319 22.0788 26.6528
& (216.8952) (46.0746) (30.7730)  (26.3807)  (26.1586)
No I ,I_ 234.0947  50.6279  24.5178 11.4822 11.2091
8 (194.8713) (33.9738) (17.5151) (9.8750)  (11.6896)
No T, 228.4839  41.8679  21.1722 17.5715 22.7597
(246.3389) (50.1311) (28.4159)  (23.7431)  (19.2171)
I only 224.5950  37.9499 6.8632 5.3370 15.1581
& (224.5950) (37.9499)  (6.8632) (5.3370)  (15.1581)

TABLE 8.18

Study of total and momemtum transfer (in parenthesis) cross

sections as certain symmetries are deleted.
All results are in atomic units.

sidered.

Case 1 is con-
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rather strange.

Actually, the low- (< 0.5 eV) and high- (> 3.5 eV) energy

differential cross sections are not all that unreasonable.

For example; the 4.0 eV result clearly shows the p + f character

of the nearby resonance., But what are we to make of the graphs for
1.0 eV - 3,0 eV? The shape of these plots is certainly atypical.

By way of dlagnosis, we studied the sensitivity of the
differential cross sections to the potential in CASE 1 and in
CASE 2. 1In Figure 8.7 we compare these results at two energies,
0.1 eV and 1.0 eV, Clearly, the behavior at the higher energy is
quite unusual, suggesting an extreme sensitivity in the T-matrix.
Cne should keep in mind the important fact that differential cross
sections are notoriously hard to predict theoretically with con-~
fidence (they are also quite difficult to measure experimentally,
particularly at small angles). This obtains because these cross
sections sample the T-matrix quite extensively and also take
into account interference effects (recall Chapter 7).

To further study the behavior of the differential cross section,
we tried several selective deletions of tha sort discussed in con-
junction with Table 8.18 at a wide range of energies. Three typical
cases are presented in Figure 8.8. At the low and high energies,
the following observations can be made:

(1). deletion of Hg T-matrix elements does not alter the

shape of da/df.
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Illustration of the dependence of the differential cross sections for
e-C0,, scattering on the potential (polarization contribution) at
two energies, 0.1 eV and 1.0 eV,
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(2). deletion of both "non-bonding symmetries" has no
major qualitative effect on the shape in angle;

(3). deletion of the Hu symmetry completely alters the
shape;

(4). deletion of all but Eg symmetry yields differential
cross sections which only vaguely approximate the full result.

The figure shows that the 1.0 eV case is anomalous with respect

to observations (2) - (4). This was also found to be true at

2.0 eV and 3.0 eV but ia all the other cases examined (0,07, 0.1,
0.5, 3.5, 4.0, 5.1, 5.9, 8.0, 10.0 eV) the behavior found was con-
sonant with the above observatioms.

In addition to the physical insight one gains from studies 1like
these, they clearly suzgest that the 1.0 - 3.0 eV cases are some-
how special. This was further suggested by a series of studies we
carried out in which only the largest N T-matrix elements of each
contributing symmetry were retained in the calculation of the
differential cross section. We found typically that by N = 2, the
cross sections would be converged for angles greater than about 60°,
while by N = 4, they were converged from 0° to 180°. However, at
1.0 eV, the results for N = 1 through N = 5 oscillated about
something resembling the shape shown in Figure 8.6, never clearly
converging.

The final clue to this mystery is provided by the asymptotic

decoupling approximation of section 7.6. We present in Figure 8.9
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comparison for the differential cross sections in the full calculation
and the ADA at several energies, The disparity between the behavior
in the ADA of these cross sections from 1.0 eV to 3.0 eV and the
results at other energies is quite evident.

Using these clues and a very detailed analysis of which
T-matrix elements go into the differential cross section at selected
energies, we have concluded that our calculated results for do/d@ in
the energy range roughly defined by 1.0 eV to 3.0 eV are too
sensitive to be reliable. We find that at these energies, the
interference of various channels and symmetries is most important,
and the differential cross sections depend precariously on the
T-matrix being accurate to more than four significant figures, that
is to a greater degree of accuracy than even our rather rigid
criteria provide.

Of course, such a level of accuracy is not reguired to determine
the total or momentum transfer cross sections of Table 8.12, and
we have considerable confidence in these results, Moreover, we
have no reason to doubt our differential cross sections for scattering
energies outside this energy range. However, one should always
keep in mind the aforementioned sensitivity of these cross sections
to the T-matrix. It is unfortunate that there are no extensive sets
of reliable differential cross sections for e~C0, scattering in the
literature at present, as these would provide an interesting comparison

for these calculations.
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Differential cross sections for e~CO, scattering in the coupled channel
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approximation defined in the text.
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§6.4. Conclusion
The manner in which we used the graphs of Figure 8.9 obtained
in the asymptotic decoupling approximation might suggest that this
(or its near equivalent, the low-f spoiling approximation) is a valid
way to proceed in studying this problem., This is not, in general true,
unless one seeks merely qualitative information or order-of-magnitude
results. To illustrate this assertion, we show in Table 8.19 total
and momentum transfer cross sections obtained in thke full theoretical
analysis and in the ADA. Clearly, it is only at the lowest energiles
that the latter is reliable.
Another perfectly reasonabls question to pose is: does cne
have to take into account both exchange and polarization? Our
sensitivity checks reported above suggest that the answer is "yes",
particularly if one has interest in quantitative results. But suppose
we are interested only in the qualitative behavior of the scattering.
Can we get an understanding of the physics of the collision without
all this effort?
The answer is, rather emphatically, '"no". This is revealed
by Figure 8.10, which compares cross sections in three approximations;
SEWP static—-exchange-with-polarization
SE static~exchange
S static
The SEWP approximation is the one employed for the calculations
reported in the last section and our best model of the true e-C0,

interaction. The point of Figure 8,10 is not so much that the
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E(eV)

0.07

0.1 0.5 1.0 2.0 3.0 3.5

Teor (T 237.9836 194.6609 54 .5459 30.5319 22.1906 25.8061 50.4730

(ADA)  235.6109 192.4727 51.7659 26.8862 17.2550 18.6227 30.9515
S om (¢9) 216.8731 173.5418 45.9881 30.7730 26.4095 28.4128 50.1233

