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Abstract

Theory of Low-Energy Electron-Molecule Collision Physics in the

Coupled-Channel Method and Application to e-CO_ Scattering

Michael A. Morrison

A theory of electron-molecule scattering based on the fixed-

nuclei approximation in a body-fixed reference frame is formulated

and applied to e-CO™ collisions in the energy range from 0.07

to 10.0 eV. The procedure used is a single-center coupled-channel

method which incorporates a highly accurate static interaction poten-

tial, an approximate local exchange potential, and an induced

polarization potential. Coupled equations are solved by a modifi-

cation of the integral equations algorithm; several partial waves are

required in the region of space near the nuclei, and a transformation

procedure is developed to handle the consequent numerical problems,

The potential energy is converged by separating electronic and

nuclear contributions in a Legendre-polynomial expansion and including

a large number of the latter. Formulas are derived for total elastic,

differential, momentum transfer, and rotational excitation cross

sections. The Born and Asymptotic Decoupling approximations are

derived and discussed in the context of comparison with the coupled-

channel cross sections. Both are found to be unsatisfactory in the

energy range under consideration. An extensive discussion of the

technical aspects of calculations for electron collisions with

highly non-spherical targets is presented, including detailed

convergence studies and a discussion of various numerical difficulties.

The application to e-C0? scattering produces converged results

in good agreement with observed cross sections. Various aspects of



the physics of this collision are discussed, including the 3.8 eV

shape resonance, which is found to possess both p and f character,

and the anomalously large low-energy momentun. transfer cross sections,

which are found to be due to Z symmetry. Comparison with static

and static-exchange approximations reveal that neither predicts

the correct physical properties of the collision; accurate results

are obtained only in the static-exchange-with-|<olari.2ation approxi-

mation.



Chapter 1.

"...Where do you want me to begin?"
"Begin at the beginning," suggested
Wimsey," go on till you get to the
end and then stop."

-Lord Peter Wimsey
in The Nine Tailors
(Dorothy L. Sayers)

One sometimes hears pundits declaim that atomic and molecular

physics are "dead fields" in which "ther . io unsolved problems."

Such statements are patently fallacious, as attested by the not

inconciderable current journal and conference activity in this branch

of physics. What is true is that the foundations of this field

have been laid (by Schroedinger and others of the 1930 crowd of

theoreists). This contrasts, for example, with elemental/ particle

physics, where no one is quite sure how to proceed.

However, all this means for the atomic and molecular theorist is

that he can proceed with confidence to tackle the wide variety of

fundamental and practical problems in his field. The field is

conventionally (and incorrectly) subdivided into structure problems

(e.g., determination of molecular wavefunctions, calculation of

atomic spectra) and dynamics problems (e.g., electron-atom collisions,

heavy particle scattering). Most theorists ultimately acquire some

expertise in both areas, and in point of fact a variety of current



approaches to electron scattering (e.g., pseudc-bound-state, R-matrix)

blur the distinction to the extent that it becomes virtually meaning-

less except to suggest orientation.

One group of problems of intense recent interest involve

electron-molecule collisions. Such problems are Intrinsically more

difficult than thair counterparts in electron-atom scattering since

the molecule, being multi-nuclear, is certainly not spherically

symmetric (although some understandably popular targets such as K~

and CO are atypically spherical to a certain approximation). Hence

it is not currently possible to predict electron-molecule cross

sections with the precision characteristic of the best electron-atom

research.

We have been working in this sub-field for several years and have

developed an approach to electron-molecule scattering which is in

line with current research in the field. This technique, called

pseudo-bound-state (PBS) has been discussed at length elsewhere *

(together with an extensive survey of electron-molecule theory up to

(2)
1974) and published in the Physical Review (see Appendix 1 ) . We

shall say a bit about this work and other related investigations we

have pursued in the conclusion to this work (Chapter 9 ) .

Partly as a consequence of our PBS studies, we became interested

in the problem of electron scattering from large molecules, systems of

practical interest such as CQ~, N.O, H~0, and so forth. Theoretical

studies of such systems to date have typically employed highly

approximate methods such as the Born Approximation or the Distorted-

Wave Method. The reliability of such techniques for strongly

anisotropic interaction potentials is dubious at best. Yet,



particularly in light of the recent interest in e-bean initiated gas

lasers, such collisions are of considerable importance. At a more

fundamental level, it was not rlear at the time this research was

initiated how one went about a theoretical study of such systems;

neither the more well-established approaches (such as close-coupling)

2
nor the new and comparatively untried I- -variational techniques to

which ve alluded earlier had been applied to problems of this

magni tude.

Therefore we undertook to develop a computational procedure for

handling electron collisions with large molecules. We decided to

base our work on the eigenfunction expansion method (cf., close-

coupling) and to try to calculate the highly important static

potential energy of interaction (electron with molecular target) very

accurately. The final scheme, which is discussed in Chapters 3-7,

incorporates exchange (via an approximate local interaction term)

and induced polarization effects. It can be (and has been) used to

determine total elastic, momentum transfer, differential, and

rotational excitation cross sections within the context of certain

approximations to be considered below. The solution of the scattering

equations is carried out by means of the standard integral equations

technique. However, extensive modifications and extensions of the

conventional procedure are required to treat highly anisotropic

interactions.

As a test case, we selected electron-carbon dioxide scattering.

The reasons for this were multiple. C0« in its ground electronic state

is linear and has high symmetry yut is extremely large (or appears so

to a theorist) being about ha long. Thus, the potential energy of



interaction of an electron with C0_ is sufficiently strong and non-

spherical to severely test the theory. Further, this is a molecule of

considerable practical interest. It is the most important constituent

(3)
of the atmospheres uf Mars and Venus. Closer to home, CCL is the

basis of one of the most successful continuous high-power lasers (about

which we'll have more to say in Chapter 2). To add to the lure of

CCL as a target, there existed an intriguing anomaly in the observed

low-energy momentum transfer cross section for e-CO~ scattering. Thus

C0_ was irresistible.

The present work presents the theory of low-energy electron-

molecule scattering together with all the computational and numerical

detail necessary to apply said theory. Throughout we use the e-CO_

system for illustrative purposes, ultimately using our theory to try

to explain the physics of this collision.

We thus commence our explorations in Chapter 2 by presenting

(hopefully) sufficient background on the CO- molecule that the

sequel will be comprehensible to readers who have not spent a couple

of years with this target. This is a short chapter.

The theory proper begins in Chapter 3, where we present a detailed

analysis of the static potential as required in the scattering problem.

This potential characterizes the electrostatic (Coulomb) forces between

the scattering electron and the otherwise isolated target molecule

towards which said electron is plummeting. A second type of inter-

action is taken up in Chapter 4, where we turn to the elusive subject

of electron exchange. After pointing out why it is all bu^ impossible

to take exchange into account rigorously, we show how to do it non-

rigorously via a local (but energy-dependent) potential energy term.



Some effort is made at justifying this admittedly approximate exchange

potential, in Chapter 5 we take a breather from the rather lengthy

discourses of Chapters 3 and 4 to find out how to incorporate into our

theory the distortion ot the molecule due to the incident electron.

Thus in three chapteis we have aispensed with the potential.

We come then to Chapter 6, wherein the reader sees how to use tht

potential, a computer, and several tricks to solve the scattering

equations. These (alas) coupled equations are derived, the approxi-

mations inherent in them are addressed, the numerical procedure used

to solve them is discussed in detail, and a whole host of numerical

problems are put to death one-by-one. Having successfully solved the

scattering equations, we proceed in Chapter 7 to derive formulae for

the extraction of a variety of cross sections from the asymptotic

form of the scattering wave function. We also derive a couple of

approximations which will be used in our study of the e-COj problem-

Chapter 8 contains a very detailed discussion (well larded with

examples) of the technical aspects of electron-big molecule scattering

together with our results and conclusions regarding e-CO_ scattering

in the energy range from 0.07 eV to 10.0 eV. This is followed in

Chapter 9 with some final remarks concerning possible future directions

for research in electron-molecule physics and a few other matters.

(4)Summarizing, we have found the theory here presented to be

successful in its application to the e-C0_ problem. It leads to

reliable total and momentum transfer cross sections, the latter com-

paring favorably with experiment, provides a theoretical explanation

of the aforementioned observed anomaly, enables us to gain insight

into the nature of another observed feature of e-CO- collisions (a



resonance at 3.8 eV), and permits some understanding of the nature

of the scattering in various energy regimes. On the debit side, it is

based on a number of approximations, and in particular on a rather

severe approximation in the treatment of exchange, it is not purely

ab-initio, having one parameter (in the definition of the induced

polarization potential) which must be chosen in a somewhat ad hoc

fashion, and it is not cheap. We feel, however, that these are not

unreasonable considering the rather formidable nature of the system

we propose to attack.



Chapter 2. A Brief Background Look at the CO. Molecule

The world is full of obvious things
which nobody by any chance ever
observes.

-Sherlock Holmes
in The Hound of the
Baskervilles
(Arthur Conan Doyle)

§2.1 Introduction

As we mentioned in Chapter 1, the C0_ molecule in electron

collisions is the example to which we shall apply the electron-

molecule scattering theory which is developed in Chapters 3-7.

Thus it is appropriate to pause briefly before launching into

our theoretical development to get acquainted with C0_. Hence

this chapter. In addition to pointing out important and/or

interesting properties of CO- and its behavior in electron

collisions, we here draw together and list in a hopefully

systematic fashion the huge number of references on this

system.

A casual overview of CO- in isolation is offered in section

2.2. Next, in §2.3, we survey the enormous amount of experimental

(and very small amount of theoretical) work on e-CO. scattering

which has been done to date. We close in §2.4 with a brief

mention of the all-important application of CO- to laser physics.



§2.2 Properties of the Isolated C02 Molecule. '

Carbon dioxide is a 22-eleetron triatomic molecule. In its

ground electronic and vibrational state it is linear with the

nuclear configuration* 0-C-O, the oxyger-carbon separation being

about 2.19 a . Thus the 0-0 separation is 4.A a . This is a veryo o

large molecule to an electron-molecule physicist, a fact that will

return to haunt us in the sequel. The molecule belongs to the

(2)
point group' D̂ . and has a center of symmetry. Therefore it

is quite similar in its behavior under various symmetry operations

(3)
to a homonuclear diatomic molecule. The orbital occupancy**

in this state is (see Chapter 3 and especially Table 3.1)

xh+: la2 la2 2a2 3a2 2a2 4c2 3a2 lir4
 ITT4

g u g g g u g u u g

For Z states, such as the ground state of C0?, the odd rotational

levels ( i . e . , odd j ) do not appear in the spectrum. The moment of

-40 2
intertia of CO- is 71.1 * 10 gm-cm , which yields (via the

2 —8
familiar formula I = 2m r ) a CO bond distance of 1.157 x 10

O CO
2 -1

cm . The resultant rotational constant is B_n = 0.3937 cm .CO2
-1 -4

Using the fact that 1 cm = 1.2398 x 10 eV, we find that in atomic

units this constant is 3rn = 1.795 x 10 au. This, in turn, suggests

co2

that the rotational level spacing, at least for low-lying states of

C0_, is quite small. Using the fact that the rotational energy

in the j state is
*These conclusions are drawn from inspection of the observed Raman
spectrum of C0_.

**Also called the electronic configuration.

10



E, = Kc Bco

we find that for low j values, the level spacing is of the order

-4
of 10 eV. This is at least two orders of magnitude smaller than

the scattering energies of interest in our application,* which

range from 0.07 eV to 10.0 eV.

The vibrational level spacing, by contrast, is quite large.

CO- has three vibrational modes: the nOO symmetric stretch

mode, the On 0 bending mode, and the U0n asymmetric stretch mode.

These are illustrated with dumbell models in Figure 2.1. The bending

mode is two-fold degenerate, i.e., there exist two normal vibrations

which have the same frequency, V. in the figure. (The superscript

H on the bending mode notation labels the particular degenerate

mode under consideration.) This fact is consistent with the observa-

tion that a 1inear molecule has 3N-5 degrees of freedom and hence

3N-5 normal modes of vibration. (For CO., N « 3.) Moreover, we

expect CO, to have degenerate as well as non-degenerate normal

vibrations, since it possesses one more-than-two-fold axis of

symmetry.

For completeness, we here list the sytrsnetry elements of D .

and illustrate them for CO. in Figure 2.2. We have

*This happy fact will help «s when we get around to making certain
approximations in form la ting the collision problem; sees Chapter 6,
especially section 6.2.

11
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Figure 2.1

Vibrational normal modes of the CO- molecule together with the species
corresponding to each mode. The bending mode is two-fold degenerate.
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I

Figure 2.2

The symmetry elements of the CO- molecule in its linear nuclear con-
figuration. The elements are discussed in the text.
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1). an infinite-fold axis of symmetry c^

2). an infinite number of C, symmetry axes perpendicular* to C^;

3). an infinite number of vertical reflection planes a passing

through C^;

4). one horizontal reflection plane cf, perpendicular to C^.

There are also symmetry elements which follow from these, e.g.,

the center of symmetry and associated inversion operator <t, which defines

the symmetry of a molecular state as either gerade or ungrade. Of

course, the potential energy is invariant with respect to all symmetry

operations permitted by the point group of the molecule.

The vibrational energy level diagram for the lowest several states

is shown in Figure 2.3. The average energy spacing for the various

are<1>

symmetric stretch (nOO) 0.17 eV

bending (On 0) 0.08 eV

asymmetric stretch (OOn) 0.29 eV

Two of the modes; the bending and asymmecric stretch, are optically

active and have associated dipole moments. For example, in the

bent nuclear configuration, population analysis shows a polari-

zation of the electrons toward the oxygen atoms, leading to a

dipole moment directed from Che oxygens toward the carbon atom.

Such observations are important, for in the harmonic approximation,

which has been shown to be adequate for reproducing fundamentals

and lower intcrbaml transitions, the intensity of the infrared

14
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Figure 2.3

The lowest several vibrational energy levels for the CO- molecule.
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active* bands is proportional to the dipole moment derivative

for the vibration under consideration.

One especially interesting feature of the vibrational structure

of CO, is the Fermi resonance. ' As Figure 2.3 shows, the 020 and

100 levels have nearly the same energy. This accident leads to a

perturbation of the energy levels which pushes them apart.** Thus

the 100 level is raised and the 02 0 lowered.

Our interest in the next several chapters is focused on the

it deal

.(9-19)

electronic states, in particular the X £ state. A great deal of

work on the structure theory of CO- has been carried out

from the early work of Mullikan arA others to the recent highly

accurate computations of McLean and Yoshimine, which we discuss in

considerable detail in section 3.2. In addition, there has been

(20-24)
some important work done on the CO. ion, to which we return

in section 2.3 when we look at resonances in e-CO_ scattering.

§2.3. \ Quick Survey of Electron-C02 Scattering

An enormous amount of experimental work on e-C0? scattering

(29-50)
has been carried out to date, beginning with the 1930

*By an infrared active vibration we mean simply that a change in
the dipole moment leads to emission or absorption of radiation at
the fundamentals of the normal frequencies; these appear in the
infrared. Symmetric molecules may have infrared inactive vibrations.

**0nly the (£ ) 02 0 level can perturb the 100 level since it is £ ,
g 8

and only vibrational levels of the same species (irreducible

representation to group theory fans) can perturb one another.

16



research of Ramsauer and Kollath and continuing to recent highly

accurate swarm experiments by Phelps and collaborators. Both

total and momentum transfer cross sections for elastic and

inelastic scattering are available, but no extensive studies of

differential cross sections have been published as of this

writing.

In all of this work, the results that are of especial

interest to us are (a) a resonance which has been observed at

3.8 eV; (b) momentum transfer cross sections at energies below

about 0.1 eV.

(37)
Boness and Schultz, using a crossed-beam technique, observed

resonance behavior in vibrational excitation of CO- by electron

impact and correctly ascribed the 3.8 eV peak to a compound state

of COT. This resonance has been further studied experimentally

by other authors ' * and has received some theoretical

(20 22)
attention. ' As a result of the latter, it was tentatively

identified as a shape resonance in II symmetry. We have studied

Che 3.8 eV resonance in considerable detail. Our conclusions appear

in Chapter 8 of the present work.

The low energy momentum transfer cross sections of Phelps

(49)
et al. are dear to our heart, since they initially motivated

the choice of CO- as a target for our study. The key result and

source of considerable theoretical and practical interest is shown

in Figure 2.4, where we see that a at energies below 0.1 eV
mon!

is anomalously larj'tf, larger, in fact, than a for some polar
mom

molecules!

17
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Figure 2.4

Observed momentum transfer cross sections for electron scattering from
C02, N»0 (polar) and N2 (non-polar). Souces: C0? [R. D. Hake and A.
V. Phelps, Phys. Rev. 158, 70 (1967)], N O [J. L7 Pack, R. E. Voshall,
and A. V. Phelps, Phys. Rev. JL2_7, 2084 (1962)], N_ [A. G. Engelhardt,
A. V. Phelps, and C. G. Risk, Phys. Rev. 135, A1566 (1964)].
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Some early work which suggested that this was the case was

carried out by Tice and Kivelson, ' who used cyclotron resonance

techniques to carry out experimental studies of low energy electron

molecule scattering. These authors investigated linewidths and fit

their cross sections semi-empirically to the form

Their momentum transfer cross sections are anomalously large at

low energy, and Tice and Kivelson posit an interesting "adiabatic"

model of the collision process based on the transient dipole

moment which obtains when the molecule bends. Unfortunately,

this model does not work at all well, predicting cross sections

about 16 times too large. The present author has studied this

picture of the collision in another context and found it to be

(52)
unsatisfactory.

The experiments of Phelps et al., wnich produce the data of

Figure 2.4, are swarm experiments* based on drift velocity measure-

ments. Extraction of cross sections from drift velocities and

diffusion coefficients is a highly involved process entailing

solution of the Boltzmanr equation. To suggest the highly peculiar

nature of the observed momentum transfer cross sections, we present

in Table 2.1a list of various atoms and molecules in order of

*Chapter 2 of reference (54), contains all the author considers any
theoretical physics graduate student should say about swarm exper-
ments. See reference (49) for more detail.

19



Atoms Molecules Order of Magnitude

Ne id16

0

Kr

°2
He

Ar

H
2

CO

NO

ID'15

Xe ID"14

co2

Cs 10~13

NH3

N2°

Table 2.1

Measured momentum transfer cross sections at 'v 0.1 eV in increas-
ing order (units are cm2). From reference (53).

20



increasing O at «->(). 1 eV. It is also interesting to note the
° mom

analogies between observed e-CO. scattering and observed electron-

rare gas scattering. See, for example, the e-Ar cross sections

of Figure 2.5. We shall have much more to say on this matter in

the analysis of our results (Chapter 8).

Before leaving the subject of momentum transfer cross sections,

consider for a moment the definition

> (2.3)
" " " " <LJt.

o o

where do/dft is the differential cross section. The momentum transfer

cross section is finite, in general, and the factor (l-cos0), which

goes to zero at small angles, causes forward scattering to be de-

emphasized in 0 . This is in contrast to the total cross section,
mom
•2TT ir

o o

which equally weights all angles in the integrand. However, unless

there is substantial scattering in either the forward or backward

direction, 0 - a „.
mom tot

The momentum transfer cross section is of practical interest,

for example, because it aids in the study of the transport properties

of gases, enabling one to compute, say, transport collision fre-

quencies by appropriately averaging the momentum transport cross

sections over the energy distribution of the electrons, which might

be taken to be Maxwellian, e.g., the distribution function might

be ( 5 6 )

21
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Figure 2.5

Total cross sections for e-Ar scattering in a static-exchange-with
polarization model. Source: D. G. Thompson, Proc. Roy. Soc. (London)
A 294, 160 (1966).



where V. is Boltzmann's constant.
i

§2.4. Conclusion: The C0_ Laser

We would be remiss in closing out this overview without saying

a word or two about the importance of CO- to laser physics.

(59)
There does exist a pure C0_ laser, which is based on the fact

that population inversion due to electron impact is favored

at incident energies near 1 eV. The dominant energy loss mechanism

is excitation of the 001 level, cross sections for di_".ay to other

levels being negligible at this energy (see Figure 2.6a).

Much more efficient is the CO2~N2 (and CO2-N2-He) laser

(58)
system. In this laser, N_ acts as a "carrier of excitation,"

the design exploiting the near degeneracy of the v = 1 level of

N, at 2331 cm"1 and the 001 level of C0_ at 2349 cm"1 (see

Figure 2.6b). The active laser transitions are then 001 ̂  02 0

at 960.8 cm" and 001 •> 100 at 1063.6 cm" . The drain from 010 to

the ground state is comparatively slow.

Momentum transfer cross sections as well as cross sections for

vibrational excitation of, e.g., the 001 mode are thus of considerable

23
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Figure 2.6

(a). Vlbrational excitation cross sections observed in e-CO. collisions.
Source: M. J. W. Boness and G. J. Schultz, Phys, Rev. Lett. 21.*
(1968). (b). The C02 - N2 laser.

24



t*» esfnerfrK-nt/il laser physicists.* For thin rc-.ison, the

to CO, targets* has -,% special .-eppe.it to us, .is it addresses

p rob less? of fun4a»cncAl sat! practical teporsancct. In the next chapter,

we begin huilc'lng a theoretical £trncrore for the ana lysis of such

-.•«!listens, starting (where else?) with the Sehroedlnger equation.

*We "gratefully acknowledge ttweful discusnious with Drs. W. Lcland
and A. M. Locke it of the Los Alfimos Scientific Laboratory on these
mutters.
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Chapter 3. The Static e-CO2 Interaction Potential

No, there are still difficulties, but
the outline of the plot is clear and
will develop itself more clearly as
ve proceed.

-M. Rozer to Lord Peter Wimsey
in the Nine Tailors
(Dorothy L. Sayers)

§3.1 Introduction; What the Static Potential is All About

In the usual time-independent formulation of quantum mechanics,

we solve the omnipresent Schroedinger eigenvalue equation,

where the non-relativistic Hamiltonian describing the system is the

sum of kinetic and potential energy operators H ~ T + V. For electron-

target collisions, we conveniently write H=f/ „ + T , +

° target electron

V. , where H describes the target system (e.g., atom, molecule,
xnt target

ion), T , is the kinetic energy operator for the electron,*
electron

1 2
- -j-V , and V. is the electron-target interaction potential energy.

All these operators are fairly easy to write down even for a mole-

cular target. ' We must here focus on V^ = V (r, r.; R ),

where we let r denote the (spatial) coordinate of the scattering

*Unless otherwise indicated, atomic units are used throughout this

chapter.
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electron, r. the set of coordinates of the target electrons, and Ri ct

the set of nuclear coordinates. We shall take V to describe the

electrostatic interactions due to Coulomb forces between the scattering

electron and the undistorted molecular target. Thus, for a molecule,

we have

where the first summation runs over the nuclei of charge Z and the

second over the molecular electrons. (A common origin of coordinates

is assumed.) Additional interactions (exchange and induced polariza-

tion) will be addressed in Chapters 4 and 5.

In the solution of our body-frame fixed-nucleus coupled-channel

equations,*

[j? -
we need the static potential energy averaged over the ground electronic

state wavefunction** of C0_ and integrated over the spherical harmonics

Y»i (r) and Y-(r). (Recall that m, corresponding to the projection of

the scattering electron's orbital angular momentum, is a good quantum

A detailed derivation of these equations by the author can be found

in Chapter 4 of reference (2); they will be briefly treated in Chapter

6 of this work.

**In a more general close-coupling expansion including several elec-
tronic states, we also need other matrix elements of V, such as those
between the ground and excited states.
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number for the problem under consideration.) Thus, if ue denote the

averaged static potential, which we'll call the inner molecular matrix

element (TOME), by

then we require

w > ( 3 5 )

The IMME of Eq. (3.4) is also used in laboratory-frame formulations*

of the close-coupling method.

In this chapter, we derive and calculate V(r) and vj., and dis-

cuss their properties. The electronic wavefunction for C0_ in the

ground state is the subject of §3.2, and the expansion of the charge

density is treated in §3.3. How the coefficients are used to calcu-

late V(r), the expansion of this quantity in Legendre polynomials, and

derivation of an expression for Vj?£t(r) a r e topics addressed in

sections 3.4 and 3.5. The calculated static expansion coefficients

v,(r) are presented in §3.6 and some discussion of the physics inherent

in them follows. In §3.7, we chat briefly about the effective poten-

tial, and, finally, in §3.8 try to put COg into some perspective by

comparing its electron interaction potential energy with that of a

couple of more familiar systems.

*Although this approach was abandoned rather early in this research

for reasons to be discussed in Chapter 8 , a short description of it

appears (for completeness sake) in Appendix 2.
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S3.2 The Molecular Target Electronic Wavefunction for Ground-State C0 2

An essential first step in the calculation of the averaged poten-

tial energy V(r) is selection of an electronic wavefunction for CO- in

the ground state linear configuration;* that is, we need ¥, ^ (r ]&. )

in a form amenable to manipulation in the calculation of V(r) and

subsequent quantities.

Fortunately, highly accurate near-Hartree-Fock wavefunctions for

C0_ in the ground state at the equilibrium C-0 separation R «»

2.19440 a have been calculated by A. D. McLean and M. Yoshimine '

and are available in tabular form. As we chose to adopt these

functions, we should look briefly at how they are calculated and at

their quality.

The x^avefunctions are obtained within the context of self-consis-

tent-field molecular orbital theory in an incarnation referred to

( 8}
as the expansion formulation. All this really means is that the

state (X I here) is represented by a configuration*- made up of SCF

(9)
molecular orbitals doubly-occupied with electrons of anti-parallel

spins. The molecular orbitals, in turn, are constructed from an SCF

atomic basis set of double-zeta quality (see below) augmented to in-

clude polarization functions. The atomic basis is built from dementi's

Hartree-Fock atomic basis in a fairly complicated manner described

*A general discussion of molecular structure theory by the author appears
in Chapter 5 of reference (2). See also Chapters IV and V of Schaeffer's
text.(4)

**We are using the word "configuration" in the standard though perplexing

quantum-chemical sense as, in general, a symmetry-adapted linear combi-

nation of Slater determinants. See reference (4), Chapter I, and try not

to confuse this word with an electron configuration as discussed in

Chapter 2, which quantum chemists call an orbital occupancy. The field

is not noted for internal consistency.
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in detail in reference (5). On top of this, the rigid-nucleus

Born-Oppenheinter approximation is employed i.e., the .notions of

the electrons and the nuclei are treated separately and R is frozen
' o-c

at some pre-determined value.

To translate, the double-zeta (DZ) basis set * contains two

functions (of the same symmetry type) for each occupied atomic orbital

in the separated-atosts limit. Thus, the DZ basis set is twice the

size of the usual minimum basis set of molecular calculations.

Each atomic basis function is a symmetrized linear combination of

normalized Slater-type orbitals (STO) of the form

J
V -J -^fhzr ir4-*'* Y.»*» / * \ (3.6)

where k denotes the atomic center with respect to which r. is defined

and C is a non-linear parameter which is chosen to minimize the
P

separated-atom energies. Linear combinations of the x (called

symmetrized basis functions) are chosen to reflect the fact that each

MO belongs to one of the irreducible representations of the point
(13)

group of the target in the problem. Thus for CO, we have a ,<X .

ir ,ir , etc. MO's which are built of basis functions of the general

form X - X i » where X a n d X » a r e centered on symmetrically equivalent

nuclei (the two oxygens, for example) and have the same quantum

numbers n, Jt, and m, and orbital exponents C " ?_•• (Obviously this

problem does not arise for MO's centered on the carbon atom.) A typical

wavefunction for a closed-shell system composed of N occupied orbitals
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(14)
electrons)" is just the usual Slater determinant

where the <fs. are the aforementioned appropriately symmetrized ortho-

normal KO's.

Calculations were also carried Gut which supplement the DZ basis

set with higher-?, atomic basis functions chosen to represent the

polarization of the atomic electrons in the molecule and optimized to

minimize the total molecular energy. It is usually the case that

the most important such functions are of symmetry types with angular

momentum quantum number £ corresponding to the lowest unoccupied

atomic orbital in the separated-atoms limit. Thus, for CO- they are

d-functions ( 4 = 2 ) . We employ these "double-zeta plus polarization"

(DZP) functions.** The resulting wavefunctioii has an SCF energy of

-187.7037 hartrees and an electronic energy of -246.0339 hartrees.

This compares to the "close-to-Hartree-Fock" SCF energy of -187.7228

hartrees.

*The molecular orbit als with m>0 (e.g., TT,A,...) are, of course,

doubly degenerate. For example, we have 7r and 7r orbitals
\ Uy

each of which is doubly occupied.

**McLean and Yoshiraine's final basis set consists of (5s 4p Id If)
functions centered on each nucleus. The f functions further account
for polarization but are an order of magnitude less important than
are the d functions. *••*'
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Notice that electron correlation is not included in this calculation;

such could be accomplished via a configuration interaction calculation

if desired (and monetarily feasible!). The SCF approximation breaks down

(17)
quite stunningly for most molecules as they dissociate (e.g., as

RQ_ •* °°). Thus, the SCF potential energy curves predict unreliable

electronic energy separations. For some systems the situation is even

more serious (e.g., SCF theory predicts the wrong sign of the dipole

moment for CO!). But we probably need not worry, since our work is done

at the equilibrium separation and ground-state CO- is non-polar.

There is no point in reproducing the expansion coefficients and

exponents here; however, the orbital energies, shown in Table 3.1, are

of some interest. Also included in this table are the energies of

the lowest unoccupied orbital of each symmetry type. Notice that lCT ,

/-I O \

an anti-bonding (or "nonbonding") orbital, lies slightly lower in

energy than does the 1(7 bonding orbital. It is also important to

note that the lowest unoccupied orbital, 5a , lies a whopping 0.22 au

(2.99 eV) above the zero of energy. This will take on an ominous

significance in the sequel.

The question remains: How "good" is the C0» wavefunction we have

selected? One way to tell is to compare the expectation values of

various operators with observed quantities. An "energy criterion" is

provided by the dissociation energy, defined by McLean and Yoshiraine

as

D = "21 £., (D^ - E" , (D^py, O.8)
e 4 a W Mo1 }

where E (DZ) is the appropriate separated-atom energy in the
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Orbital Energy_(harferj

10 -20.64862
u

la -20.64358
g

2a -11.46382
g

3a -1.53037
g

2a -1.47832
u

4a -0.80052
g

3a -0.74399
u

ITT -0.71315
u

ITT -0.54382
g

5a 0.21691
g

27T 0.22606
u

4a 0.81091
u

2TT 1.34995
g

Table 3.1

Close-to-Hartree-Fock energies for molecular

orbitals in C ^ : occupied and lowest un-

occupied of each symmetry. (From reference

6.) The total electronic energy of CO2(X
1Zg)

is -246.0339 hartrees.
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double-zeta approximation. For C0?, McLean and Yoshimine report

D = 11.12 eV compared with the observed ' value of D = 16.85 eV.
e e

These authors report their molecular-orbital expansion coefficients

as converged to four decimal places. Further discussion may be found

in reference (6).

As one additional test, we extract the quadrupole moment* of CO.

from our v_(r) calculated using the McLean and Yoshimine X Z wave-

2
function and obtain q = - 3.8598 ea . In summary, we feel that the

X Z wavefunction employed in this calculation is probably at least

as accurate as other approximations to be discussed below.

There do exist a few other C0_ wavefunctions in the literature

which we could have used. For example, Snyder and Basch in their

extremely useful tabulation of molecular wavefunctions, report

Hartree-Fock wavefunctions based on a double-zeta Gaussian basis set

for C0_. However, their calculations do not include polarization

orbitals, were carried out only at the equilibrium 0-C separation, and

yield a total energy of -187.5377 au, significantly above that of the

McLean and Yoshimine wavefunction.

§3.3 Expansion of the C0? Charge Distribution

Given the normalized electronic wavefunction for C0_ in the

desired state, we can easily form the probability distribution in the
*

usual way as ¥, +Q,2,... ,N)V^ +(1,2,.. .N) . A quantity which is
2 %

*Further discussion of q and its extraction appears in sections 3.5
and 3.8.
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easier to think about (and look at) is the charge distribution,

defined as*

where we integrate over the spatial and spin coordinates of all but

one of the target electrons. As its name implies, this function

describes the distribution in space of the electronic charge of the

molecule. It is independent of <j>, the polar angular coordinate, be-

cause CCL in the linear configuration has axial symmetry. The proba-

2
bility of finding an electron in a volume element dv = r dr sin8 d6 is

simply p(r,8)dv.

