e B
%ﬂvﬁ\ il e
2 v
A 4 e

5 ; ‘ UCID- 17090

. Lawrence Livermore Laboratory

-

USER'S GUIDE TO THE LLL BASIC INTERPRETER

Royce Eckard

Jerry Barber

April 2, 1976

- This is an informal report intended
primarily for internal or limited
& external distribution. The opinions
and conclusions stated are those of
the author and may or may not be

those of the laboratory.

= ;

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

1

‘ 5n




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



FOREWORD

The BASIC iterpreter described in this user's guide was developed at the
University of Idaho by John Dickenson, Jerry Barber, and John Teeter under a
contract.with the Lawrence Livermore Laboratory. - In addition, Jerry Barber,
as an LLL summer employee, made significant contrlbutlons to this document and

to 1mplement1ng the BASIC language in an MCS 8080 microprocessor.

'OTICE

This tcpust was prepaicd ui an acount of woik | *

sponsored by the United States Government. Neither

the United States nor the United States Energy

ana L nor any ot

c.heu employees, not any of their contractors,

or their ployees, makes any

warranty, express or implied, or assumes uny tegal
lability e eespmusaibili y fin lhe N

or of any i product or

process disclosed, or represents that its use would not

infringe privately owned rights.

* : .
Reference to a company or product name here or elsewhere in this report does not

imply approval or recommendation of the product by the University of California
or the U. S. Energy Research & Development Administration to the exclusion of

others that may be suitable,.

—ii-



Foreword .. . e e
Abstract . + . . .

- Introduction . . . .

. Using the BASIC Interpreter .

Starting the Interpreter

Entering a Line .
Commands . . .
Statements '. .
Functions . . .

Error Messages .

Appendix A: Sample Programs
Appendix.B: Description of BASIC

CONTENTS

Interpreter.

-iii-

ii

O T T S R

10

10
13
18



-

USER'S GUIDE TO THE LLL BASIC INTERPRETER
ABSTRACT

Scientists are finding increased appliéations‘for micropfocessors as
process controllers in their experiments. However, while microprocessors are
small and inexpensive, they are difficult to ﬁrogram in machine or assembly-
language. A high-level language is needed to enable spientists to deQelop
their own microprocessor programs for their experiments on location. )
Recognizing this need, LLL contracted -to have such‘a language developed. This

report describes the result - the LLL BASIC interpreter.
INTRODUCTION

_The BASIC interpreter described in this'user's manual was desiéned to
operate with the MC§—808O miéroprocessor. It consists.pf a -5K-byte-PROM
resident interpreter used for program generation and debug.

The goal in developing the 8080 RASIC was to provide a high—level,—éasy¥
Afo~use language for performing both control and computation functions in the
MCS-8080 microp?ocessor. To minimize syétem size and cbst, the interpreter was
constrained to fit into 5K bytes. It was necessary, therefore, to limit the
"commands to those considered the most useful in microprocessor applications.

A list of these gommands is given in Table 1, and a list of the statements
making up the BASIC ihte;preter is presented in Table 2. Average assembly-
language execution times and the various operationé allowed in the BASIC

floating-point package are given in Table 3.

1o |
DISTRIBUTION OF THIS DOCUMENT 18 um-.nmnsj}/]‘



Table 1. BASIC interpreter commands.

Command Action
RUN Begins program execution
SCR Clears program from memory
LIST Lists ASCII pfogram in memory
.PLST Punches paper-tape copy of pfogram _
PTAPE 'Reads paper-tape copy of program uéing high-speed
reader '
- CNTRL S Interrupts program during execution




Table 2. BASIC statements.

IF expression THEN XX

INPUT
PRINT

FOR

NEXT

GO SUB NN

RETURN
CALL

GET
PUT

Statement Function

0 to 32767 Indicates BASIC line number (maxiﬁum range 0 to 32767).

REM Indicates a comment (Spaces,are ignored except when
enclosed in quotes, therefore, comments are generally
enclosed in quotes)

END Indicates end of program

‘STOP. Stops program

GO to XX Transfers to line number XX

DIM Declares an array (Only one-dimensional arrays with
an integer number of clements are allowed)

LET Indicates an assignment statement (Addition, subtraction,

multiplication; division, or special function may be
used) '

Condition statement which transfers to line number XX
if the condition of the expression is met

Allows numeral data to be ihputed via a terminal’
Allows numerical data and character strings to be printed
on a terminal

CausesAprogram to iterate through a loop a designated
number of times

Signals end of loop and at which point the computer
adds the step'value to the variable and checks fo see
if the variable is still less than the terminal value
Transfers control to a subroutine that heginsg at line
NN

Returns control to the line after last GO SUB

CALL. ( N,A, R,.;..) |

N = subroutine No. as listed in assembly patch table
A, B, etc. = parameters, constants, variébles, or
expressions

(X) READ 8080 INPUT PORT X.