(ADA)  211.3744 167.9891 38.8486 21.6921 16.2462 17.1868 28.5661

E(eV) 4.0 5.1 5.9 8,0 10.0

Teor (D 65.9660 26.1767 25.5627 26.5789 28.6318

(ADA) 41.4058 21.3116 21.3184 21.8441 21.5499
S om (D) 65.6035 24.9316 22.5867 21.6867 24,4773

(ADA) 37.1253 16.7296 16.0825 16.0699 15.8613

TABLE 8.19

. 2
Cross sections in a,

and the asymptotic decoupling approximation (iabeled ADA).

for e-C0y scattering in the SEWP approximation (labeled T)
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Comparison of cross sections in several symmetries for e-CO. collisions
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numerical values of the cross sections differ in the various ap-

proximations but that the physics one predicts theoretically is not

correct if either exchange or polarization is neglected. This is

further illustrated by the momentum transfer cross sections of

Figure 8.11. (We did not calculate enough points in the static
approximation to determine the precise behavior of omom between

0.1 and 2.0 eV, so this part of the curve is dashed. The three points
we did calculate in this energy range are indicated on the dashed
portion of the S curve,) Notice in particular how poor the static-
exchange approximation is in this case. This is a little suprising.

It is remotely possible that this in part reflects the admittedly

i e e

approximate way we have included exchauge. And it is possible that

TR 223

the results of a true Hartree-Fock static-exchange calculation would
do a little better. However, it seems unlikely that the fundamental
physics reflected in these results would be changed.

In conclusion, it is worth remarking on the similarities
between the behavior we have observed in this problem and that
characteristic of electron scattering from rare gases (e.g., Ar,

Kr, Xe). Total cross sections for e-Ar scattering have been determined ;
(10)

by Thompson in the three approximations we have considered

and are reproduced in Figure 8.12. (0f course, the details of the .

inclusion of different interactions are not the same as in our

studies.) While we certainly don't wish to make too much of the

analozy, it is interesting that spurious peaks appeav in the static
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Momentum transfer cross sections for e-COZ collisions in the three
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and static-exchange-with-polarization (SEWP) approximations.
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approximation, that the static-exchange results are less strongly

energy dependent than are the true cross sections, and that the

static~exchange-~with~polarization cross sections rise at low energies.

All these features are also evident in our e-CO2 results. Of course,

in the rare gases, what we are seeing is a Ramsauer-Townsend minimum,

which is simply(ll) a deep minimum in the cross section czused by

the phase shift passing through a multiple of T at the energy of

the minimum. Physically, the effect reflects the fact that at

this energy the scattering wave~function has been shifted by exactly

one wavelength, so that the "effective phase shift” is zero. The

minimum is seen in rare gases because they ara closed shell systems

whose potential energies consequently fall off quite rapidly bayond

a certain radius, leaving something which looks a bit like a

potential hole. Enormous low-energy cross sections can be caused

by a nearly bound (or "virtual") state with zero angular momentun.

This manifests itself as a zero of the S-matrix on the positive

imaginary k-axis, as opposed to a true bound state, which shows

up as a zero on the negative imaginary k—axis.(lz)
While it would clearly be a gross oversimplification to

assert that one can safely think about CO2 as a rare gas in the

context of electron scattering, the similarities are provocative,

particularly in so far as they comment on the importance of various

interactions to the physics of the collision event.
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Chapter 9. By Way of Conclusion

I walk among the fragments

of the future, that future which I
contemplate. All my thoughts and
striving is to compass and gather
into one thing what is a figment

and a riddie and a dismal accident.
And how could I hear to be a man

if man was not a poet and a solver
of riddles and a savior of accidents.

~Triedrich Nietzsche
Thus Spake Zarathustra

Taking a broad perspective on this research, we could
assert that the point of it all is that one actually can cope
theoretically to a fairly high degree of accuracy with electron-
molecule problems involving very large and very aspherical targets.
We see no reason why the techniques and procedures here descrited
cannct be applied to homonuclear and heteronuclear molecules
at least as large as C02. We have seen that considerable care
must be e:nercised (a) in certain numerical aspects of the problem
and (b) in calculation of the potential energy. At least in
the e-CO, problem, the results are strongly depmendant on
v (?). This explains, by the way, why the observed e-NZO cross
sections are quite differeat from those for e-COz collisions
(recall that N20 is isoelectronic with COZ)‘ Yor cne thing,

NZO is an asymmetric linear molacule. Its charge distribution
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is different from that of CO2 and hence there is no reason to
expect an analogy between the two systems in electron scattering.
Additionally, because of its symmetry, N,0 has a dipole moment,
which leads to an r-2 interaction term in the potential energy
which is not present in e—002 interactions.

We consider significant the faci that a number of interesting
physical features of the e-CO2 collision are explained by our
calculations: e.g., the 3.8 eV shape resonance, the anomalous
low-energy momentum transfer cross sections, and the dominance
of certain symmetries in particular energy regimes.

It should be noted that we have not taken into account
short-range electron correlation or vibrational channels. The
latter are probably more serious since, as we recall from Chapter
2, our scattering energies are well above the threshold for
excitation of the various vibrational modes, We believe that
the dominant effect of including vibrational excitation in these
calculations would be to broaden and lower (slightly) the resonance
peak which we find at 3.8 eV.

It would be possible to use the theory here developed to
describe vibrational excitation, either through the adiabatic
fixed-nuclei approximation or in a distorted-wave framework.

Such an investigation could prove to be worthwhiie, especially
in light of the intense interest among experimentalists in the
000+001 transition in the CO, laser.

A minor refinement in the present study might entail a

more accurate treatment of exchange, Quite frankly, the success
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of the HFEGE approximate exchange potential came as something of
a suprise, for, comparatively speaking, this is a very easy way
to handle exchange. Its theoretical underpinnings suggest that
perhaps it is somewhat reasonable hut in no way led us to expect
it to perform as well as it did. To some extent, we may be
partially correcting the inadequacies of the HFEGE potential

by adjusting our induced polarization potential via the cutoff
parameter discussed in Cbapter 5. Although not at all unreasonable,
a cutoff of 2.59 a, is a bit smaller than one would intuitively
expect. And it is true that, if anything, the HFEGE potential is
a little weak. An extremely interesting study could be carried
out by supplementing the local potential energy we used with an
orthogonalization procedure; this possibility was discussed at
length in Chapter 4.

