
-.

.-- .i:... - doo_ ///A-343

IOS - PDP 11/45 Formatted Input/Output

Task Stacker and Processor*

John Koschik

Randall Laboratory of Physics
University of Michigan

Ann Arbor, Michigan 48104

Program Abstract

IOS allows the programmer to perform formatted Input/
Output at assembly language level to/from any peripheral device.
It runs under DOS versions V8-08 or V9-19, reading and writing
DOS compatible files. Additionally, IOS will run, with total
transparency, in an environment with memory management enabled.

Minimum Hardware: 16K PDP 11/45, Keyboard Device, DISK(DK, DF,or DC),
Line Frequency Clock

Source Language: MACRO-11 (3.3K Decimal Words)

NOTICE
This report Was prepared I an account of work

sponsored by the United States Gove,nment. Neither

the United States nor the United States Energy

Rm/ch ind Development Administration, nor any of ·
their employees. nor any of their contractors,
subcontracton, or their employees, makes any I

warranty, express or implied, or mumes any legal 1

, liability orresponsibility fortheaccuracy, completeness I
or ukfulness of any informition, apparatus, product or i
process disclosed, or represents thal its use would not
infringe privately owned righti. 1

i

*
Work supported by the U.S. Atomic Energy Commission.

-

DIA
MASTER

'BISTRIBUTION OF THIS DOCUMENT IS UNLIM,ITED

1

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

 8· 1 1111111,

IOS: PDP 11/45 Formatted Input/Output

Task Stacker and Processor

John Koschik, University of Michigan

I. Introduction:

IOS is written in MACRO-11 and is 3300 decimal words in length.

It runs under DOS versions 08-08 and 09-19, requiring two software
modifications:

A. The SYSMAC.SML file must contain the .FSTAK,
.FREAD, and .FWRIT Macros, (see section IV).

B. An additional driver, DV.IO, must be inserted in the
monitor CIL (see section IV and Appendix A).

The minimum hardware c onfiguration necessary to support IOS is an
operator keyboard, line frequency clock, disk, and sufficient memory
to run the MACRO Assembler (12K for DOS V08-08, 16K for DOS V09-19).

IOS has two global entry points (IOSET, IOUSET) and is also
called by three trap Macros (.FSTAK, .FREAD, .FWRIT). If memory
management hardware is implemented by user software (not supported by
DOS), IOS must reside in KERNEL virtual space, but the user.can issue
tasks to IOS from USER or SUPERVISOR virtual space. Switching the mode
of CPU operation is internal and transparent (see section VII H).

II. Purpose:

IOS supplies the MACRO-11 programmer with a FORTRAN-like input
and output formatting package. It was designed to function in a real-time
environment and therefore queues input/output requests, performing the
formatting and peripheral handling only when the processing level
interrupt can be acknowledged. It is completely compatible (in fact,
dependent on) with versions 8 or 9 of the DOS monitor and only minimally
degrades interrupt response (see IIIB,C and Appendix A).

III. General Description:

IOS can be divided logically into three sections, each of which
operates at a different processor level.

A. Initialization and termination

These phases occur as a result of JSR instructions
and therefore operate at the current CPU priority level. It
is essential that the processor level is Zero and the CPU
mode KERNEL when the statements

I. „"I.

-2-
. '

JSR R5, IOSET ; Initialization

and

JSR RS, IOUSET ; Termination

are made. IOSET must be called before any tasks are issued
and performs the following functions:

1. Initializes IOS variables relevant to stacking tasks.

2. Executes an .INIT, .OPENO, and .SPEC to the IO
driver (see Appendix A) in order to patch the monitor
clock routine.

3. Initializes the programmed interrupt vector.

4. Initializes the trap vector.

IOUSET is called when no more I/0 tasks are to be performed
but before associated DOS link blocks have been closed and
drivers released. The user does not regain control until
all output tasks have been completed. Any pending input
tasks are ignored (i.e. aborted). The latter decision was
made because an input device may be hanging on a request
the user never intends to make. Finally, the clock routine
is restored to its normal state to prevent DOS from crash-
ing upon user exit.

