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' Lower Hybrid Parametric Instabilities -

Saturation by Cascading and Pump Depletion

R. L. Berger, Liu Chen, F. W. Perkins
Plasma Physics Laboratory, Princeton University

Princeton, New Jersey 08540

ABSTRACT

Parametric instabilities near the lower hybrid
frequency and associated electron and ion heating have
been observed experimentally for some years, most
recently in radio-frequency heating experiments on the
Adiabatic Toroidal Compressor Tokamak. Here, the non-
linear evolution and saturation by cascading of the
parametric decay instability near the lower hybrid
frequency is considered by solving a weak-turbulence
wave kinetic equation. The principal results are that
1) a steady state solution exists only for pumps near
threshold when the pump frequency is several times the.
lower hybrid frequency; 2) the decay instability saturates
when the energy in decay waves is roughly equal to the
pump enerqgy; 3) most of the pump energy is deposited in
super thermal electrons when W, >> Wop and 4) pump
depletibn in the low-density surface plasma will be a
serious problem unless the pump power is kept near thresh-
0ld for large tokamaks.
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I. INTRODUCTION

Heatiné of plasma by conversion of wave energy té thermal
energy is oné of the primary means under consideration to raise
the plasma temperature to the thermonuclear range. .A particularly
interestingfénd convenient method is lower hybrid frequency heat-
ingl because,for tokamak plasmas, the frequency of the radiation
is such that the waves can be introduced by arrays of wavequides.
Each waveguiée array is arranged so that the electric field vec-
tor in each”@aveguide is phased properly so as to meet accessi-
bility criteria.2 Unless a large number of waveguide arrays are
employed, the heating of both reactor and research tokamaks will
require powér}levels in each array that will surely exceed the
thresholds"fér nonlinear effects such as parametric-instabilities.3
That nonlinear effects appear to play the dominant role in radio
frequency heating near the lower hybrid frequency has been shown
by simultaneous appearance of decay wave spectra and high-energy
tails on théjelectron and ion velocity distribution.‘4 The ion and
electron heé%ing has been measured in small devices Ey ion and
electron energy analyzers and in the Adiabatic Toroidal Compressor
Tokamak by fast neutrals and synchrotron radiation.s

The parametric instabilipies of primary intereSt to lower
hybrid heati;g are decay of the incident electrostafic wave into
lower frequency lower hybrid waves by scattering offﬁthe ion and
electron distribution and the oscillating two streaﬁ;instability

6,7 have a much-higher thres-

(0OTSI). Filamentation instabilities
hold than these. In hot nonuniform plasmas such as tokamaks, both

'uniform' medium and convective quasimode thresholds are exceeded.
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The threshold for con&ective quasimode decay has been shown to
be determined by the finite spatial extent of the pﬁmp wave while
the 'uniform' medium threshold pertains to waves duéted by the
density profile;and hence destabilized by the spatially averaged
field. The impressed lower hybrid pump waves, launched by wave-
quideé or other finite structures at the plasma boundary, are
known to prqpagafé such that the energy of the wave is confined
to a good apéroximation within well-defined resonance cones.
As a result, the thresholds of convective quasimode instabilities
are determined by the loss of the wave out of the resonance cone
(the amplifying medium) balancing the growth of the wave due to
transfer of energy from the pump wave. As a result of these con-
siderations, it has been shown that the dominant parametric insta-
bilities are nonlinear Landau damping of lower hybrid waves and
oscillating two streaming instability

Examination of the threshold formula for parametric decay
instabilities shows that the instabilities are most likely to
occur in the cold, low-density periphery region where w >>w£h

and in the plasma interior where wo;sZmz Furthermore, the

he
lower hybrid waves destabilized by the oscillating two stream
instability are nearly identical to those created by the decay
instability, -and hence subject to the same saturation mechanisms.
Therefore, we have investigated the nonlinear saturation of the
decay instability by céscading for pump frequencies in the range
one to four times the lower hybrid frequency. We chose the

electron to ion temperature ratio equal to one which is typical

of tokamaks, and thus the low-frequency wave is a nonresonant



quasi-mode. As a consequence, wave energy is not conserved in

the decay pggcess; however, action Ik is conserved apd a small
amount of wave energy is dissipated’W}n the scattering process.
Two questions that we seek to answer are 1) under what conditions
is the cascading model adequate to saturate the‘deca§ instability
and 2) how ﬁuch energy relative to the pump energy is in decay
waves at saturation and what is the anomalous damping rate for

the pump? We find that the model is only adequate to saturate
decay instabilities near threshold. For pump powerééless than
several timQ; the threshold power, we find the anomalous damping
rate Yeff'%s proportional to the pump power T relative to thres-
hold power HTH times the typical damping rate Y of the dec;y waves,
i.e. Yeff==a§H/HTH. We have estimated the scale length for pump
depletion in typical tokamaks and found that the pump wave - should
be able to penetrate to the plasma interior even when the pump
power is several times threshold tor current tokamak heating experi-
ments. However, future experiments present a problem because the
amount of pumb depletion scales linearly with plasma“size. Once
the pump penetrates to the plasma interior, the pump.power will be

2 and our

many times ﬁﬁreshold, a condensation phenomena occuré,
model becomes inadequate to predict the saturated state of plasma
turbulence. But from the viewpoint of tokamak heatihg, the
really cru01al question is not what the details of nonllnear ab-
sorption 1n the plasma 1nter10r are, but whether most of the

power will be absorbed in thé outer regions. Hence, our princi-

pal concernliies with the low=density region Wy >> wpp and the non-
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linear Landau damping cascade model is valid for a good range

of powers.

The paper is organized as follows: Section II presents
the basic equations describing the parametric interaction of
lower hybrid waves via hbnlinear Landau damping, derives some
conservation laws, and gives an estimate of the.saturated level
of turbulence. Section III presents the results of a numerical
solution of the wave kinetic equation derived in Sec,‘II
The scaling law is obtained for the total energy in decay waves
in steady state versus the pump power. Section IV shows how
the nonlinear pump depletion scale length varies with plasma
size and parallel wavelength of the pump. Section V discusses

the implications of the previous sections to tokamak heating.
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ITI. BASIC EQUATIONS AND ASSUMPTIONS .i
The process we seck to describe is the nonlinear evolution
and saturat}on by cascading of the parametric decay.in;tability
near the lower hybrid frequency. Other mechanisms fbr‘saturation
of the decay instability exist such as quasilihear médification
of the velocify distribution, beat wave trapping, orbft diffusion,
and pump depletion. In general, these processes are important

for pump powers far above threshold. We are interested in pumps

near threshoid where characteristically

: 2 2
£ ,1% % (r_/m.c?) s> o . (E) Zee ey 1
or! 7 e’ i o °T ZwnT m, 2 : (1)
e i e