A useful expression for p(r,6) in the case at hand, where

ip (1,...,N) is represented as a (single configuration) Slater deter-

minant, can be obtained by writing the charge density as an expansion

in Legendre polynomials. First notice that by substituting the form

of Eq. (3.7) for T, + in Eq. (3.9), we obtain

Z Nj|«fj(*>|* (3.10)

where N. is the occupation number of the j molecular orbital (e.g.,

N. = 2 for a a orbital) and the sum runs over the M occupied tnole-
3 g

cular orbitals (M = 9 for CO-). For example, for H_(X Z o ) , we have

p(r,6) = 2|<}>la (r) | . Of course, the charge density must satisfy the

*This function is also variously known in chemistry circles as the

"one-electron density function" and the "probability density." Care

must be exercised in using the latter phrase, as different scientists

sometimes have different definitions.
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relation

Sr = N , (3.11)

where N, the number of electrons, is 22 for C0~.

It is now no problem to expand p(r,0) as

(21)
where P-.(cos6) is an ordinary Legendre polynomial and the prime

A

reminds us that only even-X coefficients are non-zero. This is true

because the point group of the electronic state of CO- under considera-

tion contains a horizontal reflection plane passing through the

carbon nucleus (see Chapter 2).

Using the orthonormality relationship of the Legendre polynomials,

V * a i *i O

where x = cos9, we find

IT

©

This is the expression we use to evaluate the necessary expansion

coefficients.

In passing we should note that the McLean and Yoshimine molecular

orbitals are nucleus-centered, and that therefore we must convert

them to a common origin, which we handily take to be the carbon nucleus.

The coordinate transformations represent a trivial application of
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high school plane trigonometry. However, nothing is too trivial for a

graduate student, so we herewith present the relevant formulae with

reference to Figure 3.1 for the obvious definitions; to convert

functions in r.. and r to spherical coordinates in r_, use

r* = f z Z + yZ + 2 r h <**- &z. C3'15a)

f* = {£ + tZ - 1r b C*<L &^ (3.15b)

TI ^r** ~ r3* " *" ̂^ (3.16a)
3

C**^, s
2 f L 1*1 +0 - ^ X ' . (3.16b)

A computer program* was written to evaluate the integral in Eq.

(22)
(3.14) using Gaussian quadrature. For small values of X (e.g.,

^ & 10), a 24-point quadrature gives results converged to <1%

(compared with a 32-point quadrature) over the range of r-values

required. For higher X(10 <, X £,30)> a 64-point quadrature was

necessary. All values of a, (r) used in this work are converged to

< 1%.

*Called, for no particular reason, EXPCD. Part of the logic of
this code was taken from a similar code, ALAM, written by L. Collins
of the Atomic and Molecular Theory group at Rice University.
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C

Figure 3.1

The geometry of the CO, molecule. The coordinates shown are related
by equations in the. text.
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Beyond about 5.0a , the a,(r) can be fit to an exponential
O A

form, which obviates the need for further quadrature. Thus we fit to

_©*» r

using a two-point fit. We find

(3.18a)

where y. and y. are the values of a.(r) at adjacent points r and r-.
X L A ± Z

By far the most expensive part of the calculation of the expan-

sion coefficients a^(r) is the evaluation of p(r,9) at the required

8-mesh, determined by the number of points required to accurately

spline fit a, (r) in calculation of v,(r) [see §3.5 below]. Fortunately

p(r,9) need only be calculated once for a given mesh, and a code to do

this* was prepared and used. A 64-point 0-mesh and 131-point r-mesh

calculation of p(r,9) required 273 seconds on a CDC-7600 computer.**

Then each a^(r) required < 15 sec.

It turned out to be necessary to compute 15 â, (r) [i.e., a (r),
A o

...,a2g(r)] in order to converge the potential (see below). This is

an unusually large number of terms even for electron-molecule

scattering and is a reflection of the enormity of the target (as

discussed in Chapter 2). Each aj(r) typically peaks at the 0-C
*CHGDIST by name.

**0nce p(r,6) has been determined it is used again in the calculation
of the approximate exchange potential we use. See Chapter 4.
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separation of 2.1994 a and dies off elsewhere [except a (r), which

rises near r = 0, reflecting the influence of the carbon atom at the

origin]. A few typical a^(r) together with afl(r) (on a logarithmic

scale) are graphed in Figure 3.2.

In addition to hand checks of selected a,(r), a useful verifica-

tion can be carried out by means of Eq. (3.11). Substituting the

expansion (3.12) in (3.11), we obtain

CO

Hirjao(r')r
3-dr = M . O.19)

Using our a (r) calculated from McLean and Yoshimine's wavefunction

we obtain 22.0052 for the left-hand-side of (3.19).* Since the wave-

function used is valid to no more than four decimal places, the

probability distribution is expected to be good to no more than two

places, suggesting that this minute amount of excess charge is no

real cause for alarn.

§3.4 Calculation of the Averaged Static Potential Energy and

Expansion in Legendre Polynomials

At long last we are ready to consider evaluation of the averaged

static potential, V(r) = < X I |V. |X E > of Eq. (3.4) and of the
g m e g

matrix elements V££i(r) = <&n|v(r)jfc'm > of Eq. (3.5), which appear

in the coupled equations (3.3) to be solved. Basically, this is just

*The slight excess charge of +0.0052 shows up as a Coulomb tail in
vQ(r), the P projection of the average static potential energy. We
artificially remove this from v« (r) as discussed below.
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Figure 3.2

Expansion coefficients of the C02 charge distribution (ground electronic
state) for a Legendre-polynomial expansion. (a). X = 0 ; (b). X = 2,
4, and 6. [See Eq. (3.12).]
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a lot of rather unexciting algebra; the key results are Eqs. (3.39)

and (3.40) for V(r) and (3.43) for V ^ ( r ) .

Onward to the algebra! We first assault the inner molecular

matrix element (IMME), which, in the Born-Oppenheimer approximation,

is

where we integrate over all N target electronic coordinates. Sighs of

relief fill the room as we realize that we can simplify this hideous

integral by taking into account the known form of the electronic wave-

function. First let's introduce the interaction potential energy of

Eq. (3.2) into the IMME. Assuming R to be frozen and using ortho-

normality of V, +, w e obtain

3

V(?)s-| **»*% *J**><> ? sr»i V ^ H>
which we'll write as

X± (?•»} + Xz (¥>)f (3.22)

separating the first (nuclear) and second (electronic) termd. For

C02, a = 1,2,3, and Zx = Z^ = 8 and Z£ = 6.

We can now reduce I_(r) to a sum of somewhat more congenial

one-dimensional integrals. To this end, let's write the electronic

wavefunction as

(3.23)

43

where we have introduced the singly-occupied spin orbitals X.



e.g., ^(1) = ^(J^) a(l) and X2<2) = • M ' O 3(2) etc. li.e sum in

Eq. (3.23) is over the N! possible permutations of the N spin-orbitals,

and the factor of (-1) enforces antisymmetry of •?, . under pairwise

S
electron interchange. Substituting this expression into I_ and using

the spin orthogonality of the X.'s, we find that

z (?„ > * 2f J \ (« ̂  \> (DJ lj O.24)

where we've let r = r to clarify* r = |r - r |. Returning to the

M spatial molecular orbitals >̂ (r), we obtain

Notice that this is just

(3.26)

where p(r) is the charge distribution of the molecule (see §3.3).

Putting it all together, we have

*We'll use r and r interchangeably ir this chapter, preferring the

former but using the latter when clarity demands it. Usually r is

our dummy variable of integration.



This form is neither especially useful nor illuminating. However,

it is valuable as an intermediary. We really want to expand V(r) ir

Legendre polynomials and use the result to calculate V..,(r). Let's

first attack I (r). If we let R be a vector from the carbon nucleus

directed toward the oxygen along the +z direction, we have for C0 ?

(3.28)

(23)
Let us expand:

where p< = min (r,R), p> = max (r,R) and 6 is the angle between r

and R. Similarly,

°-*>
where we have used P, [cos(7r-9)] = (-1) P (Cos8). Therefore, we

A A

have

(3.31)

where only even-X terms contribute in the second term since

1 + (-1) = 0 for odd values of X.
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Turning now to I2(r), we merely shove the expansion for p(r,0)

in terms of aA(r), Eq. (3.12), into Eq. (3.25). We have

where we have used the well-known relation

{<), (3.32)

(24)

If we further expand l/r,N as

dwhere r< = min(r.., rN) and 0 is the angle between r. and r , and

(25)convert to angular coordinates via

we obtain

(3.36)

Turning the obvious cranks, we acquire the handy form



so

(3.37)

where we have used the orthonormality of spherical harmonics,

(3.38)

Thus, at long last, we have the desired result; to-wit,

(3.39)

where

with, as before, p = min (rN, R) and p> = max (r ,R)

The final step is evaluation of

< 3 4 0 )

(3.41)

This is a piece of cake; we stuff Eq. (3.39) into (3.41) and let the

dummy variable of integration be defined relative to the body-fixed

axis, z = R. Once again wheeling in Eq. (3.33), we obtain

J.42)
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The integral of three spherical harmonics is more-or-less conveniently

(27)
given in terms of Clebsch-Gordan coefficients,* and we obtain

Notice that tho. matrix V (r) is symmetric and that there are

(29)

numerous zeros imposed by the triangle relation A(H'i) and the

restriction l+V+X = even.

This matrix, though even less transparent than was the function

V(r), is worth a moment of Buddhistic contemplation, for it defines

the partial-wave coupling in the coupled-channel differential equations

to be solved in Chapter 6. For example, the fact that the symmetry of

the target forces all odd-A coefficients v,(r) to be zero means that

only AS, = | I - V j = even channels couple at all. Thus, the problem

splits into sets within each tn which are conveniently defined by the

symmetry of the e+C(>2 system, e.g., Z (m = 0; % = 0,2,4,...),

II (m = 1, Si = 1,3,5,...) etc. Such a simplification is worthy of

respect; without it we would have to solve more than 60 coupled

equations. With this potential energy, that could turn out to be

unbelievably expensive at best or numerically impossible at worst.

In fact, the largest number of channels required is about 30.
*As is probably apparent by the references so far, we use the

conventions of M. E. Rose, Elementary Theory of Angular Momentum

throughout. We have found this book, though not flawless, to be the

least error-ridden of the standard texts on angular momentum. How-

ever, a Rose by any other name would be an Edmonds.' '
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§3.5 Computational Details and a Few Analytic Integrals.

This short section describes the irreducible minimum one should

know about how we compute v,(r); results are held for §3.6. In

actual fact, we do not compute V.p,(r) at one whack. Instead we

determine* v,(r), store it on disc, and use it (plus additional

contributions to be discussed in Chapters 4 and 5) in the integral-

equation code to determine V--,(r) as needed. For convenience in our

discussion, let's write v, (r) as
A

where we have introduced the integral I(r), defined as

( 3- 4 5 )

Clearly calculation of I(r) is the tricky part of the evaluation of

v,(r). We can rewrite this integral as

( 3- 4 6 )

Any non-pathological integral of the form / f(r)dr can be evaluated

(30)
by a Gauss-Laguerre quadrature.

It is useful, though tedious, to further transform I(r). We

recall from section 3.3 that beyond a certain radius, say R, a,(r)

A
is available as an analytic function given by Eq. (3.17). To avail

*The code involved and here discussed is called EXPPOT and requires
as input the coefficients aj.(r) over a pre-determined r-mesh for
all desired A.
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ourselves of this fact, let's write the second integral in Eq. (3.46)

as follows: »*

rf*A^\ * rjaA)^ J*i E
r ao (3.47)

R'

where R1 = max(R,r) and the first term on the right-hand side

vanishes if r > R. We can use Gauss-Legendre quadrature to evaluate

the first integral on the RHS.

We would like to put the second integral,

• r \ a a ( r * > rb dr y (3.48)

' {'
into a form amenable to evaluation by Gauss-Laguerre quadrature, i.e.,

/ e f(u))d(jd. A couple of transformations do the trick!
o

First we let u = r, - R' and use the known form for a,(r) for

r > R to get

(3.49)

If we further introduce to = ot,u, then we can write

(3.50)

with

* f ̂ T
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Thus, at this stage, we have a marginally more tractable expression

for I(r), f ft

W^TljiA^'i'^rt +rAJaACi)^
1"A J^ ESCr'

( 3 < 5 2 )

o
Now consider the case r > .'., for which our integral becomes

* Pr

JV'k^k"^ 1*! <3.53)
I*

In the second integral we know an analytic form for a,(r), our old

friend Eq. (3.17). We can combine this result with Eq. (3.52) by

defining R" = min (R,r) and writing, finally,

= X±(r)

where we have defined the following integrals

(3.55a)

c'
M Zx(rx ) ̂

+2 Jr. (3.55b)

3. (el C1"* Jr. . (3.55c)

The reason for this manipulation is not merely to consume space.

Integrals I. and I (if appropriate) simply must be done numerically.

However, analytic forms for Ij and J" can be developed (for certain

cases) and used for purposes of checking the validity of the

quadrature and coding. (Such tests are useful at this stage since
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we're pretty far along in the problem numerically.) Also the form

(3.54) is very convenient for coding purposes and efficiency.

For J , we find that for A ,_< 1,

«?'} . (3.56)

As r increases, J get progressively smaller monotonically. In the

code we don't even bother to calculate it for r beyond the value at

which |J[ < 10"8.

The second integral which is defined in a region where we have an

analytic form for a,(r) is I~ . This can be shown to give (for r>R)

J.57)

where

Both J and I_ have been evaluated numerically and analytically and
2a

give identical results to eight places. The integrals I, and Io must

be done numerically; we use Gauss-Legendre quadrature.

In order to minimize the number of points at which a>(t') [and

hence p(r,6)] must be evaluated, we first perform a cubic spline

(31)
fit of a,(r) over the range 0 £ r £ R, where R is the value at
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which we can use the analytic form (3.17). This is a third-degree

interpolation scheme which can be highly accurate for well-behaved

functions. In point of fact, we found that extreme care must be

exercised in regions where the function being fit is thought to change

slope rapidly. As the graphs of Figure 3.2 suggest, in our case this

is in the vicinity of the oxygen nucleus (r ¥ 2.2 a ) . The effect

here alluded to is illustrated in Figure 3.3, which shows the spline

fit of an(r) for two fits, one a 37-point fit, the other an 82-point

fit. Put simply, the spline fit requires several mesh points for

each order of magnitude change in the function to be fit or in

regions where the curve is rapidly changing slope.

The "standard spline mesh" we finally settled on for all a,(r)
A.

is 0.001 to 1.701 in steps of 0.1, 1.701 to 3.001 in steps of 0.05,

and 3.001 to R in steps of 0.1.

Each v,(r) required about 20 seconds of 7600 time to determine for

the standard integration mesh of 453 points.*

One final computational point should be mentioned. We remove

from v-,, (r) the long-range tails for X = 0, 2, 4. The X = 0 tail is

the spurious excess Coulomb tail alluded to in section 3.3. The

X = 2 tail defines the quadrupole moment and the X = 4 tail the

hexadecupole moment. These latter two tails are added in again at

the integral-equation stage of the calculation; they are deleted

*See Chapter 8 for a discussion of the choice of integration mesh

and a description thereof.
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Figure 3.3

Spline fits of the X = 0 expansion coefficients of the CO- charge
distribution. Two fits are shown: a 37 point fit (solid line) and an
82 point fit (dashed line). Circles are points calculated by direct
quadrature.



here so as to minimize the number of coefficients v, (r) which must

be stored. Thus we have*

where the excess charge was found to be q = 0.0052. Similarly, we

find that

- A.

with q = -3.85981 ea and

with x = -9.38166 au. We shall have more to say about the sign of q

in section 3.8.

§3.6 Results for CO- and Discussion

Several typical v^(r) are shown in Figure 3.4. tittle need be

said about these plots. However, it is useful to examine the behavior

of v, (r) near r = R for high A . We can see from an examination of
A o-c

Figure 3.5 and Table 3.2, which shows the value (in hartrees) of v-(r)

at r = 2.19 a (essentially the peak value), that the full static
o

potential is exceedingly hard to converge.

The reason for this behavior and an extremely important key to the

*Cutoff functions are used rather extensively in handling the long-
range terms.
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Figure 3.4

Expansion coefficients of the static e-C02 interaction potential energy
in Legendre polynomials for X = 0, 2, 4, and 14.
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Figure 3.5

Expansion coefficients of the static e-C02 interaction potential
energy for X - 22 and X = 28.
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X v,(r = 2.19 a )
A O

0 -0.8805

2 -3.2900

4 -4.9437

6 -5.6343

8 -5.9516

10 -6.1181

12 -6.2237

14 -6.3028

16 -6.3680

18 -6.4230

20 -6.4700

22 -6.5083

24 -6.5392

26 -6.5631

28 -6.5807

Table 3.2

Values of the expansion coefficients of the averaged static
potential v,(r) in hartress at a point near the oxygen nuclei.
[For this calculation, R Q_ C = 2.19440 aQ.]
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computational problem at hand can be understood if we notice from Eq,

(3.40) that each v,(r) can be written as

(3.61)

where

(3.62b)

Thus we have a nuclear and an electronic contribution to each v,(r).

Clearly, the nuclear part is trivial (and fast) to calculate for as

el
many A as necessary. Au contrair, v, (r) takes considerable computer

time to evaluate. Moreover, once we reach fairly large values of X,

we must ask the question of just how realistic it JLS_ to try to extract,

say, P,n(cos6) information from an electronic wavefunction, even one

good as McLean and Yoshimine's.

Fortunately, this problem can be resolved. By examining the

percentage contribution to vi,(r) of the electronic part, we find that

v, (r) is negligible above about X = 30. For example, v, (r) con-

tributes 27%, 20%, and 10% tc v^(r) for X = 16, 22, and 28, respect-

ively. This behavior is also reflected in Figure 3.6, which shows

el
the electronic contribution v, (r) for some of the cases included

in Figs. 3.4 and 3.5. (We here consider values r near R .)

In point of fact, the convergence trouble reflected in the graphs

of v,(r) we have looked at arises because v, (r) narrows very grad-
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Figure 3.6

Electronic contribution to the expansion coefficients of the electron-
molecule interaction potential energy for e-CO9 for the cases X = 0
2, 14, and 24. Z
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ual.ly, the value at r = R _ converging slowly to a Coulomb

singularity for V(r). There is an upper limit in the practical

coupled-channel calculation imposed by the fact that for a fixed

number of channels, N, corresponding to some ultimate partial wave,

% , the coupling matrix elements in V:., (r) a^e zero for
II1£L3C V X

A > 2£ , as can be seen from Eq. (3 .43) .
tllcLX

Details of the convergence of the cross section in X are more

appropriately left for Chapter 8. Here let us note that in the final

calculations we used 15 v^ (r) and 41 v^ (r), corresponding to

maximum A of X = 2 8 and A = 8 0 . This is a sufficient number of
max max

-*•

terms to converge the averaged static potential V(r) to <1% and hence

enough for the calculation of the cross sections. The essential

el
point here is that one does not need v, (r) for high X but can't do

without v, (r) for high X. Physically, this reflects the massive

size of the CO- molecule, with an internuclear separation of 4.3888 a
i. o

from oxygen to oxygen, and the hefty positive charges on the nuclei

(Z = 6, Z = 8 ) .
c o

§3.7 An Introduction to the Centrifugal Barrier and its Physics

Examination of the expansion coefficients v^{r) is helpful to

the perplexed physicist trying to "visualize" the highly complex

e-C0? interaction potential. However, it is the matrix elements

Vg J, (r) that appear in the coupled equations we eventually must solve

and which reflect the coupling between partial waves. In the last

analysis, V»p,(r) contains other contributions than the static poten-

tial (see Chapters 4 and 5). However, there is some valuable insight
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to be gained by a study of the diagonal matrix element.

To get into this subject, let's write the coupled equation (3.3)

as

f'T'/r) (3.63)

and define the conventional effective potential as

eff
The second term is Vn (r) is called the centrifugal barrier. For

wn

large &, it adds a repulsive part to the attractive static potential

matrix element V ^ (r) and therefore crudely speaking, acts to "keep

the electron away from the core region" near the nuclei.

The ramifications of this fact both physically and computationally

are of enormous importance, and» while some of the analysis must be

deferred to Chapter 8, it is appropriate here to introduce the general

ideas and look at some pictures in order to lay the foundations for

discussions yet to come.*

The importance of the centrifugal force to electron-molecule

(32)
scattering has been elucidated by Fano and applied in an approxi-

(33)
mation called "low-£ spoiling." Simply put, the centrifugal

barrier for large-Z partial waves is so large that it prohibits

"information transfer" between the wavefunction in the internal region

(roughly inside the classical turning point) and in the external

*None of the admittedly qualitative (or intuitive) points we make
in this section will be altered by the inclusion of exchange or
induced polarization terms into v.(r).

A

62



region (beyond the barrier). Therefore, regardless of what happens

to the high-£ partial wavefunctions near r = 0 (they grow very

rapidly as r increases from zero), they themselves will not contribute

to the asymptotically-defined phase shifts except through indirect

coupling. In more physical terms, to a certain approximation, % can

be considered a good quantum number for large enough values of SL, and

the corresponding partial waves uncouple asymptotically. The validity

of this argument is clearly system dependent as well as energy depen-

dent. We would like to use the picture it suggests to think about

the physics of the e-C02 collision without actually making the "low-il

spoiling" approximation, which would be of dubious merit for C02.*

We thus adopt the point of view that the barrier in some sense

"contains" the anisotropy of the molecular force field for partial

waves with large £.

We begin with the expression for the diagonal matrix element,

O.65)

where X = 2Z is the upper limit of the X-summation and, as
cont max

usual, only even-X terms contribute. One potential problem (sic)

becomes immediately apparent: we rarely have access to v, (r) for

values of X as large as 2 £ (which can be as large as 120). What
nicix

saves the day in this case is the centrifugal barrier, which for

large SL so overpowers vij (r) that the effective potential is un-

*In fact, for some symmetries and energies, this approximation
gives cross sections off by as much as 60% from the true answer.
This is illustrated in Chapter 8.

63



affected by the neglect of higher-A terms. These terras do make a

difference to Vj^ (r), but it is V*T (r) that "participates" in the

scattering. This is illustrated in Figure 3.7, which shows two cases,

Z = 6 and £ = 12, with two values of A for each [X is defined

max max

to be the maximum value of X actually included in the summation in

Eq. (3.43)].

This problem out of the way, let's look "at some typical effective
eff

potentials. For m = 0, V. (r) for £ = 1, 2, 3, 7, and 10 are shown

eff
in Figure 3.8. The behavior of V-. 0(r) is typical of other high-£

eff
cases. Notice how truly enormous V.,- (r) is for Z > 7; clearly

these partial waves will be of no consequence beyond 3 or 4 a .*

Another interesting (and very useful) effect is on display in

eff
Figure 3.9, which shows V, (r) for m = 0, 1, 2, and 3. As m increases,

2

the effective potential is increasingly dominated by the pure 1/r

barrier. This suggests that the dominant contributions to the cross

section will arise from £(m = 0) and II(m = 1) symmetries. This, in

fact, turns out to be the case; higher-m symmetries do not "experience"

enough of the strong short-range potential to be substantially phase

sh.-i.fted.

Lest we get carried away with interpretations based on these

admittedly appealing physical pictures, a caveat must here be issued.

These are fairly crude, essentially potential-scattering arguments.

In fact, only in a very restricted "asymptotic" sense is it meaning-

ful to even talk about an "£ = 3 electron;" in fact the H = 3 partial

*This point, craftily inserted here, is the key to the truncation

procedure to be discussed in Chapter 6. It is most emphatically not

true that these partial waves can be neglected altogether; they

strongly couple to lower waves in the region near the target.
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Figure 3.7

The effective potential energy for e-C0_ scattering (a) for 2, = 6,
m = 0 and (b) for £ = 12, m = 0.
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Figure 3.8

The effective potential energies for e-CO, scattering with m = 0
and I - 1, 2, 3, 7, and 10. 2
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Figure 3.9

Illustration of the dependence of the e-CO» effective potential energy
on m for 8, = 4.



wave is strongly coupled in the small-r region to x = 1 and £ = 5

waves, and so forth. Nevertheless, the effective potential provides

a useful tool in trying to understand the physics of the collision

process and, as we shall see in Chapter 8, in making certain important

decisions at computation time.

§3.8 Some Terminal Remarks on the Static Potential and the

Quadrupole Moment

In concluding our study of the static pocential, we would like to

comment briefly on the reason for the quadrupole moment of C0_ being

negative and to compare static potentials for a fevr other systems to

that of CO--

The quadrupole moment tensor is defined in general as

(3.66)

where P = P (x,y,z) is the total charge density (of electrons and

nuclei) and r. - x, r = y, r = z. The integral is carried out over

all space, dT = dxdydz* Since the linear (fixed-nucleus) configuration

of C0~ at equilibrium has no dipole moment, the quadrupole moment is

origin-independent. Moreover, CO™ has a two-fold axis of symmetry

and 0 o is a second-rank tensor, so the quadrupole moment can be

uniquely specified by a single scalar quantity

<7
6
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and the off-diagonal elements are zero.

A selection of values of q for CO are given* in Table 3.3.

Given the range of values that have been determined by various in-

vestigators, we do pretty well. It is the sign of q (negative) that

is of interest here; more familiar systems (e.g., H_, N ) have posi-

(38)

tive quadrupole moments. In terms of the charge distribution, it

is generally true that negative charge distributed in a plane perpendi-

cular to the internuclear axis R will contribute z positive amount to

q while negative charge along R contributes a negative amount to q.

In fact, a (very) simple model for C02 can be conjured up to

explain why q < 0. Referring to Figure 3.10a and using the drastic

simplification that

(3.68)

we argue that carbon, with Z = 6 and an atomic orbital occupancy of

2 2 2
Is 2s 2p , has two valence electrons while oxygen, with Z = 8 and a
2 2 4

Is 2s 2p occupancy, has two "valence holes" and a stronger nuclear

charge. We suggest that a small amount of negative charge will be

pulled from the central C to each 0 giving the structure shown in the

(35)
figure. In fact, A. D. McLean has determined that this is the

case; the partial charges are -0.22e on each oxygen and +0.43e on the

2
carbon. Using Eq. (3.67) and these charges, we get q = -2.12 ea ,

clearly negative and not really too bad a value considering the

*It may be useful to note that to convert q from CGS units for q,
—26 2 2

10 esu-cm , to atomic units ea , one multiplies q times 0.7445.
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Figure 3.10

Crude models of (a) CCL and (b) H_ used In the text to illustrate
features of the quadrupole moment.
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q (CGS

-4.3 x

-2.50 >

-5.25 >

-4.3 x

-5.18 >

units)

io-26

< io- 2 6

< io-26

io-26

•• i o - 2 6

q (atomic units)

-3.2014

-1.8613

-3.9086

-3.2014

-3.8598

Source

34

35

36

37 (exp)

us

Table 3.3

A modest anthology of quadrupole-moments for CO

including the present work.
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appalling crudity of this model. The reverse case obtains for H ?,

where the structure of the bonding is considerably different from C0 ?.

Here an excess negative charge builds up between the nuclei as in

Figure 3.10b; this produces bonding in H_ and leads to a positive

2

quadrupole moment, q = +0.49 ea

As should now be apparent, CO- is not your average target for

scattering calculations such as the ones reported here, and it is

probably not a bad idea to present a couple of familiar benchmarks

for comparison. We've chosen those old standbys, H_ and N . In Figure

3.11 we have plots of v,(r) for H 2 with I = 0,2,4,6. The convergence

in the vicinity of the nuclei r = 0.7, is much more rapid than in CO.

as attested by the fact that for H_, v.(0.7) = -1.2027, -2.7073,
£. A

-2.8129, and -2.8149 hartrees for X = 0, 2, 4, 6, respectively. The

first three v- (r) for N_, for which R.T „ = 2.068 a , are shown in
A 2 N-N O
(39)

Figure 3.12a. Finally, v (r), v_(r), and v i g(r) in CO are shown

in Figure 3.12b. Of course, for CO, a heteronuclear molecule,*

even- and odd-X coefficients contribute to the expansion of V(r).

Granted that CO is not an exceedingly strong polar molecule, the

contrast with CO- is still rather striking.

We believe our static potential for e-C0« collisions to be quite

accurate. It is, however, the easiest part of the interaction poten-

tial to handle, because given a reasonable amount of computer time and

stamina, it can be calculated ab initio and with great accuracy. Not

so the far more insidious exchange interaction. Guile and craftiness

are required to correctly incorporate these contributions and we turn

to exchange in the next chapter.
*In Figure 3.12b, r is measured from the center-of-mass of the CO

molecule. This is standard operating procedure in dealing with

polar molecules.
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Figure 3.11

Expansion coefficients of the e-H2 static interaction potential energy
in Legendre polynomials for X = 0, 2, 4, and 6.
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Figure 3.12

Expansion coefficients of (a) e-N^ and (b) e-C0_ interaction potential
energies. [Source: (a). F. M. H. Faisal, J. Phys. B 3 , 636.(1970);
(b). N. Chandra, Phys. Rev. A L2, 2361 (1975).]
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Chapter 4: j/n^jjiSjLon__oJ_Exchange Interacjti.Qn_s_ y j j ;

Potential

It is the customary fate of new
truths to begin as heresies and
to end up as superstitions.

-T. H. Huxley
(1825-1895)

In order to attain the impossible
one must attempt the absurd.

-Miguel de Unamuno y Jugo
(1864-1936)

§4.1 Introduction; The Need for Approximate Treatments of Exchange

Exchar;e effects are encountered in virtually all quantum mechani-

cal problems which involve interacting identical particles. They

are a consequence of conditions imposed on the wavefunctions which

describe states of the system; these in turn arise from the anti-

symmetrization requirement, which states that the full system wave-

function ¥(1,2,...N) must be antisymmetric under pairwise electron*

interchange, e.g., ¥(1,2,...,N) ± ̂ *. -¥(1,2,..,N). In the orbital

approximation, which we implicitly use throughout this work, this

condition on ¥ has direct consequences through the Pauli Exclusion

*This in turn, is a consequence of the fact that electrons
are fermions. See reference (1).
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Principle. In fact, the double occupancy of non-degenerate molecular

orbitals by electrons with anti-parallel spins is one manifestation of

this principle.

The effects of electron exchange pose difficulties in both

structure and scattering problems. In structure theory (and in some

formulations of collision theory) one must deal with Slater determi-

nants instead of simple product wavefunctions (as we saw in Chapter 3 ) ,

with the Hartree-Fock equations rather than the vastly simpler Hartree

(2)

theory, and so forth. Essentially, the source of all the trouble is

the fact that exchange is a non-local interaction.* This gives rise,

for example, to the non-local exchange kernel of close-coupling

formulations and to exchange integrals in Hartree-Fock theory;

all of these are non-local terms in already complicated equations.

To suggest the magnitude of the problems caused by exchange in

scattering calculations, it is useful to glance briefly at the coupled

integro-differential equations which obtain when exchange is taken into

account. We'll pick a very simple (perhaps unrepresentative) case:

e-H~ collisions in the. body-frame (fixed-nuclei approximation) with no

electronic excitation (H2 in the ground X Z state). We find '

(4.1)

*That is to say, the value of the exchange potential at r depends on
the value of the wavefunction over all space. See Eq. (4.2).
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The exchange kernel K(2.£' ; r.,r) in Eq. (4.1) is defined as

where we have let r_ = r = the scattering coordinate for clarity in

Eq. (4.2).

Physically, one can think of exchange as having a two-fold

influence on the scattering wavefunction in electron collisions.*

First, exchange behaves like a short-range attractive interaction in

its effect on the wavefunction. In fact, considerable success was

achieved by Lane and Geltman in an early study of e-H0 scattering

in the close-coupling formulation by "mocking" exchange with a very

simple, local, short-range, attractive (square well) potential energy

term. In some respects, this work prefigures our own treatment of

exchange.

Second, exchange, manifested through the Pauli Exclusion Principle,

acts to prohibit a scattering electron of given symmetry** from

occupying any of the filled target orbitals of that symmetry. Thus,

a 0 scattering-electron wavefunction in an e-H« collision is ortho-

gonal to the core la molecular orbital. This important point, used

as the basis of a treatment of exchange by Burke and others, was

applied by N. Lane and the author in our pseudo-bound-state approach

^Mathematically speaking, in the Hartree-Fock theory exchange terms

also act to cancel self-interaction terms in the HF equations.

**This is a pretty loose useage. We are referring to decompositions of

the scattering-electron wavefunction asymptotically into partial waves

and the consequent identification of symmetries.
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to electron-molecul-a scattering. For a variety of reasons to be dis-

cussed below, we choose not to adopt this procedure.

Although methods exist for coping with the ghastly computational

problems that arise when treating exchange* directly in the coupled

(3)

equations, these would be risky at best in the context of our parti-

cular case. The numerical problem encountered in doing just the static

problem (see Chapter 6) are sufficient to make us tread warily when

considering the numerical solution of more complicated equations for

e-CO- collisions. The same argument applies to the application of

Burke1s orthogonalization procedure, although the nature of the possible

numerical difficulties inherent in this approximation is less clear.

More discussion of this alternative can be found elsewhere in this

chapter.

