' THE UNIVERSITY OF TEXAS AT AUSTIN -

/"‘l

e

- O m

P
a
r
-t
e
e

<o B




ORO 271

The Zeno's Paradox ir Quantum Theory

by

B. Misra and E.C.G. Sudarshan

Center for Particle Theory
University of Texas at Austin

Austin, Texas 78712

'The seer sees not death,
Nor sickness, nor any distress.
The seer sees only the All
Obtains the All entirely.’
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p. 262}

tWork supported in part by Energy Research and Develogment Administration
Contract E(40-1) 3932.

Abstract

We seek a quantum-theoretic expression for the proba-
bility that an unstable particle prepared initially in a
well defined state p wiil be found to decay sometime during

a given interval. It is argued that probabilities like this

which pertain to continuous monitoring possess operational
meaning.

A simple natural approach to this problem leads to the
startiing conclusion that an unstable particle which is con-
tinuously observed whether it decays will never be found to
decay! Since recording the track of an unstable particle
(which can be distinguished from its decay products) realizes
such continuous observations to a close degree of approxima-
tion, the above conclusion poses a paradox which we call
Zeno's Paradox in Quantum Theory. Its implications and
pussible resolutions are briefly discussed.

The mathematical transcription of the above-mentioned
conclusion is a3 structure theorem concerning semigroups.
Although special cases of this theorem are known, the gen-
eral formulation and the proof given here are believed to
be new. We also note that the known "no-go" theorem [3]
concerning the semigroup law for the reduced evolution of

any physical system (including decaying systems) is sub-

sumed under our theorem as a direct corollary.
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1. INTRODUCTION

The object of this paper is to discuss a seemingly
paradoxical result in quantum theory concerning temporal
evolution of a dynamicazl system under continuous observation
during a period of time. For reasons that will become clear

shortly we call this complex of deductions Zeno's Paradox in

Quantum Theory.

Let us consider schematically the theory of an unstable
quantum system. Naturally the states corresponding to the
decay products also should be included in the space of all
states which we take to be a Hilbert space #. Let us denote
the (orthogonal) projection onto the subspace spanned by the
undecayed (unstable) states of the system by E. This pro-
jection E thus represents the observable that corresponds to
the "yes-no experiment"” for determining whether the system
is in an undecayed state or in a decayed state. The evolu-
tion in time of the states of the total system will be de-

scribed by a unitary group U(t) = exp(-iHt) labelled by the

"

real time parameter t. In this setting the quantity

q(t) = Tr{pU(t)EU(t)} (1)

is interpreted as the probability, at the instant t, for

finding the system undecaved when at time 0 it was prepared

in the stute p. Correspondingly, the probability that,

at the instant t, the system will be found to have decayed

is the complementary quantity

p(t) = 1 - q(t) = TripU*(t)E U(t)}

All these are, of course, standard.

Quantum theory, in fact, provides an unambiguous al-
gorithm for computing the probability distributions {(for the
possible) values of observables at any (instant of) time,
given the knowledge of the initial state of the same system
and its law of time evolution. Expressions (1) and (2) are
only particular instances orf this well-known algorithm.

In contrast to the above-mentioned probabilities which
refer to a specified instant of time we may consider the
following probabilities for which quantum theory has no

ready expressions:

(1) The probability that the system prepared in the un-
decayed state p at time 0 is found to decay sometime

during the interval A = {0,t]. We denote this by

P(0,t;p).
(2) The probability Q(0,t;p) that no decay is found

throughout the interval & when the initial state of

the system was known to be op.



138 The probabalaty that the system peepaced invtially
in the state . wall he found to be endecayed
throughout [0,¢,]) " 4. but found tu decay semctisze
during the subsequent peyied l‘,.ll TR IR PRI

Ke denote this by R(G.ll.l:9)~

It sn important to distinguish the probabilities
Ho,tip) from (U} siace there iz the tesptation to sdentify
thea (and hence also P2, r:p) with plr)) 1), The probabilicy
aft}, however, refers to outcomes of amcasuresment of E at the

tine t the systen being left uaobserved after the initial

*tatle preparation unt:l .

The operational meansng (if any!) of the prodadbiiities
e Qo R oon the other hand {s to be found in teras of the
sutdones of continuously ongoling measuresent of £ during the
entire interval of time S, The notson of such continuously
ongoing observations (or., cquivalently, measurcments) is
obviousty an idcalization,

Ac mas consider the process of continuing observation
as the Yimiting case of successions of (practically} in-
stantancous acasuresents {of £) as the intervals between
successive measurcnents approach cro. Since there does nat
sees to be any principle, internal to gquantum theory, that
forhids the Juration of a single measurenent or the deadtime
between sutcessive seasurements froa belap arbitrarily small,

the process of continuous observation seems to be an

adalx~ible procexs in guantum theory.