Inequality (1) holds except at very low-densities near the vessel
wall. The total energy in high-frequency decay waves when
saturation by cascading occurs is typically equal to the pump
energy. The:energy in the beat wave is smaller than this by the
ratio (wo-wk)/wo and thus, is not sufficient to flatten the
distribution—pear the thermal velocity. Moreover thé';arge
conductivity. of electrons along the field line and Q; the ions
across the field lines will inhibit plateau formation since the
.
parametric interaction is in fact localized in space. Pump
depletion will be discussed in Sec. III. Trapping bécomes
important wh?n the amplitude of oscillation of the pa;ticle in
the potentiai of the decay wave nears the phase Veloqity. Since
the dominant electric field induces an electron osci}lation
perpendicular to the phase velgpcity, it is clearly unimportant

for electrons. For ions this requires
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which is far above the level for which cascading is important.
For the same reason, we feel that orbit diffusion is unimportant.
At frequencies near the lower hybrid frequency,
w << ch ’ @pe , the dominant coupling between waves results
from the drift of the electrons relative to the ions due to the
ja X,EO drift of the electrons across the field lines coupling
with the nonresonant low-frequency density perturbation produced
at the beat  frequency of the two lower hybrid waves. The transfer
of wave energy from the pump to the decay waves and from one
decay wave to another takes place via nonlinear Landau damping.
This nonresonant process is the dominant one when resonant decay
instabilities are suppressed either by geometrical effects,
violation of the selection rules, or restrictions on the volume
of wavenumber space available. It has been shown that the
threshold is determined by the fact that the high-frequency
daughter wave convects out of the resonance cone of the pump

wave in a transit time. The transit time, equal to the

TR’
width of the cone projected along the direction of the group
velocity divided by'the group velocity magnitude, must be

long compared to a growth time Tg in order for significant growth
to occur, i.e., TTR > Tg . Since the transit time is proportional
to wavenumber for lower hybrid waves, any low-frequency response

that occurs for wavelengths short compared to an ion gyroradius

will allow the maximum growth of the lower hybrid daughter wave
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provided kXﬁ is not so large that the daughter wave is severely
Landau damped (typically kAD5‘0.25). Because ADe<<<ri, the ion-
Larmor radius, for physically interesting plasmas, coupling to

ion-acoustic waves (|w| >>w_., kr, >> 1) or nonlinear Landau

ci

damping if Te"Ti appears to be the most interesting nonlinear

process.

In the rest of this paper, we limit our consideration to
nonlinear Landau damping or quasimode decay. We assume that the

electrons are magnetized and that kzri << 1 where re is the

electron-Larmor radius. Thus, the electron susceptibility at

the heat frequency is

Nl 2.2
X (krw) "= (1/K“A5) W(w/vV2 k|| vy)

where W (&) =;[l + £2(8)] and z(£) is the plasma dispersion

function. We assume that the ions are unmagnetized and that

kzri >> 1. Tﬁus, the ion susceptibility at the beat frequency is

2.2 '
Xy (koo = W/VZ v ) KD | | (2)

see
B3

This épproximation is clearly justified for the real part of the

susceptibility. The imaginafy part is also correct ‘if the growth
-

rate is large compared to the ion-cyclotron frequency or if the

il

bandwidth of“the lower hybrid waves 1is large compared to‘wci

but small compared to kcs. In practice wpe S and a

pandwidth, Aw = w_., is a small fraction of the lower hybrid wave

cl
. 1/2
frequency, i.e., Aw/w ~ wci/wgi ~ (me/mi) .
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If T, > 3T, and kll/k3”>(me/mi) , the low-frequency

response ‘can be expressed analytically by the approximate
\‘ . .

formulae ;
3 2 2
v . 3k“v.
Xe = 212 (l + /_1w U ) X = _ wgl (1 + 1)
/ < i 2
k )\De 2 1 ” Ve 1 w2 ®
f i 1w exp(_ _ﬁfiz)
K222, sz kv 2k %W
. D1 1
where v, =.(T./m.)l/2 and v_. = (T _/m )l/2 . In this limit the
i i’ e e’ e
low-frequency response is resonant, Ree(k,w) = 0, and maximum
coupling obtains when w = wA + 1YA where wa T kcs',
2
® 37. 1/2 m 1/2 T 3/2 c
A i k e A e __S*S
Yf*(“?) [k— (E\‘) r(2) e 2)]
22 e || \'i i 2vy

and

cg = L(T, + 3Ti)/mi]l/2

s
If Te < 3Ti’ then the real part of the dielectric doesn't
vanish for any value of w. However, the maximum response for
kll/k > gmé/mi)l/z still occurs when Rew = kce. In this case,
the low-frequency response is dissipative because the beat phase

/2

velocity is close to the ion thermal velocity if kll/k.>> (me/mi)l

or to the electron thermal velocity if k||/k ~ (me/mi)l/z.

3
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Because the beat wave is a highly damped wave, i.e;

Yp ~ Wa >> vy , where Yy is the parametric growth role, the low
frequency wave amplitude is related to the amplitude of the high
frequency wavévby its linear properties. The low freguency
response can, therefore,be obtained by introducing a nonlinear
ponderomotive potential produced by the beating of two high
frequency waveé into the Vlasov-Maxwell equations for the low

frequency response with the result that

1+ X (k) ~
L _ ic 2 30 ' . » '
4iien (’lv(w,m) = - E k e(k w) /d A}i /dm (/va\'wez) li""fw'"‘“, )

T

oo, won (ST e

This result ié combined with the equation for the high frequency

wave potential

7 .
- 2 ) dmec 3 3, . L .
(T *+ O+ 2 3 M0 = - 2. Ot /d k' ookl t)in(kokl.t)
" To
ke (e xk') , (4)
&:vv\ %% AR o) K

to obtain a nonllnear coupled mode equation. If the random
phase approx1mat10n, i.e. <¢k¢k.> = rk Gk k' , 1is valid the
nonlinear evolutlon of the parametrlcally unstable lower hybrid

10
waves can be described by a wave kinetic equation

S

0 NL. _ , (5)

AN A AN A YN

N

9
3t
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where I, is the wave action or number density, is the sum of

L
is the growth rate of the mode due to non-

NL
Yk

k

AN

all linear 1losses, Y;
linear'Landau dampiﬁ;\of the pump, is the growth rate dué

to the nonlinear Landau damping of the decay waves, and Sk is

the spontaneous emission of lower hybrid waves which is domi-

nated by the 1ow—frequehcy noise beating with the pump and ex-
cited decay waves to produce a source at high-frequencies.l} A
derivation of the spontaneous emission term is given in the

Appendix. The definition of these quantities is

2 2 2 2
R T reg /el
I - - X . (6)
4
o (2m) wy
2 2
2 W k xE '
o C Kh ~ma A0 ;
yo = - B(k,w, ~w_ ) w (7)
X 8B2c? w2 k mk ek
o”s o
2 2 2
R A T T " “k :
Y. = y*+ =| 3 exp- (8)
L 2\2 Yy x2v?2 Lk K, v}
X Vi ckyvy 2k, vy
2 2 2_,2
T w v w “k ~
+ T exp| - k = B + LR
T kv 2 2 2 ’
e I e Zkllve o + m 0
41r02‘*’[_2h / 3 (kxk'-z)2
v = - A k! Dmom o om gk -k W, , —w )I
NL 22 32 ~ 2,2 R Y .
2B Co (14w  /wll) Kk ;e
2 2
S (2 )—6 (TT )1/2 Te c N]s\lx/?vol wzh X (}’ N m )
= m - - G A7 : ="
k 2 16w Bicikz “r k o
+(1)1/2 E .2 /d3’]5v\' [(k x k') .z
2 2, 2 " I, ,G(k-k' -