.

B. Task Stacking:

The user causes an Input (Output) task to be placed in the
IOS queue by invoking the .FREAD (.FWRIT) MACRO (see IVB).
This results in a trap to an internal dispatch table, simul-
taneously setting the processor level to "PRLVL" (currently =
Four, but easily modified by re-assembling). A very simple
priority scheme is used. The new task is placed last in the queue
if no pending task is using the same link block. Otherwise it is
placed after other tasks using that link block which had the
same or higher processor levels at the time of the MACRO call.
This procedure takes anywhere from 175 to 500 Bsec with a typical
time being 225 Bsec. Before control is returned to the user,
his status flag (see IVD) is cleared, and an internal flag is
set to instruct the clock routine (Vhich operates at processor
level six) to schedule a programmed interrupt. No user interruptroutine operating at a processor level greater than "PRLVL"
should use the IOS trap MACROS because of possible stack corruption
and an immediate lowering of the processor level when the trapinstruction is executed.

C. Task Processing:

Each clock tick (16.7 msec.) an IOS flag is interrogated by
the clock routine. If set, a programmed interrupt request atprocessor level TSKLVL (currently=one) is scheduled. When this
interrupt can be acknowledged, IOS checks each of its internal

-3-
.

buffers (currently four) to see if any tasks have been initiated,
but not completed, and whose associated driver is free. If these
conditions are met, another record for that task is input or output
(using DOS . READ or .WRITE) , and the appropriate formatting performed.

If buffers remain free, new tasks (if any) are pulled from
the queue and initiated (assuming the related driver is free).
Note that no more than one record is processed on any given task each
clock tick.

IV. How to Play the Game:

A. Preliminary

1. The DOS monitor core image library must first be
rebuilt to include the (supplied) IO driver. Details of
modifying the monitor can be found in the BATCH-11/DOS-11
SYSTEM MANAGER'S GUIDE. Additional information on the IO
driver is in Appendix A.

2. The user must link his object modules with IOS.OBJ.
Before making any calls to IOS, the user program must contain
the statements

.MCALL .FREAD,.FWRIT,.FSTAK

.GLOBL IOSET, IOUSET

Tlhe input and output operations are ultimately performed by
the DOS EMT's . READ and .WRITE (Normal ASCII mode) . Therefore
the user must allocate link blocks and file blocks and follow
all DOS rules concerning .INIT, .OPEN, .CLOSE, and .RLSE.
Obviously format statements are also the user's responsibility.
However line buffers and headers are imbedded in IOS and
transparent to the programmer.

B. Creating input (output) requests:

.FREAD and .FWRIT are analogous to FORTRAN

READ (UNIT, FORMAT) LIST

and

WRITE (UNIT, FORMAT) LIST

The user controls the device specification through
the link block (and alternatively the DOS ASSIGN statement).
The form of the .FREAD statement is

.FREAD #LINK, #FMT, FLAG, 1, A, Nl, B, N2,. . .

' -4-

where

LINK = address of first word of user link block

FMT = address of first byte of user format

FLAG = user status flag

A = base address of first list vector (scaler)

Nl = length (in 16 bit words) of vector A

B = base address of second list vector
.

etc.

The code which the MACRO generates is

MOV #FMT,-(SP)

MOV #LINK,-(SP)

TRAP <t 05>

BR [next user instruction]

.WORD FLAG

.WORD 1

.WORD A

.WORD Nl

.WORD B

.WORD N2

etc.

Note that a unit word count following a scaler is not assumed
by the MACRO. Temporary RADIX control is allowed in the word
count but must be enclosed in angle brackets (e.g., <tD25>
for 25 decimal words).

-5-

Unfortunately, implicit "DO" loops in the name list are
not allowed, but parameters of the Macro expansion can be computed
and modified dynamically. For example

.

.

.

