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.Lower Hybrid Parametric· Instabilities -

Saturation by Cascading and Pump Depletion 

R. L. Berger, Liu Chen, F. W. Perkins 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

ABSTRACT 

Parametric instabilities near the lower hybrid 

frequency and associated electron and ion heating have 

been observed experimentally for some years, most 

recently in radio-frequency heating experiments on the 

Adiabatic Toroidal Compressor Tokamak. Here, the non­

linear evolution and saturation by cascading of the 

parametric decay instability near the lower hybrid 

frequency is·considered by solving a weak-turbulence 

wave kinetic equation. The principal results are that 

1} a steady state solution exists only for pumps near 

threshold when the pump frequency is several times the 

lower hybrid frequency; 2} the decay instability saturates 

when the energy in decay waves is roughly equal to the 

pump energy; 3} most of the pump energy is deposited in 

snpP.r t.he:r.mal electrons when w
0 

> > w ih and 4} pump 

depletion in the low-density surface plasma will be a 

serious problem unless the pump power is kept near thresh­

old for large tokamaks. 
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I. INTRODUyJ'ION 

! Heating of plasma by conversion of wave energy to thermal 

energy is one of the primary means under consideration to raise 

the plasma temperature to the thermonuclear range .. A particularly 

interesting and convenient m~thod is lower hybrid f~~quency heat-
. 1 
1ng becaus~,for tokamak plasmas, the frequency of the radiation 

is such that the waves can be introduced by arrays of wavequides. 

Each waveguide array is arranged so that the electri~·field vee-

tor in each waveguide is phased properly so as to meet accessi-

. . 2 
bility cr1ter1a. Unless a la~ge number of waveguide arrays are 

.:..r 

employed, the heating of botn reactor and research tokamaks will 

require power levels in each array that will surely exceed the 

thresholds-for nonlinear effects such as parametric·instabilities. 3 

That nonlinear effects appear to play the dominant role in radio 

frequency heating near the lower hybrid frequency ha? been shown 

by simul tane.ous appearance of decay wave spectra and high-energy 

tails on the electron and ion velocity distribution. 4 The ion and 

electron heating has been measured in small devices by ion and 

electron energy analyzers and in the Adiabatic Toroidal Compressor 

Tokamak by fast neutrals and ~vnchrotron radiation. 5 
' 

The parametric instabilities of primary interest to lower 

hybrid heating are decay_of the incident electrostatic wave into 

lower frequency lower hybrid·waves by scattering off the ion and 

electron distribution and th~ oscillating two stream~ instability 

• • • b • 1 • t • 6 
I 

7 h h h • h th (OTSI). F1lamentat1on 1nsta. !- .. 1 1es ave a muc ; 1g er res-

hold than these. In hot non~niform plasmas such as tokamaks, both 

'uniform' medium and convect.i,v~ quasimode thresholds are exceeded. 
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The threshold for convective quasimode decay has been shown to 

be determined by the finite spat~al extent of the pump wave while 

the 'uniform' medium· threshold pertains to waves ducted by the 

density profile;and hence destabilized by the spatially averaged 

field. The impressed lower hybrid pump waves, launched by wave-

quides or other finite structures at the plasma boundary, are 

' known to propagate such that the energy of the wave is confined 

to a good approximation within well-defined resonance cones. 8 

As a result, the thresholds of convective quasimode instabilities 

are determined by the loss of the wave out of the resonance cone 

(the amplifying medium) balancing the growth of the wave due to 

transfer of energy from the pump wave. As a result of these con-

siderations, it has been shown that the dominant parametric insta-

bilities are nonlinear Landau damping of lower hybrid waves and 

oscillating two streaming instability 

Examination of the threshold formula for parametric decay 

instabilities shows that the instabilities are most likely to 

occur in the cold, low-density periphery region where w
0 

>>wih 

and in the plasma interior where w
0 

:$ 2t'lih. Furthermore, the 

lower hybrid waves destabilized by the oscillating two stream 

instability are nearly identical to those created by the decay 

instability,-and hence subject to the same saturation mechanisms. 

Therefore, we have investigated the nonlinear saturation of the 

decay instability by cascading for pump frequencies in the range 

one to four times the lower hybrid frequency. We chose the 

electron to ion temperature ratio equal to one which is typical 

of tokamaks, and thus the low-frequency wave is a nonresonant 
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... 

quasi-mode. As a consequence, wave energy is not conserved in 

the decay process; however, action Ik is conserved a~d a small 

amount of wave energy is dissipated in the scattering process. 

Two questions that we seek to answer are 1) under what conditions 

is the cascading model adequate to saturate the decai instability 

and 2) how much energy relative to the pump energy i~ in decay 

waves at saturation and what is the anomalous damping rate for 

the pump? We find that the model is only adequate to saturate 

decay instabilities near threshold. For pump powers~' less than 

several tim~~ the threshold power, we find the anomalous damping 

rate y ff ·is proportional to the pump power rr relative to thres-e ., 

hold power nTH times the typical damping rate y of the decay waves, 

i.e. y eff = ayiT/ITTH. We have estimated the scale length for pump 

depletion i~,typical tokamaks and found that the pump wave should 

be able to penetrate to the plasma interior even when the pump 

power is several times threshold for current tokamak.heating experi-

ments. However, future experiments present a problem because the 

amount of pump depletion scales linearly with plasma· .. size. Once ., 
the pump penetrates to the plasma interior, the pump.power will be 

many times threshold, a conden~ation phenomena occur~, 9 and our 

model becomes inadequate to predict the saturated state of plasma 

turbulence. But from the viewpoint of tokamak heating, the 
.. 

really crucial question is not what the details of nonlinear ab-

sorption in the plasma interior are, but whether most of the 

power will be absorbed in the outer regions. Hence, our princi-
.. 

pal concern lies with the low~density region w
0 

>>wih and the non-

';} 
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linear Landau damping cascade model is valid for a good range 

of powers. 

The paper is organized as follows: Section II presents 

the basic equations describing the parametric interaction of 

lower hybrid waves via nonlinear Landau damping, derives some 

conservation laws, and gives an estimate of the saturated level 

of turbulence. Section III presents the results of a numerical 

solution of the wave kinetic equation derived in Sec .. II 

The scaling law is obtained for the total energy in decay waves 

in steady state versus the pump power. Section IV shows how 

the nonlinear pump depletion scale length varies with plasma. 

size and parallel wavelength of the pump. Section V discusses 

the implications of the previous sections to tokamak heating. 
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II. BASIC EQUATIONS ~D ASSUMPTIONS 

The process we seck to describe is the nonlinear evolution 

and saturation by cascading of the parametric decay instability 

near the lower hybrid frequency. Other mechanisms ibr saturation 

of the decay· instability exist such as quasi linear modification 

of the veloci~y distribution, beat wave trapping, orb~t diffusion, 

and pump depletion. In general, these processes are important 

for pump powers far above thr1=.shold. We are intereste·d in pumps 

near thresho'ld where characteristically 

or 4rrnT e 
~ (:~) 

1 

2 w 
ce << 1 -2-

w 
pe 

(1) 

Inequality <;p holds except at very low-densities near the vessel 

wall. The total energy in high-frequency decay waves when 

saturation by cascading occur15 is typically equal to .the pump 

energy. The,energy in the be.at wave is smaller than this by the 

ratio (w -wk)/w and thus, is not sufficient to flatten the 
0 0 

distributiott near the thermal yelocity. Moreover the· Jarge 

conductivit~pf electrons along the field line ~nd of the ions 

across the field lines will i11~,ibi t plateau formation since the 
::1. 

parametric interaction is in fact localized in space. Pump 
.. 

depletion wiil be discussed in Sec. III. Trapping b~comes 

important when the amplitude oJ .oscillat.i,on of the pa:rticle in 

the potential of the d~cay wav.e. nears the phase velocity. Since 

the dominant electric field i.ns;li11ces al') electron oscillation 

perpendicular tO the phase vel,9,city 1 it is clearly unimport,ant. 

for electrons;. For ions this r·.equires 

.. 