(9)
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where

.2 2
T .
G(k,w) = — " “th
2 | k%22 +w o+ Te X)) Ve
c1 De e — W. :
T. 1
1
ool () G) T e (5
- _— exp (- —
2k% v mg k ATy Tk4v )
||"e i
and
T W W,
B(k,w) = Im.(f 7> e 1 ) ’ (10)
1 k"Ape * W + T W, /T,

_ o3 ' _ , 2 _ 2 _
and W, = W(w/ ¥2k I ve), W, = wcw/|ﬂ§klvi), vi = Ti/mi’ Vg = Te/me’

]

2 _ _ 2 ,2.1/2 2 _ 2 2 2
C, = T /M., wyy wpi/(l + wpe/wce) , oWy wgh(l + mikll/mek ),
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Vo is fhe electron-ion collision frequency, and Y* includes any
additional sources of energy loss. In particular, because it has
been shown that convection of the wave out of the pumé resonance
cone is the dominant loss mechanism in many realistic heating
experiments, we have used a loss rate equal to the transit time
of a wave across the resonance cone in some calculations to model
the experimental situation.

It is clear from Egs. (5)- (10) thaf waves with frequency
smaller than the pump frequency are destabilized by the pump
and at the same time higher frequency waves are stabilized. If
the pump field is. strong enough, waves with lower frequency grow
until they act as pumps to destabilize still lower frequency
waves and stabilize higher frequency waves.

The frequency separation of the decay wave from the pump
wave Aw is proportional to kkn wpi and lines of maximum growth
rate will be diagonal lines in the (k,wk) plane. At short-
wavelengths, linear Landau damping will prevent any growth of

2 /wz )1/2

pe’ “ce . Thus,

waves whose wavenumber satisfies kADe > 1/4(1 + w
the instability will be characterized by a maximum frequency

shift of Awm = 0'25w2h° This behavior is shown in Fig. 1 which

shows the value of B(k'-k, wk.—wk) maximized as a function of k|{

laa 2NV VN
M AN

. .
when k,*k, = 0. It is interesting that short-wavelength pumps can

result in frequency shifts as large as 0.4w,., . The process

£h
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involved in the cascade of energy to lower frequencies is also
nonlinear Landau damping and thus, a change in frequency of

approximatelx Awm will occur in each cascade. By integrating over

k and by using the antisymmetric property f

Bl koo me ) = BUCKD wmwn) - an
we obtain frdm,Eq. (5) the useful and informative conservation
law for the_plasmon number Ik

31 _ [ 3: °

a-t__/db“(YT'JrYN‘&)Il&JrS' | (12)

where

A steady state is reached (3I/3t = 0)with a saturatedwievel of
plasmons far éxceeding the initial level when the number of plasmons
created by thg-constant amplitude pump equals the number of
plasmons lost..to the system by Landau damping, collisional

‘damping, or copvect}on. We agsume justifiably that Swls small

and can be neglected at saturation. This law shows tﬂ;t

saturation can -be achieved only by providing a sink of energy

at lower freqéencies. In an infinite homogeneous system, the

‘only sinks are creation of high energy tails on the velocity

distributions by Landau damping of short wavelength waves and an
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increaseiin electron temperature by collisional daméing.

Béqause in absence of convective iosses the decay wave
venergy;w;ll”naturally concentrate in collisionally damped modes,
strong instabilities, whose growth rate far exceeds the colli-
sion ﬁréquency, will require many cascades to achieve a saturated

state and satisfy the conservation law for plasmon number in

steady state

3 o
N 13
/d k(Yp+Y) I, =0 (13)

AN AN

. 21,2 2.2
when Max|Y0j|== Yonl>>|YL| , that 1is, ve/wﬂh <<c IEO|/4BOCS wﬂh/wo

In view of the previous discussion, it is clear that only

instabilities produced by pumps very near threshold can saturate

by cascading. The rate at which plasmons are absorbed is approx-

imately ve I=2 dekYL Ik . The rate at which plasmons are created
is 2YomIl==P veIl where Il is the number of plasmons in linearly

unstable modes, and P is the ratio of the pump power to the thres-
hold power. We can estimate the total number of plasmons I==mIl
where m is the number of cascades. Since lower hybrid waves have
a minimum frequency Wep the maximum number of cascades 1is
M==(wo--w£h)/Awm . Thus, the conservation law for plasmon number,

‘Eq. (13), puts a limit on P that
P <(@o-wzh)/Awm—~4(wo-w£h)/w£h . (14)

The saturation of decay instabilities including convective losses
requires some explanation. The convective loss rate of a wave
in the pump resonance cone equals the component of ‘the wave group

velocity normal to the pump group velocity in the plane of propaga-




tion of the pump (x-z plane) divided by the width of the resonance
cone in this direction. This rate, which depends on £he angle the

wavenumber makes in the plane normal to the magnetic field, is

2 2 2 _ 2 1/2 o
v k" %n[[{% “n (m, /m )2,
Y » - - cosy 1’ Ve £h
w K, L 2 2] 3 , (15)
k Wy = Wep nd 2 _ 2)1/2w
(.Uo (L)Zh o

where coswk=;kx/k and L is the extent of the antenna. in the z
direction/;£ the plasma boundary. This rate can only vanish if
ky==0 and wk§=wo . The combination of the convectivé loss rate
with the Lanaau damping rate implies a minimum dampiﬁq rate at a
rather short wavelength where the two rates are almost equal.
Therefore, the decay wave spectrum will be concentraped at rather
short—wavelehgths and the cascading process of necessity will in-
volve large frequency shifts. In addition, the threshold tor in-
stability wi%; be raised substantially as the minimdﬁ damping rate
replaces themcollision rate in calculating the threshold power.

Implicit in this model is the assumption that the interaction
width of secondary decay waves with the primary decay waves ex-
cited by the.pump is equal to the width of the pump resonance cone.
In fact, thi§ is a reasonable assumption because once waves convect
out of the résonance cone, i.e., the amplifying medigm, they,

beihg such short-wavelength waves, damp rather quickly by linear

Landau dampipg.

)
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An estimate of the steady state plasmon-number can be

obtained from Eq. (5) by setting the S and left hand side

kl YLI

equal to zero so that one finds

o

NL _
Y,,)E,\+YA]§,\_O.

