
·uc10- 17090

Lawrence Livermore Laboratory

USER'S GUIDE TO THE LLL BASIC INTERPRETER

Royce Eckard

Jerry Barber

April 2, 1976

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

oocuME.tH \S UNL\M\1E.D
\SlR\BU1\0N Of 1\-\\S

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

'fl.

FOREWORD

The BASIC iterpreter described in this user'$ guide was developed at the

University of Idaho by John Dickenson, Jerry Barber; and John Teeter under a

contract with the Lawrence Livermore Laboratory. In addition, Jerry Barber,

as an LLL summer employee, made significant contributions to this document and * .
to implementing the BASIC language in an MCS-8080 microprocessor.

*

~-----NOTICE------,
1l1U 1c.,.,1l Wal prtiJaicJ Iii an aU:Uu1H ur wu1l
sponsored by the United States Government. Neither
thl!I United Sto.tcs nor the United States Energy
Keseuen ano ueve1opment Aamuunnuon, nor any 01
their employees, nor any of their contractors,
1ubcontracton, or their employees, makes any
wananty, express or implied, or assumes any legal
fuifiilil)' 111 n':.'ifi'll."111M11Ully r111 lht .ii1:.t.U1.ll.:.)', 1::.i11Upltltait:M
or usefulnea of any information, apparatus, product or
process disclosed, or represents that it1 use would not
infringe privately owned righll.

· ..

Reference to a company or product name here or elsewhere in this report does not

imply approval or recommendation of the product by the University of California

or the U. S, Energy Research & Development Administration to the exclusion of .

others that may be suitable.

-ii-

•

Foreword

Abstract

Introduction

·•

Usirig the BASIC Interpreter

Starting~the Interpreter

Entering a Line

Commands

Statements

Functions

Error Messages

Appendix A: Sample Programs

CONTENTS

Appendix. B: Des·cription of BASIC Interpreter

-iii-

ii

1

1

4

4

4

4

5

10

10

13

18

0 •

USER'S GUIDE TO THE LLL BASIC INTERPRETER

ABSTRACT

Scientists are finding increased applications·for microprocessors as

process controllers in their experiments. However, while microprocessors are

small and inexpensive, they are difficult to program in machine or assembly·­

language; A high-level language is needed to enable scientists to develop

their own microprocessor programs· for· their experiments on location:

Recognizing this need, LLL contracted to have such a language developed. This

report ·describes the result - the LLL BASIC interpreter,

INTRODUCTION

The BASIC interpreter. dP.scrihed in this user's manual ·was designed to

operate w:i,th the MCS-8080 microprocessor. It consists.of a SK-byte-PROM

resident interpreter used for program generation and debug.

The goal in developing the 8080 RASIC was to provide a high-level, easy­

to-use language for performing both control and computation functions in the

MCS-8080 microprocessor. To minimize system size and cost, the interpreter was

constrained to fit into SK bytes. It was necessary, therefore, to limit the

commands to those considered the most useful in microprocessor applications.

A list of these commands is given in Table 1, and a list of the statements

maki.ng up the BASIC i~terpreter is presented in Table 2. Average assembly­

language execution times and the various operations allowed in the BASIC

floating-point package are given in Table.3.

-1-

DISTRIBUTION OF THIS DOCUMEN'l°'IS YNblMI~

Table 1. BASIC interpreter commands.

Command Action

RUN

SCR

LIST

.PLST

PT APE

· CNTRL S

Begins program execution

Clears prbgram from memory

Lists ASCII program in memory

Punches paper-tape copy of program

· Reads paper-tape copy of program using high-speed

reader

Interrupts program during execution

-2-

• Table 2. BASIC statements.

Statement Function

0 to 32767

REM

END

STO"P

GO to XX

DIM

LET

IF expression THEN XX

INPUT

PRINT

FOR

.NEXT

GO SUB NN

RETURN

CALL

GET

PUT

Indicates BASIC line number (maximum range 0 to 32767).

Indicates a connnent (Spaces are ignored except when

enclosed i)1 quotes, therefore, comments are generally

enclosed in quotes)

Indicates end of program

Stops program

Transf.ers to line number XX

Declares an array (Only one-dimensional arrays with

an integer number of clements are allowed)

Indicates an assignment statement (Addition, subtraction,

multiplication; division, or special function may be

used)

Condition stateme·nt which transfers to line number XX

if the condition of the expression is met

Allows numeral data to be inputed via a terminal

Allows numerical data and character strings to be printed

on a terminal

Causes program to iterate through a loop a designated .

number of times

Signals end of loop and at which point the computer

adds the step value to the variable and c~ecks to see

if the variable is still less than the terminal value

Transfers roritrol to a suhroutine that hegins nt lin0

NN

Returns control to the line after last GO SUB

CAT,T, (N,A, R, ••••)

N = subroutine No. as listed in assembly patch table

A, B, etc. = parameters, constants, variables, or

expressions

(X)

(Y)

READ 8080 INPUT PORT X.

OUTPUT A BYTE OF DATA TO OUTPUT PORT Y.