Hareaver, such continuvous ohservation proresses seem
to be realized in practice, al lpast up to close degree aof
approxization by the tracks of unxtable charged particles
in hubible chambers and other detecting media, The observa-
tion of the track amounts practically to a more or less con-.
tinvous wmonitoring of the exiszience of Iho unstable particle
and thus a scasurement of £ during the period of the parti-
clets fiight through the detection chamber. ®e are there-
fore led to accept as operationally meaningful the P(0,t;0),
Q{0,t:p) and R(Q.!x.t;al. To bs a compicte theory, quantum
theory sust provide an algoriths for computing these proba-
bitities.

In the next section we describe what appears to be the
natural approach to determining quantum-theoretic expressions
for these probabilitiecs. Our investigation leads to the
paradoxical result mentioned at the bepinning of this section:
An unstable particle observed continuovsiy whether it has
decayed or not will acver be found to decay! Since this
evokesr the famous paradox of leno denying the possipbility of
motion 1o a flying arrow, we call this uncxpected results
the Zeno's Paradox in Qua-tum Theory,

In facy, if £ is taken vo be the projection to the set
of Jocalized states of a particle {or, a quantum arrow) in

@ piven region I of space, then one concludes that the



particle will aever be found te arrive in 3 disjont region

Dt provided v i continvouslye shserved whothor it hax on

terved ' oy Ast:  the “arges’ <annet aove o shere 1 i awett

This rexult acquires an even aore picturesque smd para.
doxival forsuiation when it ix applicd to the “Hellish Con-
Traption” consldered in the Scheddinpger's cav paradax (2},
tr sy be recallcd that Uhe cantraptlon consizis of an un.
ttable (quantum) pavcicle plaued in 3 box equipped with an
efficient cownter and 3 <at {nside a steel chasber. 1€ the
particlie Jecays the counter trigeers and, fn {03 rurn, ace
Tivares 3 tiny homoer which hreaks 3 contdiner af ¢ranide
in the stevl chanbor. Mositeripg the vitsl functions of the
At anounts to ohderving if the particle has decayed or not.
In view of the Jeno's Paradox forsulsted above, sheuld we
conciude that the particle will never Jecay? ¥ill the cat
eicape the cruel death awalving v, againsy whivh ir has ne
defense, pravided ivs wital signs sre constanily watched
with loving Cars?

The mathenatical transcription of lenots Paradox is 2
struclure theowron Conieraing s <lass of strongly <onlifuous
semigtoups.  this theeren is formulaled and proved in Sod-
tian & of this paper sad auy poriess sute intrinsic interest
spart fran 3ts appligacion in the prozen? canfea® of 3 theoty
af ¢antinvuus obseryation., As 3 bhreproducs of thix investigs.

Tion we fhnsd that the knows srault {31 <onderfiifg the

G

pacompatsbitity of the sesibouwndedners of the Maniltonian i
with the requirescat that Leap (3HOSE fors g strictly con-
tractive senigfoup an be tubinsed under the above-acnliencd
theores as ane of s Jivect garoftarien,

Some of the tmplications and possible resolutions of

the Zuantus ceno's Parados witl ho breofly discussed in the

cone sding section of the paper,



2, QUANTUM THLORETICAL EXPRESSIUNS £OR P{(0,1;:0) AND RELATED
PROBABILITIES
The three probability functions P, Q, R introduced in
the previous section relate to the results of continuous oh-
servation throughout an interval of time. By their very

dofinitions they muxt obey the ralations

P(O,tip) » Q(O,t50) =
8n¢
R(O,¢),ti0) = Q(O.t,:n)P(0.z-x,:a‘)

where oy is the state in which the system (prepared initially
in the state o) finds itself ar t) after heing continuously
observed and found to be undecayed throughout [O.l!I. e
aay therefore concentrate ~ur attention on calculating @ and
oy

We start with the system (n the state 2 and smake a
series of nel measurcments, which are idealized to be in-
stantancaous, at times O, t/n, 2t/n, ..., 15%}15 and &, W
seek the probabliiity S(a,nip) that it be found undecayed n
each of these measurcacnts. It is nstural to assume that
Qai0) 2 Q(0,tia) can be evaluated as the limit of Q8,050
shen 0« o, provided the lieit cxists,