The present techniques will handle a wide range of molecular
targets in collisions with electrons having incident kinetiec
energies in the range from several hundredths of an eV to a
few tens of eVs. It is not clear that the numerical procedures
we employed (as discussed in Chapter 6) can be pushed too much
farther to handle, say, electron-benzene collisions, or e-HZCO,
or other such protlems. All the computational difficulties we
encountered will be exacerbated for systems with even stronger
and/or more anisotropic interaction potentials,

One way to handle such systems is via a pseudopotential
or model potential. One seemingly promising way to approach

the generation of such a potential is to model the true potential

SES A




seen by the scattering electron inside a certain radivs r from

any of the target nuclei by a constant. This idea is based on

the fact that while in a static calculation the scattering wave-
function is very sensitive to the inmer part of the attractive
well, when exchange is taken into account a strong orthogonmalization
constraint "grabs onto" the wavefunction, making it less sensitive
to the detailed nature of the short-range attractive well., A
variety of other ways of approaching this idea can be conjoured
up, and now that we have fairly accurate results for a single
electron-big molecule collision for comparison purposes, this
seems a most promising avenue of iInvestigation.

As the scattering energy increases, the theoretical and
practical limitations on the coupled-channel method become prog-
gressively more accute. 1In fact, one of the major problens
currently facing electron-molecule theorists is that of excitation

of electronic states of the target. It is here that the more

well established conventional methods encounter considerable
difficulty, not the least of which 1s due to the huge number of
important open chamnels in the problem.

In response to this challenge, researchers have recently
proposed a variety of interesting and novel approaches to this
problem. We have deveioped the Pseudo-Bound-State (PBS) procedure,
which builds on the idea that a positive-energy variational
wavefunction for a molecular ion (e.g., Hz—) is identical to the
system wavefunction for electron scattering for the neutral target

(=.2., HZ) ¢ an incident kinretic energy equal to the variational
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energy. The theoretical background of PBS and its application

to low-energy e-H2 collisions (s-wave) have been discussed by

the author in a recent publication, which can be found in Appendix
1.

This method works well when coupling of partial waves is
negligible beyond the value of r at which the quality of the
continuum variational function deteriorates owing to the finite
size of the basis. It is especially successful for scattering
in partial waves of a symmetry which-corresponds to that of one
of the target (core) orbitals, for then orthogonalization of
these functions diminishes the sensitivity of the scattering
function to the detailed short-range nature of the static potential,

We are in the process of investigating a multi-channel
extension of the PBS procedure which is based on the Generalized

1) (2)

Pseudopotential Method of Tully and Zarlingo et. zl, A study

of the application of this new procedure to e-He and e—H2
collisions is well under way but is ancillary to the subject
matter of this report.

Both of these methods are closely allied theoretically to
the R-matrix method. This approach was bouirowed £rom nuclear
physics and applied to electron-atom scattering by Burke and
others ) and has recently been successfully applied to electron-
(4)

molecule scattering by Schuneider. We have begun research in

this area, applying the method to elastic and el=ctronically
inelastic e-Nz scattering.

These and other related techniques, most of which are



based on the use of Lz—variational wavefunctions, are very likely
to break open the problem of electronically inelastic scattering.
Further, it is not overly optomistic to speculate that a blend

of old and new electron-molecule collision theories together with
some sort of model potential ideas may render soluble the problem

of electron collisions with very large targets.

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

-T. S. Eliot
"Little Gidding" from
Four Quartets
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Appendix 1

Pseudo-bound-state study of low-energy electron-molecule

collisions: Elastic e—H2 scattering
Phys. Rev. A 12, 2361 (1975)

Michael A. Morrison and Neal F. Lane
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Pseuado-bound-state study of low-energy electron-molecule collisions:
Elastic e-H, scattering*

Michael A. Morrison' and Neal F. Lane
Physics Department, Rice University. Houston, Texas 77001
(Received 6 January 1975; revised snanuscript received 23 June 1975)

A study of the low-energy clastic e-H, scattering information contained in multiconfiguration variational wave
functions for a low-lying (positive} energy of the H, = system is described. The wave function is calculated
using standard bound-state techniques, employing the modified valence-bond method with a basis set of Slater-
type orbitals, and from it are obtained starting values at moderate electron-molecule separations Yor ‘a simple
single-channel scattering calculation, which is carried out beyond the region where exchange and coupling of
partial waves are thought to be important. Results are presented for s, clastic scattering for invident-electron
encrgies < 10 eV in the static-exchange approximation with polarization included by means of an adiabatic
polarization potential. The study shows that the standard H, ~ variational function does indeed provide a good
approximation to the elastic scattering wave functicn in the region close to the molecule, but that care must
be taken in choosing the basis set. Comparisons are made with other more traditional calculations.

1. INTRODUCTION

The thecretical treatment of electron~diatomic~
molecule scattering is complicated mainly by the
two-center nature of the potential energy.! Meth-
ods which utilize one-center expansions? will in-
evitably encounter convergence difficulties at
higher energies or for large-Z molecules. Ap-
proaches which do not invoive the one-center ex-
pansion have been developed in the fixed-nuclei
approximation, and appear to have considerable
promise.>~® These methods describe the elec-
tronlc state in the body frame and focus on the
complicated region close to the target molecule
where the potential energy is least isotropic and
where exchange effects are most important. Simi-
larly, one may expect certain types of electronic~
excitation processes and temporary negative-ion
formation to be powerfuliy dealt with using these
approaches. While the body frame is appropriate
when the electron is close to the molecule, the
scattering process is actrally defined in the lab-
oratory system, and a frame transformation is
required.® This is particuiarly simple when the
“adiabatic-nuclei approximation” (“impulse ap-
proximation”) is valid,!* "+ ® for in that case solu-
tion of the equations in the lab frame is not re-
quired.

