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We seek a quantum-theoretic expression for the proba­

bility that an unstable particle prepared initially in a 

well defined state p will be found to decay sometime during 

a given interval. It is argued that probabilities like this 

which pertain to continuous monitoring possess operational 

meaning.

A simple natural approach to this problem leads to the 

startling conclusion that an unstable particle which is con­

tinuously observed whether it decays will never be found to 

dec&yl Since recording the track of an unstable particle 

(which can be distinguished from its decay products) realizes 

such continuous observations to a close degree of approxima­

tion, the above conclusion poses a paradox which we call 

Zeno's Paradox in Quantum Theory. Its implications and 

possible resolutions are briefly discussed.

The mathematical transcription of the above-mentioned 

conclusion is a structure theorem concerning semigroups. 

Although special cases of this theorem are known, the gen­

eral formulation and the proof given here are believed to 

be new. We also note that the known "no-go" theorem [3] 

concerning the semigroup law for the reduced evolution of 

any physical system (including decaying systems) is sub­

sumed under our theorem as a direct corollary.
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1. INTRODUCTION

The object of this paper is to discuss a seemingly 

paradoxical result in quantum theory concerning temporal 

evolution of a dynamical system under continuous observation 

during a period of time. For reasons that will become clear 

shortly we call this complex of deductions Zeno's Paradox in 

Quantum Theory.

Let us consider schematically the theory of an unstable 

quantum system. Naturally the states corresponding to the 

decay products also should be included in the space of all 

states which we take to be a Hilbert space H. Let us denote 

the (orthogonal) projection onto the subspace spanned by the 

undecayed (unstable) states of the system by E. This pro­

jection E thus represents the observable that corresponds to 

the "yes-no experiment" for determining whether the system 

is in an undecayed state or in a decayed state. The evolu­

tion in time of the states of the total system will be de­

scribed by a unitary group U(t) e exp(-iHt) labelled by the 

real time parameter t. In this setting the quantity

qft) ■= Tr{ pU1' (t)EU(t)} (1)

is interpreted as the probability, at the instant t . for 

finding t!u* system undecayed when at time 0 it was prepared 

in the state p. Correspondingly, the probability that,
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at the instant t , the system will be found to have decayed 

is the complementary quantity

p(t) = 1 - q(t) = Tr{pU*(t)EXU(t)}

E^ = I - E (2)

All these are, of course, standard.

Quantum theory, in fact, provides an unambiguous al­

gorithm for computing the probability distributions (for the 

possible) values of observables at any (instant of) time, 

given the knowledge of the initial state of the same system 

and its law of time evolution. Expressions (1) and (2) are 

only particular instances or this well-known algorithm.

In contrast to the above-mentioned probabi1ifies which 

refer to a specified instant of time we may consider the 

following probabilities for which quantum theory has no 

ready expressions:

(1) The probability that the system prepared in the un­

decayed state p at time 0 is found to decay sometime 

during the interval fl ■* [0,t]. We denote this by 

P(0,t;p).

(2) The probability Q(0,t;p) that no decay is found 

throughout the interval A when the initial state of 

the system was known to be p.
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l.M The probabi 11 ty th-U the *y»tcn prepared initially

ir* I ho M.tic , v i 11 he found to he undecayed

through out {O.tjJ * ft, but found to dccay »<»act lac

during tin* ■mbsefiuenf perUsI 11 ,, t ) ■ !.,, l» * », *■ i.
» to i

Ke denote this by R(0,tj ,t ;n).

It is inportant to it i n  ini;u>>h the probabilities

fronij(l) since there is the leap tat ion to identify 

:.*>ea (and hence also J’fD.r;o) with ;>(t)) |1). The probability 

however, refers to mitcoac* of acasureaent of E at the 

t»ne t the svstea be ins left unobserved after the initial 

prepar.it ion until t.

The operational neanins (if any!) of the probabilities 

i’. Q, R on th<« other hand is to be found in tcras of the 

•ml cones ui cont union t ly ongoing neasurenent of I', during the 

entire interval of tine A. The notion of such continuously 

ongoing observations (or. equivalently, aeasureaents) is 

obviously an ideal ir.n ion.

fce a.v. consider the process of c<mt observation

.is the liaitin-,; case of successions of (practically; in- 

'i.itu.invini- ae.isurenents (of S') as the intervals between 

successive ocasurenents approach ;cro. Since there docs not 

‘•‘•i’* t*-> be any principle, internal to i)uantun tlifcory. that 

forbid* the duration of a single measurenent or the deadt i«se 

hot been successive eeaMireaents froa hem*: arbitrarily soall, 

the process of continuous observation veins to be an
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adoix-ibie process in i|tianlun theory.