Let us denote by ~{n,t) the state in which the syitem

fiads itself after the (nel) scasurcnents at O, t/n, 3t/n,

ve.e U and being found to be undecayed in cach of these
measurcsents. Now, acconding to the orthodex theory of
soasurcment, if 3 sezsurcmont of £ on the system s carried
out yicliing rhe result "yes* {that is, “undecayed”), then
the state of the system collapses to a new (unnormalized!)
state o° of the form

-

[T ) 3
with

LAY s E (4}

§ s

The collapsed state & given by {3) is, in general, not
uniquely determined by the scasured observable £ and the

observed outcome but Jopends also on the details of the

mcasuring apparatus. This civcumstance is refleceed in the

non-uniqueness of the aperators A, satisfying (4).
The sapping (3) of the density matrices is very tlosely

redated to the “completely positive maps” defined by
oo~ 5 Vaav; s AV Jo
RN

The "state collapse” gaused 4y “nonselective” measurcacnts

of £ i3 doscribod by such maps. They xill be considered in



a4 future publication in the context of repeated and continuous

nonselective meusurements,
Quantum theory envisages also the possibility of ideal
acasurements under which the collapse of the state proceeds

according to the simple law
p o« ' = Epk (3)

when the measurement of £ on the state p vields the result
undecaved."

The considerations of this paper will be restricted to
such ideal measurements only, since in such cases we can ex-
ploit the positive definiteness of the Hamiltonian in a
direct manner. If we were to consider the more general col-
lapses (3) we would have to proceecd more directly using the
von Neumann-Lionville generator which is however not positive
definite, The study of the probabilities Q(4,p) etc. would
then involve new technical problems obscuring the essentials
of Zeno's Paradox. We plan to present the study of the more
general situation in a subscquent paper [10].

Accordingly, to determine o(n,t}) we ailow the system to
vollapse at cach measurement according to (3) but at the
intervening time intervals it undergoes the usual Schrodinger
timc development. The (unnormalized) state o(n,t) is then

ecasily seen to be

10

pin,t) = Tn(l)oT;(tJ (5}
where

T, (1) = (Eu(e/nIE)"

[

(Eexp {-ilt/n)E)" (6)

Moreover, it is also casy to show that the standard inter-
pretation of the quantum theoretical formalism entails the

formula
Q(n,45;0}) = Tr(Tn(t)oT;(t)} {7)

Ia fact, (?) is a special case of a more general formula for
the probability conncctions between several successive ob-
servations [4]. It is important, however, to bear in mind
that the peneral forpula discussed in [4] (and, a fortior:,
the formula (7)) holds only under the assumption that the
successive measurements under consideration are ideal in the
sense described above. For nenideal successive measurements
these formulae do not yield to correct probability connec-
tions.

Returning to ideal measurements we have to proceed to

the limit for n - «», We define

o(t) = s.lim o(n,t) (8)
new
Q(aie) = lim Qli,n50) (9)

nem



i
provided the limits on the rerght-hand side exist. llence,
tf the limitg

s.1im T_(t) = s.lim (EB{e/m)E)™ « T(2)
n R
nvw nO'I
exists for t > 0, then we may make the identification
p(t) = (Fr{r(e)pTr(t) 1) a1 ()oT* (1) (10)

for the resultant (normalized) state obtainced as a result of

continuous observation and verification that the system re-

mained undecayed throughout the interval. The probability

Q(4;p) for this outcome is given by

Q(A3p) = lim Tr(Tn(t}oT;(t))

nee

= Tr{pT*{t)T(t)} . (i)

Once Q(4&;p) is obtained in this manner we may calculate
P(&;p) to be

L
P(aip) = Tri{p(l - To(t)T(t)} . (12)

For a given group U{t) of time-evolution the existence

of the operator T(t) for vt > 0 imposes a nontrivial restriction

an the projection L. This restriction may he viewed as a
necessgry condition in order that the observable represented

by E admits of continuous ideal mcasurement.

ft is known [5] that the operators T(t) {if they exist)
form u strongly continuous semigroup for t > 0. The con-
tinuity of T(t) st t = 0 Joes not generally follow from the
existence of T(t), but on physical grounds, we skall assume

that

s.lim T(t) = E . (13)
-0,
This condition expresses the essentially desirable require-
aent that the probability Q(4;p) given by (11) approaches
the probability Tr(pE) as t - 0, that the system is undecayed
initially.
To prove the existence of T(t) and its continuity at

the origin, (13), in specific examples of physical interest
poses nontrivial mzthezmatical probliems. We hope to consider

these in a subsequent paper.