In the case of electron-H, scattering, static-
exchange calculations have been carried out both
in the body*-5:°~*! and laboratory® frames. In
the latter case, rotational excitation is treated
via a close-coupling expansion, where sufficient
terms are included to guarantee convergence.
Polurization of H, by the incident electron is im-
portant for low-encrgy collisions, and has been
included via an adiabatic polarization potential’®:!?

12
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fnboth body-frame!* and lab~frame? treatments.
The adiabatic-nuclei approximation has been suc-
cessfully applied to calculate rotational-excita~
tion cross sections using fixed-nuclei phase
shifts.” * Application has also been made to vi-
brational-excitation, where interpretation of the
results is less clear.®™!?

In the work reported here, we also concentrate
on obtaining a suitable description of the system
wave function when the electron is closc to the H,
target. What we describe is in some ways more
a madel study than the development of a method.
Qur study was stimulated by the one-dimensionat
model calculations of Taylor, Hazi, and Fels.'®
In short, they found that positive-energy wave
functions constructed from square-integrable (L*)
basis functions provide scattering information for
both resonant and nonresonant states, under cer-
tain conditions. We have examined this apprcach
for a rather complex three-dimensional prohlem:
low-energy e-H, scattering. The point of view has
been adopted that except for the asymptotic scat-
tering boundary conditions, the electronic features
of the e-H, collision physically resemble a mole-
cular gfructure problem of the H,” jon. Since this
negative ion has no bound states for separations
near the H, equilibrium value,*® eigenfunctions
corresponding to the lowest variational roots
should approximate the true continuum wave func-
tion corresponding to low incident-electron ener-
gles; at least in the vicinity of the target. I so,
then an approximate scattering orbital can he pro-
jected out and simple potential scattering techni-
ques used to continue the function into the asymp-
totic region. For moderate electron-molecule
separations, the interaction potential can be simply
and accurately represented, while near the tarpget

2361



2362

exchange, correlation, and coupling of partial
waves complicate the problem. A somewhat simi-
lar point of view has been taken with regard to ¢-H
collisions by Zarlingo, Ishiharz, and Poe.?!

In order to carry out this investigation, a com-
putational technique was employed which uses a
standard linear variational method (modified val-
ence bond) to obtain low-lying positive-energy
variational H,™ wave functions from which body-
frame phase shifts are obtained via a simple num-
erical solution of the potential scattering problem
in the outer region. This procedure Las been used
to calculate elastic s, e-H; cross sections for ener-
gies below 10 eV and yields results which are in
good agreement with more elaborate scattering
caiculations.?*® The H, molecule was chosen for
the present study because of its relative simpli-
city in comparison with other molecules and be-
cause fairly accurate experimental and theoretical
results are available for comparison. At low inci-
dent encrgies (51 eV) the total cross section is
dominated by elastic scattering, primarily s, and
the asymptotic coupling between different puitial
waves is known to be weak.?*#

In Sec. II the computational technique alluded to
earlier is described. Elastic s, phase shifts and
cross sections are presented and discussed in
Sec. INl, where they are compared with the results
of other caiculations and where the sensitivity of
the results.to various features of the basis set is
analyzed. Finally, in Sec. 1V, we comment on limi-
tations and possible extensions of this work.
Throughout this paper, the H, internuclear separa-
tion is fixed at 1.4a, and atomic units are employed.

II. PSEUDO-BOUND-STATE TECHNIQUE

Gur approach to the study of ¢-H, collisions can
be viewed as consisting of a structure caleulation,
which vields low-energy variational H,” wave func-
tions, followed by a simple potenal scattering
calculation, which yields phase shifts and cross
sections for elastic s-wave scattering., The ne-
cessary structure calculations were carried nat
using a modification of a general diatomic-mole-
cule program which was originally developed by
the Molecular Physics Group at the University of
Texas.*® This program performs multiconfigura-
ton variational calculations™ using modified val-
ence-bond wave functions. Each wave function is
composed of Slater-type orbitals (STO's), and
allowance is made for varying lineiar and nonlin-
ear parameters. The scattering calculations in-
volve extraction of the desired partial wave from
the variational H,™ function and a simple single-
channel numerical integration,

MICHAEL A. MORRISON AND NEAL F. LANE 12

A. Structure problem

The first step is generation of a core H, func-
tion. We construct a simple two-center single-
configuration function for the ground state (X'Z7)
of the Wang form,?® viz.,

w,.c‘.(x'-,,;,)= [1seis®| + |1s*is*}, m

where the overbar denotes spin “down” ani the
basis functions 1s® and 1s® are STQ's correspond-
ing to s orbitals on nuclei @ and b, respectively,

eg.,
1s* (r,,) = Ne @ a¥3(7, )B(1), 2

where B(D is the “spin-down” eigenfunction. The
nonlinear parameter a is taken to be the same for
like orbitals on different centers and is allowed to
vary in this step until a minimuvim H, energy is
obtained for a given internuclear separation.

The next step entails calculation of H,™ functions
of the appropriate symmetry, e.g., *Z; functions
for s, scattering. This is a multiconfiguration
calculation; each configuration is a properly sym-
metrized linear combination of products of the
core H, function | Eq. (1)] and an additional STO.
Thus the core is “frozen.” This corresponds to
the static-exchange approximation and does not
teke correlation inte account. (L.ong-range polar-
ization effects are incorporated into the scattering
calculation in a manner described in Sec. i1 B)

A typical two-center configuration for the 2E;
state of H," is
@y (0, Ty, Ty) = | 152 1590 | = | 5% 158 02 |

2f1s® 5%} || 5% 1508, (3)
where ¥§ is an arbitrary STO centered on nucleus
a and the upper (lower) signs correspond to ¢§ of
even (odd) parity. Notice that for *z} wave func-
tions, #s, ap,, and nd,, ... STO's may be used

for ¢§ or v}. The full ~-configuration %%} wave
function is then

§
‘pzr,;(ru Tz T3) =‘Z ¢ ®, (ry, 1y T5) 4)
=1

The nonlinear parameters in ¢§ and ¢} were not
allowcd to vary in this step.

B. Scattering problem

One way to examine the relationship between the
2%, variational H,” wave function and the actual
scattering function is to compare s, phase shifts
derived from the two. In the case of the varig-
tional function, four steps are required*®; (i) pro-
jection of the approximate continuum: orbital ¢
from the ?Z; variati nal function; (ii) orthogonal-
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ization of the orbital v to the 1o, core orbilal;
(iii) one-center expansion of ; and (iv) numerical
integration of the appropriate radial scattering
equation, startiug with the s, radial function in
the one-center expansion.