Estimating B(k'-k, W, -wk)sinz(wk—wk,) by its maximum value

in both the linear and nonlinear growth rate, we obtain

E | '
— 3| —_ 1 l0 -
I-/dl&Ik--m o " T (16)

or that saturation will occur whén the plasmon number of decé§
waves equals the plasmon.number of the pump. An immediate
consequence of this dimensional analysis is that the energy in
high-frequency decay waves will be smaller than in the

pump wave because the frequency shift of the decay wave spectrum
is so large. The actual relationship between the decay wave
energy and the pump energy can be found from numerical solutions

to Eq. (5) which we present in the next section.
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III. NUMERIQAL SOLUTION OF WAVE KINETIC EQUATION

Direct solution of Eq. (5) requires three-dimensions in
wavenumber space. To simplify the calculation, we have assumed
that the number density and wave energy are almost isotropic
functions of .the azimuthal angle ¥, in wavenumber space. We then
average Eqg. (;) over the angle wk to obtain an equation for the

K We solve the resulting ‘

%

angle averaged number density I
equation numerically on a wavenumber grid in (k*'kll) space. The
integral in Eq. (9) is replaced by a sum over discrete modes;
the number density is multiplied by the volume element in wave-
number Vi = 27k, dk*dk|| to obtain the number oﬁJplasmons
per jth volume element Nj' We then normalized this plasmon

) 2 2 2
= 16 .
number to the plasmon number of the pump N_ (l+wpe/wce)|EO| /16mw

As a result, we obtain a nonlinear time dependent matrix equation

for the evolution of the plasmon number Nj '

+Zy“.”.‘N.)N. + 5. . (17)

12 ., A
7 37 N5 B ( Yrg * Y 3i 1773 3

J 0j

i

Time is normalized with respect to lower hybrid frequency as are
the linear and nonlinear growth rates. We introduce the

.th
normalized frequency and wavenumber of the ) zone

2 .1/2
‘NJ = w(kj)/w»eh ’ K] = k-l-](Te/mleh) ’ and

X. = k|| (T /mewf,'h)l/2 . Thus the nondimensional growth rates are
e’ v '

j



WAL A 3/2 2y W. w§
iy < E(E) -3 K_J(T_e) exp(‘ _zu) t 5 eXP(‘ —2) (18)
Lj 2/ x j i 2K T. 3 2x
p| A Jj 1 . J
2 2
\)e ( U)pe 3 ) %
+ + + Y ,
zwlh w2 + w2 K2W2
e ce 3
1 1
7 (Wz.—l) /2 me /2 _1
Ve Ha— () wp, (19)
j i '
2 -1/2
w, L w
g = Lo L (1+_g£) , (20)
s De wce
e, Y |
L= - B(K., X., W.-W_ ) , ' (21)
Yo3 1682 w2 e M B
o's o
2.2
CcC E
YI‘.]I.‘=——°7—1—B(K..,x..,w..) ’ (22)
ji 16B2c Wo ij iJj 17
o's
_ 2 2 2 . 2
where Wo = w /wﬂh’ Kij = Ki + K~ 2KiK' sin“y,
iﬁ = |x, - x.| , W.. = W, - W. , and



L - =20-

27

; s
./i dy sin"y B(Kij,-xij, Wij). (23)
o

|
3|+

In the numerical solutions to Eq. (17), the thermal corrections
to the cold plasma dispersion relation for lower hybrid waves

were included with the result that

2 _ .2 2 4 .4, ,,.2 . .2 -
wj = 1f(xj)/(Kj) + 3(xj+Kj)/(xj+Kj) . (24)

The grid sizg A(Kj,xj) was chosen to reflect the fact, in the
cold plasma'approximation, the frequency Wj is consﬁént along
curves defined by x/K = const. An adequate representation of

B is ensurediif, on adjacent constant frequency curves, a

number of pairs (Kj,xj) exist such that either

2

. .
W =w)/ORS+RT) 1,

or

(Wj—Wi{/(lxj-in) ~ 1.

4

The representation chosen does satisfy these criteria. The

spontaneous'emission term becomes ?j = SKVK/Noth'
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For computational purposes, we set Sj = Kj§ where S is-a small

constant and the wavenumber dependence of Sj reflects the

wavenumber dependence of the volume element VK’ S was chosen so
= ij35. The value of S has been varied by orders of mag-

nitude without substantially altering the results. This insensitivity

that N.
J

is a result of the fact that the saturated intensities of the non-
linearly unstable modes are many orders of magnitude larger .than the
initial values. The initial value of Nj was determined by setting

/K

N. = 2K.N, where K. is the maximum value of K.. In all
J J jo jmax J
-6

cases reported here, Njo = 10 ~. Equation (17) was advanced in time

jmax

with use of a second order explicit integration scheme. The time
step was small compared to both the linear and nonlinear growth
rates. The (Kj,xj) wavenumber mesh used was (5,60), (10,30), and

(20,15) for a total of 300 zones.

Solutions to Eq. (17) were obtained for WO =.l.42, 2.0,
and 4.0 for pump power relative to threshold power between one
and six times threshold. Cases were run Y* = 0 and Y* £ 0.
The results with and without Y* are similar except that the
characteristic frequency shift involved in each cascade is larger
and the energy in long-wavelength modes is suppresed when y* = 0.
In Fig. 2 we show an example of the time evolution of the
total decay wave energy. There are oscillations of decreasing
amplitude in the total energy ahout the steady state value.
An examinationwof the individual modes shows that this oscillation
is a result of .an exchange of energy between modes similar to
coupled harmonic oscillators. Because these oscillations persist

a long time before settling down to a steady state value, we

have employed the technique of interrupting the time evolution
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after a few oscillations and restarting the system with the

instantaneous value of the plasmon number replaced by its time

averaged value. This technique saves computational time in

finding accurately the total steady state wave energy. The wave

energy per volume element is Uj(Kj, Wj)==2WjNj . Wehwill present
results for Uj’ the total energy U = I Uj' and the energy per
frequency interval yg(W) = I Uj' Two classes of decay

- 3 Wie (W, W+AW) N
waves are destabilized by the pump. One type is low-phase

velocity waves that are conveé¢tively amplified to a nonlinear
level in one transit across the pump and then damp quickly in
space. The other types, high-phase velocity ducted waves,
transit aroéid the torus, and thus through the pump'many times.
These waves are d?stabilized by the spatially averaged pump
electric fig}d. These waves are damped by collisions only and
have lower thresholds than the convective modes, but_also have
correspondinély smaller growth rates. The nonlinear saturation

of these waves by cascading is considered in Sec. III. A. The

saturation of the convective modes is considered in Sec. III. B.

N

IITI.A. Infinite Homogeneous Plasma

In this seclion, we set y* =0 and present the fésults of
numerical sdiutions to Eq. (17) for pump frequencieé in the range
1-4 times the lower hybrid fredquency and pump powers 1-6 times
the thresho}g power. The threshold power is determiged by the
collision frequency, which is very small compared tgiboth the
lower hybridffrequency and theé acoustic frequency. 3;I‘hus, the
nonlinear tihe evolution scalés with the collision frequency.

@
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In Fig. 2;¢Wé show that time history of the total decay wave
energy norﬁaiized to the pump energy for wo:=l'42w£h and P=1.3.
The characteristic oscillation iﬁ energy discussed in the pre-
vious section is apparent. For pump frequencies in this range,
only ope cascade is available to the linear unstable modes before
the minimum frequency mode is destabilized. Therefore, saturation
by cascading will not be an effective saturating mechanism for
the decay instability in this frequency range as is evident in
Figs. 3, 4, and 5.