() OUTPUT A BYTE OF DATA TO OUTPUT PORT Y.

-3-



Table 3. BASIC operations and execution times.

Execution time

. Opération‘ ' ‘ on 8080 (msec)

. ADD - . ' - 2.4
SUBSTRACT . 2.4
MULTIPLY S 5.4

DIVIDE . o , 7.0

USING THE BASIC INTERPRETER

Starting the Interpreter

The BASIC interpreter is presently configured so that it is located in
memory pages ll8 to 348. The starting addrgss is page 178, location O. Ihis
address begins an initialization sequence that allows the user to begin with a
clear memory. However, to avoid the initialization sequence, a second starting
address — page 178, location 238 — can be used. This starting address is used
if the user wishes Lo retain any program that might exist in memory.

Once started the interpreter responds with READY,

Entering a Line

Each line entered is terminated with the carriage—retﬁrn key. The line-
_féed key is ignored. It 1is possible to correct errors on a line being entered
by either deleting the entire line or by deleting one or more chararcters on
the line. A character is deleted with either the rubout key or the shift/0
key. Several characters can be'deleted by using the rubout key several times
in succession. Character deletion is, in effect, a lngical hackspace., To.
delete the line y@u are currently typing, use the CNTRL/Y key.
The above line-editing features can be used on command; program, or data

lines.

Commands
The following commands are available:
RUN - Beégina pragram execulluy
SCR - Clears program from memory
LIST = Lists program in memory

—4-



PLST -~ Punches paper-tape copy of program
PTAPE - Reads in paper-tape copy of program using high-speed reader.

The LIST and PLST commands can be followed by one or two line numbers to
indicate that only a paft of the program is to be listed. If one line number
follows the command, the program is listed from that line number to the end of
the program. If two line numbers (separated by a comma) follow the command,
the listing begins at the first line ﬁumber and ends at the second.

When. a comménd is completed, READY will bhe typed on the teletype. Once
initialized by a command, a process will normally go to completion. However,
if you wish to interfﬁpt an executing program or a listing, simply strike

CNTRL S and the process will terminate and a READY message will be typed.

Statements

Each statement line begins with a line number,. which must be an integer
between 0 and 32767. Statements can be entered in any order, but they will be
executed in numerical order. All blanks are‘ignored.

A program can be edited by using the line numbers to insert or delete
Stétements. Typing a line number:-and then typing a cérriage return causes the
statement at that line number to be deleted. Since the statements can be
entered in any order, a statement can be inserted between two existing
statements by giving it a line number between the two existing statement line
numbers. To replace a statement, the new statement shoﬁld have the same line

number as the old statement. The following types of statements are allowed:

REM -~ 1Indicates a remark (comment). The system deletes blangs from all
character strings that are not enclosed in quotes ("). Therefore, il
is suggested that characters following the REM key word be enclosed in
quotes. .

END - Indicates the end of a program. The program stops when it gets to the
END statement. All programs must end with END.

STOP - Stops the program. This statement is used when the program.heeds to
be stopped other than at the end of the program text.

GOTO - Transfers to a line number. This statement is used to loop or jump
within a program.

DIM - Declares an array. Only one-dimensional arrays with an integer constant

number of elements are allowed. An array with N elements uses indexes
(} throngh N-1. All array locations are set to zero, No check is made
on subscripts to ensure that they are within the declared array. An
array variable must be a single letter,

-5-



LET

IF

Indicates an assignment statement. Non-array variables can be either
a single letter or a letter followed by a digit. It is possible to
have-an array and a non-array variable w1th the same name. The general
form of the LET statement is:

line number LET identifier = expression,
where "identifier" is either a subscripted array element or a non-array
variable or function (see section on functions) and "expression" is a
unary or binary expression. The expression will be one of the following

_ten types:
variable -variable - wvariable
-variable - variable #* variable
variable + variable ' —-variable * wvariable
variable - variable variable / variable,
-variable + Variable _ -variable / variable,

where '"variable'" is an 1dent1f1er, function, or number. The subscript
of an array can also be an expression.

Numbers in a program statement or input via the teletype are handled
with a floating-point package prov1ded by LLL. Numbers can have any
of the following forms:

4 x4, .123
4, 4.0 : . *,123
4.0 . 1.23 . s 0.123
4 +1.23 : $0.123

and the user may add an exponent to any of the above forms using the
letter E to indicate powers of 10. The forms of the exponent are:

E+1 Ex15
E 1 E 15
E 1 E 15.

The numbers are stored with seven-digit accuracy; therefore, seven
significant figures can be entered. The smallest and largest numbers
are *2,71051E-20 and +9.22337E18.