In the first step, we extract the approximate
continuum orbital ¥ by selecting from
TN Gl, ;,,?,) the linear combination of ¥§ +y}
which multiplies the frezen-core '3, target wave
function. Thus, in keeping with the frozen~core
approximation, we write

bagg ., Toty) =®geir, ;2)‘p(‘=:l)v (5)
where @ enforces antisymmetrizatiorn, and where
GFIY ol #1 G +ol G, (©)

im3

The approximate continuum orbital ¢ is then ortho-
gonalized to the 1¢, H, core orbitai, i.e,,

¢’=¢ =10, |v) 10,. (49]

For approximate orbitals ¢ of other symmetries,
e.g. 9,, 7, etc,, this stepis, of course, not
required. In one versien®” of the pseudopotential
approach to electron-molecule scattering, the
orthogonalization in Eq. (7) is applied as a con-~
straint to the solution of the scattering equations
for ¢. To facilitate examination of particular
partial-wave phase shifts, we convert #{(r,)toa
one-center representation (the origin of coordi-
nates being the midpoint of the internuclear axis)
by expanding it in spherical harmonics, the radial
coefficients being designated by u,,,(r;).

Our central assumption is that the variational
function is an accurate representation of the scat-
tering function at least in the region near the tar-
get, where exchange effects are particularly im-
portant. Outside this “exchange region, ” we ex-
pect the effects of exchange and the coupling of
partial waves to be negligible for low-energy
e~-H, collisions. Therefore we use the value of the
radial wave function and its slope at the boundary
of the exchange region, r=7, , to initialize the
solution of the single-channel (body-frame®) scat-
tering equation

2o 2 opr
(diraj ——%’2"’._1) +&2-2¥ (7'3))1‘111(13): 0’ (8)

which is integrated into the asymptotic region. In
Eq. (8) ¥* is the incident-electron energy (in Ry)
and V{r,) is the diagonal matrix element of the
effective static potential energy augmented to in-
clude long-range polarization and quadrupole in-
teractions. The effective potentizl energy contains
short-range terms due to the static Coulomb elec-

282

tron-molecule interactions of the form given by
Lanc and Geltman™ and the long-range quadrupole
and adiabatic polarization terms given by Henry
and Lane.? The choice of initialization point .,
will be discussed below. In the calculations re-
ported in Sec. HI the Numerov algorithm*®® was
used to integrate Eq. (8).

Il1. RESULTS AND DISCUSSION

A. Basis sets

Variation of the nonlinear parameter « in the
single-configuration H, wave function of Eq. (1)
produced a root corresponding to an electrcnic
energy of --1.139 hartrees for a=1.169 as com-
pared to the much more accurate multiterm theo-
retical value of -~1.1745 hartrees obtained by
Kolos and Wolniewicz.”®* Using this as the core
function, multiconfiguration continuum H,~ func-
tions were calculated. Initially, the nonlinear
parameters in these functions were chosen some-
what arbitrarily, but in such a way as to create
a basis set (“type 1I”) consisting of functions which
together span the region of space close to the tar-
get (r<3ay). Using this approach to choose the
nonlinear parameters, it was necessary to use
25 basis functions to obtain reasonably good phase
shifts. The STO parameters for N=25 and the
resulting coefficients ¢, of Eq. (4) for the lowest
root (E=0.0688 eV) are shown in Table 1. The s,
projection of this 25-configuration radial fuaction,
orthceonalized to the core orbital, is shown in
Fig. 1 and compared to a body-frame close-coup-
ling function®® at the same energy, 0.0648 eV,
Notice that there is a node in the variational func-
tion at 7q.y. =2.15a,.

A second type of basis set (“type II"}, found to
be more satisfactory, is constructed in a systema-~
tic manner. For s, scattering, we form an ¥-con-
figuration basis set by employing s-wave STQO’s
centered on the two nuclei with a fixed value of the
nonlinear parameter o in all basis functions and
n,=1,2,..., N (This type of H,"” function was also
used by Winter and Lane® in their Fredholm-dcter-
minant study of e-H, collisions.) As will be scen
below, this systematic basis gives better results
with fewer configurations.

B. Phase shifts 2nd cross sections

In order to examine phase shifts and cross sec-
tions extracted from these H,™ variational func-
tions, it is necessary to select a value of 7, at
which the numerical integration of Ea. (8) is to be
fnitialized. It was found to be convenient to choose
%, =%+ Then the second initinlization para-
meter [the slope or, equivalently, the value of

SN
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u,”(r,) at a nearby point] merely scales the wave
function aad does not affect the phase shifts. It
will be shown, however, that there is nothing
really special about the node, and that any value of
7., within a certain range is equally satisfactory.
Starting at »,,,. =2.134,, corresponding to the
node of the lowest root obtained with a basis set of
type I with N=25, we obtain the s, elastic phase
shifts shown in the column lateled 25 in Table 11,
The corresponding cross sections are shown by
the solid curve labeled 25 configurations in Fig. 2.
The dashed curve in this figure shows the close-
coupling results® obtained by using the same wave
function for H,. {The node in this function occurs®®
at ~2.18a,.) Since the variational wave function
used to start the integration corresponds to an
energy of 0.0688 eV, it is perhaps surprising that
agreement is good over a range of energies from
0.05 to 10.0 eV. This behavior, which was also
observed when other basis sets of type II were
used (see below), reflects the fact that at low
energies the inner part of the s, scattering func-
tion does not vary substaniially with energy be-
cause the s, “potential energy” is strongly attrac-
tive. This general observation is confirmed by

TABLE I. STO parameters [see Eq. (2)} and variation-
al coefficients {see Eq. (4} for the lowest-energy root
{0.0688 eV) for the N =25 variational H,” I} calculation
fbasis set type U).