MOV RO,FORMAT ;replace dummy format address
MOV Rl,ADRS ;variable base address
MOV R2,CNT ;word count
.FWRIT #LINK,#FMT, FLAG, 1,0,0

FORMAT=.-t 022
ADRS=.-t 04
CNT=.-102

WAIT: TST FLAG
BEQ WAIT

.

.

.

This technique is particularly useful in a loop. Note, however
that it is essential to wait for completion before altering
parameters in the Macro call for a subsequent task (see VII J).

-6-

The .FWRIT statement is identical to .FREAD except

TRAP<t 03>
replaces

TRAP<t 05>

in the MACRO expansion. In both cases the user gains control
at his next instruction with the stack cleared.

C. .FSTAK MACRO:

In some applications the user might need to know if
I/0 requests using some particular link block are pending.
This is accomplished by inserting the statement

.FSTAK #LINK

where LINK is defined as in IVB. This generates the code

MOV #LINK,-(SP)

TRAP <100>

control is returned to the user in 120 Bsec (Typical) at his
next instruction with the number of pending tasks using LINK
at the top of the stack. The user must clear the stack.

D. User Status Flaq:

Anytime an .FREAD (.FWRIT) statement contains a variable
list, the first element in that list is treated as a status
word. Transfer of variables to/from the list begins at the
second list word. This flag is optional if no list elements
(e.g., all Hollerith) appear. If the first list element is
a vector, it is permissible for the flag to be the first word
in that vector. It is the user's responsibility to check
the value of the flag and make appropriate branches since
IOS does not exit due to any user related error (unless
intercepted by DOS). The user flag can take on the·following

values:

0: task is pending or in progress

-1: task has been successfully completed

+1: error was encountered either during
variable conversion (e.g., illegal character)
or during the format scan. A nasty message
will appear on the IOS error reporting device
(default is KB:). The task is immediately
aborted, possibly leaving input records for
this task unread.

-,4

-7-
-

t020 task could not be stacked because of an IOS
stack overflow (currently room for 20 tasks).
This will be accompanied by another nasty
message.

Any other
positive value: When a .READ (.WRITE) is completed, the status

byte is normally zero. If not, this byte is
shifted left one bit and stored in the user
flag (see DOS Monitor Programmer's Handbook
V08-02,p.3-91). If end of medium was sensed
(see VIIF), bit 7 (t0200) will be on. The
task is immediately aborted, possibly leaving
records unread.

V. Formats:

Any valid FORTRAN format is acceptable. In addition a
format statement currently can have up to three internal levels of
nesting with any positive (<32,768) or zero repeat count.
If the format is exhausted before the variable list, rescanning
begins at the rightmost " (" which does not have a repeat count .

VI. Allowed Conversion Types and Conventions

A conscious effort was made to be FORTRAN compatible
except to provide some useful (and easy) enhancements.

A. nIm:

Standard integer (base 10) conversion (16 bit word, 2's
complement). On input the word need not be right justified
(e.g., b24bbb in an I6 field produces 24, not 24000).
The number -32,768 (largest negative integer) can not
be input with an Im field. Read in 100000 with an Om
field instead.

B. nOm:

Standard Octal conversion; (16 bit word). On input if
m i 6, only the rightmost six characters are used, the
left-most one of which must be 0, blank, or 1. Blanks
are always treated as 0's here.

C. nLm:

Long integer (32 bits) conversion. On output the (2's complement
integer in two consecutive memory locations will be formatted
as a signed decimal integer. The range of values is
-(2**31)+1 6 x c(2**31)-1. On input, the L format ignores
all blanks in the field just as the I format does, storing the

i value in two 16 bit words.

Tr„' S.' 5, . r '.9'ip' "---'. :'....'.'to.':f,«„,0. . S...... .»,-'.'«,..'.'»t,'S,tu t,·1:1: 1,>,itt··i··"S 'i'r*5'f""«' -,s"· Sl··! t t " 3·t- &r·E ·. .)'·", ·0,i«·M - · I M « , t* e e V "'.'«' '=*efv

-8-

D. nEm.4 or nDm.4 :

Standard single precision (32 bits) or double precision
(64 bits) exponent type floating point conversion. Positive
and negative numbers in the range (E-38, .999. . .E37)
are accepted. Also on input two non-standard conventions
were adopted.