.. 
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ek2
<P IE 1

2 
w~ ( w; ) k k ~ 1 - 1 or -- --·- > 2 41fnT 2 2 2 I 

miwk e w . k v. pl. ]. 

which is far above the level for which cascading is important. 

For the same reason, we feel that orbit diffusion is unimportant. 

At frequencies near the lower hybrid frequency, 

w << wee , ~pe , the dominant coupling between waves results 

from the drift of the electrons relative to the ions due to the 

~ x ~ drift of the el~ctrons across the field lines coupling 

with the nonresonant low-frequency density perturbation produced 

at the beat·frequency of the two lower hybrid waves. The transfer 

of wave energy from the pump to the decay waves and from one 

decay wave to another takes place via nonlinear Landau damping. 

This nonresonant process is the dominant one when resonant decay 

instabilities are suppressed either by geometrical effects, 

violation of the selection rules, or restrictions on the volume 

of wavenumber space available. It has been shown that the 

threshold is determined by the fact that the high-frequency 

daughter wave convects out of the resonance cone of the pump 

wave in a transit time. The transit time, TTR' equal to the 

width of the cone projected along the direction of the group 

velocity di~ided by the group velocity magnitude, must be 

long comparP.d to a growth tirre r g in order for siqnificant growth 

to occur, i~e., TTR > Tg Since the transit time is proportional 

to wavenumber for lower hybrid waves, any low-frequency response 

that occurs ·for wavelengths short compared to an ion _gyroradius 

will allow the maximum growth of the lower hybrid daughter wave 
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.. 
provided kk

0 
is not so larg~ that the daughter wave is severely 

Landau damped (typically k:A
0 

:S 0. 25) . Because :A
0 

<< r;. , the ion­e 1 

Larmer radius, for physically interesting plasmas, coupling to 

ion-acoustic waves (I w I >> w . , kr. >> 1) or nonlinear ,Landau q1 1 ,, 

damping if T - T. appears to be the most interesting nonlinear e 1 

process. 

In the rest of this paper, we limit our consideration to 

non11near Landau damping or quasimode decay. We assume that the 

electrons a~e magnetized and 'that k 2 r~ << 1 where re is the 

electron-La~Tor radius. Thus, the electron susceptibility at 

the beat. f.rf?gue.ncy j s ~=:· 

where W(~) = [1 + ~z(t)J and Z(~) is the plasma dispersion 

We assume that the ions are unmagnetized and that function. 

k 2 r~ >> 1. 
1 

Thus, the ion susceptibility at the beat frequency is 

2 2 
X· (k, w) = W(w//2 k~v. )/k :A

0 
.• 

1 . 1 1 
( 2) 

This ~pproximation is clearly justified for the real part of the 

susceptibilit':y. The imaginary part is also correct :if the growth 

rate is large compared to the ion-cyclotron frequency or if the 

bandwidth of the lower hybrid.waves is large compared to w . 
. C1 

but small c~~pared to kc . In practice w ~ w and a s pe ce 

bandwidth, t1'uf = w . , is a small fraction of the lower hybrid wave 
C1 

frequency, 11w/w - w ./w . 
C1 R1 

(m /m.) 1/2 
.e 1 

•• 
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·rf Te.> 3Ti and kll /k ;>> (me/mi)
112

, the low-frequency 

response•can be expressed analytically by the approximate 
'I 

formulae , 

( 1 + 
iwlrr ) 

2 
( 3k

2
v

2
) 1 w . 

xe = 
k2A.2 

X ~ 1 + 1 = 
12 kll ve i 2 2 

De w w 

i ITT 2 
+ w 

exp(-
w ) -

2k2w~ k2A.~. 12 kv. 
1 

. 1 1 

- 1/2 where v. - . (T. /m. ) and v = (T /m )1/2 . 
e e 

In this limit the 
1 1 1 e 

low-frequency response is resonant, Rec:(k,w) = 0, and maximum 

coupling obtains when w = w + iy where wA = kc 
A A s 

::2) l 
1 

and 

1/2 c
5 

= [ (T + 3T. ) /m. ] . e 1. 1 

If T < 3T., then the real part of the dielectric doesri't 
e - 1 

vanish for any value of w. However, the maximum response for 

' . 1/2 
k II /k > (m~m.) still occurs when 

! - 1 
Rew = kc ·. 

6 
In this case, 

the low-frequency response is dissipative because the beat phase 

1/2 
velocity is close to the ion thermal velocity if k II /k. >> (me/mi) 

or to the electron ·thermal velocity if k II /k - (me/mi) l/2 . 
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Because the beat wave is a highly damped wave, i.e·. 

yA - wA >> y , where y is the parametric growth role, the low 

frequency wave amplitude is related to the amplitude of the high 

frequency wave by its linear properties. The low frequ~ncy 

response ca~ therefore,be obtained by introducing a nonlinear 

ponderomotive potential produced by the beating of two· high 

frequency wav~s into the Vlasov-Maxwell equations for the low 

frequency r~sponse with the result that 

L 4 'If P. n ( k 1 (Al ) (k I Y~ ) 0 k rfl ( k I f lo,\
1 

) 

"""'J"""" /V'oA I 

. ' 

( 

k - k I 

"'(k-kl, w-w~) II II 
'+' w-w 1 

k I ) - JL wl (3) 

This result is combined with the equation for the high frequency 

wave potentia+... 

k• (e xk 1) 
~"""" ~ /¥>A 

( 4) 

to obtain a nonlinear coupled mode equation. If the random 

* phase approximation, i.e. <<Pk<Pk1> = Ek 6k,kl 
/"tt'A~ ~ ./V'V'\./"v"'oA 

, is valid the 

nonlinear evolution of the parametrically unstable lower hybrid 

. . . 10 
waves can be .described by a wave kinet1c equat1on 

·...:: 

1 a Ik = 
2 at NV'. 

( 0 NL) r· + S 
y L + y k + y k · 'k k 

rv"A ~ ./VV'. 

( 5) 

I. 

., 
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where ~k is the wave action or number density, yL is the sum of 
0 

all linear losses, yk is the growth rate of the mode due to non-

NL linear 1 Landau damping of the pump, yk is the growth rate due 

to the nonlinear Landau damning of the decay waves, and Sk is 

the spontaneous emission of lower hybrid waves which is domi-

nated by the low-frequency noise beating with the pump and ex-

't d d t d h' h f . ll A c1 e ecay waves o pro uce a source at 1g - requenc1es .. 

derivation 

Appendix. 

I = k 
""""" 

0 

y = 
k 

""""" 

y = L 

+ 

of the spontaneous emission term is given in the 

The definition of these 

k21 <P 12 
k 

(1 + w 
2 

jw 
2 ) 

Ee ce 
4n 3 

(2n) wk 

2 .2 kxE 2 
wih c """"" .-vv() -

8B2c2 -2- k w 
0 s 0 

~ ( ~) 1/2 
2 w2 

y"' + 
Wf..h k 

wk 22 
k.~,v. 

T. 
1 

T e 

1 

quantities is 

B (k, wk- w ) 
""""" 0 

wk 

2 

~~ 
L k.~,vi 

exp-( wk 2) 
2k.~,v. 

v ( w 
2 

e pe 
2 2 2 

It\ + l.tl 
pe ce 

1' 

2 2 
+ wk- wih) 

2 
lt.l k 

2 2 2 

y = -NL --=----=----=.(...~--.,,..-- d 3-~-1 """" """" /V><>. 