In Fig. 3, we show the frequency spectra when wo:=1'42w£h
and for pumps 1.3 and 3.0 times threshold. In the former case,
the energy in lower frequency modes is smaller than the energy
in pumpéd modes and is below the energy necessary to destabilize
the nonexistent lower frequency modes. However, the energy in
the lowést frequency mode in the latter case is above threshold
for destabilizing other modes. Since no further cascading is
possible; the energy in these modes will continue to increase
until ﬁhe threshold for other nonlinear processes to occur is
surpassed. We will return to this question of condensation in
the concluding section. Figure 4 shows the two-dimensional
energy spectra for P=1.3, which shows that the energy is con-
centrated in collisionally damped waves. There is significant
energy in the longest wavelength lowest frequency mode, but its
energy is still much smaller than the pump energy and is below
threshold. Figure 5 shows the two-dimensional spectra for

P=2.0. There is a dramatic increase in the energy in the

lowest frequency longest wavelength mode to6 the level where it
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would be aone threshold for destabilizing lower frequency modes
if they exi;Zed. '

The conéensation phenomenon outlined above différs from the
collapse phenomena separatédjby Musker and Sturmang,in the follow-
ing way. Our calculations have a constant driving force énd show
that wave eﬁ;rgy accumulates secularly in regions of*long-wave-
length and pérpéndicular propagation (HT/kz <<n%/n&)¥ The Musker
and Sturman calculation concentrates on the region where the
thermal corrgctions to the dispersion relation [see (24)] dominate
the angular cold plasma terms. The problem, then, becomes two-
dimensional; and they demonstrate by a numerical éalcﬁlation that
a collapse pﬁenomena occurs for a fixed amount of wave energy.
Since our computations show that the wave energy accumulates in
the long-wavelength reguire where the thermal corrections are
very small,ﬁthe adequacy of the two-dimensional modei remains in

qucotion.

For wo=54.05w the available wavenumber space for cas-

£h’
cading is much larger and cascading is an effective means for
saturation of the decay instability up to powers 8—16 times
threshold. :&he solution to Eq. (17) was studied fof.pump powers
in the rangébl—b times threshdld. The trequency épéétra obtained
for P=2. ana 4, are shown iﬁ Fig. 6. These spectra are‘similar

to the Langﬁﬁir—ion acoustic decay instability where‘a series of

peaks separated by acoustic frequencies is observed.

ROk
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III.B. Cascading with Convective Loss

In this section a finite value of Y* is used which inhibits
thé growth of long wavelength modes due to the short transit
time such modes have. The total iinear dissipation rate then
has a minimum as a function of wavenumber. For the parameters
chosen, collisional damping is negligible and the most unstable
waves are ordinarily strongly Landéu damped. As a result, the
threshold is much higher, the frequency shifts are larger since
only rather short-wavelength modes can interact, and the nonlinear
growth time scales with the convective loss rate and linear

Landau .damping rate. The various time scales obey the inequalities
-1 -1 *-1 -1 NL-1

w£h<wA <<‘Y >zYL.~_-'Y .

Examination of Eq. (20) shows that <y > - 0 as Wj + 1 so that
convection will not be effective in preventing condensation.
Moreover the concept of group velocity is not valid in the
vicinity of turning points or resonances which are implied by
the frequency approaching the lower hybrid frequency as can be
seen directly from the dispersion relation (24). We limit
ourselves therefore to the consequences of including convective
loss in the wave kinetic equation when w, = 4w£h . The two
dimensional energy spectra for P = 4 with convective loss is
shown in Fig. 7. The energy has spread to waves that are
strongly Landau damped. The coupling of short- wavelength waves
to long wavelengths where the coupling is strongest (see Fig. 1)
is inhibited by the inclusion of convective loss. Most of the
energy is concentrated in waves with K = 0.2. In Fig. 8 we show

a comparison of the frequency spectra for P = 4 with and without

o
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convective losses. Two features are apparent. First,'the initial
frequency shift of the spectrum away from the pump is?larger with

convection. The second feature is the spread of the spectrum closer

to the pointlwk = Wop with convective damping for thé . same power

~A

relative to threshold. This is.a result of the suppréssion of

long waveleng%hs by convective loss and the larger absolute value of
the pump power which parametrically destabilizes shorter wavelength
more highly damped modes. We expect that the relativé power required
to destabilizg the minimum frequency mode will be lower in this

case. 'This expectation is confirmed by the frequencytspectrum for

P = 6 in Fig.?9,which shows that the decay wave spectfum has spread:
to Wy~ Wy ;One of the main results of this paper is that strong
pumég do not saturate by cascading. Either a strong turbulence
theory or other nonlinear or nonuniformity effects will be required
to follow strong pump instabilities to a nonlinear steady state.
Another.éharacteristic of the spectra with conveétive loss is
that they are:continuous as a.function of frequency unlike the dis-
crete spectra without convective loss. These convective damping
spectra are similar to the spectra observed by Porkolab, et al,

during radio- frequency heating experiments on Adiabatic Toroidal

Compressor.

Ty

The saturation by cascading of the parametric decay instability
for electron Elasma waves has_been treated by Rubenchik, et al.,

for the case phat wce >>wpe and wpe zwo >>w1,_h . In ?Pls case, the

ion motion can be neglected so the frequency dispersion becomes

w=Ww k (k .. Outstanding differences in treatment were that the
pe | ‘ . -

nonlinear coupling arises from motion along the fleld.llnes rather

than E x B drift across the field lines, and the scattering was only

AN YN

due to ions rather than the roughly equal contributiogs from ions

and electrons“for the cases treated in this paper. By far, the

-

»
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largest discrepancy in results was that Rgbenchik, et.al., obtain
a saturated spectrum that was concentrated in short-wavelength
modes rather than long wavelengths in the corresponding cases,
i.e. no convective damping. We believe that this result is an
artifact of the use in Rubenchik, et.al., of a differential form
for the nonlinear scattering term as was done in early treatments
of the saturation of the Langmuir decay instability.12 In the
Langmuir case, this approximation led to a spectrum sharply
peaked in the angle 6= cos_l(ﬂlg:éo) where N]%=Ali/|k| and NE:O=£O/ I,Eol ,
whereas numerical solutions13 showed that the spectrum was much
broader in angle. In the lower hybrid case, the kI(k replaées
kxDe and kADe replaces 6 . Thus, one might expect to obtain.a

spectrum continuous in k|(k and peaked in kkDe from the diffefen—

tial form.
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IV. PUMP DEPLETION AND HEATING

The expgrimental evidence and theoretical analysis have
shown that éhrrent heating experiments are operatingﬁin a range
of pump powefs that is adequately described by weak %ﬁrbulence
theory - esﬁécially when one includes convective loss.

It is important in future experiments to avoid serious pump
depletion in the low-density plasma near the surface in order
to deliver the pump energy to the main plasma. It is valuable
therefore to know the annmalous damping ratc of the pﬁmp Taff *
that is, the rate of energy loss by the pump due to ﬁbnlinear

effects. Frém the conservation law for plasmons, we have

Y .
eff S _ 3
o ‘So'Yefro'zfdiiYka‘

* -
If vy = 0, then Yy ® ve/2 and

3 3 ‘
.= = : A . e 25
Yeff &U.\. wu\)e / d A}i Ik- \)el / N}i Ik (25)
The total number of plasmons I = [ d3k Iy as a function of pump

AN

power has been found from the numerical results to obey the

approximate solution

B

I =0.551,, ’ o (26)

and thus
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yeff‘= 0.5v_P . ' (27)

When cqnveqtive losses are included, the damping rate is wave-
numberidependent. In Fig. 10, Qe present the results of a
numberical evolution of the total decay wave plasmon number
versus pump power. By comparing the dependence of the effective

damping rate for the pump on P where

_ 3 |
Yeff = 2/ k v (I /1) (28)

and the dependence of the total decay wave plasmon number on P,

we find that, to a good approximation,

Y = 20YP , (29)

eff

where o is a coefficient of order unity; Y is the minimum damping

ratc and has thc approximate wvaluc

Y = ng'/L ’ (30)}

where L denotes the length of the wavequide array along the

magnetic field. Using Eq. (29) and the radial group velocity for

the pump,
3/2
2_ 2 2 _ 2 1/2
v = - (wg ~ Wop) kxozz_(wo Yoh) (Tg_) (31)
gxo W ki Wg wﬂh'ko|| m
o

we obtain an equation governing the depletion of the pump power ||

(32)



where the absorption length La is given by

bs
: 2 1/2
W A
L o Kipe) (mec ) (1,) (33)
abs W - o
pe N || Te a )
where N||= ckHo/wo . The abéorption length in Eq. (33) is valid

only when woy>>w£h, which is the primary region of interest here.