1. If no decimal point appears but some mantissa
digits do, the decimal point is assumed to be in
front of the Lth mantissa digit from the right (e.g .,
if E15.6, 2643E7 is interpreted as 0.002643E7).

2. If no mantissa digits appear but a valid
exponent field does, the mantissa is assumed
to be +1.0 (e.g., +E 6 is interpreted as +1.OE 6) .

Note also that, as in integer conversion, the
exponent field need not be right justified.

E. nmn.1:

Standard F type (32 bits) floating point conversion.
On input, E and F type are interchangeable since the entire
field is scanned for an exponent field. Convention VI ,D,1
applies here also. On output, if the number will not fit
in the prescribed F field, it is output in an E field
(if possible) with the maximum number of mantissa, digits
allowed by m .

F. nH or '.':

Standard Hollerith field. Null characters are not
allowed. Three consecutive apostrophes in a field
delimited by apostrophes are required to get one apostrophe
generated in the text. For example

'USER'''S MESSAGE'

will output

USER'S MESSAGE

G. nX:

Standard column skip

H. Tn:

Standard Tab format. On input it sets the pointer to the
n'th byte of the buffer. On output, it pos: ions the pointer at

Stthe (n+1) byte of the output buffer (n t printing position) .

9-

3. nAm:

Standard character conversion, two ASCII characters
per word. If, for. example, the user wants to input
(output) 10 consecutive bytes, A10 and SA2 are both valid
formats, corresponding to

. .,ARRAY,<tD10>

in the MACRO call. Use of the former is discouraged if
the word count varies with different references to the
same format. This is due to the fact that once the
base address is computed, 10 bytes are transferred before
checking if the argument list has been exhausted. This
form (A10) does have a slight speed advantage since a
base address is calculated once instead of five times.

On input, if m is odd, the high byte of the
last word will be filled with an ASCII blank.

K. nRm:

RADIX 50 conversion, three characters per word. As
in ASCII character conversion, 5R3 is equivalent to R15 for
five consecutive words of storage. The same rules and
limitations apply. The legal character set is:

A-Z,0-9,BLANK,$, .

If, on input, m/3 does not have a zero remainder, the last
word will be padded with one or two RADIX 50 blanks (0's).

L. General input note:

If the record terminates (CR, LF) before all expected
variables in that record have been converted:

0 is stored in all I,O,L,E,F, or D variables.

Blank is stored in all A, R, or H variables.

VII. Warnings and Limitations:

A. The TRAP and programmed interrupt low core addresses
vector into the IOS program and are therefore not easily
available to the user for other purposes.

-10-

B. All sections of user programs using .FREAD or .FWRIT
(as well as IOS) must remain core resident since the argument
addresses which appear in the Macro expansion are not stored
by the stacking routine and must therefore occupy the same
location when the task is executed.

C. There is no problem in issuing many tasks to the same
device, either through the same or different link blocks, without
waiting for completion (as long as the parameters of the Macro
call are not altered). No scrambling of input or output will
occur since IOS will hold a task indefinitely if the file (or
device, if non-file structured) is currently engaged in a transfer.

D. IOS contains one link block which is used in reporting
error messages. It has the name IOE and should not be duplicated
by a user link block. The default device is the keyboard.
Reassignment can be made via the DOS ASSIGN statement and if a
file structured medium is chosen, the file name will be IOSERR.LST
in the user's area. If a file with this name already exists or if
DOS detects some other error while performing the . INIT and : OPENO, IOS
will execute a DOS .EXIT without sending out the usual fatal error message.

E. All input/output to disk, DEC tape, and magtape is
file structured, requiring a fileblock and all associated DOS
initialization. For DECtapes there is a restriction of one
output file on a unit although multiple input files can be read
from the same unit even if one output file is opened. A maximum
of one file can be opened on any magtape unit. No similar
limitations apply to disk files.