This is the conditional statement. ' It has the form: line number IF
expression relation expression THEN transfer line number. The possible
relations are:

Equal =
Greater than >

Less than < o~
Greater than or equal >= =g s
Less than or equal <= =<

Not equal <> ><

If the relatlon between the two expressions is true then the program

- transfers to the line number, otherwise it continues sequentially.



INPUT -

PRINT -

This command allows numerical data to be input via the teletype. The
general form is: :

Line number INPUT identifier list,

‘where an "identifier list" is a sequence of identifiers separated by’

commas. There is no comma after the last identifier so, if only one
identifier is present, no comma is needed. When an INPUT statement is
executed, a colon (:) is output to the teletype to indicate that data
are expected. The data are entered as numbers separated by commas.

If fewer data are entered than expected,‘another colon is output to the
teletype, indicating again that data are expected. For example, where

50 INPUT I,J,K,P

is executed, a colon is output to the teletype. Then, if only 3 numerical
values are entered, another colon will be output to indicate that more.
data are expected; e.g.,

where C/R is the carriage-return key. If an error is made in the
input-data line, an error message is issued and the entire line of
data must be re-entered. If; for the above example, ‘

:4,4,6M2,10.3 C/R
is entered, the system will respond

INPUT ERROR, TRY AGAIN

At this time, the proper response would be
4,4,6.2,10.3 C/R.

This command allows numerical data and character strings to be printed
on the teletype. Two types of print items are legal in the print
statement: character strings enclosed in quotes('") and expressions.
These items are separated by either a comma or a semicolon, 1f ,ripr
items are separated by a comma, a sklp ovccurs to the next pre-formatted
field before printing of the item following the comma begins. The
?re—formatted fields begin at columns 1, 14, 27, 40, and 52. If print
ltems are separated by a semicolon, no skip occurs., If a semicolon or
comma'is the last character on a print statement line, the appropriate
formatting occurs and the carraige-return-line feed is suppressed. A

.print statement of the form

50 PRINT

will’generate a carriage-return-line feed. Thus, the two lines below

-7-



: 50 PRINT "INPUT A NUMBER";
- 60 INPUT A ) .

will result in the follb&ing output:
| INPUT A NUMBER:
For more examples, see sample prégrams in Appendix A.
FOR - Caﬁses program to iterate -through a.léop'a designated number of times.

NEXT - Signals end of loop at which point the computer adds the step value to
the variable and checks to see if the variable is still less than the
" terminal value.

GOSUB NN - Transfer control to a subroutine that begins at line NN.

RETURN - Returns control to the next sequential line after the last GOSUB
statement executed. A return statement executed before a GOSUB is -
equivalent to a STOP statement. '

CALL - Calls user-written assembly-language routines of the form

CALL (N, A, B, ...),
where N is a subroutine number from 0 - 254 and A, B, ... are parameters.
The parameters can be constants, variables, or expressions. However,
if variables and constants or expressions are intermixed, all variables
should have been referenced before the CALL statement. Otherwise, the
space reserved for newly referenced variables may overwrite the
results of constants and expressions. A memory map of one configuration
of the system is shown below: -

Page 10_
‘Page 1l | ODT STACK
BASIC
INTERPRETER
TR -.- e
ACLIVE VAR Se | Pointer to first word
First word of ' of available memory and
available | USER SUB'S. subroutine. table
memory : .
USER SOURCE

| Basic D
Page 43 Loc 3708 A



LS

The subroutine table contains 3-byte .entries for each subroutine. The
table directly follows the pointer to the first word of available memory
(FWAM) and must end with an octal 377. A sample table and its
subroutines is shown below:

ORG 16612Q
DW SUBEND ; Define FWAM
DB 1 | : Subroutine #1
DW SUB1 .3 Starting add of
subroutine #1
DB 4 o . ‘ ; Subroutine #4
DW SUB4 ;. Starting add of
- " subroutine #4
DB 5 - - ;3 Subroutine #5
DW SUB5 ; Starting add of
subroutine #5
DB 2 "3 Subroutine #2
DB SUB2 : . © 3 etc.
DB 377Q "3 end of subroutine table
SUB1: l A ; Subroutine {1
RET
SUB5: ‘ : Subroutine #5
RET
'Y
.
. e
RET ; Retain last subroutine
SUBEND - EQU § ; FWAM

Addresses to passed parameters are stored on the stack. The user must
know how many parameters’' were passed to the subroutine. These must

be taken off the stack before RET is executed. Addresses are stored
last -parameter first on the stack. Thus, on entry to a subroutine, the
first POP instruction will recover the address to the last parameter

in the call list. The next will recover the next to last, etc.

Each scalar variable passed results in the address to the first byte
of a four-byte block of memory. Each array element passes the address

—g_



.tq'the first byte of a (N-M) x fdur—byte memory block, where N is the
number of elements given the array in the DIM STMT and M is the array
subscript in the CALL STMT.