-3-

Tab.le 3. BASIC operations and execution times',

Execution time
Operation on 8080 (msec)

ADD 2.4

SUBSTRACT 2.4

MULTIPLY 5.4

DIVIDE 7.0

USING THE BASIC INTERPRETER

Starting the Interpreter

The BASIC interpreter is presently configured so that it is·located in

memory pages 118 to 34 8 • The starting address is page 17
8 , location O. This

address begins an initialization sequence that allows the user to begin with a

clear memory. However, to avoid the initialization sequence, a second starting

address - page 17
8

, location 23
8

-·can be used. This starting address is used

if the user wishe8 Lo retain any program that might exist in memory.

Once started the interpreter responds with READY.

Entering a Line

Each line entered is terminated with the carriage-return key. The line­

feed key is ignored. It is possible to correct errors on a line being entered

by either deleting the entire line or by deleting one or more chararcters on

the line. A character is deleted with either the rubout key or the shift/0

key. Several characters can be deleted by using the rubout key several times

in succession. Character deletion i.s, in effArt, ;i lngir;i] h1frk8pnr1>, Tn.

delete the line you are currently typing, use the CNTRL/Y key.

The above line-editing features can be used on command, program, ·or data

lines.

Commands

The following commands are available:

RUN

SCR

LIST

~eg1n~ prn~rRm Hx~~uLluu

Clears program from memory

Lists program in memory

-4-

PLST Punches paper-tape copy of program

PTAPE - Reads in paper-tape copy of program using high-speed reader.

The LIST and PLST commands can be followed by one or two line numbers to

indicate that qnly a part of the program is to be listed. If one line number

follows the command, the program is listed from that line number to the end of

the program. If two line numbers (separated by a comma) follow the command,

the listing begins at the first line number and ends at the second.

When n command is completed, READY will be typed on the teletype. Once

initialized by a command, a process will normally go to completion. However,

if you wish to interrupt an executing program or a listing, simply strike

CNTRL S and the process will terminate and a READY message will be typed.

Statements

Each statement line begins with a line number,. which must be an integer

between 0 and 32767. Statements can be entered in any order, but they will be

executed in numerical order. All blanks are ignored.

A program can be edited by using the line numbers to insert or delete

statements. Typing a line number·and then typing a carriage return causes the

statement at that line number to be deleted. Since the statements can be

entered in any order, a statement can be inserted between two existing

statements by giving it a line number between the two existing statement line

numbers. ·To replace a st·atement:, th.e new statement should have the same line

number as the old statement. The following types of statements are allowed:

REM Indicates a remark (comment). The system deletes blan~s from all
character strings that are not enclosed in quotes (''). Therefure, iL
is suggested that characters following the REM key word be enclosed in
quotes.

END Indicates the end of a program. The program stops when it gets to the
END statement. All programs must end with END.

STOP - Stops the program. This statement is used when the program needs to
be stopped other than at the end of the program text.

GOTO - Transfers to a line number. This statement is used to loop or jump
within a program.

DIM Declares an array. Only one-dimensional arrays with an integer constant
number of elements are allowed. An array with N elements uses indexes
n through N-1. All array locations are set to iero. No (!h~(!k is made
on subscripts to ensure that they are within the declared array. An
array variable must be a single letter.

-5-

LET Indicates an assignment statement. Non-array variables can be either
a single letter or a letter followed·by a digit. It fa possible to
have an array and a non-array variable with the same name. The general
form.of the LET statement is:

line.number LET identifier= expression,
where ..,identifier" is ·either a s·ubscripted array element or a non-array
variable or function (see section on functions) and "expression" is a
unary or binary.expression. The expression will be one of the following
ten.types:

variable
-variable
variable +·variable
variable - variable
-variable + variable

-variable - variable
variable * variable
-variable * variable
variable I variable,
-variable I variable,

where "variable" is an identifier, function, or number. The subscript
of an array can also be an expression.

Numbers in a program statement or input via the teletype are handled
with a floating-point package provided by LLL. Numbers can have any
of the following forms:

4
4.
4.0

±4

±4.
±4.0
1.23

±1.23

.123
±.123
0.123

±0.123

and the user may add an exponent to any of the above forms using the
letter E to indicate powers of 10. The forms. of the exponent are:

E±l
E 1
E 1

E±l5
E 15
E 15.

The numbers are stored with seven-digit ac~uracy; therefore, seven
sign·ificant figures can be entered. The ·smallest and largest numbers
are ±2.71051E-20 and ±9.22337El8.

IF This is the conditional statement. It has the form: line number IF ' ~· .

expression relad.on expression THEN transfer line number. The possible
relations are:

Equal
Greater than
Less than
Greater than or equal
Less than or equal
Not equal

>
< v-..
>= ·~
<= =<
<> ><

If the relation between the two expressions is true then the program
transfers to the line nuniber, otherwise it continues sequentially.