3. ZENO'S PARADOX IN QUANTUM THEORY

In the preceding section we arrived at the foraula (12)
for the probability P(a3p) that the system prepared initially
in the undecayed state p will be observed to decay sometime
during the interval A = [0,t]. Uespite the natural deriva-
ticn of (12) we now show that the probabiliry PLi;s) vanishes
for all finite intervals & provided that the initial state

was undecayed:
Tripk) = 1 . (14)

We are thus led to the paradoxical conclusion that an un-
stable particle will not decay as lang as it is kept unrdeyp
continuous observation as to whether it decays or not! The
mathematical transcription of this statcment is the
Theorem 1
Lev U{t) =z exp(-iHt), t real designate a strongly continuous
cne-parameter group of unitary operators in the (scparable)
Hilbert space #. Let E denote an orthogonal prajection in
H., Assume that:

(i) The seif-adjoint generator H of the group ULY) is

semibounded.

{i1) There exists an (antiunitaryj operator ¢ such thatl

uU(t)e', « Ut-t) for all t

Giiid s timite/miE)" . T2} exists for all 1 2 i
nee

(iv) s Lam T(ry = £ .
Lol

Then: 5. 3im(EB0U/nYE)T = Ty exists for all real ¢t

and 90552;:c> the following properties:

fa) The function t » T(t) is strongly continuous and
for a)1 real t and s satisfies the semigroup law:

T(L)T(s) = T(res) , and
(b} T?{t) = T(-r) .
Remnrhs:

{1} The conclusions of the theovem imply the velation:
THOT(r) » £ for all real t (15)

so that P{A:p) = Trip(1-E)} » 0 for all o satisfy-
ing (14).

{2) Witk £ interpreted as the time-reversal (oo CPT)
operatiuvn, the assumption (ii) of the thcorem
turns out to he only a weak version of T or CPT in-
variance of the theory. Moreover it should be
noted that assumption (iii} is uzed only once in
the proof for concluding the existence of the strong
limit (331} for t - 0 as well.

(3) It is easy to give a relatively elenentary proof of

thy theoren under the additional assumption that 1



(4}

is a one-dimensional projection onto a vector an
the domain of H. The theorem is also known to hold

in the special case that H = -VZ and £ is given by
" 2.3
(E¢)(x) = x(x)¢(x), ¢ e L°(R7)

where x is the characteristic function of a (suitably
smooth) region of R3 [6]. Theorem 1 generalizes this
result to arbitrary semibounded H and arbitrary
projection £.

The semiboundedness of H is necessary: consider

the following counterexample. Let V(t) be the

operator family
(V¥ (x) = ¢{x-t), ¢ ¢ LZ(R) .

Let £ be defined by

A
o

v(x) X <
(Ev)(x) =

It i1s then easy 1o verify that

EV(t)EV(s)E = EV(tes)E

for wii t,s ~ 0, so thax

16

s. Lim (Lvit/mgy™ = pv(ug = T(0)
neo

for ail t > 0. But

T*{t)T(t) = EV(t*)EV(z)E

= VH(t)EV(t) ¢ E for all t > 0

Thus the conclusion of the theorem is violated
though the assumptions in its formulation except
the semiboundedness of the seif-adjoint generator
V{t) are met. |[Strictly speaking, assumption (ii)
about the existence of 8 is also not satisfied,

but it was necessary only to prove the existence of

T{-t) and T(-t) is trivially verified to cxist in

the present example.]

We now turn to the

Prootf of Theorem 1

The existence of

for alt r

of T(t) for positive t and assumption (ii).

t >0

T{(t) = 5. lim (EU(t/n)E)" (16)

new

cal t follows immediately from the assumed existence

In fact for



17
T(-t) = s lim(EU(-t/n)E)"
New
= s.lim o (EU(t/n)E) 0"}
n-+ow
= aT(tye’d | (17)
To prove assertion (b) we observe that
(EUC-t/a}E)™ = ((EU(t/n)E)™M)*
+ T*(t) weakly as n+w
On the other hand
(EU(-t/n)E)* » T(-t) strongly as n+o .
The assertion (b) follows immediately.
It remains to prove {a), especially assertion (15).
Let us make a slight notational change and write:
W(t) 2 T(-t) = s lim(Eexp (itt/a)E)", (18)

nex

The statement (a) can be transcribed into a corresponding
statement on W{t). We shall 2lso assume, without loss of
generality, that H is self-adjoint and positive.