For passed paraﬁgterstto be handled in expressions within BASIC, they
must be in the proper floating-point format.
Functions
Two special functions'not found in most BASIC codes are available to
input or output-data thfough Intel 8080 port numbers. |
‘ The function GET allows input from a port and the function PUT allows
output to a poft.' Their general forms are:'
GET (expression)
PUT (expressidn).
The function GET may appear in statements in a poéition that implies that a
numerical value is used. The function PUT may appear in statements in a
position that implies that a numerical value will be stored or saved. This is

because GET inputs a number and PUT outputs. a number. For example,

LET PUT(I).
_LET GET(I)

GET(J) 1is valid
PUT(J) is invalid.

while

. These functions send or receive one byte of data, which in BASIC is treated as

a number from 0 to 255.

Error Messages

If an unrecbgnizable command is enteréd, the word WHAT? is printed on
the teletype. Simply retype the command. Tt may also have been caused by a
missing liné number on a BASIC statement, in which case you should retype the .
statement with a line number. A

If an error is encountered while executing a program, an error mesénge
is typed out that indicates an error number and the ling number in which the

error occurred. ' The meanings-of the error numbers are given in Table 4.

-10-



Table 4. Meanings of error numbers.

Error number . : : Error
1 o . Program has no END statement
2 . Unrecognizable keyword at beginning of statement
3 o ' ‘ Source statements exist after END statement
4 Designation line number is improperly formed in

a GOTO, GOSUB, or IF statement
5 :  Destination line number in a GOTO, GOSUB, or IF

statement does not exist

6 ‘Unexpected . character

7 Unfinished statement

8 Illegally formed expression

9 Error in floating—point conversion

10 - Illegal use of a function

11 ' , Duplicate array definition

12 : An array is referenced before it is defined

13 Error in the floating-point-to-integer routine,

Number is. too big

14 Invalid relation in an IF statement

During prbgram execution and whenever new lines are added to the program,
a test is made to see if there is sufficient memory. If the memory is.full,
MEMORY FULL is printed on the teletype. At this point, you should enter one of
theAsingle digits below to indicate what you wish to do:

Number entered Meaning

(RUN) runs the program in memory
(PLST) outputs program in memory to paper tape punch
(LIST) lists program in memory

(SCR) erases program in memory

S~ w2 O

none of the above (will case.WHAT? to be printed in
teletype). -

To help you select the best alternative, a brief description of how the
statements- are mahipulatéd'in memory will be helpful. All lines entered as

program are stored in memory. If lines are deleted or replaced, the originals'

-11-



still remain in memofy. Thus, it is possible, if a great deal of line editing
has been done, to have a.significant portion of memory taken up with unused
statements. If axMEMORY FULL message is obtained in these circumstaﬁces, then
the best thing to do is punch a tape of the program (entering number 1), then
erase the progfam memory with a SCR command (or a number 3, if memory is too
full to accept commands), and then re-enter your program using the high-speed

paper—tape reader with the PTAPE command.

-12-



APPENDIX A: SAMPLE PROGRAMS

The program below gives a few examples of the use of the print stétement.

LIST
1PRINT"THE PRE- FORMATTED COLUMNS ARE SHOWN BELOW”
2PRINT1,2,3,4,5
4PRINT
1$PRINT"INPUT 1ST NUMBER";
2B INPUTA
3@PRINT"INPUT ZND NUMBER"
4PINPUTB -
5@PRINT
6@PRINT"A IS'";A
. 7@PRINT"B IS",B
S8@PRINT"A IS';A;"B IS",B,"A+B IS";A+B
1P@END E o
READY
RUN ' : ' ,
THE PRE-FORMATTED COLUMNS ARE SHOWN BELOW .
1.0000E 0p 2.0000E 09 3.00P0E @¢ 4.QPGGQGE @0 5.0QG0E @@

INPUT 1ST NUMBER:2

INPUT 2ND NUMBER 13

A IS 2.0000E 00

B IS K 3.00@0E 09 - .

A IS 2.0¢@¢E @@B IS -~ - 3.00Q¢E ¢¢ A+B IS 5.00Q0E @@
READY :

The following program plots a function on. a display. It uses four
user-written assembly-language subroutines. The diSplay works as follows:
The contents. of memory locations on pages 2748 to 2778 are displayed as 16 rows

of 64 characters each., Thus, if 1ocation 201, on page 274 contains 301

(ASCII A), an A appears in column 2 of Row 3.8 An example of this pfogrgm's
execution is shown below: A
© RON ' ,
WHATASHOUtD PLOT BE LABELED? MCSSC - BASIC INTERPRETER
READY ' o

The BASIC .and assembly-language programs and the display output are

. shown on the following pages.