-6-

INPUT - This command allows numerical data to be input vi~ tqe teletype. The
general form is:

Line number INPUT identifier list,

where an "identifier list" is a sequence of identifiers separated by
commas. There is no comma after the last identifier so, if only one
identifier is present, no comma is needed. When an INPUT statement is
executed, a colon (:)·is output to the teletype to indicate that dat~
are expected. The data are entered as numbers separated by commas.
If fewer data are entered than expected, another colon is output to the
teletype, indicating again that data are expected. For example, where

SO INPUT I,J,K,P

is executed, a colon is output to the teletype. Then, if only 3 numerical
values are entered, another colon will be output to indicate that more
data are expected; e.g.,

4,4,6.2 C/B
10. 3 C/R,

where C/R is the carriage-return key. If an error is made in the
input:...data line, an error message is issued and the entire line of
data must be re-entered. If, for the above example,

:4,4~6M2;10.3 C/R

is entered, the system will respond

INPUT ERROR, TRY AGAIN

At this time, the proper response would be

-4,4,6.2,10.3 C/R.

PRINT - This command allows numerical data and character strings to be printed
on the teletype. Two types of print items are legal in the print
statement: character strings enclosed in quotes (") and express i.ons.
These items are separated by either a ·comma or a 1'3em1.colnn, Tf 1.1rllll"
items an~ separated by a corrrma, a skip occurs to the next pre-formatted
field before printing of the item following the co~a begins. The
pre-formatted fields begin at columns 1, 14, 27, 40, and S2. If pri.nt
items are separated by a semicolon, no skip occurs. If a semicolon or
comma_is the last character on a print statement line, the appropriate
formatting occurs a~d the carraige-return-line feed is suppressed. A
print statement of the form ·

SO PRINT

will generate a carriage-return-line feed. Thus, the two lines below

-7-

50 PRINT "INPUT A NUMBER";
60 INPUT A

wi.11 result in the following output:

INPUT A NUMBER:

For more examples, see sample programs in Appendix A.

FOR - Causes program to iterate through a loop a designated number of times.

NEXT - Si.gnals end of loop at which po:i,nt the computer adds the step value to
the variable and checks to see if the variable is still less than the
terminal value.

GOSUB NN - 1ransfer control to a subroutine that begins at line NN.

RETURN - Returns control to the next sequential line after the last GOSUB
statement executed. A return statement executed before a GOSUB is
equivalent to a STOP statement.

·cALL - Calls user-written assembly-language routines of the form

CALL (N, A, B, •••) ,

where N is a subroutine number from 0 - 254 and A, B, ••• are parameters.
The parameters can be constants, variables, or expressions. However,
if variables and constants or expressions are intermixed, all variables
should have been referenced before the CALL statement. Otherwise, the
space reserved for newly referenced variables may overwrite the
results of constants and expressions. A memory map of one configuration
of . the system is shown below·:

Page 10

Page 11 ODT STACK

BASIC

INTERPRETER

ACTIVE VAK'S.
~~~~~~~ -- Pointer to first word 

First word of 
availqble '-­
memory 

Page 43 Loe 

-8-

of available memory and 
USER SUB'S. subroutine. table 

USER SOURCE 

BASIC7 

3708 



:~ 

The subroutine table contains. 3-byte entries for each subroutine. The 
table directly follows the pointer to the fii;:-st word of available memory 
(FWAM):and must end with an octal 377. A sample table and its 
subroutines is shown below: 

Define FWAM 

Subroutine Ill 

; Starting add of 
subroutine Ill 

Subroutine 114 

, Starting add of 
· subroutine 114 

Subroutine 115 

Starting add of 
subroutine 115 

Subroutine 112 

etc. 

· ; end of subroutine table 

Subroutine Ill 

Subroutine 115 

Retain last subroutine 

l<'WAM 

Addresses to passed parameters are stored on the stack. The user must 
know how many parameters· were passed to the subroutine. These must 
be taken off the stack before RET is executed. Ad4resses are stored 
last ·parameter first on the ·stack. Thus, on entry to a subroutine, the 
first POP instruction will recover the address to the last parameter 
in the call list. The next will recover the next to last, etc. 

Each scalar variable passe4 results in the address to the first byte 
of a four-byte block of memory. Each array element passes the address 

-9-



to the first byte of a (N-M) x four-byte memory block, where N is the 
number of elements. given the array in the DIM STMT and M is the array 
subscript in the CALL STMT.. 

For passed parameters to be handled in expressions within BASIC, they 
must be in the proper floating-point format. 

Functions 

Two special functions not found in most BASIC codes are available to 

input or output data throµgh Intel 8080 portnumbers. 

The function GET allows input from a port and the function PUT allows 

output to a port. Their general forms are: 

GET (expression) 

PUT (expression). 

The function GET may appear in statements in a position that implies that a 

numerical value is used. The function PUT may appear in statements in a 

position that implies that a numerical value will be stored or saved. This is 

because GET inputs a number and PUT ou~puts. a number. For example, 

while 
LET PUT(I) = GET(J) is valid 

LET CET(I) = PUT(J) is invalid • 

. These functions send or receive one byte of data, which in BASIC is treated as 

a number from 0 to 255. 

Error Messages 

If an unrecognizable command is entered, the word WHAT? is printed on 

the teletype. Simply retype the command. It may also have been caused by a 

missing line number on a BASIC statement, in which case you should retype the 

statement with a line number. 

If an error is encountered while executing a program, an error mPRHilge 

is typed out that indicates an error number and the line number in which the 

error occurred. The meanings of the error numbers are given in Table 4. 

-10-



.•. 

Error number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Table 4. Meanings of error numbers • 

Error 

Program has no END statement 

Unrecognizable keyword at beginning of statement 

Source statements exist after END statement 

Designation line number is improperly formed in 

a GOTO, GOSUB, or IF .statement 

Destination line number in a GOTO, GOSUB, or IF 

statement does not exist 

·unexpected-character 

Unfinished statement 

Illegally formed expression 

Error in floating-point conversion 

Illegal use of a function 

Duplicate array definition 

An array is referenced before it is defined 

Error in the floating-point-to-integer routine, 

Number is. too big 

Invalid relation in an IF statement 

During program execution and whenever new lines are added to the program, 

a test is made to see if there is sufficient memory. If the memory is.full, 

MEMORY FULL is printed on the teletype. At this point, you should enter one of 

the single digits below to indicate what you wish to do: 

Number entered Meaning 

0 (RUN) runs the program in memory 

1 (PLST) outputs program in memory to paper tape punch 

2 (LIST) lists program in memory 

3 (SCR) erases program in memory 

4 none of the above (will case WHAT? to be printed in 

teletype). 

To help you select the best alternative, a brief description of how the 

statements are manipulated ·in memo,ry will be helpful. All lines entered as 

program are stored in memory. If lines are deleted or replaced, the originals 

-11-



~· 

still remain in memory. Thus, it is possible, if a great deal of line editing 

has been done, to have a.significant portion of memory taken up with unused 

statements. If a MEMORY FULL message is obtained in these circumstances, then 

the best thing t.o do is punch a tape of the program (entering number 1), then 