We chose to begin with the approach which seemed computationally

the easiest, namely the use of a local exchange potential. Such

potentials have a long and distinguished history in structure theory

and have been applied with some success to electron-atom collisions

(see §4.3). Only one electron-molecule collision has been so treated.

In that case the molecular target chosen, FL, was highly spherical.

In light of this fact and the enormous difficulties associated with

more precise treatments for collisions with big molecules, the present

application has some theoretical and practical significance beyond its

immediate motivation: to get the e-CO- problem done correctly.

*In fact, the formalism for dealing with this case in the integral
equations approach has been worked out (see discussion and references
in Chapter 6). However, this technique necessitates separation of the
exchange kernel (an approximation) and could be numerically formidable;.
To date it has not been applied to real problems.
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The game plan for this chapter is as follows: In §4.2 we get

acquainted with local exchange potentials by reviewing and commenting

on their application to structure problems. The use (and misuse) of

such approximations in scattering theory is considered in §4.3, which

leads us to the derivation in §4.4 of our particular choice of poten-

tial. Results for CO. are presented in §4.5. We conclude this chapter

with a short discourse on alternate ways to include exchange, models

and otherwise.

The underlying idea behind all this is to develop a physically

reasonable model of the exchange interaction. The best we can hope

for is a local potential which in some average approximate way mimics

the true effects of exchange; \:& would prefer (for aesthetic reasons

at least) to avoid artificial scaling or adjusted parameters at this

point. That this can be achieved is the thrust of this chapter.

§4.2 Local Exchange Potentials in Bound-State Problems

In 1951, J. C. Slater introduced to molecular physicists every-

(9)

where the concept of a local exchange potential. Based on the free-

electron-gas model of an atom (or a molecule, for that matter),

Slater's work suggested that one could take account of exchange in an

approximate sense via a local potential proportional to the one-third

power of the local electron density. A second important concept

introduced in the same paper was that of the exchange hole (or Fermi

hole). This is a region surrounding eacn electron in the target; it

consists of a "deficiency" of electronic charge of the same spin as the
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electron at the center.* Embedded in the notion of the exchange hole

is the fact of the short-range nature of this interaction.

Since its introduction, the Slater Exchange Potential and related

ideas have been widely applied to problems in atomic structure. In

fact, it led to the SCF-Xa method, which is currently employed exten-

sively in structure calculations in a diverse spectrum of fields.

Let's look briefly at the aspects of this theory which are relevant

to our problem. At the core of the Slater exchange potential is the

aforementioned free-electron gas (FEG) model of the system. Let's

suppose that the electrons are at T = 0°K and occupy one-electron orbi-

tals. The energy of the uppermost filled orbital is defined to be

the Fermi Energy, E p. The picture we have of the free electron gas is

of the electrons lying below the Fermi energy and floating about in

accordance with Fermi-Dirac statistics. In other words, the

electrons are treated as non-interacting fermions. Exchange is there-

fore taken into account only through the Pauli Exclusion Principle; no

"exchange interaction" is explicitly included in this theory.

This picture is closely allied to the free-electron approximation

(12)

for solids. It leads, as we shall see, to a local exchange poten-

tial V based on the principle of translational invariance .in the FEG
6X

and to the famous average exchange potential V . It is worthwhile
6X

commenting on derivation of V (r); details can be found in reference

(13).

The wavefunction of an FEG electron (conventionally in a Hartree-

Fock orbital) is given by a plane x^ave, viz.,

*Slater likes to divide the total electronic charge into two parts,
one due to all the electrons with spin up and the other due to
electrons with spin down.
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(4.3)

where k. is the electron wavevector. The distribution of these elec-
i

trons in the gas is given by the Fermi-Dirac distribution function,

(4.4)

for an electron of energy E.. Here k is Boltzmann's constant, V. =
I D B

1.3806 * 10" 1 6 erg/°K.

Very briefly, to obtain V we begin with Slater's form of the

Hartree-Fock exchange potential for an electron with coordinate

(4.5)

where x. denotes spatial and spin coordinates and the sum is over all

one-electron spin orbitals. Into this expression we substitute the

plane-wave form (4.3) for the orbitals u. and u, and then average over
X K.

the potentials acting on electrons with various wavevectors. The

derivation is extremely involved and need not be repeated here since

we didn't use this formulation of V
ex

The result is

tr / >
(4.6)
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where N/v is the density of electrons in volume v, n is defined by

in

and

with k_ the Fermi wavenumber and k the wavevector of the electron
r

under consideration. Averaging over occupied states in the Fermi

distribution, Slater obtains the famous averaged exchange poten-

tial,*

(4.9)

It is useful to rewrite Eq. (4.6) as

where we let p = N/v.

We can now make a small but significant improvement on Eq. (4.10)

by observing that usually we can determine the charge density of the

system** as a function of r. Let's use this fact and the PEG approxi-

mat ion to derive an expression for V (r) involving the Fermi wave-
ex

vector as a function of r. The density of states in energy (number of

states/unit volume) in the FEG mod •] is given by

"This uses the fact that the average of F(rj) over the Fermi sphere is
3/4.

••••:Sop 53-2 for the appropriate1 definitions and notation.
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( 4 - n )

where V is the volume under consideration.* The total number of par-

ticles in the "box" (volume V) which have energy E £ Ef is

3TT'
o

Therefore the Fermi energy is

(4.12)

where p = N/V is the density of electrons.

Let's now replace" the FEG constant electron density p by
M

the full quantum-mechanical density p(r) = £ N.|$.(r)| , obtaining
i=l X x

(4.13)

Hence the Fermi wavevector, k^, is also a function of r, since

In terns of the Fermi wavevector, we have [from Eq. (4.10)]

*This expression is derived by applying periodic boundary conditions
on a volume V which is small compared to the total voluire of the gas
but large compared to the deBroglie wavelength A. Clearly, this
breaks down at lower energies.

85



(4.15)

We should keep in mind that the discussion is valid for bound

states of the N-electron system. Thus, V (r) is an approximation to

~~—~~~~~— ex

the interaction potential energy of a bound electron due to exchange

with the other N-l electrons in the system; the entire electronic

system (all N electrons) is described by the charge distribution
P(r).

A word or two should be said about k in Eq. (4.3). We would like

to suggest a very crude but nonetheless useful interpretation of this

quantity in the context of the FEG model which we'll employ in extend-

ing the theory to collision problems. In Slater's Theory, k, the

wavevector associated with the electron under consideration, is not

considered to be a function of r; it eventually disappears when he

averages to get V . If the electron energy is large enough and we

are careful, we can think of k in a "classical sense" as a local

momentum of the accelerating electron. Suppose the electron's total

energy is E . A reasonable way to get an expression for k would be

to use the correspondence principle and write

C - "p + V (4.16)
O

4U (?>). (4.17)

where Ve(r) is the static potential of Chapter 3. This relationship

yields
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.18)

clearly k =-k(r), so n = n(r) by Eq. (4.7). This interpretation of the

wavevector k, although good only in a very restricted sense for the c

case under consideration in this section will have importance impli-

cations when we get to the electron scattering problem.

We should probably re-emphasize, the point that this entire

theoretical structure is predicated on the rather crude FEG model

and is only valid provided that the local wavelength of the electron

under consideration, A(r) a l/k(r), is small compared to the distance

typical of substantial changes in the potential. Certain regions

of r will not be treated correctly in this picture; e.g., very

small and (or course) very large r. The range of r in which the

model ji£ applicable is often referred to as the Thomas-Fermi

region. For large systems, the TF region can be quite substantial in

the sense that a considerable fraction of the electronic charge

distribution is concentrated therein. In such cases such a local

exchange approximation can be quite successful.

In closing, let us observe that the approach outlined herein

(18}

differs substantially from the Thonas-Fermi theory, which begins

with the assumption that tho averaged atomic potential in which an

electron finds itself varies slowly over a deBroglie wavelength. This

potential is taken to be approximately constant, and the system is

treated as a FEG. It is further assumed that the gas "fills" the

potential; in other words, that
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Using this assumption and Poisson's equation, it is possible to derive

an equation relating the charge density p(r) to V(r) and to thence

solve for p(r). (In our approach, we simply pull p(r) rrom the

quantum mechanical structure calculation.) Thus the Thomas-Fermi

theory amounts to a statistical averaging process which effectively

(19)
"smears-out" the structure of the true electron distribution.

This approximation would seem to be doomed from the start for highly

aspherical molecules.

§4.3 Local Exchange Potentials in Electron Scattering Theory.

The importance of exchange in electron-molecule collisions* is

well-established. Some of the procedures that have been developed

over the years to introduce exchange effects into problems in these

areas were mentioned in the Introduction to this chapter. The local

exchange potential idea has been employed to some extent in work on

electron-atom scattering, and a useful though brief discussion of

this work together with a presentation of a new approximate potential

appears in reference (21).

cases of strongly polar (heteronuclear) molecules, it is likely
_2

that the long-range interactions (especially the r P dipole

interaction) so overwhelmingly dominate the total and momentum

transfer cross sections that exchange effects are negligible by

comparison. However, short-range effects can be important in
(22)

determination of particular j -> j' cross sections.
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Certain theoretical difficulties obtain if one trits to blindly

apply the Slater effective potential of, say, Eq. (4.15) to the

electron collision problem. For one thing, the scattering electron is

not represented in the electronic charge density p(r), which, in the

scattering problem, is referred to the target. For low energy

collisions, the scattering electron is certainly not localized in

space. Depending on how you interpret the notion of a "Thomas-Fermi

region," it loses significance, since the scattering electron wave-

function is in no sense contained, being itself a plane wave. It is

difficult to view the electron as part of a free electron gas without

really stretching the model.

A number of early investigators chose to apply Slater's averaged

potential directly to problems in electron-atom scattering using the

form

(8)
where ex., is a constant. As pointed out by.Kara, such an approach

represents a rather considerable misunderstanding, since Eq. (4.20)

is obtained by averaging F(rj) over the Fermi sphere. At the center

of the Fermi sphere, we have r\ = 0, F(n) = 1, and at the surface

X] = 1, F(n) = j . But for electron scattering problems r\ > 1! The

average potential is inappropriate for the scattering electron, which

has a definite energy and wavevector.

Riley and Truhlar have (correctly) applied a variety of local

exchange potentials to e-He and e-Ar collisions and found some of

them to be highly successful. We won't go into all the details of
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these approximations: we should remark that they are all excellent

approximations at high energies (> 50 eV) and that the particular

approximation which we extend to the case of molecular target, the

Hara Free-Electron Gas Exchange (HFEGEl approximation, is quite good

at very low energies and smaller orbital angular momentum quantum

numbers £. At higher energies, this potential was found to give phase

shifts somewhat smaller than those obtained with close-coupling cal-

culations.

The only application to date of local approximate exchange poten-

tisls to electron-molecule collisions is that of Hara. The system

studied was e-H«, and Hara's results are most encouraging. Due to the

highly spherical nature of the target molecule, Hara decided (correctly)

that it was appropriate to spherically average his approximate exchange

potential. We certainly cannot do this for the e-C0~ system;* this

should be apparent from our discussion in Chapter 3 of the expansion

coefficients of the C0 2 charge distribution.

This introductory out of the way, we proceed in the next section

to a derivation of the particular local exchange potential employed in

the calculations of Chapter 8 and a discussion of how this potential

is incorporated into the formalism we have outlined thus far.

*In fact, a few test runs in the energy range 0.07 eV to ]0.0 eV
making the spherical averaging approximation produced crosu sections
which differed by an order of magnitude from the true result.



§4.4 Derivation of the Modified HFEGE

The derivation here presented follows closely that of Hara,

so we shall merely outline the steps, filling in some detail where we

deviate from his analysis in order to adapt the HFEGE to the problem at

hand. For simplicity of illustration, we'll consider at first a two-

electron target and then make the obvious generalizations.

Our starting point is the familiar expansion of the scattering

function in target states. We use a properly antisymmetrized

linear combination of product functions in accordance with the Pauli

Exclusion Principle, viz.,

L,2,3) + <$„(2,3)Fnri) Y*(2,3,1)

(4.21)

We have denoted the target states by <$> (i,j), the scattering function

by F (k), and the systeir. (e + target) spin function by x (i»j»k)»

The Schroedinger equation for this case is

(4.22)

T'here

By definition, <J (i,j) satisfies the corresponding eigenvalue equation

for the target, i.e..
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For the case of the target in a singlet state, the spin function is

(4-25)

Substituting Eq. (A.21) into the Schroedinger equation (4.22) and

using Eqs. (4.24) and (4.25), we obtain the usual coupled equations,

-K **W -ki 3FO(?, >»*o "
(4.26)

where V (r_) is the static potential energy averaged over the ground

state, i.e.,

The static excitation potential, which gives rise to polarization

terms (see Chapter 5) is

(4.28)

Finally, the exchange term in Eq. (4.26) is

(4.29)

4 jr ) — (£"- E"n 1J cf ( 7.t 5 ) F n / i") J i. J "2 .

There is one such term corresponding to each target state included in

the expansion of Eq. (4.21), and the full exchange- potential is simply

the sum of these terms; we have
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Let us now make the assumption that only the ground state (n •= 0)

contributes significantly to the siunntation and carry out the integral

d2 in (4.29). Using the Schroedinger equation for 4 (1,2), we obtain*

(4.31)

1 2
where •=• k = E. = E - £ is the incident kinetic energy. If we now

assume that F (r) is orthogonal to % (r), Eq. (4.31) reduces to

t
Next, WR treat this expression for the exchange potential in a

fashion completely analogous to Slater's treatment of the Hartrcc-

Fock exchange potential for hound states (as discussed in §4.2); we

obtain

where the Fermi wavevector k_(r) is defined by {see Eq. (4.14)]

with p(r) the charge distribution of the target. The function F(n) is

*Here X (r) is a core? molecular orbital, one of these making up

<ti (i.j)« and corresponds to energy eigenvalue e .
o o
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of the u»tt.'!i) i&m iiu*.e

(*."«>

with

Finally, k(r) is defined

V(r) being Che total potential energy (*stittic * cxehanfj**) and E. the

iRci«le«C Uia«?£lc energy. Frees the definition of zha Yvmt »»n»rj'.y ass

the energy »f Ehe csnsc energetic cJectirpn in the target {*<•«•» («t%e

§4.2), we can rcliaev fe».<r) t» the f irst lonisae.iott $?ot^ntial of the*

target I (by definition, I > 0) by writing T + V » K for the "

e l y t r o n , " vis;.

(4.38)

where we have as,«t«sed that the Ferai electron SCCJS the S»BC puecnef.il

V(t) as dees the scuiEtetiMg electron,* Therefore we hav«

*This i» ccrtainlv a rciwanable asKumpcioti for valuos of r £» the
vicinity of Che mx-lH, the »ost important region.



The j>n-si-r.t-r of t in £>.>. {.'..39) is extrt-stely important; smith-

fros this the forn of the captations we hove juat obtained ?.r.d those of

5*. 2 is the* sane, Th<* reason for its presence is that the scattering

electros* is not part of the "-electron "fersni sea." Thus there is a

negative energy gap between the zero of onerp/y and the Ferrai energy

£» ts defined by Eq. (4.13). The colliding electron cannot scatter

with an energy in this gap, since to <]o :u it would have an imaginary

mcrwRtuc. On*- w:ty of looking at tthat we have done by introducing 1

vould b<; to say «c have cow* up with «: new Fermi energy for the entire

sl to I'. 4-21. This car. be a confusing perspective, though,

since in point <•"" fact, the scattering filectron is still nog part of

t.h<- Ferrti sen.

An objection to this approximate potential raised by }3ara hitn-

(S)
j»t«lf and <-choii*iS !»y otl»«ir̂  is* that the ar.yipptotic kinetic energy

oiw predicts* fov tht Hcatterlr.g electron baser on ?-tq. (A.39) is

K4 * I rntiurr than f^, as it sh<",:!<? b<r. At high energies this is not

•t j»roMt"8» since {'. + I - 1", if V.. is large enough. At low energies,

the interpr<-t«ii1on of k(r) as sonse sort of classical local nomontum

for tH« .icceJer.ition (scattering) electron an discussed in 14.2 begins

to run into difficulty. Thin interpretation, in tm*n, is central to

the ahjttctJosi we .ire addressing. Finally, it should be noted that the

*s!w'r*~r«j;;.'.e nature t?f exchange to SOKC extent mitigates the problem.

This 5K nor to suKsest that the theoretical objection is not a valid

or.ft st* isuth a*« that it is not particularly si|ytificant.A

^ S v v c r . s l stii-h b i t t < M ' |*i 1 1 « ir.ss:jt In- . s w a l l o w e d i n o r d e r l o p.o n 1 o n j * w i t h
;»;>;» 2 S c a t i o n o ' ,•» !«»«-al t"Nc!i.i:-s;>.! p o t e n t L : I . !\>r e x n . i j f l o , ii i.--. so:iu>-
ihini*. « f .i Jt*.i;> <•! f t i l h t o »-i.ii-!3 t h a i j - . r o n n d - s t . i ! <• £;0,> i:: ii f r e e
!• I t'i-t r»*i» ;;»ss! lii»w«-voi', tht.' pr.'«->t •>»* tin- psunlfn.'. i:; in Jlu 1 v.i! ir.;;, ic
c o i n .s c l i i ' i u ' , .-tin! v.f r e f e r tin- sUi-pt ii-.i I n - a d t - r ii* tli" r o s t i t t s «»f
C i i a p { » * r S .
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( 21)
Riley and Truhlar have proposed a rather simple way off the

horns of this dilemma: ignore I and use instead of Eq. (4.39) the

relationship

They applied this potential (called the asymptotically adjusted free

electron gas exchange or AAFEGE potential) to e-He and e-Ar collisions

with some success. We believe, for the reasons suggested above, that

the ionization potential should be present in the expression relating

k(r) to k_(r), particularly for low energy collisions such as those of

interest to us. Moreover, it is perhaps a bit misleading to refer to

"he potential using Eq. (4.40) instead of (4.39) as asymptotically

adjusted since, of course, dropping 1 will affect k(r) for all r.

However, we did try several test calculations of e-C.O cross

sections using the AAFEGE, the results of which v.'ill be> presented in

Chapter 8. Suffice it to say that in addition to exacerbating the

already quite severe numerical problems with which we were trying to

cope (e.g., convergence), the AAFEGE gave very poor results in the

energy range 0.07 eV to 10.0 eV. For these reasons we dropped it

and returned, with considerably greater success to the HFEGE.

Notice that the HFEGE potential derived above is energy dependent,

i.e., the incident (scattering) kinetic energy appears in Eq. (4.39)

for k(r) and hence in V (r). However, once p(r), which, of course,

is not energy dependent, has been calculated, computation of V (r)
G/C

at any energy requires a trivial amount of computer time. Since we

have to determine P(r) over the appropriate integration mesh anyway
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in order to calculate the static potertial energy of Chapter 3, it is

no problem to go ahead and get V __ (r).

We do not spherically average p(r) but instead use the full

function p(r,6) for the CO- target. Therefore V = V (r,9). In

order to incorporate this exchange potential into our formulation of

Che collision problem, we call upon the familiar expansion in Legendre

polynomials, viz.,

GO,

vhere as usual only even-A terms contribute to the sum. It is worth

pointing out that the exchange potential energy is in fact a correction

to the electronic part of v»(r) as derived in Chapter 3 [see Eq. (3.61)

and the ensuing commentary]. Thus there is, mercifully, no need to

Ay

calculate, say, v 8 0(r). We stop at X = 28 for consistency with our

limit* on vf C # e l'(r).

Once we have determined v^ (r) at the scattering energy of

interest,** we simply add it to the appropriate static expansion

coefficient, obtaining

*In this chapter, we shall tack on a subscript "st" to the static
expansion coefficients to distinguish it from the exchange terms.

**Our code to do this is called EXCHPT. It does 32-point angular
Gauss-I.egendre quadrature similar to that discussed in Chapter 3.
The charge distribution as computed using CHGDST is input along with
the usual assortment of parameters.
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As a check on the code, we can do one case by hand with alacrity,

namely the r •> 0 limit. We have

since

/

At very small r, p(r) reduces to [see Eq. (3.12)) the X = 0 expansion

coefficient, i.e.,

(4.45)

Thus the exchange potential in this limit c#n be written as

This expression was used to verify the code which calculates V (r).

As a further check, we also reproduced Hara's e-H» cross sections.

It is interesting to observe that using the HFECE without the addi-

tional approximation of spherical averaging produces only slightly

better cross sections for e~H? scattering.

Fortunately, there are no particular numerical problems or

such associated with calculation of the HFEGE. Therefore we'll

move right along into a short look at the results of these computations.
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54.5 Results and Coiimc-nts: Local Exchange Potential for e-CO2

Coll isions

Typically, the calculation of v?x(r) for A = 0,2,...,28 over our

standard integration mesh (see Chapter 8) required <16 seconds of CDC

7600 time. The largest part of this was accessing and storing the

charge distribution over the predefined r- and 0-mesh discussed in

Chapter 3.

Figure 4.1 shows v, (r) in the HFEGE model for r = 0.0 to 3.0 a

A O

at an energy E. = 0.07 eV for two quite different cases, A = 0 and

A = 14. The behavior of v^,(r) is typical of that of the exchange
ay

expansion coefficients for large values of A. The magnitude of v« (r)

decreases as A increases and its effect on becomes significant

only in the vicinity of the oxygen nucle^. v.r - R = 2.19A40 a in

this application). Three intermediate cases, A = 2, 4, and 6, are

illustrated in Figure 4.2.
On the whole., tin- effect of V (r) is clearly attractive: it

ex
-y s t "*•

deepens the potential V(r) over the static-only case, V (r). At the

level of the potential energy expansion coefficients, there are small

regions of r for certain A where v,(r) is smaller in magnitude than

vf (r). [Remember that each v. (r) multiplies P,(cos9) in the expression

A A A

for the potential energy V(r).] Nevertheless, the general effect is

cle.ir. Figure 4.3 shov.'s graphs of the static [v, (r)] and total

[v,(r) = v. (r) + v, (r)] expansion coefficients for several values of
A A A

A.

It tnay appe.-ir from Figure 4.3 that, after a l l , the effect of

the fxrh.tngo potential i s rather small ami therefore that the multiple

inaf:liinaticms of the chapter really amount, to much acio about nothing.
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Figure 4.1

The HFEGE potential energy: expansion coefficients for \ ~ 0 and X
at 0.07 eV for e~C02 scattering.
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The HFEGE potential energy: expansion coefficients for \ =• 2, 4, and 6
at 0.07 eV for e-CO2 collisions.
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Figure 4.3

Static (solid) and total (dotted) potential energy coefficients for
e-CO, for A. = 0, 2, 4, and 14 using the HFEGE potential energy at
0.07 eV.
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Wrong! For as we shall discover when we. actually study cross sections

(still a couple of chapters away in 8), the addition of the exchange

potential has a huge influence on the results obtained from the coupled-

channel calculations. The same is true of the induced polarization

terms, which we'll get to in Chapter 5.

The energy dependence of V (r), to which we alluded in the pre-

ceeding section and which appears in Eq. (A.40) for k(r), makes so small

a change in v, (r) that it doesn't even show up well on a graph. The

two extremes of the cases we considered, 0.07 eV and 10.0 eV, are com-

pared for A = 0 and X = 4 from r - 0.0 a to r = 3.0 a in Figure 4.4.

Even this small difference affects the cross sections, though.

The AAFEGE, mentioned briefly in §4.4 and used by Riley and Truhlar

in e-atom problems, is more attractive than is the HFEGE. The two

potentials are compared for A = 0 and X = 2 at an energy of 0.07 eV in

Figure 4.5. We did carry out a couple of calculations using the AAFEGE,

so this figure is presented for completeness.

§4.6 An Alternate Approach to the Exchange Question

In a sense, we have focused so far on one of the two effects of

exchange which were mentioned in §4.1, namely, the short-range attrac-

tive character of the interaction. In fact, it is entirely possible

(though not clear) that some of the orthogonalization aspects of ex-

change are incorporated in the potential we employ. In any event, an

alternate approach to the problem of the inclusion of exchange exists

due fo Burke and co-workers. The philosophy behind Burke's approach is

quite different from ours; it is predicated on enforcing orthogonality
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Figure 4.4

energy dependence of the HFSGE potential energy: Expansion coefficients
for \ - 0 and X = 4 at an energy of 0.07 eV and at 10.0 eV.
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Figure 4.5

Comparison of the expansion coefficients foe X • 0 and X • 2 for the
HFEGE and AAFEGE potential energies.



of the scattering function to the core orbitals which have the same

symmetry.

We chose not to adopt this technique for reasons to be presented

below. However, it is an important contribution, and so we should

consider it briefly here.

The first in a series of papers developing this approach was

(24)

written by Burke and Sinfailam and is important to the present dis-

cussion mainly as a precursor. These authors use the Kohn variational
(25)

principle to derive coupled equations for electron-molecule scattering

in a body-fixed reference frame. They take into account exchange,

obviously; otherwise we would not here be considering their work. They

do not include polarization effects. Single-center coordinates are

employed, and a single-configuration fully antisymn:etrized molecular-

orbital wavefunction for the system (e + molecule) based on SCF target

orbitals is incorporated into the theory. In deriving the coupled

equations fusing the tiresome but apparently inevitable expansion of

V(r) in Legendre Polynomials a la Eq. (3.39)], Burke and Sinfailatn

explicitly use the orthogonality constraint in the exchange term.

Having obtained the resultant coupled equations, cross sections in the

lab frame are derived from the body-frame S-matrix by a transformation

which neglects the rotational spacing of the target.*

A significant advance in this work, which is really rather tradi-
(26)

tional, was subsequent!/ made by Burke and Chandra, who developed a

*We have performed a somewhat similar analysis in our derivation of
the rotational excitation cross section from body-frame T-matrix
elements. Seo Chapter 7 for details.
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new way to treat exchange which is conceptually bas^d on the notion

(27)
of a pseudopoteutial. This procedure entails replacing the exchange

terms in the usual coupled equations by Lagrange multipliers which

are determined so as to force orthogonality of the scattering orbital

to bound orbitals of the same symmetry. The resulting coupled differen-

tial equations take on the form

where the summation on the right-hand-side runs over all bound or-

bitals, <J> m /(r) which have the same symmetry as u . ^ C r ) , assumed to

be M1 in number. Techniques for solution of these equations are dis-

cussed in reference (26). These authors believe that the resultant

terns have tht* effect of diminishing the influence of the nuclear

singularities by keeping the electron out of the vicinity of thd nuclei.

However, the effect as seen in their convergence studies on e-N

collisions is none too strikinp. and suggests a consequent "saving" of

only a couple of terms, e.g., v.,(r) and v.,(r), over the more con-

ventional

(29)
The same authors have presented an outline of how to carry out

a similar calculation on the extremely challenglnf. problem of £>-H?0

col.! isisnsK. However, to dtitu no calculations tisini; this KseEhot! on

this problem have been reported.

A couple of flurcher it-ssr* significant b»*t noRechvlecis inc«restinf.

i!|.!|>! ir.i? >f»nj! «K«! <»ss!:fttstf«nif of cJss*t ;«5*}*rMa«:h h-riv«; •Jf';*tu"»r«t4, These

itwl iph« ft. c!* sirss! "srism of r**t.tt f **P-IJ «*K«; if at '{«*»« cms*; spctlflS'i'. in *»-*Ĉ
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collisions, documentation of a computer code based on this work,

and application of the method to a heteropolar target, CO.

Why, then, did we choose not to adopt this procedure at the outset?

First, there are certain problems with the theoretical underpins ngs of

the method. For example, it in no way adjusts scattering wavefunctions

corresponding to symmetries for which there are no core orbitals to

orthogonalize to. This could be a serious complication. For example,

let's consider e-N, scattering. This is precisely the system which

Burke and Chandra choose for their initial study. Now, there is a

2
fairly well-known II resonance at an incident energy of about 0.2 Ryd.

o

This resonance is thought to be almost purely d-wave. The problem is

that the orbital occupancy of ground state N~ is

There is no core TT orbital. The aforementioned resonance does not
g

appear in the correct energy range in the static-exchange calculations

(*? fi ̂
of Burke and Chandra. They d_o ultimately produce the resonance

by introducing a polarization potential and appropriately adjusting

the cutoff parameter (see Chapter 5). This is an entirely appropriate

way to proceed, but it does make the polarization potential entirely

responsible for the resonance. This may present an unrealistic

physical picture of the scattering. Moreover, the deficiency here

illustrated could conceivably be more serious in other cases. For

example, in e-H- scattering, where the target has only la orbitals,

'33)
how do you produce the 3.4 eV t> resonance,v which arises in part

(34)
from O scattering functions?
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In contrast, the local exchange potential, however inelegant the

assumptions on which it is based, at least corrects all symmetries.

The problem suggested above with the orthogonalization procedure can

be viewed as a partial consequence of the fact that it simply neglects

one rather important aspect of the effect of exchange.

A second probable problem caused us to shy away from Burke's method

as a first crack at the exchange question. As should become apparent

in Chapters 6 and 8, the solution of the coupled-channel equations for

e-CO_ by the integral equations technique is by no stretch of the

imagination straightforward or easy numerically. Indeed, in some ways,

our problem pushes this approach to the scattering far beyond previous

applications. Given this fact, it was not clear that the further

numerics associated with the orthogonalization would not make these

computational complications even worse.

Finally, taking a ruthlessly pragmatic point of view, it seemed

clear that introduction of a local exchange potential, which was

theoretically somewhat more appealing for the reasons suggested above,

would be much easier than the orthogonalization procedure.

Had the modified HFEGE not performed so spectacularly, t?e would

probably have gone ahead and tried a combination of the two ideas.

In fact, such a scheme seems to us to be the most interesting and

reasonable way to approach the problem of exchange, which will con-

tinue to haunt us so long as we seek to solve electron scattering

problems involving many-electron targets. In the simple case of, say,

an H- target, it is possible to make clever simplifications of

the exchange kernel appearing in the coupled equations for the

scattering and thence to solve said equations to a relatively high

degree of accuracy. However, when confronted with a 22-electron,
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inordinately anisotropic target, it is less clear how to proceed.

"Electron-big molecule" problems are not likely to go away and will

remain of fundamental and practical importance in the forseeable

future. At present, it seems that these problems, which would put

considerable strain on even the newer less-well-established L -

variational approaches to electron-molecule collisions (see Chapter 9 ) ,

could be profitably attacked along the lines suggested here. Clearly,

all one's intuition and skill at "model building" will have to be

brought to bear on such systems.

However, returning to earth, C02 is not the place to start such an

admittedly fascinating study. One should begin with simply atomic

targets, say He and Ar, then go to simple homonuclear diatomics such

aa H, and N_, and perhaps a mildly polar molecule, say CO. Then perhaps

it would be reasonable (if numerically feasible)to try C0_. Our goal

at present is to get reliable cross sections for e-CO_ scattering, and

we find that the modified HFEGE presented in §4.4 works quite well.

We shall see this once we plow through a short discussion of polari-

zation potentials (Chapter 5) and a not-so-short presentation of

coupled-channel equations and their solution by integral equation

methods (Chapter 6 ) .

110



Chapter 5. Long-Range Terms and the Induced Polarization Potential

Solomon saith, there is no new
thing upon the earth. So that as
Plato had an imagination, that all
knowledge was but rememberance,
so Solomon giveth his sentence,
that all novelty is but oblivion.

-Francis Bacon
Essays (LVIII)

§5.1. Introduction: Why We Need a Polarization Potential.

And now for something completely different. In the last two

chapters we studied various kinds of interactions between the

scattering electron and the undistorted target molecule. The

derivation of the static contribution to the electron-molecule

potential energy was more or less straightforward, but in the last

chapter we plunged headfirst into the world of exchange, a universe

of eerie approximations, weird models, and strange assumptions.

Throughout these discussions, furtive reference has been made to

additional potential energy terms; it is to these induced long-range

terms that we turn in this brief chapter.

The static and static-exchange approximations neglect all

perturbations of the target by the scattering particle. This

assumption is not, in general, particularly reliable. The incident

electron, being a charged particle, will act to distort the target
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if its kinetic energy is not too large. This effect can be

incorporated into the theory by means of the inclusion of a

simple analytic term V (r) in the potential energy, yielding for

the final potential energy

(5.1)

In section 5.2 we will examine the physical origin of

this additional term and the theoretical justification for the

particular analytic form we employ, Eq. (5.16). We do this

initially in the context of electron-atom collisions because

most of the pioneering work in this area focused on such problems.

We then turn in section 5.3 to the particular case of C0 ?, examine

its polarizability, and close by summarising the results ive have

obtained for the total potential energy.

§5.2. Adiabatic Polarization Potentials in Electron Scattering

The static and static-exchange approximations could be quite

useful for scattering by electrons with large incident kinetic

2
energies, k , since the target electrons will not have sufficient

time to adjust to the perturbing influence of the electron ztpninp,

by. In point of fact, the response of the target in this case is

highly nor.-adiabatic and is manifested by electronic- excitation

of the larger.