-13=



BASIC Program

LIST . _ :
IREM"  THIS ROUTINE WILL PLOT A" SET OF AXIS AND A .QUADRATIC FUNCTION
2REM"  ON A DISPLAY AND THEN LABEL IT. IT USES A 4 USER WRITTEN
3REM"  SUB-ROUTINES:

4REM

SREM" CALL (1,X,Y,C) - PLACES C IN COLUMN X, ROW Y OF THE DISPLAY
6REM" WHERE C IS AN ASCII CODED CHARACTER

7REM

8REM"' CALL(2,A(@)) - READS A CHARACTER STRING FROM TIIE TTY AND STORES
9REM" IT"IN ARRAY A

10REM

11REM" CALL(3,A(@)) - WRITES THE CHARACTER STRING STORED. IN ARRAY A
12REM" . TO THE DISPLAY

13REM . _
14REM" CALL(A) - CLEARS THE DISPLAY
15REM

16REM" START OF PROGRAM

17REM :

18REM" RESERVE STORAGE AREA FOR TITLE
20DIMA (1)

3PREM" CLEAR SCREEN

4PCALL (4) _ .

SEREM"' ASK FOR AND INPUT TITLE

5SPRINT"WHAT SHOULD PLOT BE LABELED?";
6@CALL(2,A(9))

7$REM" DRAW AXTIS

8¢GOSUB5P@

9@PREM" PLOT FUNCTION

1¢@LETX=-29

114GOSUB1 08¢0

12¢CALL(1,31+X,8-Y,248)

13@LETX=X+1

14@IFX><31 THEN11¢

15@REM"  OUTPUT TITLE

16@CALL(3,A(8)) v

165REM"  WE'RE DONE

17¢STOP : )
S@@REM"  THIS SUB. WILL DRAW A SET OF AXIS
SESLETX=1

51@LETY=7

52¢LETC=173

53@CALL(1,X,Y,C)

SLPLETX=X+1.

550 TFX><65THENS3)

S6@LETX=31

57@9LETY=1

575LETC=252

584CALL(1,X,Y,C)

59@LETY=Y+1

6¢¢IFY><17THEN58¢

61PRETURN ‘ i
1#@@REM" GIVEN X THIS SUB. CALCULATES (17/9¢@)*X**2-8
1¢@5REM" FIRST CHECK IF 'X=¢ AS IT WILL UPSET FLT PNT. PACK.
1¢1@IFX=@THEN1@45 :
1415REM" WE'RE OK - CALCULATE FUNCTION
1020 LETY=X*X

1#25LETK=17/90¢

1@3@LETY=Y*K

1835LETY=Y-8

184@RETURN

1@45LETY==8

1@50RETURN

23PI@END )

READY

14



PEEy b

Assembly-language program

1 .
8080 MACRO ASSEMBLER VER 2 2 ERRORS

014012
013212

016567 .

pl6614
016614

p16616
816617
016621
016622
016624

016625 -

016627
016630
016632

016633
016634
016637
016642
016643
016646
016647
16650
016651
016652
016653
A6654
016657
016662
016663
016666
816667
016670
016671
816672
016673
816674
816677
016702
016703
216706
816707
016710
016711
016712
916715

027

001
233
002
334
003
364
004

. 083

377

321
B4l

. 315

353
315
023
023
023
032
107
321
@41
315
353
315
023
823
823
D32
117
321
84l
315
353
315
023
023
023
632
041
921

036

035
935
035

f36

167

212

012

167
212

012

167

212

012

377
100

035
026

‘830

35
026

030

035
B26

830

273
oo

= 0 PAGE 1

;DEFINE EXTERNALS

FIX EQU 1401290
COPDH EQU 1321290
FREG1 EQU 165670
ORG 16614Q
DW SBEND
;ENTRIES IN SUB TABLE
DB -1
DW SCOPE
DB 2
DW SUB2
DB 3
DW SUB3
DB 4
DW SuUB4
DB 377Q

;FIX ROUTINE
;COPY ROUTINE
;FLOATING PNT REGISTER:

;s FWAM

:NO MORE ENTRYS

THE CALL TO THIS ROUTINE IS OF THE FORM

CALL(1 X Y C)
THE VALUE OF C IS PLACED IN COLUMN X LINE Y
'OF THE DISPLAY

SCOPE: POP

’ LXI
CALL
XCHG
CALL
INX
INX
INX
LDAX
MOV
POP
LXI
CALL

XCHG

CALL
INX
INX
INX
LDAX
MOV
POP
LXI
CALL
XCHG
CALL
INX
INX
INX
LDAX
LXI
LXI

H 135777Q .