Moreover, such continuous, observation processes seem 

to be reali:ed in practice, at least up to close decree of 

approxinat ion by the tracks of unstable charged particles 

in bubble chambers and other detecting media. The observa­

tion of the track amounts practically to a wore or less con­

tinuous aonitorinfi of the existence of the unstable particle 

and thus a acasurenent of I: during the period of the parti­

cle’s flight through the detection chamber. *e are there­

fore led to accept as operationally aeaningful the l’(0,t;o), 

Q(0.t;p) and R{0,tj»t;ol. To b? a complete theory, quantum 

theory »ast provide an algoritho for coojnit inp. these proba­

bilities .

In the next section we describe what appears to be tftc 

natural approach to determining quantum-theoretic expressions 

for these probabilities. Our investigation leads to the 

paradoxical result mentioned at the beginning of this section: 

An unstable particle observed continuously whether it has 

decayed or not wilt never be found to decay! Since this 

evoke* the faaous paradox of Zeno denying the possibility of 

motion to a flying arrow, we call this unexpected results 

the Zeno's Paradox in Qua-’tuo Theory.

In fact, if K is taken to be the project ion to the set 

of local tied states of a particle (or, a quantum arrow) in 

a Siven region |J of space, then one concludes that the
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p a n  id*- « U t  never he foun*i t*t arrive in a «ii!v)utni region 

t>“ ftrovtiici) h  »* tiin; inttsttsly .obggrtfot whether it ha> et*' 

teret! ti' or n»t: the “arrow" <anw»t aovg to where it i> «\H!

fhi* ac«$»s reit an eten aw»re picturesque an4 para­

doxical formiiation when it i* applied to the "lleniiih Con- 

i rapt ion" t*<ia;s}«lereti in she Schrodinscr’* cat j*ar»4t»* |2J.

It m r  i>c recaJieJ that the contra}*lias cen.*!*!* of an un- 

^iiaslM*^ p a n i c  J* pt«e«*«J in * box equipped with »p 

efficienS countcr a m 1 a cat inMife a jteel cfcaaber. tf (be 

particle Jccay* the counter trigger* an«J, in it* turn, ae* 

tivsnes a il»y hauler which break* a container ef cyanUe 

in the steel chsittier. Wanittmni! the vital (vmction* of the 

cat aeauntst so ot»*crvin£ if the particle has 4ee»ye4 #r not. 

In view of the Zena'f Parado* formilatffit abttve, *heul<i vc 

«ncl«4e that the particle will never decay? Kill the cat 

escape the cruel death awaiting it, again*! which it h»* no 

<ie(eitfe, prai.‘i«J*5l its vital signs a*« constantly watched 

with iavtng care*

flic mathematical transcripti«n a( Zeno'* Parade* is a 

structure tHe»res cenc^rfiins a <!»** strongly centtmiou* 

senieroups. fhti thcore* i* formulated and proved in Sec- 

tjen 3 this paper 384 aay pa***#* *«** intrinsic interest 

apart fr«J»s »«* appl jcae i«n in the present c«mte»t o{ j t h o r y  

of o n t  i(i!w«» ohjierva? ion. A> a t»?"■ f»rst<t̂ tcs #4 tHi* invest»£»• 

; >»it »c i'sn-4 that the known revolt {SI cisttcerasas !He

o

incowpat ibi i i ty of the ?.«-*» iti0HndeJne:v* of the ll*»i I Ionian li 

with the rmuirt'Sicni that (. «r*|» f *(f* i t Tora a strict ty con- 

tractive >c»>»gf o«|> can W  umS^r the abovr'«c«t »»hcd

th««rcis as one o{ Hr- Jircct corotlar»pn.

S«mmi of the »«}>l icat ions an4 possible r o o l a t o f  

the Ouantua ;«b o ‘j» I’araiJo* will t*5> lirtcfly tlisettvscil in ihe 

<oiu‘lis.!»ng iiectJoh of the {taper.
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2. QUANTUM THEORETICAL EXPRESS tcWS t-'OR P(0,t;o) A W  RELATED 
PKOBAB/UTIfcS

The three probability functions P, Q, R introduced in 

the previous section relate to the results of continuous ob­

servation throughout an interval of tiae. Ry their very 

definitions they oust obey the relations

r t o . l ; » )  •  Q ( 0 , t ; p )  •  1

and

where Pj is the state in vhlch the syste* (prepared initially 

in the state i») finds itself at tj after being continuously 

observed and found to be umtccaycd throughout (0,t|J- Me 

nay therefore concentrate -»ur attention on calculating Q and

V
Me start with the systea in the state i> ami Make a 

series of n*i neasureaents, which are idealized to be in­

stantaneous, at tiac* 0. t/n, 2t/n, .... and t. Kc
n

*ceJt the probability 0{a,n;pj that it be found undecayed in 

each of these neasurcacnt*. It is natural to assune that 

Q(A;p) 2 Q(0,t;^) can be evaluated as the U n i t  of <?(.'.rt;.') 

when n » », provided the liwit c*i*i*.