4 7f C W Oh J (k X k 
1 

• Z) 

2 B 
2 c 2 ( 1 + w 2 I w 2 ) , .. , k 2 k I 

2 
o s pe ce 

T 

(6) 

( 7) 

(8) 

s = 
k 

6 
( -7T2 ) 1/2 (2n)- e 

l67T 
wih 

X G ( k I (I) ~ Ill ) 
. """"" k 0 w 

k 

Ik 1 G(k-k' 
,-vy, /\1\A. , 

( 9) ' 
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where 

2 

G(k,w) 
w. 

1 

and 

. [,.. ( 2 ·) (' ·~n. ') 1./2 X exp - w . + · J:. 

. ?k2 2 m 

. . -- Uve e. 

k. 'T 1/2 " ] 

~ ( T: ) exp (- ·2k~~v~) 
1 . 

(

T WW. ) 
B (k 'w) = Im. T e1. k2 A 2 + We 1 

+ T W./T. De e e 1 1 

T /m. ' w oh e 1 N 

(10) 

i 

-~ 
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* v is the electron-ion collision frequency, and y includes any 
e 

additional sources of energy loss. In particular, because it has 

been shown that convection of the wave out of the pump resonance 

cone is the dominant loss mechanism in many realistic heating 

experiments, we have used a loss rate equal to the transit time· 

of a wave across the resonance cone in some calculations to model 

the experimental situation. 

It is clear from Eqs. (5)- (10) that waves with freq~ency 

smaller than the pump frequency are destabilized by the pump 

and at the same time higher frequency waves .are stabilized. If 

the pump field is. strong enough,waves with lower frequency grow 

until they act as pumps to destabilize still lower frequency 

waves and stabilize higher frequency waveg. 

The frequency separation of the decay wave from the pump 

wave ~w is proportional to kAn wpi and lines of maximum growth 

rate will be diagonal lines in the (k,wk) plane. At short-

wavelengths, linear Landau damping will 

waves whose wavenumber satisfies kADe > 

any growth of 

2 2 ) 1/2 w jw pe ce · 

the instability will be characterized by a maximum frequency 

Thus, 

shift of ~wm ~ 0.25w~h· This behavior is shown in Fig. 1 which 

shows the value of B~'-~, ~ ,-~) maximized as a function of kll 
I """" ~ 

when k~·k~ = 0. It is interesting that short-wavelength pumps can 
""""."""" 

result in frequency shifts as large as 0.1w . The process 
~h 
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involved in .the cascade of energy to lower frequenci~s is also 

nonlinear Landau damping and tpus, a change in frequency of 

approximate!~ ~wm will occur in each cascade. By integrating over 

k and by using the antisymmetric property I. 

B (~'-~wk ,-wk) = -B (~~, wk -wk') (11) 
/VV'- /VV'-

we obtain from Eq. (5) the useful and informative conservation 

law for the plasmon number Ik 

(12) 

where 
·:t 

:c. 
" . 

A steady state is reached (ar;at = G)with a saturated~evel of 

plasmons far exceeding the initial level when the numher of plasmons 

created by th~ -constant amplitude pump equals the number of 

plasmons lost: .to the system by Landau damping, collisional 

damping·, or convection. We ass.l;lme justifiably that S is small 
~ 

and can be neglected at saturat~on. This law shows that 

saturation ca~·be achieved only by providing a sink of energy 

at lower frequencies. In an in:fini te homogeneous system,. the 

·only sinks ar.~: creation of high energy tails on the velocity 

distributions by Landau dampin~ of short wavelength waves and an 
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increase·in electron temperature by collisional damping. 

Because in absence of convective losses the decay wave 

· energy·, will naturally concentrate in collisionally damped modes' 

strong instabilities, whose growth rate far exceeds the colli­

sion fr~quency, will require many cascades to achieve a saturated 

state and satisfy the conservation law for plasmon number in 

steady state 

J d3~(YL + Y;; I~" 0 (13) 

when MaxiY .1 = Y >> IYLI , that is, v jwlh << c
2

IE
2

I/4B
2c 2 

wlh/w
0 

• 
O) om e o o s 

In view of the previous discussion, it is clear that only 

instabilities produced by pumps very near threshold can saturate 

by cascading. The rate at whic.h plasmOns are absorbed is approx-

3 imately v e I= 2 f d ~YL Ik . The rate at which plasmons are created 

is 2y
0
mil = P veil where I 1 is the number of plasmons in linearly 

unstable modes, and P is the ratio of the pump power to the thres-

hold power. We can estimate the total number of plasmons I= mi 1 

where m is the number of cascades. Since lower hybrid waves have 

a minimum·frequency w~h' the maximum number of cascades is 

M= (W
0

- wlh)/Llwm Thus, the conservation law for plasmon number, 

·Eq. (13), puts a limit on P that 

(14) 

The saturation of decay instabilities including convective losses 

requires some explanation. The convective loss rate of a wave 

in the-pump resonance cone equals the component of ·the wave group 

velocity normal to the pump group velocity in the plane of propaga-
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tion of the pump (x-z plane) divided by the width of the resonance 
' \-~ 

cone in this direction. This rat~ which depends on the angle the 

wavenumber makes in the plane· normal to the magnetic field, is 

y* = 
(15) 

T' 

where cosl/lk = kx/k and L is the extent of the antenna:. in the z 

direction at the pl~sma boundary. This rate can on~y vanish if 

k = 0 and wk:;::: w • The co{Ilbination ot the convective loss rate y ., 0 

with the Landau damping rate implies a minimum damp{ttg rate at a 

rather short wavelength where the two rates a,re alrnos.t equal. 

Therefore, the decay wave spectrum will be concentrated at rather 

~hart-wavelengths and the cascading process of necessity will in­

volve large frequency shifts. In addition, the threshold tor 1n-

stability will be raised substantially as the ~inimum damping rate 
~~' 

replaces the collision rate ~n calculating the threshold power. 

Implicit in this model is the assumption that the interaction 

width of sec0ndary decay waves with the primary decay waves ex-

cited by the:~ump is equal to the width of the pump resonance cone. 

In fact, thi~ is a reasonable q.ssumption because once waves convect .., 

out of the resonance cone, i.e •. , the amplifying medium, they, 

being such short-wavelength wa:ves, damp rather quickly by linear 

Landau damping. 
'J:. 

•·!"'· 
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An estimate of the steady state plasmon number can be 

obtained from Eq. (5} by setting the Sk, yL, and left hand side 

equal to zero so that one finds 

0 • 

Estimating B(k'-k, wk - wk} sin
2 

(wk -wk,} by its maximum value 
"""' """' 

"""' """" ;vv.. 

in both the linear and nonlinear growth rate, we obtain 

fd3~ 1 
IE 12 

I Ik' = 0 = I (16} = l67T w 0 
0 

,. 

or that saturation will occur when the plasmon number of decay 

waves equals the plasmon number of the pump. An immediate 

consequence of this dimensional analysis is that the energy in 

h~gh-frequency decay waves will be smaller than in the 

pump wave because the frequency shift of the decay wave spectrum 

is so large. The actual relationship between the decay wave 

energy and the pump energy can be found from numerical solutions 

to Eq. (5) which we present in the next section. 
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III. NUMERIC~L SOLUTION OF WAVE KINETIC EQUATION 

Direct solution of Eq. (5) requires three-dimensions in 

wavenumber space. To simplify the calculation,we have assumed 

that the number density and wave energy are almost isotropic 

functions of.the azimuthal angle ~kin wavenumber space. We then 

average Eq. \5) over the angle ~k to obtain an equatio.n for the 

angle averaged number density:Ik. We solve the resulting 

equation numerically on a wavenumber grid in (k~, k II ) space. The 

integral in ~:~. ( 9) is replaced by a sum over discrete modes; 

the number derisity is multiplied by the volume element in wave-

number to obtain the number of plasmons 

per jth volume element N .• We then 
J 

normalized this plasmon 

number to the plasmon number of the 
2 2 2 

pump N = (l+w /w ) IE I /16nw
0

. 
o pe ce o 

As a result, we obtain a nonlinear time dependent matrix equation 

for the evolution of the plasmon number N. , 
J ::• .. 