"y 4 ag ¢y
1 1 0 4.0 «0.433953 {-1)
2 1 0 7.5 0.177696 (=1}
3 1 0 15.0 -=0.369676 {-=3)
4 2 1] 5.0 0.332551 (~1)
S 2 1 4.0 -0.121819 {(-3)
6 3 0 5.0 ~0.653321 (-2)
? 3 1 4.5 0.711701 (=4}
8 3 2 3.5 0.524209 (~4)
9 4 [} 3.5 0.415405 (-2}
10 4 1 3.0 -0.104272 (~2)
11 4 2 2.5 -0.581696 (=3)
12 4 3 2.0 -0.178686 (~3)
13 4 0 1.0 0.364248 (+1)
14 6 (1] 1.0 -0.449717
15 7 1] 1.0 0.490023 (+1)
16 6 0 6.5 -~0.3132906 (+2}
17 7 ] 0.7 0.141986 (+2)
18 4 (1] 1.5 0.915007 (-1
19 4 1 1.0 0.221578 (=2}
20 4 0 0.5 -0.159820 (+2)
21 4 1 0.35 -0.304 966 ({~1)
22 5 1 1.5 =0.350348 (-2)
23 7 (1] 0.5 0.1080670 (+2)
24 8 [\] 0.41 ~0.237406 {(+1)
25 8 ¢ 0.35 0.12503L {+1)

careful examination of the energy insensitivity of
nodes in low-energy close~coupling functions.??
Hence calculation of low-energy phase shifts using
an L? variational function need not be tied to the
energy of the variational root. {(n preliminary
results® for higher partial waves, where the effec-
tive potential near =0 is weaker, we see some-~
what greater sensitivity to energy.)

1. Iable Il we present phase shifts for several
energies for type-II basis sets with N=11, 12, 13,
and 14 together with the energy of the lowest varia-
tional root and the location of the corresponding
node, which was used to initialize integration of
Eq. (8). In Table O, results are given in the
static-exchange approximalion | polarization terms
in V{r,) set to zero] so that (i) comparison can be
made with other existing theoretical calculations,
and (ii) convergence can be examined without the
possible masking effect of the long-range polar-
jzation potential. {(Increasing N was found to lower
the energy of the lowest root and spread the other
roots in energy.) As N increases, the phase shifts
for E=<1 eV appear to converge to values in good
agreement with other theoretical results,**® which
are also shown in these tables.

It is important to note that »,, the boundary of
the exchange region, is not uniguely defined. In
the calculations reported above, we chose r..=7,,.
for convenience. In Fig. 3 we present a graph of
s, elastic cross sections at 0.05 eV for the case
N=14 and a=0.75 vs the starting radius at which
integration of Eq. (8) was initialized. Clearly,

3

/B o.05 |

- E=0.0688 eV

L ooef

3

0.03

c oo

o -
+2- 0.02 |- el
3 25 ConFiGuRATIONS =

G 0.0 | e -

(] /' CLOSE GOUPLING
> P

(1 ° -

= T

E 0.0} -
S

)
24 1. 3 1 s
X t0 EY) 0
r{ag)

FI1G. 1. Comparlson of 25-configuration type-I varia-
ttonal s, radial scattering function at 9.06498 eV Qlowest
root) with the J =0 close-coupling wave function of
Henry and Lane (ef. 2) at this energy (dashed curve).
The node (first zero) in the variational function is at
~2.15a,. The node in the close-coupling function is at
~2.18a, (Ref. 23).
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TABLE II. Phase shifts (in vadians) for ¢lastic S, e-11, scattering obtained from varviational
wave functions calcufated using various basis sets: type [ (W = 25) and type 11 (N 11, 12, 13,
14). where N is the number of coaligurations. The & 25 basis sct is shown in Table |. For
the type-1l basis sets, & 0.75, Energios ave in eV. Also showa is the energy of the lowest
variationat root and the nodal location for each case. The column labeted cc shaws close~
coupling eigenphase shifts of llenry and Lane (RRefs. 2 and 30, Al results inclurle polariza-
tion via an adiabatic polarization potential as described in the text.

N Type | Type il
E 25 11 12 13 14 ce
0.05 3.049 3.047 3.058 3.053 3.054 3.0536
0.07 3.030 3.028 3.041 3.035 3.036 3.0351
0.1 3.004 2.002 3.018 3.010 3.012 3.0111
c.2 2.928 2.935 2.956 2.946 2.948 2.9475
0.3 2.885 2.881 2.906 2.894 2.896 2.9968
0.5 2.797 2.792 2.825 2.810 2.812 2.9143
1.0 2.631 2.625 2.669 2.648 2.652 2.6604
2.0 2.391 2.382 2.441 2.413 2.418 2.4458
3.0 2.204 2.193 2.236 2.231 2.236 2.2883
4.0 2.045 2.033 2.113 2.076 2.082 2.1623
6.0 1.779 1.765 1.860 1.816 1.823 1.9667
10.0 1.357 1.339 1.459 1.403 1.412 1.4459
¥ node (xag) 2.15 2.17 2.04 2.10 2.09
Evar 0.0688 0.1359 0.1171 0.1020 0.0928

sults in better agreement with those of close-coup-
ling calculations. Fitting the 14-configuration s,,
cross section at 0.05 eV to the s-wave modified-
effective-range-theory (MERT) equation,® we
obtain a scattering length of A=1.20a,. With this
value, the simple MERT eguations yvield cross
sections in excellent agreement with close-coup-

¥ade 1S @ reasonable choice for 7, but it is not
essential that the integration start there. Indeed,
for p,-wave scattering, there is no node close to
the origin; nevertheiess the integration could be
carried out using the value of u,ﬂ(r;) and its slope
at some reasonable value of »,,. Figure 3 also
shows that within a certain region, from ~1.6a, to
~2.4a, in this case, it dues not matter where the
long~range adiabatic polarization potential is in-

troduced. ~
We have examined the sensitivity of the s, phase ®

shifts to a, the nonlinear parameter in the STO sor

basis functions. Table IV contains the s, phase g 25 COWIGurATIONS

shifts (with polarization) for N=14and ¢ =0.5, 0.75, 2 sof ncovrisumanions

and 1.0. (Increasing « was found to increase the b

lowest variational root and spread the energies.) w

In the cases shown in Tables II-1V, a “flat region” "

in the graphs of cross section vs 7,,, analogous 2

to that in Fig. 3 is evident. However, as N is de- S

creased, the width of the region decreases, cen- . 'oF

tering on ;. . Similarly, for too large or too @

gmall a value of o {e.g., @<0.5 or a 21.0), the | I N | N —e

0no0s oo (X 0.0

region disappears completely. This behavior sug- Energy tev)

gests that some care must be exercised in choosing

oS AN S A R o

optimum values of & and a.*

In Fig. 2, s, cross sections corresponding tothe
N=14 case are also shown. For the latter case,
integration was initialized at 7 =7, =2.09%,, cor-
respondingto a 14-configuration variational root
at an energy of 0.0928 eV. This calculation is, of
course, considerably less expensive than the 25-
configuration calcufation, and appears to yield re-