Let us denote by r(n,t) the state in which the systen 

find)! itself after the («*l) aeasureaents 4t 0. t/n. it/n.

8

I and being found to be undctayed in each of these 

ncasureiaents, Sow, according to the orthodox theory of 

neasorcaent, if a aeasurement of E on the system is carried 

out yield in* the result "yes“ (that is. "undecayed"), then 

the state of the systea collapses to a new (unnoraaliied!) 

state «* of the fors

o' * £ A*oA, (3)

j } i
utth

£ AJ * £ («)
i *

The collapsed state e* given by |S) is, in general, not 

uniquely determined by the Measured observable E and the 

observed outcoae but depends also on the details of the 

scasuring apparatus. T H U  circuastarsce is reflected in the 

non-uniqueness of the operators Aj satisfying («}•

Tfcs atpping (3) of th» density aatrice* is very closely 

related to the *'eo*plct#ly positive naps" defined by

* * I V VS *

The "state collapse" caused br "nonteieclive" Bca*urc»cnis 

of £ is •iefiribeJ by such saps. They will be considered in
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■i future pubt icat ion in the context of repeated und continuous 

nonselect ivc measurements.

Quantum theory envisages also the possibility of ideal 

neasurcmcnts under which the collapse of the state proceeds 

according to the staple law

P - ')’ ■ |jp l; (4)

when the measurement of 1; on the state p yields the result 

"undecayed."

The considerations of this paper will be restricted to 

sucb ideal measurements only, since in such cases we can e x ­

ploit the positive definiteness of the Hamiltonian in a 

direct manner. If we were to consider the more general col­

lapses (3) we would have to proceed more dircctly using the 

von Neuaa/in-Lionvilie generator which is however not positive 

definite. The study of the probabilities Q(a,p) etc. would 

then involve new technical problems obscuring the essentials 

of Bono's Paradox, h'e plan to present the study of the more 

general situation in a subsequent paper [10].

Accordingly, to determine n(n,t) we ailow the system to 

collapse at each measurement according to (4) but at the 

intervening time intervals it undergoes the usual Schrodinger 

time development. The (unnormalizod) state p(n,t) is then 

easily seen to be

1U

n tn . t j  ■ Tn ( t ) o r » ( t J  (5J

where

T „ ( t )  * ( 1:11 ( t / n ) I:) n

i ( E c x p  i-illt/n)C)n (6)

Moreover, it is also easy to show that the standard inter­

pretation of the quantum theoretical formalism entails the 

formula

Q(n,a;oJ « Tr(Tn <t)pT*(t)) (7;

III fact, (7) is 3 special case of a more general formula for 

the probability connections between several successive o b ­

servations [4]. It is important, however, to bear in mind 

that the general formula discussed in |4] (and, a fortiori, 

the formula (7)) holds only under the assumption that the 

succcssive measurements under consideration arc ideal in the 

sense described above. For nonideal successive measurements 

these formulae do not yield to correct probability connec­

tions.

Returning to ideal measurements we have to proceed to 

the limit for n • <». h'e define

p(t) « s.liit p(n,t] (8)
n

ijCA;p ) = 1 im Ql.‘.,n;pJ 
n

(9)



provided the limits on the right -hnnil side exist, Hence, 

if the limit

s.Jim T (t) : s.lim (UU(t/n)U)n “ T(t) 
n*',‘

exists for t ^ 0, then we may make the idcnt if icut ion

p(t) - (Tr{ T(t JpT»(t)M‘l*T(t)pT*(t I (JO)

for the resultant (normalized) state obtained as a result of 

continuous observation and verification that the system re­

mained undecayed throughout the interval. The probability 

Q(&;p) for this outcome is given by

Q(A;p) « lim Tr<Tn (t)pr»(c)} 
n*“

- Tr(pT*(t)T(t)) . (11)

Once Q(i;p) is obtained in this manner we may calculate 

P(A;p) to be

I

P(a;p) * Tr(p(I - T*(t)T(t)J . (12)

For a given group U(t) of time-evolution the existence 

o f  the operator T (t ) for t ^  0 imposes a nontrivial restriction

! 1 12

on the projection I.. This restriction may he viewed as a 

necessary condition in order that the observable represented 

by U admits of cont inuous ideal measurement.