F. Because of a hardware problem, DOS does not set the
appropriate bit in the status byte when end of tape is sensed
on Mag Tape (See Digital Software News for the PDP11, October 1973).
Thus, it is not reflected in the user flag. For our purposes,
this isn't much of a problem and will be ignored pending the first
disaster.

G. The maximum number of list vectors (scalers) in an
.FREAD (.FWRIT) call is 13 (decimal). The maximum allowed word
count for any vector is 2047 (decimal).

H. When memory segmentation is enabled, all I/0 blocks
which communicate with DOS (Link Blocks and Filename Blocks)
must reside in KERNEL virtual space. Clearly all explicit
monitor requests (e.g., .INIT,.OPEN) must be made from
KERNEL mode.

.-*.™.„.....--b -' I. -...../-'.-, -'.*H..."/----&..... k£......

-11-
-.

J. Obviously if a task is stacked at a processor level
greater than or equal to "TSKLVL", the code must not have a
waiting loop or the program will hang indefinitely.

K. A dataset which is involved in transfers through IOS can
also be used by the programmer for explicit DOS I/0 operations.
One should remain aware of potential ambiguity, however, if
the .WAIT or .WAITR EMT is used.

VIII. Simple Modifications:

Changing certain parameters can either optimize IOS
for some applications or make it run on a different hardware
configuration. No recoding is necessary for the following
changes.

A. Although all IOS buffers must have the same
length, the total number of buffers and their size
may be changed. Currently the numbers are four and
144 (decimal bytes), respectively.

B. The maximum number of stacked tasks is a program

variable and presently is 20 (decimal).

C. The processor level at which task stacking (and

task initialization) occurs is now four but could be
changed to any value greater than that at which task
processing operates but less than six (DOS clock
routine level).

D. Task processing can be done at any processor level
greater than zero, consistent with the above paragraph.

It should be noted that large amounts (many milliseconds)
of time may be needed at this level.

E. Internal parentheses in FORMAT statements can be
nested to any level, each additional one causing only
a modest increment in program size and slight
degradation in execution speed.

F. IOS can be used on an 11/45 with or without a
floating point processor. In the latter case, conditional
assemblies reduce the size of the program to approximately
2.7K decimal words and will generate an error message
if an attempt is made to perform a D,E, F, or L type
conversion.

IX. Overhead:

If no tasks are in the queue, but an input task has been

initiated and is hanging (e.g., waiting for CR, LF from Tektronix
4010 Graphics Terminal), approximately 220 Wsec(145 Wsec + time
required for DOS to process EMT 0) is required each clock tick
(about 1%) to discover that nothing is happening.

:12-

X. Sample Program Flow:

.MCALL .WORLD,.CALL ; U.of M. System MACROS

.PARAM

„GLOBL IOS ET, IOUS ET

USER: .CALL IOSET ;initialize IOS

.INIT #LNKIN ;initialize link blocks

.INIT #LNKOUT

MOV #FILIN, RO

. OPENI #LNKIN, RO ;open files

MOV #FILOUT,RO

.OPENO #LNKOUT,RO

.FREAD #LNKIN,#FMTIN,FLG1,1,A,<t D14>

3$: MOV FLGl,RO
BEG 3$;wait for completion

BGT XIT ;exit if abnormal

.FWRIT #LNKOUT,#FMTOUT,DUMMY,<TD15>

6$: MOV DUMMY,RO

BEQ 6$
BGT XIT

.CALL IOUSET ;disable clock interrupt

.CLOSE #LNKIN ;now close files and

.CLOSE #LNKOUT

.RLSE #LNKIN ; release drivers

.RLSE #LNKOUT

XIT: .EXIT

FI,(31: .BLKW 1

DUMMY: .BLKW 1 ;note user flag first element in
vector

A: .BLKW t D14

FMTIN: .ASCII #(2I5/D20.10,2(/2010,1OX,A4))#

.--

I '.