The hitch is that w? are com-1-mini here with .slow collisions.
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In such cases, it is appropriate to view the response of the

target as occurring adiabatically*. This concept sets up an

appealing physical picture of the electron, when viewed from

the perspective of one of the target electrons (to anthropomorphize)

as frozen at position r. This electron will thereby set up a

static external electric field which will polarize the target.

In fact, we shall see that a dipole moment is induced in the

target. It is therefore proper to ascribe the effect to an

induced polarization interaction and to call the resulting potential

(2)
an adiabatic polarization potential.

This theory was first introduced in thp study of e-H collisions

where the potential energy has the long-range form

a being the static polarizability of hydrogen (in atomic

units, 4.5 au). In order to understand the origin and nature of

the forces reflected in polarization potentials, let's take a

look at this comparatively simple problem.

The logical if obvious way to obtain a potential energy

within the picture suggested above is via time-independent

(4)
perturbation theory. ' The first relevant quantity is the

*The proliferation of the word "adiabati«t" and its cohorts (e.g.,
"impulse") in electron scattering theory is a source of nearly
limitless confusion. Care musfc be taken to understand what is
responding adiabatically. Contrast, for example, the adiabatic
fixed-nuclei approximation to the approximation here discussed.
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first-order perturbed wavefunction for the target:

where 4> (ri) ^ s '^e unperturbed ground-state target wavefunction,

the sura in the second term runs over all target states, and the

excitation potential matrix element is defined by

The wavefunction in Eq. (5.3) goes to zero asymptotically as

r"2.

Of even greater significance is the second order correction

to the potential; this is the induced polarization potential.

We have

One can show by direct evaluation of the potential for e-H

scattering that V (r) in Eq. (5.5) satisfies the requisite as-

ymptotic condition (5.2} with a equal to the static polarizability.

Alternately, Martin et. al. demonstrate ' that

V (r)̂ r "|2 ~ ^ — E — f
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Since the polari2,..')ility is given by

— — _ — . (5 7 )

Eq. (5.6) reduces to (5.2) as required. Clearly, as asserted

earlier, an induced dipole moment has appeared.1

Important light was shed on this subject by Castillejo,

Percival, and Seaton , who showed that if the incident energy

2

k is so small that inelastic collisions are energetically

forbidden*, then the adiabatic theory is valid as r ->• <*>. The

asymptotic form of the full system wavefunction for the H

partial wave becomes (to first order in the distortion)

where 6% is given by Eq. (5.3) and Xn~(r) is the scattering

function. Castillejo et. al. further show that if we introduce

a radial scattering function Up—(r) in the usual way, then

the equation this function satisfies can be written asymptotically

as

(5.9)

2
»For electron-hydrogen scattering, this amounts to k < 0.75.
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This last point is particularly interesting. Expounding

a bit on it, what Castillejo and colleagues did was to write

the usual coupled equations for the ground-state case,

and proceed to prove ttet the coupling terms on the right-hand-

side could be replaced by a diagonal potential energy, which for

large r varies as - a/2r , with a given by Eq. (5.7). The reason-

ableness of this idea is suggested by the observation that as

r grows to infinity, the matrix element U , ( r ) for Y 4 Y1

—2
goes to zero as fast as r

In slightly more physical terms, this result means that

the effect of closed channels in the eigenfunction expansion

method is to take into account induced polarization effects.

One of the most interesting conclusions reached by these authors

is that for e-H collisions, including all of the closed bound

(discrete) hydrogen atom states only gives 81% of the polarizability;

the rest comes from continuum states of the target. One is

saved from having to include all these states in an actual

calculation by the fact that it is valid to take the experimentally

(or ab-initio theoretically) determined polarizability, incorporate

the long-range form into the potential energy, and just ignore

closed channels insofar as induced interactions are concerned.

*Tho.ir matrix element includes the nuclear repulsion term as
well as electron-electron interactions.
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In fact, life is not quite that simple. We suggested above

that this picture breaks down as the scattering energy increases.

Well, it also ceases to be valid for small r. Thinking intuitively,

we find that this makes sense, for as the scattering electron

"speeds up" as it approaches the target, the adiabaticity of

the response of the target becomes unrealistic. Martin et. al.

showed that if one uses the perturbation theory expression for

V (r) directly for all r, the effect of the perturbations is

over-estimated at small r, the error being particularly serious

for s-waves in electron-hydrogen scattering.

This difficulty is easily circumvented by the use of a cutoff

feet;

(10)

-4
function, which effectively removes the r polarization potential

at small r values.

Such an approach is usually taken in electron-molecule

collision problems. Much of the analysis described above and

the validity of the adiabatic polarization potential generalize

readily to molecular targets. There is one huge difference,

though: the polarizability of a molecule is not spherically

symmetric. This results in a P2(cos 9) term in the long-range

analytic form along with the usual P~(cos 8) contribution.

Another interesting situation obtains in the case of

molecular targets. Here we have electronic excitation plus

two additional kinds of motion and corresponding excitations:

rotational and vibrational. These require so little energy that

one can study the related inelastic processes within the context
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of the adiabatic approximation presented in this section.

The standard analysis of the polarizability of a molecule

proceeds to generate two constants, aJt and a x, the corcponents

of the polarizability parallel and perpendicular to the inter-

nuclear axis. (These quantities are often denoted a for the
z

parallel component and a for the perpendicular component.)

Usually, these are combined to yield the spherical and non-.

spherical polarizabilities.

respectively. The resultant long-range polarization potential

is given byv

(5.12)

where we have left in PQ(cos 9) = 1 for clarity.

The usual application of Eq. (5.12) to electron-molecule

problems is to incorporate the aforementioned cutoff function.

A typical such function might have the form

C M - i-e~tr'r*' . (5.i3)

where r is the cutoff radius and p is the cutoff exponent.
C • • • i

118



Other more complicated forms have been investigated for particular

(13)

targets with considerable success.

Before we examine our particular application of all this

theory, we should point out that intuitively one expects polari-

zation forces to be quite important at low energies for angular

momenta £ > 0. Thinking classically, we recall that the impact

parameter is b ^ &/k, so for slow collisions (small k) and finite

angular momentum, the "distance of closest approach" isn't

really very close, keeping the electron in the far region, where

polarization forces will dominate. Granted that this argument

is crude, it is true that in electron-atom scattering, polarization

forces are found to be the dominant influence for sufficiently

small k. The analysis is complicated enormously for electron

collisions with mollecular targets because of the hated partial

wave coupling, without which this report would be substie.lly

shorter.

§5.3. Application to CO,, Targets.

For CO2, the parallel and perpendicular components of the

polarizability are determined to be

- 4 0 . 1 * i O ~ 2 S cwi3 (5.14a)

(5.14b)
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From Eq. (5.11) we obtain the spherical and non-spherical

polarizabilities, viz.,

(5.15a)

3O

* /© c* (5 15b)

3 —25 3

where we have used the fact that 1 a = 1.4801 x 10 era

and 1 au = ea for polarlabilities to convert to atomic units.

To put this quantity in perspective, we present polariznbilitics

for several other familiar molecules in Table 5.1. Clearly,

there is nothing particularly striking about the values for CO,.

We choose to employ a cutoff function for the induced polar-

ization terms of the form (5.13) with r ** = 2.59 a ami p = 6.

The value of p was selected to give a fairly sharp cutoff; this

choice is quite standard for electron-molecule problems. The

choice of 2.59 a for the cutoff radius is somewhat less obvious.

Since it involved values for particular cross sections, we shall

defer the explanation of this selection to Chapter 8.

There is one further long-range interaction which slvjld be

kept in mind: the r quadrupole term discussed in Chapter 3.

This is a P-(cos 9) contribution. It differs markedly fron the

non-spherical polarizability term in that it is not_ induced;

rather it is an intrinsic property of the target charge distri-

bution (see §3.8). Since wo choose to remove this interaction

from the determination of tho ^(r) static term for convenience,
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we must define a quadrupole cutoff function for use when we

add the interaction term back in at the time of solving the

scattering equation (see Chapter 6). We again use the form (5.13)

with rc
q * 4.0 ao and p = 6.

Putting all this together, the full long-range part of the

electron-CO- interaction potential energy is

* 3 c%(r)*(5"

To this we add V (r) as given in Chapter 4 and V (r) with the
G3C S u

quadrupole removed as described in Chapter 3. The final penultimate

potential energy is then

After all the work of the last three chapters, what do we

do with this potential energy now that we have it? The answer

will be found in the next chapter, where we look at the scattering

equation.
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Chapter 6. The Scattering Problem: Solution of Coupled Equations by

Integral Equations Techniques

I dare say that's an idea which
has already occurred to you,
but with the weight of my great
mind behind it, no doubt it strikes
the imagination nore forcibly.

-Lord Peter V.'imsey
in Strong Poison
(Dorothy L. Sayers)

§6.1. Introduction

In this chapter we at long last confront scattering theory.

Our goal is to get from the potential V(r) of Eq. (5.17) to the

T-natrix from which we can extract cross sections. We shall defer

discussion of the calculation of actual cross sections to Chapter 7,

preferring to keep our attention here focused on the coupled radial

equations and their solution.

We shall briefly outline the derivation of the radial coupled

equations in the body-frozen reference frame in §6.2; a very detailed

presentation of this material by the author is available elset\There.

The next two sections show how to solve these equations in general

via the integral equations algorithm: the method is explicated in the

context- of single-channel scattering in 56.3, and extensions to
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multi-channel coupled equations are considered In 56./.. The calculation

of Che T-utatrix is taken up la §6.5. A couple of important modifications

to the standard integral equations formulation are discussed in §6.6,

and various numerical problems which must be addressed in solving our

particular problem form the substance of §6.7.

The integral equations method, which forms the main topic of

this chapter, has been applied to a number of problems with some
/2_g\

success . If it is possible to treat exchange in an approximate

yet physically reasonable way*, e.g., as a local interaction along

lines outlined in Chapter 4, this method provides an accurate and effi-

cient means for solving radial coupled equations. However, application

of the algorithm to realistic systems such as the one under consideration

here necessitates considerable care and a nuii-ber of extensions of the

standard methodology. We shall e::anine these modifications in the

sequel. The actual calculations we performed for e-CO- scattering are

the subject of Chapter 8.

§6.2. Obtaining the Coupled Radial Equations

For completeness, we here survey the derivation of the radial

coupled equations in a body-fixed reference frame. We make the

fixed-nuclei approximation, allowing for no rotation or vibration

"If one actually includes the exchange kernel in the algorithm, as
conventionally formulated, one in effect Tyust solve twice as many
equations as really necessary- Seo. reference (.1).
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of the target*. The CO, molecule is assumed in our application to

be frozen in its symmetric linear nuclear configuration in the ground

electronic state (see Chapter 3). This picture is reasonable on

physical grounds provided that the incident electron kinetic

—4
energy is not less than M O eV. We thus choose the internuclear

axis to lie along the polar axis of our single-center coordinate

system. We make the further approximation that the full interaction

potential energy can be represented by a local function of the scattering

coordinate. This assumption has been discussed at length in Chapter

4, and in Chapter 5 we presented detailed expressions for the total

potential energy.

Now, we begin with the non-relativisitic Schroedinger equation

for the electron-molecule system, i.e.,

where R appears parametrically and R not at all, since we are

working in body-fixed coordinates. The Hamiltonian in Eq. (6.1)

is conveniently written as

« . »

*This does not mean that we cannot calculate these excitation cross
sections eventually (See Chapter 7).1 For example, if certain con-
ditions are satisfied we can use the adiabatic nuclei approximation to
determine them. This theory was discussed by the author in reference
(1).
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The Interaction potential energy was di.scusscd in section 3.1, The

target functions are eigenfunctinns of the molecular i!aniltoni.in,i.c.,

whov'i e are the SCF energies in the model employed in this work

and the functions 6 (r.;R) ire the wavefunctions determined by

McLean and Yoshimlne and discussed in Chapter 3.

We now expand the system wavefunction in the complete set

of target states defined by En. (6.3), obtaining

We further expand each scattering function F ,(r) in spherical

harmonics, viz.,

where we denote the incident channel by (<t n). [Notice that we work

in the formalism of "asymptotic" partial waves . Thus the set

of functions used will have to be appropriately combined in order

to produce the true scattering function, which must behave asymp-

totically like an incident plane wave plus an outgoing spherical

scattered wave.] The summation in Eq. (6.5) is restricted by the
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:syr»r:«*t r>* of the «-COv system. Thus if the state under consideration

is gerdde , only even-?, terms contribute to the s;:r*i, while if it

is unguradtf, only odd-£ terras contribute. For this reason, we might

label the uavefunction with an additional subscript, call it n, to

denota the symmetry of the total system. However, in our formulation

this in not really necessary, since the projection of the electron's

orbital angular momentum along the internuclear axis is a good quantum

number. Thus, the potential matrix element which couples various

partial waves within the ground electronic state ir diagonal in ra

[sec Erj. (3.43)3.

Dropping all but the ground electron"c state in the summation

of Eq. (6.A), taking the above facts into account, and using the

matrix elements determined in Chapter 3, we obtain the coupled radial

differential equations

In this set of equations, k is the incident electron kinetic energy

(m)

(in Rydbergs), Vj», is given by Eq. (3.43), and we have sup-

pressed the label n = 0 for the ground state on the scattering wave-

function.

The various symmetries are defined by m and the allowed vilues

of & according to the inversion symmetry of the state. We have

2o : 7H = 0 t j2 = 0} 2} '% -.. (6. 7a)
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(6.7b)

4= 2, %&;••• (6.7c)

(6.7d)

and so forth.

The radial vavefunctions u,, (r) obey the usual partial

(12)
wave scattering boundary conditions ,

- 0 (6.8a)

in)
where K« n is an element of the K-matrix and 2. denotes the

o
initial channel. For the S-matrix, we use K and the familiar result

where 1 is the unit matrix, and tha T-matrix is related by

7" = ± - S

We obtain cross sections froM the T-matrix as desccibed in th.?. next
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chapter.

It is worth remarking that the coupling of partial waves in

Eqs. (6.6) is governed by restrictions on the matrix elements parading

through these equations. These "selection rules" were discussed in

Chapter 3; many of them are consequences of particular Clebsch-Gordan

coefficients which appear in Eq. (3.43).

A more "physical" factor influencing the relative importance

of various partial waves with finite angular momentuta is the

2
centrifugal barrier, -£(£ + l)/r , as manifested through the effective

potential, which appears on the left-hand-side of Eq. (6.6), i.e.,

r)= ~ "SV.a \r). (6.11)

We discussed the physics of the effective potential in §3,7 and v?ill

return to it later in this chapter. In terms of this quantity, Eqs.

(6.6) take on the slightly more illuminating form

. (r) ue!*f (r). (6.12)
4'+* ** A

In closing, we should say a word about matrices. Although

we initially present the integral equations procedure (in the next

section) in the context of a single-channel problem for purposes of

clarity, the multi-channel matrix generalization is of immediate

importance.

The point to be made is that each of Eqs. (6.6) is a second-
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order linear ordinary differential equation. Therefore , there

are 2N linearly independent solutions to the set (where each solution,

of course, has N components, one for each partial wave coupled into

the problem). Of these solutions, N are regular at the origin and

N are irregular. Physics, as manifested in the boundary condition

of Eq. (6.8a), immediately demands that we dump the N irregular

solutions, but this still leaves us with a total of N linearly

independent solutions to Eq. (6.6). Thus it is appropriate to tack

an additional subscript, a "solution index", onto the scattering

fj.iction, writing, say, ucu(
r)« Thus, each set of N solutions to

Eqs. (6.6), each element of which has N components, is quite ap-

propriately represented by a matrix u (r). In fact, the solution

index corresponds to the initial channel, which we called 8. in

Eq. (6.8b). Thus, using an alternate form of the boundary conditions,

we have

( ) c (kr -S — )

In the partial wave analysis, the solutions evidently do not

(12)satisfy the required scattering boundary conditionsv ',

where f. (r) is the scattering amplitude from which one obtains
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total cross sections and other sundries. There is no cause for panic,

though, since we can always form a linear combination of the solutions,

Cr)Y(fl (6.15)
tn

and determine the expansion coefficients so that Eq. (6.14) is

satisfied.

One further point should be nade and then we shall begin.

The method to be outlined below is quite general in the sense that

it is veil applied to body-framo equations such as (6.6) or to the

set of coupled equations v?hich obtains in tbe laboratory (or space

fixed) reference frame. This approach to the electron-molecule

problem is outlined in Appendix 2. It is usually formulated by coupling

the electron's orbital angular momentum to the molecular rotational

angular momentum to form a total angular momentum. The resultant

coupled equations look like

where (j£) denote the initial channel. These equations separata into

sets according to J. The matrix elements in Eqs. (6.15) are quite

different from our old friends of E>]. (3.43). The feature to be noted

here is that the mathematical form of Kqs. (6.16) and its attendant

131



boundary conditions,

(6 17b)

is the same as that of the body-frame equations (6.6) and (6.8).

[In fact, this is a key point in the frame transformation theory of

electron-molecule scattering. See reference (15).] Provided one is

very careful to keep his indices straight, precisely the same

numerics can be used to solve both sets of equations. In point of

fact, we began our study of the e-COo problem in the lab frame,

shifting over to a body-fixed frame only when it became apparent

that such a frame was more appropriate owing to the enormous

number of partial waves required for convergence. Nevertheless, the

numerical aspects of the problem were the same in both caseSj-and

we have codes to treat both frames.

§6.3. The Integral Equations Algorithm; the Single-Channel Case

There exist a v;ide variety of approaches to the problem of

solving a set of coupled, second-order linear ordinary differential

equations. One of the most v/idely used of these is the Winnerov

> which takes tin; equations on their own terms and solves
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them as differential equations. An alternate plan of attack is to

convert the set of coupled differential equations into a set of

(2—9)
coupled integral equations and solve these using quadrature

This is the scheme we have adopted and modified to tackle e-CO-

scattering.

In words, we shall take our set of coupled differential

equations with appropriate boundary conditions and write a general

solution matrix as the sum of a homogeneous solution which is regular

at the origin and an inhomogeneous (or particular) solution. We

then obtain an integral equation for the particular solution in

terms of a Green's function which has built into it the aforementioned

boundary conditions. (We also determine the homogeneous solution

with ease.)

To solve the remaining integral equation, we write it so that

it separates into a homogeneous equation, which turns out to be a

Volterra equation of the second kind, and an inhomogeneous equation,

the solution of which turns out to be equal to a constant times the

homogeneous solution. Thus the solution of the whole problem is

reduced to solving a Volterra equation, which is accomplished by

quadrature.

An excellent presentation of the standard method in the case

of coupled equations is available in reference (17). Believing that

new numerical methods are best introduced in a simple context, we

here present a fairly detailed derivation for a potential scattering
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problem. The multi-channel equations appear in the next section.

The familiar partial-wave scattering equation for a spherical

potential(18) is

(6.18)

where % - 0,1,2,... correspond to s-, p-, d-wave scattering, etc. and

where U(r) is the potential energy in Rydbergs. [Notice that a set

of N such equations obtains if we set the off-diagonal matrix elements

in our coupled equations equal to zero.] As usual, we require

The asymptotic boundary condition can be written as

where we have assumed that r'U(r) goes to zero as r approaches infinity.

An equivalent boundary condition is

(6.19O

where the (now) scalar K-"matrix" is related to the phase shift

by
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= -U j, (O.

For convenience, let us define the differential operator

A - a> *-?« *k <"6-21>

so that Eq. (6.18) becomes simply

( 6 > 2 2 )

(19)
Any solution of Eq. (6.22) can be written as the sum of a hoiso-

geneous solution uA(r), which is the general solution of the homo-

geneous equation

J^ vt.(r) -0 j (6.23)

and a particular solution uP«(r), which is one solution of Eq. (6.22).

(Sometimes, the homogeneous solution is called the "complimentary

function" and the particular solution the "particular integral".) Thus

we have

(6-24)

The solutions of the homogeneous equation (6.22.) a^e tho far.iliar
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Ricatti-Bessel and Ricatti-Neumann functions , which we shall

write j»(kr) and n,,(kr), respectively. Equivalently, we could use

the Riccati-Hankel functions of the first and second kind, defined as

i Hj (k.r) (6.25a)

. 2 5 b )

These various functions all satisfy the spherical Bessel equation;

they differ in their asymptotic behavior as

(6.26a)

(6.26b)

(6.26c)

(6.26d)

They are all related to the corresponding spherical functions as,

for example, jj(kr) = krj^(kr), etc. Clearly, only the Ricatti-

Bessel function satisfies the boundary condition at r = 0, viz.,

Eq. (6.3.9a). Therefore the homogeneous solution is
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We solve for the particular solution by using Green's function

(22)
methods . We seek the solution of the equation

r,!-') = jCr-r'), <6-28>

where 6(r - r") is the Dirac delta function, with the usual property

that

-too

"" ' ') . (6.29)

Then the particular solution to Eq. (6.22) is simply

Off

tlj/r) «) <J(or')Urr'J W^ ̂  ) Jr'. (6.30)
o

For r •/ rf, Eq. (6.28) becomes

Wtr')
s 6 (rtr') (6.31)

It follows that the Green's function is given by

ajLCJtr) r<r
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where we have chosen the particular Ricatti function for r>r' to

match the desired boundary conditions (see below). To determine

a and b, we match across the boundary at r = r1. Integrating between

(231
rf - e and r1 + e, we obtain '

(6.33)

Integrating again, we find

p i \ , c 0 (6.34)

If we substitute Eq. (6.32) into (6.33) and (6.34), let e -> 0, and

carry out some rather lengthy and boring algebra using the relationship

which is satisfied by any of the four Ricatti functions, and lots of

scratch paper, we obtain the full desired Green's function, viz.,

where we have also used the fact that
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^̂  iHJ^

(6.36)

Now, where are we? We set out to solve the Schroedinger

Equation (6.18) for the H partial wave subject to the boundary

conditions of Eq. (6.19). The solution u.n(r) is given by

(6.37)

where Gj(r,r') is given by Eq. (6.35). The asymptotic and r = 0

boundary conditions eve contained implicitly in this equation with

the Green's function we are using. Equation (6.37) is a n integral

equation for u,p(r); by solving it and examining the solution in the

limit r •*• °°, we can determine phase shifts and cross sections for

the £ partial wave.

Perhaps a word or two about integral equations in general

(25)
is in order. The general form for such an equation isv '

a.
where f(x) is the unknown function, X is a constant parameter, and

h(x) and g(x) are known functions. K(x,y) is called the kernel

of the equation. Several special cases have been the subject of

intensive study , e.g.,

h(x) = 0 Fredholm Equation of the First Kind
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h(x) = 1 Fredholn Kquation of the Second Kind

K(x,y) = 0 y > x Volterra Equation

We seek to use this knowledge to solve our equation, (6.31).

To do so, we reluctantly introduce some new notationv . Let

( 6' 3 8 a )

and define r̂ , = min (r,r') and r> = max(r,r'). Then the Green's function

becomes

and the integral equation (6.37) can be written as

or, equivalently if less clearly, as

tr ̂ FirMCf) *„&) Ar*.



The problem is that this equation is not obviously in a convenient

form such as those alluded to above. However, by biting the bullet

and rewriting this equation one last time we can convert it into a

special type of Volterra equation(25) We begin with

W ) K,^ Cr> ) Ar i

)Utr') 14

If we now make the identifications in the general form:

(6.A0a)

(6.40b)

(6.40c)

(6.40d)

(6.40e)

(22)we see that we have a Volterra equation of the second kind, ' with

the inhomogeneous term, g(x), given by Eq. (6.40b).

Introducing homogeneous and particular solutions to this
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equation, say u.ff(r) and u.0(r), respectively, we find tha*- the

homogeneous solution satisfies a Volterra equation of the first kind,

- (6.41)

while the particular solution satisfies the aforementioned equation

of the second kind.

To solve for the particular solution, we shall introduce a.

normalization constant C defined as

Because the particular solution satisfies an inhomogeneous Volterra

equation, the normalization is not arbitrary, and we cannot just

define C = 1, for example. If we substitute this definition into

the particular equation and choose C such that

W(f ')(Xr')[yfe>') 4- C Ykfi(<<) ] **' * C-
 (6-43>

then the particular equation reduces to
r
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which is identical to Eq. (6.41)! Therefore we have

\, u -«:, w
and the inhomogeneous solution is related to the homogeneous

solution via

Finally, the full solution for the % partial wave is simply

(6.45)

This means that all we have to do to treat the problem at hand is

to solve for the homogeneous solution. Solving for C in Eq. (6.42)

we find

o

so that the full solution can be written as

)i/e fs')J~'l (6.47)
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It is important to keep in mind that we solve (by quadrature)

for the homogeneous solution u°Av), not for the physical solution

u, 0(r). We determine the latter once we reach the asymptotic region

(i.e., values of r such that the potential is effectively zero) via

Eq. (6.47) and extract the phase shift by boundary matching to a

linear combination of Ricatti-Bessel and Ricatti-Neumann functions,

S, (kr)
(6.48)

So, how then do we solve for u, ̂(r)? The equation under |
I

consideration is (6.41). Although a variety of useful techniques ;1
I

for developing analytic solutions to integral equations have been |

developed, it is not in general possible to so attack our equation. >|

|
For example, we found in Chapter 3 that over a certain range of values %

of r, we only know the potential energy appearing in the equation as |

a table of numbers. Thus, we replace the integrals in Eq. (6.41) jj

by quadrature sums, obtaining |

4**

(6.49)

v ) = l

where the set of numbers r^ defines a mesh of r values over which

we propose to calculate the solution and where w. are the quadrature



weights. These depend on the particular quadrature scheme to be

used. Tables of the quadrature points and weights are available;

see, for example, reference (27).

If we plough right into the solution of (6.49), we would have

to do so iteratively, a ghastly prospect. However, a moment's

thought reveals that the i terms in the summations cancel, and

the equation reduces to

(6.50)

This equation enables us to simply step our way out into the large-r

region, since we know the initial condition on the wavefunction at

r». Moreover, the value of the homogeneous solution at r. depends

only on its values at r«, r,, ..., r._j.

Before turning to the multi-channel generalization of these

results, let us take advantage of all this work to extend the formalism

to the case where the equation to be solved posses an inhomogeneous

term g(r), e.g., suppose we are confronted with

£ K (r) = UCrllt (r) f- a (r) . (6.51)
S. k6 tlJi ^

We go .-fter this equation just as we did (6.22) with the homogeneous

solution given by (6.27) and the particular solution being the
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solution of the integral equation

Wj/r) *fatrtf')[0(r')u
e
u(,') t g O ' ) J ̂ '. (6.52)

The Green's function is unchanged; it is given by (6.35). Notice

2
that we must require that r g(r) + 0 as r + « for the derivation to

carry through. The solution of Eq. (6.52) proceeds as before with

U(r)u^(r) replaced by UOOuj^r) + g(r).

§6.4. The Integral Equations Algorithm: The Multi-Channel Case

In the coupled-channel case we seek to solve Eq. (6.6). Here

we focus on the situation which obtains when all the channels of

interest are open (the case of closed channels is treated in reference

17). The analysis proceeds exactly as in the previous sections

except that we introduce several matrices. If we have N coupled

channels, then we shall define an N * N potential energy matrix,

V(m)(r), the IV element of which is v£?}(r), an N * N diagonal

matrix for the centrifugal barrier contribution, L(r), the %V

2 2

element of which is [&(£ + l)/r ] 6^, and a diagonal k matrix.

If we further let each solution (corresponding to a particular v)

be denoted by an N-component column vector, then the full solution

is represented by an N x u matrix, u^m)(r). With all these defi-

nitions, the coupled equations are written as
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~t V (r) - Ĵ V 60 + L(r) - k i • i£ Cr). (6-53)

Let us define the diagonal matrix G (r), where*
"Xr

X , , , (6.54)

p i _ 4 . A , x

Further, let us introduce yet another matrix,

(6.55b)

Then the matrix counterpart of Eq. (6.37) can be written as

r

(6.57)

"V.'c have chosen slightly different notation in this soction in order
to conform to other published discussions of this r-lgorithm such
as those of references (3) and (17).
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We now introduce homogeneous and particular solutions, which

we shall denote u (r) and u (r) in order to avoid confusion with

the true solution u m (r) . The homogeneous solution turns out to

satisfy

*\A = £Vr) t\ £Z'(rU')Vf"V) M*(r
c

J

(6.58)

and the particular solution is given by

V^iA - %°Cr) C (6.59)

where the constant matrix C is

(6.60)

^ f l-£G2

The full solution is simply

-d.
(6.61)

Ke should point out that the integrand in Eq. (6.61) must fce calculated " |
i

anyvay in the process of developing the homogeneous solution and hence ]
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may conveniently be stored, making it a trivial matter to extract the

T-matrix.

It is conventional to introduce a little more notation. This will

aid us when we examine the quadrature formulas used to compute the

homogeneous solution. Thus, we shall define

M • U°Cr') dr' (6.62a)

Zlr ! l J M J i . (6.62b)
o

In terms of these integrals, Eq. (6.58) takes on the more elegant form

(6.63)

The physical wavefunction is related to the homogeneous solution by

(6.64)

In these equations, we have explicitly introduced the minus sign in

the definition of G^(r) so that G^(r) = (1/k) n^(kr) henceforth.

It follows from these definitions that

-1

since
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The computational details of the solution for u (r) represent

trivial modifications of these equations along lines suggested in

§6.4. Defining

(6.66b)

we have

(6.67)

The constant matrix C is simply
1

where r is the largest value of r used in the step integration
Ttlo-X

defined by Eq. (6.67).

Notice that the I-matrices of Eqs. (6.66) can be generated

from the convenient formula
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The relevant initial conditions on these quadratures for starting

the integration at r = 0 are

0 (6.70a)

i (6.70b)

U°(0) =- 0 . (6.70c)

fin some applications of this method it is appropriate to start the

solution or cei'tain channels of the solution at some non-zero value

of r. See reference (17).]

Hand calculation verification of the computer code which

implements these equations is facilitated by noticing that if rQ

is zero, then

U°Cf:)- G-^CrJ (6.71)

X V j = 6 - * ^ . V*V>- G 1 ^ ) U/, (6.72a)

X'CrJ = 1 ^-G-^. V"^).^)*^. (6.72b)
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These results further tell us the useful fact that I (r) = 0 for

small values of r.

§6.5 Extraction of the T-matrix.

We carefully chose the Green's function in Eq. (6.55) to

correspond to the asymptotic boundary condition

C6.73)

The K-matrix so defined is real and symmetric, while the S-matrix,

related by Eq, (6.9) or equivalently

s - Ed- K*)+-

(21)
is unitary and symmetric.

Letting r become large in Eq. (6.64), we obtain

(6.75)

The behavior of the homogeneous solution in this limit is given by
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where we have used Eq. C6.58) and introduced two new sin and cos

matrices,

(6.77a)

(6.77b)

and the diagonal constant matrix k. A little manipulation yields

•»»o» - r — r ~ ' *». -*•tftr)
"V V-5

But the K-raatrix in the multi-channel case is obtained from

*-' s(r)

Making the obvious identifications, we have

K « k"1/l-I*M •Ll ZC^3" 1 4i/X. (6.77c)
f ^i^ •** <*w «•

2 —1 2 —1
Of course, we do not actually use I («) but rather [I (r )] ,

% *\, max

where r m u s t be in the asymptotic region as defined above.

We shall ultimately obtain cross sections in terms of the

T-matrix, which is complex and hence can be written as
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A little algebra using Eq, (6.74) and T = 1 - S leads to

X = - 5. K * ( 1 +-K ' K ) ~ (6.78a)

R s - K • X . (6.78b)

The calculation of cross sections from R and I will be detailed in

Chapter 7.

This concludes the discussion of the standard integral equations

formulation. In the next section we take a look at the machinations

required if one is to use this technique on any but the simplest

systems.

§6.6. The Transformation-Truncation Procedure*

In this section, we shall introduce a fairly substantial

modification of the integral equations algorithm discussed above.

The primary motivation for use of this procedure rests in severe

numerical difficulties which were encountered in our early efforts.

It turned out that in addition to resolving the most serious of these

difficulties, the transformation-truncation procedure has some

theoretical interest in so far as it addresses the physical wave-

*We are most grateful to Dr. Lee A. Collins for his invaluable assistance
in the development of this procedure.
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function and the question of the relative importance of large-?,

partial waves to the final cross section. In this laot regard, we

shall harken back to the discussion of the effective potential in

Chapter 3.