It is known fSJ that the operators T(t) (if they exist) 

form a strongly continuous semigroup for t > 0. The con­

tinuity of TCtJ at t * 0 Joes not generally follow from the 

existence of T(t). but on physical grounds, wc shall assume 

that

s.lim T(t) • E . (IS)
t-0.

This condition expresses the essentially desirable require­

ment that the probability Q(A;p) given by (11) approaches 

the probability Tr(pE) as t * 0, that the system is undecayed 

initially.

To prove the existence of T(t) and its continuity at 

the origin, (13), in specific examples of physical interest 

poses nontrivia! mathematical problems. We hope to consider 

these in a subsequent paper.
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3. ZUNO'S PARADOX IN QUANTUM TtliiGRY

In the preceding see*ion we arrived at the formula (12) 

Cor the probability P(A;p) that the system prepared initial I)' 

in the undecayed state p will be observed to decay sowctise 

during the interval a ■ (0,t). despite the natural deriva­

tion of (12) we now show that the probability vanishes 

for all finite intervals (i provided that the initial state 

was undecaycd;

TrlpK) « 1 . (14)

We are thus led to the paradoxical conclusion that an un­

stable particle will not decay as long as it is kept under 

continuous observation as to whether it decays or not! The 

mathematical transcription of this stateacnt is the 

Theorem 1

Let U(t) = exp(-illt), t real designate a strongly continuous 

one-parameter group of unitary operators in the (separable) 

Hilbert space H. Let E denote an orthogonal projection in

H. Assume that:

(i) The self-adjoint generator H of the group Ult) is 

semi bounded.

(ii) There exists an (ant iunitary) operator o such that 

0H9'1 - !•

nil(t)t>"1 - U( -t) for .illt .

(iii) s. . T It) « i . M >  for all ( ' ii.
n —

(ivl s, I in 1 (l) * I; 
t •(».

Then: s. 1 ira(l.U(t/nU)n ; T(t) e.xists for a U  real t ft •
and possesses the following properties: 

fa) The function t • T(t) is strongly continuous and 

for all real t and s satisfies the semigroup law: 

T(t)T(s) - T (t♦s ) , and 

<b) T*(t) - T(-t) .

RegarWs:

(II The coju'Iusions of the ihcorcsi imply the relation:

T*(I)T(t) * E for all real t (15)

so that PfA:o) * Trfp(I-E)! • 0 for all i> satisfy­

ing (H).

(21 Kith b interpreted as the t m e  - reversa I (o.' CI’T) 

operation, the assumption (ii) of the theorem 

turns out to be only a weak version of T or CPT in­

variance of the theory. Moreover it should be 

noted that assumption (iii) is used only once in 

the proof for concluding the existence of the sttonn 

licit (lii) for t • 0 as well.

(3) It is easy to give a relatively elencntarv proof of 

the thcorcn under the additional assumption that 1.

H
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is a one-dimensional projection onto a vector in 

the domain of )). The theorem is also known to hold 

in the special case that II « and 1; is Niven by

tE«f) (x) • xU)*(x), Y c L2 (R3)

where x is the characteristic function of a (suitably 

smooth) region of R3 16]. Theorem 1 generalizes this 

result to arbitrary semibounded 11 and arbitrary 

projection E.

(4) The somiboundedness of H is necessary: consider 

the following counterexample. Let V(i) be the 

operator family

(V(t)*)Cx) * *(x-t), * c L2(R) .

Let I: be defined by

lU*)(x) *
4>(x) x < 0

0 x > 0 

It is then easy to verify that

UV11)EV(s) H ■ HV{t♦s) K

for uii l,s 2 0. so that

10

s.  I im < / .V U /n ) i i ; n = i ;Vf t Jf :  - T( t]  

n * *•

for ail t > 0. But

T*(t)T(t) - KV(t*)£V(t)E

= V*(t)UV(t) i K for all t > 0 .

Thus the conclusion of the theorem is violated 

though the assumptions in its formulation except 

the semiboundedness of the self-adjoint generator 

V(t) arc met. {Strictly speaking, assumption (ii) 

about the existence of 8 is also not satisfied, 

but it was necessary only to prove the existence of 

Tf-t) and T(-t) is trivially verified to exist in 

the present example.]

tic now turn to the 

1'roof of Theorem 1 :

The existence of

T(t) 5 5. lim (EV(t/n)£)n lib)
n •• *

for s'. 1 rcnl i follows immediately from the assumed existence 

of T(t) for posit ivc t and assumption (ii). In fact for 

t ' 0
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T(-1 ) 5 s. lim(L:U(-t/n)EJn 
n-*«>

= s. lim 0(EU(t/n)E)rV 1
n->®

= e T U j e ' 1 . (17)

To prove assertion (b) we observe that

(EU(-t/n)E)n - {(EU(t/n)E)n )*

-► T*(t) weakly as n-**

On the other hand

(EU(-t/n)F.)u •* T(-t) strongly as n>» .