erase the program memory with a SCR command (or a number 3, if memory is too 

full to accept commands), and then re-enter your program using the high-speed 

paper.:..tape reader with the PTAPE command. 

-12-



APPENDIX A: SAMPLE PROGRAMS 

The program below gives a few examples of the use of the print statement. 

LIST 
lPRINT"THE .Pl{E-l•'ORMATTED COLUMNS ARE SHOWN BELOW" 
2PRINT1, 2, 3, 4 ·, 5 
4PRINT 
10PRINT"INP~T lST NUMBER"; 
20INPUTA 
30PRINT"INPUT 2ND NUMBER", 
40INPUTB 
50PRINT 
60PRINT"A IS";A 
70PRINT"B IS",B 
S0PRINT"A IS";A;"B IS",B~"A+B IS";A+B 
100END 
READY 
RUN 
THE PRE-FORMATTED COLUMNS ARE SHOWN BELOW 
l.0000E 00 2.0000E 00 3.0000E 00 4.0000E 00 

INPUT lST NUMBER:2 
INPUT 2ND NUMBER : 3. . 

A IS 2.0000E 00 
R IS 3.0000E 00 
A IS 2.0000E 00B IS 
READY 

3.0000E 00 

The following pr.ogram plots a function on a display. It uses four 

user-written assembly-language subroutines. The display works as follows: 

The contents of memory locations on pages 274 8 fo 277 8 are displayed as 16 rows 

of 64 characters each. Thus, if location 2018 on page 274 contains 3018 
(ASCII A), an A appears in column 2 of Row 3. An example of this program's 

execution is shown below: 

RUN 

WHAT SHOULD PLOT BE LABELED.? MCS80 - BASIC INTERPRETER 

READY 

The BASIC.and assembly-language programs and the display output are 

shown on the following pages. 

-13~ 



BASIC Program 
LIST 
!REM" 
2REM" 
3REM" 
4REM 
5REM" 
6REM" 
7REM 
8REM" 
9REM" 
!OREM 
llREM" 
12REM" 
13REM 
l4REM" 
15REM 
16REM" 
17REM 

THIS ROUTINE h'ILL PLOT A SET OF AXIS AND A .QUADRATIC FUNCTION 
ON A DISPLAY AND THEN LABEL IT. IT USES A 4 USER WRITTEN 
SUB-ROUTINES: 

CALL (l,X,Y,C) - PLACES C IN COLUMN X, ROW Y OF THE DISPLAY 
WHERE C IS AN ASCII CODED CHARACTER 

CALL(2,A(0)) - READS A CHARACTER STRING FROM THE TTY AND STORES 
IT"IN ARRAY A 

CALL(3,A(0)) - WRITES THE CHARACTER STRING STORED IN ARRAY A 
. TO THE DISPLAY 

CALL(4) - CLEARS THE DISPLAY 

START OF PROGRAM 

l~REM" RESERVE STORAGE AREA FOR TITLE 
20DIMA(l0) 
30REM" CLEAR SCREEN 
40CALL(4) . 
50REM" ASK FOR AND INPUT TITLE 
55PRINT"WHAT SHOULD PLOT BE LABELED?"; 
60CALL(2,A(0)) 
70REM" DRAW AXIS 
80GOSUB500 . 
90REM" PLOT FUNCTION 
100LETX=-29. 
110GOSUB1000 
120CALL(l,3l+X,8-Y,248) 
130LETX=X+l 
140IFX><31 THEN110 
150REM" OUTPUT TITLE 
160CALL(3 ,A(0)) 
165REM" WE'RE DONE 
170STOP 
500REM" THIS SUB. WILL DRAW A SET OF AXIS 
505LETX=l. 
510LETY=7 
520LETC=l73 
530CALL(l,X,Y,C). 
540LF.TX=X+l 
550IFX><6STHEN530 
560LETX=31 
570LETY•l 
575LETC=252 
580CALL(l,X,Y,C) 
590L.ETY=Y+l 
600IFY><l7THEN580 
610RETURN 
1000REM" GIVEN X THIS SUB. CALCULATES .(17/900)*X**2-8 
1005REM" FIRST CHECK IF X=0 AS IT WILL UPSET FLT. PNT. PACK. 
1010IFX=0THEN1045 
1015REM" WE'RE OK - CALCULATE FUNCTION· 
1020LETY=X*X 
l025LETK=17/900 
1030LETY=Y*K 
1035LETY;;:Y-8 
1040RETURN- - -
1011 SLILTY=-8 
1050RETURN 
2~0END 
READY 

-14-



Assembly-language program 
! ! ! ! ! ! ! 

1 ' 8080 MACRO ASSEMBLER VER 2 2 ERRORS = 0 PAGE 1 

;DEFINE EXTERNALS 
0140l2 FIX EOU 140120 ;FIX ROUTINE 
013212 COP DH EOU 132120 ;COPY ROUTINE 
016567 FREGl EQU 16567Q ; FLOATING PNT REGISTER 
016614 ORG 166140 
016614 027 036 DW SB END ;FWAM 

~ ;"ENTRIES IN .SUB TABLE 
016616 001 DB 1 
016617 233 035 DW SCOPE 
016621 002 DB 2 
016622 33 4 035 DW SUB4 
016624 003 DB 3 
016625 . 364 035 DW SUB3 
016627 004 DB 4 
016630 003 036 DW SUB4 
016632 377 DB 3770 ;NO MORE ENTRYS 

;THE CALL TO THIS ROUTINE IS OF THE FORM 
; CALL(l X Y C) 
;THE VALUE OF C IS PLACED IN COLUMN X LINE Y 
;OF THE DISPLAY 

016633 321 SCOPE: POP D ;ADDRESS OF CHARACTER 
016634 l:l41 167 035 LXI H FREGl ;COPY TO FREGl 
016637 315 212 026 CALL COP DH 
016642 353 XCHG ;ADDRESS TO DE 
016643 315 012 030 CALL FIX ·;FIX IT 
016646 023 INX D ;PNT TO 4TH BYTE 
016647 023 INX D 
016650 l:l23 INX D 
016651 032 LDAX D ;GET CHA~CTER 
016652 107 MOV B A ;SAVE IN B 
016653 321 po·p D ;ROW ADD 
01fifis4 041 167 035 LXI H FREGl ;COPY TO FREGl 
016657 315 212 026 CALL COP DH 
016662 353 XCHG 
016663 315 012 030 CALL FIX ;FIX IT 
016666 023 INX D ;GET BYTE 4 TO A 
016667 023 INX D 
016670 023 INX D 
016671 l:l32 LDAX D 
0166 72 117 MOV C A ;SAVE IN C 
016673 321 POP D ;GET COLUMN ADD 

·01GG74 041 167 035 LXI H FREGl ;COPY TO FREGl 
016677 315 212 026 CALL COP DH 
01671:1:.! 3~3 X.CHli 
016703 315 012 030 CALL FIX ;FIX IT 
016706 023 INX D ;PNT TO 4TH BYTE 
016707 023 INX D 
016710 023 INX D 
016711 032 LDAX D ;GET IT TO A 
016712 041 377 273 LXI H 135777Q . ; CALCULATION OF ADDRESS 
016715 021 100 000 LXI D 100Q 

-1.5-



Assembly-language program (continued) 

l 
8080 MACRO ASSEMBLER VER 2 2 ERRORS 0 PAGE 2 

.. "016720 k?l5 LUP: OCR c 
016721 312 330 035 JZ AD INC 
016724 031. DAD D 
016725 303 320 035 JMP LUP 

" 
016730 137 AD INC: MOV E A 