From Eq. (7)' of Ref. 3, we have at radius r the threshold formula,
‘ /2 :
- 9n/? ¢ B; (Ts) : (34)
TH ;kADeN” a we \my

Pl

where a is the minor radius. This formula is appropriate if
Te >>Ti and @O >>w£h . However, the scaling of the threshold
with density and temperature is independent of theséhassumptions.
Let us assume that both the électron temperature and the density
have a parabolic profile so that in terms of the central tempera-

ture and central density,

n(r)/n(0) = T_(r)/T_(0) = (1-1r2/a%) . : (35)

Using Egs. (32)-(35), we obtain

‘ N2 1/2 W
an _ ____1L7_ < i) _a “pe 1 2
all - = = — I ’ (36)
dr 19(21_[)1 2 \m ch UJO )\2

3
R

e B

1l

- - (e%7a%1? 1Py

provided I > Mgy - We defined



n = 9(21T)l/2 ( u)() ) B2C E(Te) | (37)
2 2 a
.OLN“ w ] _

T 13__-3
e 10" "cm 1 B L
(7 Megawatts) (kev)( n )(N?)(SOkG) (5

in terms of the central values of the electron temperature and
density and neglected the weak radial dependence of the magnetic
field. Let us define r, as the radius at which H==HTH . The

pump power at radius r >ro is then
n = [Ho]/[l4-Hof(r/a)/HN] (38)

where Ho is the incident power and

/ ax/x (1 - x2) /2
r/a

f(r/a)
(39)

- (1--r2/a2)l/2 + £n{tg[n/4 + 1/2 cos_l(r/a)]}‘,

The functional dependencé on radius given in Eq. (39) is, of.
course, sensitive to the radial profile one assumes for the
temperature and density dependence. Figure 11 presents a graph
of f(r/a)eand 1/f(r/a). Formula (38) also shows that there is

a limiting power Hmax given by

Tnax: = HN/f(r/a) ' (40)

which govérns the maximum power which can penetrate past a

given radius r. More important is the scaling implied in Eq.

i

(37) which shows that pump penetration improves for small
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parallel indéx of refraction, large magnetic field,~high tem-
perature, and small densities. The most unfavorablé'scaling
is the inverse linear dependénce of HN on the plasmg(radius a.
Equations (34) and (35)‘make it clear that the fhreshold
is a decreaéing function of radius r due to the strong depen-
dence on teﬁperature. Equations (33)-(37) are valld only when
W, >>w£h . *In fact, the threshold for the convectlve quasi-
mode is also low in the plasma interior if wo‘$l'5méh ; because
thé decay waﬁes then have small group velocities asgban be seen
from Egq. (31), and because the pump electric fieldsfare strongest
there provided no severe pump depletion has taken place at the
plasma surface. If the incident power is less than the maximum
value of thgqthreshold power, then a radius ro,for thch the
power equals.the threshold power, will exist in the piasma periph-
ery. We have calculated the percentage of the incident power
that is absorbed by the plasma surface between r = r; and r = a.
This fractiqn of the power is wasted heating the sufface plésma
(the plasma between r = ry and r = a) and is unavaiiable to heat
tﬁe main plééma. Evaluating Eq. (37) for Adiabatici&oroidal
Compressor,.we assume n = 3 x1013cm 3, wy =5 x107sec T,
Te=800 ev, B=l7kG, a=17 cm, L=20 cm, ”—27and oa=0.5.
For a typical incident power ﬂo==100 KW, r_/a=0. 98 only 2% of
the power is absorbed by the surface plasma and pump depletion
is not a préﬁlem. However 1if N|r=5.5, which provides better
accessibility and is typical of some of the waveguide launchers

used on Adlabatlc Toroidal Compressor, then 15% of the power is

absorbed by the surface plasma. In Fig. 12 we show, based on

L4
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Eqg. (39), the fraction of incident power absorbed by the surface
plasma as a function of incident power for Adiabatic Toroidal
Compressor and Poloidal Divertor Experiment parameters for
Nlr=2.7 and.5.5. For Poloidal Divertor Experiment, we assume
=3x10"3cn™3, w =5x10°, T_=1.3 kev, B_=25kG, a=45 cm,
L =24 cm. The importance of tailoring the wavenumber depen-
dence of the pump spectrum so that the parallel index of refrac-
tion is small i.e., NIISZ but yet satisfies the accessibility
criterion.N” < 1.4 is clear from a comparison of the surface ab-
sorption for the same power Ho but différent values of Nlr The
parallel index of refraction Nllis important for two reasons.
First,‘larger values of Nllfor the same incident power lower
the threshold for instabilities by increasing the pump electric
field. Second, the slower group velocity decreases the scaie
length for pump depletion for a given anomalous damping rate.
The threshold formula (33) is modified when Te§;3Ti because the
parametric decay instability is weaker when the low-frequency
mode is nonpesonant. In fact; the threshold is about ten times
higher if Te==Ti than Eq. (33) indicates. However, the exact
value of the electron to ion-temperature ratio is unknown in
tokamaks and is undoubtedly a function of the minor radius be-
cause the 'impurities and neutrals at the plasma edge probably
cool the ions and keep Te>> Ti although the temperature ratio
is closer to one inside because of the good perpendicular ion-
thermal conductivity and: poor electron perpendicular conductivity.
However, if the divertor on Poloidal Divertor Experiment is ef-

fective in controlling impurities, one might expect the threshold
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formula (33) to be an underestimate. If the threshold is doubled

i
o e

at all radif, then the same Eercentage of power is abéorbed by
the edge plééma if the incident power is doubled. |

The plasma heating rate can be found from knowlédge of the
steady state energy spectrum-of lower hybrid waves.“'The anomalous
damping rate for the pump gives the rate at which pump wave energy
Eo is converted to particle energy ep, i.e.:

(9e )/ (3) = y e

More interesting is to predict how the energy will be deposited in

the plasma. First, one must establish the percentage of energy in

B

electrons streaming along the field lines and thermal velocity ions

the beat wave €_ , which is converted directly to thermal velocity

traveling across the field lines. From conservation of energy in

steady statéi one finds EB

frequency shift in each cascade. Because of the large shift in

~ AwT where Aw is the characteristic

frequency of.the steady staté spectrum from the pumﬁﬁwaves, this
enerqgy flow’fo particles is significant, i.e. EB:=%§'€p"O‘25€p'
The details of the division of energy between electrgns and ions
from the beat wave depends on the beat wave energyldensity which
do not solve, for here. For an infinite homogeneous ‘plasma, the
high-frequency decay wave spectrum is concentrated in long-wave-
length collisionally damped modes, and thus the main body electrons
are ‘heated. *“When convection is important, the decay wave energy

is concentrated in short-wavelength waves such that kXDe ~0.25.