The assertion (b) follows immediately.

It remains to piove (a), especially assertion (IS). 

Let us make a slight notational change and write:

W(t) = T(-t) =■ s. lim(E exp (il!t/n)E)n . (18) 
n*“

The statement (a) can be transcribed into a corresponding 

statement on W(t). We shall also assume, without loss of 

generality, that H is self-adjoint and positive.

For convenience in exposition wo shall break up the

18

proof of statement (a) into the following three lemmata: 

Lcffma 1■

Let II be a positive self-adjoint operator of the Hilbert 

space II and F (z) be the operator-valued function defined by

Fn (z) = (E exp (iIlz/n)E)n (19)

Then

(1) tz.) is defined and continuous (in the strong 

operator topology) for all complex z with Ira z » 0 

and it is holomorphic in the open upper half-plane 

1m z > 0.

(2) The function Fn ( 0  has the integral representation

___ ,2 r~ M U

n ' (t<i|‘(t-n
( 2 0 )

. f" F (t)dt

( 3 )  2HT J  —  7TI — D , Im z ' 0 . (21)
(t »i)*(t-z }

Proof of i.eana 1: The assertion(l) follows frora the positive

scl f-adjointness of 11 and its proof is standard. To prove

assert ion (2) we stari with Cauchy’s ir.t eg ra 1 formula for the 
I' (I)

function----- t which is hoSoraorphic in the open upper half-
C-i)'

pi .me:

F (: i , e 1 (z ' i
...0.— T <p --- -!i~,-------:iz' , Ira; ;• 0
(;*i)* ‘ ! C < z'•i! ;
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where C is aitv simple cI osed rectifiable contour enclosing 

the point : und contained entirely in the open upper half- 

plane. A similar integral reprtsentat ion holds of course 

lor the holomarphic function 1:„(-) itself. Hut with the 

choice we have made the integrand vanishes faster than |s'| * 

as j;’j • ■». Ilcnce if wp choose the closed contour C to be 

the axis running from ■•'■•it In ••»*u and an infinite ■‘emi- 

circle we could rewrite the contour integral as an open line 

integral

.-.n2 f  rn ( t » i t )  
f(:> • I ----- 2— t---------(20*»

n ~ 1 • *  ( t * i * i r . ) * ( t i * i c )

la z > i ' 0

The (operator) noro of this *.ntegrand is dominated by the 

integrahje function

fur all i «i tit 0 < t- cQ < Is i. Moreover

s. 1 in F (t • it 1 • F„ (t) 
n n

Hence thv conditions for the application of l.eiNes^us's 

.!i>mn.itcd i ottverf.cnci’ thearea for operator-valued integral' !"|

20

are met and {20’) K°es over to the desired representation 

(20) in the limit The relation (21) is similarly ob­

tained from the vanishing of the contour integral

* F (z *}
JU- ---- 2— _------- dz1 for Im z <■ 0
inl JC (r**i)Z (z'-z)

lemma 2 : Kith the sane notation as in Lemma I let us assume

that

W(t) = s. lira F (t) 5 s. lim(Uexp (il(t/n)i:)n 
n .« n n-.“

•exists for all real t. Then:

(1) N(z) 3 s. 1ira F (z) exists for all z with Imz > 0 .

(2) The function W(z) is holomorphic in the open upper 

half-plane and satisfies the semigroup composition 

law:

W ( z , ) * ( z 2) * • (22)

(3) There exists a non-negative and self-adjoint op­

erator B and a projection C such that

CB - BC - B .

and

it'{:) » G exp (i Bz)C , Imz > 0 . (23)
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Proof of Lemma 2 :

To prove Q.) we start with the representation (20) for 

Fn (z). Bv assumption W(t) = s. lim F (t) for all real t and

Fn Ct)

(t + i)2 (t-z)
< l i i i l L i  for all n .

I Im z |

We can therefore apply again the Lebesgue theorem on dominated 

convergence and conclude that

W(z) = s. lim F_(z) 
n->°°

exists and has the representation

W(z) = /  --- m j ? ----- dt , Imz > 0 . (24)
‘■V1 (t+ir(t-z)

From the well known Vitali's theorem [7] we can conclude 

that lV(z) is holomorphic in the open upper half-plane.

To prove the semigroup property of W(z) we show first 

that this law holds for pure imaginary values:

W(is)W(it) = W(i(t+s))

for all positive t and s.