For convanience in exposition we shall break wp the

proef of statement {a) into the following three lemmata:
Lemma 1.
Let i be a positive self-adjoint operator ot the Hilbert

space H and Fn(z) be the operator-valued functicn defined by
F (z) = (Eexp (iltz/n)E)" {19)

Then
(1) Fn(z) is defined and continuous (in the strong
operator topology) for all complex z with Imz > 0
and it is holomorphic in the open upper half-planc
Im 2 > 0,

(2) The function Fn(z) has the intecgral representation

iy 2 - F (t)
Fo(z) = “2"“) f o dt , Imz -0 .
y e (tei) (t-2)

{ze)
™ F_(t)de
(3) o f —E e «0, Imz =<0, (21)
SRl S (tei)t(t-z)

Proo{ of iemma 1: The assertion(l) follows from the positive
seif-adjointness of H and its proof is standard. To prove

assertion{2) we stars wath Cauchy's integral formula for the

Fo(z)
function —3——y which is hojomorphtc in the open upper half-
ze1)7
plane:
F (2 ¥ ()
e e—— ® Tl.: ¢ '***‘*-‘1—3—’“-—“-* dzt Imz » 0

(21" - Cofztsid™(z'-5}



where ¢ is any simple closed rectifiable cuntour eaclosing
the point z and contained vatirely in the open upper haif-
plane. A sumilar integral representation holds of course

for the holomorphic function ¥ (2) itself. Hut with the
choice we have made the integrand vanishes faster than }:'!'l
as {2'] « ~, Meace if we choose the closed contour € to be
the asis running from -wois ta eweye and an infirite semi-
circle we could rewyite the contour integral as an open iine

integral

D {regy
'n‘ ic)

cein?
Foz) i f

A (20*)
" T (tox'ic)zil~:-ic)

Imz >y ~ 00

Fhe {operator) norm af this sntegrand is dominated by the

integrable funcraion

! i

(!-!:)' «{in z-(o)'

for all « wath 8 2 ¢ ~ ¢ % Ilmi. Morcover

s. lin Fn({-iLI - F"(!) .

=0,

Heace the conditions for the application of lLehesgur's

dominated convergence theoren far operator-vatued antegrals {7)

are met and {20') poes over to the desired representation
{20) in the limit +0, . The relation (21) is similarly ob-

tained from the vanishing of the centour integral

1 Fo(z%)
2—“-v¢ ——————2~—~dz‘ for Imz < 0

C (z'ei) " {z'-2)
Lemma 2: With the same notation as in Lemma 1 fet us assume

that

W(t) = s.1im F (t} & s.lim(Eexp (ikt/n)E)"

new nrew

exists for all recal ¢t. Then:

{1) w(z) = s.1im Fn(z) exists for all z with Imz > 0.
- o

{2) The function W(z) is holomorphic in the open upper

half-planc and satisfies the semigroup composition

law:
N(zl)w(zz) = ﬂ(zl¢:z) . (22)

(3) There exists a non-negative znd sclf-adjoint op-

erator B and a projection G such that

CB - BG = B ,

and
wi{z) = Gexp (iBz)G , Imz > D . (23)



21

Proof of Lemma 2:

To prove (1) we start with the representation (20) for

F_{z). By assumption W(t) = s.lim Fn(t) for all real t and
n-»oo

!

We can therefore apply again the Lebesgue theorem on dominated

F_(1)
(t+1)%(t-2)

2,-1
< {st) for all n
lIm z}

convergence and conclude that

«

W(z) = s.lim Fn(z)

n-o

exists and has the representation

12 ®
W(z) = (53 f ¥ i) dt, Imz >0 . (28)
t oo (2+i)“(x-2)
From the well known Vitaii's theorem [7] we can conclude
that W(z) is holomorphic in the open upper half-plane.
To prove the semigroup property of W(z) we show first

that this law holds for pure imaginary values:
W(is)W(it) = W(i(t+s))
for all positive t and s.

To this end, first consider the case where t and s are

rationally related so that there exist positive integers p,q

[
&

for which
s+t . 5 _ t

T(p*q) TP 19

for all integers r. For such s,t we can deduce

+
(Bexp (- S p)T (PH)

= (E JHS YR YP utypyvd
= (Eexp (-H)E)'P(E exp (-HE2)E)
which, in the limit r»= yield
W(ilr+s)) = W(is)W(it) .