D 1600

-15-

;ADDRESS OF CHARACTER
;COPY TO FREG1

;ADDRESS TO DE

sFIX IT

:+PNT TO 4TH BYTE

;GET CHARACTER
;SAVE IN B

; ROW ADD

;COPY TO FREG1

sFIX IT
;GET BYTE 4 TO A

;SAVE IN C
;GET COLUMN ADD
;COPY TO FREG1

;FIX IT
;PNT TO 4TH BYTE

;GET IT TO A
; CALCULATION OF ADDRESS



Assembly-language program (continued)

1
8080 MACRO ASSEMBLER VER 2 Z LERRORS = 0 PAGE 2

‘016720 615 LUP: DCR c
016721 312 330 635 Jz ADINC
016724 031. ) DAD D
816725 303 320 @35 . ] JMP LOUP
916730 137 ADINC: MOV E A
01631  031. DAD D ;ADD IN COLUMN LOC
816732 160 o . MOV M B : ; STORE CHARACTER
216733 311 RET ; DONE
. ;SUB2 READS A TITLE FROM TTY VIA ODT
0v0333 ' READ EQU 3330 * ;ODT ROUTINE
016734 341 suB2: POP H ;:GET 'STORAGE AREA ADD
016735 345 ‘ PUSH H
Bl6736 -916 000 MVI c B . ’ ; INIT CNTR
016740 043 LUP2: CINX H ;BUMP PNTR
916741 315 333 000 " - CALL READ : - ;READ A CHARACTER
- Pl6744 376 215 CPI 215Q : ;CR?
016746 312 356 835 ’ JZ DUN2 ;YES - DONE
p16751 014 INR . C ;INCR CNT
016752 167 ) MOV M A ;SAVE CHARACTER
816753 383 349 035 JMP LUP2 : '
816756 341 DUN2: POP - H ;STORE CNT
016757 161 MOV MC
016760 076 212 MVI A 2120 © ;SEND A LF
016762 367 i " RST 6
pl6e763 ° 311 RET . : DONE
- ;SUB3 WRITES TITLE TO DISPLAY
016764 341 SUB3: POP H : ;:GET ADD
016765 021 341 277 ’ LX1 D 137741Q ; SCREEN ADD
016770 116 ' MOV CM ;CNT
016771 043 INX H - '
ble772 176 LUP3: MOV A M ;SEND STRING
016773 022 i STAX D -
916774 043 INX H
016775 023 INX ‘D
016776 @15 - DCR C
016777 392 372 835 JINZ LUP3
p17002 311 RET ’ 1 DONE
;SUB4 CLEARS SCREEN : ’
017003 P41 90B 274 SUB4: LXI H 1360000Q ; SCREEN ADD
Pl7006 B76. 249 “MVI A 240Q ; SPACE
017010 026 000 MVI D@ ;CNTR S
017012 plée P04 MVI C 4
017014 167 LUP4: MOV M A ;CLEAR IT
17015 843 INX H
p17016 025 " DCR D
217017 302 014 036 JINZ LUP4
017922 g15 . DCR C
-917023 302 014 036 JNZ ©  LUP4
© 017026 311 - RET ; DONE
017027 SBEND EQU $ '
, CND

~NO PROGRAM ERRORS

-16-



1

* 01

A pYoeveE?7
COPDH ©13212
FIX 014012
. LUP 0167290
M pVe0d6
SCOPE 016633
SUB4 - 917003

8080 MACRO ASSEMBLER VER 2 2 ERRORS = @ PAGE 3

SYMBOL TABLE

ADINC 016730 B 200000 C 900001
D poeon2 DUN2 816756 - E 000063 -
" FREGl 016567 H 000004 L 000005
LUP2 016740 LUP3 016772 LUP4- 017014
PSW  @00006 . READ 0088333 SBEND 017027
SP 000006 .SuB2 016734 SUB3 016764
<
1 X
I .
i X
x
x
XX
.
_____________________ e
XX
XX XX
X X
xx XX
XX XX
R , X%
XXX { XXX

KXKXKKK | XKAAKXXX

X MCS8@ BASIC interpreter
Display output for preceding program.

_-17_



APPENDIX B: DESCRIPTION OF BASIC INTERPRETER

Following is a brief description of the BASIC interpreter. Hopefully,
with this description, it will not be a major»bfoject to modify the BASIC to

satisfy the reader's specific needs.

Formats

Source statements are stripped of blanks on input (character strings

enclosed in " "s are an exception) and stored as is in memory, using the

following format:

Binary equivalent ' Lehgth of ASCII
of line no. . source statement

Forward pointer
to next sequential
line :

ASCII source statement

The forward pointer links stétementé by ascending line numbers., The last line's
forward pointer (supposedly an end statement) has value -1777778 to indicate end -
of the list. .

The symbol table is built up at run time and begins after the most recently
entered séurce statement (the‘variable'STSPAC points to where the symbol table
will start). Symbql tahle entries are shown below:

Scalar-variable format

ASCII [@ié ASCIT
Y

lcttcrj' or bin 9

\

Variable name _ Forward pointer Variable value

Array-variable format

Bin ASCI1 o
Q-] Tetter . : '
ryr —

Array Forward Array elements
name pointer

Subroutines

Following is a list of potentially useful subroutines, with a brief

descrintion of each subroutine:

-18-



ALPHA
NUMB

CHAR2
CHARS

CHK1

CONV (CURT)

COPDH
COPY
CUB

bDCoMP

DFXL

EVAL °

FINPT

. FIX

One of the floating-point routines,

Value pointed to by Hand L is tested to see if it is an ASCII
letter. CY =1 => Yes

: CY =0 =>No
Same as above but tests for a decimal number (ASCII 0-9).