To this end, first consider the case where t and s are 

rationally related so that there exist positive integers p,q

for which

s+t _ s _ t 
r(p+q) rp ' rq

for all integers r. For such s,t we can deduce 

( E « p

• (E exp (-H~)E)rP(E exp

which, in the limit r+*> yield

W(i (t+s)) = W(is)W(it) .

Once this is established for rationally related positive s 

and t by continuity it can be extended to all positive s and 

t. Since W(is) is holomorphic it is, a fortiori, continuous 

for s > 0.

To prove assertion (3) we observe that the operators

W[is) s s. lim(E exp (-Hs/n)E)n 
n-*-"

form a semigroup of self-adjoint operators for s > 0. A c ­

cording to a well known structure theorem for such semi­

groups [7] there exists a self-adjoint non-negative operator 

B and a projection G such that

22
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BG = GB = B

and

W(is) = G exp (-Bs)G , s > 0

The function z •* G exp (iBz)G is holomorphic in the open 

upper half-plane and assumes the same values W(is) as the 

holomorphic function W(z) for z = is (s > 0). The unique­

ness of holomorphic functions, then, immediately establishes 

the representation (23). The semigroup property (22) for 

z2>* 2 i" the open upper half-plane follows from (23) and the 

canrnitativity of G and B.

Lemma 3 : Under the assumptions of Lemma 2, we have the weak 

limit for operators along the real axis:

w. lim W(s+in) ^ W(s) for almost all real s . (25) 
n~()

Proof of Lemma 3 . To obtain this weak limit let us start 

from the integral representation (24) rewritten in the form

W ( s + i n )  = f  — --------d t  , n  > 0 .
-w (t+ i) (t-s-in)

On the other hand from (21) and the Lesbegue dominated con­

vergence theorem

0 , initial! ----- «£!)------dt , n > 0 .
2711 -<* (t+i) (t-s+in)
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Therefore

W(s + in) - / "  ---- V - 7  dt ’
1 (t+i) (t-sT+ 1

For any two vectors in H we may write

,2 r *
,W(s+in)iji) = m i l i n l -  C  ---- £■ dt .

t (t+i) (t-s)i* L

o
Since the quantity (4»,W(t)<}>)/ (t + i) considered as a function 

of t is integrable, it follows that

lim (>> ,W(s+in)$) = ('i'.Wfs)*) (25)
n+0+

for almost all s.

To complete the assertion of Lemma 3 a technical diffi­

culty is to be resolved. For a given pair U>,<f> of vectors 

the assertion (25) has been shown to hold for almost all s. 

The exceptional set (of measure zero) where this result may 

not hold may appear to depend on the pair chosen. To 

show that there is at most a single null set outside which 

(25) holds for all pairs iji,<p we proceed as follows:

Let 0 be a countable dense subset of the separable 

Hilbert space H and let N be the union of the countable 

family of exceptional null sets corresponding to all pairs

4 ,<P with 4i e  V, $ e  V. This set M is a set of measure zero 

and the weak limit (25) holds everywhere outside this set
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for 4/,$ in 0. But, then, (25) will hold in the complement 

of H for all pairs Ci,<f> not necessarily in V. In fact writing

A(s,n) = W(s+in) - W(s)

we may obtain

( t ,A ( s , n ) * )  = (>l'-'l'I1,A (s  + (iJin .A ( s ,n )  ($-<t>n ) )

+ (iPn »A(s,nHn ) .

We see that for s outside the exceptional set W the first 

two terms on the right-hand side tend to zero as n->-" since 

we may choose

s. lim if/ * i(i 
n-*-°°

s. lim ♦ = $ 
n-f»>

The third term, by hypothesis, goes to zero as r)-»0+ since

<h ,6 are chosen to lie in V. (The proof of this lemma in- 
Tn n

corporates a suggestion due to Dr. K. Sinha.]

The proof of assertion (a) of the theorem may now be 

easily completed by combining the conclusions of the pre­

ceding lemmata.

26

W(s) = w. lim W(s+in) = w. lim Ge* B ̂ h + in-*G
n^0 + n |-0 +

= Ge1®sG for almost all real s . (231)

Thus W(s)W*(sj =■ G for almost all real s. According to the 

assertion (iv) in the statement of Theorem 1

w. lim W(s)W*(s) = w. lim T(-s)T*(-s) 
s->0. s»()

= w. lim T* (s)T(s) = E . (26) 
s-*(T

Thus G = E and we may rewrite (23) ir. the form

W(s) = Ee E for almost all s

EB = BE = B . (27)

But we can now strengthen this relation for W(s) to read

h’fs.) = £elBsE for all s (28)

in view of the strong continuity cf W(s). Combining (27) 

and (28) we immediately deduce the validity of assertion (a).