Once this is established for rationally related positive s
and t by continuity it can be extended to all positive s and
t. Since W(is) is holomorphic it is, a fortiori, continuous

for s > 0,

To prove assertion (3) we observe that the operators

W(is) = s.1im{E exp (-Hs/n)E)"
n+«
form a semigroup of self-adjoint operators for s > 0. Ac-
cording to a well known structure theorem for such semi-

aroups [7] there exists a self-adjoint non-negative operator

B and a projection G such that



23

and

W(is) = Gexp (-Bs)G , s > 0 .

The function z + Gexp (iBz)G is holomorphic in the open
upper half-plane and assumes the same values W(is) as the
holomorphic function W(z) for z = is (s > ). The unique-
ness of holomorphic functions, then, immediately establishes
the representation (23). The semigroup property (22) for
23,2, in the open upper half-plane follows from (23) and the
camutativity of G and B.

Lemma 3: Under the assumptions of Lemma 2, we have the weak

1imit for operators along the real axis:

W, 1im W(s+in) 2 W(s) for almost all real s . (25)
n>0,

Proof of Lemma 3., To obtain this weak limit let us start

from the integral representation (24) rewritten in the form

L. 2 pe

s+i+in) W(t) dt

n>9§
Il "; (t+i)%(t-s-in) ’

W(s+in) = &

On the other hand from {(21) and the Lesbegue dominated con-

vergence theorem

R 2 ar

(s+i+in) w(t)

0 = ———p=t——dt , n >0
LERS 1; (t+i)°(t-s+in)

Therefore
L 22 ®
W(s+in) = (S”:’") f W(f)i Ly At .
Too (£431)° (t-s)T+
For any two vectcrs ¢,$ in H we may write
.. 2 ©
(v H(svin)g) = (ST 7 W WH)e) 1 g
b (t*i) (t-s] +

Since the quantity (w,W(t)¢)/(t+i)2 considered as a function

of t is integrable, it follows that

Lim (v, W(s+in}¢) = (¥,W(s)¢) (25)
n+0,
for almost all s.

To complete the assertion of Lemma 3 a technical diffi-
culty is to be resolved. For a given pair v,¢ of vectors
the assertion (25) has been shown to hold for almost all s.
The exceptionzl set (of measure zero) where this result may
not hold may appear to depend on the pair ¢,¢ chosen. To
show that there is at most a single null set outside which
(25} holds for all pairs y,¢ we proceed as follows:

Let I be a countable dense subset of the separable
Hilbert space H and let N be the union of the countable
family of exceptional null sets corresponding to all pairs
¢, with y ¢ D, ¢ € D. This set N is a set of measure zero

and the weak limit (25) holds everywhere outside this set
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for ¢, in D. But, then, (25) will hold in the complement

of N for all pairs ¢,¢ not necessarily in 0. In fact writing

A(s,n) = W(s+in) - W(s)
we may obtain
(0,ACs,m)8) = (W-¥,ACs,n)e) + (U Als.n) (4-¢))
+ (¥, sA(s,nle) .

We see that for s outside the exceptional set N the first

two terms on the right-hand side tend to zero as n+» since

we may choose

s.lim ¢ = ¢

N n
s.1lim ¢_ = ¢ .
nL+o n

The third term, by hypcthesis, goes to zero as n+0, since
wn’¢n are chosen to lie in ?. [The proof of this lemma in-
corporates a suggestion due to Dr. K. Sinha.]

The proof of assertion (a) of the theorem may now be
easily completed by combining the conclusions of the pre-

ceding lemmata.
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W{s) = w. lim W(s+in) = w. lim chﬂ(5+iﬂ)c

n+0, 00,

= GelBSG for almust all real s . (23')

Thus W(s)W*(s) = C for almost all real s. According to the

assertion (iv) in the statement of Theorem 1}

w. 1im W(S)W*(s) = w. lim T(-s)T*(-s)
s+0, swo*

N = w lim T*(s)T(s) = E . (26)
s»0+

Thus G = E and we may rewrite (23) irn the form
iBs

W(s) = Ee E for almost all s

EB = BE =B . 27)
But we can now strengthen this relation for W(s} to read
W(s) = EeBE for a1l s (28)
in view of the strong continuity cf W(s). Combining (27)
and (28) we immediately deduce the validity of assertion {a).