284

FIG. 2. Elastic s, e-H, cross sections abtatned {rom
pseudo-bound-state procedure using variational Hy”
functions constructed from a type-l N = 25 basis set and
a type-{I N 14 basis set (solid lines). Poarization is
included via an uliahatic polarizazion potential outside
the excharge region. Close-coupling (1 - 0) results of
Henry and Lane (Ref. 2) (static-exchange approximation)
using the same polarization potential are also showa
(ditshed curve).
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CABLE Hf. $hase shifis i radians) for elastic 5.6~ scattering obtained from variationat
wave [uactions cateuiates! saing various haaes sets: tvpe TN 250 and type 11085 11, 120 13,
11 where N s the nunber of configrurations. The N 25 basis sct ¢ skown in Tabkle | For
the type<tl basis sets, #0758 Energtes ave o eV, The eolumn Iabelud ce shows clese-
coupling phase shifts of Heary and Lanc Gief. 2). The eolumn lahicled se shows static-ex-
change results of Tully and Berry (Rei. 9). No potarization {s included.

Y Type | Type ll
E 25 1 12 13 14 cc 1e

0.034 ees 3.004 3.040 3.037 1,098 3.03%4

0.05 3.012 3.091 3.019 3.015 1.016 3.0134

0.07 2.989 2.997 2.996 2.092 2993 2.9900

G.1 2.958 2.956 29 2.951 2.96) 2.9505

0.136 vee 29206 2.959 2.923 2.934 2.939

0.2 2.882 2.980 2.896 2.888 2.8%0 2.895%9

0.3 2.824 2.5921 2.841 2.832 2.8313 2.8290

0s 2731 2.727 2.753 2.741 2.743 2.729%

0.544 2.7113 2.710 2.7136 2.724 2.726 .17

1.0 2.561 2.556 2.592 2.578 2.578 2.5780

1.224 s 2.4%4 2.534 2.515 2.518 2.5

2.0 2321 2.313 2.164 2.311 2.245 2.1591

2.177 2,295 2.278 2.3 2.306 2.310 2.352

3.0 2.136 2..27 2.18%9 2.160 2,165 =

3.40) 2,07} 2.060 2.128 2.697 2.102 237

4.0 1.931 L 959 2.042 2.008 2.014 2.0754

4.893 1.856 1843 1.925 1.583 1.855 2.006

6.0 1.719 1.705 1.793 1.753 1.760

10.0 1.104 1297 1.400 1.348 1.957 1.6083

oY

ling cruss scctions for energics up to 10 ¢V, A performed a it of the MERT ¢guation to the re-
seattering length of 1,325, i5 obtained from the suits of clectron drift and disffusion measuvranents’®™
cross scetions extracied foom the 2s-confizura- and finds a scattepine length of 1 284, This value
tion wave function, sad 1.1, is oblained Jrom fields cross scetions lurger thas those of Benry
the closo-coupling cross sections. Chang® has and Lane,” suggesting that the fatler may be some-

TABLE IV Phase shifty un radizast (o2 ciaste »,,

scatterin: ahialeed from variational caleuistiony Sk e
set T with & 14 sed eardotn walues of 6. Lnertits ace M naf
in eV. Also xhown are the eavepics of the Towost varia- £
Bonal reot aml the node for cach case. :
bt syt oo 2 ool S :- .
& :’, wmh . LT
E 0.% 0.38% 1.0 \2 e °
0.05 2.053 2054 r63 z
0.07 1040 16206 2.04° &t
(A Y 1.044 1.0t 3.025
0.2 2.850 2.845 2,863
0.3 2.966 2 896 2.019 - > s s 35
0.5 2.325 2512 2.440
o 2.600 2.652 2.689 Breerag sty bt
bl -
g: :;:‘; ;;,": ;;g: FIG. 3. Craus sections Gr g, ofastic o=, seallering
4.0 2,113 e 2151 Ut 0.0% ¢V olindsed Qa3 ivpeotl X 19 variatianal
G:ti 18en 1823 1.900 wave function aitho - 0.7% amd o sdabatie sdavication
100 1.56% 412 1515 potentinl. The borlzontal avis slew o thy valie of » 3t
whieh the shgzle-clanacl integration of Pq. (8 for o,
Pagy (N0, 204 2.08 1.9% {rd was fgitiated using the values of tee 5, ;:m;rruunﬂ
Eva 0.031% 0.652% 01540 of thye variational ricdial wave function and 22 depiva-
g T 2 ttve at ».
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what 100 small. This would be the case, for ox-
ampie, i their adisbatic polarization potential is
too strong owin to neglect of the ronadiabiatic dis-
tortion potential.®

IV, CONCLUSIONS

The results discussed above susuiest that there
18 valid electron-molecule seattering information,
for some cases over a fairly wide ranpe of ener-
gles, contained in low-energy variattonal wave
functions for the corresponding aczative oa, In
cases where the coupling of partial waves is weak
beyond a certain radius and the potential energy is
strongly attraciive near the origin, phase shifts
can be obtained by the procesure outlined a8 Scc.
B. This procedure may be applicable to larger
homonuclear molecules, where the short-sange
potential energy is stronger than in H,. However,
for encrgies larce eaguah se that ihe nondiagonal
3 -matrix clements tvcomae large, the procedure
must be modified. A suiflcient momber of Haeariy
independent solutions mast be obtained $0 Ut the
multichanned asympotic boundary conditions can
be enforced. Oni procodure for doisg (R I3 that
suggested by 2arlinge, Ishikara, ang Poe’ bas-
ed on the work of Tully.” The sume qualifying
remarks also apply (0 the extension of the prasent
work to inelastic scattering. Howover, o ¢lsos

where e stabatic-nucted approximation s
valid, 7 " the body~{ranwe caleulation 1s strict-
ly elastic.