Although not of primary interest for the discussion in 

this paper, we recall the known result [5] that if H is
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semibounded, the operators EU(t)E cannot form a semigroup 

for t > 0 except in the event of E commuting with 11 (t) for 

all real t. We may subsume this result as a corollary to 

Theorem 1.

Corollary

Let the self-adjoint operator H be semibounded, let E be an 

orthogonal projection and let l)(t) stand for exp(-iHt). If 

{EU(t)E|t ^ 0} form a semigroup, then

Ell (t) = Uft)E for all real t . (29)

Proof: The semigroup property for El)(t)E i.e. the relation

EU(t)EU(s)E = EU(t + s)E for all Teal s,t (30)

will imply

EU(t)EU*(t)E = E for all real t (30')

and hence

E < U(t)EU*(t) for all real t .

Multiplying this equation from the left by U(-t) and the 

right by U*(-t) we obtain

U(-t)EU*(-t) £ E for all real t

28

Together these two inequalities imply

E = U(t)EU*(t) for all real t

or, equivalently,

EU{t) = l)(t)E for all real t

The proof of the corollary is thus reduced to the proof 

of (30) or (30'J.

Since the operators EU(t),E are assumed to form a semi­

group for t >_ 0 and (EUCt)E)* = EU(-t)E, for all positive 

integers n and all real t we have

(EU(t/n)E)n » EV(t)E .

Hence

s. lira(EU(t/n)E)n = EU(t)fi T(t) . 
n-*“

exists for all real t and all the assumptions of Theorem 1 

are verified, except for (ii). But as we have pointed out, 

this assumption itself was needed for the sole purpose of 

guaranteeing the existence of T(t) for all real t. Thus we 

can safely conclude that Theorem 1 applies in this case also 

and hence (30) holds for all re;.l t and s.
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4. CONCLUDING DISCUSSION

What conclusions must we draw from Zeno’s Paradox in 

Quantum Theory? Is it a curious but innocent ir.athematical 

result or does it have something to say about the foundation 

of quantum theory? Does it, for example, urge us to have a 

principle in the formulation of quantum theory that forbids 

the continuous observation of an observable that is not a 

constant of motion?

The answer to the first two questions appears to depend 

on whether it is operationally meaningful to seek the 

probability that the particle makes a transition from a pre- 

assigned subspace of states EH to the orthogonal subspace 

E"S( sometime during a given period of tine. He have endeavoured 

to present arguments that such probabilities possess opera­

tional meaning in terms of the outcome of successive (in the 

limit, continuous) measurements of an appropriate quantum 

mechanical observable. If this is accepted, it follows 

that to be a complete theory quantum mechanics must provide 

an algorithm for computing these probabilities. The quantum 

Zeno's Paradox shows that the seemingly natural approach to 

this problem discussed in the preceding sections leads to 

bizarre and physically unacceptable answers. We thus lack 

a trustworthy quantum-theoretic algorithm for computing such 

probabi 1 ities. Until such a trustworthy algorithm is developed 

the completeness of quantum theory must remain in doubt.
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The lack of a trustworthy quantum-theoretic algorithm 

for probabilities like P(0,t;p) is intimately connected with 

the difficulties involved in defining an operator of "arrival 

time" (or, more generally, "time of transition") in quantum 

theory [j] . Let us briefly discuss this problem in the con­

text of the "time of decay" of an unstable particle.

From the definition of P(0,t;p) it must have the follow­

ing properties:

(i) P(0,t;p) 0 for all t >_ 0 

(ii) P(0,t;p) > P(0,s;p) for t > s
(31)

(iii) P(0,t;p) •* 1 for t -<• »

(iv) P(0,t;p) -* Tr{pE— } for t -* 0̂ .

In addition P(0,t;p) may be assumed to be continuous as a 

function of t. If we were to succeed in finding a formula

P(0,t;p) = Tr(pB (0,t)} (32)

then the operator B(0,t) would have the following properties:

(i) B(0,t) > 0

(ii) B (0,t) > B (0,s) , t > s 

(iii) B(0,t) I (strongly), t -» *»

(iv) 2(0,t) ■* E~ (strongly), t -* 0,

(v) B(0,t) is a strongly continuous function of t.
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The family H'(0,t) ; restricted to the subspace 1:11

of the (unstable) undecayed states will then form u "generalized 

resolution of the identity" (GRI). Unlike the more familiar 

(project ion-valued) resolution of the identity, a GRI does 

not necessarily determine a densely defined operator. But 

under some mil*! additional assumptions (which we need not 

specify explicitly here) the GRI B'(0,t) will determine a 

hermitian (though not necessarily self-adjoint) operator t 

so that

(t.itfO = ftdlJ.B' (0,t)<p) for all <l> c P(i) (33)

The operator t  thus defined may then be interpreted as the 

operator of "time of decay."