Inputs a character from the teletype to a register.

Same as above for HSR.

Checks to see if HL are equal to 1777778 -1. ¢y =1 => Yes;

CY = 0 => No.

One of the floating-point routines. Converts floating-point
number to a character string. .Output is padded to the output
buffer. ’

Copies floating-point number pointed to by D,E to location
pointed to by H,L; uses copy. -

Copies floating-point. value
pointed to by A,L to location pointed to by H,C,

Converts the integer-character string pointed to by H,L to its

binary equivalent. Vale returns in D,E registers.

Dodblesbyte comparison routine, COmpaies value in CB to the in
ED

ED’

z=1 => CB =
cY= 1 => CB > ED
CY= 0 => CB < ED.

One of the floating~point routines. Used to float an unsigned
integer H,L point to first of four bytes; integer is right
justified in first three bytes. .

Evaluates an expression the first element of which is pointed

to by H,L and the length of which is in C. Used to evaluate
expressions wherever they are legal in BASIC. C usually contains
the length of the source statement line containing the
expression.

One of the floating-point routines. Converts character string
to floating-~point number. The variable HLINP contains a
pointer to the character string, and the variable CREG contains
the length of line containing character string. Mode = 0 =>
data comes from teletype (i.e., only delimiters are g's). Mode

'= 1 => data comes from source statements,

Fixes a floating—point number., DE points to number to.be
fixed. Error code 13 is given if number is too big to fix.

-19-



FSYM ., - Finds symbols in symbol table. BC contains symbol. Returns
with HL pointing to symbol value.
CY =1 => symbol was found.
CY = 0 and a scalar => symbol not found, but 1nserted ‘and
initialized to 0. :
CY = 0 and an array => not found, no action taken: HL are

meaningless,
LADD —‘Floating—point add routine.
LSUB - Floating-point subtract routine.
LOTU - Floating-point divide routine.
LMUL - Floating-point multiply rohtine.
LMCM - Oﬁe of the floating-point routines, Compares two floating-

‘point values HL Point to first

HB point to second

z=1 => Equality

Cy=1 => first < second .

(Note: compares absolute only, does not reference mantissa sign.)

MCHK - Waits for flag from port 3. Proper mask is sent in register B.

MEMFUL - Checks to see if memory is full. HL point'to location of memory
' “to be checked. Memory is considered full if it is within 50 10
locations of the current value of stack pointer. .
MULT - Multiplies two two-byte binary numbers. "HL point’to last byte

of four bytes. First two contain first number. Last two contain
second number. Answer returns in BCDE. '

NSRCH - Routine to locate source line in memory passed binary value of
’ line number in DE. Returns address of line in HL, CY=1'=> not .
found.
OUTR - Used by CONV (CURT) to pad output to putput buffer.
PAD - Pads characters to output buffer. A contains character; B

contains number of pads.

SYMSRT - Checks a character string to see if it is a BASIC symbol. HL
contains address pointing to lst character of symbol, C contains
length of line that contains symbol A contains type of symbol
sought.

O=command . l=keyword
z=operator or delimiter 3=function

Returns with 377, in a register if nothing found. Otherwise A
contains symbol number in appropriate KDAT table. Thus, for
aymbol type 2, if a 4 is relurued, Lhe symbol ‘found was the
fourth one (starting with 0) in table KDAT3 (KDAT concatenated
with 2 and 1 or A *)". CIS is updated, but HL is not.

-20~



TTYIW

VALUE

VAR -

WRIT

ZROL

Inputs a line from teletype, Stores starting at location
pointed to by HL. Line edits. Returns length of line in A
register (maximum line length is 72 characters).

Called with HL poiﬁting'to A variable, constant, or function; C
contains line length, returns with DE pointing to floating-
point value. HL, C are updated.

Called with HL pointing to character string, C has line length,
Determines if character string is a variable. If so, returns
with CY=1, DE pointing to value (subscripts of arrays are
evaluated, etc.). HL, C updated. 1If not, a variable returns

- CY=0, HL,C untouched.

"Dumps contents of output buffer to teletype. Uses entry WRIT1

with D register equal to one to suppress CR/LF.

- Part of floating-point subroutines. Writes a floating-point

zero, starting at location pointed to by HL.

The preceding list contains those subroutines mosﬁ likely to be used by

someone modifying BASIC. If you plan 6n~using one of the routines, you should

examine it and its comments carefﬁlly.