016:3i 031 . DAD D ;ADD IN COLUMN LOC 
016732 160 MOV M B ;STORE CHARACTER 
016733 311 RE'l' ;DONE 

; SUB2 READS A TITLE FROM T·ry VIA ODT 
01Hl333 READ EOU 33.30 ;ODT ROUTINE 
016734 341 SU B2: POP H ;GE'l' "STORAGE AREA ADD 
016735 345 PUSH H 
016736 016 0k?0 MVI c 0. ;INIT CNTR 
016740 043 LUP2: INX H ;BUMP PNTR 
016741 315 333 000 CALL READ ;READ A CHARACTER 
016744 376 215 CPI 2150 ;CR? 
016746 312 356 035 JZ DUN2 ;YES - DONE 
016751 014 INR c ;!NCR CNT 
016752 167 MOV M A ;SAVE CHARACTER 
016753 303 340 035 JMP LUP2 
016756 341 DUN2: .POP H ;STORE CNT 
016757 161 MOV M c 
016760 076 212 MVI A 2120 ;SEND A LF 
016762 367 RST 6 
016763 311 RET ;DONE 

; SU i33 WRITES TITLE TO DISPLAY 
016764 341 SUB3: POP H ;GET ADD 
016765 021 341 27 7 LXI D 1377410 ;SCREEN ADD 
016770 116 MOV c M ;CNT 
016771 043 INX H 
1116772 176 LUP3: MOV A M ;SEND STRING 
016773 022 STAX D 
016774 043 INX H 
016775 023 INX ·D 
016776 015 OCR c 
016777 302 37 2 035 JNZ LUP3 
017002 311 RET 1DONE 

; SUB4 CLEARS SCREEN 
017003 041 000 27 4 SUB4: LXI H 1360000 ;SCREEN ADD 
017006 076 240 MVI A 2400 ;SPACE 
017010 026 000 MVI D 0 ;CNTR S 
017012 016 00 4 MVI c 4· 
017014 167 LUP4: MOV M. A ;(2LEAR IT 
017015 043 INX H 
017016 025 OCR D 
017017 302 014 036 JNZ LUP4 
017022 015. OCR c 

·017023 302 014 036 jNz LUP4 
017026 311 RET . ;.DONE 
017027 SBt:ND EQU $ 

CND 
NO PROGRAM ERRORS 

-16-



1 
8080 MACRO ASSEMBLER VER 2 2 ERRORS 

* 01 

A 
COP DH 
FIX 
LUP 
M 
SCOPE 
SUB4 

000007 
'113212 
014012 
016720 
000006 
016633 
017003 

x 
x 

Jt 

·x 

SYMBOL TABLE 

AD INC 016730 
u 000002 
FREGl 016567 
LUP2 016740 
PSW 000006 
SP 000006 

xx 

= " PAGE 3 

B 000000 c 
DUN2 016756 E 
H 000004 L 
LUP3 016772 LUP4 
READ 000333 SB END 
SUB2 016.734 SUB3 

000001 
000003 . 
000005 
017014 
017027 
016764 

x 
x 

x 
xx 

x 
x 

----------~-------------------~-------T~----------~---~----------------------
xx 

xx 
X. 

xx 
xx 

xx 
xxx 

xx 
xx 

xxx 

.x 
xx 

xx 
xx 

xxxxxxx,xxxxxxx 
I 

x MCS80 BASIC interpreter 

Display output for preceding program. 

-17-



APPENDIX B: DESCRIPTION OF BASIC INTERPRETER 

Following is a brief description of the BASIC interpreter. Hopefully, 

with this description, it will not be a major project to modify the BASIC to 

satisfy the reader's specific needs. 

Formats 

Sour~e statements are sti;-ipped of blanks on input (character strings 

enclosed ·in " "s are ·an exception) and stored as is in memory, using the 

following for.mat: 

Binary equivaient 
of line no. 

1 I 

Length of ASCII 
source statement 

Forward pointer 
to next sequential 
line · 

·I •••• 

ASCII source statement 

The forward pointer links statements by ascending line number.s. The last line's 

forward pointer (supposedly an end statement) has value 1777778 to indicate end 

of the list. 

The symbol table is built up at run time and begins after the most recently 

ente·red source statement (the variable ·sTSPAC points to where the symbol table 

will start). Symbol tahle entri.es A.re. shown below: 

ASCII 0-9 ASCII 
lcttcr

1 
~or bin ~ 

Array 
name 

CT=1 
Variable name 

Forward 
pointer 

Subroutines 

Scalar-variable format 

Forward pointer Variable value 

Array-variable format 

Array elements 

:l:"ollowing is a iist of potentially useful subroutines·, with a brief 

description of each subroutine: 

-18-

••• 



·. 

ALPHA 

NUMB 

CHAR2 

CHARS 

CHKl 

Value pointed to by Hand L is tested to see if it is an ASCII 
letter. CY 1 => Yes 

CY = 0 => No 

- Same as above but tests for a decimal number (ASCII 0-9). 

- In1rnts a character from the teletype to a register. 

- Same as above for HSR. 

Checks to see if HL are equal to 1777778 (-1). CY 
CY = 0 => No. 

1 => Yes. 

CONV (CURT) - One of the floating-point routines. Converts floating-point 
number to a character string. . Output is padded to 'the output 
buffer. 

COPDH - Copies floating~point number pointed to by D,E to location 
pointed to by H,L; uses copy. 

COPY - One of the floating-point routines. Copies floating-point. value 
pointed to by A,L to location pointed to by H,C. 

CUB - Converts the integer-character string pointed to by H,L to its 

DCOMP 

DFXL 

EVAL. 

FINPT 

FIX 

binary equivalent. Vale returns in D,E registers. 

Double-byte comparison routine. Compares value in CB to the in 
ED. 
z = 1 => CB ED 
CY= 1 => CB > ED 
CY= 0 => CB < ED. 

- One uf the floating-point routines. Used to float an unsigned 
integer H,L point to first of four bytes; integer is right 
justified in first three bytes. 

- Evaluates an expression the first element of which is poi.nted 
to by H,L and the length of which is in C. Used to evaluate 
expressions wherever they are legal in BASIC. C usually contains 
the length of the source statement line containing the 