Conversely, if there exists a positive hermitian "time 

of decay" operator t  associated with the subspace EH of un­

decayed states and B'(0,t) denotes a GRI associated with it, 

then through (31) we may define the probability P(0,t;p) 

which may be interpreted as the probability that the system 

prepared initially in the (undecayed) state p will be found 

to decay sometime during the interval [0,t].

Looked at from this point of view, the Zeno's Paradox 

thus strengthens and sharpens the pessimistic conclusion of 

Allcock [91 and others concerning the possibility of intro- 

ducing an observable of "arrival time" in quantum theory.

Ke must emphasize that in our study here, the ci,nc 1 it:, ion is 

not based on certain a priori, but questionable, assumptions 

about t ; such, for instance, as the assumption I hat i  lie 

"canonically conjugate" to the llami 2 ton ian, or that i he a 

self-adjoint operator in the Hilbert space. In the litera­

ture such requirements were implicitly or explicitly placed 

on t ,

Ke have so fi»r supposed that it is operationally wean- 

ingful to ask about probabilities such as and

Q(0,t;o). We have also taken the stancc that the observed 

tracks of unstable particles in a bubble chamber or photo­

graphic emulsion is in contradiction with the conclusion we 

have called Zeno's Paradox in Quantum Theory. It is, how­

ever, possible to adopt one of the following attitudes;

(1) Probabilities such as P(0,t;s>) have no operational 

meaning: there is a fundamental principle in 

quantum theory that denies the possibility of con­

tinuous observation.

Sincc so far no such principle has been derived fro« or in­

corporated into quantum theory, this is not a satisfactory 

way of resolving the paradox at the presen! time.

(2) Zeno's Paradox is based on the assumption that the 

continuous measurements are ideal measurements.

But measurements (or, observations) involved in the
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recording of the truck of an unstable particle in 

a detecting medium are non-ideal in the sense of (3).

This is a tenable view and it would deny the validity of 

Theorem 1 as stated and proved in this paper. It has the 

somewhat unsettling side-effect that P(0,t;p) and hence the 

"observed lifetime" of an unstable particle is not a property 

of the particle (and its Hamiltonian) only but depend on 

the details of the observation process. At the present time 

we have no indication that this is so.

(3) The record of the track of a particle is not a 

continuous observation that the particle has not 

decayed, but only a discrete sequence of such ob­

servations; while Zeno's Paradox obtains only in 

the limit of continuous observations.

While this is tenable, the sufficiently repeated monitoring 

of the particle should again lengthen the lifetime. There 

is, however, no indication that the lifetime of a (charged) 

unstable particle (say, a muon) is appreciably increased in 

the process of its track formation through bubble chamber.

To shed additional light on this question a quantitative 

investigation of the effect of repeated monitoring on the 

lifetime of particles (in specific models) is in progress 

[11).

(4) Natural though it seems, it is wrong to assume that 

the temporal evolution of a quantum system under 

continuing observation can be described bv a linear 

operator of time-evolution such as Tft). It ca-. j c  

described only in terms of a persistent interaction 

between the quantum system and the classical 

measuring apparatus. When this is done the quantum 

Zeno's Paradox will either disappear or if it sur­

vives, at least, it will be- understandable as the 

drastic change in the behaviour of the quantum 

system caused by its continuous interaction with a 

classical measuring apparatus.

This point of view is at present only a program since 

there is no standard and detailed theory for the actual 

coupling between quantum systems with classical measuring 

apparatus. A beginning in this direction is made in a 

forthcoming paper [12].

Having been forced into such unusual points of view by 

the quantum Zeno's Paradox one is prompted to draw also some 

parallels between it and certain empirical findings in the 

study of human awareness. We shall present such close 

parallels between the quantum Zeno's Paradox and the findings 

of sensory deprivation and other experiments pertaining to 

the study of consciousness in a separate publication.
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In conclusion it seems to us that the problems posed by 

Zeno's Paradox have no clean cut resolution at the present 

time and deserve further discussions. It may also be re­

emphasized that the probabilities such as Q(A;n,p) (or 

Q(A>p)) that pertain to the outcomes of successive measure­

ments (or continuous measurements) depend on the law accord­

ing to which "state collapses" occur at the time of measure­

ments. Thus one may say that the "collapse of state vector” 

caused by measurement, which has haunted the foundatim of 

quantum mechanics like an invisible ghost becomes visible 

through probabilities such as Q(A;n,p) etc. The probabili­

ties pertaining to the outcomes of several successive (as 

well as continuous) measurements therefore deserve further 

theoretical as well as experimental study than they have re­

ceived so far.
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