Vériables

Following is -a list of interpreter variables, with a description of each

variable:

MEMST - Assembly time variable. Contains the first available
RAM location. This is where active variables start.

MEMEND - Assembly time variable. Contains the last available
location in RAM.

SEND - Has value 6, used with RST instruction to print characters
via ODT.

OBUFF — Output buffer, the first'location contains the number of
characters in the buffer + 1.

IBUF - Input buffer, occupies same area as OBUFF.

STLINE - Points to first source line to be executed. If no source,
contains 1777778.

NLINE,NLZ,NL4,NL6 - Contain address, binary-equivalent line number, forward
pointer, and length of next input line.

. KLINE,KL?,KL4,KL6 - Same as above, but used by a subroutine that inserts lines

in sequential order (insert).

-21-



PLINE,PL2,PL4,PL6

KASE,LEN

MULT1 ,MULT2

STSPAC

LPNT
CPNT
KFPNT

FREG1,FREG2

HLINP,CREG -

NXTSP

GREG
MODE

MESCR

VARAD

VEND

FWAM

Subroutine insert to. order statements.sequentially.
Temporary‘storage for commandmode routines.

Used to store binary valges to be multiplied.
Temporary storage for call—stateﬁent précessor.

Next available location in memory, symbol table starts
here at run time. '

Pointer to the current line at run time.

Pointer -to current character in current 1ine at run time,
Point to next sequential line at run time.

Two floating—péint registers.

Temporary storage for HL and C registers for routine INP.
Pointer to next availablé space of memory for symbol table.

General register, in and out instructions are stored here
and executed for get and put functions.

Indicates to INP routine whether input data comes from
source or teletype.

Tempory storage for call-statement processor. Points to
next available space after symbol table. Area after the
symbol table is used to store intermediate results of

expressions or constants passed to user subroutines.

Temporary storage space for input-statement processor.

Assembly time variable. Indicates end of interpreter
variable-storage area and where FWAM pointer is to go.

First word of available memory pointer. This is where
user source programs go,

Some of the above variables occupy the same area of memory. This is

because some variables are used only in the command mode and others only at

runtime. To conserve space, they share the same memory locatiomns.

New Statements

To add additional statements to the BASIC, use the following procedﬁre.

First, insert the Statement keyword in the data tables for subroutine SYMSRT.

-22-



Then, insert the starting address of the statement proceséof‘invthe interpreter
JUMP table. Finally, the statement proéessor itself must be inserted.

The keyword must be entered in the table KDAT2. The first byte must be
the keyword length and tﬁe next bytes hold the '‘ASCII-coded keyword. The table

must end with A 377 If the keyword is the Nth entry in the table, on return

from SYMSRT, the A Segister will hold N-1 if the keyword is found.

The starting address of the statement processor must be inserted into
table JTBL. The order of keywords in KDAT2 must correspond with statement
probessor addrééses in JTBL since, on return from SYMSRT, the A register times
two is used as offset in JIBL to determine processor address.

The statement processor must be placed soméwhere in meﬁory. Generally,
the first thing done in the statement processors is to load the pointer to the
statement (LHLD CPNT) and increment past the keyword (since HL is not updated
by SYMSRT).. On entry, C contains the number of characters in the line minps

those checked by SYMSRT. The end of the processor should be a '"JMPIEND"

instruction.

New :Functions

New functioﬁs must be added to SYMSRT Data Tablé KDAT4 in the same manner
as for key words. The function itself must be placed in subroutine "VALUE."

Presently, the only function in VALUE is GET.

Message Lines

The following description tells how to inéqrporate messages into BASIC
output routines. Currently, to output a message to the teletype, the user
executes an LXI H,ODATA,.then a call to FORMK where K is an integer indicating
which message is wanted (i.e., k=z indicates '"TURN ON PUNCH'"). FORM pads the
message into the output buffer. Then A "CALL WRIT" writes the contents of the
buffer. |

Suppose the message '"POTATO BASIC" is to be added. Preceding the form 9
instruction, we will insert "FOR10: iNR L." At the end of the ODATA table,
we add "DB ODATS and 377Q.". And, after message ODAT 7, we add ODATS DB 12,
"POTATO BASIC.'"" Now, the following program segment:

LXI H,ODATA

CALL FOR1O0

CALL WRIT,
will cause "POTATO BASIC" to be output to the teletype.

% : .
12 is the character count in the message.

=23~



NOTICE

“This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research & Development Administration, nor any
of their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy,
completeness or usefulness of any information,
apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.”

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $ *; Microfiche $2.25

NTIS
"Pages Selling Price
1-50 $4.00
51 =150 $5.45
151-325 $7.60
326-500 $10.60
501-1000 $13.60

WOS/np/mm /mla



Technical Information Department
LAWRENCE LIVERMORE LABORATORY

University of California | Livermore, California | 94550