Although not of primary interest for the discussion in

this paner, we recall the known result [3] that if H is
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semibounded, the operators EU(t)E cannot form a semigroup
for t > 0 except in the cvent of E commuting with U(t) for
all real t. We may subsume this result as a corollary to

Theorem 1.

Corollary

Let the self-adjoint operator H be semibounded, let E be an
orthogonal projection and let U(t) stand for exp(-iHt). If

{EU(t)E{t > 0} form a semigroup, then
EU(t) = U(t}JE for all real t . (29)

Proof: The semigroup property for EU(t)E i.e. the relation

EU(t)EU(s)E = EU(t+s)E for all real s,t (30)

will imply
EU(t)EU%(t)E = E for all real t (30')

and hence

E < U(t)EU*{t) for all real t .

Multiplying this equation from the left by U(-t) and the

right by U%(-t) we obtain

U(-t)EU*(-t) < E for all real t
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Together these two incquaiities imply
E = U(t)EU*(t) for all real t

or, equivalently,

EU{t) = U(t)E for all real t

The proof of the corollary is thus reduced to the proof
of (308) or (30').

Since the operators EU(t),E are assumed to form a semi-
group for t > 0 and (EU(t)E)* = EU(-t)E, for all positive

integers n and all real t we have
(EU(t/m)E)™ = EU()E .

Hence

s. 1im(EU(t/n)E)" = EU(t)E T(t) .

n+w
exists for all real t and all the assumptions of Theorem 1
are verified, except for (ii). But as we have pointed out,
this assumption itself was needed for the sole purpose of
guaranteeing the existence of T(t] for all real t. Thus we
can safely conclude that Theorem 1 applies in this case also

and hence (30) holds for all reil t and s.
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4. CONCLUDING DISCUSSION

What conclusions must we draw from Zeno's Paradox in
Quantum Theory? 1Is it a curious but innocent mathematical
result or does it have something to say about the foundation
of quantum theory? Does it, for example, urge us to have a
principle in the formulation of quantum theory that forbids
the continuous observation of an observable that is not a
constant of motion?

The answer to the first two questions appears to depend
on whether it is operationally meaningful to seek the
probability that the particle makes a transition from a pre-
assigned subspace of states EH to the orthogonal subspace
ELH sometime during a given period of time. We have endeavoured
to present arguments that such probabilities possess opera-
tional meaning in terms of the outcome of successive (in the
limit, continuous) measurements of an appropriate quantum
mechanical observable. If this is accepted, it follows
that to be a complete theory quantum mechanics must pravide
an algorithm for computing these probabilities. The quantum
Zeno's Paradox shows that the seemingly natural approach to
this problem discussed in the preceding sections leads to
bizarre and physically unacceptable answers. We thus lack
a trustworthy quantum-theoretic algorithm for computing such
probabilities. Until such 2 trustworthy algorithm is developed

the completeness of quantum theory must remain in doubt.
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The lack of a trustworthy quantum-theoretic slgorithm
for probabilities like P(0,t;p) is intimately connected with
the difficulties involved in defining an operator of "arrival
time"” (or, morc generally, "time of transition"} in quantum
theory [5]. Let us briefly discuss this problem in the con-
text of the "time of decay" of an unstable particle.

From the definition of P(0,t;p) it must have the follow-

ing properties:

(i) P(0,t;p) > 0 for all t > 0
(ii) P(0,t;p) > P(0,s;p) for t > s
- {31)
(iii) P(0,t;p) + 1 for t + «

(iv) P(D,t;p) » Tr{pE"} for t » 0, .

In addition P{0,t;p) may be assumed to be continuous as a

function of t. If we were to succeed in finding a formula
P(0,t;p) = Tr{oB(0,t)]} (32)

then the operator B(0,t) would have the following properties:

{i) B{0,t) > 0
(ii) B(0,t) > B{0,s) , t > s
(iii) B(O,t) -+ I (strongly), t© - <«
(iv) 2(0,t) » E (strongly), t =+ 0,

(v) B(0,t) is a strongly continuous function of t.
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of the (unstuble) undecayed states will then form a "peneralized

resolution of the identity" (GRI). Unlike the more familiar
{(projection-valucd;} resolution of the identity, a GRI does
not necessarily determine a densely defined operator. But
under some mild additional assumptions (which we aeed not
specify explicitly here) the GRI B*(0,t) will determine a
hermitian (though not necessarily self-adjoint) operator

so that
(¢,19) = [ed(y,B"(0,t)¥) for all v e P(1) (33)

The operator 1 thus defined may then be interpreted as the
operator of "time of decay."