The quality of the variational 8,.” wave tunctiaon
can be frmproved by incleding more inisis functions.
A comparison of reselis oblaned with the $5-con-
figuration and Y-confizurstion functions suppest
that further investipation of systematie bats sols
would be fruftful. Unlortunately, very large com-
pact basis seln infraduce nemerical problems
{lincar dependeneel in the nedircanfiguration cal-
eulation. Thus [ Breor«s avcessary cither to
projvel cortaln traublosan:e vigenfunclishs oF 2o
fo preater machite procisian— perbaps both,
Firatily, casrelation effcots cosld by studied !ly
the expedicn? of “unfreczing™ the care H, w v
function.
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Appendix 2. Electron-Molecule Scattering in the Lab Frame

In the body of this work we formulated the electromn-molecule
scattering problem in a body-fixed reference frame corresponding to the
polar axis frozen along the internuclear axis. Early formulations of
the problem (e.g., reference (3) of Chapter 3) used a space~fixed or
laboratory reference frame. The author has discussed the relation
between the two frames and how to transform the scattering function
between the frames in Chapter 7 and elsewhere (see reference (?) of
Chapter 3). Here we would like to review the lab-frame analysis and
present a few numbers for e-CO2 scattering in this picture.

We begin (as usual) with the Schroedinger Equation for the

electron-molecule systen,

(#-E VL (R =0. o

where T denotes the set of quantum numbers needed to uniquely label a
stacte of the target and vhere k is the incident wavenumber. Applying
the Born-Oppenheimer Approximation to the target, we can write the

target molacular wavefunction as

FS

u{_l ("". KGJ = —:n‘,‘(_—r";_,?zd) @.m,‘{ (R‘*) , (2
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vhere ¢na is an electronic wavefunction and ij o is a rotational

3

wavefunction. We neglect vibrational states, The subscript o thus
denotes any other quantum number(s) needed to fully specify the molecular

state. For a I state of a linear molecule, we have

@-M_.‘d (B.)= Y;‘j (R), )

J

where R is the orientation of the internuclear axis in the space-~
fixed laboratory reference frame.

Now, to proceed we couple the angular momentum of the target
molecule, }, to the orbital angular momentum of the incident electron,

% to form the total angular momentum vector,

—

T=-j?+f. (4)

The projection of J on our space~fixed z~axis is related to m_i and
m, by
M3=m-+mi (5)

Jd

and to the guantum number J by the familiar relation

My=-T,-T+e,.. T-1,T. ®
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The total angular momentum 3 is a constant of the motion of the system
(electron + molecule), so we can find cigenfunctions of the Hamiltonian
which are also eigenfunctions of J“ and Jz. Suppose we let (jf)

denote the initial state of the system. Then the coupled angular

functions are defined by

272022 ChuTmm IHOYS(D, o

and we can expand the syste:r wavefunction as

i ) TJM
WP " Rr Z ‘29 ?é’ ,_Q,S(r R) (8)

where we have introduced an additional subscript n to connote the

electronic state of the target.

The summation in Eq. (7) is restricted by the usual conditions
on the Clebsch-Gordan coefficients. The summation in Eq. (8) contains
a finite number of angular terms. Herc we shall limir ourselves to

the sigma target states and, in particular, to the ground state.

If we now substitute these expansions into the Schroedinger
Equation and carry out the usual algebraic manipulations, we obtain
a set of coupled equations of the form

[_gj AU, ] e .
(2)

dn " Tt ja €

= S<Ju'l\ll-~.a"> Ui, ()

e U AN b




where exchange has been neglected (see reference (3) of Chapter &4 for
the details of inclusion of exchange). The channel wavenumber

appearing in Eq. (9) is defined by

k> N (10)
ve . = .. L .

where Ej is the energy of the target molecule In rotational state j.

The matrix element appearing in (9) is simply
'Y byi ’ Juy * SMJ A
<j4 le"ﬂ’>=.(}yj.,. y g dF dRr , an

where ¥ is the usual averaged static potential energy for the ground
state (see the elaborate discussions of Chapter 3).

We saw in the text discussion of this material that the matrix

element V is easily expanded in Legendre polynomials, viz.,

©C
V() = 2/ V3 (r) B (ca ©), 12)
aA=0

with vA(r) given by Eq. (3.40). Then the full matrix elements ap-

pearing in Eq. (9) is given by

/

NS, (e = 2

.’" . :u ”

£ Gy TV (6, (13)

where the coefficients EA (called Percival-Seaton coefficients) are
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given by

5GuGus T = (1Y () [(gred

@ (25 +2)(20'+1)(21 (P3% Cledm;00)C(yya; 000 aw
@ W(jut'j"4"; T )

with WG &' 3" 23 J A) the familiar (sic) Racah coefficient.

As we mentioned in Chapter 9, our initial e--CO2 studies were
carriad out in the laboratory frame. Convergence difficulties due
to the enormous number of partial waves required to converge the cross
secticns forced us to shift to the body-frame as described in Chapter
6. Typical behavior of the individual cross sections as the numer of
rotational states is increased is shown in Table 1, which pertains
to an incident energy of 0.01 Ryd. with X = 0,2,4, and 6 included in
the expansion of Eq. (32). Only short-range interactiomns are taken
into account in these calculations. We should point out that for
Amax % 8. the transformation procedure described in section 6.6

must be used to overcome numerical difficulties analogous to those

encountered in the body-frame analysis.
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5%

4

4
102.4356
0.0098

1.6¢{-8)

9 5
88.0599 85.7441
0.0058 0.0051
1.2(-8) 1.2(-8)

TABLE 1

85.1582
0.0050

1.1(-8)

2
Cross sectiens in ag for e-C02 seattering in the laboratory

frame at 0,01 Ryd. Only J=0 is shoun.

interactions for v = 0, 2, &4, 6 are included.

Short-range static
N is the

number of states and §' is the final rotational state.

Excitalion is from an

3.

initial state

§=0toe final state
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