By way of introductory, let us recall from Eq. (6.64) that

the physical wavefunction u (r), from which we obtain physically

meaningful scattering data, differs from the homogeneous solution

u°(r) for which we solve in Eq. (6.63) by a constant matrix. In the

physical wavefunction we can identify channels (elements) with

particular partial waves; these channels couple, in some cases quite

strongly, in the region of small and intermediate r, but asympto-

tically we can (for some systems and some symmetries in the e-CO-

problem) actually identify particular distinct ^-channels. The point

is that these "physically meaningful" channel solutions are mixed

in the homogeneous solution. [In the standard formulation of the last

section, we return to the physical wavefunction once we get to the

asymptotic region by multiplying by [IOC
OT)] .]

For nice nearly spherical targets, these feature? of the al-

gorithm pose no serious problems, although it is usually necessary to

"stabilize" the wavefunction. [See reference (7) and section 6.6C

below for discussions of this proceudure.] However, for the highly

ani.sotropic case of e-CO^ scattering, we have a very strong static

potential energy and must retain a huge numbar of channels to achieve

convergence. What, precisely, is tha problem? Well, in the region
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of high anisotropy (i.e., the vicinity of the nuclei), the mixing

of physical channels to which we alluded above does no real harm,

since the high-fc solutions are pretty large in this region. (This is

negated somewhat hy the centrifugal barrier considerations for very

large partial waves; see below.) These funct-dons die away beyond

the centrifugal barrier. Problems arise because some of the solutions

are too large to be treated computationally by conventional means.

The end result is a loss of significance and a singular (or nearly

singular) I -matrix. In fact, this phenomenon was first noticed

when we observed that in calculations where a large number of

2 —1 2
channels were retained, the product I (°°) • I (<») was not

i\, %

equal to the unit matrix, but had huge off-diagonal elements.

Intuitively, one would think that beyond some value of r

considerably smaller than r__„, the offending high-£ solutions

components would be superfluous; the reasons for this were explicated

in Chapter 3 in our comments on the effective potential. Beyond

this value of r, these channels carry no flux themselves and so do

not contribute to the cross sections. Moreover, it is ridiculous

to expect them to "back-couple" significantly t:o the small-Jl

components, x̂ hich do make significant contributions. These arguments

are most emphatically not valid in the region of highest anisotropy,

and this is what makes the calculations rather forbidding.

It is therefore reasonable to truncate a large number
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of these "superfluous" channels, say, all £ _> I t beyond a

certain radius, say r . But to do this in a meaningful manner,
trunc

one roust first transform the homogeneous solution being calculated

into the physical solution, for one cannot .iust mindlessly lop off

rows and columns from the homogeneous solution "without also tossing

out flux (i.e., contributions to the cross section) along the way.

In point of fact, merely truncating as suggested above is

not sufficient to resolve all the numerical glitches in the problem.

One must transform the homogeneous solution to the physical solution

at values of r smaller than r . To understand why this is true,

it is necessary to look at the procedure being proposed in some

detail. So enough words; on with the equations!

What, if anything, is the effect on the integral equations

algorithm as presented in section 6.4, of applying a constant

transformation, say 0 to u (r) at some r along the way of the

integration? In other words, consider the transformed wave-

function

U(r) - 1A° (r)- D (6.79)
/v ** ~

where u°(r) satisfies Eq. (6.63). What equation does TT(r) satisfy?

To answer, we multiply Eq. (6.63) on the right by the transformation,

obtaining

(6.80)
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where the transformed I -matrices are simply

For purposes of calculation, the quadrature formulas of section

6.4 are easily generalized to

and

(6.81)

( 6- s 2 )

The numerical procedure for transforming at r is clear.

We have u°(r ) and I^r. J . Hence we can generate transformed
r\j trans % trany

wavefunctions and I -matrices at r via Eq. (6.78) and (6.80).
crnns

We then proceed with the algorithm exactly as before: the computational

form of (6.81) and (6.82) is the same as that of their untransformed

counterparts (6.67) and (6.69). This important observation has

happy consequences for the frustrated programmer trying to modify

an already complicated computer code!

We are all set except for ona thing: the K-matrix. The obvious

way to proceed is to calculate
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But is this identically equal to K as determined by Eq. (6.77c)? If

not, we cannot extract useful cross sections from the matrix in

Eq. (6.83) and are in a lot of trouble. Well, the answer is yes.

To see this, we just shove Eq. (6.80) for i = 1 and I ~ 2 into Eq.

(6.83), recalling from some distant course in natrix algebra, that

f X (6.84)

In no time at all, we see that the two matrices are identical.

The truncation procedure is comparatively trivial to carry

out. Once we have stepped out to r , we merely transform one

more time, returning to the physical wavefunction, identify the

offending unwanted channels, and dump them from the v;avef unction

matrix in the calculation.

There is one further point that should be addressed. In

the actual calculation, we found rather abruptly that one trans-

formation is not sufficif.rit. The. potential i.̂  simply so strong

that no sooner do you un.do (by transforming) the numerical damage

the potential has done than it is in then; sgair., ri^ssiny up ycur

developing transformed wivcfunction. Tluis rre--;uc:it tra.i;?forrA---»tions

arc unisally requirod, esnecially for syrrvtriar> roquirin;; a l.-.'v̂i-.
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number of channels (e.g., Zo, which, as we shall see in Chapter 8,

is a virtually endless source of difficulty).

Are multiple transformations a problem? Certainly not; otherwise

we'd never have raised the question. The reason is that when we

reach a second transformation radius, say r,, we hit the transformed

wavefunction not the homogeneous solution with, say, D-. Thus

(6.85)

(6.86)

The produce of the two constant transformations is equivalent to a

single transformation, say E = D • Do.

The next logical question is: what do we use for the constant

transformation matrix, D? In line with our earlier comir.enr.s, the

most desirable choice would be

for then the transformed wavefunction would in fact be the physical

wavefunction. This would be grossly inefficient, though, since we

calculate I (r) via Eq. (6.67) and hence would have to do the problem

2 —1
twice, for we can't get [I (M)] without transforming, which we can't

do without I (<»).

A way out of this problem is provided by defining
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D = [ll(r )] C6'88)

so that

(6.89)

Once we have transformed In this manner, we can truncate the unwanted

2 2
channels provided that we are at large enough r that I (r )=I (°°).

*\j max *v

In our application, to. be illustrated in Chapter 8, we found by

2
direct examination of I and by convergence tests in r, that our

<\, trunc
choice for this quantity was adequate to satisfy this criterion

even though it was much closer to r = 0 than to r = r
max

The truncation procedure therefore saves computer time as

well as helping get around the numerical difficulties which originally

motivated it. Beyond the truncation radius, we propogate a much

smaller wavefunction matrix (e.g., 5 channels rather than 32 channels)

and need to calculate consequently fewer matrix elements and Green's

functions. The major saving, however, comes in the reduced matrix

manipulations.

One final word must be said about multiple transformations.

Suppose we have transformed at r = r, and are happily propogating,

viz.,
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U(r) * U°(r) • (6.90a)

<6-90b>

We then reach r~, where we decide we must transform a second time.

We use

2 _i
rather than I (ro) so that the transformation on u(r) effectively

undoes" the first transfirmation, i.e.,

- J

Jfrj - Tf^O • [i ̂ (6.92)

This is done so that as we move along, the multiply-transformed

wavefunction will resemble the physical solution as closely as

possible. (It is also more convenient computationally.)

In the final analysis, we found that by using the transformation

procedure and exercising extreme care in certain other numerical
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aspects of the calculation (see below) it was possible to properly

converge the cross sections for e-CO_ scattering. In effect, the

transformation tries to "segregate" the very small wavefunction

components from the important not-so-small low-A components in the

developing u-matrix. It is not an approximation. The second step

of the procedure, elimination of superfluous channels at the

truncation radius, jis. an approximation but, as we reason and shall

see in the sequel, it is a very good one.

Lastly, let us say a word about our choice of the parameters

r and A = In general, one can use the graphs of the

effective potential energy (e.g., Figure 3.7) to predict these quan-

tities, although the caveats issued in section 3.7 regarding care

in using such arguments must be kept in mind. It is true, for example,

that beyond r = 4.0 a , the £ = 12 partial wave does not contribute

at all to the scattering for, say, E symmetry, and can be summarily

dropped from the calculation. Nevertheless, the acid test of any

such procedure is convergence; we try a couple of values for each

parameter and ensure that the cross sections are unchanged. The

number of partial waves which must be retained does depend on the

symmetry under consideratioa. For example, for E o we could use

I = 1 0 with r = 4.0 a , while for IT we reauire I =16
trunc trunc o g - trunc

with the same truncation radius. More computational details can be

found in section 8.2.
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§6.7. Still More Numerical Difficulties

We now must address the undeniably boring subject of littl«,

picky, numerical problems which we encountered along the tray in our

studies. However tedious all this appears, these matters must not

be skipped over, for if one blindly uses standard computer codes to

calculate standard quantities in a problem as extreme (in some ways)

as is ours, one is guaranteed no end of trouble (and incorrect answers).

A. The Trouble With Bessel Functions.

One might think that something as innocuous as calculations of

the various Ricatti functions appearing in the equations of section

6.5 would be quite straightforward; there are hundreds of codes

(28)
floating around the physics community to perform just such a task

Alas, we find that very many channels being required in our problem

for r values near the origin lead to problems. The calculation of

the required functionsis a little tricky and (potentially; expensive.

relation

The spherical Bessel and Neumann functions obey the recurrence

(20)

( 6' 9 3 )

which is at the heart of most standard techniques for evaluation

of these functions. The obvious (and usual) thing to do is to take

into account the known and easily evaluated analytic forms for these

functions at small orders, e.g.,
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x > o
(6.94)

and recurr upwards to obtain the corresponding function of the desired

order.

However, it is preferable for especially large orders in the

calculation of the spherical Bessel functions, to use a downward

(29)
recurrence schente; more accurate values of fo(r) are obtained

in this manner, the problem arising because the spherical Bessel function

gets very small for large orders and small arguments. The idea is

to introduce a new function proportional to the desired one. If we

are interested in, say, j (x ), we write

(6.95)

Next, we select some N > m, say N = 2in, and set

(6.96a)

( 6 < 9 6 b )

where Eq. (6.96b) is arbitrary. The larger N we choose, the better
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will be our answer. However, machine limitations (see section D

helow) can throw a monkey wrench into the works.

Now, using the recurrence relation (6.93), we step DO'.fN to

F (x ), saving Fm(x ) along the way. We can then determine the

proportionality constant p from

To
Then we find the desired quantity via

As a general rule of thumb, we recommend

2
upward recurrence for x > £(£ + 1)

2
downward recurrence for x < &(£ + 1)

However, this still does not resolve all the problens. At

small values of the argument for large orders, the factor (21 + l)/x

can become quite small. An additional factor cf this magnitude is

accumulated for each step down. The end result is usually a number

so small that most computers underflow.

The way around THIS problem is to use the series representation

for the Bessel function , i.e.,
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This result is valid for all real arguments. It is easy to derive

from this an expression for the spherical Bessel function, to wit:

We find the series to be convergent by k = 2 for x < 0.01 and % up

to 58.

A handy recurrence algorithm can be developed based on Eq.

(6.99). We find

with the coefficients generated by neans of

where

and

(6.100)

= J? + k + 4- (6.102)

«-un)

167



All the techniques in this subsection were coded in a subroutine

in the electron-molecule code and extensively checked using a hand

calculator, other codes, and various published tables.

B. The Trouble With Clebsch-Gordan Coefficients

The usual procedure for calculating Clebsch-Gordan coefficients

is to use a combination of the analytic forms and recurrence relations

for these coefficients; these formulas can be found in reference (31).

Initially, such was our procedure. However, as we increased the

number of channels and hence the value of the maximum argument, we

found that these nice convenient formulae give incorrect answers

due to a loss of significance in the calculation. In particular,

one cannot trust the result for C(j, j , JoJ m. nu m,) for i,> j 2 ,

or jo greater than about 10 if standard formulas in single precision

are used.

(23) j
Fortunately, a code exists due to Caswell and Maximon j

i

which gets around the problem and will calculate Clebsch-Gordan j

coefficients for values of j ^ up to about 80. This program uses

a combination of logarithm arithmetic and double precision to perform

the calculation and is highly recommended to anyone faced with the

prospect of calculating large numbers of coefficients in this range.

As an indication of the efficient nature of this code, we found that

it took 3'2ss time to re-evaluate the coefficients needed to calculate

matrix elements each time the integral equations coda was executed
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than it did to calculate them once and read them in for each execution.

(Of course, this conclusion is highly machine dependent and should be

taken with the usual grain of salt.)

One thing should be noted. The code in question calculates

Wigner 3j coefficients rather than Clebsch-Gordan coefficients. However,

(32)
the convergence is easily made via

I Having once been burned, we performed very extensive tests of

P the validity of this code using the invaluable though difficult to
I
P use tables of Rotenberg et. al. for comparison. For all values of
i
I j. of interest, the code performs without error.
i
i For even larger values of j., which we mercifully need not

(34)concern ourselves with, there exist recently developed formulae

; which are very efficient. These are here mentioned for completeness.

C. Stabilization

As has been noted by other authors, in the generation of the

homogeneous solution via the integral equations algorithm, it is

possible for linear dependence to creep into the solutions due to

numerical loss of significance in certain channels. This situation

is particularly egregious when lots of channels are involved.

A procedure called stabilization has been developed ~ '
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to address this particular computational problem, and a clear and

detailed discussion of it is available, in reference (35). Essentially,

the methc J entails decomposing the homogeneous solution at the stabi-

lization radius, where we intend to stabilize, into the product of

upper- and lower-triangular matrices and replacing the homogeneous

solution matrix with the resultant upper-triangular matrix. This

forces linear independence of the N solutions being developed at

the stabilization radius,

Frequent stabilizations can be required, because creeping linear

dependence can re-infect the stabilized solution. Moreover, one must

apply the stabilization step before the solution matrix becomes

singular; once this has happened, you can't save the situation.

D. The Ad Hoc Neumann Cutoff Procedure

Unfortunately, we are not quite out of the jungle of numerical

complications yet. Fortunately, we do not.run into the problems

discussed in A when calculating Neumann functions, for these are not

small at small r. The problem is that they are large at small r.

In fact, the computer overflows in trying to calculate them for small

argument and large order. For example, the spherical Neumann function

2
for Z - 56, which is required for E symmetry, at k = 0.005 and

312
r = 0.001 is larger than 10 , the machine upper limit for a CDC

7600. On less impressive machines, the limit is much lower and the

problem consequently encountered for small orders.

There are a variety of ways to treat the problem. The most

elegant and exact is to scale the I -matrices and thereby avoid
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either the overflow at small r of the spherical Neumann, function or

the underflow of the spherical Bessel function. The latter occurrence

effectively starts certain high-order solution channels "late", i.e.,

at some r ^ 0. We have tested the importance of this for the T

matrix elements by artificially inducing the same effect in our

computer program. The answers are unchanged until the starting

radius becomes much larger than the values of r for which the machine

can calculate the spherical functions.

A simple though approximate way to tackle the overflowing

Neumann functions is to simply cut them off. In other words, when

in the recurrence n*(kr) grows to some predetermined upper cutoff,

we just replace all larger values of the function with a (large)

constant. This procedure is founded in the expectation that a

number of such huge magnitude is so large compared to other elements

of the: matrix, that it can reasonably be replaced by another large

nuiaber without significantly affecting the wavefunction being

developed.

Because of the admittadly ad hoc and approximate nature of

this trick, very thorough tests of its effect on wavefunctiens,

1 -matrices, and T-tnatrix elements were carried out. To our astonish-

ment, we found that not only did the procedure resolve the problem

hare presented but it enabled us to converge the I cross sections,

which had begun to show characteristics of divoregenee owing to

numerical Instabilities in the calculation. This pirohlerc, how this

procedure resolved it, ar.d other v.iys around it, vil.1 be discusseJ

in Chapter 8, where we look .it SOP;? number.-;.
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§6.8. Conclusion

Chapters 3 - 6 completely describe the collion problem theo-

retically up to but not including the actual calculation of cross

sections. The theory we have described if used with care can probably

be used to treat electron collisions with any molecule smaller than

or about the same size as C02. The application to heteronuclear

targets is quite straightforward, requiring allowance for even- and

odd-A terms in the expansion of the potential energy in Legendre

polynomials. In fact, the author (in collaboration with Dr. L.

Collins) has carried out some calculations in the lab frame using

our codes to study e-CsF scattering. The modifications required

were straightforward. The further extension to non-linear molecules

(say, v.'ater) remains a challenge and might involve rather extensive

code revision. The theory should apply, however.

At the risk of redundancy, let us stress in conclusion that

without the procedures of sections 6.6 and 6.7 or their equivalents

the integral equations method cannot be applied to problems such as

e-CO2 scattering. But what of the Nuraerov algorithm? Might we adopt

it?

We decided against this approach for several reasons. First

the integral equations algorithm used in conjunction with the

stabili2ation procedure discussed above is a more stable method

than Kumerov, which encounters similar numerical problems sooner

in the integration. Second, the integral equations nethod is faster,

since inwavd-outvard integration is not required.

These arguments are less compelling if exchange must be inclu-
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ded via a kernel in the integral equations procedure. See reference

(3) for a discussion of this case.
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Chapter 7. Diverse Cross Sections for Eleccron-Molecule Scattering

Little Jack Homer
Sits in a corner

Extracting cube roots to infinity,
An assignment for boys
That will minimize noise

And produce a more peaceful vicinity.

-Frederick Winsor
The Space Child's Mother
Goose

§7.1. Introduction; The Point of it All

In this, the final phase of our theoretical analysis of

the electron-molecule collision problem, we shall present formulae

for the calculation of actual cross sections. It is these quan-

tities which permit us to compare with the experimental results

discussed in Chapter 2 and that permit ultimate insight into the

physics of the scattering event. They are of paramount importance.

Our starting point is the T-matrix. As we showed in Chapter

6, we first calculate the real symmetric K-matrix via Eq. (6.77c)

and then extract from it the real ind imaginary parts of the T

matrix using Eqs. 0>-78). We shall assume here that we have

obtained these quantities and seek to use them.

With one exception, all the numerical quantities we shall

discuss in the "results 'apter", which follows this one, are

extracted by formulae to be revealed here, from the T-matrix.

We do use the eigenphases, though, and they are derived from the
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K-raatrix . We simply diagonalize the K-matrix and taks the

arctangent of the resulting eigenvalues; these are the eigenphases

(or eigenphase shifts). If used with care, the eigenphases and

associated eigenvectors which emerge from the diagonalization,

(2)

can be a useful tool in the study of electron-molecule physics .

We shall have considerably more to say about eigenphases in Chapter

8.

We present formulas for the total cross sections in §7.2,

for differential and momentum transfer cross sections in §7.3,

and for rotational excitation cross sections in §7.4. This

section also discusses briefly the transformation from body-

fixed to space-fixed (or laboratory) reference frame. The last

two sections of this chapter present two approximations which will

be used in the sequel: the Born Approximation (in a partial

wave analysis) and the Asymptotic Decoupling Approximation.

§7.2. Total Cross Sections for Elastic Scattering

As the author has shown in detail elsewhere , the total

cross section for elastic scattering is given in terms of the

body-fixed T-matrix elements by the simple formula

2
where k is the scattering energy in Rydbergs. The formula is

obtained by first deriving an expression for the cross section in
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the body-fixed reference frame and then averaging said expression

over all molecular orientations.*

Notice that in Eq. (7.1) we sum over m, the quantum number

corresponding to the projection of the orbital angular momentum

of the scattering electron along the z axis. This is a good

quantum number, since the system has axial symmetry [i.e., V(r,9)

is independent of the polar angle $], so there cio exist solutions

of the scattering equations the ̂ -dependence of which is given

by e and can be factored out. However, to obtain a scattering

function which satisfies the plane-wave scattering boundary

conditions [C.f., Eq. (6.14) and accompanying discussion] we must

sum over ai, including the factor of e1™* , of course. This is

reflected in Eq. (7.1).

In practice, we shall take advantage of the fact that our

problem separates by symmetries of the full e-CO, system

(see section 6.2) and treat each symmetry separately, summing

at the end of obtain the total cross sections.

§7.3. Differential Elastic and Momentum Transfer Cross Sections

An equation for the differential cross section can he obtained

(3)

by deriving a fixed-nuclei expression for this quantity, trans-

forming to a space-fixed reference frame via the ever-popular

*lror convenience, the average is actually performed by integrating
over the directions of the incident wavevector. See reference (3).
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f4)
D-matrices , and then averaging over the Euler angles which

define the orientation of the target with respect to the space-

fixed axes. The rather formidable algebraic contortions necessary

to derive the formula can be found in reference (4). The result,

(3)presented here to correct an error in the earlier document , is

( 7. 2)

In trying to cope with such a hideous expression, it is

useful to introduce the notion of a channel index i, defined as

i - (£., %.', m.)« In terms of this index, Eq. (7.2) can be

slightly more conveniently written as

(7.3)

There is a whole series of restrictions on the summations

in Eq. (7.3), A Clebsch-Gordan coefficient C(j,J2J3»«n.ni2m3)

is zero( unless m3 = mĵ  + m2> AQj^jgjg), Iniĵj f. jj_, Jiĉ l £ J2»

and }m3| £ j 3. Moreover, 00^2^2,000) = 0 unless Jx + J2
 + J3

is even. Applying these to Eq. (7.3), we see that for any set

of channel indices (ij), the correponding terms in the summation
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are zero unless

<7'4a>

(All & b, (7-4c>

where we define M = m. - m.. Also we must satisfy

Xl + J5j + L = eVCW (7.5a)

fc' i- i j + L * evev* (7.5b)

anJ AUi'M/l*), «-*>

or, equivalently,

^l,U£-ij'O * L

In the actual calculation, we only determine T-matrix elements

for partial waves up to some ^nax» chosen by effective potential

considerations such as those discussed in Chapters 3 and 6 and by

experience. For example, for Z symmetry, we have m = 0 and

typically A» 0,2,...,8, while for Z we have m = 0 and £= 1,3 9.



Notice, however, that the sum over m. and m. in Eq. (7.3) runs

over positive and negative values, i.e., for each term corresponding

to m^ or m. non-zero, we have contributions due to +_ m. and/or

+ m. as appropriate.

For practical reasons, it is desirable to develop an efficient

computational scheme for determining the differential cross section

from this formula. Equation (7.1), with its seven summations,

won't do. Because of its fairly wide potential applicability,

we here present a sketch of a procedure which we developed to

perform these computations.

Let us introduce the real and imaginary components of the

T-raatrix as in Eq. (6.78), and write Eq. (7.3) in terms of them as

(7.8)

where N is the number of channels* as defined by the channel index

introduced above, and where R4 * R^i* ,, etc. The coefficients

c.. are developed as

; ̂ L,oo) Clt{*£b; oo) ctt;*} L;-»t-, «ij) (7.9)

*These are assigned based on the particular symmetries and partial
waves retained in the integral equations calculation as the first
step in our code (DCSMOM) which evaluates these cross sections.
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In deriving Eq. (7.8) we have used the fact that c = c

HI m *fc

so that when summed the imaginary part of I. . , i I, , , j

is zero. Defining a new matrix, call if ,J, as

(7.10)

and using Jj. = J.^ we can write Eq. (7.8) as

N (7.1D

where L » 2 £ , fc corresponding to the largest £ partial |

wave included (for any symmetry). Finally, let us define one more f

coefficient, viz., |
1

2 C£: Jc: 1. C

so that the differential cross section assumes the convenient

form

We can use Eq. (7.13) to derive a handy formula for the

momentum transfer cross section. The latter is defined as
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(7.14)

which can be written as

o

where, of course, the total cross section is (by definition)

• 2 *

We now substitute Eq. (7.13) into (7.15) and use the ortho-

gonality relation ' of the Legendre polynomials on the interval

[-1,+lJ, obtaining

and

Thus we see that the total and a cross sections emerge as
mom

happy byproducts of our calculation of the differential cross

section.

For the application to electron collisions with CC^, the

phase factors in the differential cross section vanish, since it
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is always true that |£. - JL' | and |&j - Jlj1 ( are even

(this, in turn, is a consequence of the fact that the target

possesses inversion symmetry).

Finally, we should point out that it is efficacious not to

have to explicitly include positive and negative values of tn.

and m. in the channel index table. This can be avoided by the simple

expedient of replacing c^, in the definition of d_, Eq. (7.12),

by a new coefficient, call it b.. , and summing over channel

indices i and j defined to incorporate only non-negative values

of m. and m.. We thus define

iii£
iij'-J-«£»-wj v k-s^o-> a -

where we have explicitly indicated the quantum numbers on each

c.. of Eq. (7.9) and where the delta function kills off unnecessary

terms.

The above algorithm was coded and very carefully tested. We

incorporated several internal consistency checks, such as independently

calculating the total cross section by Eq. (7.18) and then by Eq.

(7.16) using our differential cross sections and numerical quadrature.



We then compared the results with the total cross section determined

by summing the cross sections for individual symmetries in the integral

equations calculation. In all cases, we found agreement.

The "acid" test of the code was performed by taking T-matrlx

elements for e-H, scattering at several energies and reproducing

published differential cross sections to three significant figures.

Such extensive testing was deemed necessary when our calculated

differential cross sections for e-CO, scattering began displaying some

rather peculiar behavior; see Chapter 8 for a discussion.

§7.A. Determination of Rotational Excitation Cross Sections from the
Body Frame T-Matrix

In this section we seek to determine rotational excitation cross

sections for electron-molecule scattering making the fixed-nuclei

approximation. We have the fixed-nuclei T-matrix elements in the body

frame. The first step is the transformation of this matrix into the

laboratory frame. In order to determine this transformation, we must

first obtain the unitary transformation which relates the body and

laboratory frames. We shall use unprimed coordinates to refer to

the body frame and primed coordinates to refer to the lab frame.

The two frames are defined by the angular (rotational) functions,

and the T-matrices in the two frames are just matrix representations

of the T-operator in the two bases:
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"•if fc' (7.20a)

(7.20b)

where jj£JM> refers to the coupled angular momentum rotational

functions in the lab, i.e.,

or, in general (for states with m ^ 0)

In this expression, m. is the projection of the rotational angular

momentum of the target along the space-fixed axis z1, while X is the

projection of same along the internuclear axis. Further, ifi. j,(a$Y)

is the symmetric top wavefunction for Euler angles a3Y» which define

the orientation of the body frame with respect to the lab frame. Thus

we have

In the fixed-nuclei approximation, the body-frarie basis functions

are the spherical harmonics
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where we have used the convention that m is the projection of the

system (electron + molecule) angular momentum along the body frame

z axis (i.e., the internuclear axis). These functions were used to

define the T-matrix in the body frame. (If we do not make the fixed-

nuclei approximation in the body frame, the rotational hamiltonian

will couple different values of m-X and the problem will not separate

so nicely.)

Now, let's determine the unitary transformation C that converts

the lab basis set into the body basis set, i.e., vie seek c.. such that

(7.25)

where the lab basis functions are defined by Eq. (7.22) and the body

functions by Etj. (7.2A). The expansion coefficients are therefore

C7-26)

To determine these coefficients, we shall transform the j

lab frame function into the body frame and carry out the coordinate-

space angular integration in Eq. (7.26) in body coordinates. Using

the well-known relation (see reference (4), Eq. (4,29a))
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we obtain

where we have used the form of the rotational wavefunction for the

intemuclear orientation. We now combine the two D-matrices appearing

in this result using the series

and substitute the result into our expression for c... Carrying

out the easy integration we obtain

(<f V) C7.30)

We can further simplify this result by noting the delta function

implied by the presence of the Clebsch-Gordan coefficient in

Eq. (7.30), obtaining, finally.
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Notice that for sigma target states (X = 0) this reduces to

( 7 3 2 >

Our next task is to transform the matrix representation of the

T-operator in the body frame into the lab frame. We have

T T f T <? • \TAA I i"i N ~~'™

C7.33)

where we also integrate Caverage) over the Euler angles defining the

molecular orientation. In matrix notation, this result can be written

C7.34)

where

b 6

Substituting our result for c . into tne above equation, we

find

(7.36)
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where we have used the orthogonality of the D-niatrices to carry

out the Euler-angie integration. Again it is worth noting that for

Z states this expression reduces to

CCTJj ; -^-.lCCTJj' frm >T£ , (7.37)

Now Cat last) we can calculate rotational excitation cross

sections. In the lab frame, they are derived from the formula

^ % U J 1 ^ 2 !T£jU I* (7.38)

Since we make the fixed-nuclei approximation, we ignore the spacing

of the rotational energy levels and set

k] * fe* Call j"), (7-39)

2

where k is the scattering energy in Rydbergs. It is useful to in-

troduce notation for the real and imaginary parts of the T matrix,

to wit:

(7*4O>

whence the formula for excitation from j to j' becomes
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Using the above derived transformation, our final result for

the desired cress section is

mm

where we have defined a coefficient

(7.43)

for convenience. We should note in closing that formally the sus

over J runs J « 0,1,2,... and the % summations are then defined by

the value of J, j, and j' subject to the usual tricnglc restrictions.

For a givtr. value of J, m can take on values (integral) consistent

with Che restrictions

where we r.ust keep in mind thnt for non-zero values of n the

includes both positive and negative values.

The total cross section is invariant under the unitary trans-

forrmtion we have obtained and can b@ calculated in the body frnr.c

from the familiar formula

2 2 ITĴ I1 C7.4S)

or in the Lib frame from the- rotatjou.il excitation cross sections via
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§7.5. Elcctron-soleettle Scattering in the Born

The familiar Bern Approximation (BA) i s a highly

way co sttniy co l l i s ions because i t i s sis$»le conceptually ;md «,v

computationally. If i t works wel l , one sight suggest, .til this

laljor i s S0eewh.it analogous to using a sij?di'eh,ir^c-r EO k i l l .*« r.":

Thus in Ch«ipcerr 8 we sshali eKamine the va l id i ty ef eltiu

and h?tvcc it is necessary fer us e@ dctrivc* ,i cotijjtc «f

here.

The essent ia l idc*t ' ef the SA Is ehc nt,t}»l*et ef

d is tor t ion of th t Incident plant; vav-n by the s c« t t r r« r . Cerjuoy
C14SStein dercanssraced the va l id i ty of t h i s arjproKifs.'tclsnj for

molccttlc co l l i s ions at very low energies. This resu l t ts.iv

cr«diccoryt since the M i» usually cheushe co be

The j io^ t i s th.tc for «sl«etro*v»eii»eul«

Ittv energies , long-range muicJjtttlti ®M tneHi<t<td i(ic«»r«tetions

tht- sca t te r ing . Us discussed ehia p^int in Chapter S.

Our ©fejeesive here i s to apply else BA to elsgete «catceri«s

of electrons fro» h«^.o:s«clttsr c*.»ltc«le;; in a

wave expansion. Tttu undistoftctS I * i*;irci.il v;iv<r* in ,)w;t
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A
Ricatti-Bessel function j^(kr), which solves the usual equation

(7.47)

Thus the wavefunction matrix u (r) which is in general non-diagonal

is given in the Born Approximation by

(7.48)

JJov, the K-csatsris can be calculated in general from

) Ar. (7.49)

where

C ! (7.50)

a«d i*(r) « 2V(r) in atomic units. Of course, V(r) is the electron-

eoiccule iiuisractton potential energy averaged over the ground state

of the eargec. We shall consider only long-range terras, as discussed

In Chapter 5. Hence the potential of interest is

VCi?)* "QP* l£?« ^Tv / •* (*<**&). (7.51)

In tS»e Born Approximation, Eq« (7.49) becomes
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(7.52)

Writing the usual expansion of V(r), Eq. (3.39), in terms of spherical

harmonics, we find

If we now define the quantities

I

(7.54a)

(7.54b)

then the matrix V(r) becomes

[VC (7.55)

where we acknowledge that Cor our system (in the fixed-nuclei approx-

imation) m is a good quantum number. The integral I, is. easily evaluated

as shown in reference (4).

We now substitute Eq. (7.55) into (7.52) to obtain an expression

for K.. in the Born Approximation, viz.,
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Si' T^ (*;«• ij**) 1?A (Jf/Jfj) , (7.56)

where we have defined the radial integral

"•t,'»j # i i-, - ' - a - - i * : * ' ~ - - » » - . (' • 5 / )

O

For the potential energy of Eq. (7.51) we have the integrals

op

. 11 _\ _-z .* It \ i
(7.58a)

(7.58b)

which suggests the convenient notation

Now, from Eq. (7.56), we have for the Born K-roatrix

But C(H. 0 SL. ;0 0 0) = 5f, „ so v;e hhnve

.J.

(7.59)

( 7 > 6 0 )
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Using this fact and Eq. (7.54), we can rewrite Eq. (7^60) as

(7.62)

To evaluate the radial integrals

Bessel functions of the first kind via

(££..), we Introduce

and use the integral

-> • !

which is finite and exists provided that

(7.5)

theIn our case, this excludes the possibility £ . « £ . » 0. Using

well-known properties of the ganuaa function, e.g., F( n + 1 ) = n!

for non-negative integers n, we find



p ( **• •**»*'

These can be simplified as

where we have defined an integer

(7.68)

and used various other properties of the gamma function.