Conversely, if there exists a positive hermitian "time
of decay" operator 1 associated with tke subspace EH of un-
decayed states and B'(0,t) denotes a GRI associated with it,
then through (31) we may define the probability P(0,t;p)
which may be interpreted as the probability that the system
prepared initially in the (undecayed) state p will be found
to decay sometime during the interval (0,t].

Looked at from this point of view, the Zeno's Paradox
thus strengthens and sharpens the pessimistic conclusion of
Allcock [9] and others concerning the possibility of intro-

ducing an observable of "arrival time" in quantum theory.

We must emphiasize that in our study here, the cenclusion s
not based on certain a priori, but questionable, assumptions
about 1; such, for instance, as the assumption that : bhe
"'canonically conjugate” to the lamiltonian, or that t be 4
self-adjoint operator in the Hilbert space. In the litera-
ture such requirements were implicitly or explicitly placed
on T,

We have so fur supposed that it is operatioenally mean-
ingful to ask ahout probabilitics such as P{O,t;¢) and
Q(0,t;5). We have also taken the stance that the observed
tracks of unstable particles in a bubble chamber or phato-
graphic emulsion is in contradiction with the conclusion we
have called Zeno's Pavadox in Quantum Theory. It is, how-

ever, possible to adopt one of the followiag attitudes:

(1) Probabilities such as P(0,t;5) have no operational
meaning: there is a fundamental principle in
quantum theory that Jdenies the possibility of <on-

tinuous observation,

Since so far no such principle has been derived {rom or ia-
corporated into quantum theory, this is not a satisfacrory

way of reselving the paradox at the presens time.

(2) Zeno's Paradox is bascd on the assumption that the
centinuous measurements are ideal mcasurements.

But measurements {or, observations) involved in the
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recording of the track of an unstable particle in

a detecting medium are non-idcal in the sense of (3).

This is a tenable view and it would deny the validity of
Theorem 1 as stated and proved in this paper. It has the

somewhat unsettling side-effect that P(0,t;p) and hence the

"observed lifetime'" of an unstable particle is not a property

of the particle (and its Hamiltonian) only but depend on
the details of the observation process. At the present time

we have no indication that this is sc.

(3) The record of the trdack of a particle is not a
continuous observation that the particle has not
decayed, but only a discrete sequence of such ob-
servations; while Zeno's Paradox obtains only in

the limit of continuous observations.

While this is tenable, the sufficiently repeated monitoring
of the particle should again lengthen the lifetime. There
is, however, no indication that the lifetime of a (charged)
unstable particle (say, a muon) is appreciably increased in
the process of its track formation through bubble chamber.
To shed additional light on this question a quantitative
investigation of the effect of repeated monitoring on the
lifetime of particles (in specific models) is in progress

[11).

(4) Natural though it scems, it is wrong to assume that
the temporal evolution of a quantum system under
continuing observation can be described b¥ a lincar
operator of time-ecvolution such as T(t}. It ca. Le
described only in terms of a persistent intcractioen
between the quantum system and the classical

measuring apparatus. When this is donce the quantum

Zeno's Paradox will either disappear or if it sur-
vives, at least, it will be undersiandable as the
drastic change in the behaviour of the quantum

system caused by its continuous interaction with a

classical measuring apparatus.

This point of view is at present only a program since
there is no standard and detailed theory for the actual

coupling between quantum systems with classical measuring

apparatus. A beginning in this direction is made in a
forthcoming paper [12].

Having been forced into such unusual peints of view by
the quantum Zeno's Paradox one is prompted tc draw also some
parallels between it and certain empirical findings in the
study of human awareness. We shall present such close
parallels between the quantum Zeno's Paradox and the findings
of sensory deprivation and other experiments pertaining to

the study of consciousness in a separate publication.
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In conclusion it seems to us that the problems posed by
Zeno's Paradox have no clean cut resolution at the present
time and deserve further discussions. It may also be re-
emphasized that the probabilities such as Q(4;n,p) (or
Q(8;0)) that pertain to the outcomes of successive measure-
ments (or continuous measurements) depend on the law accord-
ing to which "state collapses" occur at the time of measure-
ments. Thus one may say that the 'collapse of state vector"
caused by measurement, which has hanted the foundation of
quantum mechanics like an invisible ghost becomes visible
through probabilities such as Q(A;n,p) etc. The probabili-
ties pertaining to the outcomes of several successive (as
well as continuous) measurements therefore deserve further
theoretical as well as experimental study than they have re-

ceived so far.
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