IR

If Wy >>w£h, the energy is deposited in somewhat superthermal
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eleétrons with vlr~4ve but if wk;s/f Wpy the energy is deposited
in sgperthermal ions with V;"4Vi- Clearly most of the pump
energy creates a tail on the electron distribution. Any super-
thefmal ions are the result of beat wave heating and repreéent

a fraction of the total heating.

Let us now turn to the nonlinear absorption produced by high-
phase velocity lower hybrid‘waves, which are ducted around the
torus by density profile and destabilized by the spatially averaged
electfic field. In the linear regime, these waves are damped by
electron-ion collisions. The appropriate model for ducted waves
is the infinite homogeneous plasma model of Sec. III.A. (i.e. no
convective losses) with a pump field given by the spatially
averaged electric fieid. Reference 3 has shown that ducted waves
can be above threshold in many tokamaks. Our nonlinear calculations
show that for the infinite homogeneous plasma model, only high-
phase velocity waves reach important nonlinear intensities (see
Fig. 6). Since the effective collision frequency for these waves
will be of the order of the electron-ion collision frequency they serve
to augment the collisional damping. But since collisional damp-
ing is too:weak to play an important role in tokamak heatinq, the
high-phasetvelocity waves do not contribute significantly to

plasma heating.
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V. CONCLUSIONS AND APPLICATIONS 4 l- "

Radio-frequency heating near the lower hybrid fiequencylis
an attractive means for heating tokamaks because the-power can
be delivered%to the plasma without the need for structures inside
the vacuum vessel wall as other lower frequency wave heating
mechanisms réquire. The most serious obstacles to successful
tokamak heating are that 1) the threshold for nonlinear pro-
cesses may be so low in the low-density plasma near ‘the limiter
that the pump power is dissipated there rather than in heating

-

the central plasma; 2) the wave'energy appears to be transferred
primarily toﬁelectrons located in the tail of the distribution
and streaming along the toroidal field lines; 3) wavéguides must
be designed so that the Fourier decomposition of thepower
épectrum hasya very well defined parallel wavelength: The
question of'ﬁhresholds is addressed in a companion paper. We
show in Sec:JIII that the power incident from each waveguide
array must be kept within a few times threshold near the plasma
surface to avoid severe pump(depletion. Moreover, this require-
ment becomestmore stringent as the minor radius increases énd
as the paraiiel wavelength becomes shorter. The fact that the
threshold increases with toroidal magnetic field andmwith the

T

plasma temperature is favorable to larger tokamaks. -The second

By

obstacle has two implications. First, experimental evidence
that the tail electrons are actually accelerated was'difficult
to obtain in+Adiabatic Toroidal Compressor since the

bremsstrahlung radiation from BTe electrons did not lie within
1 : _ = A
the range of the detectors. Second, there is evidence from »\

RS . .

4
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neutral beam injection experiments that electron temperature
increases are difficult to obtain in present-day tokamaks. If
this confinement problem continues with larger devices, the
tokamak fusion program in general and lower hybrid heating in
particular, face a difficult future. The third obstacle is less
fundamental. We have shown that it is highly advantageous for
the purpose of avoiding pump depletion that high parallel index
of refraction components (N” >2) not be imposed by the waveguide
launcher. The small components (N” < 1.4) that do not satisfy
the accessiblity criteria will not penetrate to the plasma
interior but will be confined to the low-density region. Prac-
tical considerations demand that we put as much power as possible
through one waveguide launcher to minimize the number of
launchers required for significant heating. Thus, in order not
to waste a large fraction of power heating the plasma periphery,
the waveguide array should be designed to launch only waves with
parallel index of refraction between 1.4 and 2.0.

If the pump wave energy does penetrate to the plasma in-
terior, the threshold for decay is certainly exceeded. We have
shown, however, that a steady state will not be produced within
the context of the cascading model even for relatively modest
pump powers. A model adequate to prcdict saturation, Lhe
resultant heating rate, and the details of the energy deposition
will need to include such nonlinear processes as the oscillating
two stream instability, the coupling of three lower hybrid waves,
nonlinear frequency shifts, and phase correlation effects,9 as

well as nonuniform plasma effects. However if wo>° wth , we have

14
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shown that steady state solutions to the wave kinetic equations
do exist for pump powers many times threshold. Many exper;\.ments15

have demonstrated for wo‘vl-IOw the occurrence of parametric in-

£h
stabilities. ' However, direct comparison is difficult because

the physical parameters are very different from the ones assumed
in this paper. Also as we have shown,this case is important in

estimating the amount of pump aepletion that occurs in the low-

density edge region of a tokamak plésma.
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APPENDIX

We follow the treatment in Ref. 16 but restrict our
attention to electrostatic waves. We assume a large amplitude

wave

E = C Xx-w t
,Mo(x’t) _Eo oS (,lsom 0)

. . 1 . .
. - f—— -— . +
Eo+ exp(ik -x 1wot) + 5 Eo— exp(-ik -+x 1wot)

|
N =

which couples the low-frequency electron density fluctuations
dne(k,w) to high-frequency lower hybrid sidebands at w, = w:fwo

k, = k:{&o. The Fourier transform of Poisson's equation leads

AN

to the equation

wie(&i,wi)¢t = (4wec / ZkiBo)w } )5ne(k,w) (Al)

where e(k_,w,) is the high-frequency lower hybrid dispersion
relation for the sidebands. In the low-frequency equations,

we keep the bare tluctuating ion microdensity

— —3 —-. . — o7 "
Sjptkrw) = @77 T exp(mikrx )6 (w = kevy) _ (A2)

1

and electron microdensity

Sa(ksw) = (21r)_3 Z:exp(—ialf:xoe)d(oo--k”v”e)Jo(kLv_L / wce) (A3)
: e

where JO is the Bessel function, and we assume unmagnetized ions and strongly
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We, thus, arrive at the equations

magnetized electrons.
sng(k,w) = (k% / 4dme)x,(k,w) [¢(k,0) +y(k,w)] + S (k,w) ,  (A4)
sny (k,w) = (-k% / ame)x, (k,wid(k,w) + S, (k,u) (a5)
and
k2 (k,w) ;ﬂe (én, = én_) (AG)‘
oLy : i e :
The y's are the linear susceptabilities and V(k,w) is the
pondermotive;potential
-ce
bt Al Al-
oz ((k x;Evo—)q')i'» ‘*’+k|| + (}“XEO‘FM)‘ kllw-) . (A7)

‘Solving Egs.. (A4)-(A6) for Gne(k,w), we obtain
Sn = “393””)131(Xe€§jw)si'*[1'*X1Qiy“”5e —(kzw/4ﬂe)xe(l-+xi)>(A8)

is the low-frequency dispersion relation.