Equations (7.67) in conjunction with (7.62) enable us to

evaluate K in the Born Approximation at any desired energy and for

any symmetry except I [recall the limitation imposed by Eq. (7.65)].
O

Given the K-matrix we can obtain the T-matrix using the formulas

of section 6.5 and the total cross section using the results of

section 7.2.

Alternatively, we can diagonalize the K-matrix, take the

arctangent of the eigenvalues, and thereby obtain the eigenphases

H.. Then the cross sections for each symmetry can be obtained from
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Notice that for m # 0, a must be multiplied by 2 in computing

0 in order to take account of the two-fold degeneracy of molecular

orbitals with jm| > 0.

In closing, let us note that a simple analytic form for the

diagonal elements of the K-matrix in the Born Approximation obtains

in the special case where we take account only of the quadrupole inter-

action term in Eq. (7.51), viz..

The expression given above is useful for hand-checking the code which

carries out BA calculations (called B0RN01).

§7.6. Conclusion; The Asymptotic Decoupling; Approximation

We mentioned in Chapter 6 that the so-called low-fl. spoiling

approximation, which assumes the asymptotic partial wave to be uncoupled

and approaches the collision problem in this framework, is not expected

to be valid in general for highly anisotropic targets such as CCL.

We shall look at calculations in an equivalent to this approximation

in the next chapter. This is the asymptotic decoupling approximation

(ADA).
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In the ADA we go ahead and determine the full aymprotic T-

raatrix as in Chapter 6, taking into account all relevant interactions,

but when calculating cross sections we uncouple the partial waves

in the asymptotic region. There are two ways to effect this: we can

introduce the eigenphases, replacing T... with

or, equivalency,

(7.72)

An alternate procedure is to simply set T«», = 0 for 9. f V in

EP,M.(7.11) etc. This is preferable in general since we cannot always

uniquely associate each eigenphase shift with a single partial wave

for e-CO,. (This is, in general, possible for less anisotropic

cases such as H, or, perhaps, Nj.)

This concludes the theoretical edifice in which we choose

to study electron-molecule collisions. We now turn to the results

obtained from the calculations outlined in Chapters 3 through 7.
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Chapter 8. Electron-COg Collisions; Results and Discussion of

the Calculation

Our sum machines never drop
a figure, nor our looms a
stitch; the machine is brisk
and active, when man is weary;
it is clearheaded and collected,
when man is stupid and dull; it
needs no slumber, when man must
sleep or drop...

-Erevrhon
(Saraual Butler)

§8.1. Introduction

In this chapter, we finally turn to the details of the

e-CO? calculations we have performed and the results thereby

obtained. The background for the discussions herein has been

laid in Chapter 2 - 7 , and we shall assume familiarity with this

material.

Because of the rather large amount of material to be

presented here, this chapter is divided into two main sections.

Following this brief introduction, we begin in section 8.2 with

a detailed analysis of the technical aspects of the computations.
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This part will hopefully serve as a guide to carrying out electron-

molecule calculations in the theoretical framework heretofore

outlined and focuses primarily on numerical procedures and facets

of the calculation which were not addressed in earlier chapters,

especially the question of convergence. [See especially sections

3.6, 3.7, 4.5, 6.6, 6.7, and 8.2 for details.] Of course, e-CC^

is used as an example throughout. In section 8.3, we present our

final converged cross sections and related quantities for the e-CO-

problem. It is here that we address various physical questions

associated with the collision and try to see what can be learned

from all this work. Thus, §8.2 is recommended to readers gearing

up to perform their own calculations and §8.3 to those interested

in physics.

It is impossible to present all the numbers we obtained

throughout various stages of the calculations; the convergence

tests alone would fill a small library. We have chosen to supply

a large selection of results in the "physics section" 8.3 and to

try to give enough detail in section 8.2 to justify our assertions

and conclusions.

We shall be looking at several types of cross sections (see

Chapter 7) in the course of this chapter. In addition to the total

and momentum transfer cross sections, o and a , respectively,

we shall focus on oyj , where r\ = g or u for gerade or ungerade

symmetry respectively. These cross sections are defined for

a particular symmetry (c.f., section 6.2) such as Z (m = 0,
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r) = g), II ( m = 1, n = u) etc. At one level more basic, we

may have occassion to comment on particular palatial wave contribu-

tions to the cross section, ô ni . These quantitues are related

to T-matrix elements by

rr("° - JL IT** ) Z

Finally, we shall look at eigenphases and their sums for particular

symmetries (see section 7.1). Although a certain amount of

physical insight can be derived from cautious use of these quantities,

their primary usefulness (in our opinion) is in convergence studies

of the sort discussed in the next section.

The numbers here reported were obtained in the body frame of

reference in Chapter 6. We initially began our studies in the lab

frame, and a few numbers and conclusions from this early work appear

in Appendix 2 along with a derivation or two. However, as we studied

the problem it became apparent that the nature of the interaction

potential necessitated partial waves with very large values of A

in tha interior region. In the lab frame, this means an enormous

number of channels, because each additional rotational state intro-

duces only a few channels. In the body frame, the number of partial

waves is equal to the number of channels. Since about the same

number of partial waves are required in the two frames, it follows that

the convergence problems are less severe in the body frame. Finally,

one should keep in mind that owing to the very small spacing of the

rotational energy levels in CO, (see Chapter 2), there are on the

200



order of 100 open rotational channels in the lab frame at a scattering

energy of only 0.01 Ryd. [Of course, not all of these (by any means)

are required for convergence. See reference (1).]

§8.2. Low-energy Electron-Molecule Scattering: Technical Aspects.

The computer program used to carry out these calculations

exists in both lab- and body-frame versions. In both cases, we made

very extensive tests of the program using e-H, scattering as our

"benchmark" case. These included:

(1). lab-frame tests at scattering energies from 0.03 Ryd.

to 1.5 Ryd with and without polarization for comparison with the

(2)
results of Lane and Geltman;

(2). body-frame tests in the same energy range for comparison

with the results of Tully and Berry;v '

(3). body-frame tests including exchange as described in

?ith

(5)

Chapter 4 for comparison with cross sections of Hara and with

results of Henry and Lane.

In all cases, agreement vras excellent.

This code has provisions for variable step size in the inte-

gration mesh. It is necessary to have a fairly tight mesh in the

region of strong potential, especially near r = 0 and near the

nuclear singularities. The final integration mesh used in these

calculations (including long-range interactions) is (in units of a )
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0.0 to 0.02 in steps of 0.001
0.02 to 3.00 in steps of 0.01
3.00 to 27.0 in steps of 0.1
27.0 to 90.0 in steps of 0.2
90.0 to 130.0 in steps of 0.5

The choice of r = 130 a as a final integration point was

determined by examining T-matrix elements, eigenphases, and cross

sections at integration points r. and r.+, and letting i increase

until our convergence criterion was met. Convergence will

be discussed in detail below; for now let us remark that unless

otherwise stated all cross sections we present will be converged

to better than 1%.

At the outset, we calculated cross sections for several values

of m, choosing to concentrate on two scattering energies, 0.005 Ryd.

and 0.05 Ryd. It fast became apparent that the contribution to the

total cross section due to values of m > 1 was negligible at the

scattering energies of interest. For example, at 0.005 Ryd. the

converged total cross section in the static-exchange approximation

2
(ou = ou = 0) including I and IT symmetries is 50.9941 a , while the

2
contribution from m = 2 is 0.9426 a , and that from m = 3 is 0.3002
2

a . Similar results obtain at other energies and with the inclusion
o

of polarization (see Chapter 5). Therefore we shall focus on

Ig, 2u, ng, IIu symmetries.

We can easily understand the relative importance of low-m



symmetries from elementary effective potential arguments such as those

of section 3.7. For m greater than 2, the effective potential is

essentially pure barrier, so the electron in a high-A partial v;ave

is unable to "feel" the strong short-range potential directly (see

Figure 3.9). Of course, the long-range forces still have some

effect on the scattering wavefunction, but in the final analysis

this is less important than that of the short-range forces.

The initial convergence studies were carried out in an artifi-

cial potential obtained by using the static e-CO- potential of

Chapter 3 without the r~ quadrupole tail. Since we were primarily

interested at this stage in acquiring a feel for the problem, this

potential seemed desirable, primarily because it is necessary to

integrate only to 15 a to converge the cross sections in r. The

procedure we adopted was to freeze N,, the number of expansion

coefficients in the expansion of the static potential, Eq. (3.39),

and study convergence in N , the number of coupled channels ( = the

number of partial waves) included in the calculation. The resultant

behaviok- is seen in Table S.I, which shows cross sections at 0.05

Ryd. with X • 0, 2, 4, and 6 included, indicating that con-

vergence is srcooth but that eases with far too few states give results

which arc off by as much as 50%, It is not satisfactory, in other

words, co jserely frceae Kcc and do the calculation; convergence tests

are raandntory.

Of courses, Ehe problem «olvt*«f in Shis cable is net e-C02
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cc
Syiran. \.

£g

Z

ng

nu

Au

Total

2

5.2278

0.0776

3.2(-4)

20.9103

l.K-4)

1.0(-B)

26.2162

86.

0.

4.

59.

1.

146.

3

7671

0111

5 (-4)

8970

K-4)

0(-8)

6760

4

76.1237

0.0006

0.0020

20.6928

l.K-4)

1.0(-8)

96.8193

5

69.8322

0.0008

0.0329

5.8042

1.2(-4)

l.l(-8)

75.6703

6

68.7291

0.0018

1.1554

3.7624

1.2(-4)

l.K-8)

73.6490

7

68.4519

0.0022

0.1119

3.3697

1.2(-4)

1.1(-8)

71.9359

68.

0.

0.

3.

1.

1.

71.

8

3818

0028

0846

3027

2<-4)

K-8)

7716

9

68.3717

0.0030

0.0812

3.2929

1.2(-4)

l.K-8)

71.7784

TABLE 8.1

Cross Sections a'm' and (?tot *n tne static approximation with q • 0 in units
of aQ2 . The scattering energy is 0.05 Rydbergs. N c c is the number of
channels. The final converged cross section for this case is 71.7449 a o

z.
Included are coefficients for \ - 0, 2, 4, and 6.

»iS1iS£3&7.KC'^^^



scattering even in the extreme static-no-quadrupole approximation;

it is some artificial problem defined by a potential with only

four expansion coefficients in the potential energy. The results

do illustrate the large number of channels required for even this

simple case. When one recalls (from Chapter 3) that the final

converged potential energy required up to X - x 28 and ^ , c = 80,

this comment begins to acquire some perspective.

To study convergence as we approach the true e-C02 potential

in this model, we increased N,, converging, the cross sections in

K at each stage in the calculation. In Table 8.2, we show cross

sections for N, up to 10; again, the purpose here is to illustrate

the convergence behavior of the problem. It is worth noting from

these two tables that, as expected, la^ge-m contributions to the

cross sections are small and converge most rapidly. Moreover, we

find that for a particular value of m, the "bonding symmetries"

(E , II , A , etc.) converge more slowly than do the "non-bonding
5 5

symmetries". This is readily understood; for example, Z symmetry

corresponds torn = 0, £. = 0, 2, 4,..., while Z corresponds to

m = 0, H = 1, 3, 5,... Clearly, the symmetry with the s-wave

contributor will be most affected by the short-range potential.

Alas, it is true that the most important contributors to the t&*.al

cross sections are invariably those which converge most slowly. In

point of fact, the cross sections of Table 8.2 certainly are NOT

converged.

In the course of obtaining these results, we first encountered
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Syaa. \

Eu

"g

Ag

Au

Total

2

48.8966

0.3159

0.07387

7.3529

7.4 (-5)

8.4(-7)

56.6392

4

94.1177

0.0520

9.5032

4.6366

1.4<-4)

8.5(-8)

108.3100

6

68.3702

0.0030

0.0867

3.2916

1.2(-4)

1.1(-8)

71.7449

59

0

0

4

1

1

64

8

.6961

.1045

.3476

.0311

.2(-4)

•0(-8)

.1796

54

0

0

7

1

1

63

10

.7470

.4805

.0689

.7086

.2(-4)

.0(-8)

.0052

12

51.6689

2.0771

0.0102

17.6299

2.K-4)

1.0(-8)

71.3862

14

49.7088

25.8069

0.0045

40.9668

l.M-4)

1.0(-8)

116.4872

16

48.4416

20.4357

0.0029

89.5212

l.K-4)

1.0(-8)

158.4016

18

47.6084

3.2939

0.0022

174.3648

1.1(-4)

1.0<-8)

225.2694

cc
6 9 11 13 15 17 18 20 20

TABLE 8.2

Cross sections in a o
2 at 0.05 Ryd. for A * 0, 2, ..., A m a x using v^(r) for

e-C02 scattering. Only short-range static interactions are included, and
all cross sections are converged in number of partial waves to better
than 12, and the final row shows the number of channels required for this
criterion.



the need for the transformation-truncation procedure of section

6.5. For values of A up to and including 8, the transformation

procedure made only very small changes, and those in the smaller

contrioutions of O^.A to the final cross sections. For calculations

including more coefficients in the potential energy, the procedure

is necessary.. The clue to its importance comes from an examination

2
of the inverse of I at r .We recall from section 6.5 that this

i\, max

quantity is required for calculation of the K-matrix a la Eq. (6,75).

We found that for large N,, the product of this matrix and its

inverse, which should be the unit matrix, had huge off-diagonal

elements, typically of the order 10 to 10 ; i.e., the inversion

was not proceeding as it should. Fortunately, it is invariably

elements corresponding to high-2. partial waves that are most affec-

ted.

A very important question in implementing this procedure is

where (and how frequently) one must transform. We initially tried

transformation at only one point and found that if we waited "too

long" to transform (i.e., choose too large an r ) , the

results were incorrect. For example, Table 8.3 shows an 11-channel

short-range-only case with six terms in the potential expansion.

For this potential, we found that within the range r = 0.1 a

to r.._,, =1.0 a , cross sections are independent of where we

carry out the' transformation. Also shown in the table are some

multiple-transformation runs. In general, it is mandatory to do

multiple transformations for strong and highly anisotropic potentials
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Synm.
0.1(a) 1.0 1.5 1.7 2.0 4.0 5.0 6.0 7.0 11.0

Z 0.4789 0.4789 0.4789 0.4795 0.2721 0.8230 0.3534 0.6790 0.3888 0.6353
u

n 7.7711 7.7711 7.7711 7.7757 14.8702 0.4930 0.4238 0.3345 0.4984 28.6388

Total 8.2500 8.2500 8.2500 8.2362 15.1424 1.3161 0.7772 1.0135 0.8872 29.2741

2 i£rans

U
u

Total

1.0(5.0)(b)

0.4789

7.7711

8.2500

2.0(2.0)(b

0.2721

14.8702

15.1424

' 9.0(2.0)(b)

0.2665

0.5877

0.8542

TABLE 8.3

(3,

0.

7.

8.

6)(

4789

7711

2500

300(300)(c)

0.2176

0.4689

0.6865

2 2
Cross sections in ao for Nc » 11, Amax » 10, q = 0, ungerade symmetry at k • 0.05 Ryd. illustrating re-
sults of transformation procedure. In the top rows, we transform only once, at r =

(a). Results at 0.1, 0.2, 0.30, 0.5, 0.7, 0.9, 1.0, and 1.5 are identical.
(b). Transform every 5.0 ao beginning at 1.0, etc.
(c). Stabilize every 3 points inside the barrier and every 6 outside.



in electron-molecule scattering; the reasons for this were dis-

cussed in Chapter 6. However, if one waits too long to do the

2
first transformation, all is lost - the I -matrix will not be in-

vertible regardlese of what one does. Finally, it is interesting

to observe from the table that in this example, where we include only

six v\(r) coefficients, it is possible to achieve the same results

by frequent stabilizations. For more realistic potentials, this

is not the case, and, in fact, when long-range terms are included one

must both stabilize and transform to avoid numerical instability.

The final version of the transformation procedure simply

incorporates an input variable, V. , which tells the code to
c rans

transform every Nt points in the integration (quadrature).

Similar parameters define the frequency of stabilization within and

beyond the limit of the centrifugal barrier.

The truncation procedure is easier to implement and quite

reasonable physically, since, as we suggested in Chapter 6, one can

reliably use the effective potential as grounds for such truncation.

We simply introduce a truncation radius, rtrunfts and, at this point

in the integration, throw away all channels in the physical wave-

function with I > I , the latter being a second parameter of input.

•— max

Several examples can be found in Table 8.4 for the same case used

to illustrate the transformation in Table 8.3.

As we saw in Chapter 3 (section 3.7), the effective potential is

different for different symmetries. This must bo kept in ir.ind in

determining the two truncation parameters. Tor example, in the
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trunc

trunc
2.0 4.0 10.0

0.0727(1) 0.4789(2) 0.4789(Z) 0.4789(E.)

77.8271(10 7.7712(n) 7.7711(11) 7.7711(H)

0.4754(E)
7.7727(11)

0.4788(E)
7.7717(n)

13 0.4789(1)
7.7711(JP

TABLE 8.4

The truncation approximation illustrated for N c c =
11, A m a x = 10, ungerade symmetry at k

2 = 0.05 Ryd.
Short-range static interactions only are included.
All channels with Z > £ t r u n c are removed at r = rtrunc.
(a). No truncation.
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full static-exchange-with-polarization calculations, to be discussed

below, v,. found $,_ - 10 to be satisfactory for £ , E , and II
trunc J g u u

symmetries, but % = 16 was required for II symmetry ovei the

energy range of interest. Throughout we choose r =4.0 a ,

although sensitivity checks suggest that values as small as 3.0 aQ

are satisfactory for some symmetries and energies.

When we include the long-range quadrupole interaction in our

calculation, it becomes necessary to integrate to a considerable

distance to achieve stable cross sections. We use r = 130 a ,
max o

which provides our usual better-than-1% convergence for the total

cross sections. In this case, it is necessary to both transform and

stabilize. This manifests itself in two ways:

(1). contributions OJMM corresponding to large values of
£ and V are unreasonably large;

(2). the T-matrix is not symmetric.

In part, these features reflect the fact that we must integrate over

a much larger mesh when long-range interactions are incorporated in

the calculation. Consequently there is greater opportunity for

linear dependence to creep into the homogeneous solution being

developed.

In such cases we still truncate at 4.0 a . Moreover, it is

not necessary to transform at r values beyond r , since the

truncation radius is well beyond the location of the nuclear sin-

gularities and the strong coupling, which mixes very small high-£
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I
!components with very large low-X. components, won't be present.

Naturally, all of these conclusions are potential-dependent

and must be checked as we include more and more expansion coefficients

in the potential energy, or as we introduce different kinds of inter-

actions (e.g., exchange). We shall not reproduce here all the

convergence tests we carried out; suffice it to say that the parameters

given when we do quote results correspond to the aforementioned

convergence criterion.

In studies of polar molecule scattering (in particular, e-LiF

collisions) in a laboratory frame, it has been found that including

long-range interactions improves convergence of the total cross sections

in N,, allowing convergence by A = 8 at low energies. This
A max

is not the case for e-HO™ collisions, as attested by Table 8.5,

which presents cross sections in a model potential defined by aug-

3
menting v,(r) with a q/r interaction with q = -3.85981 au and

i
r** = 1 . 4 a , p = 6. Two energies a decade apart are studied.

Notice that here we actually converged one symmetry, II ,

at 0.005 Ryd. In fact, cross sections corresponding to n > 1 j

are converged in this model by A = 1 4 but contribute very little I
TD3X v»

to the total cross section. It is clear from Table 8.5 that we jj

are nowhere near a truly converged realistic e-CO™ interaction j

potential. j

A careful study of our particular short-range static expansion

coefficients led to the separation of each coefficient into electronic

and nuclear contributions (as discussed at length in section 3,6)



max

S

n
u

Total
N
cc

14

9.8107

52.6655

0.2091

9.7451

73.8456

16

E = 0.05 Ryd

16

15.5461

71.1432

10.3407

13.3127

111.7578

17

18

22.9074

93.2714

0.9419

18.1534

136.6891

18

20

31.4859

118.5601

0.6589

24.2224

176.3423

19

E = 0.005 Ryd

14 16 18 20 22 24 26

Z 9.2877 17.1737 27.5739 40.1108 54.6637 71.1237 89.5775

E 11.5434 12.2994 13.0034 13.7248 14.4646 15.2167 15.9846
u

0.3789 0.3788 0.3789

8.9211 13.3933 25.2019
i:

Total 26.9509 36.1380 47.9401 62.3761 79.7930 101.4772 132.5076

0.

4.

3615

4684

0.

4.

3835

9165

0

5

.3798

.6182

0.

6.

3792

7965

N
cc

16 17 18 19 20 21 22

Table 8.5

2
Cross sections in a at two energies showing convergence behavior

in A in a model potential incorporating a 1/r long-range interaction.
TotaT cross sections include m = 2,3,4, and 5 contributions. [N = 7 ,
r = 7, r - 4.0, £ = 10, r = 130 a , N , = (T,%J^
trunc trunc trunc ' max o stab ' '

rS = 1,4, P - 6].
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and consequently to the convergence of the potential. This is

illustrated in Table 8.6, which shows cross sections at 0.05 Ryd.

in our old short-range (q = 0) model potential and in the q = 3.85981

model. Clearly, convergence is at hand. In fact, one can obtain

cross sections converged to within 5% with a maximum electronic

A of 22 and nuclear X of 60. For our 1% criterion, we choose

maximum values of 28 and 80, respectively. We have found in all

cases that this is adequate. The behavior of the cross sections

at our lower test energy of 0.005 Ryd. were similar to those shown

in Table 8.6. This step was one of the key advances in performing

the calculation, and without it converged cross sections would not

have been attained.

Using the above facts and techniques, we were able to calculate

cross sections in the true static e-CO^ potential. These results

will be presented and discussed in the next section.

Before turning to a look at exchange, perhaps a word about

eigenphases is in order. Thus far we have not presented any of

these here, although we did calculate them in our program. For studies

such as those of this section, the eigenphases are moderately useful

as indicators that convergence in the cross sections is near. However,

they converge sooner than do the cross sections of physical interest.

Thus a 1% difference between two eigenphases (or eigenphase sums)

in a convergence study may signify a 10% - 20% discrepency in the

cross sections. This is particularly acute at low energies. Never-

theless, eigenphases have their usefulness, and we shall present
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X
symm

Iu

"g

nuc
*"- 40

45.7125
(45.6877)

0.1847

0.0013
(0.0013)

45

0

q = 0

50

.6472

.1520

60

0.1400

—

0
(0

70

.1367

.1338)

II 456.8214 429.9505 424.1398 423.2734
U (423.1910)

q = 3.85981

40 50 60 70 80

139.9995 173.2146 187.6373 191.8965 193.0149

192.3641 190.9954

0.5026 0.4971 0.4961 0.4959

~ — — 109.9524 110.0790

Table 8.6

Cross sections in two model potentials (with and without long-range interaction) at
0.05 Ryd using N =24 and a maximum electronic X of 28. In this table, X is the
maximum X for whxch nuclear contributions were included in V(r). (Other parameters are
the same as for Table 8.5). The numbers in parentheses show corresponding calculations
for Xe^ = 26.max



some in the sequel.

Incorporating exchange via a local potential as outlined in :

Chapter 4 has a considerable effect on the cross sections, as we :

shall see in the next section. Of concern at present is the effect

on convergence of said cross sections in number of channels. Since

on the whole the exchange contribution deepens the potential (i.e.,

makes it more attractive) we expect to need more channels. Sure

enough, this is precisely what happens, and we encounter as a result

a whole host of new numerical problems, most of which were dealt

with in section 6.7.

The AAFEGE potential, which was dropped on theoretical grounds

(see section 4.4) is the stronger of the two local exchange potentials j

we considered and hence the racst difficult to converge. This •

is suggested by the results of Table 8.7. [It is worth reminding ?

ourselves how important stabilization can be. To this end, we show :

in parentheses in this table a couple of results for 25 channels

without stabilization.] Having chosen not to study the AAFEGE ;

potential further, we proceeded to try to converge the HFECE potential

case. i

This suddenly brought up the exploding Neuraann functions ;

previously introduced in section 6.7D. To suggest the regions of «

r where this becomes a problem, we show in Table 8.3 that value of - ;j

r at which the Ricatti-Neumann function exceeds 10 ' ror two values ;!

if
of k and for several values of N and fc . This led us to f

cc max :!

i
introduce the Neumann cutoff procedure described in Chapter 6. a

I
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Ncc

29

30

31

32

33

34

35

max

56

58

60

62

64

66

68

cut

k2 = .005

0.001

0.002

0.003

0.004

0.006

0.009

0.013

k2 = .05

__

—

0.001

0.001

0.002

0.003

0.004

TABLE 8.8

Sadii rcut at which the Ricatti-Neumann function
exceeds 10^12 for two energies. Ncc is the
number of channels which would be included in a
calculation corresponding to the values of
I and r . shown,
max cut



Our first thought was to simply use the largest available

312
number, 10 , as a cutoff constant. However, curiosity regarding

the procedure led us to try to determine just how low we could set

this constant. The results were rather suprising, to say the least.

As Table 8.9 reveals, a very small cutoff constant, say, 10 ,

must be reached before the results deteriorate. Even more suprising

is the observation that reducing this constant can resolve numerical

difficulties which would otherwise produce divergent cross sections

in 1 symmetry as N is increased. This is a result of some im-

portance, since this contribution to the various cross sections of

interest to us is by far the largest at low energies. Thus, in Table

8.10 we see that a cutoff exponent of 240 gets us much closer to con-

vergence than does 312.

A couple of ancillary points should be mentioned at this

juncture. First, the divergence seen in Table 8.9 is potential

dependent. To demonstrate this, we returned to the static ap-

proximation at 0.005 Ryd., where we had converged Z cross sections

in the static approximation by N = 2 7 and where none of the

difficulties here under discussion were present. Using a cutoff

312
of 10 , we pushed N up to 32 without obtaining peculiar behavior.

Second, the symmetry of the T-matrix improved as we decreased the

cutoff constant (provided that we did not go to the ridiculous

extreme of, say, 10 , which is simply too small). [Stabilization

improves the symmetry of the T-matrix to the point that such lack

of perfect symmetry as remains does not affect the cross sections.
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28 » - 2'J

« (exp)

No cutoff

312

308

300

290

280

260

240

200

150

130

100

0°

42.6438

—

42.6438

42.6438

42.5913

42.5910

42.5910

42.5910

42.5910

42.5910

42.5932

51.3421

sum

-0.1439

—

-0.1439

-0.1439

-0.1438

-0.1438

-0.1438

-0.1438

-0.1438

-0.1438

-0.1438

-0.1570

0°

—

4S.6207

45.6188

4S.6064

45.8203

41.6021

41.7236

41.7237

41.7237

41.77S7

42.5931

51.3421

6°
sum

—

-0.L485

-9.1485

-0.1484

-0.1488

-0.1422

-0.1424

-0.1424

-0.1424

-0.1424

-0.1438

-0.1570

TABLE 8.9

Cross sections and eigenphase sums for Z g symmetry
at 0.005 Ryd. in the e-C0£ static-exchange problem
using the HFEGE. N c c is the number of channels.
Other parameters are the same as in Table 8.7.
(Only the power of 10 for the Neumann cutoff parameter
is shown in the leftmost column.)
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28 29 JO 3 1 32

312 42.6438 45.620? 50.5259 — —

42.5910 41.7237 40.9753 40.3354 57.7477
(-0.1438) (-0.1424) (-0.1412) (-O.l/iO2) (-0.1658)

TABLE 8.10

Convergence studies for two Neumann cutoffs in
static-exchange (HFEGE) e-C02 scattering at
0.005 Ryd. Parameters are as in Table 8.9.
The numbers in parentheses are eigenphase sums.
Only I symmetry is included here.
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One can live comfortably with asytmetry in, say, the third or fourth

decimal places.] Third, sensitivity to the cutoff constant is

greater for larger N , as reflected in Table 8.9.

One must be careful to distinguish the divergent behavior

of certain cross sections from the Neumann overflow. As we saw in

the 28 channel case, it was in a sense coincidental that the two

effects appeared simultaneously. Had we been working on a smaller

computer, the Neumann overflow would have been discovered far

sooner.

These results all suggest that we can converge our L" cross

sections (and other symmetries) via judicious choice of the cutoff

constant. But what is the cause of the divergent behavior which we

are trying to get rid of? Well, it too is tied up in the inversion

2

of the I -matrix.

Recall that we first tackled this problem by means of the

transformation procedure. To see that the inversion difficulty is

back again, we showed that one- can achieve the same result by trans-

forming very fequently as he achieves by reducing the cutoff constant.
312

Thus, if we set the constnat equal to 10 (so the computer can

caluculate all the numbers it requires) and sets !*„_„_ = 2, we

obtain precisely the same results (for several cases studied, i.e ,

the two in Table 8.9, for example) as with a constant of 10

and N = 10. Clearly, it is preferable from a monetary point
C1T3HS

of view to reduce the constant and keep the frequency of transformation

as large as possible, since each additional transformation entails



inversion of a large matrix.

However pleasant it say he to just decrease the cutoff constant

and watch ones cross sections converge, a word of caution is in order.

We must repeatedly verify our choice of the cutoff constant, since

this parameter is dependent on the potential, on the scattering

energy, and on the number of channels. Fortunately, the range of

valid choices for the constant for a particular calculation is

quite large, so this problem is diminished considerably in actual

practice.

There is still another way to address the problem directly,

and that is to carry out the matrix manipulations (addition,

multiplication, inversion, etc.) in double precision. This is

perhaps the world's worst way to treat this situation, since on

some machines (e.g., a CDC machine) double precision is a software

rather than a hardware feature, and, as such, it is unbelievably

time consuming. Nevertheless, we did verify that this produces

the same results as the Neumann cutoff procedure in one case,

N • 28. [The run in question took on the order of 9 times as much

computer time as did the corresponding single-precision calculation.

Clearly, this isn't a feasible way to proceed in practice for production

runs. ]

In retrospect, the whole problem could have been avoided

by scaling the Green's functions at small r. One could scale G (r)

2
up and G (r) down or, alternately, simply calculate the product

i
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1 2
G (r) • G (r), which is all that is needed until we reach the

2
asymptotic region, where we must extract I (r ) for inversion and

*v max

calculation of the K-iaatrix. This poses no problem, though, since

it is only at small r that this heinous problem arises.

Although induced polarization (see Chapter 5) has a considerable

effect on the cross sections for electron-CO, scattering, it does

not significantly alter the convergence behavior in N discussed

thus far. Essentially, this is because only vQ(r) and v2(r) are

affected by this interaction, and these are not greatly altered.

Moreover, v2(r) already has taken into account a stronger long-range

potential, the r quadrupole interaction in the static potential.

This, however, brings us to one last important technical

detail. There is in our definition of the contribution to the total

potential energy due to induced polarization interactions a cutoff

radius, which we call r . There is no ab-initio way to determine

this parameter if one proposes to use the analytic form we have

selected for the long-range potential energy. Of course, we

could have arbitrarily declared there to be a particular region of

space within which the static potential was to be some prechosen

percentage of the full potential and adjusted r accordingly ,

We chose instead to take advantage of the well-established

3.8 eV resonance in the II symmetry. This so-called shnr ̂  reso-

nance corresponds to a quasi-bound state (crudely visualized, an

electron trapped between the hump in the potential energy and the
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origin) rather than to a negative energy state. We can adjust the

position of this resonance by varying the polarization cutoff radius

and thereby changing the term v2(r)P2(cos 8). The polarization

interaction, which is clearly treated semi-empirically in this

formulation, has the net effect of making the electron-molecule

interaction potential surface more attractive. This, in turn,

causes the resonance to move dovm.

It turns out that the resonance is quite sensitive to the

choice of polarization cutoff. This is illustrated in Figure 8.1

and the accompanying Table 8.11, which show the variation in the

resonance energy and the cross section for selected values of r .

We see from the table that the choice r = 2.59 a leads to a
c o

resonance energy of 3.8 eV, the experimentally determined value.

For contrast, we also present in this table part of our studies

at a slightly different resonance energy, 3.4 eV; we shall use this

extra case to illustrate sensitivity of cross sections to the

potential in the next section.

Notice that in a sense we scale only the IE symmetry, the

potential thereby obtained being used for all symmetries over a wide

range of energies with no further adjustment. This is especially

important since, as we shall see, different symmetries dominate

in different energy regimes. The symmetry here adjusted is dominant

only in the vicinity of the resonance.
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Eres

'I

sum

2

16.

-0.

.50

9404

4790

2.

49.

-0.

55

6280

8717

2.

61.

56

5421

0093

2.

74.

-1.

57

1833

1748

2.

84.

-1.

58

8322

3661

2.

89.

-1.

59

91C1

5736

2

87

1

.60

.4401

.3605

2.

38.

0.

65

0579

6625

Eres " 3'4 e V

*c
p

S 1

sum

2

8.