(-yi . + y . + ~ 
"'J OJ 

NT. N ) N + S'. y.. . . 
J~ lo J J 

(17) 

l. 

Time is normalized with respect to lower hybrid frequency as are 

the linear an~ nonlinear growth rates. We introduce the 

umb f the J
.th 

normalized frequency and waven · er o zone 

2 1/2 
K. = k~.{T /m.w 0 h) , and 

J J e 1 .(.. 

Thus the nondimensional growth rates are 

.,._ 



ioi'· 

3/2 
= .!. (.:!!.)V2 W j [ W j ( T e ) 

2 2 K2 K. T. 
j J . 1 

2 2 

., 
. I 

::.~9-
.:f 

\) ( w + ___ e_ --=--~p_e-=~ 
2w 0 h 2 2 .(.. w + w + K~;~) -* + y 

-* 
y = 

y ~~ = 
]1 

pe ce 

(W~-1}1/2 

w. 
J 

(:~) 
1 

~(1 + 
De 

w. 

J J 

1/2 

2 -1/2 

:~e) 
ce 

2 2 
16B c 

0 s 

~2 B (K., x., w. -w > 
w J J J 0 

0 

2 2 
c Eo 1 -

_1_6_B~2=c~2 Wo B(Kij' 
0 s 

X .. ' 
1] 

w .. } 
1] 

where w wo/wih' 
2 K~ K~ 2K.K. = K .. = + 

0 1] 1 J 1 J 

X •. = lx. - x.l W .. = w. w. and ' 1] 1 ] 1) 1 J 

w. ( w~ )] + _]_ exp - _J_ 
X. 

2 
2 

J X. 
. J 
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B(K .. ,. X .. I w .. ) • 
l.J l.J ! l.J 

(23) 

In the numerical solutions to Eq. (17), the thermal corrections 

to the cold···'plasma dispersion relation for lower hybrid waves 

were included with the result that 

W
2. . 2 2 4 4 . 2 2 = l""+(x.)/(K.) + 3(x. +K.)/(x. +K.) 
J J J J J J J 

( 24) 

The grid size ~(K.,x.) was chosen to reflect the fact; in the 
J J 

cold plasma approximation, the frequency W. is const.~mt along 
J .. 

curves defined by x/K = const. An adequate representation of 
- ; 

B is ensured~if, on adjacent constant frequency curves, a 

number of pairs (K.,x.) exist such that either 
J J 

(W - w ) / ( I K~ + K 2
1 ) 1 

J l. J l 

or 

(W. - w. ) I ( I X. - X. I ) - 1 • 
J l. J l. 

:.z 

The representation chosen does satisfy these criteria. The 

spontaneous emission term becomes Sj = SKVK/N
0

wlh" 
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For computational purposes, we set Sj = K.S where S is.a small 
J 

constant and the wavenumber dependence of s. reflects the 
J 

wavenumber dependence of the volume element VK. S was chosen so 

that N. = yL.s .. The value. of S has been varied by orders of mag-
) J J 

nitude without substantially altering the results. This insensitivity 

is a result of the fact that the saturated intensities of the non-

linearly unstable modes are many orders of magnitude larger.than the 

initial values. The initial value of Nj was determined by setting 

NJ. = 2K.N. /K. where K. is the maximum value of K .. In all 
J JO Jmax Jmax J 

-6 cases reported here, N. = 10 . Equation (17) was advanced in time 
JO 

with use of a second order explicit integration scheme. The time 

step was small compared to both the linear and nonlinear growth 

rates. The (K.,x.) wavenumber mesh used was (5,60), (10,30), ~nd 
J J 

(20,15) 'for a total of 300 zones. 

Solutions to Eq. (17) were obtained for W = 1.42, 2.0, 
0 

and 4.0 for pump power relative to threshold power between one 

* * and six times threshold. Cases were run y = 0 and y t 0. 

* The results with and without y are similar except that the 

characteristic frequency shift involved in each cascade is larger 

* and the energy in long-wavelength modes is suppresed when y = 0. 

In Fig. 2 we show an example of the time evolution of the 

total decay wave energy. There are oscillations of decreasing 

amplitude in the total em~rgy r~hnut the steady state value. 

An examinati'on of the individual modes shows that this oscillation 

is a result 'of.an exchange of energy between modes similar to 

coupled harmonic oscillators. Because these oscillations persist 

a long time before se~tling down to a steady state value, we 

have employe;d the technique of interrupting the time evolution 
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j -

after a few oscillations and restarting the system with the 

instantaneous value of the plasmon number replaced by its time 

averaged value. This technique saves computational time ih 

finding accurately the total steady state wave energy,. The wave 

energy per volume element is u. (K. , W.) = 2W. N. • We .. will present 
•,t J -"""] J J J 

results for u., the total energy u = r u., and the energy per 
. ~J j J .. 

frequency interval u(W) = L u .. Two classes of decay 
j,W':£(W,W+llW) J 

waves are de.stabilized by th~ pump. One type is l~w-phase 

velocity waves that are convectively amplified to a nonlinear 

level in one transit across the pump and then damp quickly in 

space. The other types, high-phase velocity ducted waves, 
:c 

transit around the torus, and thus through the pump many times. 

These waves 'are destabilized by the spatially averag~d pump 

electric field. These waves are damped by collisions only and 
(• 

have lower thresholds than the convective modes, but .. also have 

correspondingly smaller growth rates. The nonlinear saturation 

of these waves by cascading is considered in Sec. III. A. The 

saturation of the convective modes is considered in Sec. III. B. 

III.A. Infinite Homogeneous Plasma 

In this seclion, we set y* = 0 and present the results of 

numerical solutions to Eq. (17 j; for pump frequencies in the range 

1-4 times tq? lower hybrid fre~uency and pump powers 1-6 times 

the threshold power. The threshold power is determ~~ed by the 

collision frequency, which i~ ~ery small compared t~~both the 

lower hybri~frequency and th& acoustic frequency. ~hus, the 

nonlinear time evolution sca-J.:e"§ with· the collision frequency. 

::I. 

:·:... 
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In Fig. 2, we show that time history of the total decay wave 
~ e 

' 
energy normalized to the pump energy for w = 1. 42W 0 and P = 1. 3. 

0 -t...h 

The characteristic oscillation in energy discussed in the pre-

vious section is apparent. For pump frequencies in this range, 

only one cascade is available to the linear unstable modes before 

the minimum frequency mode is destabilized. Therefore, saturation 

by cascading will not be an effective saturating mechanism for 

the decay instability in this frequency range as is evident in 

Figs. 3, 4,·and 5. 

In Fig. 3, we show the frequency spectra when w
0

=1.42wlh 

and for pumps 1.3 and 3.0 times threshold. In the former case, 

the ene:r;gy iri lower frequency modes is smaller than the energy 
' ' in pumped modes and is below the energy necessary to destabilize 

the nonexistent lower frequency modes. However, the energy in 

the lowest frequency mode in the latter case is above threshold 

for destabilizing other modes. Since no further cascading is 

possible, the energy in these modes will continue to increase 

until the threshold for other nonlinear processes to occur is 

surpassed. We will return to this question of condensation in 

the concluding section. Figure 4 shows the two-dimensional 

energy spectra for P = 1. 3, which shows that the energy is con-

centrated in collisionally damped waves. There is significant 

energy in the longest wavelength lowest frequency mode, but its 

energy is still much smaller than the pump energy and is below 

threshold. Figure 5 shows the two-dimensional spectra for 

P = 2. 0. There is a dramatic increase in the energy in the 

lowest frequency longest wavelength mode to the level where it 
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\ 
would be above threshold for destabilizing lower frequency modes 

if they existed. 