=1 +..Xe RS
(Al) to obtain

where € =
Equation (A8) is substituted in Eqg.
nl)—l 4re c 'fz S+ (kxE )
2B 2 A2 n O :
o ki
(A9)

£ 2
b= lue ek, ,0,)

(Xe(N]i,w)si+ [1 +Xi (Mli,w)se]) ’
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where -
nl“ 2 C2|kxE
€ = elk,w) -k ) Xg (krw) 1+ %, (k,w) ]
-~ 4B_k
1
. ( “2k”+2 - * k12l_2 - )
k, o} €€§*,w+) kZw” eQ&r,w )
Using the r:esults16
(s (k.)S* (k"w')) o §(k-k')6(w=-w)é [d3v £. (v)§(w=-k-v)
. W . = - - . . - ,
1] 1, ’ (2“)3 POV 1y01s . 1) = A AR
‘ {A1l)
and
(s (k,0)s” (k' ,0)) Mo sk-k' e ")s
W ,w\,w = - w-=-w
el A~ e2 (21_'_) 3 AN A el,82
(a12)

3 2
. _[d \'4 fel{xjé(w-HIW|)JO(kLVL/mce) ,

we can compute the ensemble average electric field energy density

. 2 2
2 3 2 1 b w 1 3
oo 1%y = [a% Cind® -} 2 (F2) L fa% fa
(2m) o) wce

. .
[xg kow) 12 £5 /) + |1+ x5 (k,0) [ £ (w/k))

2 2
k x E k x E
w2|€ |2k2 w2k2|e |2 '
+154 1 5y A
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where
Ei(‘w/k) =/d3v £, (V8(w-kv) f (Al4)
and ; | |
Eé(w}ku) =fd3v £ (W6 (w=Tyv)) Jé(kivl/wce) - (A15)

Here () denotes the ensemble average.

Of particular interest, here, is the case of nonresonant
decay of the pump wave to a lower hybrid wave by scattering off

" the ions and electrons. 1In this case, £_ =~ 0 and €y # 0 so that

2(l-+w;i/wéz) .
e T T Ttk ry wore (kok o) 4 Ay (k- k)
€ mn MO

and Wy and Y[ are the linear frequency dispersion relation and

damping rate respectively for lower hybrid waves and

nl 2(l-+w;i/wéi)
& T T T (x-K)) ek,0) fw_+o, (k-k.) +1Ye(,1(w_,\}§,o)]
€ O
2
k'_ Czlk x,vaol k”_ xe(k,w)
- 5 MAZ 5 o [l-+xi(k,w)]
k 4B k”w (k -k ) ~ )
E 2
2(1l+w_ /w e)
* - ——BS €8 ek, futu (k-k)+iv ;] (A16)
W ( -k ) PN [SIRPVON
€ v ANO
where .
Zlk xE_|? K%k X, (k,0) [1+x.(k,w)]
~~O = € 1 v
Yo ® Yo'k XK Y 5= 2 Im( (k
| 8B0(1-+wpe/gbe) k”wegk;-ho)k_ € wa)
(A17)

).

e

v
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Substituting Eq. (Al7) into Eq. (Al3), integrating over

and picking up the contribution from the resonance at

w_ = _we(k-i&o)' we obtain the result for Maxwellian velocity
distributions
2 2 2
Lo (l4—wpe /wce) (|Ek[ >
k 4nwk (2“)3
2 2
3 w T c¢“|kxE_ |
_6 LU -1 f,h e PUVNNN O ] -
= (2m) (3) vy - = S Gk,w, mw ) . (n18)
2 nl Wy 16 Bicikz oy Tk o

The spontaneous emission follows from (Al8) by identifying

k = Yn1 Ik . The generalization to a spectrum of waves follows

by assuming all waves are incoherent.

S
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762203
Fig. 1. The coupling function B(k' - k', wir = Q&? [see
Eq. (10)] as a function of kipe and maximized with respect
to k|| for pump frequency wg = 4w h- The upper curve in each case

is the maximum value of B and the lower curve is the frequency
shift (wg = wy)/wgh that corresponds to this maximum value.

(a) This case, w, = 4wy and kgipe = 0.05, is similar to the re-
sults for ajdipo?e pump where the maximum coupling is indepen-
dent of wavenumber. (b) Short-wavelength pumps couple most
effectively to long wavelengths.
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762204
Fig. 2. Total electrostatic energy as a function of_time
for wgy = 1.42wy}, pump power relative to threshold power P = 1.3,

Te = Tj, Wpe = Wces Ve/wgh = 1079, and no convective loss (y* = 0).
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Fig. 3. Total energy in decay waves U(W) per frequency in-
terval normalized with respect to the pump energy. The dashed
curve is the result for P = 1.3; the solid curve for P = 2.0.

In both cases, wg = 1.42uwgps Te = Tj, Wpe = Wger Ve/Wgh = 1079,
and y* = 0.
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: 762211
Fig. 4. The energy in decay waves per wavenumber and fre-
y interval U(K,W) for P = 1.3, wo < 1.42mph, Te = T;,

wpe = Wcer ve/wgn = 10, and y* = 0.
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762212

Fig. 5. The energy in decay waves per wavenumber and fre-

quency interval for P = 2.0, wo = 1'42‘*’2h' Te = Tis Wpa = Weer
Ve/Wgh = 10‘6, and y* = 0. © P
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762209
Fig. 6. The energy in decay waves normalized to the pump
energy as a function of frequency normalized to the lower hybrid
frequency for w, = 4wy and P = 2 (dashed curve) and P = 4 (solid

curve). In both cases, Ty = Ty, Wpe << Wges Ve/wghp = 2.107°2, and
Y* = 0.
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U(K,W)

762214
Fig. 7. The e gy decay wav mal d to the pump
energy per w umb and frequ y int 1l f wo = 4wgh, P = 4
To Ty Wpe Wog e e/“‘)lh = 2 107> d y* # 0. Convec tion
was included thi ase The minimum linear damping occurre d
for K = 0.20 '
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Fig. 8. A comparison of the energy per frequency interval
without convection (solid curve) and with convection (dashed
czzuiviz)_t_ghen Wo = dwgy, P = 4, Te = Tj. Wpe << Wger Ve/“’zh =
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762207
' Fig. 9+ The decay wave &hergy per fréquency intérval for
P = 6 and wy = 4.0wgp includifg convection. Note that energy
appears to bé accumulating ift modes with frequehcy w 2 WoR:
Other parameters are T, = Ti/s Upe << weer Ve/wgp = 2. % 107 5,
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762205
Fig. 10._ The total decay wave action normalized to the
pump action, I = I/I5, as a function of pump power relative to
threshold P for w, = 4wgp. Convective losses are included.
Other parameters are Te = Ty, Wpe << Wger and ve/wgp = 2 X 10_‘5
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Fig. 11. Graph of the functions f(r/a) and 1/f(r/a) defined
in Eq. (39). The limiting power is related to -1 via (37) and
(40) . N ' -
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Fig. 12. The fraction of power absorbed as a function of
the incident pump power P, in kilowatts for typical Adiabatic
Toroidal Compressor parameters and proposed Poloidal .Divertor
Experiment parameters. The N|| label refers to the characteristic
value of the parallel index of refraction of the pump. Other
parameters are given in the text. :
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