-0.

.40

4286

3078

2

98.

-1.

.50

0350

4328

2.

16.

0.

60

9069

3958

TABLE 8.11

Tuning of the JIU resonance: cross sections and eigenphase sums for e-CO2 scattering in the SEWP approx-
imation using the HFEGE, with a0 • 17.9, a2 - 9.19, q»-3.85981, rc^ - 4.0. p « 6, N t r a n s - 7, rtrutl<. -
4.0, Jltrunc " 10> rmax *

 1 3° ao» a n d Ncc " 23« T n e cutoff radius is in a and cross sections in a* .
Eigenphase sums are xn radians. °



«-«.'. •».©

Figure 8.1

Cross Sections for e-CO, (II symmetry) in the SEWP approximation
showing the sensitivity of the behavior near resonance to the pola-
riv.ation cutoff parameter.

227



§8.3. The Final Converged Results for e-CO^ Scattering

Having traversed in the last section the labarynthine paths

of the computations we carried out, we can at last look at some

final cross sections. Without further ado, we present in Table

8.12 converged cross sections for e-CCL scattering in all m = 0 and

m = 1 symmetries for energies from 0.07 eV to 10.0 eV. There is

a resonance at 3.8 eV in II symmetry, as required. We shall refer

to this as CASE 1 to distinguish it from the comparison calculations

with E = 3.4 eV, which will cleverly be dubbed CASE 2. These

cross sections are converged to less than 1% in Z , II , and H

symmetries and to better than 3% in £ symmetry. The parameters

for this (and subsequent) results are (once and for all)

aQ = 17.9 au

a2 = 9.19 au

q = -3.85981 au

r q = 4.0 a
c o

rc
P = 2.59 aQ (CASE 1) or 2.5 aQ (CASE 2)

N = 32 (E ), 23 (n ), 14 (S , II )
cc g u u g

A f = 28
el

* m a x = 80
nuc

r = 130 a
max o

Ntrans " 7

250
n = 10 (Neumann cutoff)
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E(eV)
0.07 0 . 1 0.5 1.0 2,0 3.0 3.5

vo

226

3

0

9

.7339

.7153

.2106

.3535

179.

3.

10.

4213

4513

6070

37.9246

3.8029

0.1148

12.6696

15.

6.

9.

1480

0101

3535

6.

10.

0.

4.

8633

5967

1136

6191

5

13

6

.1104

.9785

.7117

4.

15.

0.

30.

6909

1616

0948

5329

^E(eV)

Symm
4.0 5.1 5.9 8.0 10.0

4.3939

16.0546

0.1332

45.3868

3.9877

17.1792

0.3106

4.7014

3.

17.

0.

3,

TABLE 8.

8261

4502

5096

7754

12

3

16
I-I

' 4

.8702

.8578

.2089

.6436

5.3371

15.4439

1.9802

5.8722

Converged cross sections (in a0 ) for e-C02 scat ter ing (Case 1 ) . We use the parameters
defined in the t ex t .



r. • 4.0 a
trunc o

£„ = 10
trunc

Nstab " 6

Exchange Potential » HFEGE potential

The corresponding eigenphase sums are presented (for completeness)

in Table 8.13.

In Figure 8.2, we show graphs of these cross sections for

I , E , and II symmetries. The II symmetry yields very small

contributions, and is a special case which we shall take up below.

Before turning to a discussion of each symmetry in turn, it

is worth glancing at Table 8.14 and comparing the results therein

with those in Table 8.12. The former table presents cross sections

at selected energies calculated in the Born Approximation. The

related theory was presented in section 7.5. Clearly, the BA is

quite unsuccessful for total cross sections. In contrast, it is

true that one can reliably predict particular T-matrix elements in

the Born Approximation. For example, for |A£| = 2 and A and V

large, say, greater than 5, the T-matrix elements obtained at low

energies agree with the coupled-channel results to four decimal

places. (These are, however, less important by far than other

elements, which is why the results of Tables 8.12 and 8.14 don't

agree too well.) This suggests the possiblity of using the Born

Approximation for certain channels and a more accurate procedure

for others. A procedure like this has been used in electron-polar
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symm
L(ev) 0.07 0.1 0.5 1.0 2.0 3.0 3.5

0.

-0.

-0.

0.

2927

0444

0068

0377

0.

-0.

0.

3120

0523

—

0479

0.2982

-0.1203

-0.0096

0.1225

0.2279

—0.2043

—

0.1518

0.1050

-0.3695

-0.0013

0.1546

0.

0.

0.

0092

5155

—

2291

-0.0637

-0.5802

-0.0198

0.5641

4.0 5.1 5.9 8.0 10.0

-0.1157

-0.6400

-0.0315

-0.8611

-0.2170

-0.7552

-0.0566

-0.3377

-0.

-0.

-0.

-0.

2754

8269

0775

3356

-0.3405

-0.9781

-0.1318

-0.4236

-0.2509

-1.0905

-0.1763

-0.5236

Table 8.13

Eigenphase sums corresponding to the cross sections of Table
8.12 (Case 1). (Radians are used.)

to
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160

"„•

8

o io :

/o

Figure 8.2

Cross sections for e-CO^ in the SEWP approximation for E , E , and
II symmetries. The parameters for this calculation are §efined in
tKe text.
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E(ev) 0.07 0.5 JLJL

2.7785
(3.7153)

0.1987
(0.2106)

2.1083
(3.4513)

0.1760

10.2075 11.7177
(9.5901) (10.6070)

0.3050
(3.8029)

0.1134
(0.1148)

25.9399
(12.6696)

2.6969
(6.0101)

0.1922

37.8507
(9.3535)

10.3103 16.3992
(10.5967) (13.9785)

0.4868
(0.1136)

50.0600
(4.6191)

0.8550

52.5170
(6.7117)

Table 8.14

Test of the Born Approximation for e-C0« scattering: cross
sections in a taking into account only long-range interactions
(quadrupole and induced polarization). Numbers in parentheses
are coupled-channel results from Table 8.12.

tow
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molecule scactering , but its extension to our problem is not

transparent due to the overwhelmingly important partial wave coupling.

Before leaving the subject of the Born Approximation, it is J

worth pointing out that even the shape of the individual-symmetry •

cross sections vs. energy is wrong for most symmetries. There ;

doubtless exists an energy low enough that the Born Approximation is f

valid for this problem, but it clearly is not 0.07 eV. . ?

Certain features of the scattering fair leap out from the

tables and graphs presented thus far. At low energies, below, say,

0.1 eV, the Z symmetry is overwhelmingly dominant. In point of \

** i
fact, i t is scattering in this symmetry , largely due to short-range >

jj
forces, which gives rise to the enormous low-energy cross sections I

§
observed in the experiments discussed in Chapter 2 (see the results I

u
for total and momentum transfer cross sections below). Convergence, jj
as we saw in section 8.2, is slow but sure in this symmetry. The |

j

eigenphase sums are dominated by s-wave at the low energies, which !
is precisely the partial wave most affected by the short-range
potential. At slightly higher energies (say, 0.1 eV to 1.0 eV) 1

a
d-waves begin to contribute, and above a few eV, even g-waves I

are important, jj

Of considerable interest is the other "bonding symmetry", f

II , for it is the resonant symmetry. Figure 8.3 shows the eigen-

phase sums for this symmetry in CASE 1 (the solid line) in a

fashion which clearly shows the resonant be;havior. Examination of

the individual eigenphaaes and assreiated eigenvectors reveal that



1
J
1
1

Co««2."~*/

/ /

#

1//

I •' *
• • • • •

Figure 8.3

Eigenphase sums for e-C(K scattering in II symmetry showing the sen-
sitivity to the choice of polarization cutoff parameter. The SEWP
approximation is used with parameters as defined in the text.



is a p-f resonance, about 60% p and 40% f.

The behavior of the eigenphase sum as energy decreases

reflects the influence of the long-range forces, which begin to

2 '
dominate as k approaches 0. We see the sum increase from zero

initially (all these results are modulo IT), which is due to the j

-3 l

repulsive r quadrupole interaction. This is, in fact, predicted j

by the Born Approximation [see Eq. (7.55)]. As energy further

-4
increases away from zero, the attractive r induced polarization

interaction begins to take effect and pulls the sum down again.

Eventually, it grows enormously as we approach the resonance

energy, where it plurcets through an integral multiple of ir

and, in the figure, goes negative. The behavior here elucidated

is reflected in the cross sections of Figure 8.2c.

It is important to understand the sensitivity of such features

as those we have been discussing to the potential and, in particular,

to the one "arbitrary" feature of our efforts, the polarization

cutoff radius. Such a comparison can be made with the aid of

1
Table 8.15, which shows cross sections and eigenphase sums in CASE 2 j

for certain selected symmetries and energies which are displayed f

for CASE 1 in Table 8.12. (See also Table 8.13.) We should emphasize

that the change in the potential between the two cases is very

slight; we merely move the cutoff radius a mere 0.09 a closer to

the origin. The effect is quite interesting.

There clearly are differences in the quantitative results.
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0.07 0.1 0.5 1.0 2.0 3.0 4.0

z
g

z
u

n
g

n
u

329.
(0.

-

-

9.
(0.

1171
3589)

-

-

6972
0380)

259.3198
(0.3828)

3.4243
(-0.0521)

0.1817
(-0.0081)

10.7700
(0.0483)

56.4800
(0.3797)

3.6920
(-0.1185)

0.1101
(-0.0067)

13.4541
(0.1267)

23.
(0.

5.
(-0.

0.
(-0.

10.
(0.

2204
3122)

8008
2009)

1373
0035)

5369
1622)

9.6117
(0.1932)

10.2579
(-0.3633)

0.1283
(-0.0015)

6.5195
(0.1868)

6.1743
(0.0827)

13.5954
(-0.5074)

0.0868
(-0.0058)

23.5981
(0.4601)

—

15.6793
(-0.6304)

0.1078
(-0.0222)

9.3905
(-0.3730)

Table 8.15

2Cross sections in a and eigenphase sums (in parentheses) in radians
for e-C0o scattering in 8ase 2 (E = 3.4 eV and rP = 2.5 a ).2. res c o



However, the important qualitative features remain unchanged, e.g.,

dominance of £ o at low energies and, as the dotted line in Figure

8,3 attests, the nature of the resonance.

These results suggest considerable sensitivity to the

polarization cutoff, so it is worth trying one further case (called

CASE 3). We choose here the rather extreme value of r = r ,

which, recall, was 4.0 a . This produces a rather considerable

reduction in the polarization potential. We have chosen to examine

only the resonant symmetry for this case, cross sections for which

can be found in Table 8.16. The resonance is considerably broadened

and moves up in energy to M5.0 eV (see the dotted curve in Figure

8.3).

A different sort of sensitivity study can be performed which

addresses the energy dependence of the HFEGE potential [recall

Eq. (4.39)]. Although calculation of this contribution is certainly

not a major part of the total effort required to obtain cross sections

at any one energy, it would be nice if we could ignore the energy

dependence of the exchange potential and simply compute it once

and for all. To study this possibility, we freeze E., the scattering

energy in the definition of the exchange potential at 0.005 and

calculate IT cross sections at a number of energies. The results,

labelled CASE 4 in Table 8.16, are discouraging, and indicate that

this is a poor way to proceed, except at the very lowest energies.

In the work reported here the HFEGE potential is recalculated at

each scattering energy.
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E(eV) 0.07 2.0 3.0 3.5 4.0 5.0 6.0 6.5

Case 3 8.8997 0.5995 0.6862 1.3659 2.3314 5.9186 32.8714 54.5505
(0.0358) (0.0391) (-0.0270) (-0.0527) (-0.0684) (-0.0310) (0.4817) (-1.6398)

Case 4 8.8997 0.7560 0.5716 1.1471 2.2205 19.4999 12.4425
(0.0358) (0.0492) (-0.0060) (-0.0228) (-0.1791 (0.3290) (-0.6600)

Table 8.16

Cross sections in a for two special cases chosen to reveal the sensitivity
of e-C02 scattering to the potential. Case 3 corresponds to r^ = 4.0 aQ. Case 4
is the same as 3 except that the KFEGE potential is held constant at k̂  = 0.005.
The symmetry is II .



We remarked above that H symmetry was rather special. The j
8 i

first point to note is that the cross sections for this symmetry are

the smallest of those under consideration; this is clear from Table

8.15. The cross section in CASE 2 appears in Figure 8.4, from which

i
it is evident that these cross sections wiggle about more than the j

typical electron-molecule results. The reason for this behavior is j

that long-range Interactions are more important for this symmetry I

than for the other three we have studied. It is also significant

that more partial waves contribute equally (or nearly so) tor scattering

in this symmetry than in the others examined.

Further insight into this case can be gained by a study of

the eigenphases. In contrast to the other three important symmetries,

in II scattering, there is no single dominant eigenphase in the sum.

The two largest eigenphases together with the sum are shown in Figure

8.5, which clearly reveals considerable cancellation.

A second manifestation of this sensitivity to comparatively

high-Jl partial waves and to long-range forces is the need for a

larger value of the truncation order than in other symmetries. For

i
example, at 0,1 eV, the eigenphase sum is 0.0004, -0.1336, and 1

i
-0.0035 for I = 10, 12, and 16, respectively. The change in j

the cross section is not quite so great; we find cross sections of

0.1326 a 2, 0.1352 a , and 0.1373 a for these three cases,
o o o

If one is satisfied with a less stringent convergence criterion

than we here employ, these problems can be swept under the rug. As
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Figure 8.4

Cross sections in the SEWP approximation for e-CO? scattering (II
symmetry) using a cutoff parameter ol 2.5a (CASE 2). 8

o
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Figure 8.5

The two largest erlgenphases (solid curve) and the sigenphase sum (dashed
curve) for e-C0_ scattering in the II symmetry using the SEWP approxima-
tion (CASE 2). g
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we shall see below, the effect of ignoring this symmetry on the

total, momentum transfer, and even differential cross sections is

not great.

Computed total and momentum transfer cross sections in both

atomic units and square angstroms for CASE 1 are presented in Table

8.17, where the latter are compared with the experimental results

(9)

of Phelps et. al. As the table reveals, agreement is quite good.

We see that at low energies ( around 0.1 eV ) , the total and momentum

transfer cross sections are approximately equal, reflecting the un-

importance of forward scattering at these energies.

The reasons for the behavior of the total cross sections as

a function of energy are clear from the discussion of the cross

sections for the individual symmetries as given above. In order

to obtain a deeper understanding of these results, we studied the

changes induced in the total and momentum transfer cross sections

when selected symmetries were deleted. The results for CASE 1

appear in Table 8.18 for selected (hopefully) illustrative energies.

We find that II is essentially unneces^ ry, while the other "non-

bonding" symmetry, E must be included. Notice that at 0.07 eV

scattering in the £ symmetry contributes almost 95% of the total

and momentum transfer cross sections, while at 2.0 eV, £ is clearly

the principal contributor.

Lastly, we should look at differential cross sections. These

are calculated according to the formulae and procedures of section

7.3 and are shown in Figure 8.6 for CASE 1 at several energies.

The first thing one notices about these results is that they are
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E(eV)

°tot<T>

°mom<
E>

0

237
(66

216
(60

228
(64

.07

.9836

.6354)

.8731

.7245)

.57

.00)

0

194.
(54.

173.
(48.

.1

6609
5050)

5418
5917)

0.5

54.5459
(15.2728)

45.9881
(12.8767)

38.57
(10.8)

1

30.
(8.

30.
(8.

.0

5319
5489)

7730
6164)

2.0

22.1906
(6.2134)

26.4095
(7.3947)

18.75
(5.25)

3.0

25.8061
(7.2257)

28.4128
(7.9556)

—

3.5

50.4730
(14.1324)

50.1233
(14.0345)

—

4.0

68.6035
(19.2090)

18.4336
(19.3452)

—

E(eV)

fftot<"

amom(T)

a (E)
mom

5.1

26.1767
(7.3295)

24.9316
(6.9808)

5.9

25.5627
(7.1575)

22.5867
(6.3243)

8.

21.
(6.

7.
(6.

0

6867
0723)

1040
5856)

10.0

28.6318
(8.0169)

24.4773
(6.8454)

43.21
(12.10)

TABLE 8.17

22 9
Total and momentum transfer cross sections in a0 and tr (in parentheses) for e-
scattering (Case 1). Experimental momentum transfer cross sections obtain from
reference (9).



E(eV) 0.07 0.5 1.0 2.0 10.0

All Symm

No II

No n ,zu

NO n
u

£ only

237.9836
(216.8731)

237.7749
(216.8952)

234.0947
(194.8713)

228.4839
(246.3389)

224.5950
(224.5950)

54.5459
(45.9881)

54.4334
(46.0746)

50.6279
(33.9738)

41.8679
(50.1311)

37.9499
(37.9499)

TABLE

—

30.5319
(30.7730)

24.5178
(17.5151)

21.1722
(28.4159)

6.3632
(6.8632)

8.18

22
(26

22
(26

11
(9

17
(23

5
(5

.1906

.4095)

.0788

.3807)

.4822

.8750)

.5715

.7431)

.3370

.3370)

28.6318
(24.4477)

26.6528
(26.1586)

11.2091
(11.6896)

22.7597
(19.2171)

15.1581
(15.1581)

Study of total and momemtum transfer (in parenthesis) cross
sections as certain symmetries are deleted. Case 1 is con-
sidered. All results are in atomic units.
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rather strange.

Actually, the low- (< 0.5 eV) and high- (>_ 3.5 eV) energy

differential cross sections are not all that unreasonable.

For example* the 4.0 eV result clearly shows the p + f character

of the nearby resonance. But what are we to make of the graphs for

1.0 eV - 3.0 eV? The shape of these plots is certainly atypical.

By way of diagnosis, we studied the sensitivity of the

differential cross sections to the potential in CASE 1 and in

CASE 2. In Figure 8.7 we compare these results at two energies,

0.1 eV and 1.0 eV. Clearly, the behavior at the higher energy is

quite unusual, suggesting an extreme sensitivity in the T-matrix.

Cne should keep in mind the important fact that differential cross

sections are notoriously hard to predict theoretically with con-

fidence (they are also quite difficult to measure experimentally,

particularly at small angles). This obtains because these cross

sections sample the T-matrix quite extensively and also take

into account interference effects (recall Chapter 7).

To further study the behavior of the differential cross section,

we tried several selective deletions of the sort discussed in con-

junction with Table 8.18 at a wide range of energies. Three typical

cases are presented in Figure 8.8. At the low and high energies,

the following observations can be made:

(1). deletion of II T-matrix elements does not alter the

shape of do/dG.
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eV

Figure 8.7

Illustration of the dependence of the differential cross sections for
e-CO_ scattering on the potential (polarization contribution) at
two energies, 0.1 eV and 1.0 eV.
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Figure 8.8

Differential cross sections for e-CO- scattering at several energies
showing selective deletions of certain symmetries.

254



H.0 1.0 eV

255



256



(2). deletion of both "non-bonding symmetries" has no

major qualitative effect on the shape in angle;

(3). deletion of the II symmetry completely alters the

shape;

(4). deletion of all but E symmetry yields differential

cross sections which only vaguely approximate the full result.

The figure shows that the 1.0 eV case is anomalous with respect

to observations (2) - (4). This was also found to be true at

2.0 eV and 3.0 eV but ia all the other cases examined (0.07, 0.1,

0.5, 3.5, 4.0, 5.1, 5.9, 8.0, 10.0 eV) the behavior found was con-

sonant with the above observations.

In addition to the physical insight one gains from studies like

these, they clearly suggest that the 1.0 - 3.0 eV cases are some-

how special. This was further suggested by a series of studies we

carried out in which only the largest N T-matrix elements of each

contributing symmetry were retained in the calculation of the

differential cross section. We found typically that by N = 2, the

cross sections would be converged for angles greater than about 60°,

while by N = 4, they were converged from 0° to 180°. However, at

1.0 eV, the results for N = 1 through N = 5 oscillated about

something resembling the shape shown in Figure 8.6, never clearly

converging.

The final clue to this mystery is provided by the asymptotic

decoupling approximation of section 7.6. We present in Figure 8.9
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comparison for the differential cross sections in the full calculation

and the ADA at several energies. The disparity between the behavior

in the ADA of these cross sections from 1.0 eV to 3.0 eV and the

results at other energies is quite evident.

Using these clues and a very detailed analysis of which

T-matrix elements go into the differential cross section at selected

energies, we have concluded that our calculated results for dcr/d8 in

the energy range roughly defined by 1.0 eV to 3.0 eV are too

sensitive to be reliable. We find that at these energies, the

interference of various channels and symmetries is most important,

and the differential cross sections depend precariously on the

T-matrix being accurate to more than four significant figures, that

is to a greater degree of accuracy than even our rather rigid

criteria provide.

Of course, such a level of accuracy is not required to determine

the total or momentum transfer cross sections of Table 8.12, and

we have considerable confidence in these results. Moreover, we

have no reason to doubt our differential cross sections for scattering

energies outside this energy range. However, one should always

keep in mind the aforementioned sensitivity of these cross sections

to the T-matrix. It is unfortunate that there are no extensive sets

of reliable differential cross sections for e-CX^ scattering in the

literature at present, as these would provide an interesting comparison

for these calculations.
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Figure 8.9

Differential cross sections for e-C02 scattering in the coupled channel
calculation compared with results obtained in the asymptotic decoupling
approximation defined in the text.
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§8.4. Conclusion

The manner in which we used the graphs of Figure 8.9 obtained

in the asymptotic decoupling approximation might suggest that this

(or its near equivalent, the low-Jl spoiling approximation) is a valid

way to proceed in studying this problem. This is not, in general true,

unless one seeks merely qualitative information or order-of-magnitude

results. To illustrate this assertion, we show in Table 8.19 total

and momentum transfer cross sections obtained in the full theoretical

analysis and in the ADA. Clearly, it is only at the lowest energies

that the latter is reliable.

Another perfectly reasonable question to pose is: does one

have to take into account both exchange and polarization? Our

sensitivity checks reported above suggest that the answer is "yes",

particularly if one has interest in quantitative results. But suppose

we are interested only in the qualitative behavior of the scattering.

Can we get an understanding of the physics of the collision without

all this effort?

The answer is, rather emphatically, "no". This is revealed

by Figure 8.10, which compares cross sections in three approximations;

SEWP static-exchange-with-polarization

SE static-exchange

S static

The SEWP approximation is the one employed for the calculations

reported in the last section and our best model of the true e-CC^

interaction. The point of Figure 8.10 is not so much that the
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to

E(eV) 0.07 0.1 0.5 1.0 2.0 3.0 3.5

a (T) 237.9836 194.6609 54.5459 30.5319 22.1906 25.8061 50.4730
t o t (ADA) 235.6109 192.4727 51.7659 26.8862 17.2550 18.6227 30.9513

a (T) 216.8731 173.5418 45.9881 30.7730 26.4095 28.4128 50.1233
m o m (ADA) 211 .3744 167.9891 38.8486 21.6921 16.2462 17.1868 28.5661

E(eV) 4.0 5.1 5.9 8.0 10.0

a (T) 65.9660 26.1767 25.5627 26.5789 28.6318
c o c (ADA) 41.4058 21.3116 21.3184 21.8441 21.5499

a (T) 68.6035 24.9316 22.5867 21.6867 24.4773
raom (ADA) 37.1253 16.7296 16.0825 16.0699 15.8613

TABLE 8.19

2
Cross sections in aQ for e-CC>2 scattering in the SEWP approximation (labeled T)
and the asymptotic decoupling approximation (labeled ADA).



Figure 8.10

Comparison of cross sections in several symmetries for e-C0? collisions
calculated using the static (S), static-exchange (SE) and static-
exchange-with-polarization (SEW) approximations as defined in the text.
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numerical values of the cross sections differ in the various ap-

proximations but that the physics one predicts theoretically is not

correct if either exchange or polarization is neglected. This is

further illustrated by the momentum transfer cross sections of

Figure 8.11. (He did not calculate enough points in the static

approximation to determine the precise behavior of o between

0.1 and 2.0 eV, so this part of the curve is dashed. The three points

we did calculate in this energy range are indicated on the dashed

portion of the S curve.) Notice in particular how poor the static-

exchange approximation is in this case. This is a little suprising.

It is remotely possible that this in part reflects the admittedly

approximate way we have included exchange. And it is possible that

the results of a true Hartree-Fock static-exchange calculation would

do a little better. However, it seems unlikely that the fundamental

physics reflected in these results would be changed.

In conclusion, it is worth remarking on the similarities

between the behavior we have observed in this problem and that

characteristic of electron scattering from rare gases (e.g., Ar,

Kr, Xe). Total cross sections for e-Ar scattering have been determined

by Thompson in the three approximations we have considered

and are reproduced in Figure 8.12. (Of course, the details of the

inclusion of different interactions are not the same as in our

studies.) While we certainly don't wish to make too much of the

analogy, it is interesting that spurious peaks appear in the static
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ENEA.GV

Figure 8.11

Momentum transfer cross sections for e-CO_ collisions in the three
approximations of Figure 8.10.
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Figure 8.12

Cross sections for e-Ar scattering in static (S), static-exchange (SE),
and static-exchange-with-polarization (SEW) approximations. [Source:
D. G. Thompson, Proc. Roy. Soc. (London) A294, 160 (1966)]
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approximation, that the static-exchange results are less strongly

energy dependent than are the true cross sections, and that the

static-exchange-with-polarization cross sections rise at low energies.

All these features are also evident in our e-CC^ results. Of course,

in the rare gases, what we are seeing is a Rarasauer-Townsend minimum,

which is simply a deep minimum in the cross section caused by

the phase shift passing through a multiple of IT at the energy of

the minimum. Physically, the effect reflects the fact that at

this energy the scattering wave-function has been shifted by exactly

one wavelength, so that the "effective phase shift" is zero. The

minimum is seen in rare gases because they ara closed shell systems

whose potential energies consequently fall off quite rapidly bayond

a certain radius, leaving something which looks a bit like a

potential hole. Enormous low-energy cross sections can be caused

by a nearly bound (or "virtual") state with zero angular momentum.

This manifests itself as a zero of the S-matrix on the positive

imaginary k-axis, as opposed to a true bound state, which shows

(12)
up as a zero on the negative imaginary k-axis.

While it would clearly be a gross oversimplification to

assert that one can safely think about CO, as a rare gas in the

context of electron scattering, the similarities are provocative,

particularly in so far as they comment on the importance of various

interactions to the physics of the collision event.
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Chapter 9. By Way of Conclusion |

I walk among the fragments 1
of the future, that future which I - ;
contemplate. All my thoughts and j
striving is to compass and gather j
into one thing what is a figment i
and a riddle and a dismal accident.
And how could I bear to be a man
if man was not a poet and a solver
of riddles and a savior of accidents.

-Iriedrich Nietzsche
Thus Spake Zarathustra

Taking a broad perspective on this research, we could

assert that the point of it all is that one actually can cope

theoretically to a fairly high degree of accuracy with electron- f

molecule problems involving very large and very aspherical targets. j

We see no reason why the techniques and procedures here described

cannot be applied to homonuclear and heteronuclear molecules

at least as large as CO,. We have seen that considerable care 1

must be e::arcised (a) in certain numerical aspects of the problem j

and (b) in calculation of the potential energy. At least in I
. i

the e-CC>2 problem, the resu l t s are strongly dependant on 1

V ( r ) . This explains, by the way, xrfiv the observed e-N^O cross !

sections are quite different from those for e-CO? collisions

(recall that NjO is isoelectronic with CO-)- For one thing,

K20 is an asymmetric linear molecule. Its charge distribution



is different from that of CC^ and hence there is no reason to

expect an analogy between the two systems in electron scattering.

Additionally, because of its symmetry, ̂ 0 has a dipole moment,

_2
which leads to an r interaction term in the potential energy

which is not present in e-CO, interactions.

We consider significant the fact that a number of interesting

physical features of the e-CC^ collision are explained by our

calculations: e.g., the 3.8 eV shape resonance, the anomalous

low-energy momentum transfer cross sections, and the dominance

of certain symmetries in particular energy regimes.

It should be noted that we have not taken into account

short-range electron correlation or vibrational channels. The

latter are probably more serious since, as we recall from Chapter

2, our scattering energies are well above the threshold for

excitation of the various vibrational modes. We believe that

the dominant effect of including vibrational excitation in these

calculations would be to broaden and lower (slightly) the resonance

peak which we find at 3.8 eV.

It would be possible to use the theory here developed to

describe vibrational excitation, either through the adiabatic

fixed-nuclei approximation or in a distorted-wave framework.

Such an investigation could prove to be worthwhile, especially

in light of the intense interest among experimentalists in the

OOfHOOl transition in the CO^ laser.

A minor refinement in the present study might entail a

more accurate treatment of exchange. Quite frankly, the success
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of the HFEGE approximate exchange potential came as something of

a suprise, for, comparatively speaking, this is a very easy way

to handle exchange. Its theoretical underpinnings suggest that

perhaps it is somewhat reasonable but in no way led us to expect

it to perform as well as It did. To some extent, we may be

partially correcting the inadequacies of the HFEGE potential

by adjusting our induced polarization potential via the cutoff

parameter discussed in Cbapter 5. Although not at all unreasonable,

a cutoff of 2.59 a is a bit smaller than one would intuitively

expect. And it is true that, if anything, the HFEGE potential is

a little weak. An extremely interesting study could be carried

out by supplementing the local potential energy we used with an

orthogonalization procedure; this possibility was discussed at

length in Chapter 4.

The present techniques will handle a wide range of molecular

targets in collisions with electrons having incident kinetic

energies in the range from several hundredths of an eV to a

few tens of eVs. It is not clear that the numerical procedures

we employed (as discussed in Chapter 6) can be pushed too much

farther to handle, say, electron-benzene collisions, or e-H^CO,

or other such proMeras. All the computational difficulties we

encountered will be exacerbated for systems with even stronger

and/or more anisotropic interaction potentials.

One way to handle such systems is via a pseudopotential

or model potential. One seemingly promising way to approach

the generation of such a potential is to model the true potential
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seen by the scattering electron inside a certain radius r from

any of the target nuclei by a constant. This idea is based on

the fact that while in a static calculation the scattering wave-

function is very sensitive to the inner part of the attractive

well, when exchange is taken into account a strong orthogonalization

constraint "grabs onto" the wavefunction, making it less sensitive

to the detailed nature of the short-range attractive well. A

variety of other ways of approaching this idea can be conjoured

up, and now that we have fairly accurate results for a single

electron-big molecule collision for comparison purposes, this

seems a most promising avenue of investigation.

As the scattering energy increases, the theoretical and

practical limitations on the coupled-channel method become prog-

gressively more accute. In fact, one of the major problems

currently facing electron-molecule theorists is that of excitation

of electronic states of the target. It is here that the more

well established conventional methods encounter considerable

difficulty, not the least of which is due to the huge number of

important open channels in the problem.

In response to chis challenge, researchers have recently

proposed a variety of interesting and novel approaches to this

problem. We have developed the Pseudo-Bound-State (PBS) procedure,

which builds on the idea that a positive-energy variational

wavefunction for a molecular ion (e.g., 1^') is identical to the

system wavefunction for electron scattering for the neutral target

(e.g., H2) ?.' an incident kinetic energy equal to the variational
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energy. The theoretical background of PBS and its application

to low-energy e-lL, collisions (s-wave) have been discussed by

the author in a recent publication, which can be found in Appendix

1.

This method works well when coupling of partial waves is

negligible beyond the value of r at which the quality of the

continuum variational function deteriorates owing to the finite

size of the basis. It is especially successful for scattering

in partial waves of a symmetry which-corresponds to that of one

of the target (core) orbitals, for then orthogonalization of

these functions diminishes the sensitivity of the scattering

function to the detailed short-range nature of the static potential.

We are in the process of investigating a multi-channel

extension of the PBS procedure which is based on the Generalized

Pseudopotential Method of Tully and Zarlingo et. al, A study

of the application of this new procedure to e-He and e-H2

collisions is well under way but is ancillary to the subject

matter of this report.

Both of these methods are closely allied theoretically to

the R-matrix method. This approach was borrowed frora nuclear

physics and applied to electron-atom scattering by Burke and

(3)
others and has recently been successfully applied to electron-

(4)molecule scattering by Schneider. We have begun research in

this area, applying the method to elastic and electronically

inelastic e-K2 scattering.

Thtse and other related techniques, moat of which are
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2
based on the use of L -variational wavefunctions, are very likely

to break open the problem of electronically inelastic scattering.

Further, it is not overly optomistic to speculate that a blend

of old and new electron-molecule collision theories together with

some sort of model potential ideas may render soluble the problem

of electron collisions with very large targets.