The con9ensation phenomenon outlined above differs from the 

collapse p~enomena separated:by Musker and Sturman9 .in the follow-

ing way. Our calculations have a constant driving fqrce and show 

that wave energy accumulates Secularly in regions of."long-wave­

length and pe·rpendicular propagation (11 /k2 
<< me/mi) ~· The Musker 

and Sturman $alculation concentrates on the region ~here the 

thermal corrections to the dispersion relation [see (24)] dominate 

the angular .cold plasma terms. The problem, then, be·comes two-

dimensional, and they demonstrate by a numerical calculation that 

a collapse phenomena occurs for a fixed amount of wave energy. 

Since our cohlputations show that the wa.ve energy accumulates in 

the long-wav~length reguire where the thermal corrections are 

very small, ~the adequacy of the two-dimensional model remains in 

qucotion. 

For w
0 

~- 4. 05wih, the available wavenumber space for cas­

cading is mueh larger and cascading is an effective means for 

saturation ?~ the decay instability up to powers 8-10 times 

threshold. ,['he solution to Eq. (17) was studied for pump powers 
.l' 

The frequency spe~tra obtained in the range 1-b times threshdld. 

for P = 2. and 4. are shoWn in Fig. 6. These spectra are similar 

to the Langmuir-ion acoustic decay instability where a series of 

peaks separated by acoustic frequencies is observed. 
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III.B. Cascading with Convective Loss 

* In this section a finite value of y is used which inhibits 

the growth of long wavelength modes due to the short transit 

time such modes have. The total linear dissipation rate then 

has a minimum as a function of wavenumber. For the parameters 

chosen, collisional damping is negligible and the most unstable 

waves are ordinarily strongly Landau damped. As a result, the · 

threshold is much higher, the frequency shifts are larger since 

only rather .short-wavelength modes can interact, and the nonlinear 

growth time scales with the convective loss rate and linear 
I 

Landau.damping rate. The various time scales obey the inequalities 

*-1 
<< y NL-1 

~ y 

* Examination of Eq. (20) shows tQat <y > + 0 as W. + 1 so that 
J 

convection will not be effective in preventing condensation. 

Moreover the concept of group velocity is not valid in the 

vicinity of turning points or resonances which are implied by 

the frequency approaching the lower hybrid frequency as can be 

seen directly from the dispersion relation (24). We limit 

ourselves therefore to the consequences of including convective 

loss in the wave kinetic equation when w
0 

= 4wlh . The two 

dimensional energy spectra for P = 4 with convective loss is 

shown in Fig. 7. The energy has spread to waves that are 

strongly Landau damped. The coupling of shor~wavelength waves 

to long wavelengths where the coupling is strongest (see Fig. l) 

is inhibited by the inclusion of convective loss. Most of the 

energy is concentrated in waves with K ~ 0.2. In Fig. 8 we show 

a comparison of the frequency spectra for P = 4 with and without 

'··· 
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convective losses. Two features are apparent. First, the initial 
~ 

frequency shi}t of the spectrum away from the pump is~larger with 

convection. The second feature is the spread of the ~p~ctrum closer 

to the point wk = w th with convective damping for the.:.·s'ame power 

relative to tDreshold. This is a result of the suppression of 

long wavelengths by convective loss and the larger absolute value of 

the pump power which parametrically destabilizes shorter wavelength 

more highly d~mped modes. We expect that the relative power required 
. 

to destabilize the minimum frequency mode will be lowRr in thi~ 

case. This expectation is confirmed by the frequency:spectrum for 
li 

P = 6 in Fig. -9,which shows that the decay wave spectrum has spread 

to wk - wth" ~One of the main results of this paper is that strong 

pumps do not saturate by cascading. Either a strong turbulence 

theory or other nonlinear or nonuniformity effects will be required 

to follow strong pump instabilities to a nonlinear st~ady state. 

Another characteristic of the spectra with convective loss is 

that they are~~continuous as a,function of frequency unlike the dis-

crete spectra without convective loss. These convective damping 

spectra are similar to the spectra observed by Porkolab, et al, 

during radio- frequency heating experiments on Adiabatic Toroidal 
. 4 :. 

Co~pressor. 
. "-,:· 

The saturation by cascading of the parametric decay instability 

for electron ~lasma waves has been treated by Rubenchik, et al., 

for the case that w >> w and w > w >> Woh · ce pe pe- o .{.. 
In this case, the 

ion motion can be neglected so the frequency dispersi~n becomes 

w = w k I (k . ._ Outstanding differences in treatment w~re that the 
pe . 

nonlinear coupling arises from motion along the fie~d lines rather 

than E x B dri_~t across the field lines, and the scattering was only 

due to ions rather than the roughly equal contributiops from ions 

and electrons for the cases treated in this paper. By far, the 
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largest discrepancy in results was that Rubenchik, et.al., obtain 

a saturated spectrum that was concentrated in short-wavelength 

modes rather than long wavelengths in the corresponding cases, 

i.e. no convective damping. We believe that this result is an 

artifact of the use in Rubenchik, et.al., of a differential form 

for the nonlinear scattering term as was done in early treatments 

f h t . f h . d . b"l" 12 h o t e sa urat1on o t e Langmu1r ecay 1nsta 1 1ty. In t e 

Langmuir case, this approximation led to a spectrum sharply 

peaked in the angle 8=cos-1 (k·i) where k=k/lkl and i =E /IE I 
.NV'>. .....vO .NV'>. """"' .....vO ,.,..v() ,.,..v() 

whereas numerical solutions13 showed that the spectrum was much 

broader in angle. In the lower hybrid case, the k[(k replaces 

kADe and kADe replaces e . Thus, one might expect to obtain a 

spectrum continuous in kl(k and peaked in kADe from the differen­

tial form. 
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IV. PUMP DEPLETION AND HEATING 

The expe.rimental evidence and theoretical analysis have 

shown that current heating experiments are operating in a range 

of pump powers that is adequately described by weak turbulence 

theory - especially when one includes convective loss. 

It is important in futur~ experiments to avoid serious pump 

depletion in the low-density plasma near the surface in order 

to deliver tpe pump energy tQ the main plasma. It is valuable 

therefoJ;e to know thP. r~nnmr.lou~ dilmping r.:1tc of the pump yeff , 
··' 

that is, the rate of energy loss by the pump due to nonlinear 

effects. From the conservation law for plasmons, we have 

(35) 

3 
The total number of plasmons I = f d ,~, Ik as a functiun of pump 

power has been found from the numerical results to obey the 

approximate solution 

I = 0. Sp' I 
0 

and thus 

.,. 

(26) 
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( 2 7) 

When convective losses are included, the damping rate is wave-

number dependent. In Fig. 10, we present the results of a 

numberical evolution of the total decay wave plasmon number 

versus pump power. By comparing the dependence of the effective 

damping rate for the pump on P where 

(28) 

and the dependence of the total decay wave plasmon number on P, 

we find that, to a good approximation, 

(29) 

where a is a coefficient of order unity; y is the minimum damping 

rate and has the approximate value 

y = vgk/L (30) 

where L denotes the length of the waveguide array along the 

magnetic tield. Using Eq. (29) and the radial group ·velocity for 

the pump,. 

v = gxo 

2 2 3/2 
k (w - w .t ) 

xo --- 0 h 
k~ - wo w.th ko II 

1/2 

(::) ( 31) 

0 

we obtain·an equation governing the depletion of the pump power rr 

an 
(32) 
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where the absorption length L b is given by 
a s 

L 
abs = 

w 
0 

w 
pe 

2 1/2 ( m~: ) ( ~) (33) 

where Nil= c~l 0/w0 • The absorption length in Eq. (33) is valid 

only when w
0 

> > w .th, which is the primary region of interest here. 