-13-

FMTOUT: .ASCII #('USER VALUES'/10X, 2I6/D15.8,2(/207,5X,2A2))#

.EVEN

.WORD XIT ;link block error exit

LNKIN: .WORD 0

.RAD50 /INP/ ;logical name

.BYTE 1,0

.RAD50 /CR/ ;physical device (card reader)

.WORD XIT

LNKOUT: .WORD 0

.RAD50 /OTP/

.BYTE 1,0

.RAD50 /DK/

.WORD XIT ;file block error exit

.WORD 0

FILIN: .RAD50 /DAT/ ;file name not meaningful, but

.RAD50 /IN/ ;innocuous, unless input device

.RAD50 /DAT/ ;assigned to file structured medium

.BYTE 20,20

.BYTE 233,0

.WORD XIT

.WORD 0

FILOUT: .RAD50 /DAT/ ;filename DATOUT.TST

.RAD50 /OUT/

.RAD50 /TET/

.BYTE 10,20 ;in area [20,10]

.BYTE 233,0 ;protection code 233

.END USER

- '. ,k·

APPENDIX A: IO DRIVE R

I. Since IOS necessarily perturbs the DOS clock routine, it
was essential to find a way to restore that routine in the
event of a user program crash so that the monitor would not
collapse at the next clock tick. The solution was to add a
driver to the monitor which would perform these patching
operations. IO is a driver only in a formal sense. No input
or output to any peripheral device occurs. At the initialization
stage (IOSET) of IOS, an internal link block associated with
the IO driver is .INIT'ed and a dummy file is .OPEN'ed for
output. Then a special function request is made, causing the
driver to be entered. The executed code saves the DOS clock
routine jump address both in the driver and in the special
functi6n block. The address of IOS clock routine is inserted
in the monitor, allowing the following sequence of operations
each clock tick:

A. Enter the DOS clock routine

B. Jump to the IOS clock routine which interrogates
an internal flag.

C. Exit with a JMP @ off the address stored
in the special function block.

D. Continue with normal DOS clock routine processing.

This modification increases the overhead of the clock routine by
approximately 10 Bsec per tick.

II. The termination stage (IOUSET) of IOS .CLOSE's the file
associated with the IO driver, again causing the driver to be
entered and executing the code to restore DOS. Thus, it is
permissible for a user program to sequentially call IOSET and
IOUSET any number of times. Additionally, if the program is aborted
at the keyboard by a tC,KI sequence (e.g., after a DOS fatal error
message). DOS will automatically close all opened files, thereby
resetting its own clock routine before removing the user program
from core. Clearly if a user related error writes all over the
IOS program, the monitor will crash and have to be rebooted.

-2-
*),

III. When altering the monitor CIL, the file SYSTEM.MAC
must be changed to indicate the presence of a non-standard
"device" (see Appendix E of the SYSTEM MANAGER'S GUIDE) .
Arbitrarily, the interrupt address of the I 0 driver was chosen
as 104 (octal) and the external page address (necessary only
for version 9) was taken to be that of the line clock
(777546). Therefore, when modifying the GDVUO Macro, the
indefinite repeat block statement should read

.IRP P, <<I O, 104 > , . . . >

for a version 8 monitor or

.IRP P,<<IO,104,777546>,. . .>

for a version 9 monitor

IV. The IO driver is written so that only one link block
can be associated with it at a time. If the user does not
need IOS, but would like to transfer control into his own
core area each clock tick, he could easily do so by following
the scheme outlined above. As another alternative, the IO
driver can be employed as a dummy output device, throwing
away all trans ferred information.

V. The IO driver contains two assembly parameters which
concern memory management and have direct application only to the
operating system modified by the University of Michigan. If
memory management is not enabled or if no additional monitor
patches are required the statement

MEMSEG = 1

should be removed from the IO driver, leaving the quantity
undefined. If it is desired to patch (and, subsequently, unpatch)
the monitor to allow handling EMT calls from USER or SUPERVISOR
virtual space, the statement

V08.08=1

should be left in if running under DOS V08-08 or removed if
running under a version 9 monitor.