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

-T. S. Eliot
"Little Gidding" from
Four Quartets
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Appendix 1

Pseudo-bound-state study of low-energy electron-molecule

collisions: Elastic e-H- scattering

Phys. Rev. A U_, 2361 (1975)

Michael A. Morrison and Neal F. Lane
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Pseudo-bound-state study of low-energy electron-molecule collisions;
Elastic e*H2 scattering*

Michael A. Morrison1 and Neal F. Lane
Physics Department. Rice University. Houston, Texas 77001

(Received 6 January 197S; revised manuscript received 23 June 197$)

A study of the low-energy elastic ?-H2 scattering information contained in multiconfiguration variational wave
functions for a low-lying (positive) energy of the H : " system is described. The wave function is calculated
using standard bound-state techniques, employing the modified valence-bond method with a basis set of Slater-
type orbitals. and from it are obtained starting values at moderate electron-molecule separations for a simple
single-channel scattering calculation, which is carried out beyond the region where exchange and coupling of
partial waves are thought to be important. Results are presented for s,, elastic scattering for incident-electron
energies < 10 eV in the static-exchange approximation with polarization included by means of an adiabatic
polarization potential. The study shows that the standard H," variational function does indeed provide a good
approximation to the elastic scattering wave function in the region close to the molecule, but that care must
be taken in choosing the basis set. Comparisons are made with other more traditional calculations.

I. INTRODUCTION

The theoretical treatment of electron-diatomic-
molecule scattering is complicated mainly by the
two-center nature of the potential energy.1 Meth-
ods which utilize one-center expansions' will in-
evitably encounter convergence difficulties at
higher energies or for large--? molecules. Ap-
proaches which do not involve the one-center ex-
pansion have been developed in the fixed-nuclei
approximation, and appear to have considerable
promise.3"' These methods describe the elec-
tronic state in the body frame and focus on the
complicated region close to the target molecule
where the potential energy is least isotropic and
where exchange effects are most important. Simi-
larly, one may expect certain types of electronic-
excitation processes and temporary negative-ion
formation to be powerfully dealt with using these
approaches. While the body frame is appropriate
when the electron is close to the molecule, the
scattering process is actually defined in the lab-
oratory system, and a frame transformation is
required.6 This is particularly simple when the
"adiabatic-nuclei approximation" ("impulse ap-
proximation") i s valid,1'7t" for in that case solu-
tion of the equations in the lab frame is not re-
quired.

In the case of electron-H^ scattering, static-
exchange calculations have been carried out both
in the body4-"19"" and laboratory2 frames. In
the latter case, rotational excitation is treated
via a close-coupling expansion, where sufficient
terms are included to guarantee convergence.
Polarization of H, by the incident electron is im-
portant for low-energy collisions, and has been
Included via an adiabatic polarization potential"-l3

in both body-frame" and lab-frame2 treatments.
The adiabatic-nuclei approximation has been suc-
cessfully applied to calculate rotational-excita-
tion cross sections using fixed-nuclei phase
shifts.7'w Application has also been made to vi-
brational-excitation, where interpretation of the
results i s less clear. l5~13

In the work reported here, we also concentrate
on obtaining a suitable description of the system
wave function when the electron is close to the H,
target. What we describe is in some ways more
a model study than the development of a method.
Our study was stimulated by the one-dimensional
model calculations of Taylor, Hazi, and Fels.15

In short, they found that positive-energy wave
functions constructed from square-integrable (V)
basis functions provide scattering: information for
both resonant and nonresonant states, under cer-
tain conditions. We have examined this approach
for a rather complex three-dimensional problem:
low-enex-gy e-H, scattering. The point of view has
been adopted that except for the asymptotic scat-
tering boundary conditions, the electronic features
of the e-H, collision physically resemble a mole-
cular structure problem of the H,~ ion. Since this
negative ion has no bound states for separations
near the Ĥ  equilibrium value,20 eigenfunctions
corresponding to the lowest variational roots
should approximate the true continuum wave func-
tion corresponding to low incident-electron ener-
gies, at least in the vicinity of the target. If so,
then an approximate scattering orbital can be pro-
jected out and simple potential .scattering techni-
ques used to continue the function into the asymp-
totic region. For moderate electron-molecule
separations, the interaction potential can be simply
and accurately represented, while near the target
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280



2362 MICHAEL A. MORRISON AND NEAL F. LANE 12

exchange, correlation, and coupling of partial
waves complicate the problem. A somewhat simi-
lar point of view has been taken with regard to e-H
collisions by Zarlingo, Ishihara, and Poe.'-1

In order to carry out. this investigation, a com-
putational technique was employed which uses a
standard linear variational method (modified val-
ence bond) to obtain low-lying positive-energy
variational H2~ wave functions from which body-
frame phase shifts are obtained via a simple num-
erical solution of the potential scattering problem
in the outer region. This procedure has been used
to calculate elastic s0 c-H: cross sections for ener-
gies below 10 eV and yields results which are in
good agreement with more elaborate scattering
calculations .2>9 The H2 molecule was chosen for
the present study because of its relative simpli-
city in comparison with other molecules and be-
cause fairly accurate experimental and theoretical
results are available for comparison. At low inci-
dent energies (£1 eV) the total cross section is
dominated by elastic scattering, primarily sm and
the asymptotic coupling between different partial
waves is known to be weak.2'"

In Sec. II the computational technique alluded to
earlier is described. Elastic sn phase shifts and
cross sections are presented and discussed in
Sec. ID, where they are compared with the results
of other calculations and where the sensitivity of
the results.to various features of the basis set is
analyzed. Finally, in Sec. IV, we comment on limi-
tations and possible extensions of this work.
Throughout this paper, the Ha internuclear separa-
tion is fixed at lAa0 and atomic units are employed.

II. PSEUDO-BOUND-STATE TECHNIQUE

Our approach to the study of e-H2 collisions can
be viewed as consisting o! a structure calculation,
which yields low-energy variational H,~ wave func-
tions, followed by a simple potential scattering
calculation, which yields phase shifts and cross
sections for elastic s-wave scattering. The ne-
cessary structure calculations were carried "'it
using a modification of a general diatomic-mole-
cule program which was originally developed by
the Molecular Physics Group at the University of
Texas r1 This program performs multiconfigura-
tlon variational calculations*'4 using modified val-
ence-bond wave functions. Each wave function is
composed of Slater-type orbitals (STO's), and
allowance is made for varying linear and nonlin-
ear parameters. The scattering calculations in-
volve extraction of the desired partial wave from
the variational H2~ function and a simple single-
channel numerical integration.

A. Structure problem

The first step is generation of a core H2 func-
tion. We construct a simple two-center single-
configuration function for the ground state (X''£*)
of the Wang form,25 viz.,

il>xic.(x1,rj= I Is"is* | + | ls»ls«|, (1)
where the overbar denotes spin "down" an 3 the
basis functions Is" and Is* are STO's correspond-
ing to « orbitals on nuclei a ami b, respectively,
eg-,

where 0(1) is the "spin-down" eigenfunction. The
nonlinear parameter a is taken to be the same for
like orbitals on different centers and is allowed to
vary in this step until a minimum H, energy is
obtained for a given internuclear separation.

The next step entails calculation of H," functions
of the appropriate symmetry, e.g., 2£j functions
for so scattering. This is a multiconfiguration
calculation; each configuration is a properly sym-
metrized linear combination of products of the
core H3 function [Eq. (1)] and an additional STO.
Thus the core is "frozen." This corresponds to
the static-exchange approximation and does not
t«ke correlation into account. (L,ong-range polar-
ization effects are incorporated into the scattering
calculation in a manner described in Sec. IIIB)
A typical two-center configuration for the 2l£
state of H2" is

I is" -1 is1

*|ls»fsV?l*llVlsVil, (3)
where <p° is an arbitrary STO centered on nucleus
a and the upper (lower) signs correspond to ipf of
even (odd) parity. Notice that for 2Z* wave func-
tions, us, nj>0, and nd0, • •. STO's may be used
for <J* or <Pt • The full /^-configuration *£% wave
function is then

?„ r2, r3). (4)

The nonlinear parameters in <j>f and v»{ were not
allowed to vary in this step.

B. Scattering problem

One way to examine the relationship between the
2EJ variational Ha" wave function and the actual
scattering function is to compare &„ phase shifts
derived from the two. In the case of the varia-
tional function, four steps are required-": (i) pro-
jection of the approximate continuum orbital y>
from the "2,* variati nal function; (ii) orthogonal-
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12 PSEUDO-BOUND-STATE STUDY OF f-H 2 SCATTERING 2363

Izatiort of the orbital v> to the Iff, core orbital;
(iii) one-ccnier expansion of *>; and (lv) numerical
integration of the appropriate radial scattering
equation, starting with the s o radial function in
the one-center expansion.

In the first step, we extract the approximate
continuum orbital •? by selecting from
4>2t* (?„ ? „ r3) the linear combination of >p\ +v»*
which multiplies the frozen-core •£* target wave
(unction. Thus, in keeping with the frozen-core
approximation, we write

(5)

where Ct enforces antlsymmetrization, and where

(6)

The approximate continuum orbital <? i s then ortho-
gonalized to the l a , H2 core orbital, i .e . ,

*'=<p-<lotMlot. (7)

For approximate orbitals ip of other symmetries,
e.g., au,n,, etc., this step is, of course, not
required. In one version37 of the pseudopotentsal
approach to electron-molecule scattering, the
orthogonalization in Eq. (7) is applied as a con-
straint to the solution of the scattering equations
for tp. To facilitate examination of particular
partial-wave phase shifts, we convert v>(r3) to a
one-center representation (the origin of coordi-
nates being the midpoint of the internuclear axis)
by expanding it in spherical harmonics, the radial
coefficients being designated by uln(r3).

Our central assumption is that the variational
function is an accurate representation of the scat-
tering function at least in the region near the tar-
get, where exchange effects are particularly im-
portant. Outside this "exchange region," we ex-
pect the effects of exchange and the coupling of
partial waves to be negligible for low-energy
e-Hj collisions. Therefore we use the value of the
radial wave function and its slope at the boundary
of the exchange region, r=r ( i, to initialize the
solution of the single-channel (body-frame6) scat-
tering equation

(8)

which i s integrated into the asymptotic region. In
Eq. (8) fr i s the incident-electron energy (in Ry)
and V(r3) i s the diagonal matrix element of the
effective static potential energy augmented to in -
clude long-range polarization and quadrupole in-
teractions. The effective potential energy contains
short-range terms due to the static Coulomb e l ec -

tron-molecule interactions of the form given by
Lane and Geltman" and the long-range quadrupole
and adiabatic polarization terms given by Henry
and Lane.2 The choice of initialization point K,
will be discussed below. In the calculations r e -
ported in Sec. i n the Numerov algorithm2" was
used to integrate Eq. (8).

111. RESULTS AND DISCUSSION

A. Basis sets

Variation of the nonlinear parameter a in the
single-configuration H, wave function of Eq. (1)
produced a root corresponding to an electronic
energy of -1 .139 hartrees for a = 1.169 as c o m -
pared to the much more accurate multiterm theo -
retical value of -1 .1745 hartrees obtained by
Kolos and Wolniewicz.-9 Using this as the core
function, multiconfiguration continuum H2~ func-
tions were calculated. Initially, the nonlinear
parameters in these functions were chosen s o m e -
what arbitrarily, but in such a way as to create
a bas i s set ("type I") consisting of functions which
together span the region of space close to the tar -
get (rS3a0). Using this approach to choose the
nonlinear parameters, it was necessary to use
25 basis functions to obtain reasonably good phase
shifts. The STO parameters for N-2b and the
resulting coefficients c, of Eq. (4) for the lowest
root (£=0.0688 eV) are shown in Table I. The s o

projection of this 25-'configuration radial function,
orthogonalized to the core orbital, i s shown in
Fig. 1 and compared to a body-frame c lose-coup-
ling function30 at the same energy, 0.0688 eV.
Notice that there i s a node in the variational func-
tion at *•„,„,, =2.15a0 .

A second type of basis set ("type II"), found to
be more satisfactory, i s constructed in a sys tema-
tic manner. For sa scattering, we form an iV-con-
figuration basis set by employing s-wave STO's
centered on the two nuclei with a fixed value of the
nonlinear parameter a in all bas i s functions and
n, = 1, 2 , . . . , iV. (This type of H," function was a lso
used by Winter and Lane5 in their Fredholm-dcter-
minant study of c-lt, col l is ions.) As will be seen
below, this systematic bas is g ives better results
with fewer configurations.

B. Phase shirts and cross sections

In order to examine phase shifts and cross s e c -
tions extracted from these Ĥ "" variational func-
tions, it i s necessary to se lec t a value of »;., at
which the numerical integration of En. (8) i s to be
initialized. It was found to be convenient to choose
1%% =*"r..i;. • Then the second initialization para-
meter (the slope or, equivalently, the value of
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2364 MICHAEL A. MORRISON AND NEAL F. LANE 12

Bl(J(rj) at a nearby point) merely scales the wave
function and does not affect the phase shifts. It
will be shown, however, that there is nothing
really special about the nods, and that any value of
JJ, within a certain range is equally satisfactory.

Starting at J ^ = 2.15u0, corresponding to the
node of the lowest root obtained with a basis set of
type I with W=25, we obtain the so elastic phase
shifts shown in the column labeled 25 in Table II.
The corresponding cross sections are shown by
the solid curve labeled 25 configurations in Fig. 2.
The dashed curve in this figure shows the close-
coupling results2 obtained by using the same wave
function for H2. (The node in this function occurs30

at ~2.18a0.) Since the variational wave function
used to start the integration corresponds to an
energy of 0.0688 eV, it is perhaps surprising that
agreement is good over a range of energies from
0.05 to 10.0 eV. This behavior, which was also
observed when other basis sets of type II were
used (see below), reflects the fact that at low
energies the inner part of the s o scattering func-
tion does not vary substantially with energy be-
cause the s o "potential energy" is strongly attrac-
tive. This general observation is confirmed by

TABLE I. STO parameters I see Eq. (2)1 and variation-
a! coefficients tsee Eq. (4)1 for the lowest-energy root
(0.0688 eV) for the JV = 25 variational H," 2 £ / calculation
(basis set type I).

1
2
3
4
5
6
7
3
9

10

11
12
13
14
IS
16
17
16
19
20

21
22
23
24
25

*i

1
1
1
2
2
3
3
3
4
4

4
4
•*
6
7
<>
7
4
4
4

4
5
7
6
S

I,

0
0
0
0
1
0
1
2
0
1

2
3
0
0
0
0
0
0
1
0

1
1
0
0
0

ai

4.0
7.S

15.0
S.O
4.0
S.O
4.S
3.5
3.S
3.0

2.5
2.0
1.0
1.0
1.0
0.5
0.7
1.5
1.0
0.5

0.35
1.5
0.5
0.41
0.35

«l

-0.433 953
0.177 696

-0.369676
0.332 351

-0.121819
-0.653321

0.711701
0.524209
0.415405

-0.104 272

-0.581696
-0.178686

0.364248
-0.449717

0.490023
-0.132906

0.141986
0.915007
0.221578

-0.159820

-0.304966
-0.350348

0.10S0V0
-0.237406

0.125031

<-n
(-1)
(-.11
(-1)
<-3>
(-2)
<-4>
(-4)
(-21
(-2)

(-3)
(-3)
M>

(+1)
(+2)
(*2>
<-l)
(-2)
<+2>

{ - «
0-2)
<*2)
M)
M l

careful examination of the energy insensitivity of
nodes in low-energy close-coupling functions.30

Hence calculation of low-energy phase shifts using
an I? variational function need not be tied to the
energy of the variationa). root. On preliminary
results31 for higher partial waves, where the effec-
tive potential near r=0 i s weaker, we see some-
what greater sensitivity to energy.)

I. Table II we present phase shifts for several
energies for type-Il basis sets with N= 11,12, IS,
and 14 together with the energy of the lowest varia-
tional root and the location of the corresponding
node, which was used to initialize integration of
Eq. (8). In Table HI, results are given in the
static-exchange approximation [ polarization terms
in V(r3) set to zero] so that (i) comparison can be
made with other existing theoretical calculations,
and (ii) convergence can be examined without the
possible masking effect of the long-range polar-
ization potential. (Increasing A' was found to lower
the energy of the lowest root and spread the other
roots in energy.) As N increases, the phase shifts
for £ s i eV appear to converge to values in good
agreement with other theoretical results,2*s which
are also shown in these tables.

It is important to note that £x, the boundary of
the exchange region, is not uniquely defined. In
the calculations reported above, we chose rn=ra^.
for convenience. In Fig. 3 we present a graph of
sa elastic cross sections at 0.05 eV for the case
JV=14 and a=0.75 vs the starting radius at which
integration of Eq. (8) was initialized. Clearly,

5 0.09

*- o.o«

t; °«
c
v o.oi

I •
5 -o.oi
-o

s

E =

•

0.0688 eV

£9 C0Nf(Guff*ri0N:

SE eoupuMo

1.0 3.0
rtao)

FIG. 1. Comparison of 25-conficuration type-I varia-
tlonal $„ radl.il scattering function at 0.0R98 eV (lowest
root) with the J = 0 close-coupling wave function of
Henry and Lane (Hot. 2) at this energy (dashed curve).
The node (first zero) in the variational function is at
~ 2.15o,. The node in the close-coupling function is at
~2.18a0 (Ret. 23).
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12 PSEUDO-BOUND-STATE STUDY OF «-H, SCATTERING

TABLE !!. Phase shifts (in radians) for clastic "a P - I I , scattering olilninri! from varlation.il
wave functions calculated using various basis sets: type I (N - 25) ami tvpe II (<V 11. U. l:l.
14>. where JV is the number of configurations. The A' 25 basis set is shown in Table I. For
the type-ll basis sets, a 0.75. Energies, arc in eV. Also shown is the energy of the lowest
variattonat root and the nodal location for e.icli case. The column tahelrd cc shows close-
coupling eigenphase shifts of Henry and Lane (Kefs. 2 and 30). All results inclurle polariza-
tion via an adiabatic polarization potential as described in the text.

\ N
E \

0.05
0.07
0.1
C.2
0.3
0.5
1.0
2.0
3.0
4.0
6.0

10.0

r n o d e (xa0)

Typer
25

3.049
3.030
3.004
2.938
2.885
2.797
2.631
2.391
2.204
2.045
1.779
1.357

2.15
0 0688

11

3.047
3.028
3.002
2.935
2.881
2.792
2.625
2.382
2.193
2.033
1.765
1.339

2.17
0.1359

Type
12

3.058
3.041
3.018
2.956
2.906
2.825
2.669
2.441
2.236
2.113
1.360
1.459

2.04
0.1171

II
13

3.053
3.035
3.010
2.946
2.894
2.810
2.648
2.413
2.231
2.076
1.816
1.403

2.10
0.1020

14

3.054
3.036
3.012
2.94S
2.896
2.812
2.652
2.418
2.236
2.082
1.823
1.412

2.09
0.0928

CC

3.0536
3.0351
3.0111
2.9475
2.8969
2.8143
2.6604
2.4458
2.2R83
2.1623
1.9667
1.4459

rnodc is a reasonable choice for r, , but it is not
essential that the integration start there. Indeed,
for />o-wave scattering, there is no node close to
the origin; nevertheless the integration could be
carried out using the value of 'ipj.

ri) and its slope
at some reasonable value of rts. Figure 3 also
shows that within a certain region, from -1.6a0 to
~2.4a0 in this case, it does not matter where the
long-range adiabatic polarization potential is in-
troduced.

We have examined the sensitivity of the sa phase
shifts to a, the nonlinear parameter in the STO
basis functions. Table IV contains the so phase
shifts (with polarization) for A'=14and« =0.5, 0.7.5,
and 1.0. (Increasing a was found to increase the
lowest variational root and spread the energies.)
In the cases shown in Tables II-IV, a "flat region"
in the graphs of cross section vs r,1JM analogous
to that in Fig. 3 is evident. However, as A' is de-
creased, the width of the region decreases, cen-
tering on r^.j,.. Similarly, for too large or too
small a value of a (e.g., nr<0.5 or a sl.0), the
regidn disappears completely. This behavior sug-
gests that some care must be exercised in choosing
optimum values of A' and or.3"

In Fig. 2, so cross sections corresponding tothe
N= 14 case are also shown. For the latter case,
integration was initialized at rty =>m.u. =2.09a0, cor-
responding to a 14-configuration variational root
at an energy of 0.0928 eV. This calculation is, of
course, considerably less expensive than the 25-
configuration calculation, and appears to yield re-

sults in better agreement with those of dose-coup-
ling calculations. Fitting the 14-configuration s ,
cross section at 0.05 eV to the s-wave modified-
effectivc-raiige-theory (MERTJ equation,3-1 we
obtain a scattering length of A= 1.20ao. With this
value, the simple MERT equations yield cross
sections in excellent agreement with close-coup-

ui
c
o

u
1/1

'J!
(ft
O
i.
o

0.0S 01 1.0 tO.O

Energy leVI

FIG. 2. Elastic s,, e-tU cross sections obtained from
pseudo-bound-state procedure using v.iriational II,"
functions constructed front a type-I .V •• 25 basis set awl
a type-II X 14 basis set (solid lines). l'o,;uizntion is
included via an idiahatic )K>lari7..i:ion potential outside
the exchange region. Close-cnuplini; <•/ fi) results of
Henry and Line (lief. 2) (static-exchange approximation)
using the same polarization potential arc also shown
(dashed curve).
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TAilf.K III. Wvt<v shil:s (i-i radians) for clastic i . e - l l . scattering obtained from
wave (unctions calculated u<ini; \-iriuus ha*.'* M'Ss: type I tit -2^1 awl lypr II (.".' II. 12. 13.
Ml where A' is the nuin!>.-r of configuraTions. Thi* A' 25 tiasis set is .slgnim In 'fable I For
the lyr*-H basis sets, r, n 75 l.mrntc:; art- in eV. The rolumn lal>eled ce show* rlrj-.i-
couptini; phase shifts of [k-nry and Utnc Qtef. 2). Tht? column labeled so chows static-ex-
change results of Ti.lly am! Kerry (Itci. 9). No polarisation is included.

£ \

0.034
0.05
0.07
C.I
0.136
0.2
0.3
0.S
0.544
1.0

1.224
2.0
2.177
3.0
3.401
4.0
4.899
6.0
10.0

Type I
25

• * •

3.012
2.988
2.959

• • •
2.882
2.824
2.731
2.713
2.56t

• • •

2.321
2.2SS
2.136
2.071
11)31
1.856
1.719
1,104

11

3.034
3.091
2.987
2.956
2.926
2 930
2.921
2.727
2.710
2 556

2.494
2.313
2.278
2.. il
2.0G1
1 959

1.70*
1 397

Tjfpell
12

3.040
3.019
2.996
2 9 i
2'3:,v
2.896
2.841
2.753
2.736
2.S92

2.534
2.1M
2.3.11
2.189
2.128
2.042
1.925
1.794
1.400

13

3.037
3.015
2.992
2.963
2.933
2.888
2.832
2.741
2.724
2.575

2.515
2.341
2.306
2160
2.C97
2.001
1.88S
1.7S3
).34»

14

3.0-18
3.016
2.993
2.963
2.934
2.890
2.833
2.743
2.726
2.578

2.518
2.34S
2..110
2.165
2.102
2.014
1.894
1.760
1-15"

ec

3.0134
2.9900
2.9605

2.8959
2.8290
2.7394

2.S780

2.3591

• • »

2.0734

. . .
t.GCSS

i e

3.0394

2.S39

2.7.17

2.541

2.352

JJ74

ling cross sections for energies UJI to 10 t-V. A
scattering lci:;:th of t.32»J0 is obi.tiur;! front tt>«
cross st'ctions «ars«« id team tisc 25-corafi«'ura-
tlon W3V« f;tnctio:i, a;ul 1 r.Vie in obtained iron:
the close-coupling cross sections. Chang81 has

performed a fit of the MEFST equation to the r« -
suits of electron tSrsft as'.d (infusion RitMsuretMCttt
and Jinds a scatterla!* l^nin.'t f>{ 1 26B, . Thi.s vajif
yields cross sections Jar,;f r ?hd« those of Henry
itivrt Lane,* s'.iK'.'.t'sfjiii; that the iatscr may IJO son-.

TAItLK IV tta%» sfciiin lin rarfiwns* fur ti.vtit- aM

mattering WS.UU-.H! fr»;n vamwstsJ citiCKi.iswn-. «?»,ts»*
* « It) wMh .V 1 i a««l varioifs vafaw «»'« Kc.erstif'i nrv
in cV. AUo shown arc tfee rm-rtth-s e' !h>> ioa*-«t varia-
tions! root ai*l th«* mt'x ftir «'3c!i case.

0.05
0 07
0.1
0.2
0.3
05
1.0
SO
3.0
4.0
6.0

100

o.s

3.058

2.9AS

2.441
2.263
2 111
t S«3
l.S»

5.CJ
0.0 SU

0*5

2 09

1.0

3.S54
3*3*5
3.017
3.W*
2S!ir,
2.SJ2
3.652
2.4IS
2.S3B
2,ftS2
1.823
t 112

3«MT
3 0:5
2 5B5
2.919
3.»<»0
8.CSS
34fi!>
2.S97
2.U.I
i.aor.
« i!5

.5S

FK5. .1. Cross «•«((>«*; f«r *., da^lic «*-Jl. se.iltrring
at 0.05 fV «i!j:;uc."il«.«»«!; .1 tytae- El \ -14
wave (uiifitoi) -.*ith o o ?.'. ami as 3?!iat»SHe
j-orpnlinl T!t»- t!»rls»nta! a\i.» slioo-i tin* value i»f r »t
Hhle*i thv r.iis:!<-<*li.">Hfl«'l tMn;rattna «J ftj. i*l f»r a,
{r% was t«til»tttl asinj: tin* value* ft i'r^ *^ jtrojerJidR*
of th»' v-.trlatla:^! riisli.il uavr function »m! i:* Ut riva-
tlveat r.
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what too small. This would b<? the- ease, tor ex-
ampie, if their adiabatic i>>ism;i*iaft jwn»nU:s£ is
too strong o*-in;; to tu-ttU'c! of the iwiwtfinbiHic dis -
tortion potential.*

IV CONCU'SIO.NS

The results discussed above suggest thai there
is valid electron-molecule seaiUTirtr: information,
tor some caies over a fairly wide range of ener-
gies, contained in iow*em.»rgv variatianal wave
(unctions for the corresponding »?>;auve ion. In
cases where the coupling at partial waves is w«?aH
fetyond a certain radius and the potential energy is
•trongly attractive near the origin. pha&e shifts
can be obtained by the procedure <xiUsn«.-d .» Sec.
D. This procedure may be applicable so larger
homonuclear mateco!es, where the sliart-raug*
potential energy is stronger ;han in Hs. However,
for energies targe ensss**.!* -so thi». ;ne naadiagartai
$ -matrix dements bvcowt* lan'c. the
must be modified. A aufttejeni s s m k r of
independent soiuiiass nsast be obtained s« that th«
muitichap.n«?i asvmfj;s»iie 5xi«r,isfy ca;;e!inons, can
tie enforced. One* proeettore far «!ssfti: Has is tlisi
*upfesl*?d by 2arUtts&, Hhktiara, .iRi

cd OR Use work of Tuily." TJMJ *i«;e
f t mark! also apply to the v;«<*:5akws of ti»f
work to inelastic «a*uer£»s. Ho*«.vti-,

c:tlful.«!ion t.s slrirt-
the Hi

valid, *•**•"'* th«>
iy «?i,-|!>tic.

Tht> qu.tlity of the t%irimi»:Mi H." wave
can bt> irij>revcil !>y f.Rctû sR<t nsorc li;i':t-; functions.
A c*m»|»arisa!i tui r««;utt.% oht4tnc«t w5ih Use 35-coa-
figuration ami J-J-ci?!ift;t*jr-.iU'.):t fiit.c(ja;is .-;I:I:SH----!
Mat furiltvr ir<vcrit)f.ation ni systematic tw:;is «t-ts
would b«f Iruiilul, l»«(ort«satei,v, very lari:*1 com-
pact basis selj* introduce Ditmcrrtral |<ralilt'jni8
{linear dependence) in th« r.8tfU*c«Rfir.wraiim> cal-
culation. Thus it bc*co»s«i» «^c«s«ary vilher ta
project certain irosbtc$«R:<>* ^iRcnfMnttiofts or tv*
to greater machine precision— perhaps buttt.
Finally, Ctit ft-l.itiOft «ffcct» coy>«l toft stattirsJ Uy
the (Htpedlcns oi "uftfr«****!SR:;'* the core li . **» *>'•
function.
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Appendix 2. Electron-Molecule Scattering in the Lab Frame

In the body of this work we formulated the electron-molecule

scattering problem in a body-fixed reference frame corresponding to the

polar axis frozen along the internuclear axis. Early formulations of

the problem (e.g., reference (3) of chapter 3) used a space-fixed or

laboratory reference frame. The author has discussed the relation

between the two frames and how to transform the scattering function

between the frames in Chapter 7 and elsewhere (see reference (?) of

Chapter 3). Here we would like to review the lab-frame analysis and

present a few numbers for e-CC>2 scattering in this picture.

We begin (as usual) with the Schroedinger Equation for the

electron-molecule system,

where T denotes the set of quantum numbers needed to uniquely label a

stare of the target and where k is the incident wavenur.ber. Applying

the Born-Oppenheimer Approximation to the target, vie can write the

target iKoleoilnr wave function as
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where $ is an electronic wavefunct.ion and 0. is a rotational
na Jin̂ a

wavefunction. We neglect vibrational states. The subscript a thus

denotes any other quantum number(s) needed to fully specify the molecular

state. For a E state of a linear molecule, we have

where R is the orientation of the internuclear axis in the space-

fixed laboratory reference frame.

Now, to proceed we couple the angular momentum of the target

molecule, j, to the orbital angular momentum of tht: incident electron,

J, to form the total angular momentum vector,

T = * + X . w

The projection of J on our space-fixed z-axis is related to m. and

mg by

M 3
 s Wj t

and to the quantum number J by the fan!liar relation

..., T - l , T . <6>
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The total angular nonentum J is a constant o£ the motion of the system

(electron + molecule), so we can find oigenfunctions of the Hamiltonian

?

which are also eigenfunctions of J~ and .1 . Suppose wo let (j£)
z

denote the initial state of the system. Then the coupled angular

functions are defined lv

and we can expand the systei wavefunction as

**3TDIMJ(- t i-T A/v'-J" It**3 ft el

where we have introduced an additional subscript n to connote the

electronic state of the target.

The summation in Eq. (7) is restricted by the usual conditions

on the Clebsch-Gordan coefficients. The summation in Eq. (8) contains

a finite number of angular terms. Here we shall limit ourselves to

the sigma target states and, in particular, to the ground state.

If we now substitute thess expansions into the Sehroedinger

Equation and carry out the usual algebraic manipulations, we obtain

a set of coupled equations of the form

•JJ-J yj> (S)
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where exchange has been neglected (see reference (3) of Chapter 4 for

the details of inclusion of exchange). The channel uavenumber

appearing in Eq. (9) is defined by

(10)

where e. is the energy of the target molecule in rotational state j

The matrix element appearing in (9) is simply

where V is the usual averaged static potential energy for the ground

state (see the elaborate discussions of Chapter 3).

V.'e saw in the text discussion of this material that the matrix

eler.ent Y is easily expanded in Legendre polynomials, viz.,

7 J, (12)

with v,(r) given by Eq. (3.40). Then the full matrix elements ap-

pearing in Eq. (9) is given by

(13)

where the coefficients f^ (called Percival-Seaton coefficients) are
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given by

J'J ») - 00)
€>\N(yjtyj " i l )

with W(j' V j" I"; J X) the familiar (sic) Racah coefficient.

As we mentioned in Chapter 9, our initial e-CO™ studies vere

carried out in the laboratory frame. Convergence difficulties due

to the enormous number of partial waves required to converge the cross

sections forced us to shift to the body-frame as described in Chapter

6. Typical behavior of the individual cross sections as the nuner of

rotational states is increased is shown in Table 1, which pertains

to an incident energy of 0.01 Ryd. with \ = 0,2,4, and 6 included in

the expansion of Eq. (12). Only short-range interactions are taken

into account in these calculations. We should point out that for

X > S. the transformation procedure described in section 6.6
max *v>

must be used to overcome numerical difficulties analogous to those

encountered in the body-frame analysis.
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0

2

4

J02.4356

0.0098

1.6(-S)

88.

0.

1.

0599

0058

I (-8)

85.

0.

1.

"M41

0051

2(-8)

85.

0.

1.

1582

0050

K-8)

TABLE 1

;>
Cross sirct iosss in n^ for 0-CO2 scat ter ing in the laboratory
fr.'ian* at O.01 Kyd. Only J=0 i:> sho«.;n. Shore-range s t a t i c
interact Uijit; for *. = 0, 2, 4, 6 arc- included. N is the
number uf .stater, and j ' i s the final rot.ntional s t a t e .
Kxcitat. iosi i s t r«-n .'sn i n i t i a l st;U:<» 5 = 0 to final s t a t e
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