From Eq. ( 7)' of Ref. 3, we have at radius r the threshold formula, 

11 
TH 

r 
a 

T 1/?. 

( m~) 

where a is the minor radius. This formula is appropriate if 

T >>T. and w >>w 0 • However, the scaling of the threshold e 1 o ~h 

(34) 

w.i th density· and temperature is independent of these assumptions. 

Let us assume that both the electron temperature and the density 

have a parabolic profile so that in terms of the central tempera-

ture and central density, 

n(r)/n(O) =T (r)/T (0) = (l-r2/a2). e e 

Using Eqs. (32)-(35), we obtain 

dl1 = 
d:r ( :i) 

e 

1/2 

provided 11 > 11 • We defined --:.·· TH 

a 
~ 
B cL 

a 
r 

: .: (35) 

1 

~ De 

(36) 
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= 9 ( 2n) 1/2 ( w ) 
2 wpol. 

.. aNII 

(37) 

= (7 Megawatts) 

. 2 

( 
T e ) ( 1 o l3 em-

3 
) ( 1 ) ( B ) { L ) ( f 0 ) ( 0 • 8 ) 

keV n N2 50kG I a lGHZ -a 
. e II 

in terms of the central values of the electron temperature and 

density and neglected the weak radial dependence of the magnetic 

field. Let us define r
0 

as the radius at which IT = nTH . 

pump power at radius r > r is then 
0 

where IT 1s the incident power and 
0 

I . 

f(r/a) 

The 

(38) 

= 1 dx/x (l-x2 )
1

/ 2 
r/a 

= - (1- r 2 ;a2 ) l/2 + .tn{tg [n/4 

(39) 

+ 1/2 cos- 1 (r/a)]} . 

The functional dependence on radius given in Eq. (39) is, of 

course, sensitive to the radial profile one assumes for the 

temperature and density dependence. Figure 11 presents a graph 

of f(r/a) and 1/f(r/a). Formula (38) also shows th~t there is 

a limiting power n given by max 

(40) 

I 

which governs the maximum power which can penetrate past a 

given radius r. More important is the scaling implied in Eq. 

(37) which shows that pump penetration improves for small 
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parallel ind~x of refraction, large magnetic field, high tern-

perature, and small densities. The most unfavorable scaling 

is the inverse linear dependence of TIN on the plasma radius a. 
~..-. 

Equations (34) and (35)'make it clear that the threshold 

is a decreasing function of radius r due to the strong depen-

dence on temperature. Equations (33)-(37) are valiq_only when 

W > > W£ 
0 h ~~n fact, the threshold for the convective quasi-

mode is also low in the plasma interior if w
0 

<;: 1. 5hl.th because 

the decay waves then have small group velocities as .. ~an be seen 

from Eq. ( 31:} , and because the pump electric fields. are strongest 

there provided no severe pump depletion has taken p~ace at the 

plasma surface. If the incident power is less than the maximum 

value of the threshold power, then a radius r
0

, for which the 

power equa.:!.s the threshold power,will exist in the p"iasma periph-

.; ~ . ' 
ery. We have calculated the percentage of the incident power 

that is abs8:tbed by the plasma surface between r = r and r = a. 
0 

This fraction of the power is wasted heatinq the surface plasma 

(the plasma between r = r and r = a) and is unavailable to heat 
0 

the main pla:sma. Evaluating Eq. (37) for Adiabatic ... Toroidal 

13 >') 
Compressor, .. "ffe assume n = 3 x 10 em , 

') ...• 1 
w = 5 x 10 sec . , 

0 

Te=BOO eV, B=l7kG, a=l7 em, L=20 em, Nll=2.7_ and a=0.5. 

For a typicc;tl incident power ·n
0

=100 KW, r
0
/a=0.98, only 2% of 

the power is absorbed by the' surface plasma and pump depletion 

is not a problem. However if N II= 5. 5, which provides better 

accessibility and is typical of some of the waveguide launchers 

used on Adiabatic Toroidal Compressor, then 15% of the power is 

absorbed by 'the surface plasma. In Fig. 12 we show, based on 
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Eq. (39), the fraction of incident power absorbed by the surface 

plasma as a function of incident power for Adiabatic Toroidal 

Compressor and Peloidal Divertor Experiment parameters for 

Nll=2.7 and 5.5. For Peloidal Divertor Experiment, we assume 

13 -3 9 n=3·x 10 ern , w =5x 10, T =1.3 keV, B =25kG, a=45 ern, 
· o e o 

L = 24 ern. The importance of tailoring the wavenumber depen-

dence of the pump spectrum so that the parallel index of refrac-

tion is small i.e., Nil$ 2 but yet satisfies the accessibility 

criterion .Nil ~ 1.4 is clear from a comparison of the surface ab-

The sorption for the same power II
0 

but different values of N II" 
parallel index of refraction Nil is important for two reasons. 

First, larger values of Nil for the same incident power lower 

the threshold for instabilities by increasing the pump electric 

field. Second, the slower group velocity decreases the scale 

length for pump depletion for a given anomalous damping rate. 

The threshold formula (33) is modified when T < 3T. because the e ~- 1 

parametric decay instability is weaker when the low-frequency 

mode is nonresonant. In fact, the threshold is about ten times 

higher if T = T. than Eq. (33) indicates. However, the exact e 1 

value of the electron to ion-temperature ratio is unknown in 

tokarnaks and is undoubtedly a function of the minor radius be-

cause the 1irnpurities and neutrals at the plasma edge probably 

cool the ions and keep T >> T. although the temperature ratio e 1 

is closer to one inside because of the good perpendicular ion-

thermal conductivity and·poor electron perpendicular conductivity. 

However, if the divertor on Peloidal Divertor Experiment is ef-

fective in controlling impurities, one might expect the threshold 
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formula (33) to be an underestimate. If the threshold is doubled 

at all radii, then the same percentage of power is absorbed by 

' ' 
the edge plasma if the incident power is doubled. 

The plasma heating rate can be found from knowledge of the 

steady stat~ energy spectrum·of lower hybrid waves ... ·The anomalous 

damping rate for the pump giyes the rate at which pump wave energy 

E
0 

is converted to particle energy sp, i.e.: 

(as )/(3t) = 
p 

: ' 

: 

More interest·ing is to predict how the energy will P.~ deposited in 

the plasma. First, one must establish the percentage of energy in 

the beat wave EB , which is converted directly to thermal velocity 

electrons streaming along the field lines and therma} velocity ions 
I -

traveling across the field lines. From conservation of energy in 

steady stat$~ one finds sB ~ ~wi where b.w is the characteristic 

frequency s~~ft in each cascade. Because of the large ~hift in 

frequency of the steady state spectrum from the pump'-"waves, this 

b.w 
energy flow·to particles is significant, i.e. sB:::::- E - 0.25s. w p p 

The details of the division of energy between electrons and ions 
r. 

from the b~at wave depends on the beat wave energy density which 

do not solve. for here. For an infinite homogeneous 'plasma, the 

high-frequency decay wave spectrum is concentrated in long-wave-

length collisionally damped modes, and thus the main body electrons 

are ·.heated ... ,. When convection is important, the decay wave energy 

is concentra-t:ed in short-wavel~ngth waves such that k~De - 0. 25. 