expression. 

- One of the floating-point routines. Converts.character string 
to floating-point number. The variable HLINP contains a 
pointer to the character string, and the variable CREG contains 
the length of line containing character string. Mode = 0 => 
data comes from teletype (i.e., only delimiters are g's). Mode 
- 1 => data comes from source statements. 

- Fixes a floating-point number. DE points to number to.be 
fixed. Error code 13 is given if number is too big to fix. 

-19-



FSYM. 

LADD 

LSUB 

LOIU 

LMUL 

LMCM 

MCHK 

MEMFUL 

MULT 

NSKCH 

OUTR 

PAD 

SYMSRT 

- Finds symbols in symbol table. BC contains symbol. Returns 
with HL pointing to symbol value. 
CY = 1 => symbol was found. 
CY = 0 and a scalar => symbol not found, but inserted and 
initialized to O. 
CY = 0 and an array => not found, no actiori taken: HL are 
meaningless. 

- Floating-point add routine. 

Floating-point subtract routine. 

- Fioating-point divide routine. 

- Floating-point multiply routine. 

- One of the floating-point routines. Compares two floating­
point values HL Point to first 
HB point to second 
z=l => Equality 
Cy=l => first < second 
(Note: compares absolute only, does not reference mantissa sign.) 

- Waits for flag from port 3. Proper mask is sent in register B. 

- Checks to see if memory is full. HL point to location of memory 
to be checked. Memory is considered full if it is within so

10 locations of the current value of stack pointer. 

- Multiplies two 
of four bytes. 
second number. 

two-byte binary numbers. HL point to last byte 
First two contain first. number. Last two contain 
Answer returns in BCDE. 

- Routine to locate source line in memory passed binary value of 
line number in DE. Returns address of line in HL, CY=l·=> not. 
found. 

- Used by CONV (CURT) to pad output to putput buffer. 

- Pads characters to output buffer. A contains character; B 
contains number of pads. 

·Checks a charac.ter string to see if it is a BASIC symbol. HL 
contains address pointing to 1st cha.racter of symbol, C contains 
length of line that contains symbol. A contains type of symbol 
sought. 
O=command 
z=operator or delimiter 

l=keyword 
3=function 

Returns with 377 8 in a register if nothing found. Otherwise A 
contains symbol number in appropriate KDAT table. Th11~ for 
:Jymboi type 2, if a 4 is i:du111etl, Lh.; i:;ymbol ·found was.th~ 
fourth one (starting with 0) in table KDAT3 (KDAT concatenated 
with 2 and 1 or A')', CIS is updated, .but HL is not.· 

-20-



.. 

TTYIW 

VALUE 

VAR 

WRIT 

ZROL 

Inputs a line from teletype~ Stor~s starting at location 
pointed to by HL. Line edits. Returns length of line in A 
register (maximum line length 'is 72 characters): 

Called with HL pointing to A variable, constant, or function; C 
contains line length, returns with DE pointing to floating­
point value. HL, C are updated . 

- Called with HL pointing to character string, C has line length. 
Determines if character string is a variable. If so, returns 
wit:h CY=l, DE pointing to value (subscripts of arrays are 
evaluated, etc.). HL, C updated. If not, a variable returns 
CY=O, HL,C untouched. 

- Dumps contents of output buffer to teletype. Uses entry WRITl 
with D register equal to one to suppress CR/LF. 

~ Part of floating~point subroutines. Writes a floating-point 
zero, starting at location pointed to by HL. 

The preceding list contains those subroutines most likely to be used by 

someone modifying BASIC. If you plan on. using one of the routines, you should 

examine .it and its comments carefully. 

Variables 

Following is a list of interpreter variables, with a description of each 

variable: 

MEMS'l' 

ME MEND 

SEND 

OBUFF 

IBUF 

STLINE 

NLINE,NLZ,NL4,NL6 

KLINE,KL2,KL4,Kt6 

- Assembly time variable. Contains the first available 
RAM location. This is where active variables start. 

- Assembly time variable. Contains the last available 
location :in RAM. 

- Has value 6, used with RST instruction to print characters 
via.ODT. 

- Output buffer, the first location contains the number of 
characters in the buffer + 1. 

Input buffer, occupies same area as OBUFF. 

- Points to first source line to be executed. If no source, 
contains 177777

8
. 

- Contain address, binary-equivalent line number, forward 
pointer, and length of next input line. 

- Same as above, but m;ed by a subroutine that inserts lines 
in sequential order (insert). 

-21-



• 

PLINE,PL2,PL4,Pi6 

KASE, LEN 

MULT1,MULT2 

SilSAV 

STSPAC 

LPNT 

CPNT 

KFP.NT 

FREG1,FREG2 

HLINP,CREG 

NXTSP 

GREG 

MODE 

MES CR 

VARAD 

VEND 

FWAM 

- Subroutine insert to. order statements sequentially. 

- Temporary storage for commandmode routines. 