If~ >>wih' the energy is de·posited in somewhat superthermal 

'· ~ 
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electrons with vii~ 4ve but if wk ~ 12 wlh , the energy is deposited 

in superthermal ions with v~ ~ 4vi. Clearly most of the pump 

ener;gy creates a tail on the electron distribution. Any super-

thermal ions are the result of beat wave heating and represent 

a fraction of the total heating. 

Let us now turn to the nonlinear absorption produced by high­

phase velocity lower hybrid waves, which are ducted around the 

torus by density profile and destabilized by the spatially averaged 

electric field. In the linear regime, these waves are damped by 

electron-ion collisions. The appropriate model for ducted waves 

is the infinite homogeneous plasma model of Sec. III.A. (i.e. no 

convective losses) with a pump field given by the spatially 

averaged electric field. Reference 3 has shown that ducted waves 

can be above threshold in many tokamaks. Our nonlinear calculations 

show that for the infinite homogeneous plasma model, only high-

phase velocity waves reach important nonlinear intensities (see 

Fig. 6). Since the effective collision frequency for these waves 

will be of the order of the electron-ioncollision frequency they serve 

to augment the collisional damping. But since collisional damp-

ing is too;weak to play an important role in tokamak heating, the 

high-phase1velocity waves do not contribute significantly to 

plasma heating. 
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V. CONCLUSIONS AND APPLICATIONS 

Radio-frequency heating pear the lower hybrid frequency is 
' 

an attractive means for heating tokamaks because the·· power can 

be delivered:. to the plasma without the need for structures inside 

the vacuum vessel wall as other lower frequency wave heating 

mechanisms require. The most serious obstacles to successful 

tokamak heating are that 1) the threshold for nonlinear pro-

cesses may be so low in the low-density plasma near :the limiter 

that the pump power is dissipated there rather than :tn heating 
. -~ 

the central plasma; 2) the wave energy appears to be transferred 
~-.. 

primarily to electrons located in the tail of the distribution 

and streaming along the toroidal field lines; 3) waveguides must 

be designed so that the Fourier decomposition of the!"' power 

spectrum has a very well defined parallel wavelength~ The 

question of'thresholds is addressed in a companion paper. We 

show in Sec :··III that the power incident from each waveguioe 

array must be kept within a few times threshold near the plasma 

surface to ayoid severe pump depletion. Moreover, this require-

ment becomes more stringent as the minor radius incr~ases and 

as the paraliel wavelength becomes shorter. The fact that the 

threshold i~creases with toroidal magnetic field and with the 

plasma temperature is favorable to larger tokamaks. ~-The second 

obstacle has two implications. First, experimental evidence 

that the tail electrons are actually accelerated was difficu~t 

to obtain in''·'Adiabatic Toroidal Compressor since the 

bremsstrahlung radiation from ST electrons did not lie within 
~ e =::- .\ 

the r~nge of the detectors. Second, there is evidence from 
.' r..:. , 

.\. 
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neutral beam injection experiments that electron temperature 

in<..:reases are difficult to obtain in present-day tokamaks. If 

this conf;inement problem continues with larger devices, the 

tokamak fusion progra~ in general and lower hybrid heating in 

particular, face a difficult future. The third obstacle is less 

fundamental. We have shown that it is highly advantageous for 

the purpose of avoiding pump depletion that high parallel index 

of refraction components (Nil > 2} not be imposed by the waveguide 

launcher. The small components (~I 5 1.4} that do not satisfy 

the accessiblity criteria will not penetrate to the plasma 

interior but will be confined to the low-density region. Prac-

tical considerations demand that we put as much power as possible 

through one waveguide launcher to minimize the number of 

launchers required for significant heating~ Thus, in order not 

to waste a large fraction of power heating the plasma periphery, 

the waveguide array should be designed to launch only waves with 

parallel index of refraction between 1.4 and 2.0. 

If the pump wave energy does penetrate to the plasma in-

terior, the threshold for decay is certainly exceeded. We have 

shown, however, that a steady state will not be produced within 

the context of the cascading model even for relatively modest 

pump powers. A model adequate to predict saturation, Ute 

resultant heating rate, and the details of the energy deposition 

will need to include such nonlinear processes as the oscillating 

14 two stream instability, the coupling of three lower hybrid waves, 

nonlinear frequency shifts, and phase correlation effects, 9 as 

well as nonuniform plasma effects. However if w
0 

>> w.lh , we have 

... ·,, 
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shown that st~ady state solutions to the wave kinetic equations 

do exist for pump powers many times threshold. Many ~~periments15 

have demonstrated for w
0

- 1-lOw..e.h the occurrence of parametric in­

stabilities. ''However, direct comparison is difficult because 

the physica~ parameters are very different from the .ones assumed 

in this paper. Also as we have showh,this case is important in 

estimating the amount of pump depletion that occurs in the low-
.. -~' .. 

density edge region of a tokamak plasma. 
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APPENDIX 

We follow the treatment in Ref. 16 but restrict our 

attention to electrostatic waves. We assume a large amplitude 

wave 

E (x,t) = E cos (k •x-w t) 
~ 0 Ivy() NV' 0 

which couples the low-frequency electron density fluctuations 

on (k,w) to high-frequency lower hybrid sidebands at w+ = w ± w 
e~ - o 

k+ = k ± k . The Fourier transform of Poisson's equation leads 
/VV"r- ~ AN() 

to the equation 

(Al) 

where E(k+,w+) is the high-frequency lower hybrid dispersion 
~ -

relation for the sidebands. In the low-frequency equations, 

we keep the bare tluctuating ion microdensity 

S .. (k,w) 
]1 ~ 

-3 = (2n) Eexp(-ik·x .)o(w-k•v.) 
~ AN() J ~ """] 

(A2) 

i 

and electron microdensity 

-3 
S (k,w) = (2n) Eexp(-ik·x )o(w-k.lvll )J (k,v.L I w ) (A3) 

e """ """" oe 1 e o - ce 
e 

where J is· the Bessel function, and we assl.IIIE unmagnetized ions and strongly 
0 
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magnetized ele~trons. We, thus, arrive at the equations 

on (k,w) = e/VV'>. 

on. (k,w) = 
1 /VV'>. 

and 

( k2 I 4ne) x (k,w) [¢ (k,w) 
e /VV'>. NV'-

(·~ k2 I 4ne)x. (k,w)cfl(k,w) 
11"11'V' ,· ~ 

4ne (on. -on) 
1 e 

+1jJ(k,w)] + 

+ S.(k,w) 
1 /VV'>. 

S (k,w) 
e /VV'>. 

,I',. 

The 1)J's are the linear susceptabilities and 1jJ(k,w) is the 

pondermotive:potential 

-ce 
1jJ(k,w) ·= ~ ·((k x E ) ¢ 

NV'- 2B ,..._ ·+ 0 NV'-~ • 

·.I 

Solving Eqs. (A4)-(A6) for on (k,w), we obtain 
E.!' 

(A4) 

(AS) 

(A6) 

(A7) 

l( . 2 ) on = [E:(k,w)]- Xe(k,w)Si + [ltx.(k,w)]S -(k 1)JI4ne)x (l+xi) (A8) 
e """" NV'- 1 /VV'>. e e . 

where E = 1 +. Xe + xi is the lo:w-frequency dispersion· relation. 

Equation (A8.) is substituted :in Eq. (Al) to obtain 

+ 1jJ- =- ( 2 nl) -1 4ne 
w_+E (k ) E: +'w+ 

/VV"- -

c 
2B 

0 

~ • (k x E ) 
k ~ AN-2 /VV'>. .-vvO ± 

• (x (k,w)S.+[l+x. (k,w)S 1), 
e/VV'. 1 1"""' e 

(A9) 
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where 

nl 
e: e:(k, w) - k

2 
2 2 

c lkx E I 
""""' ,..,.$) 

16 
Using the r=esul ts 

(S. (k,w)S~ (k
1

,W
1
)) = 

11 /VV'o 1 2 /VV'o 

and 

= 

x (k,w)[l+x.(k,w)] e 1 /VV'o 

1 ----=1~). 
e: (k ,w 

/VV'o-

n 
---'

0=----.--
3 

0 ( k - k I) 0 ( W - W ) 0. . .r d 
3 

V f • ( V) 0 ( W - k 0 V) 1 
( 2 1T ) 11' 12 1 1 /VV'o NV'-. /VV'. 

(All) 

n I 

--
0----=- o (k - k ) o (w - w ) o 

( 2n) 3 /VV'o e 1 'e2 
(Al2) 

. Jd3v f (v)o(w-kllvii)J
2

(kJ.vJ./w ) , e 1 -"""'- o ce 

we can compute the ensemble average electric field energy density 

1 no 
= 

4 (21T) 3 

+ (Al3) 
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where 

f. (w/k) 
1 . 

= J d3v f. (v)o(w-k•v) 
1 ~ ~AIV-. 

(Al4) 
. .{ 

and 

fe (w/k II) = d v f 3 fe (~'o (w- kllvii)J~ (k.~.v.~,/wce) (Al5) 

Here ( > denotes the ensemble average . 
.. 

Of part~riular interest, here, is the case of nonresonant 

decay of the pump wave to a lower hyprid wave by sca~tering off 

the ions and electrons. In this case, € ~ 0 and E:+ t- 0 so that 

2 (1 + w 2 /w 
2 

) 
pe ce [ (k ) . (k ) ] --w--...,.(~k_;;.--~ w · + W G """'- ~') + 1 y L """'-~ 

e """"' ,..,q 

£ = 

and w and y :.. are the linear frequency dispersion relation and e L 

damping rate respectively for lower hybrid waves and 

2 (l + w 2 /w 2 ) 
= .;, pe ce t:(k,w) [w +w (k-k ) +iy (k-k )] 

- e """' ~ e """" ~ w (k - k ) 
e"""' ~ 

[l+x.(k,w)] 
1""" 

. 2 2 
2(l+w jw ) 

~ - . pe ce (Al6) 
w (k - k ) 

t: ( k , w ) ;[w + w ( k - k ) + i Y 
1 

1 
""""' ·- e""""' ~ n 

e /'VV'- ,.yv() 

where 

::>< y (k- :k· ) + 
- e -'VV'. ~ 2 2 .2 

8B (1 + w /w. ) 
o pe ~e 

2 
kll w (k- k ) k e """" ~ -

(

X (k,w)[l+x.(k,w)]) 
Im e """"' 1 NV> • 

t:(k,w) 
/VV'o. 

(Al7) 
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Substituting Eq. (Al7) into Eq. (Al3), integrating over w 

and picking up the contribution from the resonance at 

w = -w (k- k ) , we obtain the result for Maxwellian velocity 
e /VV'. ..-vvO 

distributions 

2 
(1 + w 

pe 
2 

/wee) 

T 
e 

16 

(I Ek 12> 
(2n)

3 

2 2 
c lk X E I 

""""' ..-vvO J G (k, wk - w ) 
""""' 0 

The spontaneous emission follows from (Al8) by identifying 

(Al8) 

Sk = Ynl Ik . The generalization to a spectrum of waves follows 

by assuming all waves are incoherent. 
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Wo = 4 w lh . 

k0 ). 0e=.25 . 

wo=4wlh 

k0 Aoe = .05 _ 

-------- . .. 

•;, 

.2 .3 

762203 
Fig. 1. The coupling function B <A' - ,4' , w~· - w~ [see 

Eq. (10)] as a function of k~b and maximized with respect 
to k 11 for pump frequency w0 =: ·~wJI.h· The upper curve in each case 
is t~e maxi~um value of B an~ the lower curve is the frequency 
shift (w

0 
-· 'wk) /WJ~.h that corresponds to this maximum value. 

(a) This ca~e, w = 4wJI.h and ko~De = 0.05, is similar to the re­
sults for a; dipo~e pump where! the maximum coupling is indepen­
dent of wavenumber. (b) Sho:~{t-wavelength pumps couple most 
effe.c.t.ivel}(' to long wavelen.gyttJiiiS;. 
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762204 
Fig. 2. Total electrostatic energy as a function of time 

for w0 = 1.42wih' pump power rel~tive to threshold power P = 1.3; 
Te = Ti, Wpe =Weer Ve/Wih = lo-6 , and no convective loss (y* = 0). 
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762208 
Fig. 3. Total energy ~n· decay waves U(W} per frequency in­

terval norrna.lized with respeqt to the pump energy. The dashed 
curve is the result for P = 1~3; the solid curve for P = 2.0. 
In both cases, w0 = 1.42w~h' Te = Ti, Wpe = Wee' Ve/w~h = lo- 6 , 
and y* = 0. 
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p = 1.3 
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762211 

Fig. 4. The energy in decay waves per wavenumber and fre­
quency interval U (K, W) for P = 1. 3, 111 0 = 1. 42t•l th' Te = T .i, 
Wpe =Wee' velwth = 10-6, andy* = 0. 
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762212 
Fig. 5. The energy in decay waves per wavenumber and fre­

quency interval for P = 2.0, w0 = 1.42w~h' Te = Ti, wpe = wee' 
ve/w~h = lo-6, and y* = 0. 
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762209 
Fig. 6. The energy in decay waves normalized to the pump 

energy as a function of frequency normalized to the lower hybrid 
frequency for w0 = 4wR.h and P = 2 (dashed curve) and P = 4_~solid 
curve). In both cases, Te = Ti, Wpe <<Weer velwR.h = 2.10 , and 
y* = 0. 
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762214 
Fig. 7. The energy in decay waves normalized to the pump 

energy per wavenumber and frequency interval for w0 = 4w~h' P = 4, 
Te = Ti, w~~ << wee' ve/w~h = 2 x 10-s, and y* ~ 0. Convection 
was included in th1s case. The minimum linear damp,ing occurred 
for K ::: 0. 20. 
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762210 
Fig. 8. A comparison of the energy per frequency interval 

without convection (solid curve) and with convection (dashed 
curve) ~hen w0 = 4wih' P = 4, Te = Ti, Wpe << Wee' Ve/wih = 
2 x lo-5. · 
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762207 
Fig. ~L· The deday w~ve' J~f.iergy' per t'r'equency inf~rval for 

:P = 6 and wb = 4·. OwR.h in·ctu·c$·.il-~g convection.· Note tP,a·t energy 
appears to ~e~ accurnulat'.fng 1w modes' with frequency w f. '.llR.h· 
Other parameters are Te = Tf,l Wpe << weer velwih = .4: x lo-s·. 
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762205 
Fig. 10._ The total decay wave action normalized to the 

pump action, I = I/I0 , as a function of pump power relative to 
threshold P for w0 = 4wih· Convective losses are included. _

5 Other parameters are Te = Ti, wpe << Wee' and ve/wih .= 2 x 10 
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Fig. 11. .~rC!,ph, of ,.th~ ~y.nctipns ;f (r/a) and 1/.f.Cr/a) defined 

in Eq. (39). The lim,L.ting .P9:ii~r i~ re1.~ted to. f"""l vfa .(37) and 
(40). . ", . . . . .. 
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Fig. 12. The fraction of power absorbed as a function of 

the incident pump power P0 in kilowatts for typical Ad~abatic 
Toroidal Compressor parameters and proposed Poloidal.Divertor 
Experiment parameters. The Nil label refers to the characteristic 
value of the parallel index of refraction of the pump. Other 
parameters are given in the text~ 
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