- Used to store binary values to be multiplied. 

- Temporary storage for call-statement processor. 

- Next available location in memory, symbol table starts 
here at run time. 

- Pointer to the current line at run time. 

- Pointer to current character in current -line at run time. 

- Point to next sequent:ial line at run.time. 

- Two floating-point registers. 

- Temporary storage for HL and C registers for routine INP. 

- Pointer to next available space of memory for symbol table. 

- General register, in and out instructions are stored here 
and executed for get and put functions. 

- Indicates to INP routine whether input data comes from 
source or teletype. 

- Tempory storage for call-statement processor. Points to 
next available space after symbol table. Area after the 
symbol table is used to store intermediate results of 
expressions or constants passed to user subroutines. 

- Temporary storage space for input-statement processor. 

- Assembly time variable. Indicates end of interpreter 
variable-storage area and where FWAM pointer is to go. 

- First word of available memory pointer. This is where 
user source programs go. 

Some of the above variables occupy the same area of memory. This is 

because some variables are used only in the command mode and others only at 

runtime. To conserve space, they share the same memory locations . 

New Statements 

To add additional statements to the BASIC, use ~he following procedure. 

First, insert the statement key1vcird in the data tables for subroutinP. SYMSR.T. 

-22-



• 

Then, insert the starting address of the statement processor in t.he interpreter 

JUMP table~ Finally, the statement processor itself must be inserted. 

The keyword must be entered in the table KDAT2. The first byte must be 

the keyword length and the next bytes hold the ·ASCII-coded keyword. The table 

must end with A 377 8 • If the keyword is the Nth entry in the table, on return 

from SYMSRT, the A register will hold N-1 if the keyword is found. 

The starting address of the statement processor must be inserted into 

table JTBL. .The order of keywords in KDAT2 must correspond with statement 

processor addresses in JTBL since, ·on return from SYMSRT, the A register times 

two is used as offset in JTBL to determine processor address. 

The statement processor must be placed somewhere in memory. Generally, 

the first thing done in the statement processors is to load the pointer to the 

statement (LHLD CPNT) and increment past the keyword (since HL is not updated 

by SYMSRT). On entry, C contains the number of characters in the line minus 

those checked by SYMSRT. The end of the processor should be a "JMPIEND" 

instruction. 

New'.Functions 

New functions must be added to SYMSRT Data Table KDAT4 in the same manner 

as for key words. The function itself must be placed in subroutine "VALUE. 0 

Presently, the only function in VALUE is GET. 

Message Lines 

The following description tells how to incorporate messages into BASIC 

output routines. Currently, to output a message to the teletype, the user 

executes an LXI H,ODATA, then a call to FORMK where K is an integer indicating 

which message is wanted (i.e., k=z indicates "TURN ON PUNCH"). FORM p;:irl~ the 

message into the output buffer. Then A "CALL WRIT" writes the contents of the 

buffer. 

Suppose the message "POTATO BASIC" is to be added. Preceding the form 9 

instruction, we will insert "FORlO: INR L." At the end of the ODATA table, 

* we add "DB ODAT8 and 377Q.". And, after message ODAT 7, we add ODAT8 DB 12, 

"POTATO BASIC." Now, the following program segment:: 

LXI H,ODATA 

CALL FORlO 

CALL WRIT, 

will cause "POTATO·BASIC" to be output to the teletype. 

* 12 is the character count in the message. 

:....23-



• 

WOS/np/mm /mla 

NOTICE 

"This report was prepared as an account of work 
sponsored by the United States Government. Neither 
the United States nor the United States Energy 
Research & Development Administration, nor any 
of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any 
warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, 
completeness or usefulness of any information, 
apparatus, product or process disclosed, or 
represents that it' use would not infringe 
privately-owned rights." 

Printed in the United States of America 
Available from 

National Technical Information Service 
U.S. Department of Commerce 

5285 Port Royal Road 
Springfield, Virginia 22151 

Price: Printed Copy$ ':'; Microfiche $2.25 

':' Pages 

1-50 
51-150 

151-325 
326-500 
501-1000 

NTIS 
Selling Price 

$4.00 
$5.45 
$7 .60 

$10.60 
$13.60 



Technical Information Department 
lAWRENCE LIVERMORE LABORATORY 
University of California I Livermore, California I 94550 

• 

• 




